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Abstract: Diverse quantitative models have been applied to analyse emission trading system, as the 

top effective climate change policy. This paper is the first attempt to present a comprehensive 

literature review on full-scale types of quantitative models in emission trading system research. The 

models dominating emission trading system-related literature could be categorized as optimization 

models, simulation models, assessment models, statistical models, artificial intelligences and 

ensemble models. Using different quantification and solution tools, these models complemented 

and enriched each other in serving the various agents involved in emission trading system and 

facilitating their respective emission trading system related works: the government to design 

emission trading system policies, enterprises to participate in emission trading system and goods 

markets, third parties to regulate emission trading system and emission trading system markets 

involving different agents. For each agent, a systematic analysis is provided on research hotspots 

(the challenges to address), quantitative models (to describe the problems and find the results), main 

findings (the policy implications from the models) and future research (potential improvements on 

existing models). Some interesting conclusions are obtained. (1) Generally, China was the largest 

contributor to emission trading system research using quantitative models (representing 35.71% of 

the total articles). (2) The research hotspots were decision making by enterprises under an emission 

trading system (20.92%), spillovers amongst emission trading system and other markets (17.54%) 

and allowance allocation by the government (12.52%). (3) Popular quantitative models included 

various optimization models (32.00%) and simulation models (29.64%). 

Highlights：                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

• A variety of quantitative models have been applied to ETS research.  

• A comprehensive review on full-scale types of models in ETS research is presented. 

• Optimization, simulation, assessment, statistical, AI & ensemble models were built. 

• Models helpfully served the government, enterprises, third parties & market in ETS. 

• For each agent, hotspots, models, main findings and future research are analysed. 
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Abbreviations 

Abbr. Full name Abbr. Full name 

ABM Agent-based models ETS Emission trading system 

AHP Analytic hierarchy process EU ETS European Union emissions trading scheme 

AI Artificial intelligence GARCH Generalized autoregressive conditional heteroskedastic 

ANN Artificial neural network GDP Gross domestic product 

CER Certified emission reduction MRV Measuring, reporting and verification 

CGE Computable general equilibrium SD System dynamic 

DEA Data envelopment analysis SVM Support vector machine 

DT Decision tree TOPSIS Technique for order preference by similarity to an ideal solution 

EMD Empirical mode decomposition VAR Vector autoregressive 

 

1 Introduction 

Emission trading system (ETS) has consistently been considered as the top promising 

instrument to mitigate global greenhouse gas emissions, due to the virtues of flexibility, cost 

saving and effectiveness [1,2]. However, as a market-driven policy, ETS is inherently a typical 

complex system and has become one of the most challenging topics in the research fields of 

energy and climate economics [3]. On the one hand, unlike compulsory regulations (such as 

emission standards) directly targeting emitting behaviours, ETS regulates the emitters in a quite 

roundabout way through the market mechanism, with final efficacy impacted by a variety of 

uncertain factors [4,5]. On the other hand, rather than price instruments (such as carbon tax and 

subsidy) just imposing a cost or benefit on emissions, an ETS policy otherwise entails a series 

of rules and designs for different agents and markets, with each largely determining the 

mitigation effect [1,6]. Since the European Union Emissions Trading Scheme (EU ETS) was 

launched in 2005, a total of 28 ETS markets or pilots with distinctive features from each other 

have been built throughout the world; nevertheless, no uniform agreement regarding an optimal 

ETS policy has yet been achieved [7]. 

Actually, the complexity of ETS mainly lies in the coexistence of various agents performing 

different ETS-related works and interacting with each other to jointly determine the final 

impacts of the ETS policy [4]. According to existing literature, major agents in an ETS include: 

the government (i.e., the ETS designer) who sets, for example, the overall framework [8,9], the 

levels of the carbon cap [10,11], the coverage of sectors or regions targeted by ETS [12-16] and 

the rules for allocating the initial credits [1,17-19] with the aims to maximize mitigating effect 

[20,21], minimize economic loss [19,22,23], balance equity and effectiveness [24-27], etc.; 

enterprises from different sectors (i.e., the ETS targets) who attempt to find optimal decisions 

regarding production [28-30], technology improvement [31-33], allowance transaction 

[13,28,34], etc., in order to maximize profits [29,35] and avoid financial costs under an ETS 

[34,36,37]; third parties (i.e., the ETS regulators) to conduct the measuring, reporting and 

verification (MRV) work for estimating the emissions and emission reductions reported by 

enterprises [38-40]; the ETS market (i.e., the ETS media), through which various agents interact 

with each other and jointly determine the final impacts and which requires careful exploration 

to support the coordinated, harmonious development of different competing and conflicting 
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agents [41-45]. 

Due to such complexity, a variety of quantitative models have been applied to ETS research, 

offering specific (quantitative) implications for ETS-involved agents to work out their 

respective ETS-related challenges. The prevailing quantitative models dominating the ETS 

literature can generally fall into six categories by quantification and solution tools: optimization 

models, searching for the optimal solution to an ETS-related task that maximizes the fitness of 

the associated agents [35,46,47]; simulation models, conducting ex-ante analyses to estimate 

the potential impacts under a series of policy scenarios (corresponding to different policy 

candidates) and to select the most satisfactory policy through result comparison [17,22,48]; 

assessment models, relying on ex-post analyses to evaluate the impacts and efficacy of an 

existing ETS policy implementation and to offer policy implications for future policy making 

[49,50]; statistical models, using statistical analyses to investigate the profound relationships 

across the factors in ETS [51,52]; artificial intelligences (AIs), employing the powerful learning 

abilities of computers or machines to adaptively capture the underlying mechanisms of an ETS 

system [44,53,54]; and ensemble models, as a rising star finely combining different models to 

take advantage of their respective strengths to address the weaknesses [44]. 

A systematic literature review on full-scale types of quantitative models in existing ETS 

research is needed, given that each different model with different quantification and solution 

tools will serve an ETS agent and facilitate an ETS task from a different perspective. However, 

a comprehensive review on different sorts of models and agents is still lacking. In particular, 

the existing ETS-related reviews were somehow confined to: a certain model, such as the 

generalized autoregressive conditional heteroskedastic (GARCH) model [2,55,56]; a certain 

kind of agents, such as the government [57], enterprises [57-59] or third parties [60]; and agents 

in a certain market, such as the primary ETS market, the secondary ETS market [55,56,59] or 

goods market [57,59]. Against such a background, this paper attempts to fill in this literature 

gap by conducting a systematic review that encompasses full-scale types of both quantitative 

models and agents interacting in the ETS and goods markets. 

The main aim of this paper is to present a comprehensive map of the quantitative models 

used in ETS research, detailing how the different types of models serve each ETS-involved 

agent and facilitate its ETS-related challenges. Relative to the existing reviews, the major 

contributions of this paper can be summarized into three aspects: (1) it is the first attempt to 

review the full-scale types of quantitative models used in ETS literature; (2) diverse agents 

involved in ETS are considered, including the government (i.e., the ETS designer), enterprises 

(the ETS targets), third parties (the ETS regulators) and ETS markets (i.e., the ETS platform) 

involving different agents; (3) for each type of agent, a systematic analysis is conducted on the 

research hotspots (the ETS-related challenging problems to address), quantitative models (the 

way to describe the problems and find the results), main findings (the policy implications 

suggested by the quantitative analyses) and future research (potential improvements of the 

existing models). 

The remaining part of the paper is organized as follows. Section 2 explores the general 

developments in ETS research via quantitative models, based on both descriptive and 

scientometric statistics. Section 3 details how different types of quantitative models serve each 

type of agents involved in an ETS system. Section 4 concludes the review and outlines further 

directions to improve and extend the existing quantitative research on ETS. 
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2 Statistical analysis 

This section employs both descriptive and scientometric statistics to capture the general 

research development of applying quantitative models into ETS research. In particular, Section 

2.1 elaborates on the literature collection. Sections 2.2-2.5 conduct a systematic statistical 

analysis of the selected literature, introducing both descriptive and scientometric measures to 

reveal the temporal trend, spatial distribution, publication sources and research hotspots of 

applying quantitative models into ETS research, respectively. Section 2.6 points out the 

practical implications of this study. 

2.1 Databases 

The ETS literature using quantitative models is derived from the academic databases of the 

Google Scholar, Web of Science, Science Direct, Emerald Insight, SAGE Journals Online, 

Springer and Wiley Online Library. To obtain full-scale results, not only the keywords emission 

trading scheme and quantitative model, but also other words related to ETS (emission* trading 

scheme OR carbon emission* trading OR cap-and-trad*, etc.) coupled with a term regarding 

quantitative models (modelling OR quantitative analysis OR simulation OR estimation OR 

measurement etc.) are employed, where the symbol * denotes a derivative word for a term, such 

as “emissions” for “emission” [61]. The time limitation for the literature retrieval was set to 

before the end of 2019. 

The types of literature are limited to journal full-length articles written in English, excluding 

research notes, reports, viewpoints, short communications, book reviews and conference papers. 

The collected articles are carefully re-checked for the relevancy to the topic of ETS research 

using quantitative models [62]. Finally, a total of 1053 papers are selected in this review. For 

each article, not only the basic information (on author(s), title, publishing time, keywords, 

journal title, country/region, etc.) but also the research focuses and methods for ETS and 

quantitative models (e.g., market(s), agent(s), topic(s), quantitative model(s), the techniques for 

quantification and solution) are analysed and recorded. 

2.2 Temporal trend 

ETS research using quantitative models started from 2000, with a total of 1, 3, 6, 2, 4, 11, 22, 

31, 37, 43, 49, 47, 62, 75, 92, 122, 118, 149 and 179 articles published annually from 2000 to 

2019, respectively. Four important findings can be obtained regarding the temporal trend. First, 

scholars started introducing quantitative models into ETS research in 2000, 3 years after the 

promulgation of the ETS policy in 1997 and 5 years before the launch of the first ETS market 

(i.e., EU ETS) in 2005. This result further implies that quantitative models were introduced into 

the emerging research of ETS, even when ETS was just a theoretical concept and then made a 

great contribution to its realization and adjustment. Second, the annual number of published 

articles shows a generally growing trend from 2000 to 2018. Such increasingly large attention 

confirms the effectiveness and usefulness of quantitative models in analysing the complex 

system of ETS and then addressing ETS-related challenges. Third, there existed a clear growth 

point in 2016, since which the number of papers has reached over 100 per year, and finally hit 

a peak of 179 in 2019. The hidden reason might be the recent boom in computer science, 

Internet techniques and big data analysis, which brought forth powerful quantitative models 
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(particularly the AI technologies) [62]. Fourth, the massive proliferation of quantitative models 

in the Chinese academic community since 2012 (the year that China launched its ETS pilots) 

might also be a reason for the recent increase in the number of ETS modelling papers. 

2.3 Spatial distribution 

Thereafter, the scientometric analyses are conducted, which can provide some interesting 

information that cannot be derived from traditional statistical analysis. Fig. 1 provides the 

contribution network of countries or regions to the body of knowledge in ETS research using 

quantitative models, which is a useful scientometric method to discover the leading research 

countries and the associated international cooperation. 

As for the leading countries, there are 33 nodes (corresponding to countries or regions) in 

Fig. 1, with the size proportional to the research contribution of the associated country or region 

(i.e., the proportion of the articles generated by the scholars in the associated country or region). 

The top contributors to ETS research using quantitative models include China (with 335 articles, 

representing 37.68% of the total articles), the USA (169 articles, 19.01%), Australia (50 articles, 

5.62%), Germany (44 articles, 4.95%) and England (37 articles, 4.16%). The USA is a relatively 

early adopter of the ETS policy (introducing the cap-and-trade system to California in 2007 

[63]) and has been a leading research contributor since the beginning of the related research 

(i.e., in 2000). In comparison, China is a relative latecomer to ETS (launching ETS pilots in 

2013 [7] and a national market for the power sector in 2017) and quantitative research 

(beginning in 2009 [64]); however, China has experienced a quite rapid progress, overtaking 

other countries in the annual number of publications in 2013 and becoming the largest research 

contributor since then. Interestingly, different countries or regions have their own research 

focuses: for example, the scholars in New Zealand prioritized the agriculture and forestry 

sectors in the ETS market [63,65], those in Australia preferred the pricing mechanism [66-68] 

and those in the EU strived to build an integrated ETS market covering the involved countries 

(particularly the UK, Germany, Sweden and Austria) [55,69]. 

In terms of international cooperation, there are 71 links (connecting countries who 

collaborated in writing the associated articles) in the figure, with the colours indicating the years 

of the collaborating publication (see the corresponding legend at the top of the figure) [70]. It 

can be found that the earliest inter-country collaboration occurred between the USA and 

Germany in 2005 (light blue links), while the cooperative relationships among the top 10 

influential countries become prosperous since 2008 (light green links). Furthermore, the 

thickness of a link indicates the strength of the cooperation (in terms of the total number of the 

mutual cooperations in writing papers). The analysis results reveal strong cooperative 

relationships (representing 41 collaborations) between Switzerland and France, Italy and France, 

Spain and Italy, and Netherlands and Germany. In contrast, Denmark and Scotland had no 

international cooperation in this research, which, in turn, substantially refrained their research 

contribution (both representing 0.2%). 
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Fig. 1. Contribution network of countries or regions. The font size is proportional to the research 

contribution of the associated country or region (i.e., the proportion of the articles generated by their 

scholars) to the body of knowledge in ETS research using quantitative models. The links indicate the 

associated international cooperation between different countries or regions. 

 

Fig. 2 reveals the spatial distribution of the ETS markets studied in the existing ETS-related 

articles using quantitative models, which is generally consistent with the above scientometric 

analysis on the spatial distribution of the research contribution (in Fig. 1). First, it can be 

obviously seen that all the 29 ETS markets throughout the world have been studied using 

quantitative models, while the related countries or regions hosting these ETS markets were all 

involved in the research contribution network (Fig. 1). Second, the ETS markets in the EU (i.e., 

EU ETS) and in China (i.e., the 7 provincial ETS pilots and the national market for the power 

sector) were research hotspots, which have been studied in 268 and 220 publications 

(representing 43.51% and 35.71% of the total), respectively. Associated host countries, e.g., 

China, Germany and England, were the top leading research contributors to ETS research via 

quantitative models. In contrast, some ETS markets in Greece, Canada, Turkey, etc. (all with 1 

publication) have aroused the smallest attention, to which more attention can be taken in the 

future research [71]. Accordingly, these related countries have made a quite small contribution 

to the quantitative research for ETS, as shown in Fig. 1. 
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Fig. 2. Regional distribution of studied ETS markets. The numbers refer to the total number of articles 

using quantitative models to study ETS in the associated countries or regions. 

 

2.4 Leading journals 

A total of 391 journals have published articles applying quantitative models to analysing ETS. 

Fig. 3 presents a dual-map of these publications for identifying the leading journals and 

influential domains based on the co-citation relationships. In the figure, the colours differentiate 

different clusters which are grouped via the Blondel cluster algorithm [72]; the links connect 

the citing (i.e., the research front on the left) and cited clusters (i.e., the intellectual base on the 

right), and the thickness of the links indicates the z-score-scaled frequency of the citation [72]. 

Fig. 3 indicates that the leading journals in ETS research using quantitative models were 

Energy Policy (publishing a total of 255 articles), Journal of Cleaner Production (229 articles), 

Applied Energy (122 articles) and Energy (82 articles), jointly accounting for 86.32% of the 

total articles. Furthermore, these four journals are the top cited journals, having a relatively high 

co-citation frequency (1083 times altogether, representing 15.28% of the total citations). 

 

Fig. 3. Dual-map overlay of publications. The area dimension in the figure is proportional to the 

numbers of citing (on the left) and cited articles (on the right) in the associated journals. 



8 

 

Table 1. The top 10 journals in the citing and cited domains. 

Rank The citing journals (number of articles) The cited journals (number of articles) 

1 Journal of Cleaner Production (306) Energy Policy (444) 

2 Energy Policy (256) Energy Economics (275) 

3 Applied Energy (144) Applied Energy (225) 

4 Energy (99) Journal of Cleaner Production (217) 

5 International Journal of Production Economics (70) Energy (197) 

6 Environmental Science & Technology (52) Journal of Environmental Economics & Management (196) 

7 Computers & Industrial Engineering (47) European Journal of Operational Research (196) 

8 Renewable & Sustainable Energy Reviews (46) Climate Policy (167) 

9 Energy Journal (43) International Journal of Production Economics (164) 

10 Energies (41) Ecological Economics (151) 

 

2.5 Hot keywords 

This section employs two effective scientometric measures for co-citation relationships and 

keyword co-occurrence analysis to capture the research hotspots in applying quantitative 

methods to ETS research, and finds that the terms regarding the types or features of ETS-related 

tasks and quantitative models have been identified as hot keyworks. 

Based on the co-citation relationship, Fig. 3 also reveals that the existing ETS research using 

quantitative methods involves diverse research domains, and the top hotspots were 

‘‘mathematics, systems, mathematical’’, which was largely influenced by the domain of 

‘‘systems, computing, computer’’. These terms are all related to “models” or “quantitative 

analysis”, which are the searching keywords used to collect the articles. In particular, the 

identified keyword “systems” on both sides of the co-citation relationships implies that ETS 

has been consistently recognized as a typical system involving various interactive factors; 

“mathematics” and “mathematical” correspond to quantitative models based on mathematical 

theory and techniques; and “computer’’ and “computing” suggest an increasingly important role 

of computer science (i.e., AI techniques) in quantitative research for ETS. 

Furthermore, the scientometric technique of keyword co-occurrence analysis is conducted 

to capture the research hotspots over time in ETS research using quantitative models [72]. Fig. 

4 displays the keyword co-occurrence network, in which the keywords co-concurring above 9 

times are shown and arranged by the frequency of occurrence. As for development trends, hot 

keywords were relatively few from 2002 to 2005 but largely increased since 2006, again 

implying growing interest in the quantitative analysis for ETS over time. Not surprisingly, the 

keywords “model” (113 times) and those pertaining to ETS (e.g., “emissions trading” (113 

times), “emission trading scheme” (113 times) and “cap and trade” (97 times)) [69-73] are 

identified as hot keywords, given that they are the right searching keywords used to retrieve 

articles in this review. 

The keyword co-occurrence analysis reveals the research hotspots of applying quantitative 

models to ETS research. As for the ETS-related tasks, the analysis results showed that 

quantitative methods have been popularly used to estimate the “impact” (85 times) and 

“performance” (43 times) of ETS policy and the associated “mitigation” (24 times) and effects 

on “climate change”, and to capture the complex relationships between the key factors in the 

ETS system, e.g., “emission” (70 times) or “carbon emission” (45 times), “reduction” (23 

times), “permit” (25 times), “cost” (59 times), “demand” (25 times), “allowance” (39 times) 
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and “supply chain” (40 times). As for quantitative analyses, the identified hot keyword of 

“optimization” (43 times) represents that the optimization model was a prevailing model in ETS 

research, and “uncertainty” (38 times) suggests that uncertainty control might be one challenge 

when modelling an ETS via quantitative models.  

 

Fig. 4. A timezone view of keywords. The dimension of circles and the font size of keywords are 

proportional to the frequencies of keyword co-occurrences. 

 

2.6 Practical implications of this study 

With the boom in ETS, as the most effective mitigation tool, a variety of quantitative models 

have been employed to enrich and improve ETS research. This paper might be the first attempt 

to present a systematic literature review on full-scale types of quantitative models used in ETS 

literature. In particular, this review details what and how different quantitative models serve 

different agents to address their different ETS-related challenges, via a systematic analysis for 

each agent on (1) research hotspots, the challenges that the associated agents confronted; (2) 

quantitative models, the quantification tools that the associated agents can employ to solve the 

problems; (3) main findings, the policy implications that are recommended by existing 

quantitative research for the associated agents; and (4) future research, the problems that 

associated agents should still be concerned about in the future. Generally, major ETS-involved 

agents include the government (the ETS designer), enterprises (the ETS targets), third parties 

(the ETS regulator) and ETS markets (the ETS platform). 

This review also provides insights into improving existing ETS research using quantitative 
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models. On the one hand, the review details the special advantages of different models, which 

made different models dominating different ETS-related research hotspots. On the other hand, 

the review also points out the disadvantages of different models, which prevented them from 

being applied to some research hotpots, and further provides related suggestions to improve 

and extend the existing research. 

3. Agent-specific analysis 

The statistical analyses on the selected literature in Section 2 demonstrate that a variety of 

effective quantitative models have been and will still be introduced to help ETS-involved agents 

effectively carry out their respective ETS-related problems. Accordingly, this section presents 

a comprehensive review on the relationship across the three research attributes—agents, tasks 

(or hotspots) and models—as the analytical framework illustrated in Fig. 5. 

Quantitative models 

in ETS research

The government

(ETS designer)

Agents Hotspots

Enterprises

(ETS targets)

Third parties

(ETS regulators)

ETS markets

(ETS platform)

Optimization models

• Game models

• DEA

• Etc.

Simulation models

• CGE

• Agent-based models

• System dynamic

• Etc.

Assessment models

• AHP 

• TOPSIS

• Etc.

Statistical models

• GARCHs   

• VAR

• Cluster analysis 

• Etc.

AIs

• ANN

• Decision tree

• SVM

• Etc.

Allowance allocation

Carbon cap

Trading mechanism 

Coverage 

Etc.

 Decisions

Response

Etc.

MRV

Etc.

Market spillors

Market factors

Etc.

Models

Ensemble models

• AI-based optimization

• Combined statistical & AI

• Decomposition & ensemble

• Etc.
 

Fig. 5. General analytical framework of applying quantitative models to ETS research. 

    

As for agents, the existing relevant literature mostly focused on four types of agents in the ETS 

system: the government (i.e., the ETS designer), enterprises (the ETS targets), third parties (the 

ETS regulators) and ETS market (the ETS platform). As for quantitative models, prevailing 

models for ETS research fall into six categories by quantification and solution: optimization 

models (game models [27,33], data envelopment analysis (DEA) [73-75], and other linear or 

nonlinear programming models [46,76]), simulation models (e.g., computable general 

equilibrium (CGE) [17-19], agent-based models (ABM) [1,5] and system dynamic (SD) models 

[25,48]), assessment models (e.g., analytic hierarchy process (AHP) [77-79], technique for 

order preference by similarity to an ideal solution (TOPSIS) method [80-82]), statistical models 

(e.g., difference in difference [83-85], GARCH processes [45,69], vector autoregressive (VAR) 
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models [51,64]), AIs (e.g., artificial neural network (ANN) [54] decision tree (DT) [86-87], 

support vector machine (SVM) [26,44]) and ensemble models (e.g., AI-based optimization 

models [44,87], combined statistical and AI models [44,83] and decomposition and ensemble 

models [54]). 

 

Fig. 6. Top research hotspots and the associated quantitative models for ETS-involved agents. The Y 

axis shows the contribution of different quantitative models used in each agent’s research hotspots. 

 

Fig. 6 further shows the top research hotspots and quantitative models for each agent. As 

for the government, simulation models (accounting for 44.21% of total associated studies for 

the government) and optimization models (25.79%) were popularly used to facilitate ETS 

design, with the hotspots of carbon cap for a region or firm (45.76% and 30.51%, respectively), 

regional or sectoral coverage (53.85% and 19.78%), allowance allocation (40.16% and 25.41%) 

and trading mechanism (39.81% and 28.70%). As for enterprises, optimization models 

(representing 55.56% of the associated articles) and statistical models (23.20%) were 

extensively employed to guide ETS-related decisions (64.22% and 20.59%, respectively) and 

the response policy to ETS (38.24% and 28.43%, respectively) for reducing the financial losses 

caused by ETS. As for third parties, statistical models dominate the related research 

(representing 80% of the associated articles), which have been employed to streamline the MRV 

work for accurately estimating the emission reduction and regulation costs. For ETS markets, 

statistical models (accounting for 49.30% of the associated articles) and simulation models 

(33.92%) were mostly used to capture the intrinsic relationship between the related market 

factors (52.21% and 14.16%, respectively), and the spillover effects between ETS and other 

goods markets (47.37% and 33.92%, respectively). 

Accordingly, Sections 3.1-3.4 detail how different models have been used to serve the 

agents of the government, enterprises, third parties and ETS market, respectively. For each type 

of agent, a systematic analysis is conducted on research hotspots, quantitative models, main 

findings and future research. 
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3.1 The government 

The government is the designer and supervisor of the ETS policy and responsible for designing 

and adjusting its specific rules and regulations, with each directly determining the final impacts 

[1]. Accordingly, a variety of quantitative models have been introduced to help the government 

to work out cost-effective designs for the key rules to guarantee the efficacy of ETS. 

3.1.1 Research hotspots 

The quantitative analyses on ETS design mostly focused on the carbon cap [10,11], coverage 

[12-16], allowance (or credit and permit) trading mechanism [13,28,35] and allowance 

allocation [1,17-19], which were consistently considered as the decisive components in the 

framework of an ETS policy [88-92]. 

(1) Carbon cap is mathematically defined as the total emissions allowed in an ETS or the 

total allowances supplied by the government. Existing quantitative analysis estimated its levels 

for different years or regions according to the targets for global warming control (e.g., those in 

the Paris Agreement) [93] or promises made in international conferences (e.g., organized by 

Intergovernmental Panel on Climate Change) [94], and then introduced these values as a 

constraint on the total emissions (or mitigation rates) [21] or a criterion to evaluate the 

performance of the ETS policy [89,90]. 

(2) Coverage defines an ETS system, i.e., which regions or sectors should be involved in 

the ETS policy. As for regional coverage, existing research has been continuously devoted to 

building an integrated global ETS market covering various countries [95,96], in a jurisdiction 

(i.e., the EU) covering the involved members [20] or in a nation (particular China [14,19,90] 

and the US [97]) covering different provinces or states, in which a variety of multi-region ETS 

models at the worldwide, international or nationwide levels, respectively, have been built 

[98,99]. As for sectoral coverage, existing research largely focused on energy- and emission-

intensive sectors, such as the sectors of power generation [14,17,19], chemicals [17,19], 

nonmetal [14], construction [1,19], coal mining [1,14], metal smelting [14,17,19], and aviation 

[20]. 

(3) Allowance allocation is the crucial regulation in the primary ETS market, where initial 

allowances are allocated among different regions [21,89,100] and enterprises [1,17,19]. For 

regions, existing research attempted to explore a reasonable allocation method that well 

balanced fairness and efficiency, using different mathematical definitions for the two factors 

(based on regional information regarding emissions, production, economic development, 

technology progress, etc.) [21,100] and weight optimization methods (e.g., the Shapley value-

based method [27]). For enterprises, existing quantitative research have extensively compared 

grandfathering methods (based on historical levels of emissions, emission intensity, production 

or technology for a firm) [22,100] versus benchmarking methods (considering the general levels 

for a whole sector) in allocating free allowances [17,19,22], and auction-style (e.g., using 

uniform or discriminative prices) versus fixed-price trading in the primary ETS markets. 

(4) Trading mechanism determines the rules for enterprises to exchange allowances in the 

ETS market. As a research hotspot, multi-period [75] and multi-market models [95] have been 

built to investigate whether allowances can be traded across periods and markets, respectively, 

in order to enhance the flexibility of the ETS policy. 
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3.1.2 Quantitative models 

To find optimal designs for the aforementioned issues, diverse quantitative models have been 

employed, as follows. 

(1) Simulation models might be the dominant type of quantitative models facilitating ETS 

design, including CGE [14,17,19], ABM [1,100] and SD [31,48,89]. Generally, these 

simulation models explore effective ETS rules by following three major steps. First, macro-

economic simulation models incorporated an ETS module [19,31] (or environmental policy 

module [14]) into economic modules (production module [19], trading module [17], 

consumption module [31,48] and income-expenditure module [88,89], etc.), to connect ETS 

factors (carbon cap [90], carbon price [14,17], free allowance quota [31,89], total allowance 

quota [89], allowance transaction [31,89], emission cost [17,19], etc.) to the related economic 

factors (carbon emissions [14,19], fossil combustion [14,19], commodity prices [31], costs [48], 

profits [89], etc.) for the involved sectors and regions. Second, a set of policy scenarios (with 

different rule candidates) were formulated and simulated fixing the related factors as exogenous 

variables or model parameters [1,14]. Third, the results for economic and environmental factors 

under different policy scenarios were comprehensively analysed and compared, to find optimal 

ones with effective mitigation and reasonable costs [1,90]. 

(2) Optimization models, e.g., DEA [20,21,75], game models [101-103] and other linear or 

nonlinear programming models [22,91], have been used to design different ETS rules. First, a 

series of DEA models have been built to allocate allowances across regions or sectors, in order 

to maximize desirable outputs (e.g., income [20], economic development [21] and gross 

domestic product (GDP) [75]) and minimize undesirable outputs (i.e., carbon emissions in an 

ETS [20,75]). Second, game models were used to describe the relationship between the 

conflicting agents of the government (the ETS supervisor attempting to reduce the emissions 

[101], which would increase enterprises’ production costs [101]) and enterprises (the ETS 

targets aiming to reduce production cost [103] and increase profits [101-103]) under an ETS, 

to find a reasonable design for obtaining mutually satisfactory results (in terms of Nash 

equilibrium). Third, a variety of linear or nonlinear programming models have been built to 

find an optimal ETS-related rule (e.g., carbon cap [104]) to minimize the system cost [16,22] 

or maximize the profit [101,103], under given levels of emissions [91], technology [22], etc. 

(3) Assessment models have been used to evaluate the performance of an existing ETS 

policy that has already been enforced, from the major perspectives of mitigation effect (with 

popular evaluation indicators regarding emission reduction [49,81,105], carbon intensity 

decline [80,81], energy technology updates [49,105], production structure improvement 

[50,106], etc.), cost-effectiveness (regarding emission costs [98], marginal mitigation cost 

[98,107], etc.), and political acceptability (regarding equity [49], flexibility [108], 

competitiveness [107], compliance [87,98], feasibility of implementation [80,105], etc.). 

Different techniques, such as the Wideband Delphi method [49,105], AHP [109] and Euclidean 

distance methods [80,81]), were used to determine the weights on the various evaluation 

indexes. The evaluation results for existing policies provide helpful insights for future policy. 

 (4) Statistical models, e.g., GARCHs [110] and other linear regression analyses [53,92], 

have been introduced to capture the relationship between the ETS rules (e.g., existence of ETS 

market [92], covered enterprise numbers [92] and free carbon allowances [92], as the 

explanatory variables) and the associated mitigating effect (emission reduction [92,111] as the 
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dependent variable), as well as the performance of ETS market (carbon prices [92,110] and 

volatility [97]). Furthermore, cluster analyses have been used to group various existing ETS 

markets with different policy designs into categories with similar features (e.g., GDP [54,109], 

carbon emissions [54,109] and carbon intensity [112]), providing policy implications for other 

markets based on their features. 

 (5) AI tools of ANNs [53] and DT [86] have been employed to forecast the future emissions 

for determining the carbon cap and allowance allocation for an ETS market. 

3.1.3 Major findings 

To select the most satisfactory designs, existing research has extensively compared different 

candidates in terms of their impacts on environmental or energy factors (carbon emissions 

[17,19,90], energy consumption [14,90], energy structure [90,100], technological improvement 

[17,31], etc.), economic factors (GDP [14,17,19], production outputs [14,19], welfare [14,19], 

employment [90], commodity prices [19], imports [14,90], exports [14], etc.) and ETS-related 

factors (carbon price [1,31], mitigation costs [14,100], allowance purchase [17], carbon market 

scale [17], etc.). Based on diverse models, existing research quantitatively confirmed the 

mitigating efficacy of the ETS policy and suggested constructing large-scale, compatible 

international or national ETS markets involving emission-intensive regions and sectors. 

However, there were few uniform agreements regarding a specific ETS rule. Taking allowance 

allocation methods as an example, Refs. [20,22] preferred benchmarking methods for free 

allowances due to their high mitigation effectiveness, Ref. [22] liked grandfathering methods 

due to their moderate financial cost, Refs. [89,100] preferred fixed-price trading in the primary 

ETS market due to simplicity, and Ref. [1] suggested auctions due to their flexibility. 

3.1.4 Future research 

Simulation models, optimization models and assessment models were the prevailing types of 

quantitative models for ETS design, while the emerging AI models were relatively few. 

However, with the boom in computer science, AI models have been shown to be effective in 

analysing various complex systems (e.g., energy market [113]). Therefore, introducing power 

AI tools to capture the nonlinear, complex relationship between different specific rules and the 

associated factors in an ETS system can be considered promising future research. Furthermore, 

different models have their own advantages and disadvantages. Taking simulation models for 

example, CGE and SD can effectively capture the macroscopic spillover effects across the ETS 

market and different commodity markets in a general equilibrium [54] and the relationship 

across different ETS-related factors with feedback loops [53], respectively; game models and 

ABM can vividly describe the microscopic activities of heterogeneous enterprises (e.g., carbon 

trading, technology improvement and carbon bidding) [86,113], which are the targets of an ETS 

policy. Therefore, a combination of different models to take advantage of their respective merits 

to address the weaknesses might be an interesting direction largely improving and extending 

the existing models for ETS. 

3.2 Enterprises 

Enterprises act as both direct targets by ETS and major sources of carbon emissions [28,29], 

with their emission reductions adding up to represent the final mitigating effect of ETS. 
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3.2.1 Research hotspots 

Numerous models have been employed to help enterprises (1) make decisions for not only 

economic factors (regarding production quantity [28,114], energy consumption [115], inventory 

[116], commodity transaction [29,117], commodity price [29,116,117], etc.) but also ETS-

related factors (allowance trading quantity [28,117], allowance bidding or selling price [28,116], 

technology investment for abatement [28,114], etc.), in order to minimize emissions cost (or 

quota) [114] or maximize economic profit [114,116]; and (2) study the potential response to 

ETS (with different levels of carbon allocation price [28,116], allowance allocation [28,29,112], 

etc.) in terms of changes in profit [28,112], intention to reduce emissions [32] and intention to 

adopt green technology [117], etc. 

3.2.2 Quantitative models 

Among various models, optimization models dominated the related research for serving 

enterprises in decision making, followed by statistical models for capturing the impact of ETS 

on individual enterprises, while AI models become a rising star in solving optimization models. 

   (1) Fruitful research using optimization models has been conducted to help enterprises make 

optimal decisions under ETS. In these optimization models, ETS-related decisions are treated 

as decision variables, e.g., allowance trading quantity [29,117], allowance bidding or selling 

price [28,116] and technology investment for abatement [28,114]. Furthermore, as a major 

agent in an economic system, the related economic activities (regarding production quantity 

[28,117], energy consumption [115], inventory [116], commodity transaction [29,117], 

commodity price [29,116,117], etc.) would be impacted by ETS and could also be carefully 

investigated as decision variables or model parameters. The optimization models were run to 

optimize their fitness minimizing emissions cost (or quota) [28,29,112] and maximizing profit 

[28,112]. Furthermore, some interesting game models have also been designed to capture the 

competition and conflict between different types of enterprises (e.g., manufacturers versus 

retailers [118] and enterprises versus banks [119-121]) when entering the new environment of 

ETS market. In addition, DEA has been used to help enterprises adapt to ETS and gain more 

expected outputs (e.g., profit [28,112] and production [29,114]) and less unexpected outputs 

(i.e., emissions [28,114,117]), at given levels of inputs or other attributes (e.g., employees [121], 

energy consumption [115], size [28,114] and costs [117]). 

   (2) Statistical models, particularly GARCHs [122-125] and other linear regressions, have 

been used to capture the relationship between different ETS-related factors (e.g., carbon 

allocation price [28,112] and carbon allowance quota [28,29,112]) and their financial factors 

(e.g., production [28,29,117,121], energy consumption [115], technology investment [117,126], 

profit [28,112]) and firm attributes (e.g., ownership [32,127], size [32], location [32] and age 

[32]). Such modelling can effectively capture the potential impacts of ETS on the firm’s profit 

[128,129], price [129,130] and the intention of emissions reduction [129] and technology 

improvement [127,130]. 

(3) Simulation models serving enterprises under ETS mainly include CGE and input-output 

analysis. The CGE model introducing an ETS module (with the related factors of emissions cap 

[127,130], free quota [131], allowance purchase [132], carbon price [132,133], emissions cost 

[132,134], etc.) has been used to estimate the impacts of different ETS policies on the firm (in 

terms of profits [133], generation [133,134], costs [134], etc.). The input-output analyses have 

been used to describe the carbon footprint across sectors [134-136], to estimate total emission 
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costs [133,134] and to identify potential sellers and buyers in the ETS market [134]. 

(4) Interestingly, emerging AI optimization algorithms, e.g., particle swarm optimization 

[137] and genetic algorithms [138], have recently been introduced to solve the optimization 

models. Such an interesting idea brought about a promising type of quantitative model, i.e., AI-

based optimization models, effectively searching optimal decisions using the powerful learning 

capability of computers and machines. 

3.2.3 Major findings 

Using different models, the existing quantitative analyses have provided generally similar 

suggestions for enterprises, even with different prioritizations or to different extents. On the one 

hand, existing literature strongly recommended enterprises to actively adjust themselves to ETS 

(in terms of voluntary emission reductions for credits [136,137], technology investment [121], 

clean technology adoption [5], energy structure improvement towards cleaner energy [133], 

etc.), as the top measure to preserve profitability in a long term, in view of the large benefit 

from selling excessive credits and reducing emission costs. On the other hand, different models 

consistently revealed a negative impact of ETS on highly energy- and emission-intensive 

enterprises [132-134], implying the efficacy of the ETS in improving both energy and 

production structures toward a cleaner economy in the future [133,134]. The existing 

quantitative models have and would help an increasing number of enterprises adapt themselves 

to the ETS and improve their technologies, adding up to an impressive mitigating effect at the 

macroscopic level. 

3.2.4 Future research 

Optimization models and statistical models were prevailing in existing ETS research for 

enterprises, effectively exploring ETS-related decisions and potential impacts, respectively. 

Interestingly, some powerful AI models have been incorporated to help optimization models 

search for optimal solutions [118,119]. With the boom in computer science and big data 

technologies, more powerful AI models have emerged and can also be introduced in ETS 

research to substantially improve decision optimization for enterprises and more effectively 

study the intrinsic linkage between ETS and enterprises. 

3.3 Third parties 

Third parties, i.e., independent audits, is the ETS regulator to verify the truthfulness of the 

emissions and emission reductions reported by an enterprise, and to supervise its compliance 

with ETS by controlling its emissions under the allowance quota. However, there were quite 

few quantitative analyses on third parties. The available research focused on MRV work, i.e., 

measuring, reporting and verifying the emissions from an enterprise. In particular, emissions or 

emission reductions were first estimated based on different methods, such as the Waxman-

Markey standard [38], the EU ETS approach [38,40], the California cap-and-trade programme 

approach [38], and a method used in the Japanese Iron and Steel Federation [40], and then 

compared with the measuring data monitored by the Coriolis mass flowmeter [139] and 

continuous emission monitoring systems [40] or the fitted data by marginal abatement cost 

curves [38]. Due to the key role of third parties in an ETS, more powerful quantitative models 

apart from the above traditional statistical models are strongly recommended to streamline the 

MRV work for not only accurate estimates of emissions and emission reductions but also low 

regulation costs. 
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3.4 ETS markets 

The ETS market is the platform or medium through which various ETS-involved agents (and 

the associated factors) interact with each other. Given that ETS is a market-driven policy and 

functions through market mechanism, a thorough understanding of the ETS market and its 

spillover on other goods markets can provide insightful implications to guarantee the efficacy. 

3.4.1 Research hotspots 

Existing research has built a great diversity of quantitative models to study factors in ETS 

market and the spillover effects between ETS and goods markets. 

   (1) Market factors in the ETS market mainly include carbon price [73], certified emission 

reduction (CER) price [51,73], futures [41,140], options [141], trading volumes [142], carbon 

price returns [142] and volatilities [142,143]. On the one hand, existing research has been 

devoted to capturing the dynamic trends of these market factors in the ETS market [51,64] and 

their relationships with each other (particularly carbon and CER prices [73]), which provides 

policy implications for both policy design [109,144] and investment decisions [145]. In addition, 

existing models have attempted to explore an effective pricing mechanism for ETS markets, 

exploring a reasonable carbon or CER price to balance the mitigation effect and financial costs 

of ETS policy [146,147]. 

(2) Market spillover between ETS and goods markets has been extensively studied. In 

particular, a rich group of quantitative analyses have been conducted to capture how the ETS 

market impacts and is impacted by different goods markets, especially for energy commodities 

(electricity [64,148], coal [149,150], solar electricity [151], wind electricity [151], etc.) and 

emissions-intensive commodities [152]. For each market, the key factors were introduced into 

quantitative models for analyses, including commodity prices [153,154], stock index [151], 

returns [51], volatility [39], sales [154], transaction volume [155], exports and imports [152], 

employment [156], generation [151], demand [157], etc. 

3.4.2 Quantitative models 

Relative to other agents, the diversity of proposed quantitative models was at a quite large level, 

particularly featuring a promising type of ensemble models (such as decomposition and 

ensemble models). 

(1) Simulation models, particularly CGE [42,152,155], SD [158,159] and ABM [145,153], 

have been employed to explore the spillovers among ETS and different goods markets. In 

particular, CGE models, as a typical simulation model, have been used to capture the 

macroscopic relationship across ETS and goods markets under a general equilibrium, involving 

various ETS and economic factors [15,42,155]. SD models, based on feedback loops, have been 

formulated to describe the intrinsic relationship between the interactive factors in ETS and 

different goods markets [157,158]. ABM, a bottom-top simulation model, has not only vividly 

detailed the microscopic ETS-related activities in the ETS markets and economic activities in 

commodity markets for heterogeneous agents (i.e., generators [153], consumers [160], and 

operators [160]), but also captured the macroscopic impacts of all agents, which can help 

understand the market mechanism in an ETS market [145] and the spillovers between ETS 

and/or goods markets [160].  

(2) For optimization models, some game models have been used to detail ETS-related and 

economic activities of various conflicting participants (i.e., heterogeneous enterprises) in the 
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ETS market [161] or goods market under an ETS [43,144] at a microscopic level, and to capture 

market trends [43] at a macroscopic level when all participants reach noninferior decisions in a 

Nash equilibrium. 

(3) Both statistical and AI models have been introduced to extensively analyse factors in 

the ETS and goods markets. As for statistical models, timeseries models (e.g., autoregressive 

moving average model [97] and wavelet analysis [140]) have been used to capture and forecast 

the dynamic trends in carbon price [162], CER price [140] and their returns [140,162]; and 

multivariate models (e.g., VAR [51,142,149], GARCHs [143,156] and other regression 

analyses) have been used to capture the relationship between factors in ETS and goods markets. 

To address complexity and nonlinearity, increasing number of AI models have been introduced 

to model the factors in the ETS markets, such as extreme learning machine [44], SVM [44,87], 

DT [87] and deep learning [98]. 

(4) Interestingly, some ensemble models have recently emerged in modelling carbon price 

[44] and CER price [44], with decomposition and ensemble models being a promising case, 

with three steps. First, the complex carbon price is decomposed into simple components at 

different time scales, via a multi-scale analysis (e.g., wavelet analysis [163] and empirical mode 

decomposition (EMD) [44]). Second, a statistical (e.g., clustering analysis [44]) or AI model 

(e.g., extreme learning machine [44,163]) is employed to model the components at different 

scales individually. Third, the individual results at different scales are integrated into the final 

outputs. 

3.4.3 General findings 

Different quantitative models have consistently revealed the high-level complexity and 

nonlinearity feature of the ETS market, and the strong, large-scale and intrinsic spillover effect 

between the ETS and goods markets. In particular, simulation models found that a change in 

carbon price would directly impact fossil energy demand and highly emission-intensive 

production, and further influence all other goods markets; the complexity of the ETS market 

lies in the existence of numerous competing and conflicting interactive agents, which was the 

top challenge in modelling ETS market. Due to such complexity, linear statistical models have 

been shown to be ineffective in modelling ETS-related factors, while nonlinear AI tools have 

become increasingly popular. Nevertheless, a new type of ensemble models, i.e., decomposition 

& ensemble models, was recently proposed based on the idea of “divide and conquer”. In a 

decomposition & ensemble model, the complex ETS factors (e.g., carbon price) are first 

decomposed into relatively simple components at different time scales (or frequencies), via a 

multi-scale analysis (e.g., wavelet analysis and EMD); then, a statistical or AI model is 

employed to individually analyse each component; finally, the individual results are integrated 

into the final outputs. This design can substantially reduce the modelling difficulty by 

decomposing the complex system of ETS market into relatively simple components that can be 

easily modelled. 

3.4.4 Future research 

The diversity of proposed quantitative models for ETS market was large relative to other agents. 

A variety of simulation models, optimization models, statistical models and AI models have 

been built to model the ETS market from different perspectives. However, these above 

traditional models found it challenging to capture the nonlinearity and complexity of the ETS 

system. Accordingly, a promising style of ensemble models, i.e., decomposition and ensemble 
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models, have recently emerged as a rising star largely reducing the modelling difficulty. 

Actually, such an interesting idea of decomposition and ensemble has been fully proven 

effective in addressing different complex systems (e.g., energy market [43]), in which powerful 

variants using other competitive decomposition (e.g., ensemble EMD [164,165]) and modelling 

techniques (e.g., deep learning [166,167]) have been proposed. Therefore, extending such a 

promising type of models might be an interesting direction for ETS modelling in the future. 

4. Conclusions 

Given that ETS is typical complex system, a variety of quantitative models have been applied 

to analyse it, offering specific (quantitative) implications for the ETS-involved agents to resolve 

their respective ETS-related challenges. This paper is the first attempt to review full-scale types 

of quantitative models used in ETS literature, aiming at detailing how different types of 

quantitative models serve each type of agents involved in an ETS system. In particular, diverse 

agents involved in ETS are considered, and for each agent, a systematic analysis is conducted 

on the research hotspots (ETS-related challenges), quantitative models (how to address the 

problems), main findings (policy implications) and future research (potential improvements). 

As shown by both descriptive and scientometric statistics, an increasing number of quantitative 

models have been proposed to help ETS-involved agents effectively carry out their respective 

ETS-related problems, including the government (i.e., the ETS designer), enterprises (the ETS 

targets), third parties (the ETS regulator) and ETS markets (the ETS platform). Interestingly, 

the results reveal the key role of China in ETS research using quantitative models: China was 

the largest contributor to ETS research using quantitative models (representing 37.68% of the 

total articles), and Chinese ETS markets ranked 2nd in the top research hotspots (28% of the 

total articles). 

For a clear understanding, the main features of different models in ETS research are 

extracted and compared, i.e., the key components (e.g., model variables, parameters and data), 

model outputs, hotspots, advantages and disadvantages, as shown in Table 2. Popular models 

for ETS research can fall into six categories, which are different from other each with distinct 

strategies of quantifications (how to describe an ETS system via different model components; 

see the 2nd column of Table 2) and solutions (the methods or criteria to determine the optimal 

results; 3rd row). Optimization models (with popular models of DEA, game model, 

programming model, etc. in ETS research) optimize ETS-related decisions for the best fitness 

(e.g., maximal profits, minimal mitigation costs and maximal mitigation effect), using fitness 

functions, decision variables and constraints as the key components to reflect the related targets, 

ETS-related decisions and the rules in an ETS, respectively. Simulation models (e.g., CGE, 

ABM and SD) simulate the potential impacts of candidate ETS-related policies and determine 

a satisfactory one with agreeable results. Generally, a simulation model involves a set of 

modules to describe the economic, environmental and ETS systems, uses a social accounting 

matrix and the related economic or environmental data as the model input to train the model, 

and reruns the model under a series of policy scenarios with different ETS designs to estimate 

the associated impacts in terms of changes in results. Assessment models (e.g., AHP, TOPSIS 

and life cycle approach) evaluate the efficacy of an existing ETS policy, with scores, indicators 

and weights as the key components to quantify such efficacy, the factors associated and 

importance of a factor, respectively. Statistical models (e.g., VAR, GARCH, etc.) investigate 
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the profound relationships (in terms of model parameters) across various factors (in terms of 

dependent and independent variables) in ETS in a relatively simple (usually linear) form, using 

statistical methods (such as least square estimation) to estimate the model parameters. AIs (e.g., 

ANN, DT and SVM) aim to capture the underlying mechanisms of an ETS system similarly to 

statistical models, but use a relatively complex structure to capture the nonlinear relationship 

of factors and iterative training to estimate model parameters rather than a statistical method. 

Ensemble models combine a series of individual models (any of the above categories) in a given 

framework (i.e., ensemble strategy). Three types of ensemble models were popularly used in 

ETS research, i.e., AI-based optimization models (incorporating AIs into optimization models 

for searching optimal solutions), combined statistical & AI models (using statistical and AI 

models to analyse the ETS system), and decomposition & ensemble models (decomposing the 

complicated ETS system into relatively simple subsystems, analysing each subsystem 

individually, and combining the individual results into the final results). 

   Each type of quantitative models has its own advantages and disadvantages (see the last two 

columns in Table 2), which determines their dominance in research areas for ETS modelling 

(see the 4th column of Table 2). To find optimal ETS-related decisions or policy designs, 

optimization models, simulation models and assessment models were popularly used, even 

from different analysis perspectives. Generally, optimization models hold a relatively flexible, 

simple framework, using the basic components of fitness, decision variables and constraints to 

quantify the targets (what to do), solutions (how to do) and rules (to be followed when doing) 

of any ETS-related problems. Due to the instinct virtues of flexibility, simplicity and 

universality, optimization models were the most popular models in ETS research, particularly 

helping enterprises make different ETS-related decisions (for production, sales, investments, 

technology updating, ETS trading, etc.) and the government to design ETS policies (e.g., for 

allowance allocation). As a basic model, optimization models can be extended into other models, 

for example, CGE model (introducing various economic and ETS-related factors as decision 

variables and determining their relationships based on the theories of economics and energy 

economics) and some AI models (with the fitness of minimal estimation errors in describing an 

ETS system). However, effectively and correctly finding a global optimum is still a difficult 

problem for an optimization model, as these often fall into local optima. 

   Simulation models and assessment models find optimal ETS decisions or designs from 

opposite analysis perspectives (i.e., through ex-ante and ex-post analyses, respectively), which 

make them dominate different ETS policies (i.e., policy candidates that have not yet been 

implemented and existing policies that have already been implemented, respectively). 

Furthermore, simulation models and assessment models are formulated on different bases, 

primarily relying on a systematic theory that has been sufficiently studied (e.g., economics for 

CGE and dynamics for SD) and individual knowledge from certain experts, respectively. 

Therefore, they have different disadvantages: simulation models often suffer from the local 

optimum and parameter sensitivity and are time-consuming when introducing too many 

associated factors and parameters; assessment models are often criticized for subjectivity, 

particularly in determining evaluation indicators and their weights. 

   To understand the complicated structure of ETS system, statistical models and AI models 

have been proven effective, even using different fitting equations and estimation methods. 

Statistical models describe the relationship of ETS-related factors in a direct, simple (usually 
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linear) form and estimate the related parameters using statistical methods (such as least squares 

estimation), with the virtues of interpretability and simplicity in operation; however, they often 

appear to be at a relatively low level of estimation accuracy, exactly due to such a simple, fixed 

structure and the associated data assumptions (e.g., linearity and stationary), which contradict 

reality. Against this background, a variety of AIs have been proposed and become increasingly 

prevalent due to their high accuracy, which utilize a relatively complex, flexible structure to 

capture the nonlinearity and complexity of ETS systems and powerful computer learning ability 

to train the model. However, this complex structure, in most cases with too many parameters, 

in turn, makes AIs suffer from the weaknesses of interpretability, parameter sensitivity and 

instability (attributable to many random model parameters). 

   In view of different strengths and weaknesses for different models, ensemble models have 

emerged and become a rising star in ETS research, aiming at combining a set of models to take 

advantage of their respective advantages to complement the disadvantages. For example, some 

studies using AI searching algorithms (e.g., genetic algorithm and particle swarm optimization) 

help optimization models effectively find optimal solutions, forming AI-based optimization 

models. Some studies used both statistical models (e.g., K-means clustering and regression 

models) and AI (e.g., error back propagation and extreme learning machines) to analyse the 

ETS system, forming combined statistical & AI models that can take full advantage of the 

interpretability and simplicity of statistical models (for rapidly determining the main factors, 

capturing the linearity components, etc.) and the high accuracy of AIs (for enhancing the 

accuracy, working out the nonlinearity and complexity components, etc.). To address the 

complexity of ETS systems, a new type of ensemble models, i.e., decomposition & ensemble 

models, was recently proposed based on the idea of “divide and conquer”. In a decomposition 

& ensemble model, the complex ETS factors (e.g., carbon price) are first decomposed into 

relatively simple components at different time scales (or frequencies), via a multi-scale analysis 

(e.g., wavelet analysis and EMD); then, a statistical or AI model is employed to individually 

analyse each component; finally, the individual results are integrated into the final outputs. 

However, due to the involvement of too many parameters for both individual models and their 

linkages, ensemble models severely suffer from parameter sensitivity, high time consumption 

and the possible multiplication of model vulnerabilities if not organized properly. Due to these 

weaknesses, ensemble models have been relatively few used in existing ETS research. 

   Even with the considerable applications and innovations, there still exists much room to 

develop ETS research using quantitative models. Quantitative models have effectively helped 

enterprises make optimal ETS-related decisions and the government design ETS mechanisms, 

and captured the complex structure of an ETS market; nevertheless, there are quite few 

quantitative analyses facilitating MRV work for third parties. However, due to the key role of 

third parties in an ETS (i.e., supervising the compliance performance of enterprises and 

guaranteeing the final mitigation effect), more powerful quantitative models apart from 

traditional statistical models are strongly recommended to streamline the MRV work for not 

only accurate estimates of emissions and emission reductions but also reduced regulation costs. 

Though dominant in analysing other energy systems, AI models appear to be quite insufficient 

for the ETS system relative to statistical models. However, statistical models, holding strong 

data assumptions (e.g., linearity and stationarity which contradict reality), have been shown at 

a low accuracy level; therefore, introducing various powerful AI tools is an interesting direction 
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for future ETS research, which can effectively capture the complexity and nonlinearity of ETS 

systems with the help of flexible structures and powerful computer learning capability. Most 

importantly, in view of different strengths and weaknesses of different models, ensemble 

models, based on the interesting idea of combining a series of models to take advantage of their 

respective merits to address the weaknesses, might be a rising star in ETS research. For example, 

simulation models and assessment models, from opposite perspectives (i.e., ex-ante and ex-post 

analyses, respectively) and based on different foundations (i.e., relatively mature theories and 

subjective expert opinions), are exactly complementary to each other; therefore, their 

combination can provide comprehensive results for optimal ETS-related decisions and policy 

designs. Furthermore, statistical and AI models can also be finely coupled, with the latter 

enhancing the accuracy of the former and, in turn, with the former improving the interpretability 

of the latter. However, due to the possible multiplication of model vulnerabilities, ensemble 

models should be carefully designed, particularly balancing model complexity and results 

improvement. 



23 

 

Table 2. Comparison among different types of quantitative models in ETS research. 

 Model type Model components (for ETS-problem quantification) Model outputs Hotspots Advantages Disadvantages 

1 Optimization models 

(DEA, game model, 

programming model, etc.) 

- Fitness function: maximal profit, minimal mitigation 

cost, maximal mitigation effect, etc. 

- Variables: ETS-related decisions or policy designs 

- Constraints: reflecting rules in an ETS, relationship of 

agents and their factors, etc. 

Optimal ETS-related 

decisions (with the best 

fitness) 

- Enterprise: ETS-related 

decisions and response to 

ETS. 

- Government: allowance 

allocation 

Flexibility; 

Simplicity; 

Universality 

Local optima 

2 Simulation models 

(CGE, ABM, SD, etc.) 

- Modules of economy (production, trading, income, 

savings, investments, etc.), environment and ETS 

- Data: social accounting matrix; economic or 

environmental data 

- Parameters: reflecting relationship between factors and 

structure of the system 

- Policy scenario: ETS design candidates 

Optimal ETS designs (with 

agreeable economic and 

environmental impacts) 

- Government: ETS 

design 

Ex-ante analysis 

of candidate ETS; 

Incorporating 

relatively mature 

theories 

Local optima;  

Low accuracy 

 

3 Assessment models 

(AHP, TOPSIS, life cycle 

approach, etc.) 

- Scores: a combination of targets (regarding equity, 

effectiveness, flexibility, costs, etc.) 

- Indicators: factors reflecting targets 

- Weights: importance of a target or factor against others 

Optimal ETS policy (with 

the highest scores) 

- Government: efficacy 

of an ETS 

Ex-post analysis 

of existing ETS; 

Incorporating 

expert knowledge; 

Subjectivity 

4 Statistical models  

(VAR, difference in 

difference, GARCH, etc.) 

- Dependent variables: the targeted factors 

- Independent variables: the related factors 

- Parameters: reflecting relationship between factors 

- Data: historical observations of factors 

Prediction and relationship 

of ETS-related factors (via 

least square estimation) 

- Market: relationship of 

ETS-related factors; 

spillovers of ETS and 

other markets 

Interpretability; 

Simplicity 

Strong data assumptions; 

Fixed structures;  

Low accuracy 

5 AIs 

(ANN, DT, SVM, etc.) 

- Dependent variables: the targeted factors 

- Independent variables: the related factors 

- Data: historical observations of different market factors 

- Parameters: reflecting relationship between factors or 

determining training rules 

- Data: historical observations of factors  

Prediction for ETS-related 

factors (via iterative 

training) 

- Market: prediction Without strong 

data assumptions; 

Flexibility;  

High accuracy  

Weak interpretability;  

Parameter sensitivity; 

Instability 

6 Ensemble models 

(combining any models of 

the above categories) 

- Individual models: any of the above categories 

- Ensemble strategy: linkage of individual models and 

combination of individual results 

Optimal ETS-related 

decisions or designs;  

ETS market prediction 

- Enterprises: ETS-

related decision making 

- Market: ETS-related 

factor prediction 

Universality; 

Flexibility;  

High accuracy 

Complexity;  

Time-consuming; 

Multiplication of models’ 

vulnerabilities 
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