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Highlights

• We study the stochastic supervision problem where only probabilistic

assessments are provided for classification.

• We propose four novel generalisations of stochastic supervision models.

• We also develop four new EM algorithms for the generalisations.
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Abstract

When the labelling information is not deterministic, traditional supervised

learning algorithms cannot be applied. In this case, stochastic supervision

models provide a valuable alternative to classification. However, these mod-

els are restricted in several aspects, which critically limits their applicabil-

ity. In this paper, we provide four generalisations of stochastic supervision

models, extending them to asymmetric assessments, multiple classes, feature-

dependent assessments and multi-modal classes, respectively. Corresponding

to these generalisations, we derive four new EM algorithms. We show the

effectiveness of our generalisations through illustrative examples of simulated

datasets, as well as real-world examples of three famous datasets, the MNIST
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dataset, the CIFAR-10 dataset and the EMNIST dataset.

Keywords: EM algorithms, imperfect supervision, finite mixture model,

stochastic supervision

1. Introduction1

Generally speaking, the aim of various statistical learning methods is to2

infer the real label y of an input instance x. Classification and clustering are3

two extreme ends in the sense of amount of labelling information provided4

for the inference of y. In classification, the deterministic labels {yn}Nn=1 of5

N training instances {xn}Nn=1, represented by a binary or multilevel cate-6

gorical random variable y, are usually provided in advance to train a clas-7

sifier f(y|x) on the information from both the input and output spaces via8

({xn}Nn=1, {yn}Nn=1). The trained (supervised) classifier is then used to infer9

the real label y of a test instance x. In contrast, in clustering, no labelling10

information is provided at all, hence a clustering method f(y|x) is built on11

the information from only the input space via {xn}Nn=1.12

In between classification and clustering, there exists partially-supervised13

classification [1–5] with various types of information provided to help in-14

ference. One example is called semi-supervised classification [6, 7], where15

only part of the deterministic labels {yn}Nn=1 are provided for classifier train-16

ing. Another example is called imperfect supervision [8–12], where there17

are some wrong deterministic labels provided in {yn}Nn=1. Multiple instance18

learning [13] also deals with partially-supervised setting, where determinis-19

tic labels are provided for bags of multiple instances rather than for each20

specific instance. In this paper, we discuss another partially-supervised21
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classification scheme called stochastic supervision, which, in contrast to all22

the cases aforementioned, provides no deterministic labels {yn}Nn=1 but only23

probabilistic assessments {zn}Nn=1 for inference of y. In other words, only24

some side information about the output is provided.25

A motivation of stochastic supervision is that, in practice, data are often26

labelled by certain experts or say supervisors with subjective labelling to27

some extent, and in many situations an expert cannot provide deterministic28

labels. For example, in medical diagnostic, an expert may not be perfectly29

sure whether a patient has a certain disease, and they can only provide a30

subjective assessment, which is often expressed in a probabilistic manner.31

These probabilistic assessments can be represented by continuous random32

variables, from a space different from the discrete space of output label y.33

On the basis of these assessments (or say probabilistic labels), the statistical34

classification problem, of fitting a model to the training data and inferring the35

real labels of the test data, was studied under the nomenclature of stochastic36

supervision [14–19].37

The research of stochastic supervision models for discriminant analysis38

was pioneered by Aitchison and Begg [14] and Krishnan and Nandy [15]. As39

with [15] we assume two classes, namely class 1 and class 2, with proportions40

π1 and π2 = 1− π1, respectively. In each class, the data available, including41

both the d-dimensional feature vector x of an instance and its supervisor’s42

assessment z that the instance belongs to class j, follow a class-dependent43

distribution fj(x, z), for j = 1, 2. The task is to infer the real label y of the44

instance (x, z).45

In [15], the class-dependent joint data-generating distribution fj(x, z) was46
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further factorised as fj(x, z) = fj(x)qj(z), by assuming that the features47

x and the assessment z are independent of each other in each class. By48

supposing the features x are continuous random variables in the range of49

(−∞,∞), it was assumed that x|y = 1 ∼ N(µ1,Σ) and x|y = 2 ∼ N(µ2,Σ),50

two class-dependent d-variate Gaussian distributions. We denote the pdfs51

of x|y = 1 and x|y = 2 as f1(x) and f2(x), respectively. In the meantime,52

as the probabilistic assessment z is a continuous random variable in the53

range of [0, 1], it was assumed that z|y = 1 ∼ Beta(a, b) and z|y = 2 ∼54

Beta(b, a), two Beta distributions symmetric between the two classes. We55

denote the pdfs of z|y = 1 and z|y = 2 as q1(z) and q2(z), respectively.56

That is to say, the model in [15] assumes that the data-generating process57

in class j follows a Gaussian distribution fj(x) for features x and a Beta58

distribution qj(z) for assessment z. Although the assessment z is given for59

each training instance x, the real label (denoted by y) is unknown, which60

leads the likelihood of the training instance, or say the joint distribution of61

x and z, as p(x, z) = π1f1(x, z) + π2f2(x, z) . Hence this is a latent variable62

(finite mixture) problem, and the model was fitted by an EM algorithm63

in [15].64

However, there are two technical issues with Krishnan and Nandy’s stochas-65

tic supervision model. Firstly, it cannot accept any assessment that z > 166

or z < 0, while in some real problems the assessment can be a random vari-67

able in the range of (−∞,∞). Secondly, the EM algorithm for this model is68

complicated, because there is no exact solution in the M-step for the estima-69

tion of certain parameters due to the adoption of the Beta distributions for70

assessment z.71
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In order to overcome the two issues above, Titterington [16] introduced72

a new supervisor’s assessment w = log z
1−z to replace the original z. This73

transformation is called additive logistic transformation [20], which extends74

the range of the assessment from [0, 1] to the real line and thus the assess-75

ment can be modelled by Gaussian distributions. In Titterington’s model,76

supervisor assessments q1(w) and q2(w) are assumed to follow two univariate77

Gaussian distributions N(−∆,Ω) and N(∆,Ω), respectively, where ∆ > 078

and Ω > 0. In this model, the constraints of equal variances and symme-79

try in the assessment distributions between the two classes are preserved.80

Then Titterington [16] provided an EM algorithm to estimate parameters81

{π1, µ1, µ2,Σ,Ω,∆}.82

In this paper, we aim to generalise Titterington’s model in four aspects,83

to make it more flexible and generic to deal with more complicated real-84

world classification tasks. We note that the first three aspects have been85

suggested and discussed by Titterington in section 5.2 of [16], though no86

detailed derivation was provided as we shall present in this paper. Our four87

generalisations are briefly described as follows.88

1. Asymmetric assessments. In both Krishnan and Nandy’s and Titter-89

ington’s models, the two class-dependent distributions of assessments90

qj(z) (or qj(w)) were symmetric and with equal variances. Our first91

generalisation aims to relax this restriction on the parameter setting of92

supervisor’s assessments.93

2. Multiple classes. The past models were for two-class discrimination.94

Our second generalisation is designed for classification of multiple classes.95

3. Feature-dependent assessments. In Krishhan and Nandy’s [15] and Tit-96
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terington’s [16] work, the assessment and the features were modelled97

independent of each other. Our third generalisation aims to model their98

dependence.99

4. Multi-modal classes. In the past research on stochastic supervision,100

each class was modelled by a Gaussian distribution, implying that there101

was only a single population for each class, which we call it a uni-modal102

class. In our fourth generalisation, we model the cases that each class103

contains multiple subclasses, making the class a multi-modal class.104

We shall detail the four generalisations in four subsections of section 2105

along with four EM algorithms and some numerical illustrations. In sec-106

tion 3, we present real-data examples to demonstrate the effectiveness of the107

generalisations.108

2. Generalised models and their EM algorithms109

2.1. Generalisation-1: asymmetric stochastic supervision110

Let us first make the parameter setting of stochastic supervision models111

more flexible. In Titterington’s model [16], the distributions of assessments112

in two classes are w|y = 1 ∼ N(−∆,Ω) and w|y = 2 ∼ N(∆,Ω). They are113

symmetric in the sense that their variances are the same and their means are114

the additive inverses of each other. Here as suggested by Titterington [16],115

we generalise them to w|y = 1 ∼ N(∆1,Ω1) and w|y = 2 ∼ N(∆2,Ω2). We116

denote the pdfs of w|y = 1 and w|y = 2 as q1(w) and q2(w), respectively.117

2.1.1. Formulation of generalisation-1118

Our notation is established as follows. The observable dataset is denoted119

by X = {X,W}, the latent variable set by Y = {Y }, and the parameter set120
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by θ = {π1, π2, µ1, µ2,Σ,Ω1,∆1,Ω2,∆2}, where X = {xn}, W = {wn} and121

Y = {yn}, for n = 1, . . . , N , are N instances, assessments and real labels122

of the instances, respectively. For each instance, yn = (yn1, yn2) is a latent123

variable vector (representing its real label) such that for class j we have124

ynj ∈ {0, 1} and for two classes together we have
∑2

j=1 ynj = 1. That is, yn125

is a latent indicator vector with only one element being true.126

Hence, for complete data (Y ,X ) = {(yn, xn, wn), n = 1, . . . , N}, the127

complete-data likelihood is128

p(Y ,X ) =
N∏

n=1

{[π1f1(xn)q1(wn)]yn1 + [π2f2(xn)q2(wn)]yn2} .

Since this model contains latent variables yn, we can estimate the model129

parameters by deriving an EM algorithm. In general, an EM algorithm [21]130

is an iterative algorithm providing a maximum likelihood solution for in-131

complete data. We can also use the EM algorithm for models with latent132

variables. In each of its iterations, the EM algorithm has two alternating133

steps, the expectation (E-)step and the maximisation (M-)step.134

In the E-step, we fix current parameters and compute expectation of the135

complete-data log-likelihood function with respect to the conditional distri-136

butions of latent variables given observed data X : Q(θ, θold) = EY|X ,θold(log p(Y ,X|θ)).137

In the M-step, we find new parameters by maximising the expectation138

obtained in the E-step: θnew = arg maxθQ(θ, θold) .139

2.1.2. EM algorithm of generalisation-1140

E-step. For the generalisation-1, in the E-step, we compute the posterior

probabilities of latent variables γ(ynj) = p(ynj = 1|X , θ). By the Bayes rule,
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we have

γ(ynj) =
p(xn, wn, ynj|θ)
p(xn, wn|θ)

=
πjN(xn|µj,Σj)N(wn|∆j,Ωj)∑2
j=1 πjN(xn|µj,Σj)N(wn|∆j,Ωj)

,

which are called responsibilities that class j takes for explaining xn [22].141

M-step. In the M-step, we take partial differential of l(θ) = Q(θ, θold) with142

respect to θ = {π1, π2, µ1, µ2,Σ,Ω1,∆1,Ω2,∆2} and set it equal to zero to143

obtain updated parameters θnew. It follows that144

µnew1 =

N∑
n=1

γ(yn1)xn

N∑
n=1

γ(yn1)

, µnew2 =

N∑
n=1

γ(yn2)xn

N∑
n=1

γ(yn2)

,

indicating that the updated mean µnewj of the features in class j becomes145

a weighted average of all data points from the two classes, weighted by the146

responsibilities; and similarly147

∆new
1 =

∑N
n=1 γ(yn1)wn∑N
n=1 γ(yn1)

, ∆new
2 =

∑N
n=1 γ(yn2)wn∑N
n=1 γ(yn2)

,

i.e., the updated mean ∆new
j of assessments in class j becomes a weighted148

average of all assessments over the two classes.149

Also, the updated covariance matrix of the features is150

Σnew =

N∑
n=1

2∑
j=1

γ(ynj)(xn − µj)(xn − µj)T

N∑
n=1

2∑
j=1

γ(ynj)

,

a weighted pooled covariance matrix; and similarly the updated variances of151

class-specific assessments are152

Ωnew
1 =

∑N
n=1 γ(yn1)(wn −∆1)

2

∑N
n=1 γ(yn1)

, Ωnew
2 =

∑N
n=1 γ(yn2)(wn −∆2)

2

∑N
n=1 γ(yn2)

.
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Since the two mixing weights have to satisfy π0 + π1 = 1, we can set153

∂l(θ)/∂πj + λ = 0, where λ is a Lagrange multiplier. It then follows that154

πnew1 = 1
N

N∑
n=1

γ(yn1) , π
new
2 = 1 − πnew1 , indicating that each of the updated155

mixing weights is an average of the responsibilities.156

2.1.3. Illustrative example for generalisation-1157

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

0.02

0.04
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0.08

0.1

0.12

(a)

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

(b)

Figure 1: (a) Supervisor assessments with equal variances and symmetrical means between

the two classes. Red curve: assessments density estimated by Titterington’s model. Blue

curve: assessments density estimated by the generalisation-1. (b) Supervisor assessments

with unequal variances and asymmetrical means between the two classes. The rest caption

is as for Figure 1(a).

As shown in Figure 1(a) and Figure 1(b), compared with Titterington’s158

original model, the generalisation-1 is more flexible in accommodating the159

distributions of supervisor’s assessments of various shapes. Let us appreciate160

it from two aspects.161

Firstly, we simulate the supervisor’s assessments from two Gaussian dis-162

tributions with equal variances and symmetrical means; this setting satisfies163

the assumption underlying Titterington’s model. In this case, as shown in164

Figure 1(a), the generalisation-1 performs similarly to Titterington’s model.165
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(a) (b)

(c)

Figure 2: Three extreme cases of supervisor assessments. (a) Supervisor assessments

with large unequal variances and symmetrical means between the two classes. Red curve:

assessments density estimated by Titterington’s model. Blue curve: assessments density

estimated by the generalisation-1. (b) Supervisor assessments with large equal variances

and asymmetrical means between the two classes. The rest caption is as for Figure 2(a).

(c) Supervisor assessments with large unequal variances and asymmetrical means between

the two classes. The rest caption is as for Figure 2(a).
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Secondly, we simulate the supervisor’s assessments from two Gaussian166

distributions with unequal variances and asymmetrical means; this setting167

does not satisfy the assumption underlying Titterington’s model. In this168

case, as shown in Figure 1(b), the generalisation-1 has much better fitting169

performance than Titterington’s model.170

Besides the moderate unequal variances and asymmetrical case shown171

in Figure 1(b), we also present the superior fitting performances of the172

generalisation-1 in three extreme cases in Figure 2: supervisor’s assessments173

simulated from two Gaussian distributions with large unequal variances and174

symmetrical means in Figure 2(a), large equal variances and asymmetrical175

means in Figure 2(b) and large unequal variances and asymmetrical means in176

Figure 2(c). Obviously, the generalisation-1 can provide better fittings than177

Titterington’s model under these extreme unequal variances and asymmet-178

rical cases.179

2.2. Generalisation-2: multi-class stochastic supervision180

Original stochastic supervision models were only for two-class discrim-181

ination. In practice multi-class classification problems are also prevailing.182

Hence here we extend Titterington’s model to multi-class cases, as suggested183

by Titterington [16].184

2.2.1. Formulation of generalisation-2185

Suppose there are J classes. As with [16], the supervisor’s assessment of186

an instance x is now a J-variate vector of ‘probabilities’, z = (z1, . . . , zJ),187

and we can define a new assessment vector wj = log
zj
zJ

for j = 1, . . . , J − 1,188

which extends the supervisor’s assessments from (0, 1) to (−∞,∞). Then we189
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can assume that, for each class j, the assessments w = (w1, . . . , wJ−1) follow190

(J − 1)-variate Gaussian distributions: qj(w) ∼ N(∆j,Ωj), where qj(w) is191

the pdf of w|y = j.192

Then, given the real label yn = (yn1, . . . , ynJ) is unknown, the joint dis-193

tribution of the observed features xn and assessment wn of the nth instance194

becomes p(xn, wn) =
∑J

j=1 πjfj(xn, wn), where fj(xn, wn) = fj(xn)qj(wn)195

and πj = p(ynj = 1) is the mixing weight of class j.196

Before going further, we recall some notation to be used for the generalisation-197

2:198

• set of the latent labels Y = {yn}, for n = 1, . . . , N , where yn is a199

J-variate latent vector of real labels, and we have ynj ∈ {0, 1} and200

∑J
j=1 ynj = 1;201

• set of the class mixing weights Π = {πj}, for j = 1, . . . , J , where πj is202

a scalar;203

• set of the class means U = {µj}, for j = 1, . . . , J , where µj is a d-variate204

vector;205

• set of the class covariances Σ = {Σj}, for j = 1, . . . , J , where Σj is a206

d× d matrix;207

• set of the assessment means ∆ = {∆j}, for j = 1, . . . , J , where ∆j is a208

(J − 1)-variate vector; and209

• set of the assessment covariances Ω = {Ωj}, for j = 1, . . . , J , where Ωj210

is a (J − 1)× (J − 1) matrix.211
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In this notation, the parameter set for the generalisation-2 is θ = {Π, U,Σ,∆,Ω};212

the complete-data likelihood of observed data X and latent data Y is p(Y ,X|θ) =213

∏N
n=1

∑J
j=1[πjN(xn|µj,Σj)N(wn|∆j,Ωj)]

ynj , and the marginal likelihood of214

observed data X is p(X|θ) =
∏N

n=1

∑J
j=1 πjN(xn|µj,Σj)N(wn|∆j,Ωj).215

2.2.2. EM algorithm of generalisation-2216

E-step. In the E-step we can update posterior distribution of latent variables217

by setting qnew(Y) = p(Y|X , θold). Since218

p(Y|X , θold) =
N∏

n=1

∑J
j=1 ynj[πjN(xn|µj,Σj)N(wn|∆j,Ωj)]∑J
j=1 πjN(xn|µj,Σj)N(wn|∆j,Ωj)

,

we have the class responsibilities as219

γ(ynj) =
πjN(xn|µj,Σj)N(wn|∆j,Ωj)∑J
j=1 πjN(xn|µj,Σj)N(wn|∆j,Ωj)

.

220

M-step. In the M-step, we update θ by θnew = arg maxθ
∑
Y q

new(Y) log p(Y ,X|θ).221

Since the mixing weights πj satisfy the sum-to-one constraint, as in section 2.1222

we introduce a Lagrange multiplier λ and set ∂l(θ)/∂πj+λ(
∑J

j=1 πj−1) = 0,223

which results in the updated mixing weights as πnewj = 1
N

N∑
n=1

γ(ynj), which is224

again an average of the responsibilities over all the data points. Similarly to225

the M-step in section 2.1, we can obtain the updated means and covariance226

matrices as227

µnewj =

N∑
n=1

γ(ynj)xn

N∑
n=1

γ(ynj)

, Σnew
j =

N∑
n=1

γ(ynj)(xn − µjk)(xn − µjk)T

N∑
n=1

γ(ynj)

,
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228

∆new
j =

N∑
n=1

γ(ynj)wn

N∑
n=1

γ(ynj)

, Ωnew
j =

N∑
n=1

γ(ynj)(wn −∆j)(wn −∆j)
T

N∑
n=1

γ(ynj)

.

229

2.2.3. Illustrative example for generalisation-2230

In Figure 3(a), we depict a simple example of three classes with a one-231

dimensional feature x (in the horizontal axis) and one dimension of the as-232

sessment w (in the vertical axis). The joint distribution of the feature and233

the assessment is thus a three-component mixture of Gaussian distributions.234

Figure 3(a) shows that the generalisation-2 works in this case. From Fig-235

ure 3(b), we can observe that the feature’s distributions of the three classes236

seriously overlap. However, with the assessments information added, we can237

see that the three classes are much more separable, as shown in Figure 3(a).238

2.3. Generalisation-3: feature-dependent stochastic supervision239

Titterington [16] suggested to generalise the stochastic supervision model240

to the scenarios that the supervisor’s assessment w is dependent on the fea-241

tures x. In the generalisation-3, we assume that there is a linear relationship242

between the assessment and the features. To check the validity of this as-243

sumption, we can calculate the Pearson correlation coefficient between x and244

w if there is one feature or the adjusted R2 [23] when regressing w against x245

for multiple features.246

2.3.1. Formulation of generalisation-3247

The formulation of this generalisation is quite similar to that of the origi-248

nal stochastic supervision model, except that the distribution of assessment is249
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Figure 3: (a) Joint distribution of feature and (one dimension of) assessment for three

classes in red, blue and green, respectively. The contour plots were estimated by the

generalisation-2. Each contour is labelled by its corresponding density. (b) Distributions

of the feature for three classes in red, blue and green, respectively.
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now conditional on the features by replacing qj(w) with qj(w|x). This makes250

the joint distribution of (xn, wn) as p(xn, wn) =
∑J

j=1 πjfj(xn)qj(wn|xn).251

As suggested in [16], a simple way to model qj(wn|xn) is to use the Gaus-252

sian distribution N(αj + βTj xn,Ωj), and in this case the joint distribution253

fj(xn, wn) is simply another Gaussian distribution N(νj,Ψj), where254

νj =


 µj

αj + βTj µj


 , Ψj =


 Σj Σjβj

βTj Σj Ωj + βTj Σjβj


 ,

αj is a (J − 1)-variate vector, and βj is a d× (J − 1) matrix.255

2.3.2. EM algorithm of generalisation-3256

E-step. In the E-step, we can compute the responsibilities as257

γ(ynj) =
πjfj(xn, wn)∑J
j=1 πjfj(xn, wn)

.

M-step. In the M-step, we can update νj by setting258

νj =

∑N
n=1 γ(ynj)an∑N
n=1 γ(ynj)

,

where an is a concatenated vector of xn and wn. Similarly, the updated259

covariance matrix is260

Ψj =

∑N
n=1 γ(ynj)(an − νj)(an − νj)T∑N

n=1 γ(ynj)
.

2.3.3. Illustrative example for generalisation-3261

A simple example of dependent assessment and feature is illustrated in262

Figure 4. The joint distribution of assessment and feature follows a bivariate263

Gaussian distribution with positive non-diagonal elements in the covariance264

matrix. The y-axis in Figure 4 shows the assessment while the x-axis shows265
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estimated by the generalisation-3. Each contour is labelled by its corresponding density.
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the feature. The Pearson correlation coefficient between the feature and266

assessment of the blue class is 0.8378 while that of the red class is 0.2994.267

It is clear that, compared with Titterington’s original model, which assumes268

the independence between features and assessments, the generalisation-3 fits269

the joint distribution of the feature and the assessment much better, when270

they are indeed dependent.271

2.4. Generalisation-4: Multi-modal classes272

In the original work of Krishnan and Nandy’s model [15] and Tittering-273

ton’s model [16] and the three generalisations we have presented, each class274

is modelled by a Gaussian distribution, implying that there was only a sin-275

gle population for each class, which we call a uni-modal class. In practice,276

however, the distribution of each class can be much complicated, often hav-277

ing multiple modes, which cannot be described by a standard probabilistic278

distribution. In this context, we propose our generalisation-4 to model the279

cases that each class contains multiple subclasses, which makes the class a280

multi-modal class.281

In fact, almost all continuous densities can be approximated with arbi-282

trary accuracy by a mixture of Gaussian distributions [22]. For supervised283

discriminant analysis, the mixture of Gaussians have been studied well in [24–284

27]. In the scenario of the stochastic supervision model, which is not deter-285

ministically supervised and is itself a mixture of Gaussians, we extend the286

model to a mixture of mixtures of Gaussian distributions [28, 29].287
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2.4.1. Formulation of generalisation-4288

Suppose there are J classes and, for each class j, there are Kj subclasses.289

The total number of subclasses is K =
∑J

j=1Kj.290

We assume for each subclass the features x follow a Gaussian distribution291

N(µjk,Σjk), such that each class can be modelled by a mixture of Gaussian292

distributions fj(x): fj(xn) =
∑Kj

k=1 φjkN(µjk,Σjk), where φjk = p(tnjk =293

1|ynj = 1) is the mixing weight of subclass k within class j, and tnj =294

(tnj1, . . . , tnjKj
) is a latent vector, such that tnjk ∈ {0, 1} indicating the295

membership of a subclass belonging to a class, and
∑Kj

k=1 tnjk = 1.296

Given that the real label is also unknown and the instances were generated297

from J different classes, we have the distribution of features x as a mixture of298

J different mixtures fj(x) of Gaussian distributions: p(xn) =
∑J

j=1 πjfj(xn) ,299

where πj = p(ynj = 1) is the mixing weight of class j in the whole dataset,300

and yn = (yn1, . . . , ynJ) is a latent variable vector of real class label such that301

ynj ∈ {0, 1} and
∑J

j=1 ynj = 1.302

Moreover, as before, for each class j, the supervisor’s assessment w follows303

a univariate Gaussian distribution N(∆j,Ωj).304

The notation for the generalisation-4 can be summarised as305

• set of features X = {xn}, for n = 1, . . . , N ;306

• set of the supervisor’s assessments W = {wn}, for n = 1, . . . , N ;307

• set of the latent class labels Y = {yn}, for n = 1, . . . , N ;308

• set of the latent subclass labels T = {tnjk}, for n = 1, . . . , N , j =309

1, . . . , J , k = 1, . . . , Kj};310
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• set of the class mixing weights Π = {πj}, for j = 1, . . . , J ;311

• set of the subclass mixing weights Φ = {φjk}, for j = 1, . . . , J , k =312

1, . . . , Kj;313

• set of the subclass means U = {µjk}, for j = 1, . . . , J , k = 1, . . . , Kj;314

• set of the subclass covariances Σ = {Σjk}, for j = 1, . . . , J , k =315

1, . . . , Kj;316

• set of the assessment means ∆ = {∆j}, for j = 1, . . . , J ; and317

• set of the assessment covariances Ω = {Ωj}, for j = 1, . . . , J .318

We also define X = {X,W}, T = {Y, T}, and θ = {Π,Φ, U,Σ,∆,Ω}.319

The complete-data likelihood becomes320

p(X , T |θ) =
N∏

n=1

J∏

j=1

Kj∏

k=1

[πjφjkN(xn|µjk,Σjk)N(wn|∆j,Ωj)]
ynjtnjk ,

and the marginal likelihood of the features becomes321

p(X ) =
N∏

n=1

J∑

j=1



πjN(wn|∆j,Ωj)

Kj∑

k=1

φjkN(xn|µjk,Σjk)



 .

322

2.4.2. EM algorithm of generalisation-4323

The EM algorithm to fit the model can be derived as follows.324

E-step. In the E-step we can update distribution of latent variables by set-325

ting qnew(T ) = p(T |X , θold). We can update the class responsibilities by326
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setting γ(ynj) = p(ynj = 1|X , θold), and the subclass responsibilities by set-327

ting r(tnjk) = p(tnjk = 1|X , θold), which lead to328

γ(ynj) =

∑Kj

k=1 πjφjkN(xn|µjk,Σjk)N(wn|∆j,Ωj)∑J
j=1

∑Kj

k=1 πjφjkN(xn|µjk,Σjk)N(wn|∆j,Ωj)

and329

r(tnjk) =
πjφjkN(xn|µjk,Σjk)N(wn|∆j,Ωj)∑J

j=1

∑Kj

k=1 πjφjkN(xn|µjk,Σjk)N(wn|∆j,Ωj)
.

330

M-step. In the M-step, we can update θ by θnew = arg maxθ
∑
T q

new(T ) log p(T ,X|θ).331

It follows that332

πnewj =

N∑
n=1

γ(ynj)

N
, φnewjk =

N∑
n=1

r(tnjk)

N∑
n=1

γ(ynj)

, µnewjk =

N∑
n=1

r(tnjk)xn

N∑
n=1

r(tnjk)

,

333

∆new
j =

N∑
n=1

γ(ynj)wn

N∑
n=1

γ(ynj)

, Σnew
jk =

N∑
n=1

r(tnjk)(xn − µjk)(xn − µjk)T

N∑
n=1

r(tnjk)

,

334

Ωnew
j =

N∑
n=1

γ(ynj)(wn −∆j)(wn −∆j)
T

N∑
n=1

γ(ynj)

.

2.4.3. Illustrative example for generalisation-4335

Figure 5(a) and Figure 5(b) illustrate an example of generalisation-4 for336

two classes, Class-A with a mixture of two Gaussian subclasses while Class-337

B with a mixture of three Gaussian subclasses. In this case Class-A and338

Class-B are difficult to be modelled well by a single Gaussian distribution, if339
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Figure 5: (a) Joint distributions of feature and assessment for two classes with subclasses:

Class-A with two subclasses (red); Class-B with three subclasses (blue). Dashed con-

tour plots were estimated by Titterington’s original stochastic supervision models. Solid

contour plots were estimated by the generalisation-4. Each contour is labelled by its cor-

responding density. (b) Distributions of feature for two classes with subclasses: Class-A

with two subclasses (red); Class-B with three subclasses (blue).
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the original Titterington’s model is adopted. Our generalisation-4, however,340

can handle such a complicated dataset, as shown in Figure 5(a). Moreover,341

comparing Figure 5(a) and Figure 5(b), we can also observe that the data342

became more separable when the assessment information is added to the343

model: in Figure 5(b) there is a large overlap between the two classes when344

only the feature is used while in Figure 5(a) the two groups of points became345

separable when the feature and assessment are jointly modelled.346

3. Real-data experiments347

In stochastic supervision, as no deterministic labels were available to348

training, we cannot compare its classification performance to supervised349

learning methods such as linear discriminant analysis and support vector350

machines; on the other hand, it would also be unfairly to favour stochastic351

supervision if we evaluate it with unsupervised clustering methods such as352

k-means, given the latter does not even provide any assessment information.353

Hence we only compare our generalisations with other stochastic supervisors354

like Titterington’s model, the comparison with which has been demonstrated355

in the previous sections with simulated data, and in the following experiments356

with real-world data.357

In our experiments, the generalisation-1 and the generalisation-2 are not358

evaluated in the real-data experiments because their asymmetric and multi-359

class settings are also covered by the generalisation-3 and the generalisation-360

4.361
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3.1. Real-world datasets362

We use three famous real-world datasets in our experiments: the MNIST363

dataset [30] is used to evaluate the effectiveness of the generalisation-3, the364

CIFAR-10 dataset [31] is used to evaluate that of the generalisation-4 and365

the EMNIST dataset [32] is used to evaluate both generalisations.366

In MNIST, we aim to classify handwritten digits 3 and 5, which are hard367

to distinguish. The assessment and features show strong linear relationship368

in these two classes, as shown in Table 1. In CIFAR-10, we divide the whole369

dataset into two large classes: the animal class (which includes bird, cat, deer,370

dog, frog and horse) and the transportation class (which includes airplane,371

automobile, ship and truck). This setting is reasonable for the generalisation-372

4, because the two large classes contain several subclasses. In EMNIST, we373

aim to classify three large classes: the digits class, the capital letters class374

and the lower cases class. These three classes have 47 subclasses, including 10375

digits subclasses, 26 capital letters subclasses and 11 lowercases subclasses.376

The linear relationship between the assessment and features are shown in377

Table 1. Thus the EMNIST data is a mixture of feature-dependent assess-378

ments and multi-modal classes and is suitable to test both generalisations 3379

and 4.380
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Table 1: Adjusted R2 when regressing the assessment against the features for the

MNIST and EMNIST datasets.

Dataset
MNIST EMNIST

Digit 5 Digit 3 Capital Letters Digits Lowercases

Adjusted R2 0.9801 0.9585 0.5585 0.6021 0.6050

381

3.2. Experiment settings382

3.2.1. Assessments generation383

Considering that stochastic supervision has assessments only and thus is384

not a supervised learning model, during the model training we need to ignore385

the labelling information and before the training we need to ‘generate’ the386

supervisor’s assessments.387

For the MNIST data, to generate such assessments we use logistic regres-388

sion to generate the probabilities that an instance belongs to two classes as389

appropriate assessments. Note that the dependency between features and390

assessments in the generalisation-3 is satisfied when such an approach is391

adopted to generate assessments, because the posterior probabilities gener-392

ated are dependent on the features. For the EMNIST data with more than393

two classes, we use Naive Bayes to generate the posterior probabilities as394

assessments.395

Based on the assessments only, a simple intuitive approach to inferring y396

is to directly compare different elements of assessments. For example, for a397

two-class problem, let y = 1 if w > 0 and y = 0 otherwise; and for a J-class398
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problem, set y = arg maxj∈{1,...,J} zj (or y = arg maxj∈{1,...,J−1}wj if at least399

one wj > 0, and y = J otherwise).400

3.2.2. Parameters initialisation401

Note that in the following initialisation settings, the samples that belong402

to class j are determined by assessments rather than true labels, because we403

cannot use true-label information for stochastic supervision methods.404

In Titterington’s model, the EM algorithm needs initial values of param-405

eters πj, µj, Σ, ∆ and Ω. Here we use the sample estimates to initialise these406

parameters: πj is the fraction of the estimated number of samples in class j407

over the total number of samples N , µj is the sample mean of the samples,408

∆ is the sample mean of the assessments of class 1 and −∆ for class 2, and Σ409

and Ω are the pooled covariance matrices of the features and the assessments410

over all J classes, respectively.411

In the generalisation-3, αj and βj are obtained from the linear regression412

of the samples in the jth class against their associated w. The EM algorithm413

of this model needs initial values of πj, µj, Σj and Ωj. We use the same ini-414

tialisation settings of πj and µj as those for Titterington’s model. Similarly,415

Σj and Ωj are initialised as the sample covariances of the features and the416

assessments of class j, respectively.417

In the generalisation-4, for CIFAR-10 there are 6 subclasses for animal418

and 4 for transportation and for EMNIST there are 10 subclasses for digits,419

26 for capital letters and 11 for lowercases. The EM algorithm of this model420

needs initial values of the following parameters: πj, φjk µjk, Σjk, ∆j and Ωj.421

The initialisation of πj and Ωj is the same as that for the generalisation-3;422

∆j is initialised as the sample mean of the assessments of samples in class j.423
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To initialise the subclass mean µjk, covariance matrix Σjk and mixing weight424

φjk, we apply k-means to class j: µjk and Σjk are set to the subclass means425

and covariance matrices estimated by k-means on class j, respectively, and426

φjk is set to the fraction of the number of samples in subclass k of class j427

over the total number of samples in class j.428

3.2.3. Validation settings429

In the MNIST dataset, we perform 20 training/test splits; for each split,430

70% samples are randomly selected from each class to form the training set431

and the rest are for the test set. We record the classification accuracies on432

the test sets for all splits.433

In the CIFAR-10 dataset, we use the training/test split provided by434

Krizhevsky and Hinton [31], where the training set contains 50000 images435

with 30000 for the animal class and 20000 for the transportation class and436

the test set contains 10000 images with 6000 for the animal class and 4000437

for the transportation class. For each experiment, we use all the training438

samples to train the model and randomly select 1000 images from the rest439

to test. We repeat the procedure 20 times and record the 20 classification440

accuracies on the test sets. All images are transformed to greyscale in the441

experiments.442

In the EMNIST dataset, the number of training samples is large and using443

all the samples is time consuming. For illustrative purposes, we randomly444

sample 1200 images for each subclass, which makes the whole training set445

contain 1200× 47 images. For each experiment, we use all training samples446

to train the model and randomly select 1000 images from the rest to test.447

We repeat the procedure 20 times and record the 20 classification accuracies448
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on the test sets. The pixel values of the margin part of images in EMNIST449

are zeros, which leads to singular covariance matrices. Thus we add small450

white noises to these images to make the covariance matrices invertible. Since451

Titterington’s model is used for binary classification and we have three classes452

here, the one-versus-all strategy [33] is applied here for Titterington’s model.453

3.3. Results454

Classification accuracies on the 20 test sets of MNIST, CIFAR-10 and EM-455

NIST are boxplotted in Figure 6(a), Figure 6(b) and Figure 6(c), respectively.456

It is clear that the generalisation-3 and the generalisation-4 have higher boxes457

than Titterington’s model in Figure 6(a) and Figure 6(b). This indicates458

the effectiveness of our generalisations when the data satisfy the associated459

conditions: in our experiments, the MNIST dataset satisfies the feature-460

assessment dependency condition in the generalisation-3 and the CIFAR-10461

dataset satisfies the multi-modality condition in the generalisation-4.462

For the EMNIST data, the generalisation-3 and generalisation-4 produce463

higher boxes than Titterington’s model and the generalisation-4 has the best464

classification performance. This also shows the effectiveness of our models.465

Note that here the generalisation-4 has much better classification perfor-466

mance than the generalisation-3. One possible reason is that the multi-modal467

classes have more effect on the final results than the feature-dependent as-468

sessment, since the subclasses in each large class are clearly defined while469

the linear relationship between the assessment and features is not strong, as470

shown in Table 1. We also note that there is a large space for improvement471

in classification accuracy of EMNIST. By developing a new method that can472

deal with feature-dependent assessments and multi-modal classes together,473
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we may further improve the classification performance on complex data such474

as EMNIST. We list this as our future work in the conclusions section.475
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Figure 6: (a) Classification accuracies of Titterington’s model and the generalisation-3

on 20 test sets of MNIST. (b) Classification accuracies of Titterington’s model and the

generalisation-4 on 20 test sets of CIFAR-10. (c) Classification accuracies of Titterington’s

model, generalisation-3 and generalisation-4 on 20 test sets of EMNIST.
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4. Conclusions476

In this paper, we extended stochastic supervision models in four as-477

pects, generalising them to asymmetric assessments, multiple classes, feature-478

dependent assessments and multi-modal classes, respectively, to enhance479

their applicability. The experiments on both simulated data and real-world480

data demonstrate the effectiveness of our generalisations. In the future, to481

enhance further our models’ flexibility and generality, we shall explore non-482

linear modelling for the relationship between assessments and features, as483

well as more sophisticated techniques for multi-modality modelling. More-484

over, instead of using a fixed threshold of w to infer y, we propose to learn485

this threshold from data. Since we use the transformation wi = log zi/zJ486

to transform a softmax vector to a (J − 1) dimensional normal distributed487

random variable, learning the threshold of w is equivalent to giving different488

weights to different classes. By utilising the learned threshold, our model489

can adapt to more real-world scenarios where different classes have different490

importance. In addition, we propose to develop new algorithms that can491

provide superior classification performances under more complex situations,492

e.g. with both feature-dependent assessment and multi-modal classes.493
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