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The second Weyl coefficient for a first order system
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Abstract

For a scalar elliptic self-adjoint operator on a compact manifold without bound-
ary we have two-term asymptotics for the number of eigenvalues between 0 and λ

when λ → ∞, under an additional dynamical condition. (See [3, Theorem 3.5] for
an early result in this direction.)

In the case of an elliptic system of first order, the existence of two-term asymp-
totics was also established quite early and as in the scalar case Fourier integral
operators have been the crucial tool. The complete computation of the coefficient
of the second term was obtained only in the 2013 paper [2]. In the present paper
we simplify that calculation. The main observation is that with the existence of
two-term asymptotics already established, it suffices to study the resolvent as a
pseudodifferential operator in order to identify and compute the second coefficient.
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1 Statement of the problem

Let A be a first order linear psedodifferential operator acting on m-columns of complex-
valued half-densities over a connected closed (i.e. compact and without boundary) n-
dimensional manifold M . Throughout this paper we assume that m,n ≥ 2.

Let A1(x, ξ) and Asub(x, ξ) be the principal and subprincipal symbols of A. Here
x = (x1, . . . , xn) denotes local coordinates and ξ = (ξ1, . . . , ξn) denotes the dual variable
(momentum). The principal and subprincipal symbols are m × m matrix-functions on
T ∗M \ {ξ = 0}.

Recall that the concept of subprincipal symbol originates from the classical paper [4]
of J. J. Duistermaat and L. Hörmander: see formula (5.2.8) in that paper. Unlike [4],
we work with matrix-valued symbols, but this does not affect the formal definition of the
subprincipal symbol.

We assume our operator A to be formally self-adjoint (symmetric) with respect to the
standard inner product on m-columns of complex-valued half-densities, which implies
that the principal and subprincipal symbols are Hermitian. We also assume that our
operator A is elliptic:

detA1(x, ξ) 6= 0, ∀(x, ξ) ∈ T ∗M \ {0}. (1.1)

Let h(j)(x, ξ) be the eigenvalues of the matrix-function A1(x, ξ). Throughout this
paper we assume that these are simple for all (x, ξ) ∈ T ∗M \{0}. The ellipticity condition
(1.1) ensures that all our h(j)(x, ξ) are nonzero.

We enumerate the eigenvalues of the principal symbol h(j)(x, ξ) in increasing order,
using a positive index j = 1, . . . , m+ for positive h(j)(x, ξ) and a negative index j =
−1, . . . ,−m− for negative h(j)(x, ξ). Here m+ is the number of positive eigenvalues of
the principal symbol and m− is the number of negative ones. Of course, m+ +m− = m.

Let λk and vk(x) be the eigenvalues and the orthonormal eigenfunctions of the oper-
ator A; the particular enumeration of these eigenvalues (accounting for multiplicities) is
irrelevant for our purposes. Each vk(x) is, of course, an m-column of half-densities.

Let us define the two local counting functions

N±(x, λ) :=

{
0 if λ ≤ 0,∑

0<±λk<λ ‖vk(x)‖
2 if λ > 0.

(1.2)

2



The function N+(x, λ) counts the eigenvalues λk between zero and λ, whereas the function
N−(x, λ) counts the eigenvalues λk between −λ and zero. In both cases counting eigen-
values involves assigning them weights ‖vk(x)‖

2. The quantities ‖vk(x)‖
2 are densities on

M and so are the local counting functions N±(x, λ).
Let ρ̂ : R → C be a smooth function such that ρ̂(t) = 1 in some neighbourhood

of 0 and the support of ρ̂ is sufficiently small. Here ‘sufficiently small’ means that
supp ρ̂ ⊂ (−T,T), where T is the infimum of the lengths of all possible loops. A loop is
defined as follows. For a given j, let (x(j)(t; y, η), ξ(j)(t; y, η)) denote the Hamiltonian tra-
jectory originating from the point (y, η), i.e. solution of the system of ordinary differential
equations (the dot denotes differentiation in time t)

ẋ(j) = h
(j)
ξ (x(j), ξ(j)), ξ̇(j) = −h(j)

x (x(j), ξ(j))

subject to the initial condition (x(j), ξ(j))
∣∣
t=0

= (y, η). Suppose that we have a Hamilto-

nian trajectory (x(j)(t; y, η), ξ(j)(t; y, η)) and a real number T > 0 such that x(j)(T ; y, η) =
y. We say in this case that we have a loop of length T originating from the point y ∈ M .

We denote ρ(λ) := F−1
t→λ[ρ̂(t)], where F−1 is the inverse Fourier transform. See [2,

Section 6] for details.
Further on we will deal with the mollified counting functions (N± ∗ ρ)(x, λ) rather

than the original discontinuous counting functions N±(x, λ). Here the star stands for
convolution in the variable λ. More specifically, we will deal with the derivative, in the
variable λ, of the mollified counting functions. The derivative will be indicated by a
prime.

It is known [1, 2, 9, 10, 11, 12, 13, 15, 16] that the functions (N ′
± ∗ ρ)(x, λ) admit

asymptotic expansions in integer powers of λ :

(N ′
± ∗ ρ)(x, λ) = a±n−1(x) λ

n−1+ a±n−2(x) λ
n−2 + a±n−3(x) λ

n−3+ . . . as λ → +∞. (1.3)

Definition 1.1. We call the coefficients a±k (x) appearing in formula (1.3) local Weyl
coefficients.

Note that our definition of Weyl coefficients does not depend on the choice of mollifier
ρ.

It is also known [1, 2, 9, 10, 11, 12, 13, 15, 16] that under appropriate geometric
conditions we have

N±(x, λ) =
a±n−1(x)

n
λn +

a±n−2(x)

n− 1
λn−1 + o(λn−1) as λ → +∞. (1.4)

Remark 1.2. Our Definition 1.1 is somewhat nonstandard. It is customary to call the
coefficients appearing in the asymptotic expansion (1.4) Weyl coefficients rather than
those in (1.3). However, for the purposes of this paper we will stick with Definition 1.1.

Further on we deal with the coefficients a+k (x). It is sufficient to derive formulae for
the coefficients a+k (x) because one can get formulae for a−k (x) by replacing the operator
A by the operator −A.

If the principal symbol of our operator A is negative definite, then the operator has a
finite number of positive eigenvalues and all the coefficients a+k (x) vanish. So further on
we assume that the principal symbol has at least one positive eigenvalue. In other words,
we assume that m+ ≥ 1.
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The task at hand is to write down explicit formulae for the coefficients a+n−1(x) and
a+n−2(x) in terms of the principal and subprincipal symbols of the operator A.

The explicit formula for the coefficient a+n−1(x) has been known since at least 1980,
see, for example, [9, 10, 11, 12, 13, 15, 16]. It reads

a+n−1(x) =
n

(2π)n

m+∑

j=1

∫

h(j)(x,ξ)<1

dξ , (1.5)

where dξ = dξ1 . . . dξn.
The explicit formula for the coefficient a+n−2(x) was derived only in 2013, see [2, formula

(1.24)]. This formula reads

a+n−2(x) = −
n(n− 1)

(2π)n

m+∑

j=1

∫

h(j)(x,ξ)<1

(
[v(j)]∗Asubv

(j)

−
i

2
{[v(j)]∗, A1 − h(j), v(j)}+

i

n− 1
h(j){[v(j)]∗, v(j)}

)
(x, ξ) dξ . (1.6)

Here curly brackets denote the Poisson bracket on matrix-functions {P,R} := PxαRξα −
PξαRxα and its further generalisation

{F,G,H} := FxαGHξα − FξαGHxα , (1.7)

where the subscripts xα and ξα indicate partial derivatives and the repeated index α
indicates summation over α = 1, . . . , n.

Note that if q(x, ξ) is a function on T ∗M \ {0} positively homogeneous in ξ of degree
0, then ∫

h(j)(x,ξ)<1

q(x, ξ) dξ

is a density on M . Hence, the quantities (1.5) and (1.6) are densities.
The problem with the derivation of formula (1.6) given in [2] was that it was very

complicated. The aim of the current paper is to provide an alternative, much simpler,
derivation of formula (1.6).

It may be that the approach outlined in the current paper would allow one, in the
future, to calculate further coefficients in the asymptotic expansion (1.3). Note that for
an operator that is not semibounded this is a nontrivial task.

2 Strategy for the evaluation of the second Weyl co-

efficient

Let z ∈ C, Im z > 0. Our basic idea is to consider the resolvent (A − zI)−1 and, by
studying it, recover the second Weyl coefficient a+n−2(x). Unfortunately, the operator
(A− zI)−1 is not of trace class, therefore one has to modify our basic idea so as to reduce
our analysis to that of trace class operators.

Let us consider the self-adjoint operator

i
[
2(A− zI)1−n − (A− 2zI)1−n − 2(A− z̄I)1−n + (A− 2z̄I)1−n

]
. (2.1)
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We claim that the operator (2.1) is of trace class. In order to justify this claim we
calculate below, for fixed z, the principal symbol of the operator (2.1) and show that it
has degree of homogeneity −n− 1.

Let B be the parametrix (approximate inverse) of A, see [18, Section 5] for details.
Then, modulo L−∞(M) (integral operators with infinitely smooth integral kernels), we
have

A− zI ≡ A− zAB = A(I − zB),

(A− zI)n−1 ≡ An−1(I − zB)n−1,

(A− zI)1−n ≡ (I − zB)1−nA1−n ≡ (I − zB)1−nBn−1. (2.2)

But

(I − zB)1−n ≡ I + (n− 1)zB −
n(n− 1)

2
(zB)2 + . . . , (2.3)

where the expansion is understood as an asymptotic expansion in smoothness (each sub-
sequent term is a pseudodifferential operator of lower order). Substituting (2.3) into
(2.2), we get

(A− zI)1−n ≡ Bn−1 + (n− 1)zBn −
n(n− 1)

2
z2Bn+1 + . . . . (2.4)

Replacing z by 2z, we get

(A− 2zI)1−n ≡ Bn−1 + 2(n− 1)zBn − 2n(n− 1)z2Bn+1 + . . . . (2.5)

Formulae (2.4) and (2.5) imply

2(A− zI)1−n − (A− 2zI)1−n ≡ Bn−1 + n(n− 1)z2Bn+1 + . . . . (2.6)

Replacing z by z̄, we get

2(A− z̄I)1−n − (A− 2z̄I)1−n ≡ Bn−1 + n(n− 1)z̄2Bn+1 + . . . . (2.7)

Formulae (2.6) and (2.7) imply that the operator (2.1) is a pseudodifferential operator of
order −n− 1 with principal symbol −4n(n− 1)(Re z)(Im z)A−n−1

1 .
It might seem more natural to consider the operator

(A− zI)−n−1 (2.8)

instead of (2.1). The operator (2.8) is also of order −n − 1, hence, trace class. Un-
fortunately, the algorithm presented in the remainder of this section won’t work for the
operator (2.8). The reason is that if we start with (2.8), we end up with the integral

∫ +∞

0

µn−2

(µ− z)n+1
dµ , (2.9)

where the exponent in the numerator is lower that the exponent in the denominator by
more than one. The integral (2.9) is a polynomial in 1

z
(no logarithm!) and it does

not experience a jump when z crosses the positive real axis. Starting with (2.8) one can
recover a+n−2− (−1)na−n−2 , but it appears to be impossible to recover a+n−2 itself. We need
a logarithm in order to separate contributions from positive and negative eigenvalues.

The operator (2.1) is a pseudodifferential operator of order −n − 1 , hence it has a
continuous integral kernel. This observation allows us to introduce the following defini-
tion.
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Definition 2.1. By f(x, z) we denote the real-valued continuous density obtained by
restricting the integral kernel of the operator (2.1) to the diagonal x = y and taking the
matrix trace tr .

The explicit formula for our density is

f(x, z) = i
∑

λk

[
2

(λk − z)n−1
−

1

(λk − 2z)n−1
−

2

(λk − z̄)n−1
+

1

(λk − 2z̄)n−1

]
‖vk(x)‖

2 .

(2.10)
This formula can be equivalently rewritten as

f(x, z) = i

∫ +∞

0

[
2

(µ− z)n−1
−

1

(µ− 2z)n−1
−

2

(µ− z̄)n−1
+

1

(µ− 2z̄)n−1

]
N ′

+(x, µ) dµ

− (−1)n
2n − 1

2n−1
i

[
1

zn−1
−

1

z̄n−1

] ∑

λk=0

‖vk(x)‖
2

− (−1)n i

∫ +∞

0

[
2

(µ+ z)n−1
−

1

(µ+ 2z)n−1
−

2

(µ+ z̄)n−1
+

1

(µ+ 2z̄)n−1

]
N ′

−(x, µ) dµ .

(2.11)

The expression in the second line of (2.11) is the contribution from the kernel (eigenspace
corresponding to the eigenvalue zero) of the operator A.

Let us also introduce another density

f ρ(x, z) := i

∫ +∞

0

[
2

(µ− z)n−1
−

1

(µ− 2z)n−1
−

2

(µ− z̄)n−1
+

1

(µ− 2z̄)n−1

]
(N ′

+∗ρ)(x, µ) dµ

−(−1)n i

∫ +∞

0

[
2

(µ+ z)n−1
−

1

(µ+ 2z)n−1
−

2

(µ+ z̄)n−1
+

1

(µ+ 2z̄)n−1

]
(N ′

−∗ρ)(x, µ) dµ .

(2.12)

Put z = λeiϕ, where λ > 0 and 0 < ϕ < π. We will now fix the angle ϕ and examine
what happens when λ → +∞.

Lemma 2.2. The density f ρ(x, λeiϕ)− f(x, λeiϕ) tends to zero as λ → +∞.

Proof See Appendix A.

Lemma 2.3. The density f ρ(x, λeiϕ) admits the asymptotic expansion

f ρ(x, λeiϕ) = b1(x, ϕ)λ+ b0(x, ϕ) + o(1) as λ → +∞, (2.13)

where
b1(x, ϕ) = −4(ln 2)(n− 1)(sinϕ)

[
a+n−1(x) + (−1)n a−n−1(x)

]
, (2.14)

b0(x, ϕ) = −2
[
(π − ϕ) a+n−2(x) + (−1)n ϕa−n−2(x)

]
. (2.15)

Proof See Appendices B and C.
Lemmata 2.2 and 2.3 imply the following corollary.

Corollary 2.4. The density f(x, λeiϕ) admits the asymptotic expansion

f(x, λeiϕ) = b1(x, ϕ)λ+ b0(x, ϕ) + o(1) as λ → +∞, (2.16)

where the coefficients b1(x, ϕ) and b0(x, ϕ) are given by formulae (2.14) and (2.15) re-
spectively.
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Suppose that we know the coefficient b0(x, ϕ) for all ϕ ∈ (0, π). It is easy to see that
formula (2.15) allows us to recover the second Weyl coefficient a+n−2(x). Namely, if we
take an arbitrary pair of distinct ϕ1, ϕ2 ∈ (0, π) then

a+n−2(x) =
ϕ1 b0(x, ϕ2)− ϕ2 b0(x, ϕ1)

2π(ϕ2 − ϕ1)
. (2.17)

Alternatively, the second Weyl coefficient a+n−2(x) can be recovered by means of the
identity

a+n−2(x) = −
1

2π
lim

ϕ→0+
b0(x, ϕ) . (2.18)

Formulae (2.16)–(2.18) tell us that the problem of evaluating the second Weyl coeffi-
cient has been reduced to evaluating the second coefficient in the asymptotic expansion
of the density f(x, λeiϕ) as λ → +∞. Recall that the latter is defined in accordance with
Definition 2.1.

3 The Weyl symbol of the resolvent

Let z = λeiϕ, where λ > 0 and 0 < ϕ < π. We formally assign to z a ‘weight’, as if it
were positively homogeneous in ξ of degree 1. Our argument goes along the lines of [18,
Section 9].

We performed formal calculations evaluating the symbol of the operator (A − zI)−1

in local coordinates and then switched to the Weyl symbol. (One could have worked
with Weyl symbols from the very start.) Further on we denote the Weyl symbol of the
operator (A− zI)−1 by [(A − zI)−1]W . We calculated [(A − zI)−1]W in the two leading
terms:

[(A− zI)−1]W = (A1 − zI)−1 − (A1 − zI)−1Asub(A1 − zI)−1

+
i

2
{(A1 − zI)−1, A1 − zI, (A1 − zI)−1}+ O[(1 + |ξ|+ |z|)−2(1 + |ξ|)−1]. (3.1)

Here the curly brackets denote the generalised Poisson bracket on matrix functions (1.7).
The concept of a Weyl symbol was initially introduced for pseudodifferential operators

in Rn, see [18, subsection 23.3]. In the case of pseudodifferential operators acting on half-
densities over a manifold it turns out that the Weyl symbol depends on the choice of local
coordinates. However, in the two leading terms the Weyl symbol does not depend on the
choice of local coordinates, see Appendix D. Note that a consistent definition of the full
Weyl symbol for a pseudodifferential operator acting on half-densities over a manifold
requires the introduction of an affine connection, see [14]. In the current paper we do not
assume that we have a connection.

See Appendix E for a discussion of symbol classes and an explanation of the origins of
the particular structure of the remainder term in formula (3.1), as well as remainder term
estimates in subsequent formulae. In (E.22) we obtain (3.1) in the appropriate symbol
classes.

Note that the expression in the second line of (3.1) can be equivalently rewritten as

{(A1−zI)−1, A1−zI, (A1−zI)−1} = (A1−zI)−1{A1, (A1−zI)−1, A1}(A1−zI)−1, (3.2)
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which is the representation used by V. Ivrii, see second displayed formula on page 226
of [11]. We mention (3.2) in order to put our analysis within the context of previous
research in the subject.

Let us now express the principal symbol A1 in terms of its eigenvalues h(j) and eigen-
projections P (j):

A1 =
∑

j

h(j)P (j). (3.3)

In what follows we will be substituting (3.3) into our previous formulae. But before
proceeding with the calculations let us discuss which expression, the one in the RHS of
(3.2) or the one in the LHS of (3.2), is better suited for practical purposes. Substitution
of (3.3) into the RHS of (3.2) gives a sum over five indices, whereas substitution of (3.3)
into the LHS of (3.2) gives a sum over only three indices. Hence, we will stick with the
representation from the LHS of (3.2).

Substituting (3.3) into (3.1) we get

[(A− zI)−1]W =
∑

j

P (j)

h(j) − z
−
∑

k,l

P (k)AsubP
(l)

(h(k) − z)(h(l) − z)

+
i

2

∑

j,k,l

(h(j) − z)

{
P (k)

h(k) − z
, P (j),

P (l)

h(l) − z

}
+ O[(1 + |ξ|+ |z|)−2(1 + |ξ|)−1]. (3.4)

Our eigenprojections satisfy the identity

P (k)P (j) = δkjP (k). (3.5)

The identity (3.5) allows us to rewrite formula (3.4) as

[(A− zI)−1]W =
∑

j

P (j)

h(j) − z
−
∑

k,l

P (k)AsubP
(l)

(h(k) − z)(h(l) − z)

+
i

2

∑

j,k,l

h(j) − z

(h(k) − z)(h(l) − z)
{P (k), P (j), P (l)}

−
i

2

∑

k,l

P (k)
(
h
(k)
xαP

(l)
ξα

− h
(k)
ξα
P

(l)
xα

)
+
(
h
(l)
ξα
P

(k)
xα − h

(l)
xαP

(k)
ξα

)
P (l)

(h(k) − z)(h(l) − z)

+ O[(1 + |ξ|+ |z|)−2(1 + |ξ|)−1]. (3.6)

4 The matrix trace of the resolvent

Let B be a matrix pseudodifferential operator acting on m-columns of half-densities,
v 7→ Bv. The action of such an operator can be written in more detailed form as




v1
v2
...
vm


 7→




B1
1 B1

2 . . . B1
m

B2
1 B2

2 . . . B2
m

...
...

. . .
...

Bm
1 Bm

2 . . . Bm
m







v1
v2
...
vm


 , (4.1)

where the Bj
k are scalar pseudodifferential operators acting on half-densities.
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Definition 4.1. The matrix trace of the operator (4.1) is the scalar operator

trB := B1
1 +B2

2 + · · ·+Bm
m. (4.2)

Obviously, the Weyl symbol of the matrix trace of an operator is the matrix trace of
the Weyl symbol of the operator. Hence, formula (3.6) implies

[tr(A− zI)−1]W =
∑

j

1

h(j) − z
−
∑

j

tr[AsubP
(j)]

(h(j) − z)2

+
i

2

∑

j,k,l

h(j) − z

(h(k) − z)(h(l) − z)
tr{P (k), P (j), P (l)}+ O[(1 + |ξ|+ |z|)−2(1 + |ξ|)−1]. (4.3)

Note that formula (4.3) does not contain terms with derivatives of the Hamiltonians h(j)

because all such terms cancelled out after we took the matrix trace.
Formula (3.5) implies

tr{P (k), P (j), P (l)} = 2δkjδjl tr{P (j), P (j), P (j)}

− δkj tr{P (l), P (j), P (l)} − δjl tr{P (k), P (j), P (k)}+ δkl tr{P (k), P (j), P (k)}. (4.4)

Substituting (4.4) into (4.3) and using (3.3) we get

[tr(A− zI)−1]W =
∑

j

1

h(j) − z
−
∑

j

tr[AsubP
(j)]

(h(j) − z)2

+
i

2

∑

j

tr{P (j), A1 − h(j)I, P (j)}

(h(j) − z)2
+ i
∑

j

tr{P (j), P (j), P (j)}

h(j) − z

+ O[(1 + |ξ|+ |z|)−2(1 + |ξ|)−1]. (4.5)

Detailed calculations leading up to formulae (4.4) and (4.5) are presented in Appendix F.
Formula (4.5) provides a compact representation for the Weyl symbol of the matrix

trace of the resolvent. Even though our intermediate calculations involved summation
over several (up to three) indices, summation in our final formula (4.5) is carried out over
a single index.

5 The matrix trace of a power of the resolvent

In order to implement the strategy outlined in Section 2 we need to write down the Weyl
symbol of the operator tr(A− zI)1−n .

We have the operator identity

(A− zI)1−n =
1

(n− 2)!

dn−2

dzn−2
(A− zI)−1 . (5.1)

The operations of taking the matrix trace and differentiation with respect to a parameter
commute, so formula (5.1) implies

tr(A− zI)1−n =
1

(n− 2)!

dn−2

dzn−2
tr(A− zI)−1 . (5.2)
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The latter formula, in turn, implies

[tr(A− zI)1−n]W =
1

(n− 2)!

dn−2

dzn−2
[tr(A− zI)−1]W . (5.3)

Substituting (4.5) into (5.3) we get

[tr(A− zI)1−n]W =
∑

j

1

(h(j) − z)n−1
− (n− 1)

∑

j

tr[AsubP
(j)]

(h(j) − z)n

+
i

2
(n− 1)

∑

j

tr{P (j), A1 − h(j)I, P (j)}

(h(j) − z)n
+ i
∑

j

tr{P (j), P (j), P (j)}

(h(j) − z)n−1

+O[(1 + |ξ|+ |z|)−n(1 + |ξ|)−1]. (5.4)

We can view this as an explicit version of the result of applying (d/dz)n−2 to the trace
of (E.22) (cf. (E.39)).

6 Asymptotic expansion for the density f

We have previously defined the density f(x, z), see Definition 2.1. In this section we
shall derive the asymptotic expansion for the density f(x, λeiϕ) as λ → +∞. The angle
0 < ϕ < π will be assumed to be fixed.

Put

s
(j)
1−n(x, ξ, z) :=

1

(h(j) − z)n−1
, (6.1)

s
(j)
−n(x, ξ, z) := −(n− 1)

tr[AsubP
(j)]

(h(j) − z)n
+

i

2
(n− 1)

tr{P (j), A1 − h(j)I, P (j)}

(h(j) − z)n

+ i
tr{P (j), P (j), P (j)}

(h(j) − z)n−1
, (6.2)

where the subscripts indicate the degree of homogeneity in ξ. Recall, yet again, that our
convention is ‘z and ξ are of the same order’. Comparing (5.4) with (6.1) and (6.2) we

see that
∑

j s
(j)
1−n is the leading (principal) component of the Weyl symbol of the operator

tr(A− zI)1−n, whereas
∑

j s
(j)
−n is the next (subprincipal) component.

The structure of formula (6.1) is very simple, whereas the structure of formula (6.2)
is nontrivial. This warrants a discussion.

The first term in the RHS of (6.2) contains the expression tr[AsubP
(j)]. It gives the

‘obvious’ contribution to the second Weyl coefficient. The expression tr[AsubP
(j)] appears

in the early papers of V. Ivrii and G. V. Rozenblyum.
The second term in the RHS of (6.2) contains the expression tr{P (j), A1−h(j)I, P (j)}.

It gives a contribution to the second Weyl coefficient which is not so obvious. The
expression tr{P (j), A1 − h(j)I, P (j)} first appeared in [16].

Finally, the third term in the RHS of (6.2) contains the expression tr{P (j), P (j), P (j)}.
It gives a U(1) curvature contribution to the second Weyl coefficient. This contribu-
tion to the second Weyl coefficient was identified in [2] and did not appear in previous
publications.
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The density f(x, λeiϕ) is the value of the integral kernel of the operator

i tr
[
2(A− zI)1−n − (A− 2zI)1−n − 2(A− z̄I)1−n + (A− 2z̄I)1−n

]
(6.3)

on the diagonal. We obtain the asymptotic expansion (2.16) for f(x, λeiϕ) by replacing
the operator (6.3) with its Weyl symbol and integrating in ξ. This gives the following
formulae for the asymptotic coefficients:

b1(x, ϕ) =
1

(2π)n

∑

j

b
(j)
1 (x, ϕ), (6.4)

b0(x, ϕ) =
1

(2π)n

∑

j

b
(j)
0 (x, ϕ), (6.5)

where

b
(j)
1 (x, ϕ) =

i

∫ [
2s

(j)
1−n(x, ξ, e

iϕ)− s
(j)
1−n(x, ξ, 2e

iϕ)− 2s
(j)
1−n(x, ξ, e

−iϕ) + s
(j)
1−n(x, ξ, 2e

−iϕ)
]
dξ, (6.6)

b
(j)
0 (x, ϕ) =

i

∫ [
2s

(j)
−n(x, ξ, e

iϕ)− s
(j)
−n(x, ξ, 2e

iϕ)− 2s
(j)
−n(x, ξ, e

−iϕ) + s
(j)
−n(x, ξ, 2e

−iϕ)
]
dξ. (6.7)

The integrands in (6.6) and (6.7) decay as |ξ|−n−1 as |ξ| → +∞, so these integrals
converge.

Strictly speaking, we also have to consider the contributions from the terms K(n) in
(E.35). However, it follows from the remark after (E.37) that they are o(1) as λ → +∞.

7 The second Weyl coefficient

Let us us examine what happens to the integral (6.7) when ϕ → 0+. It is easy to see that
if j is such that h(j) < 0 then the integral (6.7) tends to zero as ϕ → 0+: one can simply
set ϕ = 0 in the integrand. This means that only those j for which h(j) > 0 contribute
to the limit of the expression (6.6) when ϕ → 0+. Therefore, formulae (2.18) and (6.5)
give us the following expression for the second Weyl coefficient:

a+n−2(x) = −
1

(2π)n+1

m+∑

j=1

lim
ϕ→0+

b
(j)
0 (x, ϕ) . (7.1)

Here the enumeration of eigenvalues of the principal symbol A1 is assumed to be chosen
in such a way that j = 1, . . . , m+ correspond to positive eigenvalues h(j).

It remains only to evaluate limϕ→0+ b
(j)
0 (x, ϕ) explicitly. Here b

(j)
0 (x, ϕ) is defined by

formula (6.7), where the integrand is defined in accordance with (6.2).
Let us rewrite formula (6.2) as

s
(j)
−n(x, ξ, z) = s

(j;1)
−n (x, ξ, z) + s

(j;2)
−n (x, ξ, z), (7.2)

11



where

s
(j;1)
−n (x, ξ, z) := −(n− 1)

tr
(
AsubP

(j) − i
2
{P (j), A1 − h(j)I, P (j)}

)

(h(j) − z)n
, (7.3)

s
(j;2)
−n (x, ξ, z) := i

h(j) tr{P (j), P (j), P (j)}

h(j)(h(j) − z)n−1
. (7.4)

Note that the numerators in (7.3) and (7.4) are positively homogeneous in ξ of degree
zero.

Formula (6.7) now reads

b
(j)
0 (x, ϕ) = b

(j;1)
0 (x, ϕ) + b

(j;2)
0 (x, ϕ), (7.5)

where

b
(j;k)
0 (x, ϕ) =

i

∫ [
2s

(j;k)
−n (x, ξ, eiϕ)− s

(j;k)
−n (x, ξ, 2eiϕ)− 2s

(j;k)
−n (x, ξ, e−iϕ) + s

(j;k)
−n (x, ξ, 2e−iϕ)

]
dξ , (7.6)

k = 1, 2.
Denote by (S∗

xM)(j) the (n − 1)-dimensional unit cosphere in the cotangent fibre
defined by the equation h(j)(x, ξ) = 1 and denote by d(S∗

xM)(j) the surface area element
on (S∗

xM)(j) defined by the condition
[
d

dµ

∫

h(j)(x,ξ)<µ

g(ξ) dξ

]

µ=1

=

∫

(S∗

xM)(j)
g(ξ) d(S∗

xM)(j) , (7.7)

where g : Rn → R is an arbitrary smooth function. This means that we introduce
spherical coordinates in the cotangent fibre with the Hamiltonian h(j) playing the role of
the radial coordinate, see also [17, subsection 1.1.10].

Switching to spherical coordinates, we see that each integral (7.6) is a product of
two integrals, an (n − 1)-dimensional surface integral over the unit cosphere and a 1-
dimensional integral over the radial coordinate. Namely, we have

b
(j;k)
0 (x, ϕ) = c(j;k)(x) d(j;k)(ϕ) , (7.8)

where

c(j;1)(x) := −(n− 1)

∫

(S∗

xM)(j)
tr

(
AsubP

(j) −
i

2
{P (j), A1 − h(j)I, P (j)}

)
d(S∗

xM)(j) , (7.9)

c(j;2)(x) := i

∫

(S∗

xM)(j)
h(j) tr{P (j), P (j), P (j)} d(S∗

xM)(j) , (7.10)

d(j;1)(ϕ) := i

∫ +∞

0

[
2

(µ− eiϕ)n
−

1

(µ− 2eiϕ)n
−

2

(µ− e−iϕ)n
+

1

(µ− 2e−iϕ)n

]
µn−1 dµ ,

(7.11)

d(j;2)(ϕ) :=

i

∫ +∞

0

[
2

(µ− eiϕ)n−1
−

1

(µ− 2eiϕ)n−1
−

2

(µ− e−iϕ)n−1
+

1

(µ− 2e−iϕ)n−1

]
µn−2 dµ .

(7.12)
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Integrating by parts we see that the integrals in the right–hand-sides of (7.11) and
(7.12) have the same values, i.e. they do not depend on n. Hence, it is sufficient to
evaluate the integral (7.12) for n = 2. We have

d(j;1)(ϕ) = d(j;2)(ϕ) = i

∫ +∞

0

[
2

µ− eiϕ
−

1

µ− 2eiϕ
−

2

µ− e−iϕ
+

1

µ− 2e−iϕ

]
dµ

= −2(π − ϕ) , (7.13)

so substituting (7.5), (7.8) and (7.13) into (7.1) we get

a+n−2(x) =
1

(2π)n

m+∑

j=1

[
c(j;1)(x) + c(j;2)(x)

]
. (7.14)

Formulae (7.14), (7.9) and (7.10) give us the required explicit representation of the
second Weyl coefficient. However, integrating over a unit cosphere is not very convenient,
so we rewrite formulae (7.9) and (7.10) as

c(j;1)(x) = −n(n− 1)

∫

h(j)(x,ξ)<1

tr

(
AsubP

(j) −
i

2
{P (j), A1 − h(j)I, P (j)}

)
(x, ξ) dξ ,

(7.15)

c(j;2)(x) = n i

∫

h(j)(x,ξ)<1

(
h(j) tr{P (j), P (j), P (j)}

)
(x, ξ) dξ . (7.16)

Working with eigenprojections P (j) is also not very convenient, so we express them
via the normalised eigenvectors v(j) of the principal symbol A1 as

P (j) = v(j)[v(j)]∗. (7.17)

Substituting (7.17) into (7.15) and (7.16) we get

c(j;1)(x) = −n(n− 1)

∫

h(j)(x,ξ)<1

(
[v(j)]∗Asubv

(j) −
i

2
{[v(j)]∗, A1 − h(j)I, v(j)}

)
(x, ξ) dξ ,

(7.18)

c(j;2)(x) = −n i

∫

h(j)(x,ξ)<1

(
h(j) {[v(j)]∗, v(j)}

)
(x, ξ) dξ . (7.19)

The transition from (7.15) to (7.18) is quite straightforward, but the transition from (7.16)
to (7.19) warrants an explanation. Here we have tr{P (j), P (j), P (j)} = − tr(P (j){P (j), P (j)}) =
−{[v(j)]∗, v(j)}, where at the last step we made use of [2, formula (4.17)].

The advantage of formulae (7.18) and (7.19) is that they do not involve the matrix
trace.

Combining formulae (7.14), (7.18) and (7.19) we arrive at (1.6).
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Appendix A Proof of Lemma 2.2

Let us introduce the functions

gn(µ, z) :=
2

(µ− z)n
−

1

(µ− 2z)n
− c.c., n ∈ N, µ ∈ R, z ∈ C \ R. (A.1)

Here and further on ‘c.c.’ stands for ‘complex conjugate terms’.
The functions (A.1) possess the following properties:

∂1gn(µ, z) := ∂µgn(µ, z) = −ngn+1(µ, z), (A.2)

|gn(µ, z)| ≤
4

|µ− z|n
+

2

|µ− 2z|n
. (A.3)

Formula (2.12) can be rewritten as

f ρ(x, z) = i

∫ +∞

0

gn−1(µ, z) (N
′
+ ∗ ρ)(x, µ) dµ

−(−1)ni

∫ +∞

0

gn−1(µ,−z) (N ′
− ∗ ρ)(x, µ) dµ, (A.4)

where
N ′

±(x, ν) =
∑

±λk>0

δ(ν ∓ λk)‖vk(x)‖
2 (A.5)

is a tempered distribution in ν supported on R+ and taking values in densities. The
convolution

(N ′
± ∗ ρ)(x, µ) =

∫ +∞

0

N ′
±(x, ν) ρ(µ − ν) dν (A.6)

is a continuous function of µ taking values in densities. It is known that

|(N ′
± ∗ ρ)(x, µ)| ≤ c(x)(1 + |µ|n−1),

where c(x) is a fixed positive density. Arguing as in (2.2)–(2.7), it is easy to see that,
for fixed z, the function gn−1(µ, z) decays as |µ|−n−1 when µ → ±∞, so the integrals in
(A.4) converge.

We have

∫ +∞

0

gn−1(µ, z) (N
′
± ∗ ρ)(x, µ) dµ

=

∫ +∞

0

gn−1(µ, z)

(∫ +∞

0

N ′
±(x, ν) ρ(µ− ν) dν

)
dµ

=

∫ +∞

0

N ′
±(x, ν)

(∫ +∞

0

gn−1(µ, z) ρ(µ− ν) dµ

)
dν

=

∫ +∞

0

N ′
±(x, µ)

(∫ +∞

0

gn−1(ν, z) ρ(ν − µ) dν

)
dµ. (A.7)

In going from the second line of (A.7) to the third we changed the order of integration.
This can be justified, for example, by replacing the infinite series (A.5) by a finite partial
sum and going to the limit.
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Substituting (A.7) into (A.4) and using formula (2.11), we find that

f ρ(x, z)− f(x, z) = i

∫ +∞

0

N ′
+(x, µ)

(∫ +∞

0

gn−1(ν, z) ρ(ν − µ) dν − gn−1(µ, z)

)
dµ

− (−1)ni

∫ +∞

0

N ′
−(x, µ)

(∫ +∞

0

gn−1(ν,−z) ρ(ν − µ) dν − gn−1(µ,−z)

)
dµ

+ (−1)n
2n − 1

2n−1
i

[
1

zn−1
−

1

z̄n−1

] ∑

λk=0

‖vk(x)‖
2.

Now, let z = λeiϕ with λ > 0 and fixed ϕ ∈ (0, π). In view of the fact that N±(x, λ) =
O(λn), in order to show that f ρ(x, λeiϕ) − f(x, λeiϕ) → 0 as λ → +∞ it is sufficient to
prove that
∣∣∣∣
∫ +∞

0

gn−1(ν, λe
iϕ) ρ(ν − µ) dν − gn−1(µ, λe

iϕ)

∣∣∣∣ ≤
constϕ

λ(1 + µn+1)
, ∀λ ≥ 1, ∀µ ≥ 0.

(A.8)
Recall that according to our definition of the mollifier ρ we have

|ρ(ν)| ≤
cp

(1 + |ν|)p
, ∀p ∈ N, (A.9)

∫ +∞

−∞

ρ(ν)dν = 1, and

∫ +∞

−∞

ρ(ν)νmdν = 0, ∀m ∈ N. (A.10)

Formula (A.10) implies that

∫ +∞

0

gn−1(ν, λe
iϕ)ρ(ν − µ)dν − gn−1(µ, λe

iϕ)

=

∫ +∞

−∞

[
gn−1(ν, λe

iϕ)− gn−1(µ, λe
iϕ)
]
ρ(ν − µ)dν −

∫ 0

−∞

gn−1(ν, λe
iϕ)ρ(ν − µ)dν.

(A.11)

Using (A.3) and (A.9) with p = n+ 3 we get
∣∣∣∣
∫ 0

−∞

gn−1(ν, λe
iϕ)ρ(ν − µ)dν

∣∣∣∣ ≤
∫ 0

−∞

6

λn−1| sinϕ|n−1

cn+3

(1 + |ν|+ µ)n+3
dν

≤
6cn+3

λn−1| sinϕ|n−1(1 + µn+1)

∫ 0

−∞

dν

1 + ν2
≤

constϕ
λ(1 + µn+1)

, ∀λ ≥ 1. (A.12)

In order to estimate the first integral in the RHS of (A.11) let us perform a change of
variable ν 7→ µ+ ν,

∫ +∞

−∞

[
gn−1(ν, λe

iϕ)− gn−1(µ, λe
iϕ)
]
ρ(ν − µ) dν

=

∫ +∞

−∞

[
gn−1(µ+ ν, λeiϕ)− gn−1(µ, λe

iϕ)
]
ρ(ν) dν. (A.13)

Writing Taylor’s formula with remainder in Lagrange’s form and using (A.2), we get

gn−1(µ+ ν, λeiϕ)− gn−1(µ, λe
iϕ) = −(n− 1)gn(µ, λe

iϕ) ν

+
n(n− 1)

2
gn+1(µ, λe

iϕ) ν2 −
(n+ 1)n(n− 1)

6
R(µ, ν, λ, ϕ) ν3, (A.14)
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where
R(µ, ν, λ, ϕ) = gn+2(ξµ,µ+ν , λe

iϕ) (A.15)

and ξµ,µ+ν is some real number strictly between µ and µ + ν. From (A.10), (A.14) and
(A.2) we obtain

∫ +∞

−∞

[
gn−1(µ+ ν, λeiϕ)− gn−1(µ, λe

iϕ)
]
ρ(ν) dν

= −
(n + 1)n(n− 1)

6

∫ +∞

−∞

R(µ, ν, λ, ϕ) ν3ρ(ν) dν. (A.16)

Comparing formula (A.8) with (A.11)–(A.13) and (A.16) we see that the proof of
Lemma 2.2 has been reduced to proving that

∫ +∞

−∞

∣∣R(µ, ν, λ, ϕ) ν3ρ(ν)
∣∣ dν ≤

constϕ
λ(1 + µn+1)

, ∀λ ≥ 1, ∀µ ≥ 0. (A.17)

In order to prove (A.17) it is sufficient to prove the following two estimates:
∫ +∞

−∞

∣∣R(µ, ν, λ, ϕ) ν3ρ(ν)
∣∣ dν ≤

constϕ
λn+2

, ∀λ ≥ 1, ∀µ ∈ [0, λ], (A.18)

∫ +∞

−∞

∣∣R(µ, ν, λ, ϕ) ν3ρ(ν)
∣∣ dν ≤

constϕ
λµn+1

, ∀λ ≥ 1, ∀µ ≥ λ. (A.19)

Observe that formulae (A.15) and (A.3) give us the rough estimate

|R(µ, ν, λ, ϕ)| ≤
6

| sinϕ|n+2λn+2
, ∀λ > 0, ∀µ, ν ∈ R. (A.20)

Formulae (A.20) and (A.9) with p = 5 imply (A.18).
Formulae (A.15) and (A.3) also tell us that

|R(µ, ν, λ, ϕ)| ≤
constϕ
µn+2

≤
constϕ
λµn+1

uniformly over all µ ≥ λ > 0 and ν ≥ −µ/2. Using this estimate and formula (A.9) with
p = 5 we get

∫ +∞

−µ/2

∣∣R(µ, ν, λ, ϕ) ν3ρ(ν)
∣∣ dν ≤

constϕ
λµn+1

, ∀λ ≥ 1, ∀µ ≥ λ. (A.21)

Comparing formulae (A.21) and (A.19) we see that the proof of Lemma 2.2 has been
reduced to proving that

∫ −µ/2

−∞

∣∣R(µ, ν, λ, ϕ) ν3ρ(ν)
∣∣ dν ≤

constϕ
λµn+1

, ∀λ ≥ 1, ∀µ ≥ λ. (A.22)

Using (A.20) and (A.9) with p = n + 5 we get

∫ −µ/2

−∞

∣∣R(µ, ν, λ, ϕ) ν3ρ(ν)
∣∣ dν ≤

6cn+5

| sinϕ|n+2λn+2

∫ +∞

µ/2

dν

νn+2

=
6 · 2n+1cn+5

(n+ 1)| sinϕ|n+2λn+2µn+1
, ∀λ ≥ 1, ∀µ ≥ λ,

which implies (A.22).
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Appendix B Some integrals involving the functions gn

In this appendix we evaluate some integrals involving the functions (A.1). These results
will be used later in Appendix C.

Let us evaluate the following indefinite integral:

∫
µndµ

(µ− z)n
=

∫ (
1 +

z

ν

)n
dν =

∫ [
1 +

nz

ν
+

n∑

k=2

(
n

k

)
zk

νk

]
dν

= ν + nz log ν +

n∑

k=2

(
n

k

)
1

1− k
zkν1−k

= µ+ nz log(µ− z) +

n∑

k=2

(
n

k

)
1

1− k
zk(µ− z)1−k. (B.1)

Here in performing intermediate calculations we used the change of variable ν = µ− z.
Similarly,

∫
µn−1dµ

(µ− z)n
=

∫ (
1 +

z

ν

)n−1 dν

ν
=

∫ [
1 +

n−1∑

k=1

(
n− 1

k

)
zk

νk

]
dν

ν

= log ν −
n−1∑

k=1

(
n− 1

k

)
1

k
zkν−k = log(µ− z)−

n−1∑

k=1

(
n− 1

k

)
1

k
zk(µ− z)−k. (B.2)

Formulae (A.1), (B.1) and (B.2) imply

∫
gn(µ, z)µ

n dµ = 2nz log(µ− z)− 2nz log(µ− 2z)

+ 2

n∑

k=2

(
n

k

)
1

1− k
zk(µ− z)1−k −

n∑

k=2

(
n

k

)
1

1− k
2kzk(µ− 2z)1−k − c.c., (B.3)

∫
gn(µ, z)µ

n−1 dµ = 2 log(µ− z)− log(µ− 2z)

− 2
n−1∑

k=1

(
n− 1

k

)
1

k
zk(µ− z)−k +

n−1∑

k=1

(
n− 1

k

)
1

k
2kzk(µ− 2z)−k − c.c.. (B.4)

Using (B.3) and (B.4) we can finally evaluate definite integrals:

∫ +∞

0

gn(µ, z)µ
n dµ =

[
2nz log

(
µ− z

µ− 2z

)
− 2nz̄ log

(
µ− z̄

µ− 2z̄

)]∣∣∣∣
+∞

0

, (B.5)

∫ +∞

0

gn(µ, z)µ
n−1 dµ =

[
log

(
µ− z

µ− 2z

)
+ log

(
µ− z

µ− z̄

)
− log

(
µ− z̄

µ− 2z̄

)]∣∣∣∣
+∞

0

. (B.6)

Here the complex logarithms log are continuous multivalued functions which have to be
handled carefully.

Note that for any z ∈ C \ R and any real positive µ we have

Im
µ− z

µ− 2z
=

µ Im z

|µ− 2z|2
6= 0,
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Im
µ− z

µ− z̄
=

2 Im z(Re z − µ)

|µ− z|2
= 0 ⇒ Re

µ− z

µ− z̄
=

(Re z − µ)2 − (Im z)2

|µ− z|2
< 0,

so neither of the two arguments of our log crosses the positive real axis R+ . Hence, we
are free to switch from log to the single-valued Log : C \ {0} → R+ i[0, 2π) branch-cut
along R+. Formulae (B.5) and (B.6) become

∫ +∞

0

gn(µ, z)µ
n dµ =

[
2nz Log

(
µ− z

µ− 2z

)
− 2nz̄ Log

(
µ− z̄

µ− 2z̄

)]∣∣∣∣
+∞

0

= 2n(z − z̄) ln 2 = 4ni(ln 2) Im z, (B.7)

∫ +∞

0

gn(µ, z)µ
n−1 dµ =

[
Log

(
µ− z

µ− 2z

)
+ Log

(
µ− z

µ− z̄

)
− Log

(
µ− z̄

µ− 2z̄

)]∣∣∣∣
+∞

0

= Log

(
µ− z

µ− z̄

)∣∣∣∣
+∞

0

= iπ(1 + sgn Im z)− iArg z2, (B.8)

where Arg : C \ {0} → [0, 2π) is also branch-cut along R+ .

Appendix C Proof of Lemma 2.3

Formula (1.3) tells us that

(N ′
± ∗ ρ)(x, µ) = a±n−1(x)µ

n−1 + a±n−2(x)µ
n−2 + (1 + µ)n−3r±(x, µ), (C.1)

where r±(x, µ) is bounded uniformly in µ ≥ 0.
Let gn(µ, z) be defined in accordance with (A.1). We have

gn(λµ, λz) = λ−ngn(µ, z), ∀λ > 0. (C.2)

Using (C.2) we get

∫ +∞

0

gn−1(µ, λe
iϕ)µn−1 dµ = λ

∫ +∞

0

gn−1(µ, e
iϕ)µn−1 dµ , (C.3)

∫ +∞

0

gn−1(µ, λe
iϕ)µn−2 dµ =

∫ +∞

0

gn−1(µ, e
iϕ)µn−2 dµ, (C.4)

∫ +∞

0

gn−1(µ, λe
iϕ) (1 + µ)n−3 r±(x, µ) dµ

=
1

λ

∫ +∞

0

gn−1(µ, e
iϕ)

(
1

λ
+ µ

)n−3

r±(x, λµ) dµ = o(1) as λ → +∞. (C.5)

Recall (see Appendix A) that the function gn−1(µ, z) decays as µ
−n−1 when µ → +∞, so

the integrals in (C.3)–(C.5) converge.
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Substituting (C.3)–(C.5) into (A.4) we get

f ρ(x, λeiϕ)

= λi

[
a+n−1(x)

∫ +∞

0

gn−1(µ, e
iϕ)µn−1 dµ − (−1)na−n−1(x)

∫ +∞

0

gn−1(µ, e
i(ϕ+π))µn−1 dµ

]

+ i

[
a+n−2(x)

∫ +∞

0

gn−1(µ, e
iϕ)µn−2 dµ − (−1)na−n−2(x)

∫ +∞

0

gn−1(µ, e
i(ϕ+π))µn−2 dµ

]

+ o(1) as λ → +∞. (C.6)

Formulae (B.7) and (B.8) give us the values of the integrals appearing in (C.6), so (C.6)
becomes

f ρ(x, λeiϕ) = −4(n− 1)(ln 2)(sinϕ)
[
a+n−1(x) + (−1)na−n−1(x)

]
λ

− 2
[
a+n+2(x)(π − ϕ) + (−1)na−n−1(x)ϕ

]
+ o(1) as λ → +∞,

thus proving the lemma.

Appendix D Weyl quantization on manifolds

1 Let M be a compact manifold. A pseudodifferential operator of order m ∈ R is a
continuous operator A : C∞(M) → C∞(M) which has a weakly continuous extension
D′(M) → D′(M) such that, with KA denoting the distribution kernel,

1) sing suppKA ⊂ diag (M ×M),

2) For every system of local coordinates γ : Ω ∋ ρ 7→ x ∈ Ω′ ⊂ Rn where Ω ⊂ M ,
Ω′ ⊂ Rn are open and γ a diffeomorphism, we have (identifying Ω and γ(Ω))

Au(x) =
1

(2π)n

∫∫
ei(x−y)·θa(x, θ)u(y)dydθ+Ru, u ∈ C∞

0 (Ω), x ∈ Ω, (D.1)

where R is smoothing (KR ∈ C∞(Ω×Ω)) and a is a symbol of order m; a ∈ Sm(Ω),

which means that a ∈ C∞(Ω × Rn) and that for every K̂ ⋐ Ω and all α, β ∈ Nn,
∃C = CK̂,α,β such that

|∂α
x∂

β
θ a(x, θ)| ≤ C〈θ〉m−|β|, ∀ (x, θ) ∈ K̂ × R

n, where 〈θ〉 = (1 + |θ|2)1/2. (D.2)

If γ̃ : Ω̃ ∋ ρ 7→ x̃ ∈ Ω̃′ is another local coordinate chart, then over the intersection
Ω ∩ Ω̃ we can express x = κ(x̃), where κ = γ ◦ γ̃−1 and we have

a(κ(x̃), θ) ≡ ã(x̃, (κ′(x̃))tθ) modSm−1. (D.3)

This allows us to define the symbol σA of A on T ∗M up to symbols of order 1 lower.
More precisely, we have a bijection

Lm(M)/Lm−1(M) ∋ A 7→ σA ∈ Sm(T ∗M)/Sm−1(T ∗M), (D.4)

1The content of this appendix can be found in a slightly more concentrated form in the appendix of
[19]. The main ideas and related results appeared earlier in Appendix a.3 in [7]. We recovered these
precise references only after completing the section and decided to keep it for the convenience of the
reader. See also Section 18.5 in [8].
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with the natural definition of the symbol classes Sm(T ∗M), and with Lm(M) denoting
the space of pseudodifferential operators on M of order m.

It is well known that we can replace a(x, θ) in (D.1) with a((x+y)/2, θ) and this leads
to the same definition of σA in Sm/Sm−1(T ∗M). Thus, working with

Au(x) = Op (a)u(x) +Ru, a ∈ Sm(Ω×Rn), KR ∈ C∞, (D.5)

leads to the same principal symbol map. Here we write2

Op (a)u(x) =
1

(2π)n

∫∫
ei(x−y)·θa

(
x+ y

2
, θ

)
u(y)dydθ. (D.6)

It seems to be a well-known result (though we did not find a precise reference) that if
we fix a positive smooth density ω on M , restrict our attention to local coordinates for
which ω = dx1...dxn and work with the Weyl quantization as in (D.5), (D.6), then (D.4)
improves to a bijection

Lm/Lm−2(M) ∋ A 7→ σA ∈ Sm/Sm−2(T ∗M). (D.7)

A natural generalization of this is to consider pseudodifferential operators acting on
1/2-densities; A : C∞(M ; Ω1/2) → C∞(M ; Ω1/2). When using the Weyl quantization, we
get the local representation analogous to D.5:

A(u(y)dy1/2) = (Op (a)u)(x)dx1/2 + (Ru)dx1/2, (D.8)

where dx = dx1...dxn. Recall that Duistermaat and Hörmander [4] have defined invari-
antly the notion of subpincipal symbol of such operators when the symbols are sums of a
leading positively homogeneous term of order m in ξ and a symbol of order m− 1. This
result, as well as the fixed density invariance mentioned above, follow from the next more
or less well-known proposition (cf. the footnote on page 19).

Proposition D.1. Let Lm(M) denote the space of pseudodifferential operators on M
of order m, acting on half densities. Then if (x1, ..., xn) and (x̃1, ..., x̃n) are two local
coordinate charts and we use the representation (D.8), so that

A(udx1/2) ≡ (Op (a)u)dx1/2 ≡ (Op (ã)ũ)dx̃1/2,

modulo the action of smoothing operators, for udx1/2 = ũdx̃1/2 supported in the intersec-
tion of the two coordinate charts, then we have

a(κ(x̃), θ) ≡ ã(x̃, κ′(x̃)tθ) mod Sm−2, (D.9)

implying that we have a natural bijective symbol map

Lm/Lm−2(M) → Sm/Sm−2(T ∗M). (D.10)

Proof. We only verify (D.9) and omit the (even more) standard arguments for (D.10).
Our proof will be a straightforward adaptation of the proof of the invariance of pseudo-
differential operators under composition with diffeomorphisms by means of the Kuranishi
trick (cf. [5]).

2Strictly speaking, when Ω is not convex we need here to insert a suitable smooth cutoff χ(x, y) ∈
C∞(Ω×Ω) which is equal to one near the diagonal, the choice of which can affect the operator only by
a smoothing one.
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In the intersection of the two coordinate charts Ω and Ω̃, we have u(y)dy1/2 =

ũ(ỹ)dỹ1/2. Here y = κ(ỹ), where κ is a diffeomorphism: γ̃(Ω∩Ω̃) → γ(Ω∩Ω̃), κ = γ◦γ̃−1).
Thus u(y) = ũ(ỹ)(det κ′(ỹ))−1/2, assuming that det κ′ > 0 for simplicity. Thus, modulo
the action of smoothing operators

A(udy1/2) ≡ (Op (a)u)dx1/2 = (det κ′(x̃))1/2(Op (a)u)dx̃1/2,

so up to a smoothing operator Op (ã) coincides with

B : ũ 7→ (det κ′(x̃))1/2Op (a)u, u(y) = ũ(ỹ)(det κ′(ỹ))−1/2.

We have

Bũ(x̃) = (det κ′(x̃))1/2
∫∫

ei(x−y)·θa

(
x+ y

2
, θ

)
u(y)dy

dθ

(2π)n

= (det κ′(x̃))1/2
∫∫

ei(κ(x̃)−y)·θa

(
κ(x̃) + y

2
, θ

)
ũ(ỹ)(det κ′(ỹ))−1/2dy

dθ

(2π)n

=

∫∫
ei(κ(x̃)−κ(ỹ))·θa

(
κ(x̃) + κ(ỹ)

2
, θ

)
ũ(ỹ)(det κ′(x̃) detκ′(ỹ))1/2dỹ

dθ

(2π)n
.

By Taylor’s formula (and restricting to a suitably thin neighborhood of the diagonal
by means of a smooth cutoff, equal to one near the diagonal), we get

κ(x̃)− κ(ỹ) = K(x̃, ỹ)(x̃− ỹ),

where K̃(x̃, ỹ) depends smoothly on (x̃, ỹ) and

K(x̃, ỹ) = κ′

(
x̃+ ỹ

2

)
+O((x̃− ỹ)2).

It follows that

Bũ(x̃) =

∫∫
ei(x̃−ỹ)·Kt(x̃,ỹ)θa

(
κ(x̃) + κ(ỹ)

2
, θ

)
ũ(ỹ)(det κ′(x̃) det κ′(ỹ))1/2dỹ

dθ

(2π)n

=

∫∫
ei(x̃−ỹ)·θ̃a

(
κ(x̃) + κ(ỹ)

2
, Kt(x̃, ỹ)−1θ̃

)
ũ(ỹ)

(det κ′(x̃) det κ′(ỹ))1/2

detK(x̃, ỹ)
dỹ

dθ̃

(2π)n
.

Here

κ(x̃) + κ(ỹ)

2
= κ

(
x̃+ ỹ

2

)
+O((x̃− ỹ)2),

Kt(x̃, ỹ)−1 =

(
(κ′)t

(
x̃+ ỹ

2

))−1

+O((x̃− ỹ)2),

detK(x̃, ỹ) = det κ′

(
x̃+ ỹ

2

)
+O((x̃− ỹ)2),

(det κ′(x̃) detκ′(ỹ))1/2 = det κ′

(
x̃+ ỹ

2

)
+O((x̃− ỹ)2).

Thus,

Bũ = Op (ã)ũ+

∫∫
ei(x̃−ỹ)·θ̃b(x̃, ỹ, θ̃)u(ỹ)dỹ

dθ̃

(2π)n
,

where ã ∈ Sm is related to a as in (D.9) and b ∈ Sm(γ̃(Ω ∩ Ω̃)2 × Rn) (in the sense that

∂α
x̃∂

β
ỹ ∂

|δ|

θ̃
b = O(〈θ̃〉m−δ) uniformly in θ̃ and locally uniformly in (x̃, ỹ)) and b vanishes to

the second order on the diagonal, x̃ = ỹ. By standard arguments we have B ≡ Op(r),
where r ∈ Sm−2 and the proposition follows. �
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Appendix E The resolvent and its powers as pseudo-

differential operators

Let γ : M ⊃ Ω → Ω′ ⊂ Rn be a chart of local coordinates and let us identify Ω′ with
Ω in the natural way. Let a(x, ξ) ∈ S1(Ω × Rn) (defined modulo S−∞(Ω × Rn)) be the
Weyl symbol of

A|C∞

0 (Ω)
: C∞

0 (Ω) → C∞(Ω), (E.1)

so that
Au(x) = Op (a)u(x) +Ru(x), x ∈ Ω (E.2)

for every u ∈ C∞
0 (Ω), where R ∈ L−∞(Ω) in the sense that KR ∈ C∞(Ω × Ω). Here

we identify 1/2 densities and scalar functions on Ω by means of the fixed factor dx1/2.
We first work in this fixed local coordinate chart and write simply A for the operator in
(E.1). We notice that

a− z ∈ S(Ω× R
n, 〈ξ, z〉) = S(〈ξ, z〉), (E.3)

in the sense that a− z ∈ C∞(Ω× Rn) and that for all K ⋐ Ω, α, β ∈ Nn,

|∂α
x∂

β
ξ (a− z)| ≤ CK,α,β〈ξ, z〉〈ξ〉

−|β|, (E.4)

uniformly when z ∈ C, |z| > 1, x ∈ K, ξ ∈ Rn. Here, we write 〈ξ〉 = (1 + |ξ|2)1/2,
〈ξ, z〉 = (1 + |z|2 + |ξ|2)1/2.

Similarly, if Γ ⊂ Ċ is a closed conic neighborhood of Ṙ and until further notice we
restrict our attention to z ∈ Ċ \ (Γ ∪D(0, 1)), we have

(a− z)−1 ∈ S(〈ξ, z〉−1) (E.5)

with the natural generalization of the definition (E.4).
Sometimes, we shall exploit the fact that a − z and (a − z)−1 belong to narrower

symbol classes, used in [6]. We say that b(x, ξ, z), defined for (x, ξ, z) as in (E.5), belongs
to S1(〈ξ, z〉

m), m ∈ R, if

|∂α
x∂

β
ξ b(x, ξ, z)| ≤ CK,α,β

{
〈ξ, z〉m, when α = β = 0,

〈ξ, z〉m 〈ξ〉
〈ξ,z〉

〈ξ〉−|β|, when (α, β) 6= (0, 0),
(E.6)

uniformly for x ∈ K ⋐ Ω, ξ ∈ Rn, z ∈ Ċ \ (Γ ∪D(0, 1)).
If bj ∈ S(〈ξ, z〉mj), j = 1, 2, the asymptotic Weyl composition

b1#b2 =
(
e(i/2)σ(Dx,ξ ;Dy,η)b1(x, ξ)b2(y, η)

)
y=x
η=ξ

∼
∞∑

k=0

1

k!

((
i

2
σ(Dx,ξ;Dy,η)

)k

b1(x, ξ)b2(y, η)

)

y=x

η=ξ

(E.7)

is well defined in S(〈ξ, z〉m1+m2)/S(〈ξ, z〉m1+m2〈ξ〉−∞), where

S(〈ξ, z〉m1+m2〈ξ〉−∞) =
⋂

N≥0

S(〈ξ, z〉m1+m2〈ξ〉−N)
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and with the natural definition of the symbol spaces to the right. Here σ(Dx,ξ;Dy,η) =
Dξ ·Dy −Dx ·Dη. Notice that

1

k!

((
i

2
σ(Dx,ξ;Dy,η)

)k

b1(x, ξ)b2(y, η)

)

y=x

η=ξ

∈ S(〈ξ, z〉m1+m2〈ξ〉−k). (E.8)

When bj ∈ S1(mj) this improves to

1

k!

((
i

2
σ(Dx,ξ;Dy,η)

)k

b1(x, ξ)b2(y, η)

)

y=x
η=ξ

∈

{
S1(〈ξ, z〉

m1+m2), when k = 0,

S(〈ξ, z〉m1+m2−2〈ξ〉2−k), when k ≥ 1.

(E.9)
In particular,

b1#b2 ≡ b1b2 mod S(〈ξ, z〉m1+m2−2〈ξ〉).

In the special case b1 = a− z, b2 = (a− z)−1 we get

(a− z)#(a− z)−1 = 1 + r, (E.10)

r ∼
∞∑

k=1

1

k!

(
i

2
σ(Dx,ξ;Dy,η)

)k (
a(x, ξ)(a(y, η)− z)−1

)
y=x
η=ξ

∈ S(〈ξ, z〉−2〈ξ〉)/S(〈ξ, z〉−2〈ξ〉−∞),

r ≡
i

2
σ(Dx,ξ;Dy,η)

(
a(x, ξ)(a(y, η)− z)−1

)
y=x
η=ξ

≡
i

2
{a, (a− z)−1} mod S(〈ξ, z〉−2),

(E.11)

with the Poisson bracket as defined in Section 1.
The symbolic inverse of A− z is now

b(x, ξ, z) ∼ (a− z)−1#(1− r + r#r...± r#k + ...), (E.12)

where
r#k = r#r#...#r︸ ︷︷ ︸

k factors

∈ S
(
(〈ξ〉/〈ξ, z〉2)k

)
⊂ S

(
〈ξ, z〉−k

)
.

We see that b(x, ξ, z) ∈ S(〈ξ, z〉−1) and that

b ≡ (a− z)−1 mod S

(
〈ξ〉

〈ξ, z〉3

)
.

More precisely,

b ≡ (a− z)−1 − (a− z)−1#r mod S

(
1

〈ξ, z〉3

)
.

Here

(a− z)−1#r ∼ (a− z)−1r +
∑

k≥1

1

k!

((
i

2
σ(Dx,ξ;Dy,η)

)k (
(a− z)−1(x, ξ)r(y, η)

)
)

y=x
η=ξ

≡ (a− z)−1r mod S

(
1

〈ξ, z〉3

)
,
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so

b(x, ξ, z) ≡ (a− z)−1 − (a− z)−1r

≡ (a− z)−1 −
i

2
(a− z)−1{a, (a− z)−1} mod S

(
1

〈ξ, z〉3

)
,

(E.13)

where we also used (E.11).
If bj ∈ S(〈ξ, z〉m〈ξ〉k−j) for j = 0, 1, ..., we can apply a standard procedure to construct

a symbol b ∈ S((〈ξ, z〉m〈ξ〉k) such that

b−
N−1∑

0

bj ∈ S(〈ξ, z〉m〈ξ〉k−N)

for every N ≥ 1 and we still write b ∼
∑∞

0 bj where b is a concrete symbol (uniquely

determined up to S(〈ξ, z〉m〈ξ〉−∞)). If bj are holomorphic for z ∈ Ċ \ (Γ ∪D(0, 1)), then
the standard construction produces a symbol b which is also holomorphic.

If b ∈ S(〈ξ, z〉m〈ξ〉k) is such a holomorphic symbol then by the Cauchy inequalities
we get3

∂ℓ
zb ∈ S(〈ξ, z〉m〈ξ〉k〈z〉−ℓ)

in the sense that
|∂α

x∂
β
ξ ∂

ℓ
zb| ≤ CK,α,β,ℓ〈ξ, z〉

m〈ξ〉k−|β|〈z〉−ℓ

for x ∈ K ⋐ Ω, ξ ∈ Rn and omitting the slight increase of Γ ∪D(0, 1), mentioned in the
last footnote.

With the holomorphic z-dependence in mind we return to (E.11) and write

r ∼
∞∑

k=1

rk(x, ξ, z) (E.14)

and get a concrete symbol r ∈ S(〈ξ, z〉−2〈ξ〉2−1) which is holomorphic in z, so that for
every N ≥ 1,

r −
N−1∑

1

rk ∈ S(〈ξ, z〉−2〈ξ〉2−N) (E.15)

and by the Cauchy inequalities

∂ℓ
z

(
r −

N−1∑

1

rk

)
∈ S(〈ξ, z〉−2〈ξ〉2−N〈z〉−ℓ). (E.16)

From the explicit expression of the rk (or from observing that they are defined for z
in (Ċ \ Γ) ∪D(0, 〈ξ〉/C) when ξ is large), we see that

∂ℓ
zrk ∈ S(〈ξ, z〉−2−ℓ〈ξ〉2−k), (E.17)

∂ℓ
z

(
N−1∑

1

rk

)
∈ S(〈ξ, z〉−2−ℓ〈ξ〉2−1). (E.18)

3After replacing Γ with any closed conic set containing Γ in its interior and D(0, 1) with D(0, 1 + ǫ)
for any ǫ > 0
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Choosing N = ℓ+ 1 in (E.16), (E.18), we get

∂ℓ
zr ∈ S(〈ξ, z〉−2−ℓ〈ξ〉1). (E.19)

This argument shows that (E.14) is valid in the symbol space S̃(〈ξ, z〉−2〈ξ〉2−1), where

we say that c ∈ S̃(〈ξ, z〉m〈ξ〉k) if c(x, ξ, z) is a smooth, holomorphic in z and

∂ℓ
zc ∈ S̃(〈ξ, z〉m−ℓ〈ξ〉k), for all ℓ ≥ 0.

In (E.12) we can choose r#k and the asymptotic sums so that b ∈ S̃(〈ξ, z〉−1) and so
that (E.13) improves to

b(x, ξ, z) ≡ (a− z)−1 − (a− z)−1r

≡ (a− z)−1 −
i

2
(a− z)−1{a, (a− z)−1} mod S̃

(
1

〈ξ, z〉3

)
,

(E.20)

where
r ∈ S̃(〈ξ, z〉−2〈ξ〉), (a− z)−1 ∈ S̃(〈ξ, z〉−1). (E.21)

In the main text we have

A = A1 + A0 + A−1, A0 = Asub,

where Aj ∈ S(〈ξ〉j) and A1, A0 are positively homogeneous in ξ of degree 1 and 0
respectively, in the region |ξ| ≥ 1. From the resolvent identity

(a− z)−1 = (A1 − z)−1 − (A1 − z)−1(a−A1)(A1 − z)−1

+ (A1 − z)−1(a−A1)(a− z)−1(a− A1)(A1 − z)−1

we infer that

(a− z)−1 ≡ (A1 − z)−1 − (A1 − z)−1(A0 + A−1)(A1 − z)−1 mod S̃(〈ξ, z〉−3),

hence,

(a− z)−1 ≡ (A1 − z)−1 − (A1 − z)−1A0(A1 − z)−1 mod S̃(〈ξ〉−1〈ξ, z〉−2).

In particular,
(a− z)−1 ≡ (A1 − z)−1 mod S̃(〈ξ, z〉−2)

and from (E.20) we get

b ≡ (A1 − z)−1 − (A1 − z)−1A0(A1 − z)−1

−
i

2
(A1 − z)−1{A1, (A1 − z)−1} mod S̃

(
1

〈ξ〉〈ξ, z〉2

)
, (E.22)

which implies (3.1) (cf. (3.2)).
By construction, b is a realization of the symbolic inverse of a− z:

(a− z)#b ≡ 1 mod S̃(〈ξ, z〉−2〈ξ〉−∞).
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Let B = Op (b) : C∞
0 (Ω) → C∞(Ω) (where we also insert a suitable cutoff ∈ C∞(Ω×Ω),

equal to 1 near diag (Ω× Ω)). Then

∂k
zB(z) = O(〈z〉−k1) : Hs

comp(Ω) → Hs+k2
loc (Ω) uniformly for z ∈ Ċ\ (Γ∪D(0, 1)), (E.23)

when 1 + k = k1 + k2, kj ≥ 0, s ∈ R.
Let χ,Φ ∈ C∞

0 (Ω), with Φ = 1 near supp (χ). Then,

(A− z)ΦBχ = χ+R, (E.24)

where R = R(z) is a smoothing operator: D′(Ω) → C∞(Ω), depending holomorphically
on z, such that Ru = 0 when supp (u) ∩ supp (χ) = ∅ and

∂k
zR = O(〈z〉−2−k) : H−s(Ω) → Hs

loc(Ω), z ∈ Ċ \ (Γ ∪D(0, 1)), (E.25)

for all s ∈ R, k ≥ 0. We omit the standard proof of this, based on the symbolic results
above, starting with the identity

(A− z)ΦBχ = [A,Φ]Bχ + Φ(A− z)Bχ.

Let M ⊂
⋃N

1 Ωj be a finite covering ofM with coordinate charts as above. Recall that
A is a globally defined pseudodifferential operator acting on 1/2 densities so we can now
view A− z as acting: C∞

0 (Ωj ; Ω
1/2) → C∞(M ; Ω1/2) for each j. We have a corresponding

operator Bj (as “B” above), now acting on 1/2-densities, so that

Bj(udx
1/2) = (Op (bj)u)dx

1/2, u ∈ C∞
0 (Ωj) (E.26)

where dx1/2 is the canonical (and j-dependent) 1/2-density on Ωj . Let χj ∈ C∞
0 (Ωj) form

a partition of unity on M . (E.24) becomes

(A− z)ΦjBjχj = χj +Rj(z), (E.27)

where Rj has the properties of “R” in (E.23), (E.25) except for the fact that Rj acts on
1/2-densities and that we can actually define Rj as an operator on M such that

‖∂k
zRj‖L(H−s,Hs(M)) ≤ Cs〈z〉

−2−k, z ∈ Ċ \ (Γ ∪D(0, 1)). (E.28)

Here Hs(M) denotes the Sobolev space of 1/2-densities of order s ∈ R.
Let

B :=
∑

ΦjBjχj : C∞(M ; Ω1/2) → C∞(M ; Ω1/2). (E.29)

Then
(A− z)B(z) = 1 +R(z), (E.30)

R(z) =
∑

Rj(z), (E.31)

∂k
zB(z) = O(〈z〉−k1) : Hs → Hs+k2, when k + 1 = k1 + k2, kj ≥ 0, (E.32)

∂k
zR(z) = Os(〈z〉

−2−k) : H−s → Hs, (E.33)

for all s ∈ R.
On the other hand, by direct arguments, we know that (A − z)−1 also enjoys the

properties (E.32). Applying this operator to the left in (E.30), we get

(A− z)−1 = B(z)−K(z), K(z) = (A− z)−1R(z). (E.34)
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Clearly, K(z) also satisfies (E.33).
Using the operator identity (5.1) in (E.34), we get

(A− z)1−n = B(n)(z)−K(n)(z), (E.35)

B(n) =
1

(n− 2)!
∂n−2
z B(z), (E.36)

K(n) =
1

(n− 2)!
∂n−2
z K(z) = Os(〈z〉

−n) : H−s → Hs. (E.37)

From the last estimate it follows that K(n) is of trace class with a continuous distribution
kernel which is uniformly = O(〈z〉−n).

Let x0 be a point in a coordinate chart Ω = Ωj and assume for simplicity that χ = χj

is equal to 1 near that point. Then near (x0, x0) the distribution kernel of B (identified
locally with an operator acting on scalar functions) coincides with that of Op (b), where
b satisfies (E.20). Consequently,

B(n) = Op (b(n)), (E.38)

b(n) ≡ (a− z)−n −
1

(n− 2)!
∂n−2
z

(
(a− z)−1r

)
mod S̃

(
〈ξ, z〉−n−1

)
. (E.39)

Appendix F Proof of formulae (4.4) and (4.5)

Formula (3.5) implies
(∂P (k))P (j) + P (k)∂P (j) = δkj∂P (k), (F.1)

where ∂ is any partial derivative. We have

tr{P (k), P (j), P (l)} = tr
[
(∂xαP (k))P (j)∂ξαP

(l) − (∂ξαP
(k))P (j)∂xαP (l)

]

= tr
[(
(∂xαP (k))P (j)

)(
P (j)∂ξαP

(l)
)
−
(
(∂ξαP

(k))P (j)
)(
P (j)∂xαP (l)

)]
.

Using (F.1), we can rewrite the above formula as

tr{P (k), P (j), P (l)} = tr
[(
δkj∂xαP (j) − P (k)∂xαP (j)

)(
δjl∂ξαP

(j) − (∂ξαP
(j))P (l)

)

−
(
δkj∂ξαP

(j) − P (k)∂ξαP
(j)
)(
δjl∂xαP (j) − (∂xαP (j))P (l)

)]
.

Expanding the parentheses in the above formula and rearranging terms, we get

tr{P (k), P (j), P (l)} = δkjtr{P (j), P (l), P (j)}+ δjltr{P (j), P (k), P (j)}

− δkltr{P (j), P (k), P (j)}. (F.2)

In the special case l = k the above formula becomes

tr{P (k), P (j), P (k)} = 2δkjtr{P (j), P (j), P (j)} − tr{P (j), P (k), P (j)}. (F.3)

Each of the three terms in the RHS of (F.2) can now be rewritten using the identity (F.3)
with appropriate choice of indices, which gives us (4.4).
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Let us now substitute (4.4) into the triple sum in the RHS of (4.3):

∑

j,k,l

h(j) − z

(h(k) − z)(h(l) − z)
tr{P (k), P (j), P (l)}

= 2
∑

j

1

h(j) − z
tr{P (j), P (j), P (j)}

−
∑

j,l

1

h(l) − z
tr{P (l), P (j), P (l)} −

∑

j,k

1

h(k) − z
tr{P (k), P (j), P (k)}

+
∑

j,k

h(j) − z

(h(k) − z)2
tr{P (k), P (j), P (k)}

= 2
∑

j

1

h(j) − z
tr{P (j), P (j), P (j)} − 2

∑

j,k

1

h(k) − z
tr{P (k), P (j), P (k)}

+
∑

j,k

h(j) − z

(h(k) − z)2
tr{P (k), P (j), P (k)}

= 2
∑

j

1

h(j) − z
tr{P (j), P (j), P (j)} − 2

∑

k

1

h(k) − z
tr{P (k), P (k)}

+
∑

j,k

1

(h(k) − z)2
tr{P (k), h(j)P (j), P (k)} − z

∑

k

1

(h(k) − z)2
tr{P (k), P (k)}

= 2
∑

j

1

h(j) − z
tr{P (j), P (j), P (j)}+

∑

k

1

(h(k) − z)2
tr{P (k), A1, P

(k)}

= 2
∑

j

1

h(j) − z
tr{P (j), P (j), P (j)}+

∑

j

1

(h(j) − z)2
tr{P (j), A1, P

(j)}

= 2
∑

j

1

h(j) − z
tr{P (j), P (j), P (j)}+

∑

j

1

(h(j) − z)2
tr{P (j), A1 − h(j)I, P (j)}, (F.4)

where we used the identities
∑

j P
(j) = I, {P (k), P (k)} = 0 and (3.3). Substituting (F.4)

into (4.3) we arrive at (4.5).
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