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Abstract of the Thesis.

This Thesis studies the limits of applicability of state of the art electronic structure calculations,
for predictive modelling and simulation of properties of dielectric materials. These materials play a
fundamental role in microelectronics technology, as gate insulators in MOS devices.

Current devices are largely based on the properties of the Si/SiO2 system. Large attention
has been paid to the change in the energy barrier experienced by carriers at the junction, as the
oxide layer becomes thinner. We have calculated the valence band offset at the Si/SiO2 interface,
directly from first-principles calculations of different models of Si/SiO2 junction. We studied the
dependence of the results on the choice of Hamiltonian and basis set, and found that the best results
are obtained when using the B3LYP scheme and basis sets containing polarisation functions. We
have shown that the interface states are confined in a region of the oxide whose dimensions do not
depend on the thickness of the dielectric layer.

Hydrogen is believed to play a fundamental role in the processes that lead to the breakdown of
the dielectric. We have calculated the stable sites for atomic hydrogen inside silica using a Density
Functional Theory scheme. We found two shallow but stable minima in the same channel of the
quartz structure, indicating that some type of interaction exists between the impurity and the host.
We found that Hydrogen actually becomes polarised. The results, however, are critically affected by
two of the approximations of the method: the approximative treatment of the exchange-correlation
interaction, and the classic treatment of hydrogen nuclei. We have also calculated the isotropic
hyperfine interaction parameters for H inside quartz, that can be compared directly with data from
EPR experiments. The results, however, appeared to be very sensitive to the quality of the basis
set.

Materials with higher dielectric constant than that of SiO2 are being considered as alternative
gate dielectrics. Their reliability of the material, however, depends critically on how easily defects
can be generated, and on the ability of these defects to trap charge carriers that can then tunnel
through the material. We have studied the energies of formation and the ionization potential and
electron affinities of cation and anion vacancies, as well as substitutional Zr inside HfO2. All these
properties are defined as ground-state properties, and corrected for the underestimation of the band
gap, typical of the Density Functional Theory scheme employed. Energy of formation of O vacancies
is much lower than that of cation vacancies. The O vacancies are shown to be able to trap electrons
when positively charged, and holes when neutral.

First-principle techniques are very computationally demanding methods. Alternatively, semi-
empirical methods can be employed to explore the properties of systems whose sizes are out of the
range of the ab initio schemes. We have updated an implementation of the INDO method in order
to allow the study of systems containing several hundreds of atoms in single processor machines. A
set of parameters for studying compounds containing Si, O, N and H using this technique has also
been developed and tested. It allows the description of bulk structures of Si/SiO2, SizN4 and SiON
with differences of 0.1 A and 5° with respect to experimental bond-lengths and angles, respectively.
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Aim of this Thesis.

Many problems that are believed will interfere with the progress of miniaturization of
microelectronic planar devices have been linked to the loss of reliability of the gate
dielectric in MOSFET transistors. Currently, silicon dioxide is almost exclusively
employed as a gate dielectric, but most of the problems are actually linked to the
use of this material.

The relatively low dielectric constant of silica requires using very thin layers
in order to maintain device performance. At such a small thickness, the material
loses its insulating properties, since the probability of tunnelling of carriers increases
dramatically. Charge trapping caused by point defects may also trigger breakdown
processes.

Quantum mechanical modelling allows one to relate the properties of the ma-
terials to their microstructure. There are, however, important limitations in the
application of these techniques. The cost of the calculation imposes a strong con-
straint on the size of the models that can be used, therefore making the stage of
modelling of the structure crucial.

The overarching aim of my studies has been testing the limits of applicability
of several quantum mechanical methods, for predictive modelling and simulation of
properties in dielectric materials. This research has been funded by Fujitsu Labo-
ratories Japan, and benefited from close collaboration with Dr. C. Kaneta, and her
colleagues.

The three topics selected for the study have been the Si/SiO9 interface, atomic
hydrogen inside a-quartz, and some point defects inside zirconia and hafnia.

The first study intends to find a simple way to monitor the change in the electronic
structure across the interface. The aim is to understand how the height of the
barrier found by the carriers at the interface changes as the thickness of the oxide
layer is reduced (this is a main concern for the developers of MOSFET technology).
We also have studied the dependence of the height of the barrier on computational
parameters, like the Hamiltonian or the basis sets that determine the accuracy of the
calculation.

The second study intends to contribute to the understanding of the behaviour of
hydrogen inside silica (also an old problem in microelectronics). Special attention
will be paid to understand the effect of some of the approximations that are assumed
in the techniques, like the classical treatment of the hydrogen nuclei (within the
Born-Oppenheimer approximation) or the approximate treatment of the exchange

13
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and correlation interaction by the DFT techniques.

The third topic is the modelling of defects inside alternative dielectrics that could
substitute silica as gate insulator. Before this could happen, the reliability of the
materials should be carefully asserted. The trapping ability of the defects inside
the materials is one of the factors to study. This requires one to consider further
corrections for the error introduced while calculating the position of the unoccupied
states. A correction of this type will be presented and discussed.

There is, finally, a part of the Thesis that has focused on the development of
computational tools rather than on its application. The aim has been to develop
a program for calculation of the electronic structure of solids that will allow very
fast calculations, ideally concerning systems with many atoms. The intention was
to use such a tool on a first analysis of potentially interesting systems, prior to the
employment of more accurate, but also more computing demanding, techniques.

We considered that semi-empirical techniques are interesting candidates for this
type of task.The work presented here consists on an updating of a code implement-
ing an INDO technique. This included an optimisation of the algorithms, and the
addition of new features, that improved the range of applicability and accuracy. The
parameterization required by the INDO method was also developed and tested for
systems containing silicon, oxygen and nitrogen.

Structure of the text.

The text is organised as follows. The first chapter provides an introduction to the
MOS technology, and to the problems that interfere with its development. The aim
is to give an idea of the relevance of the problems studied along this Thesis.

The second chapter provides theoretical background. Special attention is paid
here to describe very specific issues of the techniques and codes employed in this
research, which may not be of common knowledge.

Chapter 3 describes several issues concerning the data analysis. This chapter
focuses of describing how the physical properties of interest here are calculated from
the information extracted in the electronic structure calculations.

Chapters 4, 5, 6 and 7 are devoted to present and discuss the research. Each
chapter covers one of the topics already listed, and contains an introduction to the
problem, a review of the research done so far, a presentation of the result, and an
analysis and discussion of the results.

Last chapter contains the conclusions, where the relevance of the results of the
study is discussed.

14
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Chapter 1

Motivation and technological

context

1.1 Semiconductor technology. Reaching the limits.

Micro-integrated circuits (micro-chips) are among the most transcendental human
inventions of all times. These devices are able to perform logical and arithmetic
operations at much faster rate than any other known device. In addition, its pro-
duction reports very attractive benefits. This has triggered the development of a
powerful industry and required a very active research in order to keep a sustained
rate of development; the performance of the devices has doubled in periods of two
or three years !. As impressive as the rate of evolution and the rate of benefits of
microelectronics industry is the fact that it is entirely based in a single, and simple
strategy: reducing the size of the circuits.

The reason why miniaturization has such deep impact is that by reducing the
size of the circuits a reduction both of the amount of material employed and of the
energy consumed by the device when operating is achieved, all this without essentially
modifying the nature of the process of manufacturing.

The research teams have found several difficult problems during the forty years of
activity, and have many times managed to overcome them. Despite this, the oracles
of the industry predict that the rate of development will suffer a drastic slowdown
in approximately ten years time, since (yet another) fundamental problem will be
found. Are these truly fundamental limits?

1This empirical rule was actually established by Moore [1] in the early days of the industrial
production of micro-chips. The law, that has been so far fulfilled, describes the exponential growth
of the complexity of the circuits due to the decrease of the size of the devices. This influences circuit
speed, memory capacity and cost per unit.

16



ﬁ. CHAPTER 1. MOTIVATION AND TECHNOLOGICAL CONTEXT

1.2 The importance of the Si/SiO; system.

The reliance, almost exclusively, on the miniaturization process for improving the
technology is due to the nature of the process of manufacturing?, and this in turn is
possible because of the properties of the Si/SiO2 system.

The basic building block of the logical circuits is the transistor, which can be
operated as a controlled switch and therefore process binary information. The most
efficient design of transistor so far is the Metal-Oxide-Semiconductor Field Effect
Transistor (MOSFET). A schematic representation of the cross-section of a MOSFET
is shown in Figure 1.1. In this device, the flow of current (main current) between the
source region and the drain region is controlled by means of a bias applied to the gate.
The source and drain are built as to have a different density of charge carriers (i.e.
holes and/or electrons) than the channel region that separates them. This density
of carriers can be, however, modified by applying the gate bias. All this process is
possible thanks to the existence of a dielectric layer separating the gate from the
channel, and preventing carriers from escaping through the gate. This dielectric
is silicon dioxide. The reason is that silica displays high resistivity and dielectric
strength, a large band gap, and a very low density of defects at the interface with
silicon. However, some other features of the material present many problems that
seem difficult to solve, but should be present soon in the microelectronics landscape.

1.3 The problem of the ultimate width. Exploring the

interface properties.

Silicon dioxide has a relatively low dielectric constant (x = 3.9). This forces one to
use thin dielectric layers in the transistor in order to achieve capacitance enough as
to produce the required main currents. If the present design of a transistor is kept,
then the oxide gate layer is by far the thinnest in the whole structure (as it can be
seen in figure 1.1). Predictions are that this thickness should be less than 1.0 nm for
the year 2012 [2].

The main problems detected when constructing ultra-thin layers of silica are im-
purity penetration through the oxide, enhanced scattering of the carriers, reliability
degradation, high gate leakage current and the need to grow very controlled uniform
layers [3, 2]. In fact, most of the works that try to predict the ultimate width of the
dielectric layer center their attention on the tunneling problem [4, 5, 6].

The wide band gap of bulk silica prevents the appearance of a carrier current be-
tween the gate and the channel regions. However, basic quantum mechanics predicts

2The structure of the micro-integrated circuits is built by overlapping layers of materials with
different electrical properties. These properties are accurately controlled by means of doping and oxi-
dation processes. The layers have different patterns that are implanted following a photo-lithography
process. A reduction of the size of the circuits can be achieved, in principle, by reducing the size of
the patterns implanted. The basis of the lithographic process is the use of masks to protect specific
regions of the circuit. Silicon oxide is often used as masking material because it can easily be grown
over the silicon substrate as native oxide, and it is chemically and mechanically stable over it.
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1.4 Solutions for the tunneling problem. High-« dielectrics.

The need to scale down the gate dielectric thickness at the same rate as the rest of
the device is due to the low dielectric constant of silica. If the present structure of
MOSFETs is kept, then the most easy solution for allowing further scaling down is
the substitution of the gate dielectric.

One of the fundamental physical limits that the scaling down process is going to
reach soon is the tunnelling of electrons between the channel and the gate electrode
[7]. Experimental [5] and theoretical [8] studies predict a limit to that thickness (for
the case of SiO9) in a range between 7 and 14 A. Tt is also known that the tunnelling
current will contribute substantially to the overall leakage current at these scales.

The tunnel effect has explanation only in the framework provided by quantum
mechanics. Two main factors determining the size of the effect are the thickness of
the layer, and the barrier heights between the SiO2 and the Si. In fact, both factors
are interrelated as a thin layer presents a lower barrier, so it should be expected that
the ultimate thickness should be a compromise between the thickness giving both
acceptable tunnelling current and barriers [8].

The MOSFET device acts as a capacitor, and therefore the capacitance depends
directly in the thickness of the dielectric. Capacitance is given by:

C= A4 (1.1)

t
where & is the dielectric constant, A is the area, and t the thickness. It is straightfor-
ward to conclude from this expression that a material with higher dielectric constant
will allow to employ thicker layers without decreasing the capacitance. The increase
in the thickness will, on the other hand, avoid the undesired tunnelling. In the

microelectronics community the concept of equivalent thickness is used frequently:

KSi0
teqy = ——2t (1.2)
Kz

here t, and k; are the thickness of the layer and the dielectric constant of the
alternative material. The equivalent thickness Z.qy is the thickness of a layer of Si0;
that will be required to obtain the same capacitance as that given by the layer of
alternative material. If the new material has a higher dielectric constant « than that
of silicon dioxide, then a thicker gate layer can be used without losing the required
capacitance. The bigger thickness will prevent the appearance of direct tunneling
current between the gate and the channel.

The search for alternative dielectrics has been active for many years. The task is
not so simple, because the materials have to fulfill many other characteristics apart
from displaying a high [9]. The new dielectric should be mechanically stable over the
silicon substrate, and the growth of too thick interlayers of SiO; should be avoided.
These requirements constrain the group of materials to those shown in colour over the
periodic table in figure 1.2. Additional conditions are the possibility of controlling
the quality of the interface with Si, and the resistance to diffusion of oxygen, dopants
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