
The Annals of Statistics
2021, Vol. 49, No. 4, 1958–1981
https://doi.org/10.1214/20-AOS2008
© Institute of Mathematical Statistics, 2021

PESKUN–TIERNEY ORDERING FOR MARKOVIAN MONTE CARLO:
BEYOND THE REVERSIBLE SCENARIO

BY CHRISTOPHE ANDRIEU1 AND SAMUEL LIVINGSTONE2

1School of Mathematics, University of Bristol, c.andrieu@bristol.ac.uk
2Department of Statistical Science, University College London, samuel.livingstone@ucl.ac.uk

Historically time-reversibility of the transitions or processes underpin-
ning Markov chain Monte Carlo methods (MCMC) has played a key role in
their development, while the self-adjointness of associated operators together
with the use of classical functional analysis techniques on Hilbert spaces have
led to powerful and practically successful tools to characterise and compare
their performance. Similar results for algorithms relying on nonreversible
Markov processes are scarce. We show that for a type of nonreversible Monte
Carlo Markov chains and processes, of current or renewed interest in the
physics and statistical literatures, it is possible to develop comparison results
which closely mirror those available in the reversible scenario. We show that
these results shed light on earlier literature, proving some conjectures and
strengthening some earlier results.

1. Introduction. Markov chain Monte Carlo (MCMC) is concerned with the simulation
of realisations of π -invariant and ergodic Markov chains, where π is a probability distribu-
tion of interest defined on some appropriate measurable space (X,X ). Such realisations can
be used to produce samples of distributions arbitrarily close to π , or approximate expecta-
tions with respect to π . For a given probability distribution π the choice of a Markov chain
is not unique, and understanding the nature of the approximation associated to particular
choices is therefore of importance and has generated a substantial body of literature, both in
statistical science and physics among others and directly related to our work (Andrieu and Vi-
hola (2016), Bacallado (2010), Bornn et al. (2017), Caracciolo, Pelissetto and Sokal (1990),
Doucet et al. (2015), Hobert and Marchev (2008), Leisen and Mira (2008), Liu (1996),
Maire, Douc and Olsson (2014), Mira (2001), Neal (2004), Peskun (1973), Rey-Bellet and
Spiliopoulos (2016), Roberts and Rosenthal (2014), Rosenthal and Rosenthal (2015), Sakai
and Hukushima (2016), Sherlock, Thiery and Lee (2017), Tierney (1998)). The present pa-
per is a contribution to this literature and addresses a scenario currently barely covered by
existing theory, despite recent interest motivated by applications.

Due to its wide applicability, the Metropolis–Hastings update (Hastings (1970), Metropolis
et al. (1953)) is the cornerstone of the design of general purpose MCMC algorithms. The cor-
responding Markov transition satisfies the so-called detailed balance property, ensuring that
π is left invariant by this update, but also implies reversibility of the numerous algorithms
of which it is a building block. An unintended benefit of reversibility is given at a theoreti-
cal level. Using the operator interpretation of Markov transitions, the properties of reversible
Markov chains can be studied with well-established functional analysis techniques developed
for self-adjoint operators. The celebrated result of Peskun and its extensions (Caracciolo,
Pelissetto and Sokal (1990), Peskun (1973), Tierney (1998)) are an example (see Mira (2001)
for a review), and allow for practical performance comparisons in numerous scenarios of in-
terest (see Theorem 1 and its Corollary for a quick reference), providing in particular clear
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answers to questions concerned with the design of algorithms. While reversibility facilitates
theoretical analysis and has historically enabled methodological developments, it is not nec-
essarily a desirable property when performance is considered. Informally such processes have
a tendency to “backtrack”, slowing down exploration of the support of the target distribu-
tion π .

Recently, there has been renewed interest in the design of π -invariant Markov chains which
are not reversible. In several specific scenarios it has been shown that departing from re-
versibility can both improve the speed of convergence of a Markov chain (Diaconis, Holmes
and Neal (2000)), and reduce the asymptotic variance of resulting estimators (Sakai and
Hukushima (2016)) (although counterexamples also exist (Roberts and Rosenthal (2015))).
Certain nonreversible samplers have been known for some time (Gustafson (1998), Horowitz
(1991)), but interest has been re-kindled more recently thanks to a suite of methods which are
not instances of the Metropolis–Hastings class. All of these Markov transition probabilities
share a common structure, illustrated here with a very simple example. Assume that X = Z, let
E := X × {−1,1}, embed the distribution of interest π into μ(x, v) := 1

2π(x)I{v ∈ {−1,1}}
and consider the Markov transition

(1) P(x, v;y,w) := α(x, v)I{y = x + v,w = v} + I{y = x,w = −v}ᾱ(x, v),

where α(x, v) := min{1, π(x + v)/π(x)}, ᾱ(x, v) = 1 −α(x, v) and IS is the indicator func-
tion of set S. In words, starting at (x, v), the first component of the Markov chain generated
by P will travel in the same direction v in increments of size one until a rejection occurs
and the direction is reversed. One can check that this does not satisfy detailed balance with
respect to μ (or indeed π ), but a similar looking property

μ(x, v)P (x, v;y,w) = μ(y,w)P (y,−w;x,−v),

for (x, v), (y,w) ∈ E. This is referred to as modified detailed balance in the literature (Fang,
Sanz-Serna and Skeel (2014)) or skewed detailed balance (Hukushima and Sakai (2013)), and
leads to what is known as Yaglom reversibility (Yaglom (1949)). It is instructive to write this
identity in terms of the transition probability Q(x, v;y,w) := I{y = x}I{w = −v}, so that
it now reads μ(x, v)P (x, v;y,w) = μ(y,w)QPQ(y,w;x, v) where QPQ is the composi-
tion of the three kernels. An interpretation of this identity is that the corresponding operator
QPQ, not P , is the adjoint of P as is the case in the self-adjoint scenario. This structure
of the adjoint of P , together with the fact that Q2 is the identity, play a central role in our
analysis and covers a surprisingly large number of known scenarios and applications cur-
rently beyond the reach of earlier theory. Indeed our theory does not require the embedding
μ of π to be of the specific form above, and Q is only required to be an isometric invo-
lution; see Section 2.1 for a precise definition in the present context. As we shall see, this
structure allows us to develop a theory for performance comparison for this class of MCMC
algorithms which parallels that existing for reversible algorithms; see Section 2.2. Applica-
tions are given in Section 3, and include the proof of conjectures concerned with the lifted
Metropolis–Hastings method of Turitsyn, Chertkov and Vucelja (2011), Vucelja (2016) and
improves and generalises the results of Sakai and Hukushima (2016), provide a direct and
rigorous proof of Neal (2004) in a more general set-up and a connection to the results of
Maire, Douc and Olsson (2014), which is generalised, permitting the characterisation of al-
gorithms (e.g., Campos and Sanz-Serna (2015), Horowitz (1991)) currently not covered by
existing theory.

We show that this structure is shared by nonreversible Markov process Monte Carlo
(MPMC) methods, the continuous-time pendant of MCMC, such as the Bouncy Particle Sam-
pler, the Zig-Zag process or event-chain processes which have recently attracted some atten-
tion (Bierkens, Fearnhead and Roberts (2019), Bierkens and Roberts (2017), Bou-Rabee and
Sanz-Serna (2017), Bouchard-Côté, Vollmer and Doucet (2018), Ottobre (2016), Peters and
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de With (2012)). Characterisation of this property in the continuous-time setup is precisely
formulated in Section 4.1 and a concrete example discussed in Section 5.2. In Section 4.2,
we propose new tools which enable performance comparison for this class of processes and
an application is presented in Section 5. All the proofs can be found in the Supplementary
Material (Andrieu and Livingstone (2021)).

Throughout this paper, we will use the following standard notation. Let (E,E ) be
a measurable space. For Markov kernels T1, T2 : E × E → [0,1], we let T1T2(z,A) :=∫

T1(z,dz′)T2(z
′,A) for all A ∈ E and for any probability measure ν on (E,E ) and f ∈ R

E

measurable, we let ν(f ) := ∫
f dν, sometimes simplified to νf when no ambiguity is pos-

sible and whenever this quantity exists. We denote by T the associated operators acting on
functions to the right as Tf (z) := ∫

f (z′)T (z,dz′) for z ∈ E, and on measures to the left as
νT (A) := ∫

E

∫
A ν(dz)T (z,dz′) for every A ∈ E . Let μ be a probability distribution defined

on some measurable space (E,E ). Whenever the following exist, for f,g : E → R, we de-
fine 〈f,g〉μ := ∫

fg dμ, ‖f ‖μ := (
∫

f 2 dμ)1/2 and the Hilbert spaces L2(μ) := {f ∈ R
E :

‖f ‖μ < ∞}, with R
E the set of functions E →R, and L2

0(μ) := L2(μ) ∩ {f ∈ R
E : μ(f ) =

0}. We let |||T |||μ := sup‖f ‖μ=1 ‖Tf ‖μ and denote T ∗ the adjoint of T , whenever it is well
defined. For a set S, we let Sc be its complement in the ambient space.

2. Discrete time scenario—general results.

2.1. The notion of (μ,Q)-self-adjointness. Here, we formalise the notion of (μ,Q)-self-
adjointness, and discuss its consequences.

DEFINITION 1. We call a linear operator Q : L2(μ) → L2(μ) an isometric involution
if:

(a) 〈f,g〉μ = 〈Qf,Qg〉μ for all f,g ∈ L2(μ),
(b) Q2 = Id, the identity operator.

REMARK 1. We note the simple properties for f,g ∈ L2(μ):

• Q is μ-self-adjoint since 〈f,Qg〉μ = 〈Qf,Q2g〉μ = 〈Qf,g〉μ,
• the operators �+ := (Id + Q)/2 and �− := (Id − Q)/2 are μ-self-adjoint projectors and

f = �+f + �−f , Q�+f = �+f and Q�−f = −�−f .
• for � an orthogonal projector, Q = ±(Id − 2�) is an isometric involution.

From now on, we will assume that Q is a Markov operator, and again, we will use the
same symbol for the associated Markov kernel Q : E × E → [0,1] and note that μQ = μ.
The following establishes that there exists an involution ξ : E → E such that for all f ∈ R

E

and z ∈ E, Qf (z) = f ◦ ξ(z).

LEMMA 1. Let T : E × E → [0,1] be a Markov transition such that for any z ∈ E,
T 2(z, {z}) = 1, then there exists an involution τ : E → E such that for z, z′ ∈ E, T (z,dz′) =
δτ(z)(dz′).

DEFINITION 2. We say a Markov operator P : L2(μ) → L2(μ) is (μ,Q)-self-adjoint
if there is an isometric involution Q such that for all f,g ∈ L2(μ) it holds that 〈Pf,g〉μ =
〈f,QPQg〉μ.

We will say that the corresponding kernel P : E × E → [0,1] is (μ,Q)-reversible. When
Q = Id, we will simply say that P is μ-self-adjoint or μ-reversible. The following is a simple
but important characterisation of (μ,Q)-self-adjoint operators.
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PROPOSITION 1. If the Markov operator P is (μ,Q)-self-adjoint (resp., μ-self-adjoint)
then QP and PQ are μ-self-adjoint (resp., (μ,Q)-self-adjoint). As a result a (μ,Q)-self-
adjoint Markov operator is always the composition of two μ-self-adjoint Markov operators.

DEFINITION 3. For P a (μ,Q)-self-adjoint operator, we call QP and PQ its left and
right Q-symmetrisations.

2.2. Ordering of asymptotic variances. For an homogeneous Markov chain {Z0,Z1, . . .}
of transition kernel P leaving μ invariant, started at equilibrium and any μ–measurable f :
E →R, we define the asymptotic variance

(2) var(f,P ) := lim
n→∞nvar

(
n−1

n−1∑
i=0

f (Zi)

)
,

whenever the limit exists. This limit always exists, but may be infinite, when P is μ-reversible
and f ∈ L2(μ) (Tierney (1998)). Beyond this scenario, general criteria exist (Maigret (1978),
Glynn and Meyn ((1996), Theorem 4.1)) and often require a bespoke analysis. A general
question of interest is, given two Markov transitions P1 and P2 leaving μ invariant, can
one find a simple criterion to establish that for some function f , var(f,P1) ≥ var(f,P2) or
var(f,P1) ≤ var(f,P2), when these quantities are well defined. Provided the computational
costs of implementing the two corresponding algorithms are comparable, this has the poten-
tial to provide practitioners with clear guidelines about which of the two kernels to use. When
P1 and P2 are μ-reversible, a criterion based on Dirichlet forms leads to a particularly simple
solution. Beyond this scenario little is known in general.

For P and f ∈ L2(μ), define the Dirichlet form

(3) E(f,P ) := 〈
f, (Id − P)f

〉
μ = 1

2

∫ [
f

(
z′) − f (z)

]2
μ(dz)P

(
z,dz′),

and we let GapR(P ) := inff ∈L2
0(μ),‖f ‖μ �=0 E(f,P )/‖f ‖2

μ.

REMARK 2. Note that the expression (3) is a well-defined object whether or not P is μ-
reversible, but is typically of less interest in the nonreversible scenario. In the present paper,
however, nonreversible chains are compared through the Dirichet forms of their left and right
Q-symmetrisations, which are in fact μ-reversible.

THEOREM 1 (Caracciolo, Pelissetto and Sokal (1990), Tierney (1998)). Let μ be a prob-
ability distribution on some measurable space (E,E ), and let P1 and P2 be two μ-reversible
Markov transitions. If for any g ∈ L2(μ), E(g,P1) ≥ E(g,P2), then for any f ∈ L2(μ)

var(f,P1) ≤ var(f,P2) and GapR(P1) ≥ GapR(P2).

COROLLARY 1 (Peskun (1973)). Whenever for any z ∈ E and A ∈ E it holds that
P1(z,A ∩ {z}c) ≥ P2(z,A ∩ {z}c) then for any f ∈ L2(μ),

var(f,P1) ≤ var(f,P2) and GapR(P1) ≥ GapR(P2).

EXAMPLE 1. Consider two μ–reversible Metropolis–Hastings kernels of the form
Pi(z,dz′) := Ti(z,dz′) + (1 − Ti(z,E))δz(dz′) for i ∈ {1,2}, where Ti(z,dz′) := Q(z,dz′) ×
αi(z, z

′), Q is a Markov transition kernel, and each αi : E × E → [0,1] satisfies α1(z, z
′) ≥

α2(z, z
′) for all (z, z′) ∈ E × E. Then 2(E(g,P1) − E(g,P2)) = ∫

(g(z′) − g(z))2(α1(z, z
′) −

α2(z, z
′))μ(dz)Q(z,dz′), which is nonnegative for any g ∈ L2(μ), meaning var(f,P1) ≤

var(f,P2) for any f ∈ L2(μ) and GapR(P1) ≥ GapR(P2).
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Our main result is that these conclusions extend in part to (μ,Q)-reversible transitions. In
order to ensure the existence of the quantities we consider, for any λ ∈ [0,1) we introduce
the λ-asymptotic variance, defined for any f ∈ L2(μ), with f̄ := f − μ(f ), as

varλ(f,P ) := ‖f̄ ‖2
μ + 2

∑
k≥1

λk 〈f̄ , P kf̄
〉
μ = 2

〈
f̄ , [Id − λP ]−1f̄

〉
μ − ‖f̄ ‖2

μ.

Whether limλ↑1 varλ(f,P ) = var(f,P ) when the latter exists is problem specific and not
addressed here, but we note that this is always true in the reversible scenario (Tierney (1998))
and that a general sufficient condition is that

∑
k≥1 |〈f̄ , P kf̄ 〉μ| < ∞ (see Corollary 3 for a

detailed discussion). Rather we focus on ordering varλ(P1, f ) and varλ(P2, f ) for λ ∈ [0,1)

and leave the convergence to the asymptotic variances as a separate problem.

THEOREM 2. Let μ be a probability distribution on some measurable space (E,E ), and
let P1 and P2 be two (μ,Q)-reversible Markov transitions. Assume that for any g ∈ L2(μ),
E(g,QP1) ≥ E(g,QP2), or for any g ∈ L2(μ), E(g,P1Q) ≥ E(g,P2Q). Then for any λ ∈
[0,1) and f ∈ L2(μ):

(a) satisfying Qf = f it holds that varλ(f,P1) ≤ varλ(f,P2),
(b) satisfying Qf = −f it holds that varλ(f,P1) ≥ varλ(f,P2).

COROLLARY 2. If P1 and P2 are such that for μ-almost all z ∈ E and every A ∈ E , it
holds that P1Q(z,A ∩ {z}c) ≥ P2Q(z,A ∩ {z}c), or QP1(z,A ∩ {z}c) ≥ QP2(z,A ∩ {z}c),
then the conclusion of Theorem 2 holds.

COROLLARY 3. If for i ∈ {1,2} and f ∈ L2(μ) the following limits exist and
limλ↑1 varλ(f,Pi) = var(f,Pi), then var(f,P1) ≤ var(f,P2). This is satisfied if∑

k≥1 |〈f̄ , P kf̄ 〉μ| < ∞, which can be established under fairly general conditions (Andrieu,
Fort and Vihola ((2015), Theorem 1, Section 4.1 and 4.2)): essentially one requires the exis-
tence of C ⊂ E,

(a) ε > 0 and a probability measure ν on E such that for any z ∈ C the inequality
P(z, ·) ≥ εν(·) is satisfied,

(b) a Lyapunov function V : E → [1,∞), μ(V ) < ∞ and a concave function
φ : [1,∞) → (0,∞) such that the following holds:

PV (z) ≤ V (z) − φ ◦ V (z) + bI{z ∈ C},
and μ(|f |V ) < ∞.

REMARK 3. We note that in contrast with the reversible scenario the result never pro-
vides us with information about the speed of convergence to equilibrium. The practical guide-
line resulting from the theorem is that after “burn-in” an algorithm should be tuned to max-
imise or minimise E(g,QP) or E(g,PQ) for all g ∈ L2(μ).

REMARK 4. We expect the scenario where f = Qf to be the only scenario relevant
to statistical applications; f = −Qf is provided for completeness only. From the proof it
can be seen that ordering varλ(f,P1) and varλ(f,P2) for a specific f ∈ L2

0(μ) such that
Qf = f , only requires ordering Dirichlet forms for a particular subset of L2(μ), namely the
λ-solutions of the Poisson equation (see the proof of Theorem 2). Although these quantities
are generally intractable, in some scenarios their structure may be exploited to order the
Dirichlet forms involved. Such ideas have been extensively used in the reversible scenario,
for example, in Andrieu and Vihola (2015, 2016) and we provide an example in the (μ,Q)-
self-adjoint setup in Section 3.1. Another consequence of this is that strict inequalities can
be obtained when the Dirichlet forms are strictly ordered for nonconstant functions and these
λ-solutions are nonconstant.
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REMARK 5. More quantitative versions of this result, in the spirit of Caracciolo, Pelis-
setto and Sokal (1990) can also be replicated. If for α ∈ (0,1] and all g ∈ L2(μ), 〈g, (Id −
QP1)g〉μ ≥ α−1〈g, (Id−QP2)g〉μ then varλα(1−λ+λα)−1(f,P1) ≤ [1−λ+λα]varλ(f,P2)−
λ(1 − α)‖f̄ ‖2

μ. When the limits as λ ↑ 1 exist this implies var(f,P1) ≤ αvar(f,P2) − (1 −
α)‖f̄ ‖2

μ; see the Supplementary Material.

3. Discrete time scenario: Examples. The notion of (μ,Q)-reversibility, often de-
scribed in terms of modified or skewed detailed balance, is known to hold for numerous
processes of interest but its implications, beyond establishing that the corresponding Markov
chain leaves μ invariant, are to the best of our knowledge unknown. In this section, we show
that our framework contributes to filling this gap and revisit a wide range of simple, some
foundational questions. In some scenarios, (μ,Q)-reversibility is not immediately apparent
for a specific problem and we present basic strategies to remedy this. More complex exam-
ples are possible, such as extension of Andrieu and Vihola (2015, 2016) or Andrieu (2016),
for example, but beyond the scope of this paper.

3.1. Links to 2-cycle based MCMC kernels. Recently, Maire, Douc and Olsson (2014),
have shown that results for ordering of asymptotic variances of reversible time-homogeneous
Markov chains can be extended to certain inhomogeneous Markov chains arising naturally
in the context of MCMC algorithms. Such chains are obtained by cycling between two re-
versible MCMC kernels (see Algorithm 1), and it is a natural question to ask whether im-
proving either of the kernels in terms of individual Dirichlet forms improves performance
of the inhomogeneous chain resulting from their combination. Theorem 3 below provides us
with a simple and practical characterisation. We show that this result is in some sense dual
to (μ,Q)-reversibility and provide a generalisation which makes previously intractable anal-
ysis of some algorithms possible. For π a probability distribution on some space (X,X ),
P1 and P2 two π -invariant Markov transitions and f ∈ L2(π), we extend the definition of
λ-asymptotic variance, for λ ∈ [0,1) to the time inhomogeneous scenario

varλ
(
f, {P1,P2}) + ‖f̄ ‖2

π

:= [
Id − λ2P1P2

]−1
(Id + λP1)f̄ + [

Id − λ2P2P1
]−1

(Id + λP2)f̄ ,

where f̄ := f − π(f ), which is well defined since for any g ∈ L2(π) ‖P1g‖π ≤ ‖g‖π and
‖P2g‖π ≤ ‖g‖π . Under additional assumptions (see, e.g., Maire, Douc and Olsson (2014),
Proposition 9) the following limits exist and satisfy:

lim
λ↑1

varλ
(
f, {P1,P2}) = lim

n→∞n var

(
n−1

n−1∑
i=0

f (Xi)

)
,

where here {X0,X1, . . .} is the time inhomogeneous Markov chain obtained by cycling
through P1 and P2 and of initial distribution π , that is, for A ∈ X , P(Xk ∈ A | X0, . . . ,

Xk−1) = P2−(k mod 2)(Xk−1,A) for k ≥ 1 and X0 ∼ π . The following is a reformulation of
Maire, Douc and Olsson ((2014), Theorem 4 and Lemma 25) combined with a generalisation
of Maire, Douc and Olsson ((2014), Lemma 18).

Algorithm 1 A 2-cycle based MCMC algorithm
• Initialisation X0, i = 0, n. Require: π -reversible transition kernels P1 and P2.
• For i = 1 to n

Draw Xi+1 ∼ P2−((i+1) mod 2)(Xi, ·)
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THEOREM 3 (see Maire, Douc and Olsson ((2014), Theorem 4 and Lemma 25)). Let π

be a probability distribution defined on (X,X ). For i, j ∈ {1,2}, let Pi,j : X×X → [0,1] be
π -reversible Markov kernels such that for all g ∈ L2(π) and i ∈ {1,2} we have E(g,P1,i) ≥
E(g,P2,i). Then, in the time inhomogeneous scenario, for any f ∈ L2(π) and λ ∈ [0,1)

varλ
(
f, {P1,1,P1,2}) ≤ varλ

(
f, {P2,1,P2,2}).

Further, for the time homogeneous scenario, if f ∈ L2(π) is such that Pi,1f = f (or Pi,2f =
f ) for i ∈ {1,2}, then

varλ(f,P1,1P1,2) ≤ varλ(f,P2,1P2,2).

COROLLARY 4. Let Q be an isometric involution and P1 and P2 be (π,Q)-reversible.
Note that for i ∈ {1,2}, Pi = Q(QPi) (resp. Pi = (PiQ)Q) and that both Pi,1 := Q (resp.,
Pi,1 := PiQ) and Pi,2 := QPi (resp., Pi,2 := Q) are π -self-adjoint by Proposition 1. We can
therefore apply Theorem 3 and the conclusion of Theorem 2 holds for f ∈ L2(π) such that
Qf = f .

Conversely one can show using a very simple argument that the first statement of Theo-
rem 3 is a direct consequence of (μ,Q)-reversibility of a particular time-homogeneous chain,
where time is now part of the state, for a particular isometric involution. Apart from linking
two seemingly unrelated ideas, an interest of the proof is that it highlights the difficulty with
extending the results to m-cycles with m ≥ 3.

REMARK 6. Note that the instrumental Markov chains introduced in the proof are never
ergodic, but can be ergodic marginally. It is possible to revisit this proof for m-cycles and
m ≥ 3, but the property v1 ⊕ (−v2) = v1 ⊕ v2 fails in this scenario, in general, and it is not
possible to conclude.

Theorem 4 below extends Theorem 3 to 2-cycles of (μ,Q)-reversible Markov kernels–
applications of this result are given in Section 3.2.

THEOREM 4. Let π be a probability distribution defined on some probability space
(X,X ). For i, j ∈ {1,2}, let Pi,j : X × X → [0,1] be (μ,Q)-reversible Markov kernels
for some isometric involution Q, and such that for all i ∈ {1,2} we have E(g,QP1,i) ≥
E(g,QP2,i) for all g ∈ L2(π), or E(g,P1,iQ) ≥ E(g,P2,iQ) for all g ∈ L2(π). Then for any
f ∈ L2(π) such that Qf = f and λ ∈ [0,1)

varλ
(
f, {P1,1,P1,2}) ≤ varλ

(
f, {P2,1,P2,2}).

Further, if f ∈ L2(π) is such that Pi,1f = f (or Pi,2f = f ) for i ∈ {1,2}, then

varλ(f,P1,1P1,2) ≤ varλ(f,P2,1P2,2).

3.2. Construction of Markov kernels from time-reversible flows. A generic way to con-
struct (μ,Q)-reversible Markov kernel consists of the following slight generalisation of Fang,
Sanz-Serna and Skeel (2014), Horowitz (1991). For a probability distribution m on (E,E )

and measurable mapping ψ : E → E we let for any A ∈ E , mψ(A) := m(ψ−1(A)). The
presentation parallels that of Tierney ((1998), Section 2, second example) in order to avoid
specificities concerned with densities and, for example, the presence of Jacobians.

PROPOSITION 2. Let μ be a probability distribution on (E,E ),

(a) ψ : E → E be a bijection such that ψ−1 = ξ ◦ ψ ◦ ξ for ξ : E → E corresponding to
an isometric involution Q,
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Algorithm 2 An MCMC algorithm constructed from time-reversible flows
• Initialisation Z0, i = 0, n. Require: maps ψ , ξ , r and φ, as defined in Proposition 2.
• For i = 1 to n

(a) Set Z′ = ξ ◦ ψ(Zi)

(b) Compute r(Zi) and the acceptance rate φ ◦ r(Zi)

(c) Draw U ∼ U[0,1]
(i) If U ≤ φ ◦ r(Zi) then set Zi+1 = Z′

(ii) Otherwise set Zi+1 = Zi

(b) φ : R+ → [0,1] such that rφ(r−1) = φ(r) for r > 0 and φ(0) = 0,
(c) define for z ∈ E, with ν := μ + μξ◦ψ ,

r(z) :=
⎧⎪⎨
⎪⎩

dμξ◦ψ/dν(z)

dμ/dν(z)
if dμξ◦ψ/dν(z) > 0 and dμ/dν(z) > 0,

0 otherwise.

then the following kernel is (μ,Q)-reversible,

(4) P
(
z,dz′) := φ ◦ r(z)δψ(z)

(
dz′) + δξ(z)

(
dz′)[1 − φ ◦ r(z)

]
.

The resulting scheme is described in Algorithm 2. See also Chapter 2 of Lelièvre, Rousset
and Stoltz (2010) for a treatment of some related schemes.

REMARK 7. Note that φ(r), together with r(z), define the probability of accepting a
transition to the new state ψ(z). Choices of φ include φ(r) = min{1, r}, which leads to the
standard Metropolis–Hastings acceptance rule, or φ(r) = r/(1 + r) which corresponds to
Barker’s dynamic. It is well known that for any φ satisfying Proposition 2(b) one has φ(r) ≤
min{1, r} and that for Barker’s choice 1

2 min{1, r} ≤ φ(r).

EXAMPLE 2. Assume E = X × V and for (x, v) ∈ E and f ∈ R
E let Qf (x, v) :=

f (x,−v). Then for any t ∈ R, ψt(x, v) = (x + tv, v) satisfies ψ−1
t = ξ ◦ ψt ◦ ξ and was

considered in Gustafson (1998) to define the Guided Random Walk Metropolis. More gen-
eral examples satisfying this condition include ψt(x, v) = ψB

t/2 ◦ ψA
t ◦ ψB

t/2(x, v) where

ψA
t (x, v) := (x + t∇vH(x, v), v) and ψB

t (x, v) := (x, v − t∇xH(x, v)) for a separable
Hamiltonian H : E → R. This is the Störmer–Verlet scheme considered in Horowitz (1991)
to define the Hybrid Monte Carlo algorithm in the situation where H := − log dμ/dλLeb is
well defined and separable. More generally dynamical systems with the time reversal sym-
metry (e.g., Lamb and Roberts (1998) and also Faggionato, Gabrielli and Ribezzi Crivellari
((2009), Lemma 3.14)) provide ways of constructing such mappings (see also Campos and
Sanz-Serna (2015), Ottobre (2016), Ottobre et al. (2016), Poncet (2017), Sohl-Dickstein,
Mudigonda and DeWeese (2014) and Fang, Sanz-Serna and Skeel (2014)).

In order to be useful in practice a Markov transition of the type given in (4) must be
combined with another transition in order to lead to an ergodic Markov chain (Gustafson
(1998), Horowitz (1991)). We focus here on 2-cycles of (μ,Q)-reversible Markov transitions.

THEOREM 5. Let μ be a probability distribution on (E,E ) and let ψ satisfy Proposi-
tion 2(a) for some isometric involution Q. Further for i ∈ {1,2}, let Pi,2 be as in (4) for a
mapping ψi = ψ and some mapping φi satisfying Proposition 2-(b) and let P1,1 = P2,1 be a
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(μ,Q)-reversible Markov transition. Assume that φ1 ≥ φ2, then for any f ∈ L2(μ) such that
Qf = f and λ ∈ [0,1) we have

varλ
(
f, {P1,1,P1,2}) ≤ varλ

(
f, {P2,1,P2,2}).

In particular, φ(r) = min{1, r} achieves the smallest λ-asymptotic variance.

EXAMPLE 3 (Example 2 (ctd)). Assume here for presentational simplicity that X = V =
R that μ has a density with respect to the Lebesgue measure and μ(x, v) = π(x)(v) where
 is a N (0, σ 2) for some σ 2 > 0. In this setup a popular choice (Duane et al. (1987)) for
P1,1 = P2,1 is a momentum refreshment of the type, for some θ ∈ (0, π/2],

Rθ

(
(x, v);d(y,w)

) =
∫

δ(x,v cos θ+v′ sin θ)

(
d(y,w)

)


(
dv′).

Lemma 2 below establishes that the corresponding operator is (μ,Q)-self-adjoint. We can
therefore apply Theorem 5 and deduce, for example, that the choice φ(r) = min{1, r} for
all θ ∈ (0, π/2] is optimum. Further since Rθ(x, v; {x} × V) = 1 we note that the second
statement of Theorem 3 holds, a result partially known for θ = π/2 since in this case for
i ∈ {1,2} Pi,1Pi,2 is μ-reversible and Theorem 1 can be applied.

LEMMA 2. For any θ ∈ (0, π/2], Rθ is (μ,Q)-self-adjoint for Q such that Qf (x, v) =
f (x,−v) for f ∈ R

E .

Another application of the results above is the extra chance HMC method presented in
Campos and Sanz-Serna (2015), equivalent to the ideas of Sohl-Dickstein, Mudigonda and
DeWeese (2014), which can be seen as an extension to Horowitz’s scheme (Horowitz (1991)).
Using the notation of Proposition 2, the main idea is to define a variation of (4) where transi-
tions to ξ ◦ ψ(x, v), ξ ◦ ψ ◦ ψ(x, v), . . . are attempted in sequence until success.

EXAMPLE 4. Here, X = R for simplicity and μ(d(x, v)) = π(dx)(dv) where (dv)

is a N (0, σ 2). With Qf (x, v) = f (x,−v) for f ∈ R
E and ψ as in Proposition 2(a), we let

ψ0 = Id and ψk = ψ ◦ ψk−1 for k ∈ N \ {0}. Define for K ∈N \ {0},

PK

(
(x, v);d(y,w)

) :=
K∑

k=1

βk(x, v)δψk(x,v)

(
d(y,w)

) + ρK(x, v)δξ(x,v)

(
d(y,w)

)
,

where, with α0(x, v) = 0 and for k = 1, . . . ,K αk(x, v) = αk−1(x, v) ∨ {1 ∧ rk(x, v)}, with

rk(x, v) :=
⎧⎪⎨
⎪⎩

dμξ◦ψk
/dνk(z)

dμ/dνk(z)
if dμξ◦ψk

/dνk(z) > 0 and dμ/dνk(z) > 0,

0 otherwise,

and νk := μ + μξ◦ψk
, βk(x, v) = αk(x, v) − αk−1(x, v) and ρK(x, v) := 1 − ∑K

k=1 βk(x, v).
It is shown in Campos and Sanz-Serna ((2015), Appendix A) that this update is (μ,Q)-
reversible, while it is pointed out that for ω ∈ (0, π/2], RωPK is not. We can apply Theorem 4
to deduce that for any f ∈ L2(μ) such that Qf = f and any ω ∈ (0, π/2], the mapping
K �→ varλ(f, {Rω,PK}) is nonincreasing, since from Lemma 3 below, K �→ E(g,PKQ) is
nondecreasing. In fact, since Rω(x, v; {x} × V) = 1, for f ∈ L2(π) and f̆ (x, v) := f (x) for
(x, v) ∈ E, we also deduce that K �→ varλ(f̆ ,RωPK) is nonincreasing.

LEMMA 3. For any g ∈ L2(μ), K �→ E(g,PKQ) is nondecreasing.

REMARK 8. As pointed out by Campos and Sanz-Serna (2015), the rational behind the
approach is that for (x, v) ∈ E, k �→ H ◦ ξ ◦ ψk(x, v) typically fluctuates around H(x, v).
As a result, if there exist (x0, v0) ∈ E and k0 ∈ N∗ such that min1≤k≤k0 H ◦ ξ ◦ ψk(x0, v0) >
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max{H(x0, v0),H ◦ξ ◦ψk0+1(x0, v0)} and, for example, (x, v) �→ H ◦ξ ◦ψk0+1(x, v) is con-
tinuous in a neighbourhood of (x0, v0), then μ({βk0+1(X,V ) > 0}) > 0 and E(g,Pk0+1Q) −
E(g,Pk0Q) > 0 for L2(μ) � g �= g ◦ ξ ◦ ψk0+1 on the aforementioned neighbourhood, sug-
gesting that the strict performance improvement observed numerically in Campos and Sanz-
Serna (2015) for specific functions holds more generally. A more precise investigation of this
point is far beyond the scope of the present work.

It is natural to try to assess the impact of θ ∈ (0, π/2] involved in the definition of Rθ on the
performance of the type of algorithms presented in this section. In particular, a long-standing
question is whether partial momentum refreshment is preferable to full refreshment, meaning
replacing Rθ by Rπ/2. Application of Theorem 4 requires establishing that 〈g,Q(Rπ/2 −
Rθ)g〉μ does not change sign for all g ∈ L2(μ). This, however, is not the case. For example,
setting g1(x, v) := v then the quantity is positive but for g2(x, v) := v2 it is negative and we
cannot conclude.

3.3. Lifted MCMC algorithms. Assume we are interested in sampling from π defined
on (X,X ) and are given two sub-stochastic kernels T1 and T−1 such that for x, y ∈ X the
following “skewed” detailed balance holds:

(5) π(dx)T1(x,dy) = π(dy)T−1(y,dx).

A generic example, related to the Metropolis–Hastings algorithm, is as follows.

EXAMPLE 5. Let {q1(x, ·), x ∈ X} and {q−1(x, ·), x ∈ X} be two families of probabil-
ity distributions on (X,X ), then the kernel defined for v ∈ {−1,1} and x, y ∈ X as, with
ν(d(x, y)) := γv(d(x, y)) + γ−v(d(y, x)) and γv(d(x, y)) := π(dx)qv(x,dy),

Tv(x,dy) = 1 ∧ rv(x, y)qv(x,dy), rv(x, y) :=
⎧⎪⎨
⎪⎩

dγ−v/dν(y, x)

dγv/dν(x, y)
if

dγv

dν
(x, y) > 0,

0 otherwise,

satisfies (5) (see Algorithm 3).

A standard way of constructing a π -reversible Markov transition based on the above sub-
kernels consists of the following mixture:

(6) P(x,dy) = 1

2
T1(x,dy) + 1

2
T−1(x,dy) + δx(dy)

(
1 − 1

2
T1(x,X) − 1

2
T−1(x,X)

)
.

The standard Metropolis–Hastings algorithm corresponds to the scenario where T1 = T−1.
The aim of the lifting strategy is to stratify the choice between T1 and T−1 by embedding
the sampling problem into that of sampling from μ(d(x, v)) = π(dx)(v) = 1

2π(dx)I{v ∈
{−1,1}} and using a Markov kernel defined on the corresponding extended space E =
X × {−1,1} which promotes contiguous uses of T1 or T−1 along the iterations. As shown

Algorithm 3 A lifted MCMC algorithm (taken from Example 5)
• Initialisation Z0 := (X0,V0), i = 0, n.
• For i = 1 to n

Draw X′ ∼ qVi
(Xi, ·) and U ∼ U[0,1]

(a) If U ≤ min{1, rVi
(Xi,X

′)} then set Xi+1 = X′ and Vi+1 = Vi ,
(b) Else if U > min{1, rVi

(Xi,X
′)} + ρVi,−Vi

(Xi) then set Xi+1 = Xi and Vi+1 = Vi ,
(c) Otherwise set Xi+1 = Xi and Vi+1 = −Vi ,
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in Turitsyn, Chertkov and Vucelja (2011), Vucelja (2016), one possible solution, imposing
P lifted((x, v); (A \ {x}) × {−v}) = 0 for any A ∈ X , is

P lifted(
(x, v);d(y,w)

) = I{w = −v}δx(dy)ρv,−v(x)

+ I{w = v}[Tv(x,dy) + δx(dy)
(
1 − Tv(x,X) − ρv,−v(x)

)]
,

where ρ1,−1(x) and ρ−1,1(x) are free parameters, the “switching rates”, required to satisfy
for all (x, v) ∈ E 0 ≤ ρv,−v(x) ≤ 1 − Tv(x,X) and

(7) ρv,−v(x) − ρ−v,v(x) = T−v(x,X) − Tv(x,X).

It is not difficult to check that under (5) and (7) P lifted is (μ,Q)-self-adjoint, for Q such
that Qf (x, v) = f (x,−v) for f ∈ R

E . There are numerous known solutions to the condition
above (Hukushima and Sakai (2013)), including ρ̃v,−v(x) := max{0, T−v(x,X) − Tv(x,X)}.
It is remarked as intuitive in Vucelja (2016) that among the possible solutions to (7) this
choice should promote fastest exploration. We prove below that this is indeed true, in the
sense that this choice minimises asymptotic variances, as a consequence of Theorem 2. We
let P lifted,ρ denote the transition probability which uses ρv,−v .

THEOREM 6. For any switching rate ρv,−v satisfying 0 ≤ ρv,−v(x) ≤ 1 − Tv(x,X) for
all (x, v) ∈ E and (7), any f ∈ L2(μ) such that Qf = f and λ ∈ [0,1), we have

varλ
(
f,P lifted,ρ̃) ≤ varλ

(
f,P lifted,ρ) ≤ varλ

(
f,P lifted,1−Tv

)
.

REMARK 9. Readers familiar with the delayed rejection Metropolis–Hastings update
may notice the similarity here since P lifted((v, x);d(w,y)) is

I{w = v}Tv(x,X)
Tv(x,dy)

Tv(x,X)
+ [

1 − Tv(x,X)
][
I{w = v}δx(dy)

(
1 − ρv,−v(x)

1 − Tv(x,X)

)

+ I{w = −v}δx(dy)
ρv,−v(x)

1 − Tv(x,X)

]
,

where we require the property[
1 − Tv(x,X)

](
1 − ρv,−v(x)

1 − Tv(x,X)

)
= [

1 − T−v(x,X)
](

1 − ρ−v,v(x)

1 − T−v(x,X)

)
,

and notice that 1 − ρv,−v(x)

1−Tv(x,X)
= min{1,

1−T−v(x,X)
1−Tv(x,X)

}.

The theorem above establishes that this latter form of acceptance probability for the second
stage of the update is again optimum in this setup. The update however differs from the
standard delayed rejection update in that here the accept/rejection probability is integrated,
restricting implementability of the approach. We also note that our results can be used to
established superiority of the standard delayed rejection strategy in the context of (μ,Q)-
reversible updates and that integration of the rejection probability in the scenario above is
beneficial.

One can compare the performance of algorithms relying on P lifted and P . With a slight
abuse of notation for any λ ∈ [0,1) and f ∈ L2(π), we let varλ(f,P lifted) = varλ(f̆ ,P lifted)

where for (x, v) ∈ E we let f̆ (x, v) := f (x).

THEOREM 7. For any λ ∈ [0,1) and f ∈ L2(π), any switching rate ρv,−v satisfying
ρ̃v,−v(x, v) ≤ ρv,−v(x, v) ≤ 1 − Tv(x,X) for all (x, v) ∈ E, varλ(f,P lifted,ρ) ≤ varλ(f,P ),
with P given in (6).

EXAMPLE 6. In the scenario where X = R or X = Z and π has a density with respect to
the Lebesgue or counting measure, Gustafson (1998) introduced the guided walk Metropolis,
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of kernel P GRW((v, x);d(w,y)):

T guided
v (x,dy)I{w = v} + δx(dy)I{w = −v}[1 − T guided

v (x,X)
]

T guided
v (x,dy) :=

∫
X

min
{

1,
π(x + |z|v)

π(x)

}
q(dz)δx+|z|v(dy),

for some symmetric distribution q(·) on V = R or V = {−1,1}. It is straightforward to check
that T

guided
v satisfies (5), and hence we can construct a lifted version of Gustafson’s algorithm.

We also notice that P corresponds in this case to the random walk Metropolis algorithm with
proposal distribution q(·)—we denote this algorithm P RW. Our two earlier results establish
that for any switching rate ρv,−v , f ∈ L2(π) and λ ∈ [0,1),

varλ
(
f,P lifted-GRW,ρ) ≤ varλ

(
f,P GRW) ≤ varλ

(
f,P RW)

.

3.4. Neal’s scheme to avoid backtracking. In Neal (2004), the author describes a generic
way of modifying a reversible Markov chain defined on a finite state space X to reduce “back-
tracking” (a special case is also discussed in Diaconis, Holmes and Neal (2000)). More specif-
ically, assume we are interested in sampling from some probability distribution π defined on
X and that we do so by using a π -reversible (first-order) Markov transition T2 defined on X.
Informally the idea in Neal (2004) is to modify the first-order Markov chain of transition T2
into a second-order Markov chain to ensure that given a realisation X0,X1, . . . ,Xk−1,Xk for
some k ≥ 1 the new chain samples Xk+1 conditional upon Xk and Xk−1 and prevents the oc-
currence of the event Xk+1 = Xk−1. A probabilistic argument is developed in Neal (2004) for
X finite to establish that the resulting chain produces estimators with an asymptotic variance
that cannot exceed that of estimators from the original chain. We show here that this holds
more generally for countable spaces and is a direct consequence of (μ,Q)-self-adjointness
for a particular Q, the bivariate first-order representation of a second-order univariate Markov
chain as used in Neal (2004) and the application of Theorem 2. For simplicity of exposition,
we assume 0 < T2(x1, x2) < 1 for x1, x2 ∈ X, but the extension is straightforward. First, de-
fine the extended probability distribution on X × X :

μ(x1, x2) := π(x1)T2(x1, x2) = π(x2)T2(x2, x1),

for (x1, x2) ∈ X × X. Setting Qf (x1, x2) := f (x2, x1), we notice that reversibility of T2 im-
plies that Q is a μ-isometric involution. Let for (x1, x2), (y1, y2) ∈ X × X, M2((x1, x2);
(y1, y2)) := I{y1 = x1}T2(x1, y2) and notice that M2 is μ-reversible. The Markov chain
of transition P2 = QM2 is therefore (μ,Q)-reversible from Proposition 1. Note that the
first component of this process is simply a Markov chain of transition T2. Following an
idea of Liu (1996), it is suggested in Neal (2004) to use instead the transition P1 =
QM1, where the μ-reversible component M2 is replaced with the μ-reversible transition
M1((x1, x2); (y1, y2)) := I{y1 = x1}T1(x1, y2 | x2) where T1(x1, y2 | x2) is the Metropolis–
Hastings update:

T1(x1, y2 | x2) := U(x1, y2 | x2) + I{y2 = x1}(1 − U(x1,X | x2)
)
,

U(x1, y2 | x2) := T2(x1, y2)I{y2 �= x2}
1 − T2(x1, x2)

min
{

1,
1 − T2(x1, x2)

1 − T2(y2, x2)

}
.

The two resulting Markov transitions P1 and P2 are described graphically in Figure 1. The
Markov transition P1 = QM1 is described algorithmically in Algorithm 4.

The (μ,Q)-reversible kernel P1 is designed so that backtracking, the probability of return-
ing to x1 when sampling y2 conditional upon x2, of the chain is reduced, compared to P2.
Let {Zk, k ≥ 0} denote a realisation of the homogeneous Markov chain of transition Pi (for
i ∈ {1,2}) and arbitrary initial condition, one can check that its first component is a realisa-
tion {Xk, k ≥ 0} of the Markov chain of transition Ti , and in fact Zk = (Xk,Xk+1) for k ≥ 0.
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I{y1=x2}
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T2(x2,·)
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(a) P2 : x1 is not used
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I{y1=x2}

x2
T1(x2,·|x1)

���������������

����������������������������
y2

(b) P1 : T1(x2, · | x1) ensures y2 �= x1

FIG. 1. Neal’s no backtracking strategy: both algorithms keep track of x2 for the next iteration by copying it
in y1.

With an abuse of notation, for any λ ∈ [0,1) and f ∈ L2(π) we let varλ(f, T1) := varλ(f̆ ,P1)

where for any x1, x2 ∈ X, f̆ (x1, x2) := f (x1).

THEOREM 8. For any g ∈ L2(μ) such that Qg = g and λ ∈ [0,1), we have varλ(g,P1) ≤
varλ(g,P2) and as a consequence, for any f ∈ L2(π),

varλ(f, T1) ≤ varλ(f, T2).

4. Continuous-time scenario—general results. The continuous-time scenario follows
in part ideas similar to those developed in the discrete time scenario, but requires the introduc-
tion of the generator of the semigroup associated with the continuous-time process, leading
to additional technical complications. In Section 4.1, we develop a crucial result of practical
interest, Theorem 9, which allows one to deduce that a (in general intractable) semigroup is
(μ,Q)-self-adjoint when its generator is (μ,Q)-symmetric on a type of dense subset of its
domain. In Section 4.2, we establish the continuous-time counterpart of Theorem 2, that is,
show that ordering of tractable quantities involving the generators of two (μ,Q)-reversible
processes implies an order on their asymptotic variances (Theorem 10). We remark that while
establishing order rigorously may appear complex and technical, checking the criterion sug-
gesting order involves in general elementary calculations. To the best of our knowledge, no
general result is available in the continuous-time reversible setup, that is when Q = Id in
our setup, but note the works Leisen and Mira (2008), Roberts and Rosenthal (2014), fo-
cused on particular scenarios. Continuous-time processes with such structure are discussed in
Chapter 4 of Lelièvre, Rousset and Stoltz (2010), and asymptotic variances of nonreversible
processes are also treated in Chapter 4 of Komorowski, Landim and Olla (2012).

4.1. Set-up and characterisation of (μ,Q)-self-adjointness. Let {Zt, t ≥ 0} be a Markov
process taking values in the space D(R+,E) of càdlàg functions endowed with the Sko-
rokhod topology and corresponding probability space (�,F,P). We denote {Pt , t ≥ 0} the
associated semigroup, assumed to have an invariant distribution μ defined on (E,E ) and let
(D2(L,μ),L) be the generator associated with {Pt , t ≥ 0}, that is, L and D2(L,μ) ⊂ L2(μ)

are such that, with Id the identity operator,

D2 :=
{
f ∈ L2(μ) : ∃lf ∈ L2(μ), lim

t↓0

∥∥t−1(Pt − Id)f − lf
∥∥
μ = 0

}
,(8)

Algorithm 4 Neal’s scheme to avoid backtracking
• Initialisation Z0 := (Z0,1,Z0,2), i = 0 and n

• For i = 1 to n

Set Zi+1,1 = Zi,2, draw X ∼ T1(Zi,2, · | Zi,1) and U ∼ U[0,1],
(a) If U ≤ min{1,

1−T2(Zi,2,Zi,1)

1−T2(X,Zi,1)
} then set Zi+1,2 = X,

(b) Otherwise set Zi+1,2 = Zi,2.
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and for any f ∈ D2 one lets Lf := lf , which can easily be shown to be a linear operator
and denote D2(L,μ) := D2. From above, {Pt , t ≥ 0} is a strongly continuous contraction,
D2(L,μ) is dense in L2(μ) and L is closed (Ethier and Kurtz ((2009), Corollary 1.6)). For
any t ∈ R+, we let P ∗

t denote the L2(μ)-adjoint of Pt , and it is classical that {P ∗
t , t ≥ 0} is

a strongly continuous contraction of invariant distribution μ and generator (D2(L∗,μ),L∗),
the adjoint of L (Pedersen (2012)), that is, it holds that for f ∈ D2(L,μ) and g ∈ D2(L∗,μ),
〈Lf,g〉μ = 〈f,L∗g〉μ.

In order to avoid repetition, we group our basic assumptions on the triplet (μ,Q, {Pt, t ≥
0}) used throughout this section.

(A1) (a) μ is a probability distribution defined on (E,E ),
(b) {Pt , t ≥ 0} is a strongly continuous Markov semigroup of invariant distribu-

tion μ,
(c) Q is a μ-isometric involution.

DEFINITION 4. We will say that the semigroup {Pt , t ≥ 0} is (μ,Q)-self-adjoint, if for
all f,g ∈ L2(μ) and t ≥ 0 〈Ptf, g〉μ = 〈f,QPtQg〉μ.

We aim to characterise the adjoint of the generator of a (μ,Q)-self-adjoint semigroup
{Pt , t ≥ 0} and provide a practical simple condition to establish this property for a given semi-
group. We preface our first results with a technical lemma. For two operators (D2(A,μ),A)

and (D2(B,μ),B), D2(AB,μ) := {f ∈D2(B,μ) : Bf ∈D2(A,μ)}.

LEMMA 4. Let (μ,Q, {Pt, t ≥ 0}) satisfying (A1) and let {Tt := QPtQ, t ≥ 0}. Then:

(a) (μ,Q, {Tt , t ≥ 0}) satisfies (A1),
(b) the generator of {Tt , t ≥ 0} is (D2(QLQ,μ),QLQ).

As a corollary, one can characterise the generator of a (μ,Q)-self-adjoint semigroup.

PROPOSITION 3. Let (μ,Q, {Pt, t ≥ 0}) satisfying (A1) be (μ,Q)-self-adjoint. Then the
generator of {P ∗

t , t ≥ 0} is (D2(QLQ,μ),L∗ = QLQ).

The following allows one to check (μ,Q)-self-adjointness of a semigroup from the re-
striction of its generator to a particular type of dense subspace. A subspace A ⊂ D2(L,μ)

is said to be a core for L if the closure of the restriction L|A of L to A is L, where the clo-
sure is to be taken with respect to ‖(f, g)‖μ := ‖f ‖μ + ‖g‖μ for f,g ∈ L2(μ) on the graph
G(L) = {(f,Lf ) : f ∈ D2(L,μ)}.

THEOREM 9. Let (μ, {Pt, t ≥ 0},Q) satisfying (A1). Assume that A is a core for
(L,D2(L,μ)) such that:

(a) f ∈A implies Qf ∈ A,
(b) for all f,g ∈ A we have 〈Lf,g〉μ = 〈f,QLQg〉μ,

then {Pt , t ≥ 0} is (μ,Q)-self-adjoint.

4.2. Ordering of asymptotic variances. For f ∈ L2(μ) and Z0 ∼ μ, we are interested in
the limit of var(f,L) := limt→∞ var(t−1/2 ∫ t

0 f (Zs)ds) when this quantity exists. In some
circumstances (for instance, when a Foster–Lyapunov function can be found (Glynn and
Meyn ((1996), Theorem 4.3)), the limit above exists and has the expression var(f,L) =
2〈f̄ ,Rf̄ 〉μ, where, again, f̄ := f − μ(f ) and for g ∈ L2

0(μ), Rg := ∫ +∞
0 Ptg dt . For λ > 0
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and f ∈ L2(μ), we introduce varλ(f,L) := 2〈f̄ ,Rλf̄ 〉μ, where Rλ is the bounded opera-
tor defined for g ∈ L2(μ) as Rλg := ∫ +∞

0 exp(−λt)Ptg dt , referred to as the resolvent from
now on. It is classical that for any f ∈ L2(μ), (λId − L)Rλf = f and for f ∈ D(L,μ),
Rλ(λId − L)f = f . As in the discrete time setup, we leave the issue of checking whether
limλ↓0 varλ(f,L) = var(f,L) as separate. We note the following straightforward result.

LEMMA 5. If (μ,Q, {Pt, t ≥ 0}) satisfies (A1) and is (μ,Q)-self-adjoint, then for any
λ > 0 the bounded operator Rλ is also (μ,Q)-self-adjoint.

For two semigroups {Pt,1, t ≥ 0} and {Pt,2, t ≥ 0} leaving μ invariant and of generators
L1 and L2 with domains D2(L1,μ) and D2(L2,μ), we are interested in ordering varλ(f,L1)

and varλ(f,L2) for λ > 0. As in the discrete time set-up the comparison relies on the Dirich-
let forms, defined as follows for a generator L and f ∈ D2(L,μ), E(f,L) := 〈f,−Lf 〉μ. Our
proof requires the introduction of interpolating processes, defined at the level of their genera-
tors. The unusual parametrisation of convex combinations used here ensures that L(1) = L1
and L(2) = L2.

(A2) (μ,Q, {Pt,1, t ≥ 0}) and (μ,Q, {Pt,2, t ≥ 0}) satisfy (A1) and are (μ,Q)-self-adjoint.
Their respective generators (L1,D2(L1,μ)) and (L2,D2(L2,μ)) are assumed:
(a) to have a common core A dense in L2(μ) such that QA ⊂ A,
(b) to be such that for any β ∈ [1,2] the operator ((2−β)L1 + (β −1)L2,D2(L1,μ)∩

D2(L2,μ))

(i) has an extension defining a unique continuous contraction semigroup
{Pt(β), t ≥ 0} on L2(μ) of invariant distribution μ and of (closed) generator
(L(β),D2(L(β),μ)),

(ii) and for any f ∈A we have Pt(β)f ∈ A for any t ≥ 0.

From Ethier and Kurtz ((2009), Proposition 3.3), the last assumption and density of A
in L2(μ) imply that A is a core for L(β), β ∈ [1,2]. Establishing that for β ∈ [1,2] the
contraction semigroup {Pt(β), t ≥ 0} exists may require one to resort to the Hille–Yosida
theory and/or perturbation theory results (Ethier and Kurtz (2009), Voigt (1977)), but turns
out to be straightforward in some scenarios such as those treated in Section 5. For λ > 0 and
β ∈ [1,2], we let Rλ(β) be the corresponding resolvent operators. Differentiability of β →
Rλ(β)f and the expression for the corresponding derivative are key to our result, as is the case
in the discrete time scenario. The right derivatives of operators below are to be understood as
limits in the Banach space L2(μ) equipped with the norm ‖ · ‖μ. We only state the results for
f ∈ L2(μ) such that Qf = f and note that the case Qf = −f is straightforward.

THEOREM 10. Assume (A2) and that for any λ > 0, β ∈ [1,2] and f ∈ A,

(a) Rλ(β)f ∈ D2(L1,μ) ∩ D2(L2,μ) and there exists {gn(β) ∈ A, n ∈ N} such that
limn→∞(L1 − L2)gn(β) = (L1 − L2)Rλ(β)f ,

(b) [1,2) � β �→ Rλ(β)f is right differentiable with

(9) ∂βRλ(β)f = Rλ(β)(L2 − L1)Rλ(β)f,

and β �→ 〈f, ∂βRλ(β)f 〉μ is continuous,
(c) either E(g,QL1 − QL2) ≥ 0 for any g ∈ A or E(g,L1Q − L2Q) ≥ 0 for any g ∈ A,

then

(a) for any f ∈A satisfying Qf = f and β ∈ [1,2),

∂β

〈
f,Rλ(β)f

〉
μ

= E
(
QRλ(β)f,L1Q − L2Q

) = E
(
Rλ(β)f,QL1 − QL2

) ≥ 0,
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(b) for any f ∈ L2(μ) such that Qf = f ,

varλ(f,L1) = 2
〈
f,Rλ(1)f

〉
μ ≤ varλ(f,L2) = 2

〈
f,Rλ(2)f

〉
μ.

The following allows us to check the conditions of the theorem above.

LEMMA 6. Assume (A2) and that for any λ > 0, β ∈ [1,2] and f ∈ A,

(a) t �→ (L2 − L1)Pt (β)f and t �→ (L2 − L1)QPt(β)f are continuous,
(b) there exists δ(β) > 0 such that

∫ ∞
0 exp(−λt)‖(L2 − L1)Pt (β)f ‖μ dt < ∞ and

sup|β ′−β|≤δ(β)

∫ ∞
0 exp(−λt)‖(L2 − L1)QPt(β

′)f ‖μ dt < ∞.

Then for any β ∈ [1,2) and λ > 0, for any f ∈ A,

(a) Rλ(β)f ∈ D2(L1,μ) ∩ D2(L2,μ) and there exists {gn(β) ∈ A, n ∈ N} such that
limn→∞(L1 − L2)gn(β) = (L1 − L2)Rλ(β)f ,

(b) [1,2) � β �→ Rλ(β)f is right differentiable of derivative given by (9) and β �→
〈f, ∂βRλ(β)f 〉μ is continuous.

5. Continuous-time scenario—example. In this section, we show how the results of the
previous section can be applied to a particular class of processes designed to perform Monte
Carlo simulation, which has recently received some attention (Section 5.1). In Section 5.2,
we establish that most processes considered in the literature are indeed (μ,Q)-self-adjoint;
this includes, in particular, the Zig-Zag (ZZ) process. In Section 5.3, we show that with some
smoothness conditions on the intensities involved in the definition of the ZZ process, then
all the conditions required to apply our general results, namely Theorem 10 and Lemma 6,
are satisfied. In Section 5.1, we apply our general theory and present some applications. In
addition, we show how one can consider more general versions of ZZ relying on nonsmooth
intensities using smooth approximation strategies which have the advantage of preserving the
correct invariant distribution.

5.1. PDMP-Monte Carlo. We assume here that E = X × V and that the distribution μ of
interest has density (also denoted μ),

(10) μ(x, v) ∝ exp
(−U(x)

)
(v)

with respect to some σ -finite measure denoted d(x, v), where U : X = R
d → R is an energy

function and  : V ⊂ R
d →R+ are such that μ induces a probability distribution. Piecewise

deterministic Markov processes (PDMPs) (Davis (1993)) are continuous-time processes with
various applications in engineering and science, but it has recently been shown (Bierkens,
Fearnhead and Roberts (2019), Bierkens and Roberts (2017), Bou-Rabee and Sanz-Serna
(2017), Bouchard-Côté, Vollmer and Doucet (2018), Faggionato, Gabrielli and Ribezzi Criv-
ellari (2009), Peters and de With (2012)) that such processes can be used in order to sample
from large classes of distributions defined as above. The particular cases derived for this
purpose are known to be nonreversible, but we establish here that they are in fact (μ,Q)-
reversible for a specific isometric involution Q. This allows us to apply the theory developed
in the previous section and to compare their performance in terms of some of their design
parameters.

For k ∈ Z+, for i ∈ �1, k� define intensities λi : E → R+, λ := ∑k
i=1 λi , for (x, v) ∈ E

and t ≥ 0 �i(t, x, v) := ∫ t
0 λi(x + uv, v)du, �(t, x, v) := ∑k

i=1 �i(t, x, v) and kernels Ri :
E × E → [0,1] such that for any (x, v) ∈ E, Ri((x, v), {x} × V) = 1. For any x ∈ X and
i ∈ �1, k�, we let Rx,i : V × V → [0,1] be such that Rx,i(v,A) := Ri((x, v), {x} × A) for
(v,A) ∈ V×V . For ς1, . . . , ςk ∈ R+, we let P(ς1, . . . , ςk) denote the probability distribution
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Algorithm 5 A piecewise deterministic Markov process to sample from μ

• Initialisation Z0 = (X0, v0) , T0 = 0 and l = 0.
• Repeat, l ← l + 1

(a) Draw Tl such that P(Tl ≥ τ | Tl−1) = exp(−�(τ − Tl−1,XTl−1,VTl−1)),
(b) (Xt ,Vt ) = (XTl−1 + (t − Tl−1)VTl−1,VTl−1) for t ∈ [Tl−1, Tl),
(c) XTl

= limt↑Tl
Xt and with M ∼ P(λ1(ZTl

), . . . , λd(ZTl
)) set VTl

∼
RXTl

,M(VTl−1, ·).

of the random variable M such that P(M = m) ∝ ςm. The PDMPs of interest here can be
described algorithmically as in Algorithm 5.

Davis (1993) (see also Durmus, Guillin and Monmarché (2018) for an alternative construc-
tion) shows that this defines a process, of corresponding semigroup {Pt , t ∈ R+}, as soon as
the following standard two conditions on the intensity are satisfied (Davis ((1993), p. 62)):

(A3) For i ∈ �1, k�,

(a) λi is measurable and t �→ λi(x + tv, v) is integrable for all (x, v) ∈ E,
(b) for any t > 0 and (x, v) ∈ E, Ex,v(

∑∞
i=1 I{Ti ≤ t}) < ∞.

Define for any (x, v) ∈ E and f ∈ R
E , whenever the limit exists,

Df (x, v) := lim
h→0

f (x + hv, v) − f (x, v)

h
,

then the extended generator of the process above, which solves the Martingale problem, is of
the form

(11) Lf := Df +
k∑

i=1

λi · [Rif − f ],
for f ∈ D(L), a domain fully characterised by Davis ((1993), Theorem 26.14, p. 69 and Re-
mark 26.16). Let M(E) ⊂R

E be the set of measurable functions and B(E) ⊂ M(E) be the set
of bounded measurable functions. It can be shown that {Pt , t ≥ 0} is a contraction semigroup
on B(E) equipped with the ‖ · ‖∞ norm. Further with B0(E) := {f ∈ B(E) : limt↓0 ‖Ptf −
f ‖∞ = 0}, one can show that {Pt , t ≥ 0} is a strongly continuous contraction semi-
group on B0(E) (Davis ((1993), pp. 28–29)) of strong generator (D∞(L∞),L∞), with
D∞(L∞) ⊂ D(L) and for any f ∈ D∞(L∞), L∞f = Lf . When V = R

d (or such that E

is a Riemannian sub-manifold), we define C(E) := C0(E) := {f ∈ R
E : f is continuous}

and C1(E) := {f ∈ R
E : f is continuously differentiable}, let Cc(E) and C1

c(E) be their
restrictions to compactly supported functions and C0(E) ⊂ C(E) the set containing func-
tions vanishing at infinity. When V is finite, we let with C0(X) := {f ∈ R

X : f is continuous}
and for i ∈ N+ Ci(X) := {f ∈ R

X : f is i times continuously differentiable}, Ci(E) := {f ∈
R

E : for any v ∈ V, x �→ f (x, v) ∈ Ci(X)}, use the simplified notation C(E) := C0(E), and
let Cc(E), C1

c(E) be the corresponding restrictions to functions x �→ f (x, v) of compact sup-
port for any v ∈ V. We let C0(E) be the set of f ∈ C(E) such that for any ε > 0 there exists
M ∈ R+ such that |f (x, v)| ≤ ε for (x, v) ∈ Bc(0,M) × V where B(0,M) = {x ∈ X : ‖x‖ ≤
M} and ‖ · ‖ is the Euclidian norm.

5.2. (μ,Q)-Symmetry of some PDMP-Monte Carlo processes. From now on, Qf (x,

v) = f (x,−v) for f ∈ R
E and (x, v) ∈ E. In the following, we establish simple conditions

implying that L is (μ,Q)-symmetric on C1
c(E), which cover most known scenarios. Here-

after, we will need the following assumption on the potential U :

(A4) U : X →R is C2(X) and
∫ [1 + ‖∇U(x)‖] exp(−U(x))dx < ∞.
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The following was shown in Faggionato, Gabrielli and Ribezzi Crivellari ((2009), Propo-
sition 3.2) for example.

LEMMA 7. Assume (A4). Then for f,g ∈ C1
c(E),

〈Df,g〉μ = 〈f,−Dg + DU · g〉μ and −Df = QDQf.

The following establishes that a simple property on the family of operators {Ri, i ∈ �1, k�}
ensures (μ,Q)-symmetry of L, and hence invariance of μ if C1

c(E) is a core.

THEOREM 11. Let μ be a probability distribution defined on (E,E ) and consider the
semigroup {Pt , t ≥ 0} with extended generator L given in (11). Assume (A4), λ − Qλ = DU

and that for any i ∈ �1, k� the operator (λi · Ri) is (μ,Q)-symmetric on C1
c(E). Then L is

(μ,Q)-symmetric on C1
c(E).

REMARK 10. With an abuse of notation, for f ∈ R
V let Qf := Qf̆ where for (x, v) ∈ E

f̆ (x, v) = f (v). For f ∈ R
E and for x ∈ X, denote fx(·) = f (x, ·) : V →R. Let i ∈ �1, k�. If

for any x ∈ X, λx,i · Rx,i is ((·),Q)-symmetric on Bc(V), then for f,g ∈ C1
c(E),〈

(λi · Ri)f, g
〉
μ =

∫ 〈
(λi,x · Ri,x)fx, gx

〉
π(dx)

=
∫ 〈

fx,Q(λi,x · Ri,x)Qgx

〉
π(dx) = 〈f,Qλi · QRiQg〉μ,

that is, (λi · Ri) is (μ,Q)-symmetric on C1
c(E).

The most popular PDMP-MC processes satisfy the properties of Theorem 11 and are cov-
ered by the following examples. For notational simplicity, we may drop the index i below.

EXAMPLE 7. Let x �→ n(x) be a unit vector field and assume that for any (x, v) ∈ E

we have v − 2〈n(x), v〉n(x) ∈ V. Consider the operator such that for any f ∈ R
E and

(x, v) ∈ E, Rf (x, v) := f (x, v − 2〈n(x), v〉n(x)) and assume that the property Rλ = Qλ

holds. Note that R2 = Id and that for any f ∈ R
E and (x, v) ∈ E, RQf (x, v) = f (x,−v +

2〈n(x), v〉n(x)), and hence QRQf = Rf . Therefore, for any f,g ∈ C1
c(E),〈

(λ · R)f,g
〉
μ = 〈Rf,λ · g〉μ = 〈f,Rλ · Rg〉μ = 〈f,Qλ · QRQg〉μ.

Now let {ni : X → R
d, i ∈ �1, k�} be unitary vector fields and {ai : X → R, i ∈ �1, k�} such

that ∇U = ∑k
i=1 aini . Assume that for i ∈ �1, k� the intensities are of the form λi(x, v) =

ϕ(ai(x)〈ni(x), v〉) for ϕ : R → R+ such that ϕ(s) − ϕ(−s) = s and Rif (x, v) := f (x, v −
2〈ni(x), v〉ni(x)) for f ∈ R

E and (x, v) ∈ E. Possible choices of ϕ are discussed later on and
include ϕ(s) = max{0, s}. Then for i ∈ �1, k�, Riλi = Qλi , (λi · Ri) is (μ,Q)-symmetric
on C1

c(E) and λ − Qλ = DU . Therefore, Theorem 11 holds. This covers the Zig-Zag and
Bouncy Particle Sampler processes, for example, Andrieu et al. (2018).

EXAMPLE 8. The choice Rf (x, v) = ∫
f (x,w)(dw) for (x, v) ∈ E and f ∈ L2(μ),

the “refreshment” operator, is such that for any f,g ∈ L2(μ), 〈Rf,g〉μ = 〈f,Rg〉μ, RQf =
Rf and QRf = Rf since for any x ∈ X, v �→ Rf (x, v) is constant. If for any x ∈ X the
mapping v �→ λ̄(x, v) is constant (implying λ̄ − Qλ̄ = 0), we deduce that for any f,g ∈
C1

c(E), 〈
(λ̄ · R)f,g

〉
μ = 〈Rf, λ̄ · g〉μ = 〈f, λ̄ · Rg〉μ = 〈f,Qλ̄ · QRQg〉μ,

that is, (λ̄ · R) is (μ,Q)-symmetric on C1
c(E). In fact, from the proof of Lemma 2 we note

that R can be taken to be Horowitz’s refreshment operator.
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EXAMPLE 9. The choice Rxfx(v) ∝ ∫
fx(w)Qλ(x,w)(dw), with Rx1(v) = 1 when

possible, for any (x, v) ∈ E and f ∈ C1
c(E) has been suggested in Fearnhead et al. (2018). It

is such that for f,g ∈ C1
c(E) and x ∈ X,∫

fx(v)gx(w)λ(x, v)Qλ(x,w)(dw)(dv)

=
∫

Qfx(v)gx(w)Qλ(x, v)Qλ(x,w)(dw)(dv),

and we conclude that (λx · Rx) is (,Q)-self-adjoint.

REMARK 11. We note that Theorem 11 holds more generally when the operator D is re-
placed with the generator DF of a dynamic with time-reversal symmetry (Lamb and Roberts
(1998)) for which 〈DF f,g〉μ = 〈f,QDF Qg + DF U · g〉μ, which is the case for the Liou-
ville operator for an arbitrary potential H(x, v), and the condition on the total intensity rate
adjusted accordingly. We do not pursue this here for brevity.

5.3. Zig-Zag: Generator and semigroup properties. Zig-Zag (ZZ) is a particular
continuous-time Markov process designed to sample from μ and described in Algorithm 5.
The name was coined in Bierkens and Roberts (2017) and further extended in Bierkens,
Fearnhead and Roberts (2019), and can be interpreted as being a particular case of the process
studied in Faggionato, Gabrielli and Ribezzi Crivellari (2009). In this scenario, k = d + 1,
V := {−1,1}d ,  is the uniform distribution and, with {ei ∈ R

d, i ∈ �1, d�} the canoni-
cal basis of R

d , for i ∈ �1, d� and (x, v) ∈ E we let Rif (x, v) := f (x, v − 2viei ) where
vi := 〈v, ei〉. Note that this corresponds to ni(x) = ei in Example 7. For i = d + 1, we let
λd+1(x, v) = λ̄ for λ̄ ∈ R+ and Rd+1 is as in Example 8. We require the following assump-
tions on the intensities:

(A5) For any i ∈ �1, d� and (x, v) ∈ E, we have:

(a) λi ∈ C1(E) and λi > 0,
(b) λi(x, v) − Qλi(x, v) = ∂iU(x)vi ,
(c) Riλi(x, v) = Qλi(x, v).

The following establishes the existence of such intensities.

PROPOSITION 4. Assume (A4). Let φ :R → [0,1] be such that rφ(r−1) = φ(r) for r ≥ 0
and define for any (x, v) ∈ E and i ∈ �1, d�, λ

φ
i (x, v) := − log(φ(exp(∂iU(x)vi))) ≥ 0. If

further φ < 1 and φ ∈ C1(R), then {λi, i ∈ �1, d�} satisfies (A5).

COROLLARY 5. The choice φ(r) = r/(1 + r) satisfies the assumptions of Proposition 4,
but this is not the case for the canonical choice φ(r) = min{1, r}.

We now establish properties required of {Pt , t ≥ 0} and its generator in order to check (A2)
and apply Theorem 10 and Lemma 6.

PROPOSITION 5. Let L be the extended generator of the ZZ process and assume (A4)–
(A5). Then L is (μ,Q)-symmetric on C1

c(E).

For A,B ⊂ M(E) and t > 0, we let PtA ⊂ B mean that for any f ∈ A such that Ptf exists,
then Ptf ∈ B. A semigroup {Pt , t ≥ 0} is said to be Feller if C0(E) ⊂ B0(E) and {Pt , t ≥ 0}
is a strongly continuous contraction semigroup on C0(E) equipped with ‖ · ‖∞, that is, for
any s, t > 0, Ps+t = PsPt , ‖Ptf ‖∞ ≤ ‖f ‖∞, PtC0(E) ⊂ C0(E) and for any f ∈ C0(E),
limt↓0 ‖Ptf − f ‖∞ = 0.
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THEOREM 12. Consider a ZZ process of intensities {λi, i ∈ �1, d + 1�} satisfying (A5).
Then:

(a) {Pt , t ≥ 0} is Feller,
(b) for any t > 0, PtC1

c(E) ⊂ C1
c(E),

(c) C1
c(E) is a core for the strong generator of the semigroup {Pt , t ≥ 0},

(d) μ is invariant for {Pt , t ≥ 0},
(e) {Pt , t ≥ 0} can be extended to a strongly continuous semigroup on L2(μ) equipped

with ‖ · ‖μ,
(f) C1

c(E) is a core for the strong generator of the extended semigroup on L2(μ).

5.4. Zig-Zag—main results and some examples. The main result of this section is the
ordering of Theorem 13, which we illustrate with two examples.

THEOREM 13. Assume (A4) and consider two ZZ processes of intensities {λ1,i , i ∈
�1, d + 1�} and {λ2,i , i ∈ �1, d + 1�} satisfying (A5) such that for i ∈ �1, d + 1�, ‖λ1,i −
λ2,i‖μ < ∞. Then if for all g ∈ C1

c(E),

(12)

〈
g,−(L1 − L2)Qg

〉
μ =

d+1∑
i=1

〈
g, (λ1,i − λ2,i) · [Id − RiQ]g〉

μ

− 〈
g, (λ1 − λ2) · [Id − Q]g〉

μ ≥ 0,

then varλ(L1, f ) ≤ varλ(L2, f ) for λ > 0 and f ∈ L2(μ) such that Qf = f .

REMARK 12. The assumption on the intensity is satisfied as soon as for some c,C > 0,
for any i ∈ �1, d + 1� and (x, v) ∈ E, λ1,i(x, v) ≤ c +C‖∇U(x)‖ and

∫ ‖∇U‖2 dπ < ∞. As
we shall see, this can be checked for various examples.

EXAMPLE 10. When d = 1, R1 = Q and, therefore, R1Q = Id. If we further assume
that λ1,2 = λ2,2 = λ̄ then for all g ∈ C1

c(E) 〈g,−(L1 −L2)Qg〉μ = −〈g, (λ1,1 −λ2,2) · [Id −
Q]g〉μ ≥ 0, whenever λ2,1 ≥ λ1,1, a result similar to that of Bierkens and Duncan (2017).

The situation where the total event rate is constant, that is λ1 = λ2 in the expression above,
but distributed differently between updates of the velocity leads to the following.

EXAMPLE 11. Let d = 2 and for g ∈ C1
c(E) let Lg = Dg + ∑2

i=1 λi · [Ri − Id]g and
consider the ZZ processes of generators, for C1(X) � γ̄ : X →R+, L1g = Lg + γ̄ · [Π − Id]g
and L2g = Lg+ γ̄ /2 ·∑2

i=1[Ri −Id]g. Then for g ∈ C1
c(E), 〈g,−(L1 −L2)Qg〉μ = 〈g, γ̄ /2 ·∑2

i=1[Id − Ri]g〉μ − 〈g, γ̄ · [Id − Π ]g〉μ ≥ 0, where the equality follows from R1Q = R2,
R2Q = R1, Lemma 9 and O’Donnell ((2014), p. 52). We therefore conclude that in this
setup partial refreshment of the velocity is superior to full refreshment in terms of asymptotic
variance.

We note that checking (12) involves the difference of two nonnegative terms (from
Lemma 9) and may be challenging to establish for this class of processes. For example, we
have not been able to extend the result of Example 10 to the situation where d ≥ 2, yet. We
have not explored comparisons involving other updates Ri , which would require establishing
Theorem 12 for this setup, and rather focus on the following issue. Intensities of interest may
not satisfy (A5) and we may not be able to apply Theorem 12. This is the case for the so-
called canonical choice λ(x, v) = (∂U(x)v)+, which may however be of interest as suggested
by the following. In the following discussion, we assume d = 1 for presentational simplicity,
but the approach is valid for d ≥ 1.
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PROPOSITION 6. Let λ : E → R+ be an intensity satisfying λ(x, v) − Qλ(x, v) =
∂U(x)v, then λ(x, v) ≥ (∂U(x)v)+.

A natural question is whether we can establish that the choice λ0(x, v) := (∂U(x)v)+ is
optimum in terms of asymptotic variance. Our argument relies on the existence of regularising
intensities satisfying the following properties:

(A6) The intensities {λε, ε ≥ 0} satisfy for any (x, v) ∈ E and ε > 0,

(a) λε ∈ C1(E) and λε > 0,
(b) ε �→ λε(x, v) is nonincreasing,
(c) λε(x, v) − Qλε(x, v) = ∂U(x)v,
(d) limε↓0 sup(x,v)∈E |λε(x, v) − λ0(x, v)| = 0.

Intensities satisfying these properties exist.

PROPOSITION 7. Assume (A4) and for any ε > 0 define the intensities such that for
(x, v) ∈ E, λε(x, v) := − log(φε(exp(∂U(x)v))), where for r > 0 φε(r) := r[1 − �(ε/2 +
log(r)/ε)] + [1 − �(ε/2 − log(r)/ε)] > 0, with �(·) the cumulative distribution function of
the N (0,1). Then {λε, ε > 0} satisfies (A6).

THEOREM 14. Let d = 1, assume (A4) and
∫ ‖∇U‖2 dπ < ∞, and consider two ZZ

processes of common invariant distribution and of intensities λ1 and λ2 where λ1(x, v) :=
(∂U(x) · v)+ and λ2(x, v) := λ1(x, v) + γ (x, v) with 0 ≤ γ ≤ c + C‖∇U‖ for c,C > 0,
γ ∈ C1(E) and such that γ − Qγ = 0. Then for any f ∈ L2(μ) such that Qf = f and
λ ∈ [0,1) varλ(f,L1) ≤ varλ(f,L2).

One can consider more general forms for λ2 in the theorem above. For example, the result
will hold when γ can be uniformly approximated by a sequence {γ ε ∈ C1(E), ε > 0} such
that γ ε ≥ 0 for ε0 > ε > 0 for some ε0 > 0. Another possibility is to consider generalisations
of the ideas of Proposition 7: for example, with φ̃(r) = r/(1 + r) instead of φ(r) = min{1, r}
as a starting point in Proposition 8 one can analogously define a family of acceptance ratios
which is automatically such that φ̃ε(r) ≤ φε(r) for ε > 0 and r ≥ 0, define the corresponding
intensities, and then proceed as above to compare the processes with intensities derived from
φ̃(·) and φ(·).
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