Ibrahim, R;
Kim, S-H;
Tong, J;
(2021)
Eliciting Human Judgment for Prediction Algorithms.
SSRN
Preview |
Text
SSRN-id3606633.pdf - Accepted Version Download (1MB) | Preview |
Abstract
Even when human point forecasts are less accurate than data-based algorithm predictions, they can still help boost performance by being used as algorithm inputs. Assuming one uses human judgment indirectly in this manner, we propose changing the elicitation question from the traditional direct forecast (DF) to what we call the private information adjustment (PIA): how much the human thinks the algorithm should adjust its forecast to account for information the human has that is unused by the algorithm. Using stylized models with and without random error, we theoretically prove that human random error makes eliciting the PIA lead to more accurate predictions than eliciting the DF. However, this DF-PIA gap does not exist for perfectly consistent forecasters. The DF-PIA gap is increasing in the random error that people make while incorporating public information (data that the algorithm uses) but is decreasing in the random error that people make while incorporating private information (data that only the human can use). In controlled experiments with students and Amazon Mechanical Turk workers, we find support for these hypotheses.
Type: | Working / discussion paper |
---|---|
Title: | Eliciting Human Judgment for Prediction Algorithms |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.2139/ssrn.3606633 |
Publisher version: | https://dx.doi.org/10.2139/ssrn.3606633 |
Language: | English |
Keywords: | laboratory experiments, behavioral operations, random error, elicitation, forecasting, prediction, discretion, expert input, private information, judgment, aggregation |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > UCL School of Management |
URI: | https://discovery.ucl.ac.uk/id/eprint/10107592 |
Archive Staff Only
View Item |