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ABSTRACT

In this thesis we study the ground state properties o f perfect and defective 

materials using quantum mechanical techniques. A number o f different 

approximations are used to investigate the electronic structure of the systems 

studied.

We adopt the Hartree-Fock Hamiltonian for the description of the problem, 

which we solve ab-initio, i.e. with only knowledge of the atomic number and the 

geometrical arrangement o f the nuclei. The Hartree-Fock equations, that have 

been applied with great success for many years to the study o f molecules, can be 

reformulated in order to satisfy the periodic boundary conditions that apply in a 

perfect, translationally invariant lattice. A review of Hartree-Fock theory is given 

in Chapter 2. In Chapter 3 we discuss the state-of-the-art o f Hartree Fock 

computational schemes in quantum chemistry and we describe the structure of the 

program CRYSTAL, that adopts the ab-initio periodic Hartree-Fock approach. 

This program was used to study the electronic properties o f silicates (S i02 oc- 

quartz and stishovite polymorphs, and of the ilmenite-structured MgSiO^. Results

of this study are presented in Chapter 5.

The availability of an accurate description of the perfect lattice makes possible 

the development of techniques to study point defects that locally perturb the host 

crystal. In Chapter 4 first we review some standard techniques for the study of 

point defects. Next we discuss an embedding method, where an isolated cluster 

of atoms, containing the defect, is embedded into the host by means o f Green 

function techniques. We developed a computer program, EMBED, that was 

thoroughly tested during the work reported in the thesis. The major shortcoming 

of this approach is the inadequate treatment of long-range polarization effects and 

of charged defects. We present a technique to interface the quantum mechanical



method with a classical description of the polarization potential produced in the 

relaxed host lattice.

We have applied this latter technique to the study of defects in LiF: the bound 

Schottky pair and the Na substitutional impurity have been considered. Results 

are presented in Chapter 6, and are compared with classical simulations, where 

the system is described as a set of point charges interacting via interatomic 

potentials.
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"Atomics is a very intricate theorem and can be worked out with algebra 

but you would want to take it by degrees because you might spend the 

whole night proving a bit of it with rulers and cosines and similar other 

instruments and then at the wind-up not believe what you had proven at 

all"

(" The Third Policeman ", Flann O' Brien)
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Chapter 1. 
Introduction

This thesis is concerned with the study o f the electronic properties of 

crystalline materials.

As we are interested in electronic properties, i.e. those properties that depend 

on the behaviour of the electrons in the system, we must use quantum theoretical 

methods. According to quantum mechanics, the physical properties o f a system 

are described by its wavefunction.We are first interested in calculating the total 

energy, and how it varies as a function o f the atomic positions, to predict the 

equilibrium configuration of the atoms in crystals. This information also yields 

vibrational frequencies, reaction paths and reaction barriers, and the relative 

stabilities of different crystalline phases. By applying appropriate operators to the 

wave-function we obtain the values for the other physical observables: in 

particular we are interested in the electron charge distribution, that provides us 

with an insight into the properties of the bonding.

The Schroedinger equation of the many-electron system must be solved by 

introducing approximations, even in the case of small molecules. For example 

we can neglect some interactions in order to simplify the expression of the 

Hamiltonian. In this thesis work we adopt the Hartree-Fock approximation, that 

is discussed in Chapter 2. We use an ab-initio approach, that is, we evaluate the 

ground-state properties, corresponding to the chosen Hamiltonian, from the 

knowledge only of the atomic numbers and of the geometrical positions of the 

nuclei.

We are concerned with crystals, i.e. extended objects containing a very large 

number of atoms (and therefore an even larger number o f electrons). Indeed the 

systems are, effectively, infinite. The complexity o f the problem is therefore 

clearly understandable; the quantum equations that describe the interactions

16



between electrons, even if simplified by approximations, surely cannot be solved 

for a system containing millions of interacting particles!

To simplify the problem, we can restrict our attention to a small number of 

atoms, i.e. a finite region of the crystal, whose electronic properties are accurately 

calculated. The rest of the system can be described in a more approximated way; 

for example by assuming that the interactions between the two sub-systems are 

governed by classical forces, and that the finite region we are interested in, 'sees' 

the rest of the system as a dielectric continuum. This approach is in essence that 

adopted by cluster calculations, where the quantum theory is used to calculate the 

wave-function of the electrons associated with a cluster of atoms. The 

underlying assumption is that we are only interested in the properties of a finite 

region of the crystal ( for example an active site in a catalytic substrate or the 

neighbouring atoms of a point defect). We return to this method below.

Alternatively, we can redefine the problem taking into consideration the 

geometrical properties of the system under study. If the crystal is perfect, i.e. it 

can be generated by applying translational operators to a generating unit cell, then 

it can be shown that, by exploiting the translational invariance of the system, the 

problem can be greatly simplified. All the unit cells o f the crystal are equivalent 

by definition; therefore we can focus on the atoms contained in only one cell, 

knowing that all the other atoms of the crystal are exactly equivalent (so that they 

will have the same charge, electron charge distribution etc.). The periodic 

symmetry o f the crystal makes it possible for the interactions between unit cells to 

be calculated by means of rapidly converging numerical series; these procedures 

are discussed in Chapter 3.

The accuracy of this technique, that is rapidly becoming a standard method in 

quantum chemistry, has been assessed in this study. We studied the properties of 

minerals containing silicon (two SiC>2 polymorphs and the ilmenite-structured 

MgSiC>3 ); the investigation focused on the differences in bonding between the 

three systems due to the different coordination number of silicon. Silicates were
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chosen for this study because they provide an interesting example of partially 

ionic bonding. It is also important to gain a better understanding of the properties 

of the Si-O bond in different minerals, since silicates' play a vital role in both 

geochemistry of the Earth and in modem technology.

The study of a perfect, translationally invariant, crystal, yields valuable 

information about microscopic and macroscopic properties; on the other hand, 

many interesting processes, and properties of the matter, are connected with the 

presence of defects and impurities. The theoretical study o f the properties of  

defect centres is intrinsically more complicated. In this work we focused on point 

defects, where one atom of the perfect lattice is removed to create a vacancy, or is 

substituted by an impurity, or an interstitial species is added. Ideally, the 

theoretical method should accurately describe the local properties of the defect 

centre, taking into account the perturbation generated in the host (that causes the 

host atoms surrounding the defects to be displaced and to polarize) and including 

all the interactions between the defect, the perturbed atoms and the rest of the 

crystal. The ‘Cluster Approach’ has been very popular in quantum chemistry; as 

noted above, this approach uses a molecular fragment, which contains the defect 

and reproduces the local environment of the host crystal, to study the properties 

of the defect and of its neighbours. Although widespread, the method suffers 

from the obvious implicit shortcomings of the model: the crystal field is not 

correctly reproduced and the periodic nature of the host lattice is not included in 

the model; surface states associated with dangling bonds introduce unphysical 

features that can be only partially corrected by terminating the cluster with, for 

exmple, hydrogen atoms.

We have therefore developed and tested an embedding technique, the first 

requirement of which is the availability of an accurate description of the perfect, 

unperturbed lattice and also of an isolated cluster o f atoms, locally reproducing 

the symmetry of the host and containing the defect Next the wave-function of the

1 8



isolated cluster is corrected, by means of a Green functions technique, in order 

to account for the surrounding lattice. A computer program, EMBED, was 

developed and thoroughly tested during the work reported in the thesis; we 

provide, as a supplement to this thesis, a copy of the EMBED user manual. 

EMBED was used to study the properties of neutral defects in LiF. We have 

focused our attention on this class o f defects to avoid the problems associated 

with charged states, that will be discussed in section 4.4.3. Moreover, the case of 

neutral defects is an important test for the validity of our method, as they induce a 

local perturbation that causes a relaxation of the neighbouring atoms. We have 

also increased the sophistication of our embedding approach by including, in a 

self-consistent way, the effects of the polarization of the more distant regions of 

the crystal surrounding the defect. The development and implementation of this 

new method, that is discussed in section 4.5, is presently being pursued in 

collaboration with M. Leslie and V.R. Saunders at the Daresbury Laboratory.

We have chosen to print references, tables, and figures at the end o f each 

chapter. We feel that this format makes the thesis more readable.
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Chapter 2. 
Hartree-Fock Theory

2.1 THE HARTREE-FOCK HAMTLTONTAN

In this section we shall review Hartree-Fock theory and derive the Hartree- 

Fock equations referred to in the rest of work. An extensive discussion of the 

theoretical basis of quantum mechanics, and of the properties of the Schroedinger 

equation, can be easily found in several books. An introduction to the subject is 

for example, given in 'Quantum Chemistry' by Levine (1974), while an elegant 

and more extensive discussion of the formalism can be found in von Neumann 

(1955).

The Schroedinger equation for a system of N nuclei and n electrons can be 

written as:

H (1,2 N; l,2,...,n) 'F (l,2 ,..,N ;l,2 ,..,n ) = E 'F (l,2 ,..,N ;l,2 ,..,n )

(2.1)

where H is the Hamiltonian for the whole system, E is the total energy and 'F 

is the corresponding wave-function.

H can be approximated by assuming that the nuclei are fixed, and that only the 

motion of the electrons in the average nuclear field is considered (i.e. the Bom- 

Oppenheimer approximation). We also choose to neglect interactions due to 

magnetic fields or to relativistic terms.

This assumption yields to the following Hamiltonian:

n 1 N 7  n , , jMj ,
H = S [ - i v ^ +  £(.  Jt) + 2  (2.2)

i 1 k rik j(j>i) rij & k,*' rkK*
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where r is the distance between the pairs of species; is the charge of the k-

th nucleus, n is the total number of electrons in the system and N is the number of

nuclei. The first term is the kinetic energy of the electrons; the second is their

potential energy in the field of the nuclei and the third represents the electrostatic

interactions between pairs of electrons.

In the Hartree-Fock method the ground-state electronic wave function is

approximated by a determinant of orthonormal one-electron functions, denoted as 

\j/ (i). These functions are two components spinors, e.g. the product of a spatial

and spin functions (q stands for all the quantum numbers required to specificy the 

one electron functions).

The determinental wave function has the form:

This wave function satisfies the antisymmetry requirements, since the 

interchange of two particles corresponds to the interchange of two rows of the 

determinant, that changes the sign of the determinant. It also causes the 

introduction of some form of correlation effects, since the motion of two electrons 

with parallel spins will be correlated.

The best determinantal wave function V  that can be constructed is the one 

which minimizes the expectation value of the energy. The variational principle can 

then be used to determine the best spin orbitals, that will be those which minimize 

the electronic energy /fo r  electrons in the same state :

V l( l)  . . . .  Vn(l)
Vq®

Yi(n) . . . .  \|/n(n) (2.3)

(2.4)

where:
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i) e.core is the energy of the i-th electron in the field of bare nuclei.

ii) represents the Coulomb interaction o f the i-th electron with the j-th 

electron in the system, that is:

e2
Jii = <v»/i ^ l r l^ ix‘/i> (2*5)

j J ij J

iii) The exchange term K„ is in the form:

e2
K.. = <^.V. l - l VjV.> (2.6)

The variational principle requires that for small changes in the wavefunction 

*F the expectation value of the Hamiltonian is stationary, that is:

5E = 5j'J'*H 'Pdx-0 (2.7)

If this is true, then 'F is a solution of the Schoedinger equation that describes 

a stationary state. Applying this condition to the espression o f the energy, the 

corresponding Hartree-Fock one-electron equation can be derived:

F.\|/.=e.y. (2.8)

where:

F. is the one-electron operator, defined as:

2 2



F. = [H.core . J. + I . , . (J. - K.)]
1 1 ^ 1  J ^ 1  j  j ' J

(X^  X;) (Xi= X;)

(2.9)

where % indicates the spin, J. is the interaction of the j-th electron with all the

other elctrons of opposite spin (Coulomb repulsion averaged over the distribution

other electrons of the same spin (Coulomb repulsion reduced by the spin

Coulomb interaction of this electron with the nuclei and can be written as:

where ZA is the charge of the A-th nucleus and the sum is over all the nuclei 

in the system.

The additivity of the Hamiltonian, expressed as a sum of one-electron terms, 

depends on the initial form of the Coulomb and exchange operators; they 

introduce the correlation between electrons in the form of the correlation of each 

electron with the average distribution of all the other electrons. That is, they 

underestimate correlation effects.

The corresponding expression for the total energy (sum of one-electron 

energies) is:

The energy -e. represents the so called Koopman's potential, that is the 

energy required to remove the i-th electron leaving the other electrons

defined by the orbitals \|/\; (T-K.) is the interaction of the i-th electron with all the

correlation); H.core corresponds to the kinetic energy of the i-th electron plus the

core
2

(2.10)

E = 1/2 X. <w. I H.core I y . > + 1/2 Z. <y. IF. I w. > = 
1 T 1 1 T 1 1 T 1 1 T 1

= 1 /21 . (E.core +£.) i i r (2.11)
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unperturbed. Clearly this quantity does not coincide with the experimental 

ionization energy.

The average value of the energy can also be written as:

E = 1/2 I .  I H.corc + F. I \|f. > = <^T| 1/2 2 . (H.core+ F. ) ! ¥ >

(2.12)

We can consequently define an effective Hartree- Fock Hamiltonian as:

H ®  = 1/2 £ . (H.core + F.) (2.13)i v i r

The Hartree-Fock equations can be solved by using a method of successive 

approximations. An initial approximation for the one-electron orbitals can be used 

to calculate the Coulomb and exchange interactions, and then the F operator. Then 

the one-electron orbitals can be recalculated. The process continues until 

convergence, that is, until the changes in the total energy are below a given 

threshold.

The use of a self-consistent field (SCF) method makes a distinction between

two subsets o f orbitals: the occupied and the virtual ones. Only the occupied 

orbitals are used to define the Hamiltonian. If \jf. is an occupied orbital the terms

corresponding the electronic interaction in the Hamiltonian, describe the

interaction of the electron i with the (n-1) electrons that occupy the spin/orbitals 

different from i. If \j/. is a virtual state, then the electronic interaction terms

describe the interaction of an electron in i with the n electrons of the occupied 

many-fold. The addition of the \|/. orbital, in a sense, describes a possible solution

for a system with (n+1) electrons. On the other hand it does not represent an H-F 

solution for such a system, since we do not take into account the distribution of 

charge associated to the (n+l)-th electron in the definition of the Hamiltonian !
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2.2 PERIODIC BOUNDARY CONDITIONS

It is important to see how the above equations can be generalized in order to 

describe electrons in a periodic potential. A detailed treatment o f the lattice 

symmetry and its influence on the form of the Schroedinger equation can be 

found, for example, in Madelung (1981). Here we will only comment on the 

most important aspects and results of such a treatment.

The fundamental assumption is that the whole Hamiltonian satisfies periodic 

boundary conditions, that is:

with TR is an operator that replace the space vector r by (r+R), R being a 

primitive translation. Applying this operator to the (2.8) yields:

All (Tr \|/\) are, simultaneously with \|f., eigenfunctions to the same 

eigenvalue £..

To impose periodic boundary conditions, the wave-function must satisfy the

Bloch's theorem, which states that the non-degenerate solutions of the

Schroedinger equation and suitably chosen linear combinations of the degenerate 

solutions are at the same time eigenfunctions \j/. (k,r) of the translational operator

H (Tr r ) = H(r) (2.14)

(2.15)

and using the (2.14):

(2.16)
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TR with the eigenvalues exp (ik*R), where k is a wave-vector in the first 

Brillouin zone; that is:

TRy . (k, r) = exp (ik-R) y . (k,r) (2.17)

It follows that:

\|T (k, r+R) = exp (ik*R) \j/. (k,r) (2.18)

The equation (2.17) expresses the condition that the i-th electron wave-

function must obey in order to satisfy the periodical boundary conditions; in 

particular, we note that by applying a primitive translation to the function \|/.

(k,r), we obtain the same function except for a 'phase factor' exp (ik*R).
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Chapter 3. 
Hartree-Fock methods: from molecules 
to crystals

3.1 INTRODUCTION

The goal of this section is to discuss the state of the art o f Hartree-Fock (HF) 

computational schemes for the study of molecules and perfect crystals. The 

methods we shall discuss are ab-initio in the sense that we wish to evaluate the 

ground-state properties, and to predict what happens when the system is 

perturbed, from the knowledge only o f the atomic number and the geometrical 

arrangement of the nuclei.

It required considerable effort to implement computationally the HF equations 

discussed in the previous chapter. However, this has provided physicists and 

chemists with powerful and reliable tools for investigating the properties of the 

matter. New computer architectures make it possible to implement increasingly 

more sophisticated and efficient programs.

In section 3.2 we will first outline how molecular HF programs have become 

a standard tool in quantum chemistry. The development of techniques for the 

study of periodic, infinite crystals is then discussed and the different approaches 

are compared. In section 3.3 we examine the main characteristics of the code used 

in this work and discuss the physical properties that can be investigated. Finally, 

in section 3.4 we consider possible improvements that can be included in 

periodic HF calculations, in order to overcome some o f its well-known 

limitations.
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3.2 HF SCHEMES IN QUANTUM CHEMISTRY

The first attempt made by quantum chemists to solve ab-initio the Schoedinger 

equation for a many-electron system referred to simple, small molecules. As a 

result o f many years work, very reliable and general-purpose codes are now 

available to the scientific community for the study of finite systems. GAUS SIAN- 

82 (Binkley et al., 1981) is an example of this family of codes (a list o f similar 

codes is given in Appendix A), with an user-friendly input and a self-explanatory 

output; it is able to evaluate one-electron properties, optimize the geometry of the 

system with respect to the energy, to calculate force constants and vibrational 

properties and it includes sophisticated procedures to include the correlation 

energy (Wilson, 1984). Most of the computational schemes adopt the same basic 

ingredients: the linearized HF-Roothaan equations are solved by using a basis set 

of a small number of atomic orbitals (AO); the molecular orbitals are obtained 

through a self-consistent field (SCF) procedure; correlation corrections are then 

applied to the ground state wave-function. As discussed above, this approach 

provides the single-determinantal wavefunction with the lowest expectation value 

for the energy, within the functional space spanned by the adopted basis set; the 

one-electron Hamiltonian contains terms that depend on the ground state one- 

electron density matrix, so that the problem must be solved by a self-consistent, 

iterative procedure. The method proves reliable and accurate in characterizing the 

electronic properties of many systems; many chemical and physical properties can 

be accurately predicted. Not only can experimental results be reproduced, but the 

predictive capability of the method allows the study of systems that have not yet 

been synthesized or not well experimentally characterized. These types of 

program have therefore become very popular and widely used: they can be easily 

implemented on different machines; they are highly optimized with respect to
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CPU time and there are compilations o f ready-to-use basis sets that can suit many 

problems. Indeed these powerful numerical techniques have become a probe 

whose proper use does not require a high level o f expertise in quantum chemistry: 

they are, in effect, a "black box" - an additional tool to probe the chemistry of 

molecules.

The success of these methods has not only allowed them to survive and 

succesfully multiply, it also produced a new fertile offspring, able to describe 

infinite systems.

The description of the electronic properties of an infinite, periodic crystal is a 

much more demanding task; but decades o f successes in molecular quantum 

chemistry generated a strong stimulus in this direction, as a natural development 

o f previous techniques. Of course, existing molecular programs, can be used to 

simulate the properties of a crystal, by representing it as a finite object. These 

calculations consider a cluster of atoms, whose geometry reproduces locally the 

crystal geometry (Colboum, 1989) : the presence o f the rest o f the system is 

ignored, or simulated by saturating dangling bonds with hydrogen atoms and by 

creating the correct long-range Madelung field by means o f point charges 

surrounding the cluster. Only a small number of atoms can typically be included 

in the cluster ( 1 0 - 2 0  atoms); although in recent studies, the availability of 

supercomputers has allowed larger clusters, containing 50 or more atoms, to be 

included (Mainwood at al., 1978). There are however intrinsic limitations in this 

sort o f calculation, for example the incorrect description o f the long-range 

interactions and of the periodicity; therefore these methods are of limited value.

By taking advantage of the translational symmetry, as shown in the previous 

section, the HF equations can be usefully re-formulated in order to get, formally, 

the correct solution for a periodic system. In comparison with molecular codes, a 

much greater variety of techniques are currently employed, resulting in much less 

standardization.
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The solution of the HF equations for perfect crystals can be derived by 

following different routes. If a minimal basis set o f AO is used (i.e. the number 

of spin/orbitals that can be constructed is equal to the number o f electrons in the 

system), then no variational freedom is left to the problem and the one-electron 

density matrix is simply the inverse of the overlap matrix, and the problem is 

reduced to a trivial one. This approach has been used to study ionic system; in 

principle the method is exact for insulators if the generating AOs closely resemble 

the crystal's Wannier functions (Callaway 1974, pp.375-382).

Unfortunately, in general, this procedure can not be followed and a more 

flexible basis set must be used, in order to allow a larger variational freedom; a 

self-consistent field (SCF) procedure must be followed to obtain the best 

variationally optimized wave-function. The sequence of steps to be undertaken is 

as follows:

(a) Definition of the geometry, atoms and basis set
(b) Evaluation and storage of the integrals
(c) Define a trial density matrix Po to start the SCF procedure
[ begin loop over a selected set of k[ points in the first Brillouin zone]
(d) Calculate the Fock matrix F (kj) in the Bloch’s function representation
(e) Diagonalize F in each kj point, finding eigenvalues E (kj) and 

eigenvectors A(ki)
[ end loop ]
(f) Calculate a new Pn matrix from the knowledge of E and A
(g) Check for convergency (by comparing Pn and Pn-i ), if  not reached repeat

(d)..(f)

The evaluation of the Fock matrix (step (d)) can be performed either in a 

'Configuration Space' (CS) or in a 'Momentum Space' (MS).

In the CS all the integrals are performed in direct space and the Fock matrix 

evaluated, then F is Fourier transformed to reciprocal space just before the 

diagonalization (Del Re et al.,1967) (Andre' et al.,1967). The Coulomb and 

exchange series are expressed as triple sums over all the crystal cells, and efficient
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truncation criteria are necessary in order to reduce the number o f terms to be 

calculated and stored.

In the MS approach, the Fock matrix is evaluated analytically in reciprocal 

space after expressing both BFs and Coulomb and exchange operators as a 

combination of plane waves (Harris and Monkhorst, 1970) (Stoll and Preuss, 

1975), (Brener and Fry, 1978), (Delhalle and Harris, 1985). This approach 

allows a reduction in the number of integrals. On the other hand, use of the CS 

approach makes it easier to exploit the powerful numerical techniques developed 

in molecular quantum chemistry; the storage requirements, if the problem is 

treated adequately, are quite manageable.

The other choice regards the analytical expression of the basis functions used 

to simulate the crystalline orbitals (CO); the CO must satisfy Bloch's theorem, 

because of the translational symmetry of the crystal. Each CO can therefore be 

expressed as:

*F( k; r+g) = ¥ (  k; r) exp (ik-g) (3.2.1)

where k is the wavevector and g is a direct lattice vector of the crystal.

The CO can be expressed in terms of plane waves (PW):

¥ (  k; r) = £  K a(k;K) exp [i (k+K )r] (3.2.2)

being K the reciprocal lattice vectors.

PWs form an orthonormal set, with the correct asymptotic behaviour. 

Although PWs are an attractive choice , it is necessary to use a high number of 

PWs to describe sharp local features of the wavefunction, especially in the core 

region. Instead of PWs, Bloch’s function (BF) cp̂ i(k) can be used. In this case 

each function will have the form:
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<Pn(k !r) = X  g X n(r-g) exp( ik-g) (3.2.3)

japriwol; itk
where % p. areMocal functions, usually centered at the nuclei positions. Their 

angular dependence is that of the corresponding atomic orbitals, so that they are 

usually called AOs. The AOs are usually expressed in terms of linear combination 

of Gaussian Type Orbitals (GTOs). Each Bloch’s function can be considered a 

contracted set o f an infinite number of plane waves; BFs therefore allow a 

dramatic reduction in the number of basis function needed to construct a given 

crystalline orbital. This is especially true for COs corresponding to core states. 

Another advantage of COs is that the algorithms developed for molecular 

problems can be exploited in the case of periodic systems. On the other hand, 

BFs do not form an universal set and they are not orthogonal, so that overlap 

terms are not zero. Furthermore, Bloch's functions generated by diffuse valence 

AOs often are almost linearly dependent, giving rise to numerical problems.

To overcome the problems associated with PWs and BFs two routes seem 

particularly interesting: first of all, core states can be described by pseudo- 

potentials.This would restrict the calculation to valence electrons, that can 

accurately be described by a limited number of plane waves. Pseudo-potentials 

techniques will be discussed again, in section 3.3. Secondly, mixed basis sets can 

be employed, which use BFs for the deep core levels and PWs for the delocalized 

valence bands and conduction states. This choice is becoming increasingly 

popular (Kerker, 1981; Baroni et al., 1985).

In the next section we shall discuss in more details the problems associated 

with Bloch's functions, that are used to represent crystalline orbitals in the 

approach followed in the present research.
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A general purpose HF program for perfect crystals should show a number of 

desirable features:

(a) It should resemble molecular programs regarding the basic algorithms

(b) Treatment of systems with one-, two- and three-dimensional periodicity 

should be possible

(c) Good performance and high efficiency are necessary: powerful numerical 

techniques and algorithms must be used to reduce costs and thereby increase the 

number of systems that can be studied.

The practical implementation o f periodic HF schemes was rapid and 

successful in the case of ideal polymers (one-dimensional periodic systems) 

(Kertesz, 1983). In 3-D, the problem is intrinsically more complicated: the 

truncation criteria cannot be based only on the distance between the centres of the 

AOs as the number of integrals increases very rapidly with the truncation radius, 

while their magnitude decreases with the inverse radius; the exploitation of 

symmetry is more difficult, if one wants to preserve generality; and the 

reconstruction of the Fock matrix at each k point requires sophisticated numerical 

techniques.

It was in the early 1970's that, for the first time, a research group at the 

Aerospace Research Laboratories, Dayton, Ohio, succesfully implemented a HF- 

Roothan scheme, using a CS approach, for three-dimensional systems . They 

used a set of contracted lobe Gaussian functions as the basis set, and employed 

sophisticated techniques in order to exploit the crystal symmetry and reduce to a 

minimum the number of integrals to be computed. The first calculations studied 

diamond (Euwema et al., 1973) (Surratt et al., 1973), cubic boron nitride 

(Euwema et al., 1974 a) and lithium fluoride (Euwema et al., 1974 b).
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In more recent years similar attempts have been undertaken by many other 

research groups; a useful review of them is given in Pisani et al. (1988) (pp. 14- 

15).

The scheme used for the present research was developed at the Institute of 

Theoretical Chemistry of the University of Torino (Italy) in collaboration with V. 

Saunders, at the SERC Daresbury Laboratory ( Pisani et al, 1988; Dovesi et al., 

1988), and has been systematically improved over ten years. The CS approach 

used is similar to the original one adopted by Euwema et al. . The resulting 

computer program, CRYSTAL, has been succesfully applied to a very large 

variety of one, two- and three-dimensional systems, including insulators, 

semiconductors and metals; although, for a long while, limited computational 

resources have restricted the calculations to systems with a small unit cell 

described by relatively small basis sets (see for example Pisani et al, 1988). The 

quality of these results shows the accuracy of the approach and the reliability of 

the code.

In the following section we give an account of the methodology, and discuss 

some of the general characteristic and capabilities of CRYSTAL.
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3.3 THE "CRYSTAL" CODE

In this section we shall discuss in more detail a specific HF-CS approach for 

the calculation of the electronic structure of crystalline systems, as implemented in 

the program CRYSTAL.

The general steps of the program are: first the geometry and the basis sets for 

each atomic species is given by input, and the computational conditions are 

defined. The program performs a symmetry analysis o f the structure and 

classifies and calculates the integrals accordingly, storing them on disk. Then the 

self-consistent procedure is started: the Fock matrix is calculated in direct space, 

Fourier transformed into reciprocal space and diagonalized. The knowledge of the 

eigenvalues and the eigenvectors allows the density matrix P to be evaluated. The 

P matrix will be used to start the following cycle. The process continues until 

convergence of the total energy is reached.

A detailed description of the code and of the algorithms can be found in the 

literature (for example Pisani et al., 1988 and Dovesi et al., 1988). We give here 

only a brief account of the general structure of the code, with special reference to 

those notations and formalisms that will be used in Chapter 4, for the discussion 

of the embedding techniques. Therefore we shall first introduce some 

conventions to describe in a concise form the basic functions and the charge 

distributions, used when the Coulomb interactions are evaluated. Then we shall 

focus on the terms of the Fock matrix, discussing their structure and the technique 

adopted for their evaluation in CRYSTAL.
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3.3.1 Basis functions and charge distribution

3.3.1.1 AOs

A finite number (p) of AOs belongs to the reference zero cell. All the other 

AOs in the crystal can then be generated by applying appropriate translations.

The co-th AO in the cell g will be denoted as

[“ g] = X(08 to = X Q tog 'V  (3.3.1)

where sw is the fractional vector that specifies the atom to which it belongs 

and the set of quantum numbers Q=(n,l,m) characterizes the individual AO.

Each AO is expressed as a linear combination o f a certain number t j o f

individually normalized real spherical Gaussian functions (GTO) with fixed 

coefficients dj and exponents <Xj.

X („!„,) C - V  = £j dnlj ^  j 5 r-so,>

G,m (a, r ) = N™ (a) X® (r) exp (-ctr2) (3.3.3)

N® (a) = ([ a l+3/2 221+3/2 (2-5mo) (21+1) (1- Iml)! ] /  [7t3/2 (1+lml) | (21+1)!!])1/2 

(3.3.4)
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3.3.1.2 Shells

AOs belonging to the same atom can be grouped into ‘shells’. Each shell 

contains all AOs characterized by the same n and 1 quantum numbers (for 

instance: 2p,3d,3s shells) or even all AOs with the same principal number n if the 

number of GTOs and the corresponding exponents are the same (Hehre et al, 

1969).

The use of shells is an effective means of reducing the number of functions 

that need to be calculated in the evaluation o f the integrals. The total charge 

distribution can be decomposed into a sum of ‘shell charge distributions’, indexed 

by X.

3.3.1.3 Adjoined Gaussians

A single normalized s-type GTO G^ is associated with each shell. Its 

exponent is such as to reproduce approximately the absolute value o f the 

corresponding AO’s at intermediate and long range. The adjoined Gaussians are 

used quickly and effectively to estimate the overlap between two shells, in order 

to classify them in terms of ‘importance’ for the selection o f the integrals.

3.3.1.4 Compact expressions for charge distributions

As will be discussed in the following sections, the essential problem in HF 

studies o f periodic systems is how to deal with infinite sums of Coulomb 

integrals, necessary to calculate the electrostatic interaction between an infinite 

number of charge distributions. To do so, it is useful to introduce some 

formalisms for the expressions of the charge distributions and their Coulomb 

interactions in the crystal, that was originally used by the authors of CRYSTAL.
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p(r) = {type; location} (3.3.5)

indicates a generic charge distribution, where “type” indicates the set of 

indices that describe the characteristics of the charge distribution with respect to 

the crystal cell(s) specified by “location”.

({ty l;lo c l) I {ty2 ;loc2 )) = J dfj dr2  p^ rp  p2 (r2)

(3.3.6)

indicates the interaction between two distributions Pj and p2-

In particular, the following notations will be used:

i) AO overlap distributions, that are the product of two AO’s, are written as:

{12g ; 0 } h {12g) = x° (r) xf (r) (3-3.7)

{12g ; h) s  { 12g) = Xj (r) Xh2 g «  (3-3-8)

The interaction between two AO overlap distributions can be written as:

(10 2gl 3h 4n+h) = ({12g)l {34n;h)) =

= I dr dr’ %° (r) Zf  (r) lr-r’l '* X3 (r) x T  (r) (3-3.9)

ii) A capital letter B used for “location” corresponds to a sub-set of lattice 

cells over which the local distribution {type;h) is summed. For example, if we 

consider a sub-set B o f lattice cells where all the two-electron integrals are 

evaluated exactly , we can write:

U 2 g ; B } = I hEB { 12g;h) (3.3.10)
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If the sum is extended to all lattice cells, a translationally invariant distribution 

is obtained, whose location will be denoted by the letter T.

{ 12g ; T} = I h { 12g;h) (3.3.11)

iii) A Greek letter identifies the charge distribution of ‘shells’, that is , the 

electronic charge attributed to shell X according to a Mulliken analysis:

{A.;h} = Z l e X I 2 I n P12n (12n;h) (3.3.12)

where P is the density matrix element referring to the AOs ^  %2 *n 

zero and n-th cell.

iv) Unit nuclear charge distributions are defined as:

{Z ;h )= 8 (r-h-sz) (3.3.13)

The nuclear charge Z can formally be split into integer nuclear shell charges 

Z^, each one approximately compensating the electron charge attributed to a given

shell. Nuclear attraction integrals are expressed as:

( ( 12g)l{Z;h)) = /  dr z? (r) (r )/ Ir-h-sJ (3.3.14)
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3.3 .2  Basic equations

In this section we first sketch the equations and the general procedures. A 

more detailed discussion then follows, in which we analyze the form of the HF 

Hamiltonian and the computational parameters involved. We also comment on the 

procedure adopted for the integration in reciprocal space. More details of 

CRYSTAL can be found in the literature cited above . We shall emphasize those 

computational features that will be used in the embedding method discussed in 

Chapter 4.

A periodical HF Hamiltonian can be defined:

F f2 = H f + Bj2 (3.3.15)

where H8 12 and B8 12 are respectively the one- and two-electron contributions 

in the basis set of the AO pq8, g being a direct lattice vector (%£ = (r - Sj - g)) 

and si the position in the reference cell of the atom to which jq belongs.

The Fock matrix and the overlap matrix S8  are then Fourier transformed into 

the reciprocal space, in the Bloch function (BF) basis; eigenvalues (E) and 

eigenvectors (A) are obtained after solving for each k vector, in the first Brillouin 

zone (BZ), the matrix equation:

F(k) A(k) = S(k) A(k) E(k) (3.3.16)

Once the eigenvalues are known, the new density matrix, in the AO basis, is 

calculated, by integration over the BZ volume:
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P12g = 2 X n Jbz dk exp(i k .g) a*ln(k) (k) 0[eF - en (k)]

(3.3.17)

where the ajn (k) element of A(k) is the coefficient of the j-th BF in the n-th 

crystalline orbital at point k; en(k) is the corresponding eigenvalue and £p is the

Fermi level (note that here, and in the following, only closed shell systems are 

considered).

The knowledge of P allows the Fock matrix, in direct space, to be re­

evaluated. The process continues, iteratively, until convergence in the total energy 

is reached.

The implementation of these equations requires the calculation o f infinite 

summations over direct lattice vectors (Coulomb and exchange series) and a 

technique for integration in reciprocal space. The scheme adopted in CRYSTAL 

will be discussed with particular reference to these problems.

3.3.2 .1  Coulomb terms

In eq. 3.3. I f , the 'one-electronic* term includes the kinetic contribution 

^ 1 2 )

TjS2  = < 10 I - V2  /  2 1 2g> (3.3.18)

and the nuclear attraction term (Zjg2), that corresponds to the Coulomb

interaction between the AO overlap distribution {12 g) with the nuclear charges 

in the crystal:

Z 182 =  - ? X ( Z X ( ( 1 2 8 ) 1 (Z X ; T ) )  =
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= - S x I h (M g iz^ h )  (3.3.19)

Bf2  is the sum of the Coulomb and exchange terms:

C12 = 2  3 4 „ P34n t 2 h ( 1 0  2 g I 3h 4n+h) ] =

= (( 12 g) I {X; T)) (3.3.20)

X f2  = - 1 / 2  £  34n P34n [ 2 h (10 3h I 2 g 4n+h) ] (3.3.21)

where P is the density matrix; and the n and h summations are in principle 

extended to all direct lattice vectors. Because of translational invariance the first 

vector can always be centred in the origin cell, identified by the null vector 0 .

We first rearrange the Z and C contributions:

C 12 + z i2 = J *  * ’ X°i (r ) Zg2(r ) 1 r -r ’ d  P x (r’-h) =

= S h [ Z 34n (10 2g I 3h 4n+h) - Z x (12g I h)]

(3.3.22)

defining Mulliken shell net charge distributions:

p x (rMi) = (X;h} - Zx {Z^h} (3.3.23)

In this last expression we have two infinite summations, over h and n 

vectors.
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We first note that, due to the localized nature of the basis set, the total amount 

of charge qx and q2  associated with the two overlap distributions {GjG2  g) and

{G3 G4  n;h) (where Gj is the adjoined Gaussian of the shell to which the AO

belongs) decays exponentially to zero with increasing Igl and Ini. A  Coulomb 

overlap threshold Sc (or sc = -log10 S£) can be defined, such that when either qj

and q2  are smaller than Sc the two-electron integral is disregarded

The problem of the h summation is more delicate. Each shell X can be

classified in two different sets:

i) a long-range set of h vectors that includes the interactions between the 

charge distribution X°j(r) %g2 (r) and the A,-th shell distributions px within the 

cell h, when their penetration is smaller than a threshold SM (or

These interactions are evaluated by an Ewald type technique, after a multipole 

expansion of p^

ii) a short-range set (B) o f h vectors, complementary to the long-range one, 

whose integrals are evaluated exactly.

3.3.2.2 Exchange terms

According to eq. 3.3.21 we have:

x f 2  = -1/2 X  3^  P34n [ Xh (10 3h I 2g 4n+h)] (3.3.24)

The h summation can be truncated after a few terms, because the {1 3h} AO 

overlap distribution decays exponentially with h. A threshold Sx  (or sx=-log10

Sx ) can be defined for this purpose. The g and n series are again more delicate, 

as the convergency rate of the series largely depends on the < x y  ptotic behaviour 

o f the density matrix. Consider, for instance, the exchange constribution to the 

energy, due to the long-distance leading terms, corresponding to h=0 , flag and 

A.=p,p=v:
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eVv = - 1 / 4  (pgnv} 2  ( p 0  p 0 1 v 8  vg) -  - (P®nV) 2 /  (4 Igl) (3.3.25)

Since the number of terms of this kind per unit distance increases as Igld'1 , 

where d is the dimensionality of the system, it is clear that the convergence of the 

series depends critically on the long range behaviour o f the bond order matrix.

A ‘pseudo-overlap’ criterion is adopted, consisting in truncating the g and n

summations when the overlaps between the distributions {1 2g) and {3 4n} are 

smaller than a given threshold Px  (or px= -log1 0  Px ). Actually, two thresholds

are defined, one for the n and one for the g summation, in order to take in 

account their different role in the SC procedure; this problem is discussed in 

details by Pisani (Pisani et al., 1988, section n.5 )

3.3.2.3 Integration in reciprocal space

This problem is not present in molecular quantum problems, where 

eigenvalues and eigenvectors form a finite manifold and it is possible to sum over 

all of them.

Eigenvalues and eigenvectors are evaluated at a given set {kj} o f ‘sampling’

points, inequivalent by symmetry. In a 3-D lattice the sampling points belong to a 

net, with basis vectors b j/ Sj, b2/  s2, b3/  s3, where bi are the reciprocal lattice 

vectors and si are the sampling points of a regular net.

In the case of insulators the integrand function that appears in (3.3.17) is

regular and all the bands are either fully occupied or empty. The integral is

performed as a weighted sum, limited to the occupied bands, o f the integrand 

function over the set kj with weights Wj. In the case of conductors there are one

or more bands partially occupied and the density of sampling points in k space 

must be much higher (because of the problem of determining the Fermi surface).
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3.3.3 Basis set selection

The choice of the basis set used to describe the atomic species in the crystal is 

a very important preliminary step in a calculation. The experience gained in 

molecular quantum chemistry can be largely exploited: in particular the atomic 

core can usually be described by the standard atomic solutions (Clementi and 

Roetti, 1974). As regards valence shells molecular basis sets can be used as a 

convenient starting point. They usually perform well in the case o f covalent 

crystals, while in the case of metallic or ionic compounds the valence must be 

completely redefined. Semi-ionic compounds, like most of the silicates, require 

particular care, and the problem will be discussed in details in Chapter 5.

In all cases diffuse Gaussian orbitals (with exponent coefficients o f less than 

0.15 a.u.) have a critical effect on periodic HF calculations: they cause a dramatic 

increase in the number of integrals that are evaluated and they increase the risk of 

pseudo-linear dependence. In periodic calculations, however, very diffuse AO’s 

do not play the same important role as in molecular calculations. In the latter case 

they are used to describe the tails of the electronic distribution in the vacuum, 

which of course does not apply for infinite systems.

Many calculations have been performed using relatively poor basis sets, such 

as the STO-3G sets proposed by Pople and co-workers (Hehre et al., 1969, 

1970; Pietro et al. 1980,1981). Split valence basis sets, such as the 6-21 G set 

(Binkley et al, 1981; Gordon et al, 1982) often provide accurate results, 

especially when the variational freedom is increased by adding polarization 

function in the form of d-orbitals (Hariharan and Pople, 1973; Pietro et al.,

1982).
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3 .3 .4  C a lcu la tion  o f  ob servab le  q u an tities in the H F

approximation

In this section we consider the ground state energy and the electronic 

properties that can be evaluated by CRYSTAL.

3.3.4 .1  Ground State Energy

The ground state energy EQ of a system is one o f the most interesting and 

important parameters that can be extracted from an electronic structure calculation.

Equilibrium geometries, relative stabilities of different phases, reaction paths, 

formation energies can be derived in terms of the variation of EQ as a function of

the internal coordinates of the system.

The total energy per cell can be expressed as a sum of kinetic (E^), exchange 

(E ) and Coulomb interaction (EJ terms.
A C

They can be synthetically expressed as:

(where the superscripts ee, en, ne and nn refers to electron-electron, electron-

nuclear, nuclear-electron and nuclear-nuclear interactions, respectively), and

where T and X have been defined in equation (3.3.18, 3.3.21) and the terms in 

the expression of E correspond to the interaction between the charge distributions
V

(nuclear and electronic) in the zero cell and the overall charge distribution 

throughout the crystal.

Ek = S i 2 g P 1 2 8  T 1 2 8  •

(3.3.27)

(3.3.26)

(3.3.28)
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Comparison of EQ with experimental energies requires some care. First of all 

the HF total energies are affected by the absence of correlation terms, as will be 

discussed in the next section. Furthermore we must consider the effects of 

incomplete basis sets, numerical approximations and, for heavy atoms,the 

absence of relativistic corrections. In any case, the total HF energies must be 

extrapolated to room temperature (or the temperature at which the experiment was 

carried out), the nuclear zero-point energy subtracted and the isolated atoms 

energies added, in order to obtain a quantity that may be compared with 

experimental measurements. We note that this procedure implicitly assumes the 

validity of the Born-Oppenheimer approximation, i.e. the separation of nuclear 

and electronic motion.

Problems relating to the basis set may arise when evaluating the HF binding 

energy. The isolated atomic energies should be evaluated to the same degree of 

accuracy as the total HF crystal energy. However, using the same AOs for the 

isolated atoms as for the crystalline species, leads to an overestimation of the 

binding energy, since the variational freedom is larger in the crystal, where 

valence orbitals are shared by a large number of neighbouring atoms. This is a 

well known problem in quantum chemistry, often referred to as “basis set 

superposition error” (BSSE). In order to correct it, the counterpoise method 

(Boys and Bemardi, 1970) may be used: the reference atomic energy is obtained 

using all AOs of that atom supplemented by the valence AOs of the surrounding 

atoms.

Notwithstanding these difficulties, it is often possible to compare energies of 

‘similar’ systems, or of different geometries of the same crystal: within these 

limits, the errors tend, to a large extent, to cancel. It is however clear that 

particular care and caution are necessary when properties directly related to the 

energy are studied and discussed.
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3.3.4.2 Physical observables: electronic properties

It is useful to recall some general and interesting results produced by the 

density matrix formalism applied to the problem of determining the mean value of 

an observable. This formalism is discussed at length in many reference books, 

for example in Landau and Lifshitz (1965).

The mean value of any observable that corresponds to a one-electron operator 

<^l>, can be expressed in terms of the density matrix of first order

< f !> = J [ f , ( l )  P^XpXj') ] x , ^  dXj (3.3.29)

where PjCxj.Xj') = J dx2 „dxn ^ (X j, x 2 ..xn) ^ * (x 1( x 2 ..xn).

The mean value of any observable that corresponds to a two-electron operator 

^ 2  can always be expressed in terms of the density matrix of second order:

< f 2> = V jJ  [ f 2 ( l ,2 ) p 2 (x 1 ,x2 ; x 1\x 2,) ] x. _>x , _>x dx, dx2
1 1 2  2

(3.3.30)

Since the study of the observables of many-electron systems always refers to 

one- and two-electron operators, and considering that the first order density 

matrix can be expressed in terms of the second-order density matrix, we can 

conclude that the mean value of any observable can be expressed in terms of the 

second order density matrix of the many-electron system under study. It is 

interesting to note that, as a result, the amount of information contained in the 

multi-electronic (let say n-electron) wave-function (that, in principle, allow n-th 

order density matrices to be evaluated) is more than that needed to determine the
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mean value of the observables in that system. This result is explained if we take 

into account the ‘statistical’ nature (mean value) of the information that is 

provided.

A number of properties can be evaluated using CRYSTAL. We will briefly 

comment on those that are used in Chapter 5 to characterize the electronic 

structure of silicates.

3.3.4.2.1 Band structure and Density of States (DOS)

The eigenvalues of the one-electron Fock Hamiltonian are only an 

approximation for the electronic spectrum of the real crystal; in particular, states 

that belong to the conduction band are very poorly described; band gaps and band 

widths are systematically overestimated. A further unsatisfactory feature is the 

sharp fall to zero of the density of states at the Fermi energy (Monkhorst, 1979; 

Delhalle and Calais 1986, 1987).

In spite of these limitations, useful information can be obtained from band 

structures and DOSs; projected DOSs into sets of orbitals characterize the 

crystalline orbitals associated with a particular band, and allow, for example, 

contributions to the bonds and hybridation processes to be analyzed. Projected 

density of states can also be compared to experimental X-ray and UV emission 

spectra.

The total density of states is defined as:

P (e) = Z P , P® (e) (3.3.31)

with the summation j extended over all the AOs.
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By integrating the individual contributions p® (e) one can obtain Mulliken 

band populations or total Mulliken populations (if the integration is performed up 

to the Fermi level).

It is well known that Mulliken populations can sometimes be misleading, 

being strongly dependent on the basis set and on the partition scheme adopted. 

However, they provide useful preliminary information about the nature of the 

bonding, as will be shown and discussed throughout this thesis.

3.3A.2.2 Electron Charge Density (ECHD) and related quantities

The ground-state electron charge density p(r) is an important observable 

(Coppens and Stevens, 1977) usually well described by the HF approximation. It 

is not greatly affected by the correlation error (that usually causes only a small 

expansion of anion size in highly ionic systems).

The charge density can be expressed as follows:

P(r) = Zg | 5 ^  [ S' 1 ] (r) Xv ‘ (r) (3.3.32)

Charge density maps can be obtained by plotting p(r) along a plane cutting the 

crystal, usually along the chemical bonds. In fact, difference maps are usually 

plotted where the density of a superposition of isolated ions or atoms is subtracted 

from the total p(r). This procedure allows us to analyze how the charge density 

varies when the atoms interact and the chemical bonds are formed.

The Fourier transform of the ground state charge density provides the 

electronic static structure factors o f the crystal, Fhkj. These factors can be

determined by experiment, using X-ray diffraction techniques (after taking in 

account a number of corrective terms, like the thermal and zero-point motion of 

the nuclei (Dawson, 1969)). It is therefore possible to perform interesting and 

valuable comparisons with experiment, after Fourier transforming the calculated
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ECHD. Alternatively, calculated density maps may be compared with experiment 

after the latter have been obtained by Fourier transforming the measured structure

factors.
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3.4 LIMITS OF ALL-ELECTRON HF AND HOW TO

OVERCOME THEM

Two problems will be considered in this section. The first concerns the 

explicit inclusion of both valence and core electrons in the HF scheme, which 

limits the feasible calculations to systems which do not contain atoms heavier than 

those in the 3rd row of the periodic table; thus heavy atoms cannot be included in 

the unit cell. Secondly, single determinant wavefunctions do not describe the 

correlation between the motion of single electrons (the only form of correlation 

included into the HF equations corresponds to the interaction o f one electron with 

the average distribution of the density of probability of the other electrons).

3.4.1 Pseudo-potential techniques

The absence of core electrons impairs, in principle, the quality of the 

calculation. Furthermore, there are cases in which the HF method is used to study 

core properties, like core relaxation due to the crystal field (Dovesi et al, 1982), 

shifts in the core levels and properties of high-pressure phases (Causa* et al, 

1986). On the other hand there are indeed situations in which core electrons do 

not play an important role, for instance if the bonding properties o f systems 

containing heavy atoms are under investigation. The use o f core pseudo­

potentials, that describe the core electrons by using an effective potential one- 

electon operator, appears to be a promising technique.

Particularly suitable to use in CRYSTAL are pseudo-potentials specially 

designed for HF calculations, such as the ‘non-empirical* pseudo-potentials 

developed by the Toulouse group (Durand and Barthelat, 1975; Barthelat et al., 

1977), or the HF ‘effective core potentials’, recently tabulated by Hay and Wadt
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(1985). The saving factor in terms of CPU time is not very favourable as regards 

the evaluation of the integrals (it is [N ^  + NcNy3] rather than [(Nc+Ny)4], Nc

and Ny being the number of core and valence AOs, respectively). The advantage

is more considerable in the SCF stage, where the order o f the matrices that are 

manipulated reduces from (Nc+Ny) to (Ny). Pseudo potentials in CRYSTAL have

been used to study, for example, spinel compounds (Mg2 Si0 4 , Mg2 Ge0 4 , 

Al2Mg0 4 , Ga2Mg0 4 ) (D'Arco et al., 1991) that would have been untreatable at 

the all-electron levels.

We have not employed pseudo-potentials in the calculations that are presented 

in this thesis though, as will be discussed in the later chapters, we believe that 

future works may greatly benefit from this technique.

3.4.2 Correlation corrections

The absence of a proper treatment of the electronic correlation is often 

considered the principal shortcomings of the HF method (Catlow and Price, 

1990). A number of techniques have been developed in order to include these 

effects. Configuration interaction techniques, used for molecules, are not easily 

transferable to periodic systems; the expression of the correlation energy is not 

asymptotically proportional to the number of electron in the system. For all those 

problems where the interest is in obtaining a corrected ground state energy, the 

more straighforward solution is to carry out a normal HF calculation, obtaining 

the HF one-electron density matrix. Correlation functionals, developed in the 

framework of Density Functional (DF) theories, can be employed to correct the 

HF densities. Two schemes are at present being investigated with a view to then 

incorporating them into CRYSTAL. One refers to the correlation functional 

proposed by Perdew and Yue (Perdew and Yue, 1986; Perdew, 1986). The other
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implements the non-local DF formulated by Colle and Salvetti (1975, 1979,

1983), as discussed by Causa' (Causa1 et al., 1987).
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Chapter 4. 
Simulation techniques and quantum chemistry 
methods for the study of point defects in 
solids

4.1 INTRODUCTION

In this chapter we shall be concerned with the computer simulation of point 

defects and their influence on the properties of solids. The defective system 

(crystal + point defect) can be considered, from a fundamental viewpoint, as a 

set of interacting particles (electrons and nuclei). However, depending on the 

nature of the solid and on the problems we want to investigate, we can develop 

techniques to simulate the system by semi-classical models based on interatomic 

potentials, as is done in many fields of computational chemistry and physics. 

These simulation methods are well established in the study of ionic and semi­

ionic materials and can be translated into computer codes that are straightforward 

to use. Moreover interatomic potentials for many different systems have been 

optimized and listed (Catlow and Mackrodt, 1982; Lewis and Catlow, 1985) and 

simulation techniques have been employed to study topics ranging from classical 

solid state problems, such as bulk defect properties of alkali halides to those in 

biological sciences, e.g. protein conformation. However, although this approach 

is adequate for solving a large number of problems, there are several obvious 

shortcomings implicit in its basic assumptions: in particular, to describe the 

behaviour of the electrons we need a more sophisticated model, that explicitly 

takes into account the electronic wave-function; that is, quantum mechanical 

techniques are needed.
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In the following section we shall first describe and compare some of the 

“standard” techniques available for the study of point defects in solids. We will 

refer to the CASCADE code (Leslie, 1981) as an example of a successful 

implementation of semi-classical modelling techniques and we will review 

possibilities and shortcomings of “standard” techniques available in quantum 

chemistry, that is the cluster and the super-cell methods. Then, in section 4.2, we 

discuss the embedding approach, the study of which is a major component of this 

thesis, and its possible formulations, i.e. the perturbed host system and the 

perturbed cluster approach. The general assumption of all these methods, is that 

the presence of the defect perturbs only a finite region of the host crystal, where 

all the effects of the defect (geometrical relaxation, charge transfer and 

polarization effects) are confined.

In section 4.3 we will present the perturbed-cluster embedding technique 

developed and used in this study ; the theory, and its implementation in the form 

of a computer code (EMBED) will be reviewed and discussed. The development 

of EMBED has been an important part of this research work, pursued in 

collaboration with Prof. C. Pisani at the University of Turin, Italy.

This method yields unsatisfactory results when charged defects are 

considered: the problem of defining the defect charge states is discussed. The 

treatment o f the long-range polarization effects induced by charged defects is 

considered in section 4.5. A new technique, that allows the polarizability of the 

medium to be described within a classical framework in EMBED , is presented, 

together with a number of suggestions to deal with the “charge problem”. The 

structure of a new code (EMBRYON) that implements these techniques is finally 

described.
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4.2 COMPUTATIONAL TECHNIQUES FOR THE STUDY 

OF POINT DEFECTS

We will consider first the case o f ionic crystals, in which we create vacancy, 

interstitial or substitutional defects. We are interested in the properties of the 

ground state, and specifically in the energy as a function o f the atomic 

coordinates, which is needed to predict the equilibrium configuration of the atoms 

surrounding the defect and its formation energy. This information also yields the 

vibrational frequencies of the local modes associated with the defect, reaction 

paths and reaction barriers and the relative stabilities of different configurations. 

We also wish to study the charge distribution in the defect region, that may clarify 

the nature of the bonding and the nature and degree of localisation of the defect 

states.

4.2.1 Simulation Methods

These techniques consider the system to be composed o f point ions 

interacting via two- and three-body potential energy functions.They have enjoyed 

considerable success in both qualitative and quantitative studies o f defect 

processes by providing a reliable and accurate estimate of relaxation effects and 

formation energies in the case of ionic and semi-ionic crystals (Catlow and 

Mackrodt, 1982). The approach is largely limited to ionic and semi-ionic 

materials, and cannot be used to study defects in a covalent material, where 

chemical bonds can be broken (although the methods could be used to study for 

example closed shell interstitials in covalent solids), and of course no information 

is provided about the electronic distribution. A successful example o f the
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implementation of these techniques is provided by the program CASCADE 

(Leslie, 1981).

According to the scheme adopted by CASCADE the defective crystal is 

described by surrounding the defect with an inner region, that contains a finite 

number of ions that are allowed to move until the forces on them are zero, i.e. 

until they reach a minimum energy configuration,which is treated atomistically; 

and an outer region that extends to infinity, containining ions whose positions are 

calculated using the Mott-Littleton approximation (1938).

The total energy of the system is the sum of three contributions:

where Ej is the energy of region I, E3 is the energy of region II and E2 is the 

interaction energy between the two regions, x are the coordinates o f the ions in 

region I and z are the vectors of the displacements of the ion in region II.

E3(z) is assumed to be a quadratic function of z ; thus:

where A is the force constant matrix, and the superscript T indicates the 

transpose.

Using the equilibrium condition:

E = EjOO + I^Q^z) + E3(z) (4.2.2)

E 3(z ) =  1/2 zt  • A • z (4.2.3)

3E/3z = 3 E 2(x ,z )  /  3 z  I t +A-z = 0
z=z

(4.2.4)
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where z| are the equilibrium values for the z* we can rearrange E as:

E -  Et(x) + E2(x.z) -1/2 3E2 / dz  1 (4.2.5)
Z—z

With this expression an important formal result has been achieved, i.e. we 

have expressed the total energy without including the explicit expression for E3>

which formally extends to infinity. Equation (4.2.5) is expressed only in terms 

of interactions between pairs of ions in region I and terms involving the potential 

interaction of region I and II. The simplest approach is to assume the potential to 

be central (three body interactions can be included by the addition of angular 

dependent terms) and the ions to be unpolarized (techniques can then be 

introduced to describe dipolar distortions (Dick and Overhauser, 1958) so that 

the electrons are modelled by a massless shell coupled to the core, which is given 

the mass of the total ion. The interaction is assumed to be harmonic. The ‘shell 

model’ is thoroughly reviewed in J. Chem.Soc. Faraday Trans. II, 1989, ed. 

Catlow CRA, Stoneham AM, page 85).

Short range interactions are described by means of interatomic potentials, that 

include electron-electron repulsion and electron exchange correlation, whose 

expressions and properties have been discussed at length, for example in Catlow 

and Mackrodt (1982).

Here we are more interested in discussing the treatment o f the Coulomb 

potential, that is relevant for the discussion of charged defects in section 4.5. In 

order to evaluate the contribution to the energy due to the interactions between the 

outer and the inner region we separate off the interactions between explicit ions in 

a finite region of the crystal and describe the remaining long range part by means 

of a Madelung potential; the latter terms are handled analytically using an Ewald’s 

summation (see Appendix E). Therefore region II is actually subdivided into two
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sub-regions, Ila and lib. In region Ha the terms arising from interactions of the 

ions with those in region I are calculated explicity. Region lib (that extends to 

infinity) is treated as a dielectric continuum interacting with the effective charge of 

the defect (assumed to be a point charge positioned at the centre of the cluster), so 

that there is no interaction with displacement dipoles in region I.

This method is valid only when the sizes of region I and Ila are large enough 

to justify the approximations; in other words, when any increase of the region 

sizes has a negligible effect on the defect energy.

4.2.2 Quantum Mechanical Methods

To take explicit account of the electronic distribution, and the ways in which 

it is modified by the defect, one must solve the Schroendiger equation for the 

defective crystal. The “standard” ab-initio HF techniques available in quantum 

chemistry for the study of molecules and periodic crystals (i.e. the molecular HF 

and the periodic HF) can be applied to the simulation of lattice defects. We will 

focus on these techniques in the following discussion.

In the ‘Cluster Approach’ an isolated molecule is used, containing the defect 

and reproducing the local environment of the host crystal (Simonetta, 1986; 

Colbourn and Mackrodt, 1984; Shangda et. al., 1989).

Although widespread, the method suffers from the obvious implicit 

shortcomings of the model: the crystal field is not correctly reproduced and the 

periodic nature of the host lattice is not included in the model; surface states 

associated with dangling bonds introduce unphysical features that can be only 

partially corrected by terminating the cluster with hydrogen atoms (Surratt and 

Goddard, 1978; Kenton and Ribarsky, 1981). The convergence with cluster size 

is usually very slow, and depends not only on the size but also on the shape of 

the cluster adopted.
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In ionic crystals the problems associated with dangling bonds are less 

important, and the electrostatic field generated by the rest of the crystal can be 

simulated by surrounding the cluster with a lattice of point ions that generate the 

correct Madelung field (Almlof and Wahlgren, 1973). A similar method has been 

applied, for example, to the study of defects in MgO (Grimes at al., 1989). A 

different approach is adopted by Barandiaran and Seijo (1988). Their formulation 

considers the solution for a cluster taking into account its interactions with a 

"frozen11 crystalline environment within the lattice model potential approximation 

(Bonifacic and Huzinaga, 1974), so that the multi-electron wavefunction o f the 

whole system can be factorized in the product o f the cluster wave-function 

multiplied by the wave-functions of the external closed-shell ions.

A further improvement of the cluster method is the inclusion o f the 

polarizability of the outer medium, by interfacing the QM cluster with the Mott- 

Littleton methodology. A successful example of this approach is the ICECAP 

code (Vail et al., 1984; Harding et al. 1985), where the HF equations are solved 

for a molecular cluster embedded in a crystalline lattice o f point ions, whose 

positions are allowed to relax around the defect. The response of the lattice 

outside the cluster is calculated using the Mott-Littleton theory, including ion 

polarization effects described by the shell model. A self-consistent process 

guarantees that the matching of the quantum cluster with the outer region is 

correctly performed. The localizing potential developed by Kunz and Klein 

(1987) is adopted in order to avoid the spreading of the N-electron cluster wave­

function intb the outer lattice (Vail, 1990). Such spreading is undesirable, since 

there are no electrons in the sites outside the cluster, that are not treated quantum 

mechanically. ICECAP has been used to characterize electronic defects and 

impurities in alkali halides and MgO (Vail, 1990), (Shluger et al., 1991).

As an alternative to the cluster approach, periodic boundary conditions can be 

imposed, to create a “superlattice”: each unit cell contains the defect, and it is large

6 5



enough to minimize the interaction between neighbouring defects. This technique 

is very effective when the perturbation generated by the defect is small and 

localized as, for instance, in the case of chemisorbed molecules on a surface. A 

recent study of impurities in silicon ( Nichols et al, 1989) has shown that even 

more complicated defects can be accurately treated. This method is less adequate 

for treating defects that induce long range relaxation processes and charged 

defects that generate long-range Coulombic fields; it has been suggested that a 

compensating field corresponding to a uniform charge distribution can be 

superimposed in order to make charged states treatable by the supercell approach 

(Bar-Yam and Joannopoulos, 1984).

An alternative is to employ again a partitioned scheme, by dividing the crystal 

in two regions, both described quantum-mechanically. The problem is then 

reduced to two simpler ones: the solution for the periodic, defect-free, infinite 

host lattice and the description of the finite region surrounding and containing the 

defect. The aim of these ‘embedding’ techniques is to obtain the correct solution 

for the cluster region, including all the interactions with the host lattice (short 

range exchange and Coulomb interactions, Madelung field, polarization effects 

etc.).

A first route to the solution of this problem is the Koster-Slater technique 

(Koster and Slater, 1954; Baraff and Schluter, 1984), that may be classified as a 

“perturbed host system” (PHS) embedding scheme; the Green function in the 

defect region is evaluated in the framework of the perturbation theory, taking as a 

reference the host crystal Green function, after assuming that the Hamiltonian 

matrix remains unchanged outside a localized defect region. As an alternative, a 

“perturbed cluster” (PC) scheme can be used: in this case the starting point is the 

solution for a molecular cluster, to which corrections are applied in order to 

remove boundary and limited size effects and ensuring the correct matching with 

the surrounding perfect crystal.
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An essential prerequisite for the application of both the PHS and PC 

techniques, is the availability of the solution for the perfect host crystal, obtained 

with the same Hamiltonian and the same computational techniques (basis set, 

numerical accuracy etc.) as employed for the defect region.

The following discussion will first show and discuss the PHS and the PC 

embedding equations. We also comment on an alternative scheme proposed by 

Inglesfield. In section 4.4, we shall concentrate on the latest formulation of the 

PC equations, that will be employed in this work; the solution for the perfect host 

crystal will be provided by CRYSTAL, as discussed in Chapter 3.
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4.3 METHODS OF EMBEDDING

4.3.1 Notation

We wish to introduce a formalism that can be used in the rest o f the 

discussion. Such a formalism must employ a synthetic notation, general enough 

to be used to discuss different theoretical methods. The problem of adopting a 

general and yet unambiguous language is indeed not trivial and has been 

considered, for example, by Ballantine and Kolar (1986) who proposed a very 

elegant notation that should enable the matrix relations to be written in an 

unambiguous way. Here we will use, for consistency, the conventions that have 

been adopted in a number o f recent papers (for example Pisani et. al., 1990). 

Special care is necessary when one refers to semi-classical simulation techniques 

(i.e. CASCADE), where the similar sub-division in”zones” corresponds, in fact, 

to different concepts and assumptions; for example, semi-classical methods define 

a “region” in terms of the number of atoms within a sphere of a given radius, 

centred on a chosen origin. A quantum mechanical method will rather use the 

concept of probability functions that decay more or less rapidly with the distance 

from the origin; the actual extension of the “cluster”, e.g. the spatial region where 

an electron associated with an atom included in the “perturbed” region can be 

found, will go beyond the actual position of the border atoms in the inner region.

The defective system is described by a non-orthogonal set {%) of real, local 

functions that are expressed as a linear combination o f GTOs centred at the 

nuclear positions. Three different and complementary sub-sets can be defined, so 

that (x) = {a }  U {P} U {5} .
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{a }  is the subset that describes the proper defective region A, e.g. impurity 

atoms that are introduced or perfect crystal atoms that are displaced from their 

original position;

{p} is the subset used to describe a finite “border” region B, that surrounds 

A, including perfect crystal atoms that are not displaced but that are assumed to be 

perturbed by the defect;

{8} describes all the other atoms of the host, perfect and infinite lattice (region

D).

The subset {y} = {a}U {p} defines a cluster region C; this corresponds to the 

hypothesis that the effects of the perturbation are essentially confined in the 

cluster region. As we will see below, some methods allow us to take in account, 

at least in part, perturbation effects in the outer region D.

We can also analogously define, for the perfect lattice, a set

{%}• = {oc(} U (P) U {5}

where (a '}  is the subset that describes the perfect crystal atoms that are 

removed to be substituted (in the case of an impurity or of a lattice vacancy) or 

displaced from their original positions (in the case of lattice relaxation). A subset 

(Y) -  (cc’} U (p) defines the cluster region C , that contains only unperturbed 

atoms.

This notation allows a partitioned matrix formalism to be used. For example 

Tcd is the CD block of the matrix T, and comprises elements y8 with y in C and 8

in D.

A superscript “f  * (free) will identify a matrix that refers to the host
r

unperturbed crystal; for instance HDD and HDD are the DD blocks o f the
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Hamiltonian matrix before and after the defect is created, respectively. S will 

indicate the overlap matrix ( Sap= <alp> ) and G(z) the Green matrix, defined as

the inverse of Q(z) = (zS - H), where z is an energy point that lies in the complex 

plane with nonzero imaginary part, and therefore not coinciding with any of the 

energy eigenvalues either of the perfect or of the defective crystal.

4.3.2 Expressions for the embedding equations

4.3.2.1 Perturbed Host Crystal (PHS)

For simplicity we adopt the same basis set for C and C , as the equations 

become considerably more complicated in the general case, as discussed by Pisani 

et al. (1983)

The Hamiltonian matrix for the defective system can be written as:

H = H f + V  (4.3.1)

where V is a matrix that contains the information relative to the perturbing 

field generated in C by the defect, that we assume to be zero outside C:

V = H - H f = Q f - Q  (4.3.2)

and, in a partitioned form:

V = Vcc Ocd 
. Odc Odd (4.3.3)

Due to the structure of V, the Dyson’s equation becomes:
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GCC ~ G c c  + G c c  v c c  Gc c  

so that G c c = [ Ic c  - G CCVCC ] Gc c

(4.3.4)

(4.3.5)

After having introduced a multiplicative corrective operator 

Jc  (z) = [ ^ c c " ^CC G CC ^  ^

we have:

GCC “ JCC GCC (4.3.6)

In this form of the Koster and Slater (1954) equation, Iqq is an operator that 

restores the correct Green function when it is applied to the solution for the host
f

crystal projected onto the cluster region G c .

4.3.2.2 Perturbed Cluster (PC)

The H matrix can be written in a form that makes explicit the partition between 

the cluster region and the correction introduced in order to couple C to the 

indented lattice:

h =  r H c c  0 c d  i  +  r  ° c c h c d  i
L Odc 0d d  J L h D C h DD J (4.3.7)

where HCd =HDc
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Note that we are not assuming here that " 't y

In this case we describe the perturbation in terms of the interaction between 

the isolated cluster containing the defect, described by Hc c , and the indented

system.

From the identity Q(z) G(z) = G(z) Q(z) = I, we have:

^DC^CC = ' GDdQdC (4.3.8)

Q cc GCC = ĈC ' ^CDGDC (4.3.9)

We can also define, for a general complex z value, the finite cluster Green 

matrix:

2 Cc = t (2cc(z> l'1 <4-3-10)

that is calculated after solving the molecular problem for the cluster 

^CC -^CC = ^CC^CC^CC (4.3.11)

where Fc c  is the submatrix of the Fock matrix corresponding to the defective

crystal (so that it includes already the correct crystalline field acting on the 

cluster).

Multiplying (4.3.8) and (4.3.9) by£jc c  we obtain:

GDC = '  G DD QdC ^C C  (4.3.12)

G CC = ^CC '  GCC^CDG DC = ^C C  “ ^CC ^CD  g d d  g d c  ^ c c  =

^CC G ■ QcdGDdQdc Gc c ) = Gc c  Jc c ’ (4.3.13)

7 2



where Jc c ' -  ( 1 - Qcd^DD^DC ^ cc ^ (4.3.14)

4.3.2.3 The Inglesfield method

An alternative approach was proposed by Inglesfield (1981), who proposed a 

method of performing embedding calculations in real space. The inner region (I), 

where the Schroendiger equation is solved, is separated from the outer region (II) 

by a surface S. If G0E is a Green function satisfying:

[-1/2 V2 + V(r) - E ] Goe (r,r') = 53 (r-r') (4.3.15)

with r and r’ in n.

It is possible to define an embedding potential ZE by:

Ee (r-r1) = G0‘e + 1/2 J d2 rs (r-rs) 0 /3 n s) GOE (rs,r') (4.3.16)
s

where Gq£ is the inverse of G0 e calculated over the surface S:

J d2 rs G0‘e (r-rs) GQE (rs,r’) = 82 (r-r') (4.3.17)
s

with r and r' on S; (3/3ns) represents the normal derivative at S in the 

direction outwards from region I into region II. XE does not depend explicitly on 

the Hamiltonian thoughout region I, but only on the properties o f GqE at the 

surface.

This embedding potential has the properties that the normal derivative at the 

surface S o f any function \|/ satisfying the Schroendiger equation in region II 

with eigenvalue E, is given in terms of the values of \jr on S by the integral:
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a\|//3ns(rs) = 2 J d2rs’ XE (r rs') \|/(rs’) 
S

(4.3.18)

with rs on S.

This may also be regarded as a boundary condition to be satisfied on S by 

solutions of the Schroendiger equation in the full space I+II, to ensure that the 

values and normal derivatives of the wavefunction are continuous at the surface. 

Such constraints can be incorporated automatically by including the embedding 

potential and a normal derivative term in the Schroendiger equation for region I 

alone, which becomes:

with r in I or on S .

The advantage of this method is that the inverse of the Green function is 

required only on the surface S and not throughout region I.

= E y (r s) (4.3.19)
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4.4 THE PC APPROACH AND THE “EMBED” PROGRAM

In the following sub-sections we will discuss an ab-initio HF PC embedding 

scheme and its practical implementation in the form of a FORTRAN computer 

code.

4.4.1 Derivation of the PC equations used in “EMBED”

The PC equations obtained in the previous section are:

(where e^are the cluster pseudo-eigenvalues, and v^j the corresponding 

eigenvectors, obtained by diagonalizing the FCC block of the Fock matrix) and 

the identity:

g d c  ~ '  g d d  Q dc  ^ c c (4.4.20)

(4.4.21)

Using the explicit expression for the general element G ,v o f Qqq ‘

£^v (z) = I j  v^j* /  (z-Cj) (4.4.22)

Q(z) = zS - F = Q(e) + (z-e) S (4.4.23)

we can make explicit the dependence of Gc c  and GCD on z:



GCD (z) = "^j Aj GDD (z) I (z"Sj) - b c dd (z) (4.4.24)

Gc c  (z) = S . { RC(J + [ AJ Gdd  ( z )  AJ] /  (z-fij) +

+ AJ Gdd ( z )  TJ +TJ Gdd ( z )  AJ} /  (z-fij) +BJ GDD (z) g i

(4.4.25)

Where some auxiliary matrices have been defined:

(4.4.26)

(4.4.27)

(4.4.28)

Equations (4.4.24) and (4.4.25) are defined only in terms of the perfect 

crystal Green matrix GDD and of the auxiliary matrices defined above.

For a given real energy value E, not coinciding with any o f the isolated 

impurity levels of the defective crystal, these equations allow us to calculate the 

corresponding integrated density of states (IDOS) N^D (E) and N^^(E). The

general relationship can be used:

where y  is a path in the complex plane that encloses all poles and analytical

cuts of G(z) with energy e < E. The integral is solved as discussed in Appendix 

B. If E coincides with the Fermi level (Ep), the equation (4.4.29) yields the

density matrix:

N(E) = -1/ (i7t) J dzG(z) (4.4.29)

^CD “  "2 jAJ ^D D  fej) ' BPDD (4.4.30)

Pc c  = Zj [0(e-E F) Rc c i + AJ Mdd (£j) AJ + AJ M’DD(ej) + 

Tj MDD(ej)AJ] +BjMDD(ej)Bj
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Where M and M’ are energy dependent complex matrices for which both 

indices belong to the outer region D that depend on the density of states in the 

outer region D (see equation B4 and B5):

rEp
m dd <e) = ®(e-%) J _ de pDD(e) /  (e-e) - 0(EFe)J de pDD(e) /  (e-e)

00

(4.4.32)

M dd ^  = d 13e (4.4.33)

The integral that appears in (4.4.32) is discussed in Appendix C.

Equations (4.430) and (4.4.31) are exact.. They include all the interactions 

between the defective region and the indented system, including polarization of 

the medium, charge transfer between C and D and long range Coulomb effects.

Their solution requires some approximation to be introduced, in order to 

reduce the problem to one of finite dimensions (at present no assumption has been 

made on the block DD of the density matrix, density o f states etc.). For this 

purpose, we shall take advantage of the fact that the projected DOSs in the D 

region (indented crystal) are likely to be only marginally affected by the presence 

of the defect: this assumption is asymptotically exact in the limit of an increasingly 

large cluster C and satisfies our initial intention of studying defects whose 

perturbation is localized.

Thus the key assumption o f our method is that we can substitute in equations 

(4.4.32), (4.4.33) pDD (e) with the corresponding quantity fo r  the unperturbed 

host crystal pfDD (e).

The latter is calculated by CRYSTAL. Thus:
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PDD " pfDD 

^DD = ^ D D

(4.4.34)

(4.4.35)

These are the only approximations that are adopted in the present scheme. 

Their substitution in equations (4.4.30) and (4.4.31) gives the PCD and PCC

blocks of the density matrix:

COUP CONST
PCD = -Zj AJ M f (£j) - BP f = P CD + P  CD (4.4.36)

PCC = t©(e-Ep) RCCJ + AJ M f (£j) AJ + AJ Ti +

f  .  CLUST COUP CONST
= TJM f(ej)A J]+B JM f (ej)gJ = P  c c  + P CC + P  CC

(4.4.37)

C LU ST
In equation (4.4.37) we note first the term P c c  , that corresponds to 

filling all cluster eigenvalues up to the Fermi energy. This term must be corrected 

to include the interactions with the indented crystal (i.e. to “embed” the cluster).
CONST

The term P c c  gives account of the effects of the non-orthogonality between 

AOs belonging to the C and D set, and is zero in the case of orthogonal sets; it is
COUP

not redefined during the SCF procedure. The other corrective term, P c c  , 

depends on the position of the cluster eigenvalues with respect to the manifold of 

the host crystal one-electron eigenvalues, and realizes the “chemical” coupling 

between C and D. In this form, the "perturbed cluster" character of the scheme is 

fully evident.

Since the P matrix of the defective crystal is now completely defined by 

equations (4.4.36), (4.4.37), we can calculate the Fock matrix blocks FCC and 

PCD» hence obtain e^ Rc c  AJ, TJ and, then, the new Pc c  and PCD matrices
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and repeat the calculation up to self-consistency. The procedure is discussed in 

the following subsection.

4.4.2 Implementation of the PC equations used in “EMBED”

The important issues in implementing our approach are as follows:

4.4.2.1 The general structure of the matrices

Three types of matrices appear in the embedding equations: first, matrices that 

contain information about the perfect host lattice (i.e. M and M*). The generic 

element of this matrices will have both the indexes in the D region, so that we will 

refer to them as (D.D) matrices. They show the full translational symmetry of the 

periodic lattice. Accordingly, a generic atomic orbital is identified by its position 

in the primitive cell and by the translational g vector associated with the cell to 

which it belongs. For simplicity let us consider an ideal lattice with only one 

atomic orbital per unit cell. The generic matrix element M^y, with the AO Ji

belonging to a cell identified by a translational vector s and v to a cell identified 

by a vector t will be the same, for all pairs of cells identified by the same (t-s). 

This consideration reduces the range of these matrices, although they remain, in 

principle, infinite: if the first index is an atomic orbital v in the primitive cell 

(g=0), then an infinite number of elements My^ is defined, where fi are all the 

other AOs in the crystal.

Truncation criteria must then be adopted, following the criteria discussed in 

section 3.2.2. If the overlap between the two adjoined Gaussians (see 3.2.1) 

corresponding to fi and v , is below a given threshold, then the matrix element 

is neglected. In this way the matrices (D.D) are reduced to a finite number of 

elements.
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Next we consider matrices containing purely “cluster” information, e.g. the 

cluster Fock matrix F^^. Their dimensions are * N^, where Nq is the

number of atomic orbitals in the C region. Therefore these matrices have finite 

dimensions as, by definition, C is a finite, well localized region and there are no 

problems with their manipulation.

Thirdly, we have the matrices that contain information about the interaction 

between the cluster and the indented host crystal. For example the density matrix 

has elements P^y with |i in C and v in D.These matrices are, in principle,

infinite, since the number of atomic orbitals in D is infinite. Therefore we must 

define a sub-ensemble of D that defines a finite set of AOs in the outer region that 

interact with at least one of the AOs in C. This can be done by adopting a criteria 

based on the overlap of adjoined Gaussians (as was discussed in Chapter 3), to
•ft

define which AOs in D interact with the inner region. An “active” region D 

containing ND* AOs is so defined, and the total, finite dimension of the density 

matrix is (Nc  * (NC+ND*)). We will sometimes refer to the complementary, non­

active, region as to D", so that [ D‘ (J D* s  D].

We note the different levels of approximation that have been introduced: first 

formally exact expressions have been derived, using a concise mathematical 

formalism (equations 4.4.30 and 4.4.31). Then the (4.4.34) and (4.4.35) have 

been assumed to be correct, in the limit o f a localized perturbation. This 

approximation corresponds to using a simplified physical model to reduce the 

complexity of the problem. It is qualitatively similar to the assumption that the 

electrons move in the average field generated by the nuclei, or that relativistic 

effects can be neglected. It expresses the necessity of an interpretative formal 

model (by necessity approximate) to describe the underlying “reality”.

The further approximations introduced in this subsection are of a different 

nature: they are not directly due to the physical model we have adopted, but rather 

to the way we have chosen to test (or, according to Popper, to invalidate) the 

model itself. The implementation of the theory into a computer code requires the
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theory itself to be re-formulated in a different language, whose structures (or 

rather their rigidity) can and will reduce the generality of the formulation.

4.4.2.2 The Fock matrix of the defective crystal

In calculating the Fock matrix blocks FCC and f CD that enter directly or 

indirectly into equations (4.4.30) and (4.4.31), one must be sure that the 

approximations adopted, e.g. the truncation criteria, are as similar as possible to 

those used in the solution of the perfect host crystal problem. This is an essential 

prerequisite for the PC equations to provide the correct result PCD = Pq )  , Pc c  

= Pcfc  , in the limiting case where the defective crystal coincides in fact with the 

perfect crystal (self-substitution case: see below). The expression of the Fock 

matrix adopted in CRYSTAL was discussed in section 3.2.2. In this section we 

will adopt the same notation, with the difference that matrix elements will be 

identified by Greek letters (e.g. F ^  rather than by the notation used in Chapter 3 

(F12)) in order to note the fact that, in the matrices that refer to the defective solid, 

the translational symmetry is lost; reference will usually be made to the “region” 

an AO belongs to, and not to the translational g vector associated with it

Because of the truncation conditions listed above, terms or F ^  are

different from zero only for p. belonging to C or to the finite subset D* of the 

indented crystal. We can distinguish a constant part of the F matrix, F°ons\  that 

remains unchanged during the self-consistency cycle, and a variable part, Fvar, 

that does not. F001181 comprises not only kinetic and nuclear attraction terms, but 

also those P-dependent (exchange or Coulomb) terms, where the P terms have 

indices that refer both to the D set.

We may write:

F = F00™* + Fvar (4.4.38)

where:



const _  _  _  „  sr r , .
F yji “ Typ. + ji + ^  a,Tg C ^ax  ̂  ̂^ l 01 M +

_ ,Mad sr _ f  r , , *-,+ V ^  - X a>Tg c  PaT[ 1/2 ( ya|fi.T)] (4.4.39)

FZ = S  O.t (ccrxe C) Pi  [ (̂ |Sx)' 1/2 W ^ x) 1 (4 '4 '40>

In (4.4.39) V ^ d is the term that corresponds to the long range Coulomb

interactions, described by a Madelung potential and the sums Xs1 are limited to 

terms belonging to “short-range” nuclear or electronic distributions, selected in a 

way analogous to that discussed in 3.3.2 with reference to the treatment of the 

Coulomb terms in CRYSTAL.

4.4.2.3 Defect formation energy

To calculate the formation energy of the defect, AE, we consider the formal 

reaction:

Perfect Crystal + [Inserted atoms] >

 >  Defective Crystal + [Displaced atoms] + AE (4.4.41)

Some of the terms in square brackets may be absent. For instance, in the case 

of a vacancy, there are no "inserted atoms", nor are there "displaced atoms" in the 

case of an interstitial impurity. We can now write:

AE = AECIY + AE at (4.4.42)
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a e  cry = e  Perfcry - e  defcry (4.4.43)

'(inserted atoms) '(displaced atoms) (4.4.44)

AE ^  and AE at are total energies, that refer to all the crystal. In order to 

obtain a manageable expression for AE cry, we first write formally the expression 

for E dcfcry (and a corresponding one for E P^cry).

where ErePnu is the Coulomb repulsion between nuclei. We next note that in 

the two expressions, the overwhelming majority o f terms coincide if account is 

taken of equation (4.4.34) and if it is assumed that FVJi=Fv̂ when both v  and 11

belong to D. We shall therefore consider in the following finite pseudo-HF- 

energies E’defcry and E’Perfcry , which contain only those terms that do not 

coincide in the two expressions. The difference

AEcry = E’P f̂cry - E’defcry (4.4.46)

gives the required value provided that exactly the same approximations 

(host-crystal basis set, definition of the indented crystal, truncation criteria, etc.) 

are adopted in the two calculations, the first one referring to the defective system, 

the second one to the perfect, but pseudo-defective crystal.

We can distinguish in E’ a kinetic (T), an exchange (E'ex), and a Coulomb 

contribution (E'c); the latter includes all electron-electron, electron-nuclei, and 

nuclei-nuclei interactions, except those that remain unchanged on formation of the 

defect. The short range kinetic and exchange contributions are expressed rather 

straightforwardly by excluding all negligible terms or those associated with P^v

factors where both \i and v belong to D. Care must be taken that the correct

E * * *  = 1/2 Z vu PV(1(TV(1 + + Fvfl) + Erepnu (4.4.45)

8 3



weighting factor is associated with each term, corresponding to the number of 

times it appears in equation (4.4.46):

T’ = X c  [ X c  + X D* ] P„VT„V (4.4.47)
Y p  p  ^  ^

E'ex = -1/2 X c  [ 1/2 X c  + 2 X C X D* + 2X°* X C + XC I  D +

2X d*pax ] p.
pax pa

p ~ Q y r |/* r )
pa p  x a

Y p a x (4.4.48)

The expression for the Coulomb contribution requires more attention, because 

interactions to infinity are involved, and because one must account explicitly for 

the fact that the nuclei in the defective A region are generally different in number, 

position, and charge with respect to the unperturbed host crystal. We have:

E'c = xJ[(l/2XxA< Dsr) ^ l  + Z5lvV ] +
x x R u *

Cr  C C D *  D* C C D*  D*t+ x:[ X (1/2Z +X )+2X X +(Z +2X )X lP mPOT (7iil<TT)+
* p a  x x p a x  p  p  OT ^

+ ^  [x ^  + 2 X p  Pw  (Xs;  Z *  + M ^ ) (4.4.49)

Here V^M is the Madelung potential due to the long range Coulomb 

interactions at the location of the nuclear charge Z .̂

By comparing equation (4.4.46) with equations (4.4.47, 4.4.48, 4.4.49) we 

have:

F  = E'j + F 2 (4.4.50)

with:
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(4.4.51)

E ’2 =  I c  [  1/ 2 1 °  +  2 Z  °  Z D * +  2 I D * I c  ]  [ ( v u la x )  -
L Y *iax p a  x p a  x J  W- ° x L

1/2 ( y c j |h t ) ]  + ! * [ (  1/ 2 E * .  + X ® D Sr) +  Z XV XM  ]  (4 .4 .5 2 )

An additional term should be added to the former expressions when the 

cluster is not neutral. If Qnet is the residual charge in the cluster, that is the 

difference between total (electron+nuclear) charges in the defective and in the 

perfect crystal, then the contribution to the energy will have the form:

where Vave is the average potential inside the host crystal. This quantity may 

be fixed arbitrarily, as long as one deals with neutral structures. If we assume the 

overall neutrality of the defective structure, then this term should be compensated 

by a term of opposite sign that comes from the rest of the crystal. The quantity 

-EP°l will therefore be added to the (4.4.46).

An estimate of the correlation correction to be applied to these expressions 

can be obtained a posteriori by using, for instance, the semi-local Colle and 

Salvetti functional (1975,1979,1984), which depends only on the calculated HF 

charge density. Obviously, also in this case we would have to calculate a 

‘‘difference” correlation energy:

£pot _  Qnet yave (4.4.53)

'corr (4.4.54)

8 5



4.4.2.4 Computational scheme

A general purpose computer program, named "EMBED", has been developed 

which performs the calculations just described, using as an input the results 

obtained for the perfect host crystal from the CRYSTAL program. Written in 

standard FORTRAN, it is about 15000 instructions long, and it has been 

succesfully implemented on a range of different machines (IBM3090, CRAY- 

XMP, CONVEX). Its general scheme is as follows:

INITIAL STAGE

1) Read the following items produced by the CRYSTAL code, and 

characterizing the host crystal: geometry; basis set; point symmetry operators; 

Fermi level Ef; Pf matrix; DOS expansion coefficients.

2) Read from input the characteristics of the defective region: geometry and 

basis set of atoms in the A region, C cluster size, computational parameters .

3) Recognize the symmetry subgroup of the defective system; calculate all 

integrals that are needed; set up the information needed for rapid identification o f 

neighborhood relationships; calculate F001151 and Pconst, SCC>CD

4) Prepare the initial guess for the density matrix P° or read from disk a P' 

initial guess

SELF-CONSISTENT STAGE

5) Calculate FCC>CD , diagonalize F and calculate Pciust»Sc c

6) Calculate the AJ, T-i, M,M’ matrices for all cluster levels ej, hence the 

pcoup ^c c  CDmatrices and E' .

7) If convergence in the P matrix is not reached, restart from step (5).
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4.4.3 Comments on the approximations Mid limitations of the 

method

4.4.3.1 The‘‘charge problem”

The present embedding scheme differs from molecular or supercell 

calculations since the number of electrons in the cluster is not fixed, but depends 

on the nature of the defect.

We define the cluster net charge as:

(4.4.55)

where C  indicates the cluster region before the introduction of the defect and 

Za and Z|j indicate nuclear charges of atoms in the C and C  zone, respectively.

From this definition it is clear that the actual ‘cluster*, intended as the entity 

whose charge distribution can be perturbed by the defect, is formed by the AOs in 

C and in D*. We also note that AQC can assume non-integral values. In a neutral 

defect (for example, in the case of an iso-valent substitution, as Na substituting Li 

in LiF), AQC must be zero. In principle, if  more than one charge state is 

physically possible, we can fix the cluster charge by varying the position of the 

Fermi energy (Ef), at least in solids with a finite gap. In order to clarify this

point, let us consider first the case where there are no defects in the crystal, and 

therefore the PC equations are exact. When solving the "molecular" equation 

(4.3.10) for the cluster, a certain number of pseudo-eigenvalues ej may show up

in the gap, associated with dangling-bond states. The cluster density matrix
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PCc clust then depend on Ef that is, on how many dangling-bond states are 

filled. However, the term P ccC0up realizes in all cases the proper correction so as 

to restore the correct result Pc c  = P c c / » by reducing the population of fully 

occupied dangling-bond states, and increasing that of virtual ones. Consider now 

the case of a system with a defect: some of the pseudo-eigenvalues inside the gap 

could be associated with localized defect states. Suppose that there is one such 

state with eigenvalue e', and that the cluster is big enough to ensure that the state

is well contained within C. Different situations can now arise according to the 

position of Ef with respect to e', that is, if the defect state is unoccupied, or singly

or doubly occupied. In practice, we seldom have such favorable, extreme 

conditions. Due to limited cluster size, defect states and dangling-bond states will 

mix up in the cluster solution. The total net charge in the local region will vary by 

fractional quantities according to the position of Ef with respect to the various ej

values in the gap. One must also consider the fact that pseudo-eigenvalues and - 

eigenvectors are changing during the SCF procedure. The value of the Fermi 

energy should therefore be adjusted self-consistently, according to the physical 

situation under investigation. This procedure would be very costly and has not 

been operatively implemented in the code. With reference to a Li vacancy in LiF, 

we would expect, if the Fermi energy was in the middle of the gap, the cluster 

charge to be -1; by shifting the Fermi energy near the top valence bands we can 

depopulate fluorine 2p states, and delocalize an electron vacancy on the fluorine 

nearest neighbours of the Li vacancy: in this case the cluster charge will become 

zero. In a true, physical description of the system only these two charge states are 

meaningful.

In fact, intermediate charge states almost always arise. In particular, two 

main problems can be identified:
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a) when neutral defects are studied (or in auto-embedding calculations), there 

are often a small, but appreciable, residual charges in the cluster, mainly due to 

numerical inaccuracies

b) in the case of charged defects an integral cluster charge is never reached. If 

the Fermi level is left in the middle of the gap in the case of the Li vacancy in LiF, 

we observe a partial depopulation of the nearest neighbour oxygens, and AQC 

assumes a value -0.2 < AQC < -0.5.

Why do fractional charge states arise, and why does it seem impossible to 

reach an integer cluster charge? The root of the problems apparently lies in the 

contrast between the finite/infinite nature of the cluster/host system, to which the 

finite perturbation is superimposed and by the method we use to treat this 

perturbation.

We can identify the following factors, of which the first two are numerical, 

but the third is a true physical effect:

1) the long range polarization of the medium is not correctly accounted for: 

only a finite number of AOs in the outer region (those included in D ) can 

polarize, and therefore generate a dielectric response acting on the cluster. The 

absence of a correct description of this effect leads not only to an incorrect 

estimation of the defect formation energy, but can result in a destabilization of a 

charged defect because of the absence of the stabilizing polarization energy; this, 

in turn, produces a cumulative error during the self-consistent procedure.

2) The number of AOs in D* that can be affected by charge transfer effects is, 

on the other hand, large: small modification of the charge distribution in D* , due 

for instance to numerical inaccuracies, may amount to a finite effect on the cluster 

charge. Also by increasing the cluster size, even small changes in charge on the 

atoms in region B can result in a non-negligible net charge in C, because of the 

number of equivalent atoms in the cluster.
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3) Anions in the neighbourhood of a charged defect can polarize considerably 

and their valence electrons displace inwards or outwards, according to the defect 

charge. These effects will be noted in Chapter 6, with reference to the formation 

of a bound Schottky pair in LiF. Very large clusters are not treatable, because of 

the computational cost; if these displacements arise near the cluster boundary, the 

response of the neighbours in region D may not be completely taken in account by 

the Mulliken partition scheme used in (4.4.55), with the result for instance in the 

failure to count correctly the electron charge associated with the cross terms C-D. 

It can also be argued that the basis sets used to describe the valence electrons of 

these anions might be not adequate and, as a result, overestimate the 

displacement of the electron density.

It must be noted that it is not possible to renormalize the PC(~. and PCD blocks 

of the density matrix, by multiplying them by an appropriate constant. By doing 

that we would multiply by the same amount both valence and core states, and the 

result would be completely unphysical results.

It appears that the PC equations discussed above are not suitable, in the 

present formulation, for the study of charged defects; in section 4.5 we present a 

technique that improves the treatment of the polarization o f the medium. The 

problem of the formal charge of the cluster and of how far the charge associated 

to the defect can spread remains very much an open question.

4.4.3.2 The self-substitution test

An important test of the correctness of the computational scheme is the so- 

called self-substitution test. It corresponds to defining a C cluster and a proper 

defective region A exactly as in the case of a real defect, but with all atoms in A 

coinciding in species, geometry, and basis set with those of A*. Such a 

calculation is necessary in any case for defining the reference energy EP61̂ 1̂  [see
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equation (4.4.46)]. Pc c  CD should in fact coincide at self-consistency with 
f

P c c  cd ’ depend en t ° f  C cluster size, because equations (4.4.36, 4.4.37)

are exact in the self-substitution case. However, such a result is not as trivial as 

might appear at first sight. Those equations involve a large number of calculations 

(and associated numerical approximations) which are completely different from 

those employed in the solution of the host crystal problem, based on the 

systematic use of Bloch theorem. For instance, an accurate description of the 

projected DOSs of the host crystal is here a necessary intermediate step, while it is 

immaterial in the crystalline calculation, at least when insulators are considered 

(Pisani et al, 1988).

Moreover we would like to be able to reproduce the correct cluster geometry if 

the cluster geometry is optimized with respect to the total energy: if  one starts 

from an optimized crystalline geometry, all nuclear displacements within C should 

lead to an increase in energy. If, however, such displacements take place near the 

cluster boundary, the effects associated with changes in the overlap matrix, and 

discussed in Appendix. D, may lead to a different geomety, unless corrective 

terms are introduced.

4.4.3.3 Self-consistency instabilities

In order to stabilize the SCF process the standard procedure of mixing the F 

matrix calculated at the n-th cycle with the one evaluated at the (n-l)th cycle is 

systematically used. If the mixing is high (standard values are 80-95%), this 

procedure corresponds to averaging over a large number of cycles, quenching 

oscillations but also slowing down the procedure. The origin of these instabilities 

can be traced back to some well known problems. First of all we note that there is 

no response of the outer system to local variations in the density matrix, so that 

“pathological” solutions may always build up. Moreover, especially with big
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clusters, the redistribution of charge within the cluster can encounter the presence 

of multiple minima, e.g. several slightly different electronic configurations.

The summation over the j cluster eigenvalues that appears in equation 

(4.4.36,4.4.37) is performed, in fact, over sets of quasi-degenerate eigenvalues, 

e.g. eigenvalues that differ less than a given threshold. This produces an 

important reduction in CPU time and prevents quasi-singularities associated with 

the (ej-em) denominators. If the grouping scheme changes during the SCF, e.g. if

some eigenvalues that were grouped in a pseudo-degenerate set split, the charge 

distribution in the cluster can change suddenly and catastrophic oscillations be 

introduced in the convergency process.

In starting the SCF process we usually use a P° density matrix that 

corresponds to using the isolated ion solution for the species in A and the perfect 

crystal submatrix for the blocks BB and BD. The blocks AB and AD are set to 

zero. If, however, a converged P' matrix is available, that describes a defective 

system similar to the one of interest (i.e. a slightly different geometries), it is 

convenient to adopt it as starting point to start the convergence process. This 

procedure is usually followed when, for instance, we optimize the cluster 

geometry.
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4.5 DIELECTRIC RESPONSE OF THE MEDIUM AND THE

TREATMENT OF CHARGED DEFECTS.

We will now consider how the long-range polarization effects, generated by a 

charged defect, can be described in our embedding method by means of a 

simplified, classical model. We aim to describe how the ions in the region D 

polarize and displace; this result will allow us to calculate how the field generated 

by region D in the cluster changes, as a result of the displacements in D with 

respect to the perfect crystal positions. A new contribution to the formation 

energy, due to the polarization of the outer medium, will also be calculated.

The development of the theory and of a new computer code, 'EMBRYON1, 

that implements these improvements into the framework of the original program 

'EMBED', has been an important part of this research work and is presently 

being pursued in collaboration with M. Leslie and V.R. Saunders at the 

Daresbury Laboratory.

In the following section we shall describe the theory and how the program 

EMBED has been modified.

4.5.1 Description of the method and of the program

Following the partition into a C and a D region, as discussed in section 4.3.1,

we assume that all the polarization effects in D may be described by the Mott-

Littleton method. The atoms in D are treated as polarizable, displaceable entities.

Their equilibrium coordinates depend on their mutual interactions and on the 

electric field AV^ = ( V^, - V ^ f) acting on them, due to the
Pfredistribution of charge in C after creating the defect, (where V^, is the field

p
generated by the cluster prior to the introduction of the defect, and is the field
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generated by the defective cluster). The electron distribution in C is obtained by 

solving the perturbed cluster equations, as shown in section 4.3, but by adding to 

the Fock Hamiltonian a corrective term, FML that describes the effects of the

displacements in D on the cluster and that is calculated from the knowledge of the
P P Pf Pfdifference potential (and its derivatives) AVD = ( VD - V ), where V is the

generated by the outer region with all the atoms in the perfect crystal 
• • Ppositions, and VD is the field generated after the displacements have taken place). 

If the perturbation introduced by the defect were completely localized in C,
p

then AV^ would be zero and no displacements would occur in the outer region
p

D, so that AV^ would also be zero. This becomes true only in the limit of a very

large, neutrally charged cluster.

Let us consider a generic ion j in region D. The displacement of j, due to the 

defect in C, are defined as:

t = r . - R .  (4.5.1)
J J J

where i\ are the (x,y,z) coordinates of the relaxed positions and R. the 

coordinates of the perfect lattice positions. ^  can be calculated from:

5j = M. D3 /  (4.5.2)

where D j is the .electee generated by C in j (as defined

above) and M. is the 3x3 Mott-Littleton matrix:
J

M. = W'1 q. e"1 (4.5.3)
J j

in which W is the perfect lattice force constant matrix , E is the trace of the 

dielectric constant tensor and q̂  is the ion charge.
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p
To evaluate AVr (r.) in the point j of the outer region we need to calculate the 

J

potential and its derivative generated by the nuclei and the electrons in C, before 

and after introducing the defect.

The nuclear contribution is straightforward to calculate, being the problem 

reduced to the one of calculating the field generated by a finite set of point 

charges.
p

The electronic contribution er (r.) is given by the equation:

distribution {jiv} and m is the component of the multipole of order 1-th; the sum 

is over all the charge distributions that belong to C according to a Mulliken 

partition of charge

on a point r. that is the centre of a distribution (jiv), with |i in C and v in C or D.

Following the method outlined in section 4.2.1 we subdivide the outer region 

D in two sub-regions Dj and D^; Dj is the finite, innermost part of region D, and

Dn is the outermost part, that extends to infinity. We can then write:

(4.5.4)

where [ {JJ.V} I (lm); r.] is the field integral in r. corresponding to the

PfLet now consider how the displacements modify the potential V D acting

AVD (ri> = < VD <rP - V D <ri» =

(4.5.5)

p
AVj^ (r.) is calculated by explicitly summing over all the ions in

r — ■*— -— J— 1 L Ir.-r.l Ir.-R.l J 
1 J 1 J

(4.5.6)
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As regards region Dn, it is treated as a dielectric continuum, that interacts with

c ca point charge Q located at the origin (where Q is the cluster charge, as defined

in 4.4.55). The electric field generated by the cluster on a site j in region is

C R(Q — ), and the change in potential will be:
IR.Ij

J

^ I r  j e  DU Ir - r  I Ir -R I  L\ s  Dn  qj ,r  _R  ,3
J J J j

where r. is at (0,0,0), so that:

(4.5.7)

i v D „ -  < « • »
j

Using (4.5.2):

r  R.
t  = M = M .Q — (4. 5. 9)
j j J l j i R . r

j

so that the (4.5.8) becomes:

AVnP = - I .  g QC q r - - R | (4.5.10)
^11 j e  D II j IR J6

To obtain this term we perform a complete lattice sum over C,D and E, using 

the Ewald technique (as discussed in Appendix E) and then we explicitly subtract 

the sum over C and D.

The generic element of the corrective matrix that will be added to the Fock 

matrix is then given by:
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F X ' = S lm [ ( lm l^v)]AVD (ri’ lm) (4.5.11)

p
where we have explicited the components of A V p(r.): m is the m-th

component of the multipole of order 1-th due to the distribution (p.v), whose 

centre is in r..i

We can now calculate the contribution to the formation energy of the defect 

due to the displacement of ions in the outer region. Formally, this quantity is 

given by:

difference electric field generated by C and acting on them, Q is a vector

A E ^ L = - [Av£(r ) ]t -Q - x + 1 / 2 xT - W - x (4.5.12)

p
where x are the displacements of the ions in D, AVC the corresponding

containing the charges of the ions in D and W is the perfect lattice force constant

matrix

i j
(4.5.13)

in which U is the. field-free equilibrium lattice energy.

At equilibrium = 0, so that, by differentiating (4.5.12), we obtain:

- [Av£(r.)]T-Q + • ' x - W=0
^  J

(4.5.14)

That yields:

X = W ’''Q T^V p(r.)
J

(4.5.15)

We can now substitute this expression in the (4.5.12):
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being £ the dielectric tensor and D the electric displacement, with:

e = I+7^Q- W'-Q7 (4.5.18)
C

(where vc is the volume of the unit cell), it is possible to rewrite the (4.5.16):

AE^l  = -1/2 d V 1 [ ( e  - 1 ) -2-] e ''d  = 
u 4jc

y
= -1/2 -=• Dt [ e* (I - e'1)] D (4.5.19)

4 71

By making explicit the dependence of D on the point j (in D) where it is 

calculated, we have:

AE^L= -1/2 f -  I .  Dt . [ e’1 (I - e’1)] D. 
u  47t J J j

(4.5.20)

But: D. = QC —
J iR jl3

(4.5.21)

So that the (4.5.20) becomes:



a e ML= _1/2 Zsl 2 ; (Q C} 
u 4n J

c , 2 [ e -1 ( I - e ' 1)] 
} IR.I4

(4.5.22)

This is the expression for the polarization energy used in our procedure. To 

evaluate this term we perform a lattice sum by Ewald method and then we subtract 

the terms due to lattice ions in C. This contribution is added to the expression for 

the energy, as given by the (4.4.51) and (4.4.52). Another term, that corresponds 

to the interaction of nuclei in C with the polarization field, must be included. It 

has the form

the polarization field generated by the displacements in D calculated in the 

coordinate rN of the N-th nucleus.

This new scheme requires a number of modifications in the embedding 

equations discussed in section 4.4. In particular, since the modifications in the D 

regions are accounted for by the Mott-Littleton procedure, all the terms that appear 

in the Fock matrix (equations 4.4.39 and 4.4.40) that correspond to interactions 

with electronic distributions in D, must refer to the unperturbed distributions , 

calculated for the perfect lattice.

Also the expression for the cluster charge (4.4.55) changes, and will count 

only half of the bond-charges between regions C and D:

(4.5.23)

P
where the sum is over all the N nuclei in C, 2^  is their charge and VD(rN) is

(4.5.24)
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The computational procedure discussed in 4.4.2, will be altered according to 

the following scheme (changes are indicated by bold characters):

INITIAL STAGE

1) Read the following items produced by the CRYSTAL code, and 

characterizing the host crystal: geometry; basis set; point symmetry operators; 

Fermi level Ef; Pf matrix; DOS expansion coefficients.

2) Read from input the characteristics of the defective region: geometry and

basis set of atoms in the A region, C cluster size, computational parameters .

121 Read from input the radius of region C, Dj and for the Mott-Littleton

procedure. Read also the force constants matrices for each basis species and the 

matrix [e’1 (I - e’1)], used in the expression (4.5.11).

4) Recognize the symmetry subgroup of the defective system; calculate all 

integrals that are needed; set up the information needed for rapid identification of 

neighborhood relationships; calculate F00081 and Pconst, Sc c  CD

12) Calculate the centres of distributions (ji,v), with |i in C and v in C or D,
P

where AV^r.) will be calculated D r p
12) Determine the net of points in region D where the electric field AVp(r.)

^ J

will be calculated

7) Prepare the initial guess for the density matrix P° or read from disk a P’ 

initial guess

SELF-CONSISTENT STAGE

8) Calculate Fc c  CD , diagonalize F and calculate Pciust>Scc
p

12) CalculateV (r.) generated by the electronic distribution in the cluster 
J

region.
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*10) Calculate the displacements in region D, the polarization potential (and 

its derivatives) VD(r.).

*11) Evaluate the correction to the Fock matrix F ^  and the energy terms
JJ,V

AE^J" that will be added to E' in the step 12.

12) Calculate the A-1, TJ, M,M' matrices for all cluster levels ej, hence the 

PC0UP,Sc c  ^m atrices and the energy E '.

13) If convergence on the P matrix is not reached, restart from step (5).

The procedure discussed above improves the original embedding theory, by 

explicitly taking into account the polarization of the medium and by making more 

explicit the different approximations used for the cluster and the outer region. On 

the other hand, the treatment of charged defects remains a formidable problem: 

preliminary calculations using EMBRYON show that the flow of charge to/from 

the cluster, in the case of charged defects, is almost always a cause of instabilities 

in the self-convergence procedure; further work will be necessary in order to find 

feasible and theoretically sound solutions to this problem.
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Chapter 5. 
Ab-initio Hartree-Fock calculations on 
silicates and magnesium silicates

5.1 INTRODUCTION

Silicates are one of the most abundant and widespread mineral groups on 

Earth, comprising more than 95% by weight of the crust and mantle of the planet. 

Silicon is also important for life on Earth: clay minerals absorb and release water 

and several cations important for plant nutrition; silicon compounds play a 

substantial role in the cells of living organism. In the human body silicon is 

present in the cells of connective tissues and is involved in the biosynthesis of 

collagen, the substance that forms hair and nails, and in the formation of bony 

tissue (Carlisle, 1970). Silicon forms, second to carbon, the largest number of 

compounds with other elements and plays a crucial role in the chemistry of our 

planet and of the creatures living on it.

Simple molecular compounds of silicon, such as SiO and SiS, have been 

detected by radiowave studies as interstellar material (Zuckermann, 1977). 

Although in most regions of space the density of these gaseous compounds is 

extremely low (less than about 10  ̂molecules per cm^) the total amount of silicon 

in the interstellar gas may reach a level equivalent to several percent of that 

concentrated in the stars. Silicon plays also a very important technological role: in 

addition to being widely used as building materials, silicon compounds have 

found widespread use in the manufacture of glasses, ceramics, molecular sieves, 

selective sorbents, adsorbents, catalysts, silicone products and electronic devices.

A better understanding of the properties of the S i-0  bond is therefore of great 

importance: on the one hand it will lead to improvements in our understanding of
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the geochemistry of the Earth; on the other it will allow applied scientists to 

improve present technology. Moreover, due to their enormous variability, 

silicates are ideally suited for the study of general chemical and crystallographic 

principles.

To understand the reason why silicon is found in such a large number of 

different structures, we must take a closer look at the properties of the chemical 

bonds that silicon can form. In contrast to the C-O, C-C and C-H bonds, the 

bond energy of the Si-0 bond is considerably higher than that of the Si-Si and Si- 

H bonds. Therefore the Si-O bond is dominant in silicon chemistry; and only a 

rather small number of silicon compounds are known which are the analogues of 

the organic carbon compounds.

In section 5.2 the properties of the S i-0  bond (and of the cation - O bond that 

occurs in compounds of general formula MsSi t O v) are reviewed. Then, in 

section 5.3, we present the results of a study on the Si02 polymorphs stishovite 

and a-quartz. In section 5.4 the results of a similar study on MgSi0 3  - ilmenite 

are discussed, with particular attention to the basis set problem.
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5.2 CHEMICAL BONDING IN SILICATES

5.2.1 The Si-0 bond

The nature of the S i-0  bond has been extensively studied by means of 

experimental techniques (infrared spectroscopy, X-ray fluorescence 

spectroscopy, photoelectron spectroscopy) and with theoretical methods. 

Examples of experimental investigations aimed to the study of the S i-0  bond can 

be found, for instance, in Brytov et al. (1979), Gupta (1985), Wiech and 

Zurmaev (1985) and Gibbs (1982). In the following we shall discuss some of 

these results in more detail.

The bond between silicon and oxygen is usually considered to be partly ionic 

and partly covalent. In a purely ionic model, Si is described as an SH+ ion and O 

as a o 2- ion, kept together by electrostatic forces, so that the bonds are 

nondirectional. According to this model the oxygen ions tend to be close-packed, 

the Si ions filling tetrahedral (or octahedral) sites between the oxygens. In fact, 

with the exception of the high-pressure Si02 -stishovite, only few silicates have a 

density anywhere near to that of a closed-packed oxygen ions arrangement

In a covalent model, the S i-0  bond is described in terms of the valence bond 

theory. The electron configuration of a silicon atom in its ground state is

Is2 2s2 2p6 3s2 3p 2
xyz

An energy of about 6eV is required to promote an electron from the 3s level to 

the 3p level. Also the energy difference between the 3s and the 3d levels is 

relatevely small (~ 11 eV) and about the same size as that between the Si 3d and
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2p level of oxygen. Thus all nine orbitals in the outer valence shell of silicon can 

participate in bonding. The degree of participation of the Si 3d orbitals in the bond 

has always been the subject of controversy, as will be discussed in the following 

sections.

3
In a tetrahedrally coordinated systems there is an sp hybrid with four

equivalent orbitals pointing towards the corners of the tetrahedron. Each lobe of a 
3

Si sp orbital overlaps an O 2p orbital to form a a  bond. Considerations purely of 

symmetry show that there can also be some overlap between O 2p and Si 3d 

orbitals, resulting in the formation of a n bond. By assuming a purely covalent 

model that includes only the a bonds, the predicted S i-0  distance is 1.76 A 

(calculated as the difference between the sum of the covalent single bond radii of 

silicon and oxygen), much longer than the experimentally determined average 

distance, that is 1.63 A . Another discrepancy is the deviation from the theoretical 

value of 109.47° of the Si-O-Si angle, that is experimentally found to be scattered, 

for most silicates, in a small range near 140 °.

The experimental evidence has been explained taking in account the partially 

ionic character of the S i-0  bond (Schomaker and Stevenson, 1941) that would 

shorten the bond length. A double bond character, resulting from the participation 

of the Si 3d orbitals in the bonding, would not only strengthen the S i-0  bond 

(making the bond length shorter) but also justify the widening of the bond angle. 

This possibility was suggested for the first time, more than fifty years ago, by 

Pauling (1939). A different interpretation suggests that the Si - Si repulsion alone 

can explain why the Si-O-Si angle is wider than what would expected (O'Keeffe 

and Hyde, 1978; Glidewell, 1977, 1978). In fact an indication of an important 

role for the d orbitals on Si is also given by comparisons between the calculated 

density of states and the fluorescence spectra o f different forms of silica: 

agreement is found only when the Si d orbitals are included in the calculation 

(Collins et al., 1972). Nevertheless, for more than two decades, the real extent of
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the contribution of d orbitals on Si has been debated, mainly because their role 

cannot be accurately pinpointed experimentally, and most of the calculations were 

performed on molecular fragments (for example Gibbs, 1982) or using poor basis 

sets (Dovesi et al., 1987).

When octahedrally coordinated we may propose sp^d^ hybrids for the 

bonding of the silicon, with the six orbitals pointing towards the comers of the 

octahedron. These hybrids overlap with the 2p orbitals o f the surrounding 

oxygens, forming six a  type bonds. Silicon shows this coordination number in 

high pressure silicates, such as the rutile structured Si02 (stishovite), MgSiC>3 

(ilmenite and perovskite) and in some low pressure structures in which the 

oxygens are bonded to species, such as phosphorous (as in e.g. SiP2 C>7 ), that 

are more electronegative than Si. According to Edge and Taylor (1971) and 

Liebau (1971), these atoms drain electrons from the Si-O bonds, thus weakening 

and lengthening them and reducing their mutual repulsions to the extent that the 

four coordinated Si is destabilized. Again, the role of Si 3d orbitals has been 

discussed at length (Gibbs, 1982) and the degree of participation of the d orbitals 

in the bonding is still unclear.

5.2.2 The cation-oxygen bond M-0

In silicates of general formula MrSisOt the electronegativity of M can vary 

considerably, and so can affect the ionicity and the strength of the Si-O bond.

If we consider a bond system Si - O i - Si - 0 2  - M, where M is an electro­

positive cation (such as magnesium), then M transfers more electrons to its 

neighbouring oxygen atom than does Si, due to its lower electronegativity. As a 

result, the slightly more negative O2  atom transfers part of its electron density to 

the adjacent silicon atom, thus shifting the electron density maximum further
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towards Si than does the less negative oxygen atom O i. The terminal oxygens are 

therefore slightly more charged than the bridging ones.

While the influence of cations of different electronegativity on the ionicity of 

the Si-O bond seems to be well-established, their influence on Si-O bond lengths 

and Si-O-Si angles is less obvious, and can be revealed only by keeping the other 

parameters as constant as possible, which is often difficult to achieve.

For all the above mentioned reasons it is important to clarify the properties of 

the Si-O bond by means of ab-initio electronic structure calculations, correctly 

taking in account the periodic crystalline environment and using a basis set rich 

enough to describe the polarization effects.

In the following sections we present the results of two studies, using state-of- 

the-art all-electron Hartree Fock calculations on minerals. First we consider two 

Si02  polymorphs, a-quartz and stishovite. The calculations accurately reproduce 

the structural properties of the two crystals; the density of states and electron 

charge density maps allow us to understand better the differences that occur in the 

bonding due to the different coordination number of silicon. The importance of d 

orbitals is also stressed by our calculations and we propose an interpretation of 

their role in the S i-0  bond. Next we discuss the ilmenite structured M gSi03, a 

mineral that may play an important role in the geochemistry of the Earth. Its 

relatively small unit cell makes it possible to carry out a detailed study of basis set 

effects. Because of the lack of experimental results on the electronic properties of 

the bonding in this mineral ( e.g. X-ray emission spectra and electron deformation 

maps) we exploited the predictive capability of our calculations to study the 

effect of an ionic environment on the Si-0 bond and to compare the bonding in 

ilmenite and stishovite.

1 0 9



5.3 AN AB INITIO HARTREE-FQCK STUDY OF

g-QUARTZ AND STISHOVITE

5.3.1 Introduction

The development in the early sixties of a range of reliable experimental 

techniques, especially X-ray emission, X-ray Photoemission Spectra (XPS) and 

Ultraviolet Photoemission Spectra (UPS), provided detailed insights into the 

chemical nature of Si02 polymorphs. In response to these results, there has been 

an increasing interest in the use of quantum chemical methods to investigate the 

properties of S i-0  bond in order to provide information about electronic and 

structural properties.

In all but one of the Si02 polymorphs silicon has a tetrahedral coordination; 

they differ in the way in which the tetrahedra are connected together. The only 

exception is the rutile-structure mineral stishovite, where silicon has octahedral 

coordination and each oxygen is linked to three silicon atoms. This mineral is not 

found on the Earth's surface, except in an impact breccia at Meteor Crater, 

Arizona, (Chao et al., 1962) and was synthesized at high pressure and 

temperature (Stishov and Popova, 1961): it has a density higher than a-quartz 

and a longer S i-0  bond. Stishovite clearly has intrinsic interest as the only 

octahedrally coordinated Si02 polymorph; moreover it can be used as a model for 

more complex compounds where silicon has the same coordination number (e.g. 

MgSi0 3 , perovskite ). Indeed, the latter material forms the major proportion of 

the lower part of the Earth's mantle. Moreover it has also been suggested that 

stishovite can be present in large amounts in the deep mantle, where it can be 

produced by disproportion of other silicates or by transformation of a-quartz at
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high pressure (Ringwood 1975). Theoretical approaches can provide information 

that is otherwise inaccessible on these important materials.

Several calculations have been performed on both a-quartz and stishovite in 

order to describe their electronic and structural properties. Considerable success 

has been achieved using semi-classical simulations, in which effective potentials 

are used to describe the interatomic forces (Sanders et al., 1984; Cohen, 1987; 

Jackson and Gordon, 1988), as recently reviewed by Catlow and Price (1990). 

Many studies have been reported using electronic structure calculations 

employing tight-binding theory or with molecules as models for the real systems 

(Pantelides and Harrison 1976, Li and Ching 1985 , Gupta 1985 , Hill et al. 

1983, Lasaga and Gibbs, 1988).

Preliminary results on a-quartz obtained with a minimal basis set (five atomic 

orbitals for oxygen and nine for silicon) have been reported by Dovesi et al. 

(1987). Structural properties of other silicates have been investigated by adopting 

pseudopotentials (in order to reduce the problem only to the valence electrons) 

and using a minimal basis set (Silvi 1990 , Silvi and Dovesi 1990). Recent 

improvements in reliability and generality of the code now allow more 

sophisticated basis sets and better computational conditions to be used.

We present here the first attempt to study and compare a-quartz and 

stishovite at an ab-initio all-electron Hartree Fock level using an extended basis 

set. The calculations have been performed using CRYSTAL, the code discussed 

in Chapter 3. This approach is intrinsically more powerful than cluster methods, 

since the long range crystalline field is correctly taken in account and the 

problems due to the cluster termination are absent.

We aim, first, to evaluate the effect of the basis set and of d-type polarization 

functions, and secondly to characterize the chemical and electronic properties of 

the two minerals, especially as regards differences due to the different 

coordination number.
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In the following we investigate how different quality basis sets reproduce the 

experimental structure and we discuss the role played by d-orbitals in influencing 

the relative energies of the two structures. Then the electronic properties are 

considered: the band structure, the density of states and deformation maps of 

electronic charge density are used to discuss the relative ionicity and the nature of 

the S i-0  bond.

5.3.2 Geometry and Structural Data

Since 1935 the positional parameters of a-quartz have been known with 

three-figure precision (Wei 1935). The structure of a-quartz has been refined by 

diffraction techniques, both X-ray (Smith and Alexander 1963 , Levien at al. 

1980) and neutron (Wright and Lehmann 1981). These methods have also been 

used to establish the response of the structure to compression and to study the 

nature of the pressure and temperature induced phase-transitions (Jorgensen 1978 

, Grimm and Domer 1975). The crystallographic data of Jorgensen were used in 

the present study and are given in Table 5.1.

Stishovite has the rutile-type structure and a number of structure 

determinations are available, so that all the cell parameters are reliably known 

(Sinclair 1978 , Baur and Khan 1971 , Hill et al. 1983 , Spackman et al, 1987). 

The positional parameters are reported in Table 5.1. Because of the higher 

coordination number of Si, the density of stishovite is higher than that of a-quartz 

or any of the 4-coordinated polymorphs.

The effect of this higher density on the dynamical properties of stishovite has 

still to be fully investigated.
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5.3.3 Basis set effects and geometry optimization

Since the basis set plays a crucial role in the description of the system, care is 

necessary in order to satisfy the bonding requirements for both O and Si. A 

molecular basis set is usually an acceptable starting point, but it need to be 

reoptimized for the bulk structure. We started by using for both species the 6-21G 

basis set proposed by Pople and coworkers (Binkley et al. 1980 , Gordon et al. 

1982). According to this basis, core electrons are described using atomic-like 

orbitals resulting from a combination of 6 GTOs (Gaussian Type Orbitals). A 

split-valence basis set of sp functions is used for valence electrons in order to 

allow more variational freedom: a combination of two GTOs describes the valence 

region closer to the nuclei and an independent, individual GTO is used for the 

outer region. Only the exponent of the latter GTO was variationally reoptimized in 

order to take in account the effects of the crystalline field: the adopted exponents 

are 0.17 a.u. for Si and 0.36 a.u. for O. Such an approach is not satisfactory if 

the system possesses a highly ionic character, as, for example, in MgO (Causa' 

et al. 1986) or in magnesium silicates; but we may be confident that it will 

perform better for the more covalent compounds considered here. An optimization 

of some selected geometrical parameters can be considered as a valid test of the 

quality of the basis set (since errors in the calculated equilibrium geometries due 

to the intrinsic limits of the Hartree Fock approximation are usually within 1%). 

If the simple 6-21G basis set is not adequate, it is possible to determine if that 

inadequacy is due only to a poor description of the anisotropic distortion of the 

valence shells, in which case added d-functions can dramatically improve the 

calculation or if a more sophisticated basis set has to be chosen in order to 

describe the isotropic distortions of valence shells more accurately.

The split valence 6-21G basis set can be enriched by single gaussian 

d-type functions added to silicon (6-21G* basis set) or to both silicon and
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oxygen (6-21G ** basis s e t). We used an exponent of 0.45 a.u. for silicon and 

of 0.65 a.u. for oxygen. Since Pauling (1939) it has often been suggested that 

3d orbitals are used by Si in forming double bonds with the oxygen atoms of a 

silicate tetrahedral group as well as in the hexacoordinated state. The present 

calculations aim to determine if that assumption is valid; we note that an extensive 

discussion of the role played by these orbitals in the case of molecules containing 

silicon is given by Gibbs (1982). The additional variational freedom due to the 

polarization functions can account for the distorted electronic distribution on Si 

due to the external crystalline field which acts on partially occupied valence shells 

and for the formation of semi-covalent bonds; for fuller ionicity that distribution 

would be spherical, and therefore there would be no need for added orbitals with 

a high angular quantum number. The importance of d-functions can therefore be 

used as a qualitative indicator of the asphericity of the bonding in the system.

The geometrical parameters chosen for the optimization are first the cell 

volume (which is varied maintaining the c/a ratio constant); the second derivative 

of the energy with respect to this parameter (after allowing all the structure to 

relax during the compression) yields the bulk modulus ; secondly we studied the 

c/a ratio ( at constant volume), a critical structural variable which in the case of 

stishovite (and other rutile structured crystals) is difficult to reproduce using semi- 

classical simulations; moreover the interatomic bond angles are directly related to 

this parameter. The internal coordinates were fixed at the experimental values 

given in Tab. 5.1.

The total Hartree-Fock energy and the results o f the optimisation are 

presented in Table 5.2. Table 5.3 presents the Mulliken Population Analysis in 

the different cases (net charges, bond population and d-orbital population). It is 

important to recall that Mulliken Populations can sometimes be misleading, being 

strongly dependent on the basis set and on the partition scheme adopted; on the 

other hand, if the same conditions are used, this quantity can provide a useful 

comparison of different systems.

114



The results obtained with the three basis sets are as follows:

1) In both polymorphs, the 6-21G basis set leads to an overestimation of the 

volume, particularly in the case of a-quartz; also the c/a ratio is overestimated for 

stishovite, although it is almost exact for a-quartz.

2) As expected, after adding d-orbitals on Si (6-21G* basis set) a contraction 

of the unit cell volume was found (-6% in a-quartz and -1.8% in stishovite). As 

shown in Table 5.3 there is also an increase in the S i-0  bond population and a 

decrease of the relative ionicity of Si and O due to the fraction o f electrons 

transferred from oxygen to the S i-0  bond because of the added orbitals; these 

effects are greater in a-quartz (where the bond population increases from 0.198 

to 0.325) than in stishovite (where the increase is from 0.104 to 0.161). In both 

systems the population of the d orbitals is quite high (0.483 electrons in a-quartz 

and 0.434 in stishovite), showing that these orbitals play an important role and 

are extensively used by silicon in both minerals

3) If d orbitals are also added to oxygen (6-21G** basis set) there is a 

further, small contraction in the volume of a-quartz (which is now only 1% larger 

than the experimental value) and no variation as regards stishovite. Due to the 

availability of an extra function, oxygen gains charge (and the bond population 

slightly decreases because of the increased ionicity), but it must be stressed that 

the population of the oxygen d-functions is extremely small in both systems, 

being 0.015 electrons in a-quartz and 0.022 electrons in stishovite. With the 

enhanced basis sets the c/a ratio is very well reproduced in stishovite, where the 

error is lower than 1%; in the case of a-quartz the enrichment of the basis set 

causes a slight overestimation of the ratio: the total error is however less than 

1.5%.

These preliminary indications are supported by the calculated energies: 

the presence of d orbitals on silicon causes a considerable drop in the total HF
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energy, which is more important in a-quartz than in stishovite (0.28 and 0.13 

a.u per Si02 unit respectively). The further addition of d orbitals on oxygen 

reduces the total energy by 0.06 and 0.03 a.u. per SiC>2 unit in quartz and 

stishovite respectively.

A crucial factor is the relative stability of the two minerals : at a 6-21G 

level stishovite is incorrectly found to be more stable than a-quartz (0.009 a.u.) 

but this result is reversed when the better 6-21G* and 6-21G** basis sets are 

used for which a-quartz is more stable by 0.007 a.u and 0.012 a.u. respectively 

(i.e. 18 kJ and 31 kJ). This result shows the inadequacy of the 6-21G basis set, 

but comparisons at the 6-21G** level appears to be substantially more reliable. 

The significant changes in energy point out that it is possible that an additional set 

of d orbitals on Si could give an appreciable contribution. It is not at present 

possible to verify this hypothesis because such calculations would have 

excessive computational requirements.

It is therefore possible to conclude the following:

1) The presence of d orbitals on Si has an important effect on the wave 

function of a-quartz and stishovite, as found by other authors. The correct 

reproduction of the experimental geometry of stishovite and a-quartz is not 

possible if the polarization effects described by these extra functions are not taken 

into account, d-orbitals added on oxygen do not seem to be very important; they 

do not modify the description of the geometry as much as the d orbitals on Si, and 

their energetic contribution is modest.

2) Polarization effects described by these orbitals are more important in a- 

quartz than in stishovite: in the tetrahedrally coordinated silicon a more substantial 

energetic gain is associated to Si 3d orbitals. Although the total energy of the 

two systems is far less affected by d-orbitals on oxygen, which are left 

essentially empty, they still seem to play some role in modelling the valence shell
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in a-quartz, because of their effect on the unit cell volume, which on the other 

hand is negligible for stishovite.

A comparison between a-quartz and stishovite corroborates earlier 

evidence (Gibbs 1982) indicating that the latter is more ionic: net charges of Si 

and O are higher in stishovite than in a-quartz regardless of the basis set used, 

with stishovite being around 20% more ionic than a-quartz when the 6-21G** 

basis set is used, so that it is possible to conclude that the higher coordination 

number of silicon leads to a substantial reduction in the covalency of the Si-O 

bond. This result is in good agreement with Gibbs (1982) and Hill et al. (1983) 

where similar conclusions were found, although there are substantial differences 

in assigning fractional atomic charges, probably due to the different basis set and 

computational framework used. The increased covalent bonding character found 

by Li and Ching (1985) in stishovite is contradicted by the present results.

In the following sections all the results will refer to the 6-21G** basis set.

5.3.4 Electronic properties

In this section we consider the Density of States (DOS) and the electron 

charge density of a-quartz and stishovite. First we discuss the structure of the 

calculated DOS, and our theoretical results are compared with X-ray emission 

spectra for a-quartz. Next we show deformation electronic density maps (i.e. the 

density in the crystal minus the densities of non-interacting atoms ), in order to 

get a better insight into the nature of the S i-0  bond in the two systems and to 

understand the role played by the d orbitals, which proved to be so important in 

the description of the structural properties.
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Since the zero of the one-electron energy levels is arbitrarily defined, we set 

the zero at the top of the valence bands ( at the beginning of the gap) in both 

systems.

5.3.4.1 Density of States of a-quartz

The total and Projected Density of States (PDOS) into the O 2p, 2s and Si 3s, 

3p and 3d orbitals is presented in Figure 5.1 (only valence bands are shown). 

We note that the actual scale for the Y-axis is not the same for the projections in 

the O and Si orbitals. The general features are those observed in all ionic 

oxides. In particular, two series of peaks are found in the valence band: at higher 

energy, just close to the gap, characterized by O 2p states and, at lower energy, 

by O 2s states.

The detailed features are as follows:

a) A first band, between 0 and -4.2 eV, with a predominant contribution from 

the oxygen lone-pair (2p non bonding orbitals); smaller contributions from Si 3p 

and 3d fall in this region.

b) A band located between -5.0 and -12 eV, due to O 2p and Si 3s, 3p, 3d 

orbitals: in this structure two sub-peaks can be identified: the Si contribution is 

mainly due to 3p states in the top one and to 3s states in the bottom one.

c) Between -23 and -26 eV a peak is found, due to the O 2s states that 

overlap Si 3p and 3s states.

It is interesting to note that there is no mixing between oxygen s and p 

orbitals, while the contribution due to silicon s,p and d orbitals is spread more 

uniformly over all the valence bands. This is particularly evident in the sub-band 

at about -5 eV, where partially covalent bonds are formed between O 2p orbitals 

and Si sp hybrids. No contribution due to d orbitals on O was found in the range 

of energy considered.
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5.3.4.2 Density of states of stishovite

The PDOS of stishovite into the sets of valence orbitals is given in Figure 5.2 

together with the total density of states. Two band structures can be identified: an 

upper valence band, between 0 and -14 eV and a lower bottom valence band 

between -24 and -30 eV.

a) The upper valence band does not have a two-peak structure as in a-quartz, 

nor is there the small intra-band gap as in the latter case. It is still possible to 

identify a main contribution , due to O 2p orbitals overlapping the Si 3d orbital, 

and at lower energies due to Si 3s orbitals and O 2p orbitals. The broad peak 

due to Si 3p orbitals extends from 0 to -14 eV, with a maximum at about -7 eV.

b) The sharp peak in the lower valence band at -25 eV is nearly totally due 

to O 2s states with contributions from Si 3p and Si 3d states and, at about -27 

eV, from Si 3s states.

On comparing these results with those for quartz the following differences are 

clear: first we note that the valence bands are wider in stishovite and the gap 

between s and p bands is also larger. These effects are probably due to the higher 

density and ionicity of stishovite: the Madelung field acting on oxygen is higher 

and there is a stronger interaction between the electron clouds of next neighbour O 

atoms.

Secondly the upper valence band, which in quartz is resolved in two sub­

peaks separated by a small gap, is continuous in stishovite. This effect can again 

be explained by taking into account the more covalent nature of the bonding in 

quartz: the non-bonding O n  states lie higher in energy than the bonding Z states 

(corresponding to bonding contributions between O p orbitals and Si sp hybrids).

We also note (in Figure 5.1 and 5.2) that in quartz Si 3s and 3d states are 

much lesser populated than Si 3p states; this is not the case in stishovite: Si 3p
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states are lesser populated than in quartz and their population is comparable with 

that of the 3s and 3d states.

5.3.4.3 Comparison with experimental data: a-quartz

There is a wide range of techniques which give information about electronic 

structure and the nature of bonding: X-ray emission spectra seem to be 

particularly suitable for a comparison with the present theoretical results, because 

they sample the different contributions to the bond from different sets of valence 

orbitals. Therefore they can be directly compared to the projected density of 

states, although some caution should be observed, since there is some 

arbitrariness in fixing the zero energy in the experimental results. In the present 

case we have fixed the end of the calculated valence band so that it coincides with 

the higher energy limit of the uppermost peak in the Si K emission spectrum. 

Furthermore theoretical data should be convoluted, usually by using gaussian- 

type functions, so that the relative height and width of each peak can be 

compared with experimental predictions.

All the possible emission spectra in a-quartz ( Si K and L2,3 and O K) have 

been measured (Klein and Chun 1972), (Wiech 1984) and are shown in Figure 

5.3, where dotted lines are used for the theoretical PDOS and full lines for the 

experimental spectra. Because arbitrary units are used for the Y-axis the scale of 

the theoretical results has been adjusted in order to fit as much as possible the 

experimental data.

The following comparisons can be made:

a) Oxygen K emission vs. calculated 2p states.

The experimental spectrum shows a sharp peak at about -3 eV followed by a 

shoulder localized between -5 and -10 eV, and the same features are reproduced 

by our calculations, although the sharp peak is reproduced as a high plateau and
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the lower peak is resolved in many sub-peaks. There is no experimental evidence 

for the gap of less than 1 eV calculated between the two sub peaks. This gap has 

been found in previous theoretical studies (Wiech and Zurmaev 1984, Gupta 

1985 ) and its occurrence has still to be experimentally verified; the width of the 

gap given by our calculation is of the same order as the resolution of the 

experimental spectra (about 0.6 eV), so that the problem is unresolved.

b) Si K emission vs. calculated 3p states.

The experimental Si K spectrum displays a sharp peak at about -6 eV 

followed by a shoulder from -5 eV to 0. Another peak is found at about -18 eV, 

in the lowest part of the valence band. The bottom peak is shifted toward more 

negative values by the present calculation (the exaggeration of band widths and 

band gaps is a well known feature of Hartree-Fock calculations (Pisani et al. 

1988)). The top peak and the shoulder are reproduced by our calculations, 

although the previous comments on the presence of a small gap at 4.5 eV, which 

is not observed experimentally, apply here as well.

c) Si L2,3 emission vs. calculated 3s and 3d states.

The experimental curve displays a two-peak structure, with maxima at -3 and 

-8 eV in the upper valence band and a smaller peak at -20 eV. In the PDOS of the 

Si 3s orbitals (see Figure 5.1), the peak at -3 eV is completely absent, while the 

other peaks are correctly found (the peak at -20 eV is shifted towards more 

negative values, but the experimental peak is very broad, spanning from -15 up 

to -25 eV).

The absence of the upper sub-peak was observed in other theoretical 

simulations and it was suggested that Si 3d orbitals (that contribute to this 

spectrum because of the dipole transition rules) can be present in the valence band 

and that the peak in the non-bonding region can be, at least in part, reproduced by 

taking in account these orbitals (Collins et al. 1972, Urch 1969).

12 1



If Si 3s and 3d PDOS's are allowed to overlap, this suggestion is confirmed: 

a peak due to Si 3d non-bonding states is clearly localized between 0 and -4 eV, 

and a two-peak, symmetrical structure is restored. From this argument we may 

conclude that the present results are in good agreement with experiment, and that 

d orbitals on Si give a substantial contribution to the Si L2,3 emission spectrum.

5.3.4.4 Comparison with experimental data: stishovite

A similar comparison can be made as regards stishovite, whose emission 

spectra were collected and discussed by Brytov et al. (1979) and by Wiech

(1984). The spectra are shown in Figure 5.4. Because of the lack of extensive 

experimental studies and of previous theoretical calculations, some caution is 

necessary in trying to make a comparison.

The lower valence band (lower peak in the PDOS of Si 3s and 3p) is shifted 

by our calculation toward more negative values;the experimental results confirm 

the substantially different nature of Si 3p electrons in stishovite, in particular the 

Si K emission is a broad peak localized at about -7 eV which is remarkably 

different from that in quartz. This peak is very well reproduced by the 

calculations. The experimental oxygen K spectra of stishovite and quartz are less 

different than the corresponding calculated PDOS's, and it is questionable 

whether this is due to a lack of resolution in the experimental data or to 

inadequacies in the theoretical description.

The ad-mixture of Si 3s and 3d states in the Si L2,3 spectrum is confirmed 

again by the calculations .

5.3.4.5 Electron Charge Density (ECHD) maps for a-quartz and stishovite

Deformation maps (crystal electron density-isolated atom electron density) are 

extremely useful in order to investigate the charge transfer that takes place when
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chemical bonds are formed, and they give valuable information about the 

important contributions to the bonding (e.g. whether ionic or covalent bonding is 

dominant). Figures 5.5 and 5.6 show total density maps corresponding to a plane 

cutting the O-Si-O bond plane in the two systems, so that the two non-equivalent 

oxygens are included; and in Figure 5.7 and 5.8 the corresponding deformation 

maps are displayed.

In quartz it is possible to observe first the presence of non bonding electrons 

on oxygen, localised into a p-type orbital, pointing away from silicon. These 

electrons can therefore be associated with the non-bonding band found in the 

DOS, due to oxygen p orbitals Secondly we see an increase of electron density in 

the interatomic region between Si and O, corresponding to the covalent bonding. 

Thirdly, there is a net loss of electron density from regions close to the O; this 

loss seems to be associated with a back-donation process from O to Si, due to the 

instability of the ion Cp-~ in this crystalline environment. The effect of the back- 

donation is reflected by the shape of the electron distribution of Si, which is very 

asymmetric indeed, with a long tail pointing toward the 0 - 0  interatomic region. 

There is therefore a significant fraction of electrons involved in a charge transfer 

between the two species, which is not localized in the neighbourhood of the 

nuclei, but rather used in creating a S i-0  bond, with covalent character, mainly 

due to an overlap between the p orbitals of silicon and oxygen, as previously 

noted in the Density of States.

It is also of interest to characterise the effect of d orbitals added on silicon. We 

plotted difference maps corresponding to the crystal described by the basis sets 

with and without d orbitals respectively; Figure 5.9 shows the resulting map; it 

appears that the predominant effect is a net charge transfer from the non-bonding 

oxygen p-orbitals to the bonding ones: d orbitals on Si, therefore, increase the 

strength of the S i-0  bond, by increasing the fraction of oxygen electrons 

involved; the covalency is therefore also enhanced. Similar effects are found by
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Gibbs et al. (1987) and Geisinger et al. (1987). This interpretation is supported 

by the Mulliken Population Analysis results discussed in the previous section.

For stishovite the picture turns out to be quite different: the lone-pair is much 

bigger than in quartz and the back-donation process is now less important, so 

that less charge is transferred to silicon and O preserves more o f its ionic 

character. Therefore the distortion of the Si electron distribution is smaller, and 

its shape is more spherical than in quartz. The directional increase of electron 

density in the interatomic region between Si-O is smaller than in quartz. Note that 

the apparent difference between the two oxygens, despite the fact that they are 

crystallographically equivalent, is due to the hybridation of this species (sp2 ), so 

that one oxygen lone-pair is coplanar to the 0 -Si3 plane but the other is 

perpendicular to this and is not shown.

Fig.5.10, in which the effect of d-orbitals on Si is displayed, supports these 

observations: the charge transfer induced by d orbitals on Si is in this case much 

smaller than in quartz, although there is no doubt that these orbitals play a role in 

the hexa-coordinated structure as well.

Comparisons with experimental deformation density maps are in principle 

possible. In practice such comparisons are not generally useful, due to the fact 

that the experimental maps are strongly dependent on the models adopted in 

refining the data. Moreover many details in the valence shells are not accurately 

described by X-ray diffraction, since the core electrons dominate the scattering. 

Examples of experimental maps for quartz and stishovite are given by several 

authors (Hill et al., 1983 , Gibbs 1982, Geisinger et al., 1987 , Spackman et al., 

1987).
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5.3.5 Conclusion

In this section the electronic properties o f stishovite and quartz have been 

studied at an ab-initio Hartree-Fock level, in order to interpret the chemical nature 

of the Si-0 bond in the two crystalline environments. A good agreement with the 

experimental geometry has been found, suggesting that other structural properties 

could also be studied. The results concerning relative stabilities, Mulliken 

analysis, density of states and electron charge density, give an homogeneous, 

consistent picture of the two structures. In particular, it has been possible to stress 

the importance of silicon 3d orbitals in the S i-0  bond in quartz and stishovite, 

where they contribute to the back-donation of electrons from oxygen to silicon, 

therefore stabilising the oxygen ion. A covalent character has been found in the 

Si-O bond of quartz, while stishovite is more ionic, although covalency is 

appreciable in this structure too.
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5.4 AN AB INITIO HARTREE-FOCK STUDY OF 

MgSiCh - ILMENITE

5.4.1 Introduction

Magnesium-rich silicates form the major proportion of the Earth's mantle, a 

region of depth varying from 100 km to about 2800 km and which is 

characterized by high pressures (up to 1.4 Mbar) and temperature (up to 4000 K). 

A number of interesting reactions and phase transformations occur in this 

exceptional environment; not all of them are yet fully understood. Depending on 

the details of P and T and stoichiometry, magnesium silicate can adopt the spinel, 

ilmenite, garnet and perovskite structure. Some physical data are available on 

these systems. The stability relations of the magnesium silicate form of spinel, 

ilmenite and perovskite were investigated by Ito and Yamada (1982). Horiuchi et 

al. (1982) have refined the crystal structure of the ilmenite-type by single crystal 

X-ray analysis; the elastic constants have been determined by Weidner and Ito

(1985), while heat capacity, thermal expansivity and enthalpy of transformation 

were measured by Ashida et al. (1988). However, because of the problems 

involved in the synthesis of sufficiently large quantities o f sample to enable 

experimental studies, information on these materials is limited. Theoretical 

simulations of electronic and structural properties of these material are therefore of 

great importance.

Simulations, in which effective potentials are used to describe the interatomic 

forces, have been successful in reproducing structural and thermodynamical 

properties of these phases, and in predicting observables not yet determined by
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experiments (Wall and Price, 1988; Matsui et al., 1987; Catlow and Price, 1990). 

Such methods are, however, unable to provide information about the electronic 

properties. Knowledge of the electronic structure and of the chemical nature of the 

bonding requires techniques that explicitly solve the Schroendiger equation. The 

purpose of such calculations is to investigate the nature of the bonding, especially 

as regards the Si-O bond, in terms of relative ionicity, electron charge distribution 

and density of states. This information can then be used to explain (or predict) 

experimental measurements, such as electron charge density maps and electronic 

spectra.

We present in this section the first attempt to study the ilmenite structured 

MgSiOg at an ab-initio periodic all-electron Hartree-Fock level, using an extended

basis-set. A previous study was carried out by B. Silvi (1990) using pseudo­

potentials for the description of the core electrons and a split valence basis set for 

the valence orbitals. The present calculations have been performed using the 

program CRYSTAL, as discussed in Chapter 3. In this section we will focus on 

the problem of choosing a reliable and balanced basis set, able to provide an 

accurate description of the geometry and of the electronic structure. We show that 

it is possible to reproduce the unit cell volume to within 1.5% of the 

experimental value. The eventual goal is to assess the technical needs for 

calculations of this type on silicates in general, which will then lead to a 

systematic study of the magnesium silicate polymorphs.

5.4.2 Structural data

The structure of ilmenite-type MgSiC>3 was first identified by Kaway et. al. 

(1974). It has been shown to be stable in the pressure range from 210 to 250 kbar 

at 1700 °C (Ito and Yamada, 1982). The positional parameters of the atoms have
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been accurately determined by Horiuchi (1982) using single-crystal X-ray 

diffraction techniques. The structure (space group R3 is obtained by substituting 

Mg for Fe and Si for Ti in the ilmenite-type mineral FeTi03. Mg and Si are 

octahedrally coordinated and completely ordered; the oxygen atoms are arranged 

in an approximately close-packed hexagonal array. The positional parameters 

and the distances between atoms are given in Table 5.4 and the structure shown 

in Figure 5.11

5.4.3 Basis set effects

The establishment of a reliable, well balanced set o f basis functions to 

describe the atomic species of the system under investigation, is an essential 

preliminary step of the calculation. Success in the optimization of selected 

geometrical parameters can be considered a good test o f its quality. The 

optimization of the unit cell volume (varied maintaining a constant c/a ratio) with 

respect to the total energy is usually a reliable indicator of the quality of the basis 

set under test; an optimization of all the independent coordinates is at present too 

expensive to perform. Changes in the total energy should also be taken in account 

in order to evaluate the usefulness of increasing the quality of a given basis set.

In the previous section we showed that Si and O, in a-quartz and stishovite, 

can be described by a split-valence 6-21 G basis set enriched by polarization d- 

type functions. The starting point was the molecular basis sets optimized by Pople 

and co-workers (Binkley et al., 1980; Gordon et al., 1982). According to this 

basis, core electrons are described using atomic-like orbitals, resulting from a 

combination of 6 GTOs. A split-valence set of sp orbitals is used for valence 

electrons: a combination of 2 GTOs describes the inner valence region and an 

independent, single GTO is used for the outer region. In our earlier study only 

the exponent of the latter GTO was variationally reoptimized in order to take in
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account the crystalline environment. The role of d-orbitals on Si proved to be 

crucial in describing correctly the two systems.

In the case of ilmenite-MgSi03 six different basis sets, of increasing quality, 

were investigated. For convenience these will be labelled BS1....BS6 (see Table 

5.5) and are discussed below. In each case the exponent of the most external sp- 

type (and d-type if present) GTO on both oxygen and silicon was re-optimized: 

the optimized exponents are reported in Table 5.5.

For magnesium we used thoughout the basis set that had been optimized 

for bulk MgO by Causa' et al. ( 1986). The Is and 2sp functions are described 

by 8 and 6 GTOs, respectively; this corresponds to a very accurate solution for 

the isolated Mg2+ ion. The basis set was then enriched by a single sp-type GTO 

(with exponent 0.40), that allows us to describe the contraction of the ion due to 

the crystalline field. This choice for Mg is justified on the basis of the highly ionic 

nature of Mg in this structure. Moreover the assumption of high ionicity can be 

tested by making the outer sp-shell more diffuse or by adding another valence 

function as will be discussed in the following section.

For oxygen and silicon a range of options was available. The same 6-21 G 

basis sets used in the case of SiC>2 were tested, with and without d-type orbitals 

on Si (labelled BS1 and BS2 respectively); we then adopted for oxygen the same 

basis set that was optimized for this species in the calculation on bulk MgO 

(where the Is function is described by 8 GTOs, the 2sp function by 5 GTOs plus 

an additional sp-type single GTO ), without changing the quality of the silicon 

basis set (BS4 and BS3, with and without d orbitals on silicon respectively). 

With reference to the latter we also checked the effects of a more sophisticated 

basis set on silicon (Dovesi, 1990), namely a 8-31 G (BS5), whose valence was 

then enriched by d-orbitals (BS6). It was not possible to test the effects of d- 

orbitals on oxygen because of the excessive additional computational costs: we
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expect their role to be far less important, as our previous investigations have 

shown.

We note that by moving from BS1 to BS3 and BS5 we mainly improve the 

description of core and lower valence states. On the other hand, the use of 

polarization functions on silicon (BS2, BS4, BS6) can account for polarization 

effects and for the formation of covalent bonds: they improve the description of 

the outer valence and of the bonding electron density. In some extent the two 

problems can be considered independent.

5.4.4 Results

The calculation will be presented and discussed in the following sequence: 

first the effects of the different basis sets on the cell volume, energy and Mulliken 

population is analysed. Then we compare the influence of the basis set used for 

Mg in MgO, and for Si in quartz and stishovite, with the present study.

Table 5.6 presents the Mulliken population analysis for the different basis 

sets, the results of the volume optimization and the total Hartree-Fock energy; the 

Mulliken data provides useful preliminary insights into the nature of the bonding, 

while the energy ( reported with respect to the total HF energy calculated with the 

first basis set BS1) allows the effects of the different basis sets on the energies to 

be evaluated. The HF prediction of the cell volume, which refers to 0 K, must be 

corrected to yield a room temperature volume, if we are to compare with 

experiment. We therefore used the expansion coefficient proposed by Ashida 

(Ashida et al., 1988) to correct our calculated 0 K volumes:

V(cm3 mol'1) = Vo + 6.427 x 10‘4 x T(K)

The results obtained with the six basis sets are as follows:
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Using a 6-21 G basis set for silicon and oxygen the volume is underestimated 

by -0.7 % ; the addition of d-orbitals on Si increases the contraction (-2.3 %); this 

result is not satisfactory, since we get a less accurate estimation of the volume by 

employing a better basis set. It suggests that the basis sets may be unbalanced. By 

adopting a richer basis set for oxygen (BS3) the volume is overestimated (+2.4 

%), d-orbitals (BS4) produce a contraction (-1.1 %) that leads to a very accurate 

estimation of the volume. The 8-31 G basis set for silicon, with and without 

added d-orbitals added (BS6 and BS5), does not introduce an improvement: the 

error is, respectively, +2.1 % and -1.3% . We should then consider that the 0 K 

experimental volume we are comparing with should also be corrected to take in 

account the zero-point energy contraction. Simulation techniques based on 

effective potentials estimate this quantity as a further contraction by about 1.5% of 

the volume. This correction would reduce the error on the predicted volume in the 

cases BS3 and BS5 to below -1%, which is probably below the numerical 

inaccuracies of our procedure.

It is useful to consider the differences in charge and total energy produced by 

the different basis sets. In the first case (BS1) Mg is highly, but not completely 

ionic (+1.86), O is considerably ionic (-1.45 electron) and silicon shows a 

semi- ionic nature (+2.49 electron). The M g-0 bonds has a small, but not 

completely negligible bond population (0.016). A richer basis set for the oxygen 

(BS3) lowers the total energy by 0.475 hartree, and increases the ionicity of all 

the species. It should be noted that the M g-0 bond population becomes negative, 

indicating the completely ionic nature of the bonding; the important change in 

energy is due to the better description of low energy oxygen core orbitals. The 

population of the S i-0  bond is higher in the case of BS1 (where oxygen core 

electrons are less strongly localized). By improving the description of the core on 

silicon (BS5) the gain in energy is much smaller (0.042 hartree); charges and 

bond-populations are very slighty affected. In all three cases, d-orbitals added on 

silicon lower the total energy and reduce the relative ionicity of Si and O, because

131



of the fraction of electrons transferred from oxygen to the Si-O bond (whose 

Mulliken population increases considerably); magnesium is left almost unaffected. 

As expected, notwithstanding the nature of the basis set used for the core 

electrons, the population of the d-orbitals on silicon is very similar in the three 

cases ( about 0.4 electrons); likewise the bond population between Si and O 

(about 0.17 ~ 0.18 electrons)is unaffected. This confirms that the quality of the 

description of lower-lying energy states only slightly affects the chemical 

bonding.

These results show that core electrons on the oxygen are not adequately 

described by a 6-21 G basis set, that is unbalanced with respect to the one used 

for magnesium; moreover it does not allow the valence distribution to relax 

enough in the presence of about 1.5 extra electrons. A better basis set for oxygen 

considerably stabilizes the system and improves the optimized unit cell volume 

(case BS3). For silicon the situation is more favorable: the 6-21 G basis set 

appears to be adequate in describing the low-lying states; the description of the 

valence electrons, that are involved in weak covalent bonding with the six 

neighbouring oxygens, is quite satisfactory and can easily be improved by the 

addition of localized d-functions (case BS4). The use o f a richer basis set for the 

silicon core ( e.g. the 8-31 G tested in this study, case BS5) does not seem to be 

justified on the basis of the present results. Therefore in the following sections 

we shall concentrate on results obtained with BS3 and BS4.

It is interesting to compare the effect on the energies and populations, of the 

addition of more external sp-function and of d-orbitals on Mg, for MgO and 

MgSi0 3 . Polarization functions are expected to play a minor role in a fully ionic 

system and their importance is expected to increase with the increasing covalent 

character of the bonds. In Table 5.7 we present the Mulliken Population analysis 

and the total energy (per Mg atom in the unit cell, with reference to the case in 

which the sp-functions are removed (corresponding to the fully ionic Mg basis
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set)). Increasingly diffuse sp-functions are tested and a set o f d-functions, 

described by a single GTO with exponent a=0.50 is also added. In both MgO 

and M gSi03 a more diffuse sp-function on Mg produces an almost linear 

decrease in the energy, while the population of the sp-orbitals regularly 

increases (but always remains very small). This effect is about 10 times greater in 

M gSi0 3  than in MgO. The presence of d-orbitals is twice as important in the 

ilmenite-structure as in MgO; and Mg in the former crystal is less ionic by 0.1 

electron than in MgO, regardless on the basis set that is used. Although the Mg2+ 

ion appears to be less stable in the ilmenite structure, the essentially ionic nature 

of Mg in this structure is confirmed.

It is interesting to compare the silicon species in MgSi0 3 -ilmenite, stishovite 

and a-quartz. We performed calculations on the latter two systems using the basis 

sets labelled BS3 and BS4 for oxygen and silicon. We note that in stishovite this 

basis set produced dangerous linear dependencies in the HF eigenvectors, so that 

stricter computational conditions, and slightly more localized valence functions on 

silicon were necessary (the most external sp-functions, described by a single 

GTO, use an exponent of 0.16; an exponent o f 0.55 was used for the d- 

functions). In Table 5.8 we present the Mulliken Population data and the effect on 

the energy due to the presence of d-functions on Si in the three systems (per Si 

atom in the unit cell).

If we adopt the S i-0  bond population and the energetic changes induced by 

the d-functions as an indicator of the relative covalent nature of the bonding, we 

find that the ionicity-scale is as follows: stishovite > ilmenite > a-quartz. It is 

particularly interesting to note that the effect of d-orbitals on Si in quartz is one 

third greater than in ilmenite and that these orbitals are twice as important in a- 

quartz as in stishovite. The slightly different basis set adopted for stishovite does 

not affect this result, since its effect on the energy is probably one order of 

magnitude lower than the actual differences found amongst the three systems. If 

we consider the individual atomic species, we note that Si is more covalent and
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oxygen is more ionic in ilmenite than in stishovite, as the electrostatic potential on 

the Mg ions promotes greater ionicity in the oxygen.

5.4.5 Electronic properties

The total density of states (DOS), and its projections (PDOS) into sets o f  

orbitals (O 2s and 2p and the Si 3s,3p and 3d) is presented in Figure 5.12 

(where only valence bands are shown). We note that the actual scale for the y-axis 

is not the same for the projection in the O and Si orbitals. The general features are 

those observed in many other ionic oxides, in particularly there is a striking 

similarities with the DOS of stishovite . Two bands are found in the valence 

region: at higher energies, just close to the gap, characterized by O 2p and, at a 

lower energy, by O 2s states. In the first band, located between 0 and -9 eV, 

two contributions can be identified: a peak at -2 eV with a predominant 

contribution from the oxygen lone-pair (2p non-bonding orbitals); smaller 

contributions from Si 3p and 3d also fall in this region; another peak, at about -5 

eV is due to O 2p and Si 3s, 3p and an almost negligible contribution from Si 3d 

orbitals. We note that the Si 3p and 3s states do not overlap with each other.

Between -20 and -25 eV another band is found, due to O 2s states that overlap 

Si 3s,3p and 3d orbitals. Again, there is no significant overlap between the Si 3s 

and 3p states.

Deformation maps (crystal electron density - isolated atoms electron density) 

provide a useful insight into the bonding. It is possible to investigate the charge 

transfer that takes place when the bonds are formed and the polarization effects on 

the charge distribution. Fig 5.13 and 5.14 show the deformation maps 

corresponding to a plane cutting the O-Si-O and O-Mg-O bond plane respectively. 

It is possible to observe the presence of non-bonding electrons on oxygen,
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localised into a p-type orbital. This orbital points away from silicon, and it is 

strongly polarized towards the magnesium ion. These electrons are associated 

with the non-bonding sub-band found in the DOS, due to oxygen p orbitals. 

There is an increase of electron density in the interatomic region between Si and 

O, corresponding to the formation of a covalent bond; this effect is associated 

with the loss of charge from a region close to the O, that can be explained by
9_

considering that O is unstable in this crystalline environment. We also observe 

the highly distorted and polarized shape of the charge distribution on Si, with an 

increase of electron density, with respect to the ideal cation, in the direction of the 

Si-O bond. We can therefore conclude that there is a significant fraction of charge 

used in creating a Si-O bond (as found in the Mulliken analysis); as indicated by 

the density of states this is mainly due to an overlap between p orbitals of silicon 

and oxygen. Magnesium is remarkably different from silicon: the shape of the 

cation is almost spherical and there is no evidence of an increase in charge 

between Mg and O. This indicates again the completely ionic nature of Mg. It has 

indeed an electrostatic effect on oxygen, that results in a polarization of the lone- 

pair.

5.4.6 Conclusion

In this chapter we have presented the first study of a magnesium-silicate 

(MgSi03-ilmenite) at an HF periodic ab-initio level, using an extended basis set. 

Different basis sets have been carefully tested and compared.The importance of 

correctly taking into account the ionicity of oxygen has been shown. The role of 

d-orbitals on silicon has also been stressed. We showed that it is possible to 

reproduce the unit cell volume with great accuracy. The Si-O bond appears to be 

more covalent in MgSi0 3  than in Si02-stishovite, while the oxygen atoms are
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more ionic and more polarized in the ilmenite structure, because of the presence of 

the Mg ions.

Further studies are in progress, in particular on MgSiC>3-perovskite and 

Mg2 SiC>4 -forsterite, in order to check if the basis set adopted in this study can be

easily transferred to other structures.

136



TABLE 5.1

Experimental positional parameters, unit cell volume and average Si-O 
bond length in a-quartz and stishovite (taken from Jorgensen, 1978).

a-quartz stish o v ite

a / A 4.9147 4.1772
c / A 5.4065 2.6651

x (Si) 0.467 0.000
x(O ) 0.415 0.306
y (O) 0.268 0.306
z (0 ) 0.214 0.000

volume /A 3 113.10 46.50

Average Si-O bond lenght / A 1.608 1.774
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TABLE 5.2

Energy (in a.u. per SiC>2 unit) and results of the geometry optimization for 
a-quartz and stishovite using different basis sets. AE is the difference 
between the energy of a-quartz and stishovite.

Basis set a-quartz s tish o v ite AE

6-21G -438.6372 -438.6459 0.009
ENERGY 6-21G* -438.7176 -438.7108 -0.007

6-21G** -438.7376 -438.7261 -0.012

6-21G 1.082 1.023
V/VO 6-21G* 1.019 1.004

6-21G** 1.010 1.004

6-21G 1.097 0.666
c/a 6-21G* 1.090 0.647

6-21G** 1.086 0.643
(experimental) 1.100 0.638
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TABLE 5.3

Mulliken Population analysis for different basis sets: net charges on Si and O, 

population of d-orbitals (where used) and average Si-O bond population.

6-21 G 6-21 G* 6-21 G**

quartz stishovite quartz stishovite quartz stishovite

q(Si) 2.38 2.70 1.75 2.28 1.94 2.42

q(O) -1.19 -1.35 -0.88 -1.14 -0.97 -1.20
qd(Si) — — 0.483 0.434 0.423 0.415
q d (0) — — — — 0.015 0.022
q(Si-O) 0.198 0.104 0.325 0.161 0.305 0.151
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TABLE 5.4

Positional and cell parameters of the ilmenite-structured MgSiO^ (after Horiuchi 

et al., 1982)

X y z

Mg 0 0 .35970
Si 0 0 .15768
O .3214 .0361 .24077

a = 4.7284 A
c =13.5591 A
Volume = 262.54 A^
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TABLE 5.5

Basis Sets for Si and O, with the optimized exponent (a) used for the 

external sp-functions and (if present) the extra set o f d-functions. In all 
the cases Mg is described by an 8-61 G basis set, as optimized for MgO 
bulk.

S i O

BS1 6-2lg  (a=.130) 6-21g (a=.350)
BS2 6-2lg  (a=.130) 6-21g (a=.350)

+d (a=.450)

BS3 6-2lg  (a=.134) 8-51g (a=.244)
BS4 6-2lg  (a=.134) 8-51g (a=.244)

+d (a=.490)

BS5 8-31g (a=.130) 8-51g (a=.244)
BS5 8-31g (a=.130) 8-51g (a=.244)

+d (a=.540)

141



TABLE 5.6

Mulliken Population Analysis (net charges and bond populations), total 
energy and optimized unit cell volume (V) for the different basis sets 

tested. The energy (in a.u.) is given as a difference with respect to the 
total HF energy obtained using the basis sets (BS1). V/Vo refers to the 

experimental Vo , corrected in order to take in account the effects o f the 

crystal expansion and the zero-point energy from 298 K to 0 K.

B S 1 B S 2 B S 3 B S 4 B S 5 B S 6

q(Si) 2.42 2.17 2.60 2.25 2.52 2.22

q(O) -1.42 -1.34 -1.51 -1.39 -1.49 -1.38

q(Mg) 1.85 1.84 1.93 1.92 1.93 1.92

q(Si-O) .130 .170 .115 .172 .119 .171
qd(Si) — .35 — .39 — .35
q (Mg-O) .016 .018 -.004 .000 -.004 -.001

Energy — -.1262 -.4752 -.6257 -.5171 -.6671
V/VO .993 .977 1.024 .989 1.021 .987
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TABLE 5.7

Influence of the basis set of magnesium on the Mg net charge, the total 
HF energy (in a.u.) and the population o f the d orbitals (if present). 
Reference is made to the 'fully-ionic' basis set, where the set of external 
sp-functions is removed, a is the exponent of the single GTO used to 
describe this set of function.

Mg Basis Set MgO M gSiOa

qMg q(d) AE qMg q(d) AE

no sp 2.00 — -2.01 —

sp(a=0.40) -1.98 -.0030 -1.92 -.013
sp(a=0.35) -1.97 -.0031 -1.89 -.0152
sp(a=0.30) -1.96 -.0033 -1.85 -.0167
sp(a=0.30) 
+ d(a=0.50)

-1.90 .041 -.0035 -1.81 .058 -.0299
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TABLE 5.8

Comparison between quartz, stishovite and ilmenite. Mulliken charges 
and the descrease in energy (AE, in a.u.) produced by d-functions on Si 

are reported. All data were obtained using a 6-21G basis set on Si and a 
8-51G basis set on O (cases BS3 and BS4, as explained in Table 5.5)

Si Basis Set no d orbitals on Si I with d orbitals on Si

q(Si) q(O) q(Si-O) 1 q(Si) q(OJ q(Si-O) q(d) AE

quartz 2.61 -1.31 .170 1 1.77 -0.88 0.328 .470 1.01

stishovite 2.89 -1.45 .060 I 2.50 -1.25 0.108 .352 -.494

ilmenite 2.60 -1.51 .115 I 2.25 -1.39 0.172 .390 -.753
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Figure 5.1. Total and Projected Density of States of a-quartz. The vertical 

scale in the case of Si states is expanded by a factor of ten.
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Figure 5.2. Total and Projected Density of States o f stishovite. The vertical 
scale in the case of Si states is expanded by a factor o f ten.
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Figure 5.3. X-ray emission spectra of a-quartz. Experimental data are 

plotted in full lines; theoretical results are in dotted lines. The vertical scale 

is in arbitrary units.
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Figure 5.4. X-ray emission spectra o f stishovite. Experimental data are 
plotted in full lines; theoretical results are in dotted lines. The vertical scale 
is in arbitrary units.
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Figure 5.5. Electronic total charge density map corresponding to a plane 

cutting the O-Si-O plane in quartz. Contour intervals correspond to 
increases of 0.10 el/(a.u.)^
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Figure 5.6. Electronic total charge density map corresponding to a plane
cutting the O-Si-O plane in stishovite.Contour intervals correspond to

3
increases of 0.10 el/(a.u.)
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Figure 5.7. Electronic charge deformation map (crystal - isolated atoms)
for quartz. Atomic positions as in figure 5.5. Full and dashed lines indicate
positive and negative values respectively; dot-dashed line corresponds to the

3zero-level.Contour intervals correspond to increases of 0.010 el/(a.u.)



Figure 5.8. Electronic charge deformation map (crystal - isolated atoms) 
for stishovite. Atomic positions as in figure 5.6 and intervals as in Figure 
5.7. Full and dashed lines indicate positive and negative values respectively; 
dot-dashed line corresponds to the zero-level.
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Figure 5.9. Electronic charge difference map corresponding to quartz 
described by a basis set with and without d orbitals respectively (6-21G**- 
6-2 lg). Atomic positions as in figure 5.5 and intervals as in Figure 5.7. 

Full and dashed lines correspond to positive and negative values 

respectively; dot-dashed line corresponds to the zero-level.
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Figure 5.10. Electronic charge difference map corresponding to stishovite 
described by a basis set with and wihout d orbitals respectively (6-21G**- 
6-2lg). Atomic positions as in figure 5.6 and intervals as in Figure 5.7. 
Full and dashed lines correspond to positive and negative values 

respectively; dot-dashed line corresponds to the zero-level.
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Figure 5.11 A perspective view of the ilmenite structured MgSiC^ after

Horiuchi et al. (1982). Open circles, oxygen; shaded circles, Mg; black 
circles, Si.
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Figure 5.12 Total and projected density of states o f MgSi0 3  The vertical 

scale in the case o f Si states is expanded by a factor of ten.
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Figure 5.13 Electron charge deformation map (crystal - isoalted atoms) 
corresponding to a plane cutting the O-Si-O plane. Full and dashed lines 

indicate positive and negative values respectively; dot-dashed line 

corresponds to the zero-level.Contour intervals correspond to increases of 
0.010 el/(a.u.)3

157



I / I ' l l /

lift:
'  111' •1 
■‘ f t

\ mI \ ' V ' . W V N

Figure 5.14 Electron charge deformation map (crystal - isoalted atoms) 
corresponding to a plane cutting the O-Mg-O plane. Full and dashed lines 

indicate positive and negative values respectively; dot-dashed line 
corresponds to the zero-level.Contour intervals correspond to increases of 
0.010 el/(a.u.)3
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Chapter 6. 
An ab-initio Hartree-Fock Perturbed Cluster 
embedding study of neutral defects in LiF

6.1 INTRODUCTION

In this section we will apply the perturbed-cluster embedding technique 

discussed in section 4.3 (and the resulting program EMBED) to the problem of 

neutral defects in LiF.

LiF is a well known, rock-salt structured, alkali halide, with a lattice 

parameter of 3.99 A. It is fully ionic and its structure and elastic properties can be 

modelled at a high level o f accuracy by semi-classical modelling techniques. 

Cation impurities constitute major contaminants in LiF, as in the other alkali 

halides. Electrons trapped at lattice defects result in colour centres (Lidiard, 

1976), (Kaufman and Clark, 1963); they are often paramagnetic and can be 

identified by means of EPR and ENDOR techniques. Hole centres, commonly 

referred to as V centres are also found in LiF and their absorption spectra and 

paramagnetic properties have been investigated. A review of work on these defect 

centres is given by Agullo-Lopez,Cadow and Townsend (1988)

Defects in this structure have been extensively studied using computational 

techniques. Special attention has been paid to the modelling of the properties of 

colour and hole centres. Semi-empirical INDO cluster calculations were used by 

Shluger et al. (1988) to model the self trapped holes in LiF; using the same semi-

empirical approach, Kantorovich (1987) studied F centres, holes and their pairs 

with a self-consistent inclusion of polarizability. Pandey and Kunz studied the VK 

centre using a hierarchy of models, namely a free F2’ ion, the same ion embedded 

in a perfect point-ion LiF lattice, the F2" ion embedded in a relaxed shell-model

lattice and a molecular cluster that includes the 10 nearest-neighbour Li+
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embedded in a relaxed shell-model lattice (Pandey and Kunz, 1988); the relaxed- 

lattice calculations were performed using ICECAP (the program discussed in 

section 4.2.2) and are reviewed by Vail (1990). The VK centre was also

modelled using the Mott-Littleton approximation by Cade, Stoneham and Tasker 

(1984). Using the same approach Shluger, Grimes and Catlow (1991) studied the 

self-trapped exciton in alkali halides, comparing their results with Mott-Littleton 

calculations and experimental optical absorption energies.

The electronic and structural properties of perfect LiF are described accurately 

using periodic HF techniques (Dovesi, 1991), with relatively inexpensive basis 

sets. The high point symmetry (Oh) makes the calculations relatively cheap in

computational terms. Since many point defects do not alter the local point 

symmetry (as when only one atom belonging to the perfect lattice is removed or 

substituted, resulting in a symmetrical relaxation of the first neighbours), large 

clusters can be tested (for example, in this work, we have included up to 33 

atoms in the inner region). This system appears to be ideal to test and refine the 

computational technique. We are also particularly interested in comparing our 

results with those obtained within a classical framework, by for example the use 

of Mott-Littleton techniques. We have focused our attention on neutral defects, to 

avoid the problems associated with charged states, that have been discussed in 

section 4.4.3. The case of neutral defects is an important test for the validity of 

our approach, as they induce a local perturbation that causes a relaxation of the 

neighbouring atoms. Local polarization fields and dipole moments are also created 

and their effects are appreciable.

Two defects were studied: the Na impurity that substitutes for a Li ion and the 

bound Schottky pair (BSP), where two neighbouring Li and F ions are removed, 

producing two coupled vacancies, that neutralize each other net charge.

We will first discuss, for each cluster size employed, the results o f the auto­

embedding test (that was outlined in 4.4.3), with particular attention to the 

calculated cluster geometry. We will use these results to correct the plots of
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energy vs. displacement relating to the defect nearest-neighbour relaxation, in 

order to take into account the error introduced in the elements of the overlap 

matrix (as discussed in subsection 4.4.3 and in appendix D). The predictions of 

EMBED for the geometry and the formation energy are compared with those of 

CASCADE. Changes in the electronic structure induced by the defect will then be 

investigated; this information is, of course, inaccessible by standard simulation 

techniques. Mulliken charges, electron charge density maps and analyses of the 

defect electronic levels will be discussed.
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6.2 BASIS SET AND CLUSTER SIZE

6.2.1 Host crystal solution

Table 6.1 shows the basis set for Li which derives from a basis set originally 

optimized for LiH; the core electrons are described by an s-type AO resulting 

from the contraction of 6 GTO’s. Two outer s-type and p-type GTO’s are added 

to describe better the polarization effects and allow the ion to expand or contract 

under the effect of the crystalline field. This set may be denoted as 6-11. For the 

F- anion, reference to the isolated solution is still possible, because in the case of 

the halides the anions X" are stable and correctly described at the HF level. Table 

6.1 presents the 7-311 basis set adopted, that was variationally optimized: the 

core is described by an s-type shell o f 7 GTO’s; the valence by a 3 GTO’s sp- 

type shell enriched by two additional single gaussian sp-shells that allow a better 

description of the valence electrons.

The experience gained using basis sets of this quality suggests that they are 

able to reproduce accurately the electronic and the geometric structure of the 

periodic lattice. The full ionicity of this structure is confirmed by the Mulliken 

population analysis: Li and F net charges are +0.98le  and -0.98le  respectively. 

The experimental bulk geometry is correctly reproduced by this set of basis 

functions: the calculated lattice parameter is 4.010 A (experimental: 3.99 A). The 

former value will be adopted in all the calculation discussed in this chapter.

The primary information concerning the host crystal necessary to solve the 

embedding equations, are the projected densities of states, as was discussed 

earlier. The accuracy needed in their description depends on the width of each 

corresponding band and on its proximity to the Fermi level. The number of
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polynomials used in the expansion (see Appendix C) was 1 for Is core bands, 2 

for 2s fluorine bands and 9 for all the others.

6.2.2 Basis set for the defects

For the Na impurity a 8-51 GTO basis set was adopted; its coefficients are 

shown in Table 6.2. This basis set was optimized (Saunders, 1991) for Na+ in 

NaCl, and correctly reproduces the electronic properties of the sodium ion in a 

fully ionic environment. For this reason we consider it adequate for the purposes 

of the present study.

More care is necessary in the case of the BSP: formally, the basis functions of 

neighbouring Li and F should be removed from the set C \ so that C will contain 

only the basis functions used to describe the neighbouring atoms in the cluster. In 

practice it is usual to add “ghost” functions, centred on the vacancy, that improve 

the description of local distortions of the electronic distribution on the nearest 

neighbours and to allow charge to be re-distributed in the vacancy sites. Therefore 

we placed a single GTO sp-type function centred on each vacancy. It should be 

noted that an exponent in the range of 0.20 ~ 0.30 a.u. is usually adopted to 

describe the vacancy states. Unfortunately, we encountered serious convergence 

problems when exponents in this range were tested, and only a value of 0.55 

guaranteed a stable SCF.

6.2.3 Geometry and cluster size for the defect calculations

Three clusters were considered for the Na substitutional impurity. For two of 

them the six nearest neighbouring F* ions were allowed to relax. In the case of the 

largest cluster, because of the computational costs, it was not possible to optimize
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the geometry and the predicted relaxed positions calculated by CASCADE were 

used.

Fig. 6.1a shows the atoms included in the C regions: the actual defective 

region contains the impurity and the first shell of six fluorine ions in all the cases; 

the B region contains the 6 fourth-neighbouring Li ions in cluster I, the 12 

second-neighbouring Li atoms in cluster II, and, in cluster III, the 12 second- 

neighbouring Li ions, the 8 third-neighbouring F ions and the 6 fourth- 

neighbouring Li ions (for a total of 26 atoms in region B, 33 atoms in region C). 

The unusual cluster I was tested in order to verify the results found by Grimes 

(Grimes et al., 1989) in the case of the Li impurity in MgO. In that study it was 

shown that the relaxation of the first shell of neighbours take them closer to the 

ions along the axis of movement (in this case the Li). They are more polarized 

than other ions closer to the defect and play, as a result, a more important role in 

describing the local environment o f the defect. We note that in Grimes’s 

calculations the model was simplified: the region surrounding the cluster was 

described by a finite lattice of point charges, without any description of short- 

range repulsion between the relaxed ions in the inner region and the point 

charges. Therefore the problem in that case was somewhat more serious than just 

an incorrect description of polarization effects (e.g. there was no counterbalance 

to the attractive electrostatic interaction between the relaxed ions and the point 

charges). This is not the case in the present study. On the other hand, it is 

important to test if it is possible to use the relatively inexpensive and manageable 

cluster I to mimic correctly most of the polarization effects and changes in charge 

density in the defect region. It was not possible to use a smaller cluster, 

containing only the central atom plus six F" (with no atoms in the B region): the 

relaxation of the self-substituted cluster, in this case, fails completely. The 

fluoride ions tend to relax unrealistically towards the central atom and it is 

impossible to find an energy minimum, since the SCF procedure becomes
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unstable when the geometry becomes too distorted with respect to the perfect 

lattice.

The BSP was first simulated using a small cluster (cluster IV, shown in Fig. 

6.1b), that contains the BSP and the 5 neighbouring Li only. In this case we 

have optimized the V(F) - Li distance. We have also considered cluster V that 

contains the two vacancies and the 10 first neighbours (5 Li and 5 F). A number 

of problems are associated with this cluster, if one aims to optimize the positions 

of the 12 ions. Computational costs are high, because of the low symmetry of the 

point group (only 8 operations are left). Furthermore it is difficult to evaluate the 

corrections to the overlap matrix, since the coordinates of four sets of equivalent 

atoms are to be optimized. Therefore, for this cluster, we considered only two 

configurations: the unrelaxed one and the one relaxed according to CASCADE.

6.2.4 Computational conditions: CPU time vs. cluster size

Throughout the study, the investigation has been limited by the need to reach 

a compromise between, on one hand, the quality and quantity of information to be 

collected, and on the other, the computer time needed.

The time required to evaluate the two-electron integrals strongly depends on 

the cluster dimensions, the basis set used and the tolerances adopted for the 

truncation of the two-electron series. These factors also determine the dimensions
3 ^(jSCct'Oli

matrices that are multiplied and manipulated in the SCF procedure. 

The latter step becomes also increasingly expensive with the number of cluster 

pseudo-eigenvalues (see summation over j in equation (4.30,4.31)). In Table 6.3 

we report, for each defective cluster, the number of atomic orbitals in C (Nc ), the 

number of atomic orbitals in the D* region (ND*), the number of integrals (in 

millions) (Nj), the CPU time to evaluate them (tj, in seconds) and the CPU time 

necessary for each SCF cycle (about 20-30 cycles are usually needed to reach
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converged solutions). All the jobs were run on the IBM3090 computer at the 

SERC Rutherford Laboratory. Computational tolerances used to study the BSP 

are less strict than those adopted in the case of the Na substitutional, because of 

the higher cost of the latter calculations; we note the steep increase in cost due to 

the lower point symmetry in cluster IV and V. It is also evident that both clusters 

III and V are too expensive for any sort of systematic study.
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6.3 RESULTS: SELF-SUBSTITUTION

One of the means of verifying the correctness of the formulae and of the 

computational scheme employed, is the so-called self-substitution test. It consists 

in defining a cluster C and a defective region A exactly as in the case of a real 

defect, but with all the atoms in A coinciding in species, geometry and basis set 

with those in A*. The density matrix elements, at convergence, must coincide 

with the corresponding elements calculated by CRYSTAL for the perfect, 

periodic lattice. Such a result is not trivial: the two schemes are actually different; 

they employ different approximations and different equations to reach, in 

principle, the same description of the atoms in C. Moreover it is possible to relax 

locally the atoms in the cluster from their perfect lattice positions. This can be 

used to calculate phonon frequencies or for parameterizing atom-atom interaction 

potentials. If one starts from the optimized bulk geometry, all the displacements 

should lead to an increase in energy. As discussed above, if  these displacements 

affect atoms near the cluster boundaries, the effects associated with changes in the 

overlap matrix may lead to a different minimum in the variation of energy with 

displacement.

In Table 6.4 we present the Mulliken populations obtained from EMBED and 

CRYSTAL for all the clusters considered. We note a very good agreement 

between the two. We note that by increasing the cluster size even small changes in 

charge can result in a non-negligible net charge in C, because of the number of 

equivalent atoms in the cluster. This effect is particularly evident in the case of 

cluster III. These fluctuations can be explained as numerical noise due to the 

computational conditions and the approximations introduced with respect to the 

periodic case.

Fig. 6.2 shows the total electron charge density for cluster II (similar results 

are obtained for the other clusters). We note that there is no difference between
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the electron distribution on atoms in C and on atoms in the indented lattice (for

instance the Li and F at the top right). The six neighbouring F atoms in cluster I,

II and HI and the Li atom in cluster IV are then allowed to relax, while the other

atoms in C are kept at their perfect crystal positions. We found that the more the

ions are relaxed, the more unstable becomes the convergence procedure: these

difficulties, that are in part related to the problems discussed in section 6.2.4,

produce a numerical noise that affects the results and the quality o f the

interpolation. Fig.6.3 reports the formation energies (in hartree) in the three

cases, as a function of the F-Li distance (d  , in a.u.). Two energy curves are

shown: the triangles correspond to total defect energies, as calculated by EMBED

at convergency. In all cases the minimum corresponds to a very large decrease of

d  . We note that cluster I, that includes the six coaxial Li ions, is the one that

better reproduces the correct value, while clusters II and IV, where the atoms

relaxed are near to the cluster boundary, yield the most unsatisfactory results. 

This is due largely to the neglect of changes in the PD elements associated with

modifications o f the overlap matrix at the cluster border. This effect is more 

important when the cluster is smaller. In particular, the elements of the overlap 

matrix that are more affected by a relaxation of the six F’ are those corresponding 

to the interaction with the coaxial outer Li. It is therefore not unexpected to find 

that cluster I, where these Li are included in C, reproduces the Li-F distance more 

accurately. It can also be suggested that cluster I better describes the polarization 

of these coaxial Li ions, which must be an important factor in determining the 

equilibrium distance.

As discussed in Appendix D, we conclude that for small changes in d  the 

overlap effect on PD is linear in the relaxation parameter. The curves identified by

circles in Fig 6.3, are obtained by adding a term Eovl( d  ) = a  A d , such that the 

minimum energy coincides with Ad = 0. The same correction will then be applied 

to the corresponding defective clusters, to obtain the estimated relaxed atomic 

positions and total energy.

172



6.4 RESULTS: Na IMPURITY AND THE BOUND

SCHOTTKY PAIR (BSP)

Our discussion of the results for the two defects will refer throughout to the 

clusters and the relaxation mechanisms considered in the previous sub-section. In 

Fig.6.4 we show the effect of relaxation of the nearest neighbouring F- ions on 

the defect energies in clusters Cl and CII (Na substitutional) and of Lic  in the 

cluster CIV (BSP), respectively. The curves are corrected taking into account the 

linear term Eovl evaluated in the auto-embedding case and derived from the curves 

in Fig.6.3

Table 6.5 presents the equilibrium distances (in a.u.) calculated by EMBED 

(when available, e.g. in cluster I,II,IV), the defect formation energies (in eV) and 

the corresponding Mulliken charges. The energies (in square brackets) reported 

for cluster III (Na substitutional) and V (BSP) are not corrected to include the 

term Eovl, which could not be evaluated in the auto-embedding case owing to the 

excessive computational costs. For cluster III, the Na-F distance used was 3.98

a.u. (as we can expect that relaxation in this case will yield a result similar to 

cluster I). In cluster V, for which no quantum mechanical estimation of the 

relaxation effects was available, we used the atomic positions predicted by 

CASCADE. Energies and relaxed distances for all the clusters can be compared 

with results obtained by performing a CASCADE calculation, defining an inner 

region that coincides with the largest C region defined by EMBED (e.g. with 

cluster m  and V).

For LiF and Na we used the first set of potentials described by Catlow, Diller 

and Norgett (1977). Because of the completely different techniques used to 

simulate the system in the two methods, which are respectively semi-classical and 

quantum-mechanical models and which have different treatments of the
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polarizability of the ions, non-equivalent definitions o f “inner” and “outer” 

regions and with a much larger number o f ions being allowed to relax in 

CASCADE compared with EMBED, the results should be compared with great 

care. It is, however, encouraging that the two approaches give comparable 

results for the equilibrium geometries and defect formation energies. Finally, 

difference electron charge density maps (crystal - isolated ions) are shown in 

Fig.6.5, 6.6, 6.7, 6.9, 6.10 for C I, CII, CIII, CIV and CV respectively; they 

refer to the relaxed geometries listed in Table.6.4. Fig. 6.11 refers to the 

unrelaxed cluster CV. All these results and plots will be discussed in the 

following subsection. The maps are shown along a plane containing the defect 

and the nearest neighbours, with the x,y axes coinciding with the (100) and 

(010) crystalline directions.
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6.5 D ISCUSSIO N

6.5.1 Na substitutional

The substitution of Li by Na causes a relaxation outwards o f the first

neighbours that can be simply explained on the basis of the larger radius of the

impurity with respect to Li. Charge transfer from Na to F is suggested by the

Mulliken analysis: in all the clusters F ions are more negative than in the host

crystal, and Na has a net charge of about +1.02. The net charge of the different

clusters is always slightly negative, consistent with the auto-embedding results,

so we suggest that this effect is partially due to numerical inaccuracies in the

treatment of the atoms in C and of the matching of the cluster to the outer region,

regardless of the presence of the defect. This residual charge is, however, small,

and almost constant during the relaxation of the first neighbour F. By allowing

the coaxial Li to polarize, the fluoride ions can further relax outwards, and reach a

more stable configuration, so that the introduction of the defects requires less

energy. In cluster II, the F' relax towards the Li ions that are much more rigid so 

that the displacement is energetically less favourable. Moreover, the elements S

of the overlap matrix, with |i corresponding to an AO centred on F and v to an

AO centred on the corresponding coaxial Li, are considerably affected by the

relaxation process.Cluster I yields a slightly larger displacement of the six F ions,

and a lower formation energy than cluster II (the formation energy of cluster ID is

certainly overestimated, since the overlap correction Eovl was not calculated for

this cluster size). The improved treatment of the polarization effects, and of the

changes in the overlap matrix (as discussed before) in cluster I may explain the

difference.
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The relaxed Na-F distance predicted by the quantum mechanical procedure is 

lower than in CASCADE. However taking in account the differences between the 

two procedures and the larger number of ions allowed to relax in the CASCADE 

calculations, we consider the results from EMBED are satisfactory.

More detailed information is given by the electron charge density maps. The 

most notable feature is that all the ions contract (with respect to the isolated ion) 

under the effect of the crystalline field . This effect is particularly evident in the 

case of Na. The larger radius of Na+ with respect to Li+ causes an important 

distortion in the outer shells o f F, that are relaxed outwards. Moreover, the 

presence of net dipole moments on these ions is shown by the polarization of their 

electronic distributions, that are distorted and egg-shaped. The distortion is also 

evident in the core region. The ECHD maps show clearly that the polarization 

effects are not limited to the first neighbours: in all the clusters, the six coaxial Li 

ions are perturbed with respect to the perfect crystal. This effect is more evident in 

cluster I and HI, where they are included in the cluster. The second neighbour Li 

are, if  included in region C, affected as well by the polarization effects. This is 

particularly clear in Fig. 6.7, that shows the similarity between the polarization 

effects of the coaxial Li and those of the twelve Li+ second neighbours of the 

defect. Nevertheless the polarization of the coaxial Li ions affects the relaxation 

of the fluorines much more and will have a greater effect on the energy of the 

defect.

Fig. 6.8 presents the contributions to the total electron charge density, for 

cluster n, that arises from the terms pCLUST^ pCONST and pCOUPL^ as shown in 

eq. 4.4.36 and 4.4.37. The cluster term corresponds to an essentially isolated 

cluster (Fig. 6.8a); the pCONST term (Fig. 6.8.b) is negligible inside C though at 

its frontier the orthogonality correction deforms the electron density distribution. 

The coupling term (Fig. 6.8c) is very important in the border region, with 

positive and negative contributions that affect atoms outside the cluster as well.
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Fig. 6.8d shows the total charge density that results from the sum of the three 

terms. It is clear that the final result is the product of important corrections to the 

cluster solution and cancellation of big terms (see for example Fig. 6.8b and

6.8c).

Fig. 6.13 shows the position of the 2p HF levels o f the FB anion as calculated 

for the ion in the “auto-embedded” cluster Cl, CII and CIII and for F in the 

defective clusters (containing the substitutional Na) Cl, CII and CHI respectively. 

The introduction o f the Na defect destabilize the F 2p levels, because of the 

increased compression of these ions due to the larger radius of Na. By relaxing 

the fluorines, the O 2p levels are stabilized. This results underlines, again, the 

importance of the relaxation effects in stabilizing defects in the lattice.

6.5.2 The Bound Schottky Pair (BSP)

The removal o f two nearest neighbour ions provides a considerable local 

perturbation of the LiF lattice. CASCADE predicts an appreciable displacement 

of all the nearest neighbours of the coupled-vacancies (5 Li and 5 F). With 

reference to the labels used in Fig. 6.1b (cluster V) the calculated displacements 

from CASCADE are as follows (Ax and Ay in a.u.):

ATOM Ax Ay

f b -.076 .250
FC -.242 .0

LiB -.136 .349
LiC -.348 .0

Although in cluster IV only one Li is allowed to relax, and in cluster V all the 

10 neighbours are relaxed according to CASCADE, we note that the effects on the
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Mulliken populations (reported in Table 6.4) are relatively small. The ghost 

functions centred at the vacancy sites allow some charge to be re-distributed: the 

vacant Li site becomes slightly positive and the fluorine site slightly negative. 

The nearest Li ions become less positive than in the perfect lattice, while the 

fluoride ions become less negative. It is quite clear that if the fluorines are not 

included in the cluster the latter charge transfer is less important and their 

polarization is almost negligible. Both clusters are almost neutral, as they were in 

the corresponding auto-embedding calculations, and by relaxing cluster IV we did 

not find a significant change in the residual charge. These considerations are in 

part supported by the electron charge density maps (Fig.6.9-6.11).By comparing 

Fig. 6.9 and 6.10 (corresponding to clusters CIV and C V respectively) it is clear 

that the five Li ions polarize in a very similar manner in the two clusters; on the 

other hand the five fluoride ions that are not included in cluster C IV  and that, in 

this case, appear completely unperturbed, are indeed polarized and distorted in 

cluster V. It appears that the density matrix cross-terms PCD are unable to

describe these effects, that should be considered as a truly electrostatic 

polarization of the F" ion rather than a chemical coupling (i.e. an effect similar to 

the shell polarization described by Mott-Littleton calculations). The polarization of 

the fluorines has two components: a distortion of the outer valence, that becomes 

egg-shaped and expands outwards and a polarization of electrons closer to the 

nuclei, with an increase of charge density towards the Li vacancy and a reduction 

towards the outer nearest neighbour. In Fig. 6.11 we present the charge density 

for cluster C V without relaxing the ions: it is evident that the polarization effects 

are quite independent of the relaxation and are mainly due to the presence of the 

BSP.

The calculated dipole moment (defined as a vector that points towards the 

more negative pole) on the FB ions, along the [010] direction is +0.01a.u., 

pointing towards the vacancy (by analyzing the single contributions we note that 

the dipole moment is +.006, +.026 and -.022 a.u. on the 2sp, 3sp and 4sp shell
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respectively; the different behaviour of the inner and outer valence electrons is so 

confirmed). On the other hand, the dipole moment on F^, along the [100] axes, is 

-0.036 a.u. (single contributions are +0.0098, +0.023 and -0.069). As expected 

the polarization effects are stronger along the axes o f the V(F)-V(Li) bond.

It is interesting to note that an effect similar to that found for P  in the 

presence o f a Li vacancy ,was found in preliminary calculations on the Li 

substitutional in MgO, where a Mg2+ is substituted by a Li+ ion with a resulting 

deficiency of charge in the cluster. In Fig. 6.12 the corresponding charge density 

map is shown; the two features discussed above are clearly present. The outer 

valence of the surrounding oxygen ions expand outwards, while there is an 

opposite effect in a region nearer to the oxygen core, with an increase of charge 

density pointing towards the Li defect.

It can be suggested that this result arises from a balance of different forces; the 

removal of Li induces two effects on the fluoride electronic clouds : on one hand 

the unbalanced electrostatic field on the latter ion will produce a displacement 

outwards of its electronic cloud; on the other, the absence of the Pauli repulsion 

will allow the fluorine’s electron to expand towards the vacant site. This effect 

was noted, for example, on the surface of lithium oxide (Lichanot et al., 1991) 

and was discussed by Fowler (1988). The outer valence electrons are more 

sensitive to the electrostatic field (being more weakly bound) than the inner 

valence electrons (using a classical terminology we would say that the outer 

valence and the inner valence charge distribution are coupled to the core by 

different spring constants). As the valence shell polarizes, it "over-screens" the 

core, i.e. the valence moves so much that the core sees a dipole in the opposite 

direction to the applied field; this effect is formally described in terms of the 

Lindhard theory for the electrostatic screening of a field (p. 297, Kittel, 1963).

Unfortunately it is not possible to compare the predicted geometries and 

formation energies for different cluster sizes but, assuming that the 

displacements only depend on the presence of the defect and do not strongly
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r
couple (so that each can be considered as an “independent mode”), the V(F)-Li 

distance predicted by EMBED is in good agreement with CASCADE. The 

formation energy of this defect predicted by cluster IV is close to the CASCADE 

result, although the small magnitude of the discrepancy ma be partly fortuitous. 

Cluster V yields a higher formation energy, as expected, since the Eovl correction 

is not included. We note that, comparing the EMBED results for the Na 

substitutional and the BSP, the formation energy for the latter defect is 

consistently higher as would be expected, and as is obtained in the CASCADE 

calculations.
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6.6 CONCLUSIONS

In this section we have presented the results of a study of neutral defects in 

LiF, carried out by using the program EMBED. For both the Na substitutional 

and the Bound Schottky Pair, our method yields useful insights into the nature of 

the defect, which are consistent with the picture provided by simulation 

techniques. Disagreements between the two methods, for instance as regards 

formation energies, are due both to the different underlying Ansatz and to the 

numerical inaccuracies in the quantum procedure. The use of tighter tolerances to 

improve the numerical quality of the results will require a further optimization of 

the code to boost performance.

On the other hand, the nature of the defects discussed above does not require 

very large clusters; the perturbation introduced by these defects is localized, and 

relatively small cluster sizes yield satisfactory results. Although polarization 

effects, especially in the case of the BSP, are very important, our results suggest 

that they are localized on the first neighbours of the defect

Techniques such as those discussed in section 4.4 will hopefully allows us to 

study charged defects and to describe the effect of polarization more accurately, 

therefore extending the limits of applicability of the method.
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TABLE 6.1

Basis set adopted for Li and F in the perfect bulk and defect calculations.
Exponent (a) and coefficients are in a.u. The contraction coefficients multiply 
normalized individual gaussians.

ATOM SHELL a s-coef f p-coeff

Li s 840. 0.00264
217.5 0.00850 —

72.3 0.0335 —

19.66 0.1824 —

5.044 0.6379 —

1.5 1.0000 —

sp 0.65 .00001 1.0000
0.51 1.0000 .00001

F s 13770. 0.00088 ___
1590.0 0.00915 ----
326.5 0.0486 ----
91.66 0.1691 ----
30.46 0.3708 ----
11.50 0.41649 ----
4.76 0.1306 ----

sp 19.00 -0.1094 0.1244
4.530 -0.1289 0.5323
1.370 1.0000 1.0000

sp 0.45 1.0000 1.0000
sp 0.21 1.0000 1.0000
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TABLE 6.2

Basis set adopted for Na in the defect calculations. Units are as in Tab.

6.1

ATOM SHELL a s -c o e f f p -c o e ff

N a s 56700. 0.000225
8060.0 0.00191 —
1704.0 0.01105 —
443.6 0.05006 —
133.1 0.1691 —
45.8 0.3658 —
17.75 0.3998 —
7.380 0.1494 —

sp 119.0 -0.00673 0.00803
25.33 -0.07980 0.06390
7.800 -0.0793 0.20740
3.000 0.305600 0.33980
1.289 0.5639 0.3726

sp 0.504 1.000000 1.00000
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TABLE 6.3

Cluster size vs. cost: we report the number o f atomic orbitals in C (N^), 
the number of atomic orbitals in the D region (ND*), the number of integrals 

(in millions) (Nj), the CPU time to evaluate them (tj, in seconds) and the 

CPU time necessary for each SCF cycle.

CLUSTER NC n d* Ni h

Cl 117 1118 69 553 120
CII 147 1280 74 591 139
c m 281 2122 122 996 200

CIV 32 706 43 320 27
c v 97 1106 151 1069 337
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TABLE 6.4

Atomic Mulliken net charges for the different clusters considered in the 

self-substitution case compared to the LiF bulk calculated by CRYSTAL. 
Clusters are labelled as discussed in the text Atoms in clusters C I, CII, C HI 
are labelled with reference to Fig.6.1a.

Atoms in clusters CIV and CV are numbered with reference to Fig.6.1b. 
Q(C) is the residual cluster charge, as defined in section 4.3.

L iA f b L iC f d L iE Q (C)

C I .980 -.976 .979 -.984 .981 -.055
C II .980 -.981 .981 -.981 .981 -.079
C III .981 -.979 .981 -.976 .980 -.151

L iA L iB LiC f a f b F C Q (C)

C IV .979 .975 .979 -.960 -.979 -.979. -.015
C V .980 .979 .981 -.982 -.976 -.976 .073

Li F Q (C)

LiF bulk .981 -.981 .000
(from CRYSTAL)
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TABLE 6.5

Optimized interatomic displacements (Ad, in a.u.), formation energies 

(AE, in eV) and Mulliken net charges on the defect and nearest neighbours ) 

for the Na substitutional and the BSP. Clusters CI..CV are labelled according 
to Fig.6.1a,b. The corresponding Ad and AE predicted by CASCADE are 

also reported. The energies in square brackets are not corrected to include the 
termEovl (see text).

Na substitutional C I C II C III CASCADE

Ad(Na-F) 0.15 0.12 — 0.23

A E (eV ) 1.28 2.15 [4.98] 1.78

q(Na) 1.018 1.020 1.020
q(F) -.993 -.997 -.989
q(Cluster) -.080 -.097 -.152

B S P C IV C V CASCADE

Ad[V(F)-UC] .45 ---------- .35
A E (eV ) 13.22 [16.79] 13.25

q(V(Li» .022 .002
q(V(F)) -.001 -.002
q(UB) .971 .974
q(LiC) .970 .968
q(FB) -.984 -.967
q(FC) -.977 -.940
q(Cluster) .004 -.006
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u >

Figure 6.1. (a) Clusters used to study the Na substitutional in LiF: the 

actual defective region contains the impurity and the first shell of six 

fluorine ions in all the cases; the B region contains the 6 fourth- 
neighbouring Li ions in cluster I, the 12 second-neighbouring Li atoms in 
cluster II, and, in cluster III, the 12 second-neighbouring Li ions, the 8 
third-neighbouring F ions and the 6 fourth-neighbouring Li ions (for a total 
of 26 atoms in region B, 33 atoms in region C). (b) Cluster used to 
study the Bound Schottky Pair (BSP) in LiF: cluster IV contains the BSP 

and the 5 neighbouring Li only; cluster V contains the two vacancies and 

the 10 first neighbours (5 Li and 5 F).
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Figure 6.2. Total electron charge density for cluster II in the 
autoembedding case. The map is drawn in the (100) plane. The interval 

between the isodensity lines is .005 e/bohr^.
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Figure 6.3. Formation energies (in hartree) in the autoembedding clusters 

I,II and IV, as a function of the F-Li distance (d  , in a.u.). Two energy 

curves are shown: the triangles correspond to total defect energies, as 

calculated by EMBED at convergency. The curves identified by circles are 

obtained by adding a term Eov\  d  ) = a d  (see text).
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Figure 6.4. Effect of the relaxation o f the nearest neighbouring F' ions on 
the defect energies in cluster Cl and CII (Na substitutional) and C IV 

(BSP), respectively. The curves are corrected taking into account the linear 
term Eov  ̂evaluated in the auto-embedding case and derived from the curves 

in Fig.6.3
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NA

Figure 6.5 Difference electron density maps of the relaxed cluster I 
(Na+6F+6Li). The map is drawn in the (100) plane. The interval between 

the isodensity lines is .005 e/bohr^. Positive, negative and zero isodensity 

lines are represented by continuous, dashed and dot-dashed lines.
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Figure 6.6 Difference electron density maps of the relaxed cluster II
(Na+6F+12Li). The map is drawn in the (100) plane. All the conventions
are as in Fig.6.5
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Figure 6.7 Difference electron density maps of the relaxed cluster III
(Na+6F+12Li+8F+6Li). The map is drawn in the (100) plane. All the
conventions are as in Fig.6.5
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Figure 6.8 Total electron charge density maps of the relaxed cluster II 
(Na+6F+12Li), corresponding to the contributions to the density matrix as 
calculated in equations 4.4.36, 4.4.37. pCLUST^ pCONST^ pCOUPL 

are shown in (a), (b), (c) respectively, (d) shows the total density map as 
calculated from the total density matrix P. All the conventions are as in 

Fig.6.5.
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Figure 6.9 Difference electron density maps of the relaxed cluster IV (BSP 

+ 5 Li). The map is drawn in the (100) plane. The interval between the 

isodensity lines is .004 e/bohr^. Positive, negative and zero isodensity lines 

are represented by continuous, dashed and dot-dashed lines.
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Figure 6. IQ Difference electron density maps of the relaxed cluster V (BSP
+ 5 Li + 5 F). Atoms are positioned as in Fig. 6.9 and the same
conventions are used.
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Figure 6.11. Difference electron density maps of the unrelaxed cluster V 

(BSP + 5 Li + 5 F). Atoms are positioned as in Fig. 6.9 and the 

same conventions are used.
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Figure 6.12 Difference electron density maps corresponding to a cluster 
containing a Li ion surrounded by six O, and embedded in MgO. 
Conventions are as in Fig. 6.5
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befo re  r e la x

a f t e r  re lax

i n m
auto-substitution

i n m
Na impurity

Figure 6.13 Position of the 2p HF levels of F' as calculated for the ion in 

the “auto-embedded” cluster Cl, CII and CIII and for F" in the defective 
clusters (containing the substitutional Na) Cl, CII and CIII respectively. 
The energy scale is in a.u.
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Chapter 7. 
Conclusions

The research work presented in this thesis consisted of calculations based on 

the ab-initio Hartree-Fock approximation. Periodic Hartree-Fock calculations can 

be considered a 'standard' technique in the sense that the computational 

algorithms are well established and tested, and that calculations on crystals with a 

small unit cell yield satisfactory results. Our studies of silica and magnesium 

silicates, using extended basis sets, show that the range of applications of this 

technique can indeed be expanded towards more complicated systems. The 

predictive capability of the technique can be exploited to calculate properties that 

are difficult to be measured by experiment, for example the density o f states and 

the electronic structure of high-pressure and temperature phases such as the 

ilmenite-structured MgSiC>3 . We also obtained a consistent picture of the 

properties o f the Si-O bond in different minerals. Further studies o f basis set 

effects, that are already under way, will provide us with basis sets that can be 

easily transferred to other structures. Such results will make it possible to 

perform a systematic investigation of magnesium silicates, o f their relative 

stabilities and electronic structures.

Techniques for the study of point defects, using quantum mechanical 

methods, are less standardized. The program EMBED developed in this research 

represents the first attempt to implement at an ab-initio Hartree-Fock level a 

Perturbed-Cluster embedding technique. From the results presented in the thesis it 

is possible to conclude that this approach can provide information that is 

qualitatively more accurate and complete than that from both isolated cluster 

calculations and atomistic simulation techniques. There are, o f course, 

outstanding problems. The convergence of the SCF is often slow and affected by

2 0 1



numerical noise; the effect of the basis set in the defect region still has to be 

investigated; charged defects represent a big challenge, especially as regards the 

inclusion of the long range polarization effects and the localization of the charged 

state. Intense development is necessary, before the method becomes as standard 

and reliable as the periodic boundary calculations. On the other hand it is already 

possible to get an insight into the electronic structure of the defect that is valuable 

and important, as our results on the polarization effects in the Bound Schottky 

Pair in LiF show.

Further work using the techniques employed and developed in this thesis 

should lead to major progress in our ability to calculate detailed electronic 

properties o f complex materials.
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APPENDIX A : 

Ab-initio HF molecular codes

In the last 30 years many reliable and general-purpose codes, based on the 

Hartree-Fock theory, have been made available to the scientific community for 

the study of molecules.

A practical and detailed guide to the most popular ones is given in 'Handbook 

of Computational Chemistry', written by T. Clark (1985). Many programs have 

been distributed to the scientific community via the Quantum Chemistry Program 

Exchange (QCPE) bullettin, others have been commercialized. We present here a 

list of some of the codes that have been more widely used. More details can be 

found in the relevant QCPE bullettin or in the references given below.

Program__________ Source__________________________ Comments______

MINDO/3 QCPE 308,309 semi-empirical

MNDO QCPE 353, 379, 428 semi-empirical

MOPN QCPE 383 semi-empirical

MOPAC QCPE 455,464 semi-empirical

GAUSSIAN70 QCPE 236 ab-initio

GAUSSIAN80 QCPE 437,446 ab-initio

MRD-CI (Buenker et al., 1983) ab-initio

GAMESS (Guest et al., 1983) ab-initio
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APPENDIX B:

Calculation of the integrated density o f states

In order to perform the integral indicated in equation (4.4.29):

N(E) = -1/ (iji) S dzG(z) (B l)
y(E)

we can note that we deal with three types of functions of the variable z, as it 

is clear from equation (4.4.24) and (4.4.25). They are: GDD(z), GDD(z)/(z-e),

GDD(z)/(z-e)2-
The integrated quantities are easily calculated after considering that GDD(z)

has analytic cut along the real axis corresponding to band intervals, with a 

discontinuity that is proportional to the projected density of states (DOS)

PDD ®  £  I °DD <« + iQ) ' GDd(« - i0> ] <B2>

If e > E, we can perform the integration as indicated in (4.4.29), by letting 

the curve y  approach indefinititely to the real axis, because the factors l/(z-e) or 

l/(z-e) do not introduce singularities along the integration path. For e < E, the 

curve y  is used instead (as shown in the figure), and advantage is taken of the 

fact that the contribution from the infinite circle is zero because G~~, /(z-e) isOo
2

asymptotically proportional to 1/z . We thus have:

n dd®  = T i  dz g dd(z> = £  dt Pdd «  <B3>
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Mrir.(eJE) = 4 -  J , dz G -^ z) /(z-e) =
DDV ^  irc y(E),Y(E) DDv / / v

= e  (e-E) £  dt pDD (t) /  (t-e) - e (E-e) dt pDD

M'd d^

where 0 (x) is the Heaviside step function.

Im(z) A

t> Re(z)
— 4

(t) /  (t-e) 

(B4)

(B5)
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APPENDIX C:

Integration of the density of states

The integrals that appear in B4, B5 and in 4.4.32 and 4.4.33, may be

performed analytically using a polynomial expression for the projected DOS. 

More precisely, p (e) is expressed as a sum of contributions from the various

crystal bands, b, each represented by a polynomial o f degree / in the band 

interval (Afe, Bfe). The technique used to determine the coefficients of the

polynomials, from the knowledge of the eigenvectors and eigenvalues of the

perfect crystals in a set of selected k points, is described in the literature (Angonoa

et al., 1984; Pisani et al., 1988).

After substituting the polynomial expansion of the DOS associated with each

band into equations (4.4.32) and (4.4.33), the integrals are expressed as a sum of 

band contributions. Fully occupied bands contribute to M(e) values with e> Ep,

and vice versa; totally empty bands contribute to M(e) values with e < Ep. The

further these bands are from the Fermi energy, and the smaller their width, the

less these contributions are affected by details o f the DOS, because the

denominator (t-e) is large and approximately constant over the band interval. The

description of the corresponding DOS may be relatively approximate, i.e., the

degree / of the polyniomial may be low. This is particularly true for core bands.

If e is near Ep then the denominator It-el may become large, and the M(e)

value will depend critically on the details of the DOS in the proximity of the Fermi 

level. Of course, the problem is much less important in the case of large gap 

semiconductors or insulators.
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APPENDIX D: 

Overlap effects on the defect formation energy

The condition PD = PD plays a crucial role in the embedding technique

adopted in this research work. The larger the C cluster is, the better this

assumption is justified.

In particular, as discussed in Chapter 4, the proper defect region A should be

separated from the outer region D by a sufficiently large boundary zone B. This

ideal condition is not easily satisfied in practice, because of the computational

requirements. It often happens, as for example in Fig. 6.1, that there are no atoms

in B, so that the neighbouring atoms of the defect relax directly towards atoms in 

D. In this Appendix we will discuss how changes in the S^D block of the overlap

matrix affect the PDD block of the density matrix. For this purpose we shall

consider the case of self-substitution. The cluster contains an inner part (A1), and 

a boundary region (B). The 'unrelaxed' and 'relaxed1 geometries can be 

visualized as follows:

I) A' —  B —  D 

n) A ' B -  D

The corresponding overlap matrices, written taking in account their block 

structure,
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Saa Sab Sad 
S = Sba Sbb Sbd 

. S da Sdb Sdd .

are:

S1 =
Sf Sf 0 

Sf Sf Sf 

L 0 Sf Sf.
(Dl)

s f Y 0 0 8 0
sn = Y Y' Y” = sr + 8 8’ 8"

-  0 Y" Sf . .  0 8” 0 -

(D2)

If relaxation is not large, we assume that the A matrix and its 8 sub-blocks are 

’infinitesimal', in the sense that we shall neglect terms higher than first order in 

A.

We also assume that:

a) the orthonormalized eigenvectors of the system (V') are not changed, and 

changes in the P matrix are entirely related to modifications in the overlap matrix. 

We can write:

Pf = (S1)-172 V'+ e V' (S1) '1/2 (D3)

P -  (Sn)'1/2 v ,+ e V’ (Sn)'I/2 = K+ Pf K [K= (S1) 172 (Sn) ‘1/2]

(D4)

b) S and S^commute. Then:
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K= I -1/2 S1 A (D5)

and

P = Pf - ^ [ S ^ P *  + Pf A S I ] (D6)

Two simplifying approximations are used for the calculations presented in 

Chapter 6: first we suppose that the corrective term [ S1 A P̂  + A S1 ] remains 

unchanged when the 'perfect central region' (A') is substituted with the defect 

atom(s) (A). This allows us to calculate the correction once and for all in the case 

of the auto-embedding calculation. Secondly, we assume that the corrective term 

is linear in Ax (Ax being the relaxation parameter), if Ax is small.
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APPENDIX E: 

The Ewald sum

It is often necessary to calculate all the Coulombic interactions generated by a 

periodic lattice of point charges. A direct sum is not a convenient choice, since 

the series is very slowly converging. More rapid convergence is achieved by 

applying to each of the component Bravais lattice, the method proposed by Ewald

First we substitute the actual lattice, that contains M point ions in the unit cell, 

with M superimposed neutral lattices; each one contains only one of the ions (A.) 

o f the unit cell, (located at s^) and is treated independently from the others. The

neutrality o f each lattice is achieved by adding a compensating uniform

background of charge to the distribution due to the point charges. This uniform 

charge has a density V '1 (Z^ is the nuclear charge associated with the

particular ion and V is the unit cell volume). Each charge distribution (p^(r), with

r being the vector o f the coordinates of the point where the charge density is 

calculated) associated to the lattice corresponding to the ion X, is expressed as a 

sum of two terms:

(1921).

Pji(r) = p a (r) + PjX(r)> (El)

where:

Pa  W = I h \  { Na exp [ -a  (r - sx - h)2] - 1/V) (E2)

pA (r! = Zh \  {5 (r ’ \  ' h ) ' Na exp ['a (r  ‘ \ ' h)2] 1 (E3)

(E2)
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consists of a lattice of normalised Gaussian functions minus the uniform 

charge distribution; p.. is a lattice of point charges minus a set of neutralisingJA,

Gaussian functions. The sum of these two components gives the neutralised

lattice of point charges.

We can then calculate the potentials V^(r) and V.^ (r) generated by the two

components of the charge distribution, p.^ and p.^. The total potential is given 

by the sum:

v ?t(r) = v a (r)+ V r) (E4)

where:

f P* (r?)W  = J dr2 <&>

In the case of V.^ (r), we have a uniform charge distribution, "perturbed'’, by

a Gaussian charge distribution of opposite sign.

Rapidly converging reciprocal space series can be obtained through a Fourier 

expansion of p.^ and of ( Irj - r j  )_1; in 3D space the series takes the following

form (Tosi, 1964):

v a  (r) = T ^ K  K'2 exp (-r 2 / 4 a >exp I * ’ (r- \ ) ] (E6)

The larger the gaussian is (and therefore the lower the exponent a ), the

quicker the convergence will be.

In the case of V.^ (r), we note that in the unitary point charge centered at

(sr h), is screened by a unitary Gaussian charge distribution centred at the same

point and with opposite sign. In the limit o f infinite exponent a  the two 

distributions cancel; otherwise, the larger the a , the quicker the h summation 

converges. By integrating p.. in direct space the following formula is obtained:J K

2 1 2



VjX(r) = Zx [ I h( l r - sJl-hl)-1erfc(a(lr.sx - h l ) - ^ ]

(E7)

where erfc (x) = 2tCX̂  J dz exp (-z2) (E8)

The best value for a  is chosen in order to minimize the computational time 

required to evaluate (E6) and (E7) (Catlow and Norgett, 1977).

2 1 3
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The EMBED program allows the calculation of the HF density matrix and 
derived properties of point defects in crystalline structures. It is 
based on the Perturbed Cluster (PC) approximation described in details 
in reference 1. Some technical aspects are discussed in reference 2.
An essential prerequisite for the program to work, is having available 
the HF solution for the host crystal, as obtained by means of the 
CRYSTAL program [3], The information required is Geometry, Symmetry, 
Basis Set, Fock matrix, and Projected Densities of States (PDOS) of 
the host.
Except for the last quantity, which is calculated expressly for the 
EMBED program (see section 111.1), all information is contained in 
unit FT9 of CRYSTAL.
The "technology" used for the calculation of integrals, the evaluation 
of long range Coulomb contributions, etc. are similar to those 
employed in CRYSTAL; in fact, many subroutines are common to the two 
codes.
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I I . 1 GENERAL INFORMATION ON EMBED
The program allows the study of point defects in crystals 
corresponding to adding, subtracting, or shifting atoms in a localized
zone of the crystal (to be identified henceforth as Zone A). For the
rest, all atoms are left in their unperturbed position.
As is the case with CRYSTAL, atoms are described with a basis set of 
"Atomic Orbitals” (AO) which are linear combinations of GTOs. Only s 
and p functions are allowed. AOs are identified in the following with 
Greek letters (a, £, y, ...).
Only closed shell systems can be investigated.
The approximation on which the PC equations are based, is that 
important changes in the Density Matrix P and in the PDOS p(e) occur 
only in a restricted zone of the crystal (Zone C) including and 
surrounding Zone A; changes in out-of-diagonal elements Pyg and 
p^g(c) with y belonging to the C zone, and S outside it, are allowed
for and taken into account, too.

11.2 COMPUTATIONAL INFORMATION ON EMBED

EMBED is written in FORTRAN, compatible with the FORTRAN77 standard.

All variables are in SINGLE PRECISION: for compilation on IBM type
machines the AUTODOUBLE option of the VS FORTRAN compiler must be 
used.in order to generate DOUBLE PRECISION variables.

It is organized Into two steps (PASSOO and PASSOl) which transmit 
Information to each other via disk files: PASSOO just recovers
information from CRYSTAL results; PASSOl solves the PC equations.
A PROPEMB program is in preparation, for the calculation of properties 
from the SCF density matrix. For the moment being (Jan. 90) it is 
confined to the calculation of Electron Charge Density (ECHD) Maps.

TIMER ROUTINE. A timer routine SECOND is called in the MAIN program of 
both PASSOO and PASSOl; the only argument of SECOND is a real number, 
which is supposed to be set to the CPU time in seconds; an ASSEMBLER 
IBM version of this routine is provided. This routine is supplied by 
the system on CDC CYBER-205, CRAY and CONVEX systems. Its normal 
functioning is not essential to the program and it can be replaced by 
the coding:

SUBROUTINE SECOND(X)
X = 0 .
RETURN 
END

The dimensions of all important matrices and arrows 
parameters. The "PARAMETER" cards are the same in all 
"Change" command throughout the FORTRAN source allows 
to be changed.

Many STOP conditions have been introduced related to the 'simple' and 
'product dimensions' of the program; a short comment is produced by 
each STOP condition about the possible origin of the problem.

Matrix multiplications are performed by the MXMB and MXMBN routine.
An ASSEMBLER version can reduce the CPU time by a non-negligible 
factor.

are defined as 
subroutines. A 

such dimensions
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1 1 .  3 rUKTKAf'J UW1XS USED BY EMBED

Card input is taken from FT05, printed output is sent to FT06.
A number of scratch FORTRAN UNITS (FT) are used by EMBED to store 
intermediate quantities: 12 and 13 in PASSOO (which are passed to
PASSOl); 1,3,4,10,12,13,19,28,29 in PASSOl.

Units referring to Cataloged Data Sets for transmitting information 
either to or from other tasks are:

in PASSOO:
- FT09: contains Geometry, Basis set, Symmetry, and Wave function
information from CRYSTAL;

in PASSOl:
- FT26: contains PDOS information from Part 3 of CRYSTAL (see section
III.l);
- FT32: stores information on P matrix for use as a starting guess in 
subsequent jobs [optional: used only if INF(173)=1, see section IV.8];
- FT31: contains information on P matrix from preceding jobs for use 
as a starting guess [optional: used only if INF(174)=1, see section
IV.8];
- FT20: contains information on long range correction to the P matrix 
[optional: used only if LPRINT(60)#0, see section IV.9].

in PROPEMB units FT09, FT31 are used; unit FT25 is required if data 
concerning the maps are to be saved for subsequent plotting.

Space allocation:

FT04 contains the bielectronic integrals, and is by far the largest 
file; for 'big' systems the space allocation is between 20 and 40 
MEGAWORDS; a precise estimate of the space allocation for the 
bielectronic file can be obtained by using the LPR(50)=3 option (see 
APPENDIX A ) : the program stops after the selection of the integrals to 
be evaluated.

FT01 contains the monoelectronic integrals and the bipolar expansion 
terms; in general it is 10 to 30% of FT04

The other FT units are much smaller; allocations of the order of 0.2 
MEGAWORDS were enough for all the investigated cases.



III.l FROM C R Y S T A L  TO EMBED

Preliminary to any embedding calculation is the solution of the HF 
problem for the host crystal by means of CRYSTAL. A single such run 
can be used for any defect calculation involving that host crystal .
The CRYSTAL version to be used for such calculations is QM1X89. The 
COMMON'S in EMBED that refer to CRYSTAL quantities are an exact copy 
of the corresponding ones in that version of CRYSTAL, and are filled 
in PASSOO, after reading the corresponding information from unit FT09. 
The instruction manual of CRYSTAL8Q can be used for preparing the
input of the calculation (but remember that d functions are not
allowed in EMBEDl).
After running CRYSTAL (do not forget to catalog unit FT09), it is
necessary to prepare the PDOSs, or, better, the coefficients of their 
polynomial expansion for each band. The corresponding data will be
read by PASSOl on unit FT26.
This task is performed by PARTIII of CRYSTAL, using the option EMBE:

CARD FORMAT VARIABLE MEANING AND/OR SUGGESTED VALUES

A4
31

 IF.IS.EQ.O
2a 31

KEMBE' keyword
IS Shrinking factor for reciprocal space net
NPOL number of Legendre polynomials used to

expand DOS (if NP0L>25 it is set to 25). 
NUMPRT number of printing options

IS1, IS2,IS3

--------------- IF .NUMPRT.NE
2b 2*NUMPRT I J LPR(J)

Shrinking factors along B1,B2,B3 (reci­
procal lattice vectors); to be used when 
the unit cell is strongly anisotropic. 
See comments in section IV.5 of CRYSTAL 
Instruction Manual.

) -----------------------------------------------------------------------------------------------------------------------------------------------------------------------

printing option; see APPENDIX E of 
CRYSTAL manual for a list 
(involved J's: 40,59,105,111,112)

A4 END

Comments on 'EMBE' calculations:
For the calculation of the PDOS, the Fourier-Legendre technique
described in Chapter II.6 of reference 3 is used. The only parameters
of importance are I_S (which determines the number NKF of sampling k 
points and the number of symmetrized PWs for the Fourier expansion of 
k dependent quantities), and NPOL (number of Legendre polynomials used 
for the expansion of the DOS).
Suggested values for IS: from 4 to 12 for 3-d systems, from 6 to 18
for 2-d systems, and from 10 to 20 for 1-d systems.
Suggested values for NPOL: 10 to 15. The program automatically scales 
down NPOL for bands which are narrow and/or far from Epermj .
Example of input cards for DOS calculation: 
card
1 EMBE
2 18 14 3

2b 105 1 112 1 40 8
3 END

S



No input cards are needed for PASSOO. The input for PASSOl is as 
follows (Note: unless differently stated. Free Format is used
throughout ; comments are found in chapter IV.x, as indicated):

CARD FORMAT VARIABLE MEANING AND/OR SUGGESTED VALUES

1 20A4 TITLE any string of 80 characters.

2 NUMPRT number of printing options (first set)
if NUMPRT Mp A ___ __-t ill Cl r U — — — — — —

2a 2*NUMPRT I J ,LPR(J ) see APPENDIX A; note that some of the LPR
options can produce many thousands of

FIRST SET OF OUTPUT lines. LPR(60)*0 controls us e  of
" LPRINT" CARD long range corrections to P (IV.8)

3 141 INF(110) if #0, controls ordering of stars (IV.1)
INF(111) overlap thresh, for Coul.integrals (IV.2)
INF(112) penetration thresh, for Coul. integralsp)
INF(113) overlap thresh, for "mono" integrals {")
INF(114) overlap thresh, for exch. integrals P )

FIRST INF(115) pseudo-overlap threshold for exchange (")
* SET INF(116) security threshold P )

OF INF(117) radius quantum zone (a.u.) D
"INF” INF(118) pole order P )
CARD INF(119) derivative order in Madelung zone P )

INF(120) multipole order in Madelung zone P )
INF(121) mixing schedule for Fock matrix (IV.3)
INF(122) safety zone around Ep (a.u./lOOOO) P )
INF(123 ) Ep (a.u./10000) IV.4)

4 3 F f 31 X O R , Y O R ,ZOR Origin of the cluster (a.u.) (IV.1)
NSTAA Number of Stars of Atoms in Zone A P )
NSTA1 Number of Stars of Atoms in Zone A 1 P )
NSTCC Number of Stars of Atoms in Zone C P )

- - -  If NSTAA * 0, for each 'first atom1 of stars in A --------
4.1 to 4F ATOMN Atomic number (IV.1)
4.NSTARA XA,YA.ZA Coordinates (a.u.) in crystal frame P )

5 NUMPRT number of printing options (second set )
if NUMPRT wr a _______* L\ &  , \J — — — —

5a 2*NUMPRT I J ,LPR ( J ) see APPENDIX A; In particular: LPR(48)
defines the "percentage of charge renor­

SECOND SET OF malization" .
”LPRINT" CARD (IV.8)

6 101 INF (170") number of SCF cycles (IV.3)
INF(171) conv. check [-Log(sqrdev elgval)] P )
INF(173 ) if #0, final P is stored on FT32 (IV.6)
INF(174) if #0, start.P is read from FT31 P )

SECOND INF{175) if #0, "shift" option is used (IV.3)
SET INF(176) tol.for grouping eigval (a.u./lOOO) (IV.5)
OF INF{177) interv. for shift intrpl ( " ) (IV.3)

 ̂IN F" INF(178) lower limit active zone (a.u./lOOO) (IV.5)
CARD INF(179 ) upper limit active zone ( " ) P )

INF(180 ) nr. cycles bfr. using active zone opt. (")

44444444444444444444444444 input follows 4 4 4 ,4 4,4 4 4 , 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
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$
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
$ BASIS SET CARDS (same as in CRYSTAL) (IV.7)
$ A basis set (BS) must be defined for each different type of atom (t)
$ in Zone C, if there is at least one atom in Zone A.
$ The basis set for each atom has NSHL shells whose AOs are described
$ by NGAUSS contracted Gaussian Type Functions (GTF)
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

7 . t . 1 21 NAT
NSHL

7 . t . s . 1

LAT

7. t 
to 
7. t

atomic number (if NAT<99).
number of shells in the basis set for atoms 
with "atomic number" NAT. If NAT=99 and 
NSHL=0. end of basis set INPUT.

- for each shell (s) --- (from 1 to NSHL)
3I.2F ITYBAS basis set type:

0 Pople's standard STO-nG (data provided 
by the program) Atomic Numbers 1-36)

1 general BS, defined in card 7.t.s.2 and 
following ones

shell type:
O S  (1 s AO)
1 SP jl s + 3 p AOs)
2 P ( 3 p AOs)

NGAUSS nr of contracted GTF in the shell 
when ITYBAS=0 1<NGAUSS^6
when ITYBAS®1, 1<NGAUSS<10(or 6 for LAT=3) 
formal electronic charge attributed to the 
shell (to be used for the atomic 
calculation; only 1 open shell per atom is 
allowed);
scale factor; if ITYBAS = 0 and SCAI,E = 0., the
standard Pople's scale factor is used.

IF ITYBAS.EQ.l for each one of the NGAUSS functions----------
exponent of the uncontracted normalized GTF 
contraction coefficients of the normalized 
Gaussian (if LAT=1, s function coefficient) 
contraction coefficients for p functions 
(only for LAT=1).

s.2 2F(3F)

s .NGAUSS+1

CHE

SCALE

EXP
C0EF1

(C0EF2 )

To end this INPUT section, a last CARD must be supplied;
99 0

$ $$ $$ $$ $$ $ $ $ $ $$ $$ $$ $ $ $ $ $ $$ $$ $$ $ $ $ $ $ $$ $$ $$ $ $ $ $ $ $$ $$ $$ $ $ $ $ $ $$ $$ $$ $ $ $ $ $

3 1 I if 1*999, then EOJ else restart (IV.6)
  if I * 999 ---------------------------------------
9 41 INF(170)

INF(121)
INF(123) RESTART CARDS
INF(176)

10 31 INF(178)
INF(179) 
INF(180)

(IV.6)

11 I I if 1*999, then EOJ else restart (IV.6)
-------------- if I * 999 ... same as above etc.etc. ---------------------
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r u i  u a i u u i a i i i i g  t n e  u e i i s i  Ly m a p s ,  m e  p  r u g  r a n i  r n u r c . n o  m u s t  u e  u s e u ,
which recovers information from a previous calculation (unit FT31) in 
the same way as when using the recovery option. The program performs 
again all the geometrical analysis. The input must be exactly the same 
as in the previous calculation, although, obviously, the integrals are 
no longer calculated, and the SCF information is completely ignored.
At the end, the cards defining the plot to be calculated are provided. 
They closely resemble those used in CRYSTAL for the same purpose.

CARD FORMAT VARIABLE MEANING AND/OR SUGGESTED VALUES

1 to 7.last Same as in preceding step

41

9
10 
11

9 '

10

11

3F
3F
3F

41

41

41

NPY
IPLOT

IMODE

Number of points on the B-A segment.
N E .0: ECHD values are stored on FT25 for 

making a PLOT; see appendix H.
0 : ECHD values are not stored on disk.

ISATOM

GE. 1

0
1

LE.O: the domain to be explored will be 
identified by the cartesian 
coordinates of points A, B and C; 
the domain to be explored will be 
Identified by atoms IA, IB, IC.

: gives ECHD of defective crystal 
: gives superposition of atomic ECHDs

--IF IMODE.LE.O -------------------------------------------
XA.YA.ZA cartesian coordinates of point A in a.u.
XB,YB,ZB cartesian coordinates of point B in a.u.
X C ,Y C ,ZC cartesian coordinates of point C in a.u.
--IF IMODE.GE.l -------------------------------------------
IA,LA,MA,NA the nucleus with label IA, located

in the crystalline cell with indices 
(LA MA NA) corresponds to point A; 
the nucleus with label IB, located 
in the crystalline cell with indices 
(LB MB NB) corresponds to point B; 
the nucleus with label IC, located 
in the crystalline cell with indices 
(LC MC NC) corresponds to point C.

(Note that the numbers that identify atoms (IA,IB,IC) , and the 
indices of the crystal cells are as in CRYSTAL if the atoms do not
belong to the A zone; atoms belonging to the A zone are numbered in a
sequence starting from N+l, where N is the number of atoms in the
elementary cell of the host crystal, and are assigned to the (0,0,0)
cell).

IB,LB,MB,NB

IC,LC,MC,NC



X V .  C O M M E N T S  ON I N P U T  I N S T R U C T I O N S

IV.1 GEOMETRY, ZONES, STARS

a) We use throughout the geometry of the host crystal, as defined by 
the CRYSTAL reference calculation.
The identification of the defective cluster symmetry, and of the atoms 
that belong to the different zones, is based uniquely on the choice of 
a "cluster origin" (card 4 ). It is assumed that all symmetry operators 
are left in the defective crystal, which leave the origin in its
place. Let us define these residual point operators as Vlf...Vp. If
one wants to reduce the symmetry, it Is sufficient to displace the 
origin to a position of lower symmetry.

b) Atoms, both of the host crystal and substitutional or interstitial 
ones, are ordered into stars. Atoms belong to the same star if they 
are related to each other by one of the symmetry operators V 1 ,...Vp. 
Stars are numbered in order of increasing distance from the origin, 
unless otherwise specified (see point d).

c) We define three types of zones, A, A 1, C, each comprising a given 
number of stars NSTAA, NSTA1, NSTCC , respectively (card 4 ).
Consider first zone A 1 . It includes those atoms of the host crystal
which are eliminated for forming the defective crystal. NSTA1
indicates how many stars of atoms of the perfect host crystal belong 
to A', starting from the most Internal one.
Zone A includes those atoms which are added to the crystal after 
removing the ones in A ' . Again, NSTAA gives the corresponding number 
of stars, with reference to the defective crystal. Note that some of 
the atoms in A can be the same that have been eliminated previously, 
perhaps in a slightly modified position. In the INPUT (card 4.1 to 
card 4.NSTAA) one must provide the atomic number and the coordinates 
(a.u.,, referred to the crystal frame) of one atom per each star.
Zone C includes those atoms that belong to the cluster C, to which the 
PC equations are applied (see section II.1). Note that the number of 
stars in C, NSTCC, must be greater or equal to NSTAA.
Examples of use of these variables are provided below.
It can finally be mentioned that in the EMBED jargon a D zone is also
defined, which includes those shells external to zone C, which have at
least one neighbour in C (according to the tolerances specified below 
(see IV.2)).

d) A different ordering of the stars other than that simply based on 
distance from the origin can be useful, for instance in chemisorption 
problems or in the treatment of molecular crystals. This can be 
effected by means of INF(llO) (card 3 ) .
In order to do that, begin by sketching on a line the different stars
in the standard order of distance from the origin (see below). Above 
each star (to the right hand side of the origin) put a figure 
referring to the new ordering you want.

1 2 5 3 4
— i  i.  . . . .  i .  — j _____________  ̂ . j . ----------------- j --------------------- 1__________________i__

SI S2 S3 S4 S5
(Origin)

(In the example above, the star that is third in the distance 
ordering, will become the fifth one). Collect the figures into one 
number (in the example: 12534) and attribute it to INF(llO).



i u  v ,  c *  , « i o ,  c i o v  a r e  e q u i v a l e n t  to eacn otner, etc. uieariy, n o  

more than nine stars can be reordered.

IV.2 TOLERANCES

a) The five parameters INF(111)-INF(115) (card 3 ) correspond in the 
order to the ITOL parameters of CRYSTAL, as described in reference 5. 
They control the accuracy of the calculation for the bielectronic 
COULOMB and EXCHANGE series; the selection is performed according to 
overlap-like criteria: when the overlap of the involved Atomic 
Orbitals is smaller than io~ITOL(J) tjje corresponding integral is 
disregarded or evaluated in a less precise way. INF(116) is a "safety" 
tolerance that must be greater than all the preceding ones, but has no 
influence on the results.
Suggested values:

4 4 4 4 6 7 (soft: see however the A P 1 recovery technique, IV.6)
5 5 5 5 7 9 (good)

b) INF(117-119) (card 3 ) control the accuracy of the one-electron part 
of the calculation.
INF(117) specifies the radius (in a.u.) of the "quantum zone", out of 
which all contributions to the Fock matrix are evaluated according to 
the Ewald technique. It should be large enough to include all shells 
in D (see point IV.l.c); a value of 20 is often adequate.
INF(118) corresponds to INF(3) of CRYSTAL, and corresponds to the max 
order of the multipolar expansion of the shell charge, in the
three-center evaluation of the Coulomb contribution to the Fock matrix 
(suggested values 2 to 4).
INF(119) gives the maximum order of derivatives of the Madelung
potential used in the evaluation of the Fock matrix; suggested value:
2; I NF (120) gives the max order of the multipolar expansion of the
shell charge, in the evaluation of the Madelung energy; suggested
value : 2 .

IV.3 CONTROL OF SCF PROCEDURE

a) The SCF procedure is ended when either the number of SCF cycles is 
above the chosen limit [INF(170): card 6 or card 9 1. or if the mean 
square difference of the new eigenvalues of the Eg matrix with respect 
to the preceding ones is less than 10**[-INF(171)] (card 6 or card 9 ). 
As a matter of fact, convergence is always very delicate, and there 
are in EMBED a number of devices that help (in a more or less 
effective way) convergence to be reached. The best and most natural 
solution to the problem is to use a good initial guess for the density 
matrix; this is discussed in section IV.6. We consider here a few 
other techniques.

b) It is always useful to mix the old to the new F matrix in order to 
prevent too marked oscillations. The percentage of mixing is defined 
by INF(121) (card 3 or card 9 ) : this is a four-figure number whose 
first two figures give the percentage of the old F matrix fed in the 
new F at the beginning of the SCF cycle. This percentage is linearly 
modified during the procedure, to end up with the final percentage 
represented by the last two figures of INF(121). Very high values are 
generally used, such as 9580 or 9075.

c) One of the reasons for wild oscillations during the SCF procedure 
is charge transfer outside and inside the cluster. The "net charge" 
(printed in the output with this name), is the difference between
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crystal). Fq eigenvalues jump up and down according to whether there 
are too many or too fqw electrons in the cluster. One way to smooth 
out such oscillations is to (partially) renormalize the P matrix by 
multiplying its elements by a factor a. The percentage of 
renormalization is fixed by LPR(48) (card 3 ) : if it is equal to 100
renormalization is complete. This technique is a bit too drastic, 
especially as far as concerns the calculation of energy (see reference 
2), but can be useful when trying to obtain a starting P matrix 
(IV.x). In these case put LPR(48)=50 to 75; otherwise, LPR{48)=0.

d) A more sophisticated but more delicate and costly technique is the 
"shift option", which is controlled by INF(175) and INF(177), and by 
LPR(48) (card 6 and card 3 ) , and is discussed at length in reference
2. Essentially, it consists in shifting rigidly the eigenvalues of Fq 
by a quantity S, before applying the PC equations, in such a way as to 
insure charge normalization in the percentage defined, as before, by 
LPR(48),
The procedure is activated by defining INF(175)#0. The evaluation of S 
is performed by solving twice at each cycle the PC equations, the 
first time without any shift, the second time by shifting the 
eigenvalues by INF(177)/1000 a.u. (for instance,: INF(177)=50). From
the two resulting net charges, S is obtained by linear inter- or 
extra-polation. Unfortunately, the procedure, though sometimes 
effective, is very delicate because the dependence of the net charge 
on the shift is monotonous but very non-linear.

e) Another reason for difficulty in convergence is the fact that 
during the procedure some cluster eigenvalues pass across the Fermi 
level EF . According to the PC equations, the contribution of the 
corresponding states to the P matrix is evaluated in a completely 
different way (with reference to the occupied or the virtual crystal 
manifold). If we are far from convergence, or if the PC approximation 
is not applicable, the two results may differ appreciably. To make
this problem less critical, a safety zone is defined around each
eigenvalue [INF(122), card 3 1 . If the Fermi level falls in the safety 
zone, the eigenvalue is split into two, one at the top, the other at 
the bottom of the safety zone, with a weight attached to the two terms 
according to the lever rule, two contributions are then evaluated to 
the P matrix, one associated with the top pseudolevel, and making
reference to the occupied manifold, the other with the bottom
pseudolevel, and referring to the virtual manifold. This procedure is 
rather effective, and is mandatory when metallic systems are 
considered [4]. Values in use are INF(122)*100, corresponding to a 
safety zone of 0.1 a.u.

IV.4 FERMI ENERGY

For metallic host crystals, the Fermi level is rigidly fixed at the 
host value. Note that there is no arbitrariness in its position, since 
the EMBED calculation is performed using the same conventions and 
techniques as adopted for the crystal calculation. For non-metals, the 
standard choice is to set it at the center of the fundamental gap.
This choice is adopted automatically by EMBED when INF(123) (card 3 ) 
is set to zero. It is however possible to redefine Ep by setting it at 
INF(123)/10000 a.u. (this is the only place where a factor 10000 is 
adopted for passing from a.u. to INFs; in all other cases use 1000).
The possibilities implicit in the redefinition of Ep are discussed in 
reference 1.

u



a) The time required at each SCF cycle for the solution of the PC 
equations is proportional to NJ, the number of levels grouping 
degenerate eigenstates. The grouping is necessary not only for 
reducing computer times, but also because, in the definition of the TJ 
matrices, differences between eigenvalues appear at the denominator.
A minimum energy separation must therefore be defined for grouping 
together degenerate or quasi-degenerate levels. This is set in card 6 
or card 9 as INF(176) (a.u./lOOO). Suggested values are 10 to 50.

b) After the first few cycles of the SCF procedure, only states with 
eigenvalues close to Ep give contributions to p that are changing 
appreciably. This fact is exploited* very effectively by imposing that 
after a certain cycle [defined as INF(ISO)] only contributions from 
states within a certain energy Interval [the "active zone", defined by 
INF(178)-INF(179 ) in a.u./lOOO] are redefined, while the others remain 
fixed. These parameters are provided in card 6 and card 10. The active 
zone should comprise (at least) the fundamental gap. 3 cycles are 
usually sufficient for determining the other contributions.

IV.6 RECOVERY OF INFORMATION

a) As stated in section IV.3a, the best way to help convergence is to 
start from a P matrix not too different from the final one. If no 
previous information is available, the program automatically uses the 
host crystal values as an initial guess for all P matrix elements that 
do not refer to AOs in zone-A; in zone A atomic solutions are adopted. 
This starting P matrix is however severely unbalanced (overlap 
populations between A and the rest are not taken into account), and 
convergence may be difficult. If convergence (or, at least, a stable 
enough solution) has been reached for a given type of defect (for 
instance, a substitutional impurity of Carbon in Silicon), this can be 
used as an initial guess for "similar" situations, such as:
- studying relaxation around the impurity,
- treating the same problem with a larger C cluster,
- checking the influence of the position of Ep,
- introducing a change in the exponent of some basis functions:
in all these cases there is a one to one correspondence between old 
and new AOs. For such purposes, one can use INF(173), INF(174) (card
6 ) .
If INF(173)#0, at the end of the calculation P is written, together 
with a set of indices, on unit FT32.
If INF(174)#0, at the beginning of the calculation P is read from unit 
FT31 and loaded appropriately as an initial guess.
Note that both options can be switched on at the same time, for 
instance, during a search for a really good 'seed'.

b) The restart option serves, in a sense, the same purpose, but within 
one and the same job (cards 8 , 9., and 1_0) • This option is activated if 
any number substitutes r999' in the 8th card. The program then uses 
the final P matrix from the preceding calculation as an initial guess. 
However, since integrals are not recalculated, the number of 
parameters that can be changed is much less than above: they concern 
the means for helping SCF convergence (IV.S.a.b), the definition of 
active zone and the tolerance for grouping eigenvalues (IV.5), and, 
perhaps most important, the redefinition of Ep (IV.4).
Note that the restart option can be repeated as many times as one 
wants within the same job.



correction" to P ).
In order to understand what Is meant by that, consider an 
"autoembedding" case. It corresponds to defining NSTAA, NSTA1, NSTCC 
in card 4 as 0, 0, n, respectively. That is, nothing is changed in the
crystal, and the calculation is performed by considering a C zone
comprising n stars of atoms. If the calculation were entirely correct, 
the resulting P would be exactly the same as for the host crystal.
Differences AP ' are a measure of approximations in the calculation. It 
is found that in order to reach a good agreement with the exact
results, very tight tolerances must be specified, with very high
costs. The errors affect especially terms at the border of the 
cluster. The idea is that this kind of errors in the coupling
correction are largely independent of the type of defect considered,
since they are originated by the absence of terms which go very deeply
into the surrounding host crystal. Therefore, one can use. the value 
AP ’ evaluated exactly in an autoembedding calculation for the defect 
calculation itself.
The procedure is as follows (the temporary unit FT19 and the permanent 
one FT20 are used):
- Choose a set of tolerances (not too tight ones) and a value of n:
- set (card 2 a ) LPR(60)=1
- run the autoembedding case 0 0 n for a given origin (card 4)
The corresponding A P 1 is written on FT20.
In order to use it:
- Consider a defect problem referring to the same origin;
- use the same tolerances;
- choose a triplet NSTAA, NSTA1, NSTCC with NSTCC=n-NSTAl+NSTAA (the 
border of the C cluster coincides with the preceding one);
- decide from which "shell" on the two sets of atoms in cluster C 
coincide (for Instance, in the case of a carbon impurity in silicon,
minimal basis set, the correspondence is between the "old" shells, 
starting from the fourth one, and the "new" shells, starting from the 
third one; in the case of a vacancy in silicon, the correspondence 
starts from the fourth old one with the first new one on). Define i 
and j the number of shells that must be "suppressed" in the two 
systems for having the correspondence (in the first example, they are
3 and 2, in the second example they are 3 and 0);
- define (card 2 a ) LPR(60)*-ijx, that is, a negative three figure 
number, whose first figure equals 1, the second j, and the third is
any number (but, if both i and j are 0 and you want to recover AP ’, x 
must be different from 0). In the two examples above, LPR(60)=-321 and 
-301, respectively,

IV.7 BASIS SET

Note that for host crystal atoms, one must use the same basis set as 
adopted for the periodic calculation that generates units FT09 and 
FT26; for the choice of those functions, the prescriptions and 
cautionary statements apply, as described in Chapter V of CRYSTAL'S 
Instruction Manual. For impurity atoms, it seems reasonable that basis 
set of similar quality are adopted. Not much experience exists, 
however, concerning this point (see however Nada's study of Li 
impurities in MgO).



from zero are requested). It is indifferent which one is set where, 
except for LPR(50) and LPR(60) which should be set in card 2a.
Printing commands that can be activated are specified in Appendix A.
A few LPRs are used as parameters or for special purposes; they are:
- LPR(48) "percentage of normalization" (IV.3.c and d);
- LPR(49) stop after collection of prel. information: see Appendix A
- LPR(50) stop after collection of prel. information: see Appendix A
- LPR(60) "AP* creation and recovery" (IV.6.c);

IV.9 EXAMPLES OF INPUT

Example 1.
Cards

AUTOEMBEDDING (0 0 1) IN HEXAGONAL 
1
60 1
1 5 5 5 5 5 7 8  19 2 2 2  9575 100 0

2.694905 0.00000 0.00000 0 0 1

0
5 7 0 0 0 10 0 -1000 1000 3

999

Comments

BN

(Will save A P f information)
(No reordering of stars, 
good tolerances, high mixing,
0.1 a.u. safety zone ar. E p , 
no redefinition of Ep)
(The origin coincides with the B 
atom in CRYSTAL coordinates; 
the C cluster coincides with 
that boron atom)

(No other printing options)
(5 Iterative cycles are allowed 
if conv. is not within 10- 7 ;
P matrix is neither recovered 
nor saved; no shift option is 
used; eigenvalues within 0.01
a.u. are grouped together; 
after the first three cycles 
only eigval. within -1 and 1
a.u. are treated self-consly) 
(end of cards)

\k



AL IMPURITY IN HEXAGONAL BN (2 2 3)
0 (No printing options)
1 4 4 4 4 5 9  19 2 2 2  9585 300 500 (Not as good tols as in Ex.l;

2.694905 0.00000 0.00000 2 2 3

13. 2.694905 0.00000 0.00000

7. 1.397452 -2.247253 0. (REL -0.

1
48 50
10 7 1 1 0 100 0 -1000 1000 3

13 3
0 0 3 2. 0.
0 1 3 8. 0.
0 1 3 
5 2

3. 0.

0 0 3 2 . 0.
0 1 3  
7 2

3 . 0.

0 0 3 2. 0.
0 1 3  
99 0
1

5. 0.

9 9080 0 10

-1000
999

1000 3

Example
Cards

3.

Ep is set at 0.05 a.u.)
(The origin is as in Ex.l;
2 stars are elimin. (4 atoms);
2 stars are introd.; C cluster 
comprises 3 stars, 10 atoms) 

(The A1 impurity substitutes 
the central boron atom)

) (The star of substituted N atoms 
is set 0,1 a.u. inside with 
respect to original position)

(50% renormallz.: IV.3.c)
("old" P matrix is read from 
F T 3 1 ; "new" P matrix will be 
saved on FT32 for subseq, use: 
see Example 1 of section IV.9; 
eigval within 0.1 a.u.are 
grouped;active zone as in Ex.l)

(St. 3G basis set for A 1 )

( " B)

( " N)

(Restart option is activated)
(Ep is set to crystal value; 
eigval. within 0.01 are groupd) 
(Active zone as above)

Comments

SUBSITUTIONAL C IN SI (2 2 2)
1
60 -321
1.287368 1.287368 1.287368 2 2 2 
6. 1.287368 1.287368 1.287368
14. 3.862104 3.862104 -1.287368
1 4  4 4 4 6 8 19 2 2 2 90 80 100 0
0
20 6 1 1 0 30 0 -1000 1000 3 ("old" P matrix is read from 

FT31, new one saved on FT32)
14 3
0 0 3 2 . 0 .
0 1 3 8 . 0 . (St. 3G basis set for Si)
0 1 3 4. 1 .58 (change of scale fac
6 2
0 0 3 2 . 0 . ( " C)
0 1 3 4 . 0 .
99 0
999

(Host crystal's a=5.45 A)

("Long range recovery": IV.6.c) 
(Origin at Si X X M)
(Impurity at origin)
(Neigh, of C are unrelaxed)

I?



Cards Com me nt s
INTERSTITIAL C IN SI TETRAHEDRAL SITE (1 0 2)
2
60 -21 41 2 ("Long range recovery": IV,6.c

printing geom. information)
1 4 4 4 4 4 6 8  19 2 2 2  9585 100 0
3.862104 3.862104 3.862104 1 0  2 (Origin at centre of cube;
6. 3.862104 3.862104 3.862104 (C added " ” " )
1

(shift option, IV.3.d, Is used 
)0 -1000 1000 3 intrp.intrv, 0.1, norm.75%)

(St. 3G basis set for Si)
(change of scale fac.

( " C)

48 75
20 6 
14 3

0 0 1 30

0 0 3 2. 0.
0 1 3 8. 0.
0 1 3  
6 2

4 . 1.58

0 0 3 2. 0.
0 1 3  
99 0 
999

4. 0.

Example 5.

Cards Comments

INTERSTITIAL C IN SI HEXAGONAL SITE (1 0 2)
2
60 -21 43 3

1 4 4 4 4 4 6 8  19 2 2 2  9585 100 0 
2.574836 2.574836 5.149472 1 0  2
6. 2.574836 2.574836 5.149472 
0
20 6 0 0 0 30 0 -1000 1000 3 
14 3

0.  
0.
1.58

0 0 3 2 
0 1 3  8 
0 1 3  4 
6 2
0 0 3 2 
0 1 3  4 
99 0 
999

0.
0.

("Long range recovery": IV.6.c 
printing neighborhood inform.

(Origin at hexagonal site)
(C added " " " )

(St. 3G basis set for Si)
(change of scale fac.

( C)



1. The ECHD is calculated at the nodes of a 2-dimensional net in a 
parrallelogram-shaped domain defined by points A B and C as in the 
figure below.

A

y

B C
x

In this example, the number of points on the B-A segment, defined by 
the input variable NPY, is 7. The A-B-C angle can differ from 90*.
The number of points along the B-C axis is set automatically by the 
program in such a way that Ax * Ay.
2. The position of the three points A, B and C can be specified both 
by their cartesian coordinates referred to the "old11 origin (IMODE=0), 
or by the corresponding position of 3 nuclei (IMODE=l). In the latter 
case, if these nuclei belong to host crystal atoms, they are
identified by their label as it appears in the output of CRYSTAL, and 
by the crystallographic indices of the cell in which they are located; 
if they belong to the A zone, see comment in section III.3. If B and C 
coincide, the ECHD is calculated along the segment B-A.
3. The B-A direction is taken as the conventional y axis, and B-C 
represents the x axis.
4. The ECHD values are truncated to 10.0 a.u. and are printed in
integer format in units of 10"4 a.u. ; on the FT25 unit the truncated 
densities are stored in a.u. (not multiplied by any factor).
5. The symmetry is used to restrict the calculation of ECHD to the
irreducible part of the specified A-B-C domain. To maximize the use of 
symmetry, the points of the net should include all symmetric positions 
in the selected plane. For example, make B co-incident with the
origin, A and C with the extremes of two lattice vectors, and choose 
NPY=4n+1 for (100) faces of cubic crystals, or NPY * 6n+l for (0001) 
faces of hexagonal crystals.



Example 1. Hap In the basal plane concerning the calculation whose 
Input is given in Example 2 of section IV.9. Results stored on unit 
FT32 there are here read from FT31.

AL IMPURITY IN HEXAGONAL BN (2 2 3)
0 (No printing options)
1 4 4 4 4 3 9  19 2 2 2  9585 300 500 (Not as good tols as in Ex.l;

other parameters are not used)
2.694905 0.00000 0.00000 2 2 3 (The origin is as in Ex.l;

2 stars are elimin. (4 atoms);
2 stars are introd.; C cluster
comprises 3 stars, 10 atoms)

13. 2.694905 0.00000 0.00000 (The A1 impurity substitutes
the central boron atom)

7. 1.397452 -2.247253 0. (REL -0.1) (The star of substituted N atoms
is set 0.1 a.u. inside with 
respect to original position)

1
48 50 (read but not used)
10 7 0 1 0 100 0 -1000 1000 3 (read but not used)
13 3
0 0 3 2. 0.
0 1 3  8. 0 . (St. 3G basis set for A 1 )
0 1 3  3. 0 .
5 2
0 0 3 2. 0. ( " B)
0 1 3  3. 0.
7 2
0 0 3 2. 0. ( " " N)
0 1 3  5. 0.
99 0
61 1 0 0 The map of the defective crystal
5.79 -4.668 0. is drawn within a rectangle
-2.69 -4.668 0. in the basal plane
-2 .69 4.668 0.



A P P E N D I X  A - A V A I L A B L E  P R I NT IN G  O PTIONS

<<<< SUBROUTINE ASTART >>>> 

L P R (30) VARIABLES COMMENT

> 1

> 2

S
EIG.R

OVERLAP MATRIX 
EIGENVALUES, EIGENVECTORS

<<<< SUBROUTINE ATCALC >>>> ,

LPR(33) VARIABLES COMMENT

>  =  1 PMUNU DENSITY MATRIX
a -  1 PMUNU DENSITY MATRIX AT LAST CYCLE
>  =  2 RISU COUPLING DENSITY MATRIX

COnA BCOST SUM OF CLUSTER DENSITY MATRIX 
CONSTANT DENSITY MATRIX

AND

>«=4

LPR (46)

EMME COUPLING MATRIX AND COUPLING MATRIX 
FIRST DERIVATIVE (FOR EACH EIGVALUE)

> 0 P CONTRIBUTIONS CONTRIBS TO P ON 1ST ATOM OF C STARS
> 1 . . . ANALYSIS ____SAME PER EACH EIGENVALUE

<<<< SUBROUTINE BIECLU >>>> 

L P R (31) VARIABLES

= -1  
>“ 1

BCOST
BCOST

COMMENT

FOCK MATRIX AT LAST CYCLE 
FOCK MATRIX

<<<< SUBROUTINE CLAVIC >>>> 

L P R (43) VARIABLES

> = 1 NACD
NSHCD
JRAB
NAVIC

I AVI C 

INVIC

NCRYVI

>-3

ICRYVS,ICRYVG

IPOLM,IPALM

COMMENT

NUMBER OF ATOMS IN C + D* ZONE 
NUMBER OF SHELLS IN C + D* ZONE 
LIST OF SHELLS IN C+D* ZONE 
NAVIC(MU, L I S ) GIVES THE NUMBER OF 
NEIGHBOURS OF MU WITHIN TOLERANCE 
TO-TOLL(LIS), WHICH BELONGS TO A ZONE 
IAVIC(MU,NUM) GIVES THE NUM-TH 
NEIGHBOUR OF MU WITHIN TO 
INVIC(MU, LI S ), FOR EVERY MU HAVING 
NEIGHBOURS IN A ZONE, GIVES THEM IN 
BINARY NOTATION 
CRYSTAL NEIGHBOURHOOD :
NCRYVI(MU,LIS) GIVES THE NUMBER OF 
NEIGHBOURS OF MU (IN NUMERATION OF 
PERFECT CRYSTAL) WITHIN TO=TOLL(LIS) 
CRYSTAL NEIGHBOURHOOD :
ICRYVS(MU,NUM), ICRYVG(MU,N U M ) GIVE 
THE SHELL TYPE AND THE G-VECTOR OF 
NUM-TH NEIGHBOUR
ADDRESS FOR IRREDUCIBLE AND REDUCIBLE 
FOCK AND DENSITY MATRICES

10



L i F K  I ) VAKlADLLd tunncni

>0 L ,A L ,B L ,N P T ,E E ,E , 
NTUT

BAND, BAND LIMITS, NR OF POLYNOMIALS, 
FERMI LEVEL, EIGENVALUE, DIMENSION OF 
EMME MATRIX

<<<< SUBROUTINE ENEMAD >>>>

LPR (34 ) VARIABLES COMMENT

=2 OR >8 I,K,VIVI POTENTIAL (AND DERIVATIVES) IN THE 
POSITION OCCUPIED BY I-TH NUCLEUS 
AND CREATED BY K-TH ATOM OF PERFECT 
(FIRST PRINT) AND DEFECTIVE CRYSTAL

< « <  SUBROUTINE LOWDCL >>>>

L P R (32) 
>0 
= -2

>2 
> = 4

VARIABLES
EIG
R

R
F

COMMENT
EIGENVALUES
EIGENVECTORS AT CYCLE 0 AND AT LAST 
CYCLE
EIGENVECTORS 
FOCK MATRIX (C,C)

<<<< SUBROUTINE MADCLU >>>>

L P R (1) VARIABLES COMMENT

>0 X3

EAIJ
DERINT
DERONT

POSITION IN WHICH POTENTIAL IS 
COMPUTED
CONTRIBUTION TO POTENTIAL FROM ATOMS 
FIRST DERIVATIVES 
SECOND DERIVATIVES

<<<< SUBROUTINE MADEL2 >>>>

L P R (1 ) VARIABLES COMMENT

>0 V O L ,F A T ,... INFORMATION ON EWALD PARAMETERS

<<<< SUBROUTINE MONCLU > » >  

L P R (44) VARIABLES

>0
>1

>2

NSHTOT
IVET

OTZ
ATZ

>3 CJ

COMMENT

NUMBER OF SHELLS IN QUANTUM ZONE 
LIST OF PENETRATING SHELLS IN EACH 
DISTRIBUTION (L1,L2), WHERE LI IS 
IN C ZONE AND L2 IS A NEIGHBOUR OF LI 
KINETIC INTEGRALS
NUCLEAR-ELECTRON ACTRATION INTEGRALS 
(N.B.: IN EACH ATZ(I), CORRESPONDING 
TO A PREFIXED DISTRIBUTION (L1,L2),
IS CONTAINED THE SUM WITH RESPECT 
TO ALL PENETRATING NUCLEI IN (L1.L2) 
FIELD INTEGRALS

21



0

>1
>5

QVRS MULTIPOLE MOMENT OF PRIMITIVE SHELLS 
IN HOST CRYSTAL UP TO ORDER L=LPR(20) 
SUM OF NET AND NUCLEAR CHARGES 
MULTIPOLES FOR ALL COUPLES OF AOs

<<<< SUBROUTINE MULP01 >>>>

L P R (20) VARIABLES COMMENT

>3 QVRS MULTIPOLE MOMENT OF UNPERTURBED PART 
OF SHELLS IN C* ZONE,
UP TO ORDER L=LPR(20)-2

<<<< SUBROUTINE PCOST >>>>

L P R (38) VARIABLES COMMENT

>0 PCOST CONSTANT CONTRIB. TO DENSITY MATRIX

<<<< SUBROUTINE PIL >>>>

L P R (39) VARIABLES COMMENT

>0 EPIUS, EMENS,FAC1,FAC2 BAND LIMITS (IN X UNITS), FACTORS TO 
INTERPOLATE EMME VALUE 
(N.B.: THIS PRINTING IS ACTIVATED 
ONLY IF EIGENVALUE FALLS INSIDE 
CRITICAL INTERVAL)

<<<< SUBROUTINE PSTART >>>>

LPR(30) VARIABLES COMMENT

>0 PMUNU STARTING DENSITY MATRIX

<<<< SUBROUTINE QGACLU >>>>

L P R (20) VARIABLES COMMENT

>2

>4

QVRS MULTIPOLE MOMENT OF SHELLS IN C+D* 
ZONE IN THE CLUSTER, UP TO ORDER L 
=LPR(20)-2
INDIVIDUAL CONTRIB. TO MULTIPOLES

LPR(48)
= N N PERCENT OF NORMALIZATION OF CHARGE

<<<< SUBROUTINE SCFCLU >>>>

LPR(31) VARIABLES 
=-1 BCOST

COMMENT
FOCK MATRIX AT CYCLE 0

LPR(33) VARIABLES 
=-1 BCOST

COMMENT
DENSITY MATRIX AFTER FIRST CALL TO 
ATCALC



>=1 BCOST CONSTANT CONTRIBUTION TO THE FOCK
MATRIX (MADELUNG, KINETIC, NUCLEI- 
ELECTRONS BIELECTRONIC ATTRACTION, 
BIELECTRONIC REPULSION)

> = 2 L1,L2,L3,L4 SHELL INDICES OF BIELECTR. INTEGRALS
>*3 RP CORRESPONDING VALUE OF INTEGRAL

<<<< SUBROUTINE SYMEMB >>>> 

LPR(41) VARIABLES 

>=1 IATG

INAW 
11SY

> - 2

>*=3 

> = 4

INVOR

IFATH

MVFN

IMVN

IFFW

ISYY 

MG123

I N Z , I I N A , I I G , R ( I )

COMMENT

FROM THE PRIMITIVE ATOM AND FROM 
THE G-VECTOR CORRESPONDING TO A HOST 
CRYSTAL ATOM, IT GIVES THE ATOM IN 
THE NUMERATION OF CLUSTER 
FROM CLUSTER ATOM GIVES PRIMITIVE AT. 
FROM THE ATOM OF THE CLUSTER IT GIVES 
THE GENERATING SYMMETRY OPERATOR 
FOR EACH STAR AND SYMMETRY OPERATOR 
IV IT GIVES THE ATOM B*IV**(-1)*A 
FROM THE ATOM OF THE CLUSTER IT GIVES 
THE STAR TO WHICH IT BELONGS 
NUMBER OF SYMMETRY OPERATOR IN THE 
DEFECTIVE SOLID (LABELS REFER TO THE 
OPERATORS IN THE PERFECT CRYSTAL)
LIST OF SYMMETRY OPERATORS IN THE 
DEFECTIVE SOLID
INVERSE INFORMATION: FOR EACH SYMM. 
OPERATOR OF THE PERFECT CRYSTAL, IT 
GIVES THE CORRESPONDING LABEL IN THE 
SUBSET OF THE CLUSTER SYMMETRY GROUP 
ISYY(V I ,V 2 ) GIVES SYMMETRY OPERATOR 
V3=V1*V2
VECTOR SUM OF THREE G-VECTORS IN THE 
THE PERFECT CRYSTAL
THEY ARE THE ANALOGOUS OF INZW, INAW, 
IIGW BUT ARE REFERRED TO THE PERFECT 
CRYSTAL. R IS THE SQUARE OF THE 
DISTANCE BETWEEN THE ORIGIN OF THE 
CRYSTAL AND THE I-TH STAR

<<<< SUBROUTINE SYME2 > » >  

LPR(41) VARIABLES 

>«5 NACLUS

NICLUS

LATLAP

NINIS

COMMENT

FROM THE SHELL IN THE 
CLUSTER, IT GIVES THE 
NUMERATION OF CLUSTER 
FROM THE SHELL IN THE 
CLUSTER, IT GIVES THE 
NUMERATION OF PERFECT 
FROM THE SHELL IN THE 
CLUSTER, IT GIVES THE 
NUMERATION OF PERFECT 
FROM THE ATOM IN THE 
CLUSTER, IT GIVES THE 
IN THE NUMERATION OF

NUMERATION OF 
ATOM IN THE

NUMERATION OF 
ATOM IN THE 
CRYSTAL 
NUMERATION OF 
SHELL IN THE 
CRYSTAL 

NUMERATION OF 
FIRST SHELL 

CLUSTER



L P R (31) V A R IA BL ES C OMMENT
> = 2 BCOST FOCK MATRIX (CONSTANT+MONOELECTRONIC

CONTRIBUTIONS)

<<<< SUBROUTINE VICINI >>>>

LPR(41) VARIABLES COMMENT

>-6 ILL NEIGHBOURS OF THE SHELL PASSED AS AN
ARGUMENT TO VICINI WITHIN THE GIVEN 
TOLERANCE

<<<< CONTROL CONDITIONS >>>>

LPR {49) COMMENT

=1 SHELCL is not called
=2 MONCLU is not called

<<<< STOP CONDITIONS » > >

LP R (50) COMMENT

=1 stop after SYMEMB
=2 stop after MONCLU
=3 stop after SHELCL without comp, of integrals
=4 stop after SHELCL

<<<< SPECIAL FEATURES OF COMPUTATION > » >

LPR{60) -----> (see section IV.8)

LPR(101), L P R (102) (standard values 5, 8)
These two parameters are used for specifying the computational 
conditions for the calculation of the irreducible integral that enters 
the evaluation of the M and M 1 matrices (Ref. 1, eq. B3, B4).
LPR(lOl) specifies which option must be used, either the "analytic" 
calculation, or the power series expansion of l/(x~e); high values of 
LPR(101) correspond to the former option being preferred to the latter 
except in the case of very narrow bands, far from E p . If the power 
series option is active, LPR(102) specifies the number of significant 
figures of the result.

INDEX OF "LPR" OPTIONS : 1 (Madclu), 11 (Mulpol), 20 (Qgaclu,Mulpol,
Mulpol), 30 (Astart, Pstart), 31 (Bieclu,
Scfclu,Totclu), 32 (Lowdcl), 33 (Atcalc, 
Scfclu), 34 (Enemad, Monclu),
38 (Pcost), 39 (Emmeca), 41 (Symemb,
Syme2, Vlcini), 42 (Shelcl), 43 (Clavic),
44 (Monclu), 48 (Qgaclu), 49 (Control cond.), 
50 (Stop cond.)
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A P P E N D I X  B. I NF ORMATION ON V AR I A B L E S  IN COMMON

COMMON CDALL

Information about the set C - C+D*

JRAB(NJRAB) 

IRABS(NIRABS) 

JRABS(NJRABS)

JRAB(JR) GIVES THE JR-TH SHELL LI OF THE SET C+D* 
N.B.: shells are not arranged by distance 
IRABS(L ) GIVES THE POSITION IR 
OCCUPIED BY SHELL L BELONGING TO C ZONE 
JRABS(LI) GIVES THE POSITION JR IN THE VECTOR JRAB 
occupied by shell LI belonging to C+D* zone 

IPALM(NIRAB,NJRAB) IPALM(IR,JR) IS THE STARTING POSITION OF THE
sub-matrix (C - C+D*) corresponding to the 
shells L , L1

* * * * * * * * * * * * * * * * * * * * * *******************************#*****************:

COMMON CLUST 

IMVN(48)

INZW(NSTACD) 

INAW(NATOCD) 

IIGW(NATOCD) 

11SY(NATOCD ) 

IATG(NAG IAP)

NINIS(NATOCD)

NACLUS(NJRABS)

NICLUS(NJRABS)

LATLAP(NJRABS)

NSTIG(NNSTIG) 
NTIP(NCHNA) 
IFATH(NATOCD)

INVOR(NINVOR)

IFFW(48):

ISYY(48,48):

IMVN(I ) IS THE I-TH SYMMETRY OPERATOR OF THE 
defective crystal
INZW(1ST) GIVES THE FIRST ATOM CORRESPONDING 
to the star 1ST
INAW(IAT), FROM THE ATOM IAT OF THE CLUSTER, GIVES 
the primitive atom
IIGW(IAT), FROM THE ATOM IAT OF THE CLUSTER, GIVES 
THE G-VECTOR
IISY(IAT) FROM THE ATOM IAT OF THE CLUSTER, GIVES 
THE SYMMETRY OPERATOR
FROM PRIMITIVE ATOM IAP AND FROM G-VECTOR IG 
IATG((IAP-1)*NAF+IG) gives the atom IAT of the 
cluster, where NAF is the number of atoms in 
elementary cell
IATG((IAP-1)*NAF+IG)=0 if atom belongs to A1 zone 
NINIS(IAT) FROM THE ATOM IAT OF THE CLUSTER, GIVES 
the first shell of IAT in the numeration of cluster 
NACLUS(ISH) FROM SHELL ISH OF THE CLUSTER, GIVES 
the atom IAT of the cluster
NICLUS(ISH) FROM SHELL ISH OF THE CLUSTER, GIVES 
THE PRIMITIVE ATOM IAP
LATLAP(ISH) FROM SHELL ISH OF THE CLUSTER, GIVES 
t h e  p r i m i t i v e  9 h e l l
PROVIDES ADDRESSES FOR EMME MATRICES
NTIP(IAT) GIVES TYPE OF ATOM IN ZONE A
IFATH(IAT), FROM THE ATOM IAT, GIVES THE STAR 1ST
to which it belongs
INVOR(I ) FOR EACH STAR I AND SYMMETRY OPERATOR 
IV gives the atom B=IV**(-1)*A
Symmetry operators in the defective solid (labels 
are referred to operators in the perfect crystal 
ISYY(V1,V2) gives the symmetry operator VI*V2



A Zone n e i g h b o u r h o o d s
IAVIC(NIAV1,N IAV2) IAVIC(MU,N U M ) GIVES THE NUM-TH NEIGHBOUR OF THE

shell MU within tolerance TO (see after)
NAVIC(NIAV1,6) NAVIC(MU,LIS) GIVES THE NUMBER OF NEIGHBOURS OF MU

within tolerance TO-TOLL(LIS)
INVVIC(NJRABS,6) INVVIC(MU, LIS) FOR EVERY MU HAVING SOME NEIGHBOUR

IN A ZONE, GIVES SUCH ONES IN BINARY NOTATION

Crystal neighbourhoods

ICRYVS(NSHCRY,NIAV2) ICRYVS(MU,NUM) GIVES NUM-TH NEIGHBOUR OF THE
shell MU into the cell 

ICRYVG(NSHCRY,NIAV2) ICRYVG(MU,NUM) GIVES THE NUM-TH G-VECTOR OF THE
shell MU into the cell 

NCRYVI(NSHCRY.6) NCRYVI(MU,LIS) GIVES THE NUMBER OF NEIBRS OF MU
(in the numeration of perfect crystal) within 
tolerance TO=TOLL(LIS)

f t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

COMMON MOLEC

COORDINATES OF THE ORIGIN OF THE CLUSTER 
CHN(I) CHARGE OF THE DEFECTIVE ATOMS IN THE STAR I 
of A zone
XX A (3.1) ARE THE COORDINATE OF THE DEFECTIVE ATOMS 
in the star I of A zone

i n * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

X O R (3)
CHNA(NCHNA)

X X A (3,NCHNA)

COMMON PFCOST

PMUNU(NPRID) DENSITY MATRIX (C,C+D*)
BCOST(NPIRR) FOCK MATRIX (C IRR..C+D*) (MONCLU,...)

or density matrix (C irr.,C+D*) (atcalc) 
QVRS(NJRAB*25) MULTIPOLE MOMENTS. QVRS IS A BLOCK VECTOR. EACH

block corresponds to a component of the aultipole 
and has a length equal to the number of shells in 
C+D* zone.
In the first block, shell charges are arranged in 
same order present in JRAB vector.
N.B.: in MULPOL, QVRS are referred to the perfect 
CRYSTAL. THEN EACH BLOCK HAS A LENGTH OF LAP,NUMBER 
of shells in the perfect crystal.

f i l e * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

COMMON PPROVV 

ICORR(NJRAB)

ILICA(NJRAB)

LICA(NLICA)

ICORB(L + l )-ICORB(L ) GIVES THE NUMBER OF AO 
corresponding to the L-th shell of vector JRAB 
(see COMMON CDALL)
ILICA(M+1)-ILICA(M) IS THE NUMBER OF NEIGHBOURS 
D zone of the M-th shell of vector JRAB 
IN LICA, FOR EACH SHELL OF JRAB, ARE LISTED THE 
corresponding neighbours in D zone

IN
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v u n r t u i i  * u n  i  o u

Information about the set C irreducible - (C+D*)*

JSAB(NJRAB) JSAB(JS) GIVES THE JS-TH SHELL LI OF THE SET FORMED
by the neighbours of shells in C irriducible zone 
(set (C+D*)')
N.B.: shells are not arranged by distance 

ISABS(NIRABS) ISABS(L) GIVES THE POSITION IS IN THE VECTOR ISAB
occupied by shell L belonging to C irriducible zone 

JSABS(NJRABS) JSABS(Ll) GIVES THE POSITION JS IN THE VECTOR JSAB
occupied by shell LI belonging to the (C+D*)' zone 

IPOLM(NSTARC,NJRAB) IPOLM(IS.JS) IS THE STARTING POSITION OF THE
sub-matrix (C irr.- (C+D*)') corresponding to the 
shells L,L1

f t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * # : * *

COMMON SHIFT

EIGOLD(NAOC) MEMORIZES EIGVALS FOR SHIFT OPTION
FOLD(N A O C ,NAOC) MEMORIZES FOCK MATRIX
EIG(NAOC) MEMORIZES NEW EIGENVALUES

f t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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APPENDIX C. MEANING OF INF AND PAR VARIABLES

********** INFORMATION ON CLUSTER ********************************

INF (101) tr NOF NUMBER OF ATOMS IN A ZONE + NAF
INF (102) = NSTAA number of stars in A zone
INF (103) rz NSTCC number of stars in C zone
INF (104) - NSTF number of stars classified
INF (105) = NATF number of atoms classified
INF (106) = MVFN number of symmetry operators in the cluster group
INF (107) = INTPER - 0 computes all bielectronic integrals

if ■ 1 computes only the integrals involving 
A zone

INF 108) s NREC N. OF BLOCKS OF BIELECTRONIC INTEGRALS (NUMBER OF 
I/O operations on unit 1004)

INF 109) = LAFCLU laf calculated for the crystal
INF 124) 3 NSTA1 NUMBER OF STARS IN ZONE A 1
INF 125) » NEIGE NUMBER OF GROUPED EIGENVALUES
INF 126) S LIMB DIMENSION OF IRREDUCIBLE P MATRIX
INF 127) = IRIMB " REDUCIBLE
INF 129) NLIN NUMBER OF ATOMS IN ZONE A 1
INF 130) = NATC NUMBER OF ATOMS IN ZONE C
INF 131 ) = NATA NUMBER OF ATOMS IN ZONE A
INF 150) * INDEX number of sub matrix of field integrals written on 

unit 1001
INF 151) = NSHLC NUMBER OF SHELLS IN ZONE C
INF 152) = ITOX order number of hardest tolerance
INF 153) a NSHLA NUMBER OF SHELLS IN ZONE A
INF 154) a NSHCD total number of shells in C+D* zone
INF 155) = NACD number of atoms in C+D* zone
INF 160) a ICONT total number of AO in the cluster
INF 165) * IBLOS number of I/O blocks of multipole Integrals 

used in QGACLU
INF(172) = NCYC CYCLE NUMBER

* * » * * * * * * * * INFORMATION READ BY THE SUBROUTINE INPUTE ********

INF 110) a IJK IF NOT ZERO, REORDERS STARS OF ATOMS
INF 111) = T1 bielectronic coulomb overlap
INF 112) = T2 bielectronic coulomb penetrating
INF 113) a T3 monoelectronic
INF 114) = T4 exchange overlap
INF 115) s= T5 exchange pseudooverlap
INF 116) = T6 highest security tolerance
INF 117) = T7 radius quantum zone
INF 118) = T8 pole order
INF 119) = T9 derivative order in madelung zone
INF 120) = T10 external multipole order in Madelung zone
INF 121 ) = Til percent of mixing for fock matrix in scf
INF 122) = T12 DELTA/10000, (see EMMECA)
INF 123) T13 Fermi level/10000, (if » 0, Fermi level is n 

REDEFINED)
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INF(170 ) = max number of SCF cycles
INF(171) ■ tolerance for convergency In scf
INF(173) - If equal 1 density matrix Is written on external

unit (lo32) for recovery 
INF(174) = If equal 1 density matrix Is read from external

unit (lo31) for recovery 
1NF(175) = If equal 1 then use the "shift option", wlch Is a

constant shift of the eigenvalues set in the SCFCLU 
(this option disables the renormalization option) 

INF(176) ~ TOL FOR GROUPING EIGENVALUES
INF(177 ) = INTERVAL FOR SHIFT INTERPOLATION
INF (178) = LOWER LIMIT FOR ".ACTIVE ZONE"
INF(179) = UPPER " "
INF(180 ) = N.CYCLES BEFORE USING ACTIVE ZONE OPTION

*********** INFORMATION FROM CRYSTAL *****************************

number of symmetry operations in perfect crystal 
number of bands in the system 
fock and density irriducible matrix dimension 
number of atoms in elementary cell of host crystal 
number of shells in elementary cell of host crystal

INF(2) - MVF
INF(7) * NDF
INF(10) = NTUT
INF(24) = NAF
INF(20) = LAF

*********** PAR(i ) VARIABLES DEFINED DURING THE PROGRAM ************

PA R (20) = NNUC nuclear charge in A+B zone (subroutine SYMEMB)
P A R (22 ) E QCLU1 sum of net charge in C“A ‘+.B zone with electronic 

charge in D* zone and with NNUC (subroutine MULPOL)
PA R (30) S ENU (SUBROUTINE ENECAL)
PA R (33) 3 ENER (SUBROUTINE ENEMAD)
PAR(34) = ENE1 (SUBROUTINE ENESCF)
PAR(35) = ENE2 (SUBROUTINE TOTCLU)
P A R (36) = ENAC (SUBROUTINE ENECAL)
PAR(37) = ENAT (SUBROUTINE ENECAL)
P A R (50) 3 CELEC total number of electrons in the cluster
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