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Abstract

In this paper, we consider two-dimensional steady free-surface flows

where gravity is ignored, but the e↵ects of surface tension are included. It

is found that the existence of an additional solid boundary can allow for

previously unseen limiting configurations as the surface tension tends to

infinity. The free surface of these new solutions is formed of straight lines,

arcs of circles, and a point where the flow turns at a wall. These limiting

configurations form end points of solution branches of capillary free surface

flows. Other end points of these branches include the surface tension

free (i.e. free streamline) solution, and a solution whose free surface is

composed simply of a straight line. The model we explore is flow incoming

along a channel of constant width. One of the walls terminates, where the

fluid is forcibly separated from the wall and a free boundary is formed.

The other wall meets a second straight boundary with interior angle �.
Far downstream the solution approaches a uniform stream. Making use of

Cauchy’s integral formula, the unknowns are expressed in terms of values

on the boundary. The integral equations are then solved numerically. The

solution space relative to the parameter values of the model is discussed.

1 Introduction

Two-dimensional free-surface capillary flows have been considered by a variety
of authors. Due to the assumed incompressibility of the fluid and irrotationality
of the flow, most authors make use of complex variable methods. For example,
Crapper (1957) derived an exact solution for periodic capillary waves in infinite
depth water (later generalised for finite depth by Kinnersley (1976)). Unlike
periodic wave trains, the model we will consider in this paper has a point where
the free surface forcibly separates from a wall.

Problems in which the e↵ects of capillarity and gravity are ignored are re-
ferred to in the literature as free streamline problems. In such cases, the constant
pressure condition implies that the magnitude of the velocity is constant on the
free surface. Consider the cavitating flow past a flat plate, for which there ex-
ists a classical Helmholtz-Kirchho↵ free streamline solution. The solution has
the property that the curvature at the separation point is unbounded. This
does not invalidate the free streamline solution because the curvature of the
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free surface does not appear in the boundary conditions. However, it a↵ects
the solutions when surface tension is included since there is a term proportional
to the curvature of the free surface in the dynamic boundary condition. The
e↵ects of surface tension on free streamline solutions were studied by a variety
of authors (Ackerberg, 1975; Cumberbatch & Norbury, 1979; Vanden-Broeck,
1981, 1983, 1984). Vanden-Broeck (1981) found a valid asymptotic expansion
for small values of the surface tension by allowing a discontinuity in the slope
at the separation point. It was found that the angle between the free surface
and the solid wall, denoted µ, varies like µ � ⇡ ⇠ T 1/2, where T is the inverse
Weber number, given by

T =
�

⇢U2H
. (1)

Here, � is the surface tension, ⇢ the density of the fluid, and U and H are the
reference velocity and length scales respectively. Hence, as opposed to removing
the singularity from the free streamline solution, the inclusion of surface ten-
sion makes the solution more singular by introducing an infinite velocity at the
separation point. As well as providing valid asymptotic expansions for T ! 0,
Vanden-Broeck (1981) also considered the model for large T . The asymptotic
behaviour he found assumed that the T ! 1 solution corresponds to a solution
whose free surface was a flat line, extending from the separation point to the flow
at infinity. The behaviour described above was also shown via matched asymp-
totic expansions for the Kirchho↵ jet (Vanden-Broeck 1984), and for cavitating
flow past a cylinder (Vanden-Broeck 1983).

Previous papers considering capillary flows forcibly separating from some
solid boundaries have shown that, fixing all the geometry of the model, one
finds a single one-parameter branch of solutions for which the flow far away
from the solid boundaries is a uniform stream. Starting from a solution with
zero surface tension, one finds that as surface tension increases, the profile of
the free-surface flattens, and as surface tension is taken to infinity the profile
approaches a straight line with zero curvature. This one parameter branch of
solutions was found for the models described above, as well as for the flow
under a sluice gate (Tooley & Vanden-Broeck 2002). A review can be found in
Vanden-Broeck (2004).

This paper concerns new limiting configurations for free surface flows as
T ! 1. These new solutions all include a point where the flow ’turns’ at
a wall. In this region, high velocities allow the inertial term in Bernoulli’s
equation to balance the surface tension term. The other components of the free
surface are formed of either circles (where the curvature is constant), straight
lines (where the curvature is zero), and infinitesimal jets, where large values of
the velocity allow for large values of the Bernoulli constant (since the curvature
here is also zero). A model exhibiting such solutions is considered, and solved
numerically. We discuss the relationship between the velocities and curvatures
relative to the inverse Weber number T for each limiting configuration. The
relations found agree with leading order balances in the Bernoulli equation.
The physical validity of the extreme limiting solutions is certainly doubtful: one
would expect viscous e↵ects to play an import role locally at the point where
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the flow turns near the wall, and more generally in length and velocity scales
where surface tension dominates gravity. However, it is still of mathematical
interest to explore the solution space of the inviscid model.

2 Formulation

Consider the problem of flow coming in from a two-dimensional channel of width
H with constant velocity U . One of the walls terminates and forms a free-
surface, while the other wall meets a second straight wall with an interior angle
of �. We choose Cartesian coordinates, where the origin is placed where the
two walls meet. We choose x to be perpendicular to the channel, and y to point
in the opposite direction of the uniform stream. We take H as the reference
length and U the reference velocity. The flow separates where the pipe ends
with separation angle µ. Depending on the value of �, the flow where the two
walls meets is either a stagnation point or a point with infinite velocity. The
angle at the separation point µ is found as part of the solution. We assume
the flow is steady, and the flow configuration is shown in figure 1. We denote
by A the flow coming in at infinity, B the point where the two walls meets, C
the separation point and D the far-field. Finally, we denote the nondimensional
distance in the y-direction between the points B and C as W .

This model has been considered by a variety of authors with the inclusion of
gravity acting in the negative y-direction. When � = ⇡, this model was consid-
ered with gravity and surface tension by Birkho↵ & Carter (1957), Garabedian
(1957), Vanden-Broeck (1984a,b, 1986), Modi (1985), Couët & Strumolo (1987),
Daripa (2000), and Chandler & Trinh (2018). Due to symmetry, the flow is
equivalent to steady rising plane bubbles. When � = ⇡/2, Christodoulides &
Dias (2010) and Hocking & Forbes (2010) considered this model with the inclu-
sion of gravity acting in the negative and positive y-direction respectively, but
no surface tension (in Hocking & Forbes (2010), the passive gas is replaced by
a stagnant fluid which is denser than the fluid exiting the pipe). The model in
the current paper with both surface tension and gravity for � 2 [⇡/2,⇡] was
considered more recently by Doak & Vanden-Broeck (2020). None of the above
authors considered this geometry with just capillary e↵ects.

We denote the x and y components of the velocity as u and v respectively.
We consider irrotational flow of an incompressible fluid, and hence we can write
the velocity field in terms of two harmonic functions, the velocity potential �
and the streamfunction  , defined such that

u = �x =  y, v = �y = � x. (2)

Without loss of generality, we choose � = 0 at the separation point C, and
 = 0 on the streamline ABD. We denote the velocity potential at B as �B .
In this scaling, the streamline ACD is given by  = 1. We also define the
complex potential f = �+ i , which is an analytic function of z = x+ iy. The
flow domain in the f -plane is the infinite strip 0 <  < 1. When solving this
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Figure 1: Flow configuration in the z-plane.

problem, we will conformally map the flow domain to some auxiliary plane with
preferable geometry.

On the free-surface (denoted x = ⌘(y)) , as well as the kinematic bound-
ary condition we also have to satisfy continuity of pressure. This is found by
making use of the Bernoulli equation and the Young–Laplace equation. After
nondimensionalisation, this is given by

q2 + 2T = CB , for x = ⌘(y), (3)

where q = |~u|,  is the mean curvature (counted positive when the center of
curvature lies inside the fluid), CB is the Bernoulli constant, and T is the inverse
Weber number, as defined in equation (1). The boundary conditions on ⇠ can
then be written as

u = 0, for y > 0, x = 0, (4)

u = 0, for y 2 [W,1), x = 1, (5)

u = v tan�, for y < 0, x = y tan�, (6)

q2 + 2T = CB , for x = ⌘(y). (7)

In the following section, we discuss an exact free streamline solution, and
the numerical method used to solve the flow for non-zero values of T .
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3 Free streamline solution and numerical method

Free streamline problems were of particular interest in the 19th and early 20th
century, since they can often be solved exactly using complex analysis. We find
it beneficial to conformally map the flow onto the lower half t-plane via the map

f = � 1

⇡
log t. (8)

The point C maps to t = �1, while the point B maps to t = d, where

d = e�⇡�B . (9)

The points D and A map to zero and the point at infinity respectively. The
flow in the t-plane is shown in figure 2. Following the method proposed by Love
(1891), one finds that for T = 0, there exists an exact solution given by

log
dz

df
(t) = 2

✓
1� �

⇡

◆"
tanh�1

 s
(d+ 1)t

d(t+ 1)

!
� tanh�1

 r
d+ 1

d

!#
� ⇡

2
i.

(10)
We find that d is a free parameter, which has (for any given �) a monotonically
increasing dependence on W . A more in depth derivation of the above solution
is found in Doak & Vanden-Broeck (2020).

When T 6= 0, we need to solve the system numerically. This is done using
a boundary integral method. We will not cover the numerical method used
in great depth, as many previous authors have deployed such techniques (see
Vanden-Broeck (2010) for a review). Applying Cauchy’s integral formula on the
function ⌧ � i(✓ + ⇡/2), where

df

dz
= e⌧�i✓, (11)

and where we take the curve of integration to be the union of the real axis
and an infinite radius semi-circle in the lower half t-plane, one finds, after some

Figure 2: Flow configuration in the t-plane.
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algebra (see Doak & Vanden-Broeck (2020)), that for values of �0 2 (0,1) we
have

⌧̂(�0) =
1

⇡

Z 1

0

✓̂(�)� ✓̂(�0)

e�⇡(�0��) � 1
d�+

 
✓̂(↵0)

⇡
+

1

2

!
log

|↵0|
|1 + ↵0|

+

✓
1� �

⇡

◆
log

|d� ↵0|
|↵0|

. (12)

Here, ⌧̂(�) and ✓̂(�) refer to values of ⌧ and ✓ on the free-surface, and ↵0 =
e�⇡�0 . The above integral has incorporated the boundary conditions (4)-(6).
Hence, the problem reduces to finding ⌧̂ and ✓̂ that satisfy (12) and the dynam-
ical boundary condition (7), which can be written as

e2⌧̂ � 2Te⌧̂
d✓̂

d�
= CB (13)

We truncate � upstream and downstream to � = ��A and � = �D respectively,
and we discretise � 2 [0,�D] into N equally spaced points. When computing
solutions, it must be checked that the solution is invariant to variation in �D.
Taking ✓̂ at the N mesh points as unknowns, we can find values of ⌧̂ in terms
of ✓̂ by satisfying (12), where the integral is evaluated numerically using the
mid-point rule. One can obtain N � 1 equations by satisfying (13) at midpoints
(points equally spaced between the N mesh points). One also demands a flat
far-field by setting ✓̂ = ⇡/2� � at the final two meshpoints. Finally, for a given
T , we fix the value of W and allow d to vary, where W is computed via equation

W =

Z 0

��A

y�| =1 d��
Z �B

��A

y�| =0 d�. (14)

This provides N + 2 equations for N + 2 unknowns: ✓̂ at each meshpoint, d,
and CB .

Once values of ⌧̂ and ✓̂ have been obtained, one can recover values of ⌧ and
✓ anywhere in the flow with equations similar to (12). One can then obtain
streamlines by integrating the identity

x� + iy� = e�⌧+i✓, (15)

along lines of constant  .
Thus concludes the numerical method used to compute fully nonlinear so-

lutions. For more details, see Doak & Vanden-Broeck (2020). In the following
section, we discuss results.

4 Results

We will focus first on the case of � = ⇡/2. Fixing the value of W , we find a
one parameter family of solutions. To compute solutions, we can start from the
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Figure 3: Figures (i) and (ii) are solution branches in (T, µ) space for W = 1
and W = 2 respectively. The profiles corresponding to the points (a) � (l) are
shown in figure 5.

exact solution (10) with T = 0. One can then use the method of continuation
to find solutions for finite T . For W = 1, we find the solution branch one would
expect to find: as the value of T increases, the separation angle µ monotonically
increases from ⇡ (smooth separation at T = 0) to 3⇡/2. As T ! 1, the profile
approaches a straight line given by x = �W. Denoting the depth of the uniform
stream at y ! 1 as Hf , we plot the branch with a solid curve in (T, µ) and
(T,Hf ) space in figures 3(i) and 4(i) respectively. Solutions along the branch
are shown by the curves (a)� (c) in figure 5.

We repeat this computation for W = 2. Starting again from the T = 0
solution, we compute the branch for increasing T . The branch is given by
the solid curve in figure 3(ii), where it is seen that this curve is no longer
monotonically increasing. Furthermore, the solution does not approach a flat
free-surface as T ! 1. Instead, the limiting profile forms a circle whose center
is on the y-axis, connecting the separation point to the origin. The profile then
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Figure 4: Figures (i) and (ii) are the branches in figure 5 plotted in (T,Hf )
space for W = 1 and W = 2 respectively.
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turns rapidly at the wall, and forms an infinitesimal jet along the x-axis. One
can use the above information to find that the limiting configuration is a circle
with center (0, yr) and a radius R, where

yr = R =
W 2 + 1

2W
. (16)

We compare this circle (plotted with crosses) with the solution for T = 3000
in figure 6(i), where the agreement between the two is found to be very good.
Some solutions along the branch for finite T are shown by the curves (g) � (i)
in figure 5.

It is natural to ask what happens along the branch of solutions which con-
tains the purely flat profile for T ! 1. Using the method of continuation, this
branch is plotted by the dashed curve in figure 3(ii). It is seen that the solution
branch approaches another T ! 1 solution, with µ = ⇡/2. Some solutions
along this branch are shown in figure 5. For large T , the solution has a flat free
surface which goes towards the wall on the y-axis, forms again this sharp turn,
and then another flat profile which goes to x ! 1. This solution with T = 3000
is shown in figure 6(ii). Starting from this large T solution, and via continuation
in W , one can find a solution of this type for W = 1. Following the branch, one
finds that this branch approaches the other new limiting configuration, which
is the profile containing the arc of a circle. This branch is shown in figure 3(i)
and 4(i) by the dashed line.

To help explain these solutions, consider the leading order balance in the
dynamical boundary condition (7) for T >> 1. First, consider the solution
characterised by the circle and infinitesimal jet. Along the circle, we have that
the curvature is constant, and hence  = O(1). Since values of q = O(1) here
as well, we find that CB = O(T ). At the turning point, our numerical results
show that here the curvature is negative, and  = O(T ). These are matched
by high values of the velocity, where q = O(T ). Finally, along the infinitesimal
jet,  = 0 and we find that q = O(T ). This describes how the terms all balance
along the three sections of the free surface. For the limiting configuration of
two flat lines, one finds that  = 0 along both flat sections. Here q = O(1) and
hence CB = O(1). At the turning point, we find the same behaviour as with the
turning point for the circle solution, that is q = O(T ) and K = O(T ). In both
cases, the existence of this additional wall allows a region where high values of
negative curvature  = O(T ) at a turn can be matched with high velocities (due
to the thin gap between the wall and the free surface).

We see from figures 3 and 4 that the end points of the branches are di↵erent
for the two values of W . The question arises as to what value of W does this
change occur, and how? In figures 7 (i) � (ii), we show the two branches in
the (T,Hf ) for W = 1.9 and W = 1.95 respectively. It can be seen that the
end points of the two branches have changed at some value of W 2 (1.9, 1.95).
We conjecture that, for some critical value of W , the two branches meet at a
bifurcation point.

Finally, we note that one can find these new exotic solutions for other values
of �. We find again two solution branches, connecting four limiting configu-
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Figure 5: Solutions corresponding to the points (a)� (l) in figure 3.
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Figure 7: Solution branches in the (T,Hf ) space for (i) W = 1.9 and (ii)
W = 1.95.
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Figure 8: Solutions for large values of T with � = 2⇡/3.
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rations. Two of these are the free-streamline solution and the solution which
approaches ✓̂ = ⇡/2 � � as T ! 1. The other two limiting configurations are
again composed of straight lines and arcs of circles, and are shown figure 8.
The solution in figure 8(i) is composed of two straight lines and a turning point,
while the profile in figure 8(ii) is composed of the arc of a circle, a turning point,
and an infinitesimal jet. They are analogous to the solutions seen in figure 6 for
� = ⇡/2.

5 Conclusion

In conclusion, we have found new limiting configurations of capillary free-surface
flows. The addition of a boundary which the free-surface can approach and then
sharply turn from allows for previously unseen solutions. At the turning point,
large values of negative curvature are balanced in Bernoulli’s equation with large
values of inertia. The limiting configurations are smoothly connected via two
one-parameter solution branches. Solutions along these branches with finite T
have been computed, and their behaviour discussed.
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