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Abstract

The field of image processing (IP) currently lags behind many other fields in
science and engineering in the development of techniques for predicting and assessing
system performance. This thesis describes a technique for assisting developers and users
of IP systems. It presents a methodology for the design and the performance prediction

of those systems in different imaging conditions.

The thesis surveys various performance analysis techniques which have been
developed to analyse IP system performance, namely benchmarking, performance
evaluation and performance characterisation. It outlines the differences, as well as the
advantages and short-comings of each technique. The thesis then presents a new
methodology to guide system designers in gathering the appropriate data about imaging

conditions, designing the IP system, and predicting and assessing its performance.

The methodology operates by guiding the developer through the following
stages: Firstly appropriate parameters are selected to describe the imaging conditions
and the final performance metrics. These are narrowed down until only the most
important factors remain. The nature of these parameters is then used to determine the
best approach to performance analysis, either analytical, empirical, or a combination of
the two. An example algorithm is then chosen which could be used to perform the IP
task. This algorithm is then modularised, or broken down into its constituent
components. These modules are then analysed one by one to determine which imaging
parameters affect which module, and what internal quality propagation parameters can
be used to measure the effect that the performance of each has on the other modules.
Transfer functions are then derived which relate how incoming parameters effect
outgoing metrics for each module. Finally, the performance of the different modules is
combined, together with a distribution of the operating conditions to produce a final

performance measure for the system.

The effectiveness of the methodology is demonstrated by applying it to four
industrial image-processing systems: visual tracking of batches of steel, automatic

identification of batches of steel, lens aberration determination in a transmission



electron microscope and fuel drum location for automatic materials handling. In each
case an example algorithm is chosen to perform the task, and its performance is
predicted under the operating conditions it is likely to encounter. The methodology’s
applicability to two further tasks is also shown, and conclusions and recommendations

for further work are discussed.
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Chapter 1: Introduction

The field of image processing (IP) systems currently lacks a formalised structure,
or methodology, for developing and assessing the performance of such systems. This
often leads to a somewhat ad hoc approach to development, with systems being built
and then tested, without their likely performance being calculated beforehand. This
thesis describes a novel methodology which has been developed to assist engineers in
both the development of IP systems and the prediction and characterisation of their

performance.

1.1 Motivation — The Need for Performance Data

One of the key issues for engineers working in the development of IP and
computer vision as an engineering discipline, is the relative lack of work being done to
measure the performance of image processing algorithms and systems, and the
consequent lack of data. For the engineers involved, this makes the design of systems far
harder [1, 2] and diagnostics more difficult [3]. This often results in a less systematic
approach to development and testing, with less reliable systems being built. In turn, IP
sometimes suffers from a problem of being seen as something of an immature
technology and may consequently be underused. Producing a way to measure system
performance or reliability will have the following main benefits:

Aiding Algorithm Development

By enabling researchers to measure the performance of their algorithm relative to
existing techniques, a developer can quantify any improvements that each alteration
causes and can more readily arrive at a better solution. He or she can also compare the
effects of combining different algorithm components and using different values for
tuning parameters.

Predicting System Suitability

If a system performance for a given task can be predicted from previously
acquired data, its suitability for the task can be evaluated and testing and development
time reduced.

Algorithm Selection
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Knowledge of the performance of different algorithms can aid the selection of
the most appropriate technique for a given problem.
System Optimisation

If an envelope describing the performance of a system can be created, then this
can be used as part of the input to a system optimisation technique. This will ultimately
enable the optimum operating point for a system to be determined given the constraints

of the task.

It is thus imperative that image processing starts to develop the sort of tools and
information for performance measurement that are taken for granted in other disciplines

of engineering.

1.2 Developing Performance Prediction Techniques

Predicting and characterising the performance of IP systems is difficult, mainly

for the following reasons (some from [4]):

e Performance evaluation is task dependent. The overall system performance is a
function of both the effectiveness of the algorithm, and the conditions under which
it is operating. It is usually necessary to decouple these two factors. This enables the
performance of a given system to continue to be predicted even when the operating
conditions change, and brings universal performance measurement a step closer.

e Different tasks require different performance measures. The metrics used to
characterise the performance of a tracking algorithm will differ from those which
are used to measure the performance of an optical character recognition algorithm,
and must be selected appropriately.

e The operating conditions must be characterised. Describing complex imaging
conditions quantitatively is difficult.

e Vision is often only one component of a larger system. Other non-imaging factors
may affect the overall performance, which must be taken into account.

e Vision is complex. The vision system often consists of several component
algorithms which are combined to solve a vision task.

e The models used to describe images and imaging systems are sometimes incorrect.

Prediction must make do with sub-optimal models.

16



¢ Different performance measures mean that different systems cannot be compared
directly.

o Algorithms are often developed without an accompanying theory, which makes
their performance difficult to analyse.

e Algorithms often have many tuning parameters which may critically affect system
performance. Any characterisation must also take these into account.

e Ground truth is expensive to acquire and is always open to interpretation. Just
because a human operator indicates the position of a target does not mean it is the
true position.

e Testing is time-consuming and is often not recognised as valuable research,
particularly in academic publications. For example, in a recent conference (ICPR
’98), only six papers out of 494 directly addressed performance assessment issues.
Most of the remainder presented new algorithms or techniques, and only a quarter of
these provided any comparisons with existing algorithms. Less than a fifth analysed

performance in a quantitative fashion beyond this.

These factors combine to make the task of IP system performance characterisation a

challenging but important area of research.

1.3 Scope of this Research

This thesis goes some way towards addressing some of the deficiencies in IP system
development and attempts to overcome some of the main difficulties in performance
characterisation that have been outlined above. It contains a new methodology or ‘rule
book’, which is intended to assist engineers and researchers in developing IP systems
and algorithms. Although techniques have been developed for assessing individual
algorithms, e.g. edge detection, segmentation etc., the author believes that no one has to
date developed a generalised methodology for IP performance assessment for the system

user. This new methodology will:

e Enable the analysis and performance predictions for a wide range of IP systems, even
when they are applied to a variety of problems.
e Be in many cases considerably less time-consuming than the equivalent building and

testing of the algorithm, and give results with an appropriate degree of accuracy.
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e Guide developers in analysing IP problems, decoupling the system from the operating
conditions, gathering the appropriate data, then categorising the problem according to
a set of criteria developed here.

e Describe a new technique for modularising IP systems, and for considering the
system as a series of boxes, which propagate performance or quality characteristics in
addition to data.

e Show how the interaction between the different modules and the parameters can be
analysed.

e Demonstrate how the analysis of each of these modules can then be considered as a
relatively simple transfer function between operating conditions and the module
performance.

¢ Guide the developer in how to combine these transfer functions to derive overall
performance estimates for a system under different operating conditions.

e Provide the building blocks for universal performance data predictors that can
accompany off-the-shelf algorithms.

e Supply the necessary performance data which could then be used to optimise system

performance.

The thesis demonstrates the effectiveness of the new methodology with a
detailed assessment of four real-life IP problems, and a demonstration of how it could be
applied to a further two problems. These show how the methodology can be used to

analyse a variety of IP tasks, and how in practice it achieves the goals set out above.

1.4 Structure of this Thesis

The remainder of this thesis, consisting of eight chapters, is structured as

follows:

Chapter 2 introduces the reader to the principles behind performance
measurement in the field of IP. It reviews the existing work in the field and surveys the
different approaches taken by previous researchers. It then describes the different IP and

other techniques which are used in subsequent chapters.
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Chapter 3 describes the new methodology in depth. It describes the steps which
an IP system developer should take when developing and evaluating a system. This
forms the structure of chapters 4-8, which apply the methodology to the performance

analysis of real-world industrial IP problems.

Chapter 4 contains the performance analysis of the first of the IP applications. It
uses a semi-empirical approach to evaluating an existing algorithm for use in tracking
ladles of molten steel in a steelworks. It gives estimates of the likely final performance
of a vision system used to solve this problem, and shows how the problem may not be

amenable to an IP solution.

Chapter 5 is a mainly theoretical performance analysis of a second IP system for
use in a steelworks, for identifying batches of steel. It includes a new error-correcting

code developed by the author for this application.

Chapter 6 analyses the performance of a system for determining the aberrations
in transmission electron microscope (TEM) lenses. It describes a new theoretical model
of the image and the algorithm for calculating the errors in the estimates of the
aberrations. The theoretical model was developed in collaboration with the author's

supervisor, the application of the methodology is the authors work alone.

Chapter 7 analyses the performance of a vision system which is currently in
operation on a self-guided vehicle manoeuvring drums of nuclear waste around a storage

plant.

Chapter 9 concludes the thesis with a discussion of the research and suggestions

for further research.
Appendix A gives a more detailed discussion of the error correcting codes used

in chapter 5 and also a description of a new code design which was developed for this

project.
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Appendix B demonstrates how the methodology can be applied to two other IP
problems, but does not analyse them in depth. It demonstrates the general applicability

of the approach to a wide variety of vision problems.
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Chapter 2: Background

This chapter describes the current state of the art in measuring the performance
of image processing systems, and outlines the different approaches that have been
adopted. It shows where this thesis fits into current research, insofar as it represents the
first attempt at a complete methodology for performance characterisation. The work
described in this thesis is intended for image processing system developers who are
interested in evaluating the performance of systems they design. The chapter finishes by
describing some of the image processing techniques which will be used later in the

thesis.

2.1 Performance Measurement in other Engineering Disciplines

Performance measurement in other engineering disciplines is highly developed.
An engineer will choose the best specified product for a task, as it can often be
determined without testing whether the product is a suitable candidate for the task in

hand. This choice is often achieved using the following techniques:

1. Standardisation

Using standard fittings, sizes, interfaces etc., in order to avoid compatibility problems.

2. Modularisation
Breaking the system down into smaller functional blocks allows the performance of
these blocks to be analysed individually and then combined to predict the performance

of the system as a whole.

3. Theoretical Models
The performance of many engineering systems is evaluated using theoretical
expressions describing the behaviour of materials, fluids, components etc. and can be

evaluated by hand or numerically by computer.

4. Testing
Systems which are not amenable to theoretical analysis are often accompanied by data

forming an empirical ‘performance envelope’ which describes the performance under a
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variety of conditions. These may be taken from tests of the actual devices operating in

situ, or from scale models, simulations in wind tunnels etc.

In the field of image processing, the first technique is being tackled by IP
researchers [5] and is not being addressed in this thesis. However techniques 2, 3 and 4
are often taught to engineers during training. In some disciplines, such as computer
aided engineering, these procedures are formalised further, by the development of
methodologies for specifying, designing and breaking down engineering problems [6-9].
There have also been similar tools developed for assessing the performance of computer
code [10]. The techniques of modularisation, theoretical modelling and testing inspired

much of the methodology development that is described in the remainder of the thesis.

2.2 Different Techniques for Measuring Performance

Three main techniques for measuring performance of image processing
algorithms and systems have begun to be developed. These are performance
characterisation, performance evaluation and benchmarking. This section describes the

differences between them and how work in each field has developed so far.

2.2.1 Performance Characterisation

Performance characterisation is usually defined in IP to mean the measurement
or prediction of the performance of an algorithm or system throughout the full space of
the expected operating conditions. This performance characterisation, although time-
consuming, can then be used to predict performance when a system is used for a new
application or under different imaging conditions. Different methods for performance
characterisation, such as testing and analytical algorithmic modelling have been

developed, and are described in sections 2.2.1.1 to 2.2.1.3.

Performance characterisation has already been applied to many algorithms or
classes of algorithms for specific IP tasks. One example involved adding noise to and
obscuring parts of real images, and measuring the variation in the performance of
recognition algorithms [11]. There have also been similar attempts at analytical

modelling of other low-level algorithms, such as edge detectors [12] [13, 14], texture
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segmentation [15, 16], image stabilisation [17], and algorithms such as pixel

vectorisation [18], binarisation [19], and detection algorithms [20].

2.2.1.1 Algorithmic Modelling

A formal description of algorithmic modelling was given in [21] as a way of
characterising algorithm performance. Algorithms are developed in conjunction with a
mathematical (analytical) model of the algorithm that describes their performance. This
model can then be used as a transfer function, to calculate performance, given the input
operating conditions. For example, analytic models of line and circle fitting algorithms
have been developed, which enable the estimation of errors when input variables such as
line length and noise are varied. These predictions are then compared with results from
empirical tests on synthetic data [22]. Other models have been used to estimate various

location and detection errors in corner detection algorithms as noise levels vary [23].

One of the most important features of algorithmic modelling, which is not
addressed in the literature but forms an important part of this thesis, is parameter
determination. The effectiveness of the algorithm model depends critically upon
selecting the appropriate parameters to describe the input conditions and performance

metrics. Selection of parameters is discussed in chapter 3.

Because performance can be determined from the algorithm model as a function
of operating conditions, algorithmic modelling is a very useful tool for performance
characterisation. If the operating conditions change, the algorithm model is (usually)
still valid. However, one of the limitations of algorithmic modelling is that it cannot be
carried out if the input conditions cannot be described quantitatively. It can also be time
consuming. The concept of algorithmic modelling is used in the industrial IP task

analyses later in this thesis.
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2.2.1.2 Performance Envelope Measurement

The performance envelope specifies the performance of a system as the
parameters describing the operating conditions are varied. It is a surface in a
multidimensional space, with each dimension corresponding to an input parameter or
performance metric. A simple one-dimensional example is the speed/altitude capability
of an aircraft. The performance envelope can either be calculated using the algorithmic
modelling method described in section 2.2.1.1, or be measured by using the testing
techniques discussed in section 2.2.1.3. Either method requires appropriate parameter
selection to ensure the dimensions in the space correspond with the most important

measures of the input conditions.

Once calculated, either theoretically or empirically, the performance envelope
can then be used to determine the performance of a system under known operating

conditions.

2.2.1.3 Testing

One method of evaluating performance is simply to implement the system and
test it on real data. As this thesis will show, under some conditions this may be
necessary. Haralick [24] proposed that both performance evaluation and characterisation
can be carried out by describing the ‘normal’ operating conditions (i.e. input data), then
randomly perturbing the operating position and measuring the effect on performance.
However the probability distribution of the actual operating conditions is critical to

overall system performance, and must be taken into account.

Testing can also be time consuming, as the algorithm must be implemented and
a set of input data with the appropriate variation in operating conditions must be
acquired. However, reductions in the time and expense involved in testing can be
achieved via modularisation, as discussed in section 2.2.4. The use of modularisation
has the advantage that only those components of the algorithm that cannot be analysed
readily using other methods need to be tested in this way. Often the requirements for

testing have more to do with the complexity involved in describing the operating
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conditions, than with the algorithm itself. A discussion of the use of testing for

performance characterisation is given in [25].

2.2.2 Performance Evaluation

Performance evaluation differs from performance characterisation in that it is
only trying to measure performance against a pass/fail criterion. This means that for a
given algorithm, only a subspace of possible operating condition needs to be analysed,
namely those conditions under which the algorithm will be operating under when
performing the task for which it is being considered. It also means that certain
performance characteristics, which it would be necessary to measure for complete
characterisation, can now be neglected. The advantage of performance evaluation over
characterisation is therefore ease of implementation. However it does not give a
complete description of system performance and therefore is not valid if the operating

conditions change or if the system is used for a different task.

2.2.3 Benchmarking

Benchmarking differs substantially from the previous two techniques.
Benchmarking implies a common, ‘level playing-field’ test, whereby an identical task is
carried out with a variety of algorithms and each is given a performance measure. A
familiar example from outside the field of IP is the DOT fuel consumption test, where
every vehicle is tested for fuel consumption under a specified set of driving conditions

and given a figure of performance.

2.2.3.1 Examples of Benchmarking

Benchmarking techniques have already been applied, with varying degrees of
success, to some image processing tasks. Many papers have been written on comparing
algorithms for specific IP tasks [16, 26-31]. Methodologies have been developed to
apply benchmarking techniques [32]. The Abingdon Cross survey was one of the earliest
and most famous of any attempts at benchmarking in the field of image processing [33].
It consisted of a pre-defined image on which a standard set of image processing

operations had to be performed. Although important, the Abingdon Cross’s principal
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aims and achievements were to compare the parallel computers on which the algorithms

were run, rather than to compare the algorithms themselves.

2.2.3.2 The “StatLog” Project

The ESPRIT-funded StatLog project, which ran from 1990-1993, was designed
to provide a quantitative comparison of a wide range of classification algorithms, by
testing their relative performance under ‘level playing field’ conditions against a wide
range of classification tasks, although only a few of these used image databases. The
classification algorithms fell into three main categories - statistics-based, machine
learning based, and neural networks. The results of this project are summarised in a book

on the project [34].

Statistics-based algorithms are generally considered to have an explicit
underlying probability model, and it is usually assumed that the algorithms can be
‘tuned’ by humans (mainly statisticians), who can control the overall flow of the
algorithm. Machine learning (ML) is based on earlier artificial intelligence ideas, which
usually try to construct decision trees (‘if-then’ rules) based on the supplied training
data. The term ‘neural networks’ covers a wide range of algorithms, but is usually taken
to imply a network of one or more interconnected layers of nodes (‘neurons’) which are
trained to adjust their contents in response to repetitive presentation of a set of training
patterns. The training may be supervised or unsupervised. Supervised learning, requires
the user to input the class of each training pattern. Unsupervised learning extracts
information about the training data set without explicit guidance during training, but the

user has subsequently to specify which system response corresponds to which category.

The StatLog project provided an excellent review of these different approaches
and provides a role model for any benchmarking studies, whether in the field of image

processing or in other areas where classification is needed.
Benchmarking in general suffers from the big disadvantage that it only measures

system performance under a specific set of operating conditions. Thus if the conditions

under which the benchmark test was carried out are not representative of the conditions
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under which the system will be used, the results will be inaccurate as a predictor of
system performance. However benchmarking does allow a direct comparison between
algorithms. Developers often find this idea attractive as they want to know which
algorithm is the ‘best’. Unfortunately performance depends critically on the operating
conditions, so that without a very careful choice of tests, such comparisons can be

misleading.

Therefore for the reasons described above, benchmarking will not be considered

further in the remainder of this thesis.

2.2.4 Modularisation

The modularisation of algorithms has been suggested as an aid to performance
characterisation [4, 35, 36]. Breaking down the algorithm allows individual sections to
be analysed. These less complex sub-systems can then be analysed, and their
performance characteristics combined with those of the other modules to yield a final
performance measure. One of the most important aspects of modularisation is the use of
quality metrics, which determine how the performance characteristics of each module
are propagated through the system. This is described briefly in [35], and is developed in
more depth in chapter 3.

Modularisation greatly facilitates the analysis of IP system performance.
Algorithm modules are usually less complex than the system as a whole, and are
consequently easier to model. Modularisation also enables different sub-system
algorithms to be included in the overall system, and the performance analysis can be
updated readily to measure the affects of the change. Methods for system modularisation

are developed in chapter 3, and demonstrated extensively in chapters 4-8.

2.3 Related Work

Several other techniques have been developed which are related to IP system
performance analysis. These include standardisation of frameworks and image
databases, automatic algorithm tuning, statistical testing techniques and also the lessons

learnt from actual algorithm development.
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2.3.1 Standarisation

Attempts to impose standards in image processing have followed two main lines
of development: standardising the frameworks for development and testing and

standardising databases of test images.

2.3.2 Standard Frameworks

2.3.2.1 Image Understanding Environment (IUE)

The IUE is a five-year US program, sponsored by the Defence Advanced
Research Projects Agency (DARPA), to develop a common software environment for
the development of algorithms and application systems [5]. Its goals are to improve
research productivity, to provide a standardised format for education and development,
to standardise computational models and to improve technology transfer. It can be used
as a basis for algorithm development. DARPA had earlier produced a ‘DARPA
benchmark’ - a set of test images (of moving, overlapping rectangles) which was used as

a test piece for comparing the relative performance of various algorithms.

2.3.2.2 Image Processing Standards/BSI Collaboration

The standards organisations ISO and IEC set up a joint technical committee to
investigate the possible provision of standards for image processing. A working group
(ISO/IEC JTC 1/SC 24/WGT7) failed to reach a consensus on the correct approach to

take.

2.3.2.3 Harness for Algorithmic Testing and Evaluation (HATE)

The HATE project is a tool developed primarily by Clarke [21] which presents
an environment for the creation of a set of common tests which will be universally
applicable to assessing the performance of various algorithms. HATE runs tests and
accumulates data for pooling in a central repository, thus allowing a comparison-of

different algorithms.
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2.3.2.4 Standard Image Databases

A different approach to comparing algorithm performance is to provide
databases of standard images, covering a wide range of operating conditions against
which algorithms can be tested. Several of these exist, such as the National Institute of
Standards in Technology (NIST) database of handwritten zip codes, British Aerospace’s
segmentation databases [37] and many more are being developed. Examples include
databases for face recognition tasks [38], automated manufacturing [39] and more

general image databases [40].

2.3.2.5 Automatic Algorithm Tuning

Automatic selection of algorithm tuning parameters and automatic system
configuration is an area in which some related work has been carried out. Any
optimising technique requires a ‘fitness’ measure, which in turn implies performance
meaurement. This development has yielded some novel ways of performance
measurement. For example, Ramesh and Haralick [41] describe a methodology to
optimise the selection of algorithm tuning parameters, by minimising appropriate
performance measures. They demonstrate the technique on an algorithm for edge
detection and linking. Similar techniques have been developed in other area of IP such
as boundary detection [42], automatic target recognition [43] and the selection of edge

detection algorithms [44].

2.3.2.6 Statistical Techniques for Algorithm Testing

Research has also been undertaken to develop novel statistical tests for
evaluating IP systems. These include self-consistency [45], a novel method which
eliminates the need for ground truth to accompany data. Other techniques, such as
bootstrapping, enable smaller data sets to be resampled to simulate larger ranges of data
for testing [46-49]. Research work investigating the effect of quantisation errors [50, 51]
which are introduced when images are digitised, has been carried out. There are also
theories concerning the behaviour of statistics in the extremes of distributions [52, 53]
This is where much of the error analysis is carried out, and is one important

consideration when estimating the probability of unusual events with measurement and
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modelling errors [54]. Also important is the effect of different non-linear functions on

the propagation of variance [55].

2.3.2.7 Real-World Algorithm Development and Testing

Some of the more useful research work in performance evaluation has stemmed
from attempts by designers to characterise the performance of real-world systems as
they are developed. These have the advantage of addressing the complexity often
present in real-world IP problems [56-59] [43]. Some have considered the different
modular stages in an algorithm [60], though have not attempted to analyse their

performance in-depth.

Image Characterisation and Performance Metrics

An important feature of any characterisation or evaluation procedure is the
necessity to measure the appropriate characteristics of the input data. This has been
attempted for several types of algorithm and problem [61-63]. There have also been
attempts to develop appropriate performance metrics for different IP tasks such as image
segmentation [13, 37, 64], and also in related fields such as non-destructive testing,
where the probability of detection (POD) is used to measure performance as a function
of defect size [65]. One of the most useful measures developed is the receiver operating
characteristic (ROC) curve. This plots the probability of false indications (PFI) against
the POD as a function of some classification threshold [66]. Although this yields a curve
in two-dimensions, it can be turned into a useful one-dimensional performance measure

by integrating the area under the curve [67].

2.4 Background on Techniques

During the development of the methodology and analysis of the industrial
examples, several different IP techniques were investigated, implemented and analysed.
The following sections describe the various techniques used. The first is an outline of a
simple matching technique, called template matching, which is used in several of the
examples. The second involves tracking using the adaptive Kalman filter, a technique
which is not used in the full analysis, but is included here as an illustration of how the

ladle tracking system could have been made more sophisticated. The third section
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describes some of the different techniques which have been developed in an attempt to
determine the lens aberrations in transmission electron microscopes (TEMs), the
problem analysed in chapter 6. There is then an introduction to the theory of error-
correcting codes, which are used in chapter 5 in ladle identification. Different
algorithms that could have been used in chapter 7 on drum location are not described
here, as the algorithm had already been designed by the plant operators. Their system

design is described in chapter 7.

2.4.1 Template Matching

Template matching based on correlation is used for determining whether and
where a specific reference pattern (the template) is located within an input image (the
scene). It is typically used for detecting and locating objects of known sizes and

orientations in scenes.

If 1(i,j) refers to the pixel grey level at position (i,j) in the MXN template image
and s(i-m,j-n) refers to the corresponding grey level in the scene image when the
template is displaced by some distance (m,n). The difference correlation measure or

score at position (m,n) is then calculated according to [68]:

m+M-1n+N-1 o ) . 2
D(m,n)= 3 Y |t(t,]) -s(i-m,j —n)l
i=m j=n

eq(2-1)
Expanding this yields the form:

Dimn)y =Y SG ) + 2 Slst, i) =23 TtG,j)sti—m,j—n)

i=m j=n i=m j=n i=m j=n
eq(2-2)
The first term is a constant for a given template, the second varies if the mean
grey level intensity varies across the scene image. The third term is a cross correlation
term which also varies with mean grey level. Thus to compensate for variations in scene

grey level, the normalised difference correlation measure can be calculated as:
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m+M-1n+N-1

> S i) - st—mj-n)

i=m j=n

D(m,n) = > >
2| D" Z s )|
[ 1

eq(2-3)
or the normalised cross correlation coefficient:
m+M—1n+N—1. ' ) )
Z Zt(l,])s(l—m,]—n)
C(m, n) — =m Jj=n 2 2
3G DT T sG, )
ij ij
eq(2-4)
The Cauchy-Schwarz inequality states that:
.. . . N .ow2
YY1, s —m, j-n)< [T H7T T, p)|
ij i j ij
eq(2-5)

Equality holds if and only if:

ti,H=ar@i-m,j—n), i=m...m+M-1 j=n,.. . n+N-1
eq(2-6)
where « is a constant. Hence c(m,n) is always less than or equal to unity and reaches a
maximum value of unity if the template is an exact, replica of the scene at (m,n). A
variety of templates enables this technique to be used to search not only for the location

of an object, but also to identify the size and type of object visible in the image.

2.4.2 Tracking

Sophisticated tracking techniques are not used in the analysis of the industrial
problems in the following sections, as simple techniques, although less effective, are
easier to model and their detrimental effect on performance under the chosen operating
conditions is expected to be minimal. However one classic tracking technique is

described here briefly and its possible use in this work discussed.
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The linear Kalman filter is a classic tool of optimal estimation theory [69]. It is
based on a model of a physical system involving a time dependent state vector, X, and a
set of linear equations called the system model. The state vector contains enough
variables to describe the dynamic properties of a system. In the case of tracking an
object in three dimensions, velocity and displacement in each direction are sufficient.
The system model describes the change in state over time. If we sample at equally
spaced time periods, t,=to+kAT, with k = 0,1, ... and AT a sampling interval. The linear

system can be modelled in vector form

Xk = PprXi1 + &
eq(2-7)
where & is a vector indicating random additive noise. The state transition vector ®y
is also a function of time to allow for complex system dynamics. A noisy measurement
is made of the state vector at time # and the Kalman filter theory assumes that the

following relation holds:

7 = Hixy + x
eq(2-8)
where zj is the vector of measurements taken, Hy is the measurement matrix and py a

random vector modelling additive noise.
If uy and & are white, zero-mean, Gaussian processes with covariance matrices
QO and R, the Kalman filter can be shown to be the optimal estimate of the state of the

system [69].

The Kalman filter is implemented by evaluating the following recursive

equations:

Pi=®y P ® it + O

Ky = P\H " (HPH+ R’
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X'k = Oy X1 + Ki(zg - H @y 1X's1)

Pi=(I- KIPU - K" + Kic R Ki'

eq(2-9,10,11,12)
where x'x is the optimal state estimate at time #. P is the a priori estimate of the error
covariance and K is the gain or blending factor that minimises the a posteriori error

covariance.

If x is a 2-D state vector [xl,xz]T, the region of the plane centred around x'x which

contains the true state with a given probability ¢’ is the ellipse

(x - XY P (x - X1)" < ¢
eq(2-13)
The axes of this ellipse are ic\/kiei, i = 1,2, where A; and e; are the eigenvalues
and eigenvectors, respectively, of Py. This uncertainty ellipse can then be used to

calculate the search space for the next frame in the tracking sequence.

For the example tracking problem discussed in chapter 4 however, the time
dependency of @y is not known, due to the sudden changes in acceleration of the object.
@y could model] the inertia of the object being tracked, i.e. assuming no acceleration,
which would provide a good estimate of state during relative simple motion. However
changes in acceleration are frequent enough in this application that the improvement in
system performance is likely to be secondary to other factors. For this reason, and to

simplify some of the analysis, the use of a Kalman filter is not considered in chapter 4.

2.4.3 Transmission Electron Microscopy Lens Aberration Analysis Techniques

Aberrations in the lenses of transmission electron microscopes (TEMs) limit the
resolution that can be achieved [70] and the accuracy of measurements taken using them
[71]. Several different image processing techniques have been developed to analyse the
diffractograms generated by TEMs, which contain information that can be used to
determine, and correct for, some of these aberrations. The full IP problem is described in
chapter 6, where the use of template matching and the Orientation Correlation Function

(OCF) are analysed in depth. However a brief summary of the IP task is presented here,
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and some of the other techniques for lens aberration determination which have been

described in the literature are discussed.

The TEM can be used to generate a diffractogram, see Figure 2-1, the intensity

of which describes a function of the form (from [73]).

F(r,0)=sin*(mA’C,r* 1 2—mAC,r* | 2—(mAA,;r* 1 2)cos(2(6—9,,)))
eq(2-14)

The reasons for the function having this form are explained in chapter 6.

The image processing problem is to fit this function to the noisy data in the
diffractogram and hence deduce the values of the parameters for the spherical
aberration, Cs; defocus, Cj; two-fold astigmatism, A;; and the angle of primary
astigmatism, ¢»2. (The actual aberration determination procedure is more complex, as
other aberrations exist which must be measured by producing images with an induced

tilt in the electron beam. This is discussed in chapter 6.)

2.4.3.1 Manual Fitting

One approach is simply to generate a surface using estimates of the parameters,
compare it side by side with the real diffractogram, and then adjust the parameters

manually until the images appear to match [72] as shown in Figure 2-1.
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