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A B S T R A C T   

Background and Purpose: Motor failure in multi-leaf collimators (MLC) is a 
common reason for unscheduled accelerator maintenance, disrupting the workflow of a radiotherapy treatment centre. Predicting MLC replacement needs ahead of 
time would allow for proactive maintenance scheduling, reducing the impact MLC replacement has on treatment workflow. We propose a multivariate approach to 
analysis of trajectory log data, which can be used to predict upcoming MLC replacement needs. 
Materials and methods: Trajectory log files from two accelerators, spanning six and seven months respectively, have been collected and analysed. The average error in 
each of the parameters for each log file was calculated and used for further analysis. A performance index (PI) was generated by applying moving window principal 
component analysis to the prepared data. Drops in the PI were thought to indicate an upcoming MLC replacement requirement; therefore, PI was tracked with 
exponentially weighted moving average (EWMA) control charts complete with a lower control limit. 
Results: The best compromise of fault detection and minimising false alarm rate was achieved using a weighting parameter (λ) of 0.05 and a control limit based on 
three standard deviations and an 80 data point window. The approach identified eight out of thirteen logged MLC replacements, one to three working days in 
advance whilst, on average, raising a false alarm, on average, 1.1 times a month. 
Conclusions: This approach to analysing trajectory log data has been shown to enable prediction of certain upcoming MLC failures, albeit at a cost of false alarms.  

1. Introduction 

Equipment breakdown and subsequent unscheduled maintenance is 
a common reason behind radiotherapy delivery interruption. Not only 
does such interruption put undue stress on the patients but it also dis-
rupts the workflow within the treatment centre, impacting staff work-
load [1,2]. 

MLC replacement need is a common reason behind unscheduled 
linear accelerator (linac) maintenance and, therefore, treatment dis-
ruption. One linac considered in this project, for example, had nine 
MLC related maintenance events over a four-month span. Four of those 
occurring during patient treatment hours [3]. Development of a method 
for predicting MLC leaf failure ahead of time would allow for proactive 
maintenance scheduling, limiting the impact of unscheduled MLC leaf 
replacements on patient treatment. 

For these reasons, MLC leaf failure prediction has been given at-
tention over recent years. Many of the approaches tested relied on 
tracking individual parameters related leaf behaviour to detect ab-
normalities. Some parameters investigated were total distance travelled  

[4], leaf velocity [5] or frequency of positional discrepancies [6]. The 
values for these were recorded either via trajectory logs [4,6] or with 
additional testing during daily QA [3]. Each of these studies reported 
some degree of success, showing that certain MLC leaf failures can be 
anticipated in advance, based on changes in the leaf behaviour prior to 
failure. These studies however, considered the parameters in isolation. 

Trajectory log files track a wide range of parameters automatically. 
A range of these have been shown to act as predictors of MLC leaf 
failure [6]. It was noted that the parameters tracked by trajectory logs 
displayed intercorrelation between each other, revealing potential for 
application of multivariate approaches. This study aimed to develop a 
multivariate approach to MLC failure prediction and asses its perfor-
mance against current approaches. 

2. Materials & methods 

2.1. Log files 

Trajectory log files from two Varian TrueBeam linacs at Royal 
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Surrey County Hospital (RSCH), were collected for a period of seven 
and six months for linacs one and two, respectively. These files corre-
spond to all fields delivered by the linacs over the stated period. Each 
log file tracks 130 different variables during treatment, comparing real 
time measurements to the predetermined treatment plan, sampled 
every 20 ms. The log files were anonymised by RSCH staff before being 
made available for analysis and were part of a service evaluation study 
at RSCH. 

A total of 4280 and 3205 log files were collected and analysed for 
Linac 1 and Linac 2 respectively [7]. 

Data sets with a wide range of parameters and inter-correlation lend 
themselves towards multivariate statistical approaches. In correct cir-
cumstances, a multivariate approach offers several advantages over its 
univariate counterpart. A single multivariate performance index (PI) 
would replace the need to track each parameter separately, highlighting 
an advantage this approach has over univariate methods. 

Another main advantage of utilising multivariate approaches lies in 
detecting false negatives. A false negative is a case where erroneous 
behaviour of a single parameter looks normal in isolation and thus is 
assumed to be operating as intended [8]. Since the multivariate ap-
proach accounts for the behaviour of a parameter in relation to all other 
parameters in the data set, it performs better in highlighting unnatural 
behaviours even when no individual parameter breaches its control 
limits [9]. 

2.2. Data cleaning 

To extract the necessary data from the log files provided, the files 
were first converted from binary to csv format to allow for them to be 
analysed. This was performed in python using the pylinac package [10]. 
The resultant csv files were then loaded into python for further ma-
nipulation. The data manipulation was performed with the NumPy [11] 
and pandas [12] packages. Since log files return data on expected and 
actual parameter measurements, the deviation of each parameter was 
found by subtracting the actual measurement from the expected value. 
The mean deviation in each parameter, for each treatment delivered, 
was then calculated, and written into a separate master database, in-
dexed by the time and date of the treatment. This new master database, 
containing the mean deviation of every measured parameter for each 
field delivered was used to perform the analysis. This process can be 
visualised in Supplementary Material Two, Figure One. 

2.3. Performance index generation 

Principal component analysis (PCA) was used as a means for data 
exploration to determine what approach to take when developing a 
performance index. An explanation of PCA can be found in  
Supplementary Material One. 

Following PCA the loading matrices of the analysed data windows 
were inspected. It was noted that the key variance contributions in the 
data sets originated from two sources. Natural process variation of all 
variables in principal component one (PC1) as well as the covariances 
between bank and leaves within the specified bank in principal com-
ponent two (PC2). Based on that observation, the variance explained by 
the first two PCs was to be used as a performance index monitoring 
process behaviour. 

To calculate the performance index firstly, the master data set for a 
linac was loaded into python and a window size to be employed in the 
analysis was selected. The size of the moving window corresponds to 
the number of log files under analysis and therefore the number of 
radiation fields delivered. 

For the window undergoing analysis, containing a subsection of the 
mean deviations cohort as described in Section 2.3, PCA was performed 
using the scikit-learn package available in python [13]. The explained 
variance for the first two PCs based on the window was extracted into a 
separate list. 

The window moved on, dropping the first data point from the da-
taset whilst adding the next available datapoint. This process was re-
peated until the window swept over the full set of data, collecting the 
explained variances throughout. The variances explained by the two 
PCs for each window were summed together, resulting in a list of PIs for 
each data window. This process has been summarised in Supplementary 
Material Two, Figure Two. 

Window sizes of 40, 60, 80 and 100 were tested on datasets for both 
linacs in the study. 40 was chosen as the default starting point since 
during uninterrupted linac operation, an average of 40 fields per day 
per linac were delivered. The performance of each data window was 
assessed based on accurate failure prediction and false alarm rates. 

2.4. Exponentially weighted moving average control chart 

Having generated a single monitoring statistic of PI, a corre-
sponding control chart with appropriate control limits was then de-
veloped. Since the changes in parameter behaviour in the lead up to 
failure are small and gradual, an EWMA chart was chosen for this 
purpose since it performs well in such scenarios [14]. 

The EWMA statistic z is calculated using the following equation: 

= +z x z(1 )n n n 1 (1) 

where z is a weighted running average of the observations, λ is a 
weighting factor where 0  <  λ  <  1 and × is the mean of the current 
subgroup being considered [15]. Adjusting the value of λ, adjusts the 
extent to which older data affects the value of the EWMA statistic. 

The control limits for EWMA charts are based on standard deviation 
of the data, similarly to Shewhart control charts. in the case of EWMA 
charts, however, the standard deviation needs to be adjusted by the 
weighting factor, such as: 

= (
2

)EWMA (2) 

where σ is the standard deviation of the historical data. The lower 
control limit (LCL) would then be calculated as: 

=LCL µ 3 EWMA (3) 

where µ is the mean of the historical data. The factor of three is in-
troduced to match other commonly encountered control charts [14]. 

Using PI as the historical data, EWMA control charts for the two 
linacs have been generated along with a lower control limit. The control 
limit was based on PI readings corresponding to a period of normal, 
faultless linac behaviour as commonly seen in control chart generation. 
This ensures that the control limit is designed independently of the 
faults it is trying to detect and describes the natural deviation of the 
process only [14]. To test the performance of this approach, the control 
charts were compared against linac service logs to see if a drop below 
the control limit was visible ahead of an MLC motor replacement event. 
The selection of window size and λ in Eq. (1) was done by comparing 
the plots of the performance index over time against each other for all 
window sizes and assessing their false alarm rate as well as failure 
prediction ability. 

The sensitivity and specificity of the final model was calculated to 
assess the performance of the approach. The sensitivity of the model for 
each linac was determined by dividing the number of correctly pre-
dicted MLC replacement events by the number of total MLC replace-
ment events recorded in the maintenance logs. To calculate the speci-
ficity of the model it was first necessary to note down the number of 
datapoints breaching the control limit due to false alarms and the 
number of datapoints correctly within the control limit (i.e. not directly 
preceding an undetected MLC replacement event). The sum of these 
values results in the total number of datapoints relating to controlled 
linac operation. The specificity of the model for each linac was then 
found by dividing the number of datapoints correctly within the control 
limits by the total number of data points related to controlled linac 
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operation. This approach assumed that every single point on the EWMA 
charts breaching the control limit was to be treated as a potential 
failure. This assumption was deemed appropriate due to the ag-
gregatory nature of the PI and EWMA statistic. Each value of PI was 
dependant on the window size selected (40–100 log files) with the 
EWMA statistic being calculated based on cohorts of PI. In all cases 
considered, data from at least 49 log files was used to generate a single 
EWMA statistic value which was then to be plotted. This value was a 
significantly large enough sample to signal a fault. 

3. Results 

Analysis of the log file data showed MLC positioning errors for 
leaves in each bank correlated closely (correlation coefficients in the 
range of 0.55–0.85) with the positioning errors of the bank they were 
in. Strong correlations (correlation coefficients between 0.5 and 0.9) 
were also seen between leaves in the same bank of the collimator. No 
strong correlations or covariances were seen outside the MLC para-
meters, therefore the continued focus was on MLC related data only in 
further analysis. 

Another key result from the preliminary analysis was that the er-
roneous MLC behaviour in the lead up to a subsequent leaf replacement 
was short lived in comparison to the size of the dataset. This finding led 
to the development of a moving window approach towards PCA, 
scanning through the data set treatment by treatment. 

In the case of the linacs investigated, an 80 datapoint moving 
window achieved the best compromise between fault prediction and 
false alarm rate. The summary of these results is shown in Table 1. The 
PI based on this window size was used for control chart generation. 

λ values of 0.05, 0.1, 0.2 and 0.3 were tested on the PI values for 
both linacs based on 80 data point windows. All values of λ resulted in 
the same fault detection rates, however, λ of 0.05 resulted in lower 
false alarm rates and thus achieved the most desirable performance. 

Over the combined thirteen months of linac data, a total of 23 
control limit breaches occurred. Fourteen of those were false alarms 
whilst the other nine corresponded to upcoming leaf replacement 
events. Eight of the thirteen recorded MLC maintenance events were 
preceded by a control limit breach. This approach, therefore, yielded a 
sensitivity of 62% and raised a false alarm 1.1 times a month. The 
specificity of the model was found to be 76% for the combined data of 
the two linacs based. A breakdown of the results is given in Table 2. 
EWMA control charts for the two linacs can be seen in Fig. 1 and Fig. 2. 

4. Discussion 

Based on the preliminary analysis of the master data set, the pro-
portion of variance, as explained by the first two PCs, was used as the 
performance index of each linac. As previously mentioned, the first two 
PCs encompass the variance caused by the natural variation in MLC 
positioning as well as the covariances of the leaves with their respective 
banks. From a theoretical standpoint, these two PCs would sufficiently 
explain the variance/covariance within the MLC. Any sharp drops in 
the performance index, therefore, would indicate the presence of a new, 
unexpected cause of variance elsewhere in the MLC identifying 

potential upcoming failure. 
The study assumes that trajectory log files are a suitable source of 

data to base a predictive model on. This assumption can seem dubious 
at first given that the reliability of MLC positioning data has been 
questioned in recent studies. MLC positioning accuracy has been shown 
to exhibit high levels of variability and root mean square (RMS) error in 
cases where leaves where accelerating or decelerating [16]. The high 
mid-treatment standard deviation in the leaf positioning have been 
noted in this project as well, manifesting itself as the key variance 
contributor in PC1. This variability could be a contributor to the 
somewhat erratic behaviour of the PI visible on the control chart. On 
the other hand, the same study states that the average leaf positioning 
errors were negligible over all treatment sites. The PI in this study is 
based on average deviations in MLC parameters across the treatments 
delivered and as such should benefit greatly from the negligible average 
errors. Log files also have the benefit of being generated automatically 
and collecting data with every radiation field delivered. This upside of 
bulk data collection without introducing linac downtime cannot be 
understated. 

Given the doubts surrounding the limitations trajectory logs, a 
model based purely on log data would not be able to replace current QA 
protocols. It is deemed, however, that it can be a very useful supple-
mentary tool which fulfils the purpose of this project [17]. 

A potential limitation of this approach to log file analysis has been 
the fact that it has not been tested on other linac models or linacs from 
other vendors. Given the nature of the performance index, different 
calculations of leaf position relative to the respective bank would ob-
solete this approach in the current iteration. As of right now, this ap-
proach should be applicable to Varian TrueBeam linacs whilst a dif-
ferent approach would be necessary for other linac models, if the 
parameters in the log files are measured in a different manner. An 
avenue of future work would be to transfer learning from this multi-
variate approach designed for Varian TrueBeam linac onto other linac 
models, increasing its practicality. 

By iterating over a small selection of the datapoints during PCA, 
smaller, shorter-lived erroneous deviations become more visible in 
comparison to when the full dataset was considered, supporting the 
decision to utilise a moving window approach. Linac service logs also 
revealed that MLC motor replacement is commonly followed up by 
calibration. It was uncertain whether MLC behaviour pre and post ca-
libration would be comparable enough to ensure accurate model de-
velopment, further supporting the decision to use a moving window 
approach. Different window sizes were tested to achieve the best 
compromise between failure prediction and false alarm rate. 

Of the four window sizes tested, a set of 80 datapoints was the most 
optimal. Window sizes of 40 and 60 displayed erratic performance 
index behaviour, resulting in a much higher rate of false alarms than 
window sizes 80 & 100. Window size 100 handling greater quantities of 
data drowned out the subtle changes in the MLC behaviour which need 
to be detected for this model to detect upcoming failure. This has been 
summarised in Table 1. 

The resultant model achieved an MLC failure prediction sensitivity 
of 62%, accurately predicting eight out of the thirteen logged failures. 
Another study based on tracking MLC positioning errors via log file 
analysis reported a failure prediction rate of 59% for a linac over a 
three-year period which is very much comparable to the performance of 
our model [6]. The same study reports nine flagged failures which did 
not correspond to a logged MLC failure event, resulting in a false alarm 
rate of around 0.25 per month. This is significantly lower than the 1.1 
false alarms per month reported in this study. This may be explained by 
the larger historical backlog available to the other research team, which 
allowed for more comprehensive parameter finetuning. 

The specificity of the prediction model was calculated to be 76%, 
based on the approach described in section 2.4. Approaches described 
in other publications dealing with the issue of MLC failure prediction 
have not stated their specificity rates so no parallels between this and 

Table 1 
Summary of window size selection results.        

Linac 1 Linac 2 

Window Size Faults 
Detected 

False 
Alarms 

Window Size Faults 
Detected 

False 
Alarms  

40 6 9 40 3 11 
60 6 7 60 2 10 
80 6 6 80 2 8 
100 3 5 100 2 8 
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other studies can be made. 
In its current iteration, the model flags possible upcoming MLC leaf 

replacement events but it does not directly identify which leaf will 
cause the failure. Future work on this project will focus on expanding 
the model to not only alert of an upcoming fault but also isolate the 
variables responsible for it. 

Currently the performance index has not been compared to any other 
QA measurements, so it is impossible to comment on whether any of the 
false alarms correlate with potential issues elsewhere in the linac. An ex-
tension of this project does intend on comparing/contrasting log file data 
with data collected in daily QA and via Varian’s Machine Performance 
Check to widen the parameter pool in which faults can be predicted. The 
various data sources would also act as cross-validation checkpoints for 
flagging potential faults hopefully lowering the occurrence of false alarms. 

In conclusion, this study showed that a multivariate statistical 
model can predict an MLC replacement requirement, removing the need 
to track all the parameters individually. The exact leaf responsible for 
the failure, however, cannot be directly identified. Instead, a singular 
performance index based on PCA has been shown to flag upcoming 
failures in advance, allowing the treatment centre staff to schedule linac 
maintenance in a proactive manner. 
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Table 2 
Performance summary of the EWMA control charts for the two linacs analysed.           

Months of 
operation 

Control limit 
breaches 

False 
alarms 

Readouts below control limit due to 
false alarms 

MLC fails predicted 
(sensitivity) 

Readouts correctly above 
control limit 

Specificity  

Linac 1 7 13 6 477 6 out of 7 (86%) 2800 85% 
Linac 2 6 10 8 1046 2 out of 5 (40%) 2000 66% 
Total 13 23 14 1523 8 out of 13 (62%) 4800 76% 

Fig. 1. An EWMA chart of the performance 
index for linac 1 encapsulating all 122 MLC 
variables found in log files, vertical lines 
indicated motor replacement events. The 
dashed line around the 800 represents two 
failures in proximity of each other. Drops of 
the index value below the control limit in 
the lead-up to a replacement even quanti-
fied a successful MLC failure prediction. 

Fig. 2. An EWMA chart of the performance index for linac 2 encapsulating all 122 MLC variables found in log files, vertical lines indicated motor replacement events. 
Drops of the index value below the control limit in the lead-up to a replacement even quantified a successful MLC failure prediction. 
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