
Design and Implementation of an
Object-Oriented Functional Language

Lee Valentin Braine

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

Department of Computer Science

University College London

September 1998

Revised July 2000

ProQuest Number: 10608860

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10608860

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Abstract

A novel approach to the integration of object-oriented programming (OOP) and func

tional programming (FP) is investigated. This is a well-researched area and we focus

on several features that have, until now, proved resistant to integration.

The search for a language which combines both functional and object-oriented fea

tures has a long and distinguished history. The aim is to integrate the formal methods

benefits of FP with the software engineering benefits of both paradigms. However, we

know of no language which can claim to be both purely functional and purely object-

oriented (and retains complete type safety).

In this thesis, we explain some important issues concerning the integration of OOP

and FP. We show why achieving this goal is difficult by identifying key differences

between the two paradigms and discussing the seemingly-incompatible design issues

raised by these differences. Achieving the goal thus becomes a problem of solving

apparently-conflicting language design requirements.

We present a design for a new language, CLOVER, which meets almost all of these

requirements by the careful integration of a number of different design criteria. The lan

guage is purely functional and almost purely object-oriented, and is also completely type

safe. The remaining object-oriented aspects are resolved by supplying a new interpre

tation of object identity through a new visual notation.

The main contribution of CLOVER is its breadth of scope - it incorporates all the

key concepts of object orientation and is purely functional. In particular, it integrates

subtyping, subsumption, inheritance, method overriding, method overloading and dy

namic despatch from the object-oriented paradigm with higher-order functions, curried

partial applications, referential transparency, laziness and complete type safety from the

functional paradigm.

Abstract 3

We demonstrate how the language can be implemented by targeting a simple func

tional language. We provide a formal presentation of the implementation as a set of

translation rules together with rules for code generation. This translates an abstract form

of our object-oriented functional language into an abstract form of a standard functional

language.

Acknowledgements

I would like to thank Chris Clack, my supervisor, for several reasons. Firstly, for

providing a thought-provoking atmosphere during several years of research. Also, for

much time spent improving my papers and this thesis. And finally, for the many pints

of Fosters and Guinness over the years!

I would also like to thank friends and colleagues in the Department of Computer

Science at University College London for providing a pleasant environment. Their

support, feedback and suggestions were very much appreciated. My thanks also go to

the anonymous reviewers of my papers, whose comments contributed to this thesis.

This work was supported by a research studentship from the Engineering and

Physical Sciences Research Council and a CASE award from Andersen Consulting.

I am particularly grateful to Andersen Consulting for their encouragement and

financial support.

Contents

1 Introduction 10

1.1 Goals of the R esearch... 11

1.2 Contributions of the Work .. 11

1.3 Overview of the T h e s is .. 12

1.4 Publications... 12

2 Background 14

2.1 Overview of T e rm s .. 14

2.1.1 Overview of Object-Oriented Programming T e rm s 14

2.1.2 Overview of Functional Programming T e rm s 16

2.2 Related W o r k ... 17

2.2.1 Related Work on Object-Oriented Functional Programming . . 17

2.2.2 Related Work on Visual Program m ing...21

2.2.3 Summary of Related W o rk .. 22

3 The Design of CLOVER: An OOFP Language 23

3.1 Design I s s u e s ...23

3.1.1 Type Safety versus Dynamic Despatch...24

3.1.2 Type Safety versus Overloading and Partial Applications 25

3.1.3 Curried and Partially-Applied M e th o d s26

3.1.4 Subtyping... 26

3.1.5 Lazy Evaluation versus Discrete Messages and State Update . . 27

3.2 C L O V E R ...27

3.2.1 Design Features..28

Contents 6

3.2.2 Language O v e rv ie w ... 30

3.2.3 Language P rim itiv es ... 31

3.2.4 Abstract Expression S y n ta x .. 32

3.3 Type System .. 32

3.3.1 Type Syntax .. 33

3.3.2 Overview of Type Sem antics...33

3.3.3 Subtyping...33

3.3.4 Overloading..34

3.3.5 P o lym orph ism ... 34

3.3.6 Typing R u le s .. 35

3.3.7 Type S a fe ty ..36

3.4 Concrete Syntax...37

3.5 Abstract Expression Sem antics...38

3.6 Referential Transparency.. 40

3.7 S u m m a ry .. 41

4 The Implementation of CLOVER: A Translation from OOFP to FP 42

4.1 Overview of the Transformation R u le s ... 42

4.1.1 Notation ... 44

4.2 Abstract Program Code (A P C) ... 45

4.2.1 Syntax of Abstract Program C o d e ..45

4.2.2 Translation of APQo into A P Q ...47

4.2.3 Translation of APQ into A P C ..48

4.3 Intermediate Data Structure (I D S) ...51

4.3.1 Syntax of Intermediate Data S tructure... 51

4.3.2 Translation of APC into I D S ... 52

4.4 Target Code (T C) ... 54

4.4.1 Syntax of Target C o d e ...55

4.4.2 Translation of IDS into T C .. 56

4.5 S u m m a ry .. 64

Contents 7

5 Object-Flow 66

5.1 Inappropriateness of Traditional Object Id en tity ... 66

5.2 Object-Flow: a New Visual N otation .. 68

5.3 Examples of Object-Flow N otation..71

5.4 Development Environm ent...73

5.5 S u m m a ry ..74

6 Conclusion 75

6.1 Critical A ssessm ent..75

6.2 Project S ta tu s ... 76

6.3 Further W o r k ... 76

6.4 S u m m a ry ..77

6.5 C onclusions..................... 77

A I^pe Checking Algorithm 78

B Example Translation 83

B .l Concrete In s tan ce ... 83

B.2 APQo In s ta n c e .. 87

B.3 APC In s ta n c e ..89

B.4 IDS Instance... 91

B.5 Target Code In s ta n c e ...93

List of Figures

5.1 Standard Visual R epresentations... 68

5.2 Application S i t e .. 69

5.3 Object-Flow Winder ...70

5.4 Object-Flow N o d e s ..70

5.5 Local Definition for i n c ...70

5.6 Method Definition for i n c L i s t ... 71

5.7 Using the Method d e p o s i t ..71

5.8 Method Definition for d e p o s i t ... 72

5.9 Using the Method c h a r g e ... 73

5.10 Method Definitions for c h a r g e ...73

List of Tables

4.1 Summary of Main CLOVER Translations

4.2 Terms Used During Translations

Chapter 1

Introduction

The object-oriented (OO) paradigm, together with an appropriate methodology, has

successfully delivered many large projects. OO design (OOD) is used extensively

in industry since it provides good control and componentisation characteristics for

structuring the design of large applications. However, OO programming (OOP) has

been rather disappointing: in particular, the expected level of code reuse has not been

observed [McC97]. Furthermore, OOP languages have done little to reduce testing

and debugging times: current OOP languages are not completely type safe and require

extensive run-time testing and debugging.

By contrast, functional programming (FP) is not used extensively in industry,

mainly due to perceived low performance, restricted programmer skill base, and poor

support for large-scale applications programming (there is typically no methodology

supporting analysis and design). However, FP languages can bring major benefits to

program development. Complete type safety ensures that a high percentage of all errors

are detected at compile time, thereby significantly reducing the time required for run

time debugging. Furthermore, functional languages have simple syntax and semantics

and the key property of referential transparency ensures that encapsulation cannot be

breached and programmers can work securely at an appropriate level of abstraction.

Our goal is to provide a specification language which is both purely functional and

purely object-oriented— an object-oriented functional programming (OOFP) language.

Since the definition of these two terms is open to interpretation (and indeed there is no

universally agreed definition of OO), we choose to define the first in terms of features

that are common to most lazy functional languages and to define the second in terms

1.1. Goals o f the Research 11

of a minimal subset that is common to most object-oriented languages and, we believe,

captures the essence of object-oriented programming. We define the former as “refer-

entially transparent with no side-effects and completely type safe, with lazy evaluation,

parametric polymorphism, higher-order functions and partial applications” and the latter

as “purely object-oriented (where everything is an object), using a class hierarchy with

inheritance and pure encapsulation, subsumption through subtyping, method overload

ing, method overriding and dynamic despatch”.

1.1 Goals of the Research
This thesis aims to investigate the following hypothesis:

The functional and object-oriented paradigms can be integrated, whilst retaining:

• higher-order functions, curried partial applications, referential transparency,

laziness and complete type safety from the functional paradigm;

• subtyping, subsumption, inheritance, method overriding, method overloading

and dynamic despatch from the object-oriented paradigm.

We will show that this hypothesis has not been demonstrated by previous research and

also why achieving this goal is difficult by identifying the key research problems. We

do not aim to prove complete type safety (in that the full construction of a type system

including associated proofs is outside the scope of this thesis), but will provide a suffi

ciently detailed design, typing rules and type checker to give a high degree of confidence

that this is achievable.

1.2 Contributions of the Work
This work contributes to the understanding of the design space of object-oriented and

functional programming languages. Specifically, the contributions of this thesis are:

• a new design for completely type-safe dynamic method despatch and overloading;

• a new object-oriented semantics for partially-applied, higher-order methods;

• a new design for full overloading of methods in the presence of curried partial

applications and dynamic despatch;

• a new visual notation and semantics for object state, object identity and object-

oriented lazy evaluation.

1.3. Overview o f the Thesis 12

1.3 Overview of the Thesis
The thesis is structured as follows: after providing a background of relevant terms and

related work in Chapter 2, we establish the problem by discussing the difficult design is

sues in Chapter 3; we then present a new language CLOVER, its design features, syntax,

type system and abstract expression semantics. In Chapter 4, we present an implemen

tation of CLOVER as a translation from OOFP to FP. We then discuss the inappropri

ateness of the traditional notion of object identity for OOFP in Chapter 5 and propose

an alternative notion, together with a supporting new visual programming notation. In

Chapter 6 , we assess this work, summarise the project status, suggest directions for

further work, and conclude. Finally, in the appendices, we present a type checking

algorithm and an example translation from CLOVER concrete syntax to a target

functional language.

1.4 Publications
This thesis is based on the following publications (repeated in the bibliography):

[BC96] L. Braine and C. Clack. Introducing CLOVER: an Object-Oriented

Functional Language. In W. Kluge, editor, Implementation o f Functional

Languages, 8th International Workshop (IFL’96), Selected Papers, Lecture

Notes in Computer Science 1268, pages 1-20, Springer-Verlag, September

1996.

[BC97] L. Braine and C. Clack. An Object-Oriented Functional Approach to

Information Systems Engineering. In Proceedings o f the CAiSE’97 4th

Doctoral Consortium on Advanced Information Systems Engineering, 12

pages, June 1997.

[BC97a] L. Braine and C. Clack. Object-Flow. In Proceedings o f the 13th IEEE

Symposium on Visual Languages (VL’97), pages 422-423, September

1997.

[BC97b] L. Braine and C. Clack. The CLOVER Rewrite Rules: A Translation from

OOFP to FP. In Draft Proceedings o f the 9th International Workshop on

Implementation o f Functional Languages (IFL’97'), pages 467-488,

September 1997.

1.4. Publications 13

The following paper also provides a case study of the application of several of the OOFP

techniques described in this thesis within a large commercial project:

[BC98] L. Braine and C. Clack. Simulating an Object-Oriented Financial

System in a Functional Language. In Draft Proceedings o f the 10th

International Workshop on Implementation o f Functional Languages

(IFL’98), pages 487-496, September 1998.

Chapter 2

Background

In this chapter, we provide an overview of relevant object-oriented programming and

functional programming terms. We also survey related work by focussing on relevant

languages in the areas of object-oriented functional programming and visual program

ming.

2.1 Overview of Terms
This section briefly summarises relevant OOP and FP terms as often used in the research

communities.

2.1.1 Overview of Object-Oriented Programming Terms

Basic Concepts:

A class comprises both attributes (private data items) and methods (interface functions).

Each class has a special constructor function which is used to define (instantiate) an

instance of that class with specific values for its attributes. An object is the instantiation

of a class. An object may be manipulated by sending it a message, which is the name

of one of the object’s methods together with the actual parameters for that method.

Further Terms:

• Binary methods take a parameter (in addition to the distinguished object) which

has the same type as the distinguished object.

• Delegation is the act of one object forwarding an operation to another object, to

be performed on behalf of the first object [Boo94].

2.1. Overview o f Terms 15

A distinguished object (DO) is used at run-time to resolve method overriding and

determine which implementation should be used for a given method application

(see overloading and overriding).

Dynamic binding associates a name with a value at run-time (and often a type, if

this is not known statically — see dynamic typing).

Dynamic despatch is a run-time feature which invokes the implementation asso

ciated with a method name according to the actual (run-time) type of the distin

guished object.

Dynamic typing associates a name with a type at run-time.

Inheritance is a relationship among classes, wherein a class shares the attributes or

methods defined in one (single inheritance) or more (multiple inheritance) other

classes (see also [Boo94]).

Multi-methods is a run-time feature which allows dynamic despatch to be based

on more than one parameter.

Overloading provides multiple implementations for a method, each with a distinct

type.

Overriding provides a replacement implementation for an inherited method or at

tribute.

s e l f is an identifier, defined in every method, that is bound dynamically to the

distinguished object.

Subsumption allows a function of type oi ->> a2 to be provided with an argument

of type (j3 iff <73 is a subtype of crx.

Subtyping has been defined in many ways (see, for example, [CW85]). In general,

it can be viewed as a type system with a pairwise relation on types which provides

a partial ordering.

2.1. Overview o f Terms 16

2.1.2 Overview of Functional Programming Terms

Basic Concepts:

A functional program contains a number of function definitions, each comprising an ex

pression definition and a type definition. If the language supports type inference, the

type definition may be optional. In an interpreted system, the user can choose to evalu

ate an arbitrary expression which may include applications of any of these functions; in

a compiled system, one of these functions (normally called m ain) is chosen by the com

piler as the primary expression to be evaluated. In both cases, the remaining functions

provide the environment in which the primary expression is evaluated.

Further Terms:

• Referential transparency is the property ascribed to an expression if its evaluation

always returns the same value, regardless of when it is evaluated, or how many

times it is evaluated, and regardless of what may have been evaluated in the past

or may be evaluated in the future.

• Polymorphism allows type expressions to include variable names which can be

dynamically bound to any concrete type. A polymorphic function is one which

contains a polymorphic type variable in its type definition.

• Higher-order functions either take a function as (or as part of) one of their argu

ments or return a function as (or as part of) their result. A value that is passed as

a parameter to a function is said to be a higher-order value if it is a function.

• Currying permits greater flexibility in the passing of arguments to functions. A

function of more than one argument may be defined as either: (i) a single mapping

from a tuple of all the input arguments to the result value, or as (ii) a sequence of

mappings between the separate input arguments and the result value. The latter

style is known as Currying and effectively defines a number of anonymous inter

mediate functions in addition to the named function. A function that is defined

using Currying is also known as a curried function.

• Partial applications permit greater flexibility in the application of functions to

arguments. A function that is defined in a curried style may be partially applied:

2.2. Related Work 17

that is, it may be applied just to its first argument, or its first two arguments, and

so on including application to all of its arguments (in which case it is said to be

fully applied). When a curried function is applied to its first argument, the result

is another (anonymous) function which is waiting to be applied to the remain

ing arguments. The result can be bound to a name, thereby supporting function

specialisations.

• Laziness is an evaluation strategy adopted by many modern functional lan

guages. There are two general mechanisms for evaluating functional languages:

(i) applicative-order evaluation (where arguments to functions are evaluated be

fore the function is executed — this corresponds to call-by-value parameter pass

ing), and (ii) normal-order evaluation (where arguments to functions are only

evaluated if and when they are needed by the function — this corresponds to call-

by-name parameter passing). If the function body contains multiple copies of an

argument name, normal-order evaluation runs the risk of multiple evaluation of

the same term (which is inefficient); thus, an implementation technique is used

which ensures that arguments are evaluated “at most once”. This implementation

technique is called lazy evaluation — in practice, it also extends to include the

lazy evaluation of data constructors, so that quasi-infinite data structures can be

supported.

2.2 Related Work

Related work encompasses OOFP languages and the formalisation of OOP (such as a

A-calculus of objects [FHM94] and an object calculus [AC96] — the reader is referred

to [CW85] for foundational work in this area). In this section, we present an overview

of the relevant work in these areas.

2.2.1 Related Work on Object-Oriented Functional Programming

Since at least the early 1980s there has been considerable interest in the formalisation

of OOP, most notable being attempts to integrate OOP and FP.

2.2. Related Work 18

1980-1989

Early work such as Flavors [Can82, M0086] and CommonLOOPS [BKK+86] involved

the extension of LISP [BB64] with object-oriented features. This work culminated in

CLOS [BDG+88], a set of tools for developing object-oriented programs in Common

LISP [Ste84]. Significant claims have been made [BGW91] that CLOS combines both

OOP and FP as it supports the OOP features of classes, inheritance and method despatch,

together with the FP features of Common LISP. However, because it is based on LISP

(like Flavors and CommonLOOPS), it is not referentially transparent and therefore fails

to satisfy one of the criteria stated in the hypothesis.

1990-1992

In the early 1990s, interest in OOP/FP integration increased, with several newly de

veloped languages. However, five of these languages (Leda [Bud95], Quest [CL91],

Rapide [MMM91], UFO [Sar93] and 0 2FDL [MCB90]) are not referentially transpar

ent, FOOPS [Soc93] has no higher-order programming facilities, LIFE [AP93] only

supports a simulation of FP, and G [HL91] and HOP [DV96] do not support full OOP.

Kea [MHH91], Leda, Rapide, UFO, 0 2FDL, G and HOP are briefly outlined below:

• Kea is a higher-order, polymorphic, lazy functional language supporting multi

methods and a type inference system. Unlike Smalltalk [GR83], Kea does not

enforce certain aspects of OO encapsulation. In particular, Kea functions do not

have to be associated with classes according to a distinguished object. Further

more, Kea’s notion of polymorphism only admits the single type variable Any,

and [MHH91] states that Kea “is currently being extended to include higher-order

and (implicitly) polymorphic functions”, which implies that it does not have these

features.

• Leda is an experimental language that provides an environment for multiparadigm

programming. It claims to integrate imperative, functional, object-oriented and

logic programming through one common language. However, this claim is too

strong (for example, Leda makes no distinction between functions and procedures

— [Bud95] advises that “those wishing to remain pure in the functional program

ming paradigm must simply employ discipline to avoid those language features

2.2. Related Work 19

that are at odds with this technique”). Such a discipline requires the avoidance of

many OOP features and Leda should, therefore, be viewed as providing either FP

or OOP, but not integrating both simultaneously.

Rapide extends Standard ML (SML) [MTH90] with subtyping and inheritance.

Objects are modelled as structures, and SML is extended so that structures may

be passed to and from functions. Unfortunately, Rapide retains SML’s lack of ref

erential transparency and, indeed, relies on it.

United Functions and Objects (UFO) is an implicitly-parallel language that “at

tempts to bring [the functional and object-oriented] worlds together in a harmo

nious fashion” [Sar93]. A functional subset of UFO provides OOP features such

as classes and inheritance, but referential transparency is lost once any of the lan

guage’s stateful features (stateful classes, instance variables, etc.) are used. It is

interesting to note that even the functional subset is not lazy, on the grounds that

it “conflicts with dynamic binding”.

0 2FDL is an interactive database programming language that combines inheri

tance and encapsulation from OOP with an equational programming style and

strong typing from FP. Although [MCB90] provides a denotational semantics

based on an extended A-calculus, referential transparency is preserved only within

a given database state, not across the database lifetime.

G is a language framework that aims to integrate algebraic, functional and

object-oriented programming. The language design is closely related to Rapide

[MMM91], but requires the programmer to define explicit conversion functions

between types. G therefore lacks a key OOP feature of implicit subtyping.

HOP is a functional language with object-oriented features incorporating dynamic

binding and subtyping; it is also referentially transparent and lazy. Based on an

extension of the A-calculus called label-selective X-calculus (also known as the

AN-calculus) [AG93], HOP is an experimental language for testing the provision

of OO features within FP. However, there is as yet no clear notion of “object” and

2.2. Related Work 20

no explanation of how dynamic despatch, inheritance, subsumption, overloading

and overriding would be implemented.

1993-1995

In this period there were a number of notable attempts at integration, plus extensions

of previous systems. OBJ [GWM+93] is a functional language that supports multiple

inheritance, exception handling and overloading but has no higher-order programming

facilities. ST&T [DK94] is an extension of Smalltalk’s type system bringing it closer to

ML, though the result is first-order, strict, and still not referentially transparent. Uflow

[SKA94] is an extension to UFO using a data-flow model for visualising execution, but

is still not referentially transparent. Oz [MMR95] is a multiparadigm language which

aims to encompass logical, functional and object-oriented styles; however, its use of

“mutable binding of a name to a variable” results in referential transparency being main

tained only “inside the objects”, not across objects nor the language in general. Finally,

Caml Special Light [Ler95] (later re-named Objective Caml) laid the foundations for

Objective ML (see next subsection), but unfortunately these foundations are not refer

entially transparent.

1996-1998

The past three years have witnessed an intensifying of interest in the field with sev

eral new languages being established, including our language CLOVER. Objective ML

[RV97] is implemented on top of Caml Special Light and is an extension of ML with

objects, top-level classes, multiple inheritance, methods returning s e l f , binary meth

ods and parametric classes. Object ML [RR96] extends ML with objects, subtyping

and heterogeneous collections. CLAIRE [CL96] is a high-level functional and object-

oriented language with advanced rule processing capabilities. Object-Gofer [AS97]

extends Gofer [Jon94] with classes, subtyping, inheritance and late binding, although it

omits subsumption and so requires explicit type coercions to achieve subtyping. OOId

[CSK+97] extends Id [NA92] with classes, inheritance and dynamic binding, but loses

referential transparency with its addition of stateful objects. FOC [QM97] models a

combination of concepts from OOP and FP, although it omits key features (such as over

loading), is not purely object-oriented (global functions are permitted), requires explicit

2.2. Related Work 21

casting operators and, importantly, does not consider the effects of assignment and state.

Bla [Oor96] claims to unite functional and object-oriented programming through first

class environments [GJL87]. However, none of these languages except CLOVER is ref

erentially transparent.

ML< [BM97] is a decidable type system for higher-order object-oriented lan

guages. It takes a polymorphic multi-methods approach (rather than the “standard”

view of objects as extensible records with single-despatch methods) and can be applied

directly only to multi-methods languages such as CLOS.

2.2.2 Related Work on Visual Programming

The functional paradigm is often chosen as the underlying computational model for VP

because its simple semantics can be realised elegantly in standard data-flow notation.

Examples of visual functional languages include:

• HI-VISUAL [MYH+84] is a visual data-flow programming language with an in

teractive iconic programming environment;

• viz [Hol90] is an active data-flow visual language based on the A-calculus;

• VPL [LBF+91] is a demand-driven higher-order data-flow visual programming

language for interactive image processing;

• Cantana [RW91] is a data-driven data-flow visual language component of Khoros

(a general-purpose programming language);

• VISAVIS [PVM95] is a purely functional higher-order visual programming lan

guage based on the Formal FP (FFP) model [Bac78].

None of these languages, however, offer the object-oriented features we require.

The object-oriented paradigm doesn’t lend itself as naturally to VP, partly because

of the extra complexity that object-oriented features introduce and partly because of the

tendency of object diagrams (with nodes containing mutable state) to result in compli

cated designs. There is a large number of visual object-oriented languages ranging from

CASE tools to domain-specific languages; a well-known example is the general-purpose

language Prograph [SPL89]. However, as they do not claim to be functional (i.e. they

are not referentially transparent), they are not discussed in this section.

2.2. Related Work 22

2.2.3 Summary of Related Work

It seems that, despite considerable attention from the research community, it has been

impossible to combine object-oriented features such as inheritance, subsumption and

dynamic method despatch with functional features such as referential transparency,

higher-order functions, Currying, partial applications and lazy evaluation, into a sin

gle, completely type-safe, language. The closest attempts so far are Kea, Rapide, HOP,

LIFE, Objective ML and Object ML. Furthermore, there are no visual languages which

combine these functional and object-oriented features.

Chapter 3

The Design of CLOVER: An OOFP

Language

In this chapter, we present the new object-oriented functional language CLOVER, its

design features and syntax. In addition, we present CLOVER’S type system, abstract

expression semantics and also address referential transparency.

3.1 Design Issues
The most stringent criterion that we can devise for an object-oriented functional lan

guage is that it must be purely functional — that is, it must be referentially transparent

with no side effects — for without this property most of the formal-methods advantages

of the functional paradigm are lost (e.g. most static analysis and program manipulation

techniques for FP languages assume referential transparency). As discussed in Chap

ter 2, attempts to create OOFP languages typically abandon referential transparency,

despite its fundamental importance being emphasised repeatedly in the FP literature

(e.g. “this property [referential transparency] is the hallmark of a functional language,

and that under no circumstances should it be abandoned” [Sto85]).

Thus, our view is one of extending FP towards OOP rather than the other way

around. Note that this requires us immediately to discard imperative notions of

multiple assignment (see Chapter 5). We make two more design decisions at the outset:

1. We discard any notion of multiple inheritance because it complicates the seman

tics of OOP considerably (e.g. resolving attribute and method naming conflicts

and upwards type coercion). If necessary, similar behaviour can be achieved us

3.1. Design Issues 24

ing explicit object delegation.

2. We choose dynamic despatch based on a single distinguished object to avoid the

complexities of the multi-methods approach and to increase encapsulation.

In the remainder of this section we present five design issues which illustrate why the

integration of OOP and FP is such a difficult task. Note that these issues are purely

examples and are not a comprehensive analysis.

3.1.1 T^pe Safety versus Dynamic Despatch

A key feature of OO languages is dynamic typing (resolving the type of an object at

run-time). In particular, subtyping permits conditional statements to return different

subtypes of the declared return type. Thus, in general, it is not possible to resolve

method despatch statically for dynamically-typed objects.

With dynamic method despatch, a run-time check is made on the actual type of

the object receiving a message; the ambiguities arising from inheritance and method

overriding are then resolved and the appropriate code is executed.

Many OO languages assume and accept that this implies type errors may occur at

run-time. Having realised that this is undesirable, some OO language designers have

created what they claim to be “type safe” OO languages: Eiffel [Mey91], for example,

makes this claim. However, Eiffel actually provides an assignment attempt operator

which handles run-time type errors in a controlled manner by assigning a v o id value;

it is assumed that the programmer will always check for the possibility of a v o id value

and take appropriate action. This is not what functional programmers think of as “type

safe”! The FP world requires complete type safety, where the type system guarantees

that it is impossible for a type error to occur at run-time.

Dynamic types thus appear to compromise type safety, though recent work using

run-time type checking [AWL94, AF95, AM90] partially extenuates the problem;

however, a problem remains that default actions may be specified for situations where

the requested method is not defined for the run-time type of the object.

3.1. Design Issues 25

3.1.2 Type Safety versus Overloading and Partial Applications

Overloading is a common feature of 0 0 languages, allowing different definitions for the

same method name. These overloadings can be distinguished by the types of the mes

sage arguments and return value: each overloading must have a unique type signature.

Overloading is certainly a desirable feature that we would wish to incorporate since it

allows, for example, multiple ways to set a date:

d a t e (7 , " A u g u s t " , 1996)

d a t e (7 , 8 , 1 9 9 6)

In the above example, the two overloaded versions of d a t e take the same number of

arguments. However, it is also important to support overloading with different numbers

of arguments, for example:

t im e (1 2 , 0 , 0)

t im e (" n o o n ")

We wish to support full overloading: that is, overloaded methods able to vary both in

the type and number of arguments declared.

Unfortunately, it would appear to be impossible to combine dynamic despatch with

curried partial applications and full overloading. With full overloading, the number of

arguments in different overloadings may vary. With partial applications, a method may

be applied to only some of its arguments. If the partial application uses the curried style

(rather than, for example, a tuple with dummy values for the missing arguments), then

there are ambiguities which are impossible to resolve at run-time. For example, given

the following overloaded definitions (using the 24-hour and the 12-hour clock):

t im e (a : i n t) (b : i n t) (c : i n t)

t im e (a : i n t) (b : i n t) (c : i n t) (d : s t r i n g)

then is the application t im e 6 0 0 a full application of the first overloading (mean

ing 6 am) or a partial application of the second overloading (which could eventually be

6 am or 6 pm)? If this cannot be resolved at run-time, then we must require all types to

be known at compile-time so that overloaded functions can be resolved statically and

complete type safety can be guaranteed. However, we have already established that

dynamic typing implies we cannot know all actual types at compile-time.

3.1. Design Issues 26

3.1.3 Curried and Partially-Applied Methods

Currying, higher-order functions and partial applications are key features of the func

tional programming style, yet are absent from OOP. This is not unreasonable, since OO

programmers normally perceive messages to be indivisible and it is not clear what a par

tially applied message would mean. For example, if the method f takes distinguished

object o and normally takes three arguments a, b and c, then what does the message

f a b denote? Can it be given a name? What does it mean operationally? Can it be

sent as it is to the object o or must it be delayed until the final argument is ready? If it is

sent to the object, what does the object do with it? Must it store it and wait for the final

argument to arrive? The denotational and operational semantics of partial applications

have not been fully addressed in the OO world.

Furthermore, as we have already seen, it is difficult to reconcile curried partial ap

plications with dynamic despatch and full overloading.

3.1.4 Subtyping

Subtyping is central to OOP but absent from current “production” FP languages.

Haskell [PHA+97] has at various times been the subject of claims that its type classes

mechanism [WB89] facilitates OO programming [Ber92]; this has promulgated the

mistaken assumption that Haskell’s type classes provide subtyping. Unfortunately type

classes do not provide the subtype relationship that we require; rather, they support a

structured form of overloading.

If we are to support dynamic despatch, then the run-time method despatcher must

accept an argument of many different types (the method’s distinguished object); this

requires either subtyping or flattening the entire type system into what is essentially

a monotyped language. Similarly, subsumption requires subtyping to be applied to

method arguments.

FP languages rely on advanced polymorphic type inference to ensure type correct

ness. The type systems of most FP languages are based on the Hindley/Milner algorithm

[DM82] which does not admit subtypes. A notable exception is Mitchell’s extension to

the SML type system to admit inclusion polymorphism through subtyping [MMM91].

Subtyping in HOP [DV96] claims to be based largely on Mitchell’s work (using recur

sive type constraints).

3.2. CLOVER 27

Whereas polymorphic type inference used to be considered undecidable for

inclusion types, recent work [BM96] has demonstrated that decidable systems can be

implemented.

3.1.5 Lazy Evaluation versus Discrete Messages and State Update

We wish to retain the powerful FP feature of lazy evaluation, yet this does not seem to

have a natural meaning within the message-passing view of OOP. For example:

1. Multiple assignment semantics require strict state update;

2. State update is driven by the arrival of a message (data-driven);

3. Messages are discrete, finite and pre-evaluated;

4. Sending a message is an atomic action.

The above views seem to preclude the incorporation of any notion of lazy evaluation

into OOP. However, we will show in the next section that it is in fact possible to employ

lazy evaluation in a language that supports object-oriented features.

3.2 CLOVER
We now present the design for a higher-order, lazy, object-oriented, completely type-

safe functional language; we call this language CLOVER. CLOVER provides:

1. a new design for completely type safe dynamic method despatch and

overloading;1

2. a new object-oriented semantics for partially applied messages and higher-order

functions;

3. a new design for full overloading of methods in the presence of curried partial

applications and dynamic despatch;

4. a new programming notation and semantics for object state, object identity and

object-oriented lazy evaluation.

^ o te that Eiffel claims type-safe dynamic despatch but at the cost of losing overloading, whereas

Haskell has overloading but not dynamic despatch.

3.2. CLOVER 28

CLOVER is intended to be used for application development, not low-level systems

programming. We support programming at the specification level, much as functional

languages can be used to write executable specifications [Tur85a].

CLOVER supports the traditional OOP features of a class hierarchy, subtyp

ing, subsumption, inheritance, method overloading, method overriding and dynamic

despatch. It also incorporates the FP features of referential transparency, single

assignment attributes, polymorphism, curried partial applications, higher-order func

tions and lazy evaluation. Methods are defined as expressions — they are pure functions

with no side effects.

The language is completely type safe, there are no pointers and memory allocation

is automatic; thus, CLOVER is a secure language which could be used, for example, to

produce totally secure applets for the World-Wide Web. However, a secure CLOVER

run-time system as a browser plug-in is left for future work!

In our prototype, a lazy functional programming language is used as an interme

diate language: CLOVER code is first type-checked using a bespoke type-checker (see

Appendix A) and then translated into a standard functional language. This allows the

use of a standard compiler for final code generation.

3.2.1 Design Features

The key to CLOVER’S successful support of both OOP and FP is in the careful integra

tion of a number of different design criteria. Since there are so many design parameters

(subtyping, subsumption, inheritance, overloading, overriding, genericity, partial appli

cations, Currying, laziness, etc.), the design space is extremely large and our goal has

proven to be remarkably elusive. However, as is so often the case, the solution appears

quite natural in retrospect.

The key design criteria are all related to type safety, including bounded universal

quantification, monotonic inheritance, and shallow subtyping. Furthermore, in order to

deal with curried partial applications, we enforce an unusual ordering constraint on the

implementation of message application. Finally, we support an object-oriented view of

lazy evaluation through the use of a new visual notation (see Chapter 5); thus, CLOVER

is a visual object-oriented functional language.

3.2. CLOVER 29

Bounded universal quantification:

It is clear that dynamic typing is incompatible with knowledge of actual types at compile

time, yet we require a language which has dynamic typing and is also completely type

safe.

The first step to solving this apparent conflict is to ensure that upper bounds on

types are always known statically. This allows dynamic typing (in that the actual type

of an expression can be any subtype of the known upper bound), whilst ensuring that

all type errors (in terms of the upper bounds) can be detected at compile time. We cur

rently require the programmer to give explicit upper bound types in all method type sig

natures and for all method arguments, though in future we hope to implement a subtype

inference system. Inclusion polymorphism is thus implemented as bounded universal

quantification [CW85].

Monotonic inheritance:

For completely safe method despatch, statically resolvable upper bounds are only part

of the solution. When a message is passed to an object, the required method must also

actually be defined for that object. The static knowledge of the upperbound type of the

object must therefore be coupled with the restriction that inheritance be monotonic; that

is, if a method or attribute exists for a given class then it will also exist (with identical

type signature) for all of its subclasses.

Shallow subtyping:

In order to achieve complete type safety, it is essential that full method overloading can

be resolved statically. Since only upper bound types are available at compile-time, we

must therefore restrict CLOVER to shallow subtyping— that is, an inherited or reimple

mented method must have the same type as its ancestor. We provide full method over

loading (with different types and numbers of arguments) but insist that all overloadings

are declared in the class where the method name is first defined. Thus, if an overloaded

method application is valid for a given type then it will be valid for all subtypes.

Implementation of message application:

A message application to an object is often written a s o . f (a , b , c) . The traditional

way to implement this is as the function call f (o , a , b , c).

3.2. CLOVER 30

For CLOVER, we wish to support curried partial applications and so it would

seem that the above application could naturally be implemented as f o a b c. How

ever, this causes problems for partial applications of messages. As previously dis

cussed, there is a problem with the semantics of partial applications in an object-oriented

context. Considering the above implementation technique, what would f o a mean,

both denotationally and operationally?

We define a partially-applied, message as a method that has not yet been applied to

all its arguments and that has not yet been applied to its distinguished object. We allow

a partial application to be named, to be passed as an argument to a method, and to be

returned as a result from a method. However, only a fully-applied message can be sent

to a distinguished object.

To implement these semantics precisely, we adopt the unusual procedure of placing

the distinguished object as the last in the sequence of curried arguments: f a b c o.

Laziness:

The key to the incorporation of laziness in CLOVER is our new concept of object

identity, as explained in Chapter 5.

3.2.2 Language Overview

A CLOVER program consists of three components:

1. an invocation (an expression);

2. a class hierarchy (a tree with at least one class);

3. for each class, an unordered set of attribute declarations and method definitions.

The class hierarchy is single-rooted with single monotonic inheritance for the defini

tion of new classes as extensions of existing classes; thus, there is no sharing in the

class hierarchy, and inherited attributes and methods cannot be discarded. As in the

Smalltalk tradition, everything is either an object or a message — thus, the class hi

erarchy contains class definitions for even the most primitive types such as integer and

character. A fully-applied message is a method applied to all of its arguments except

the distinguished object; the distinguished object is always the last argument. Messages

may be specialised through partial application. Arguments to methods and results from

3.2. CLOVER 31

methods may be objects or messages (including partial messages). Thus, CLOVER is

higher-order, treating messages as first-class citizens.

The class hierarchy represents the subtype structure (see Section 3.3.1). Subclasses

may inherit methods and attributes through shallow subtyping only — that is, an in

herited or reimplemented method must have the same type as its ancestor. Overloaded

method declaration is allowed, but only in the greatest superclass where the method is

first defined; thereafter, the separate overloaded instances may be inherited and reimple

mented through shallow subtyping as described above. Thus, CLOVER supports both

overloading and overriding.

Each class is a subtype of its parent and subsumption allows a formal method

parameter of type a to be bound to an actual parameter of type r as long as t is a

subtype of a (and using the contravariant rule to establish subtypes of higher-order

arguments). Method overloading is resolved at compile-time, whereas method

overriding is resolved at run-time by dynamic despatch on the type of the distinguished

object (if the distinguished object’s class does not define or override the method,

the despatcher (conceptually) searches up the inheritance hierarchy to find the least

superclass which has a definition for the method — note that this cannot fail at

run-time). CLOVER provides completely type-safe subsumption and dynamic despatch

using bounded universal quantification of type names.

3.2.3 Language Primitives

CLOVER’s strict adherence to treating everything uniformly as either an object or a

message extends to all language primitives. Thus, primitive values of function type

(such as + and =) are wrapped within appropriate CLOVER methods (such as Add

and A re E q u a l) . Additionally, primitive values of non-function type (such as T ru e ,

' x ' and 54) are wrapped within appropriate CLOVER classes (such as B o o le a n ,

C h a r a c t e r and Number). These classes can then be subclassed and extended (for

example, to create B oundedN um ber or C om plexN um ber) and their methods, such

as Add, can be reused or overridden.

3.3. Type System 32

3.2.4 Abstract Expression Syntax

The following abstract syntax for an expression is based on the typed A-calculus

(extended with let and case constructs) and with objects as constants:

In the above syntax, a denotes a type. Methods, bound variables and object attributes are

the implementation. A-abstractions are only used at the top level of a method binding.

Support is provided for bindings with local scope using let. However, these

bindings may only be local constant applicative forms [Pey87]; that is, they may not

be parameterised A-abstractions but they may be any other expression which returns

either an object or a (partial) message. The restriction which outlaws the A-abstraction

in let bindings prevents the undesirable creation of new methods as local definitions,

since all methods should formally be specified as part of a class interface.

The typechecker’s (static) overloading resolution and the implementation of (dy

namic) method despatch are illustrated in the abstract expression semantics (see later).

In this section we briefly sketch the design of the CLOVER type system. Our proto

type currently supports simple type checking rather than full type inference (see Ap

pendix A). For an introduction and review of types in object-oriented programming, see

[FM95],

value :: x*1 . . . x ann

I Xxax . eae

n > 0 (object constructor)

(■curried method defin it ion)

(built — in method)

(immedia te data)l i teral°

expr :: value

I ea ~̂̂ a'2 x°x

(value)

<*x Si (curried application ,

S is def ined in Section 3.3.3)

(name)

let (xi = e\ x) . . . (xn = e£n) in eae n > 0 (local defin it ion)

j = 1 . . . m , m > 0, nj > 0 Vj

referenced through identifiers (“x”) and key primitive methods are built-in to facilitate

3.3 Type System

3.3. Type System 33

3.3.1 T^pe Syntax

A type is either an object, a message (which has function type), a bracketed message

or a primitive (which is required within class definitions for primitive types). The

explicit bracketing is necessary to denote a function type being returned from a method

— this facilitates identification of the distinguished object (the last argument to a

method). Each class has a distinct type constructor name k (we define a one-to-one

correspondence between the class name and the type constructor name). Thus, the

syntax for types in CLOVER is given by:

r :: k

I ti —y r2 I (r i —> t2)

I 'boo l' | 'ch a r ' | 'num'

3.3.2 Overview of T^pe Semantics

We define an object’s type as the set of the names and types of all its attributes and

methods:

TQk;]] = { x z} U { rrii} ,Xi £ A t t r i b u t e s ^) , rrii £ M e t h o d s (k)

T \ ct\ —»• <72] = T[<7i] —y T [<t2]

T[(<7i —y < j 2) J = (T[criJ — ► 7 ” | o ’2 J)

3.3.3 Subtyping

Although we would rather have the intermediate FP language compiler do the type

checking, our preferred languages (Miranda [Tur85] and Haskell [PHA+97]) do not yet

provide subtyping and are therefore unable to check inclusion polymorphism. We there

fore currently implement a simple subtype matching algorithm (see Appendix A).

We take a traditional set-theoretic view of the class system [Car88]: class types are

sets of attributes and methods, with subclassing equivalent to subtyping. Subtypes are

ordered inversely by set-inclusion over the above semantic domain.

3.3. Type System 34

We define the subtype relation operator X as follows:

«i «2 iff T[[«2]] c T[[«i]]

(7 i (72 ^ Ti -> r2 iff (ri ^ <7i) A (cr2 ^ r2)

(<7i or2) ^ (ri —>• r2) iff (ti ^ (7i) A (cr2 ^ r 2)

«* 2̂ n 2̂

«* 2̂ (n -> t-2)

(72 2̂<7-1

(<7i cr2) ^ Ki

(a i —>■ cr2) 2̂ r i r 2

<Ji —>■ cr2 ^ (ti —» r2)

3.3.4 Overloading

A method may be defined at many different types, where the types are completely unre

lated. However, we require each overloaded definition to have a unique type signature

that is statically-resolvable from the other overloaded definitions. Thus, given two over

loaded method definitions of type <j\ —> crdist -> 02 and t\ -* crdist —y r2 (where crdist

is the type of the distinguished object), we require that either (<ti n) A (ti <ti)

or (<72 2̂ t-2) A (r2 2̂ 02)* This generalises to multiple arguments and overloadings

with different numbers of arguments. Note that this style of overloading permits some

covariant specialisation.

3.3.5 Polymorphism

Polymorphism is supported in CLOVER through bounded universal quantification

[CW85] which provides both inclusion and parametric polymorphism without the need

for type variables (which are replaced by subtype constraints). Our prototype does not

yet support recursive types, though they are an essential element of CLOVER.

3.3. Type System 35

Our type matcher (see Appendix A) checks declared return types against declared

argument types, for every application, to ensure that the subset relationship holds. We

do not attempt type inference; type inference for inclusion polymorphism has long been

considered problematic and, though we are encouraged by recent work [AW93, BM96],

dynamic despatch causes problems for CLOVER type inference.

In this section, we provide a set of typing rules for the CLOVER type system.

We use x : a to denote an assumption (an association of type a with variable x),

T b x : a to mean “from the set of assumptions V we can deduce that x has type a ”,

not already contain a typing for x% and y to mean “from X we can infer V ”. Note that

the Let rule does not handle recursive functions — this is left for further work.

3.3.6 Taping Rules

r U {x : cr} to denote the set of assumptions formed by adding x : cr to T (which does

r \ j { x : a } h x : a [Var]

T U { l i teral : cr} h l i teral : cr [Lit]

[Builtin]

T \~ C <7i — y crn —)■ cr f h (x\ : t~i) . . . (xn : Tn
T h (C X\ . . . x n) : cr

Ti X <ji [C on s tr]

[App]

T U { x : a } \ ~ e : r
T h (Xx.e) <7 —y r

[Abstr]

r U {xj : 0-j} h e : cr V h e, : r t- , Ti ^ (7j-, 1 < i < n [Let]
T h (let (z i = e i) . . . (xn = en) in e) : cr

r h e : cr Tj l~ (C Xjx ■.. Xjn) : aj Tj h ej : ctj
r, Ti, Tj h (case e o f (Ck x kl . . . Xknk ek)) : <rk

, 1 < i < k < j < 2k [Case]

3.3. Type System 36

3.3.7 Type Safety

We distinguish between languages that check types at compile-time and those that check

type tags at runtime. CLOVER checks all types at compile-time and catches all type

errors statically, yet still supports dynamic despatch. Thus, no type errors can occur at

run-time — this is our definition of type safety. However, our system does not, of course,

catch all possible errors (e.g. division by zero and non-termination).

In particular, we contend that our system will never send a message to an object

that does not have a corresponding method implementation for that message. Briefly,

this property can be argued for CLOVER as follows:

• if a method exists for a class, it is defined to exist for all subclasses (due to the

property of monotonic inheritance introduced previously);

• an object supports exactly those methods that are defined for its class;

• each method application is statically type-checked using the explicitly-annotated

upper bound types of the arguments and the distinguished object;

• if the type-checker proves the existence of the method for the upper bound type of

the distinguished object, and if at runtime the distinguished object must be either

of that upper bound type or of a subclass, then the method must exist for the actual

object present at runtime.

Proofs of soundness and completeness are of course required for the CLOVER type sys

tem in order to demonstrate the type safety of all CLOVER language constructs, in

cluding message sending, object construction and application of language primitives.

In particular, we will require a subject reduction theorem (e.g. see [Mil78]) to demon

strate that types are preserved under computations. However, such proofs are beyond

the scope of this thesis and are therefore left for future work.

3.4. Concrete Syntax 37

3.4 Concrete Syntax
The complete concrete syntax for CLOVER is specified below. This includes constructs

for defining a hierarchy with classes containing attributes and methods, constructors,

type declarations and all language keywords.

Program ::= Node Invocation

Invocation : : = 'invocation' Expression

Node ::= Class Subclasses

Class 'c lass' Identif ier Attributes Methods

Attributes 'a ttr ib u tes' '{7 Attribute* '};

Attribute Identif ier Typing

Methods 'methods' '{' Method* '}/

Method Identif ier Typing '{ ; MethodDef

MethodDef ::= Identif ier+ '= ' Expression

Subclasses 'subclasses' '{ ' Node* '}'

Expression Identif ier Typing

Expression Expression Typing

' (Expression ') ' Typing

'le t ' '{' Binding* 'in' Expression Typing

'new' Identif ier Constrs Typing

Literal Typing

Binding ::= Identif ier '= ' Expression ';'

Constrs '()r | ' (ConstrArgs ')'

ConstrArgs ::= Expression | Expression ';' ConstrArgs

Literal ::= 'True' I 'False' I CHARACTER I NUMBER

Typing

Type

:= Type

:= Identif ier

| Type ' - > ' Type

| '(' Type ' - > ' Type ')'

3.5. Abstract Expression Semantics 38

3.5 Abstract Expression Semantics
In this section, we provide a full definition of CLOVER’S abstract expression

semantics. This includes the key issues of subsumption, (static) overloading

resolution and (dynamic) method despatch. Note that the complete translation of

CLOVER into a standard functional language is defined in Chapter 4. We use the

semantic functions £ and /C to map from syntactic to semantic domains:

£ :: Expressions —> Environments —> Semantic Values

)C :: Constants —> Semantic Values

K is pre-loaded with the semantic definitions of the primitive methods, literals and

constructors. Similarly, the syntactic definitions of the user-defined methods are

pre-loaded into the syntactic function select:

select :: Expressions —> Methods —» Expressions

In the following equations, (select e°e dynamically

despatches (returns the lambda abstraction associated with) method m from class a e

at overloaded type aXl -» aX2 —» aXn —>• k . In essence, the equation containing

select illustrates how the last argument of a method application is given special status

as the distinguished object and the method definition is determined by reference to the

type of that distinguished object. Note that the special bracketing syntax for types is

required so that we may detect the distinguished object for a method which returns a

message. Also, subtype constraints are checked statically based on upper bound types.

Whereas the method definitions are pre-loaded statically into the semantic function

/C and the syntactic function select, the binding of variable names to values is achieved

dynamically with the environment p; this environment maps names to syntactic values.

For convenience, syntactic and semantic names are drawn from the same set of

identifiers. The environment uses push-semantics and is passed by value into a local

context; thus, on return from the local context, the previous version of the environment

is available and so nested definitions are permitted. When the environment is searched,

a LIFO search is used for the first occurrence of a binding for the given name (thereby

avoiding any conflicting semantics).

3.5. Abstract Expression Semantics 39

S \ C ° ^ x l 1 . . . p = (1C \C ° ^ ex . . . en

where e t = S [xf'J p

S l * t \ p = £ [* ? !

S \ l i te ra la\ p = K [ili terala]

5 [xa] p = S { p { x a)}

S ^rn<Txi ^ <7x'2~*"'^>'(Txn̂ 'T e[ei e ^ 2 . . . e^en]] p

= £ e ^ 1 e^ 2 . . . e£e"] p,

n > 1, r = (« or (a-! —>■ <r2))

where (Xx . e) = select eanen m ax^ <Jx̂ - ^ CJxn̂ "r

S [(Ax . e Y x^ ax^ ^ ' " ^ axn~̂ T e[ei e ^ 2 . . . e£en] p

= S [e<7*2-)-----)‘cr*n->-T e^62 . . . e£eri] ^(x := ei),

n > 1, (7ei r< <Txi •> (k or (<Ti <72))

£ [m <T,_K"_*°r"-,,T] p = Axi . . . x n . (£ [m CTl_K"_^ n_*'r x i . . . x j p),

n > 1, r = (k or (<7X —»■ cry))

£ [(Aar.e)'71̂ 2] p = Ax . (£ [e*2]/?)

£ [eai“^ 2 xCTl] p = (£ [e'71̂ 2]] />) (5 [xa*] p), a x < o x

5 [/e*(x i = e l1) . . . (x„ = < n) in eae] p = £ [e*6] p(xi := e*1, . . . , xn := ej")

£ \case ea o f (C f1 x jj1 .. a \n j
• ®im PCTl •el >

(^a3 aJnj
• x;n; ->■

(J ,e • ■cj »
pom "ml ••• < ," T -+ O I p

=

where ^ — C j3 ej}1
a]Tl.e ■jnj

''c£II ~ ej 1 J • ■ •

Cl # C ; , . . . , C ,-i ^ c ,

3.6. Referential Transparency 40

3.6 Referential Transparency
The term “referential transparency” was first used in [WR13] to describe an aspect of

syllogistic logic when only the content of a statement is required, not its circumstances.

The term was subsequently introduced into computing in [Lan64] and has become an

important property of functional languages.

We adopt the following definition, taken from [Dil88], where a language is

referentially transparent if it satisfies the following two conditions:

• Different occurrences of the same expression in a single scope have the same

meaning;

• Two different expressions which have the same meaning anywhere in a single

scope have the same meaning throughout that scope and, hence, can be

substituted for each other anywhere in that scope.

We argue informally about CLOVER’S property of referential transparency by referring

to the abstract expression semantics in the previous section. The above concept of a

“single scope” is defined for our purposes as a constant value for the environment p.

Values of base-case expressions are computed by applying either: (i) the semantic

function 1C (to literals or primitives), or (ii) the semantic function S (to variables and the

environment p). In the former case, 1C is pre-loaded with bindings that never change,

whereas in the latter case selection of a binding from the environment is achieved using

a LIFO search and therefore, for a given environment and name, will always return the

same value. Furthermore, the environment p is only modified as the result of a let or A

expression, and in these two situations the environment is extended.', existing bindings

in the environment are not modified.

Some care must be taken with the operation of the select function, which deter

mines the value of a method name for a fully-saturated application. It suffices to note

that select always returns the same result when passed the same arguments.

A formal proof of referential transparency for CLOVER (proceeding via structural

induction on the full program semantics) is beyond the scope of this thesis and is there

fore left for future work. However, the preceding informal argument (coupled with the

abstract expression semantics) provides strong support for our contention that CLOVER

is referentially transparent.

3.7. Summary 41

3.7 Summary
In this chapter, we have presented a new language CLOVER, its design features,

concrete and abstract syntax syntax, type system (including typing rules), abstract

expression semantics and addressed referential transparency. This language meets

almost all of our requirements by the careful integration of a number of different

design criteria. The remaining requirement, object identity, represents a core

incompatibility that is resolved in Chapter 5 by supplying new interpretations using

a new visual notation.

Chapter 4

The Implementation of CLOVER: A

Translation from OOFP to FP

In this chapter, we present the key stages of an implementation of CLOVER as a set

of rewrite rules. Many implementation routes are possible, but we choose a functional

language as our target code. This permits the exploitation of automatic memory man

agement, lazy evaluation and Currying (all of which become available at zero imple

mentation cost). Furthermore, we can generate concise understandable code (which is

more important than execution speed for our prototype implementation).

In order to provide a focussed discussion, we ignore all issues related to type check

ing and assume that this has already been performed (see Appendix A for type checker).

We similarly assume that the straightforward translation from CLOVER’S visual nota

tion, Object-Flow, to a textual code has already been performed. The goal is to describe

the translation from an abstract form of this code, Abstract Program Code (APQo), into

an abstract form of a simple functional code, Target Code (TC). We give detailed al

gorithms, to provide a basis for others to explore and further develop these ideas. We

also provide the first demonstration of how to support completely type-safe dynamic

despatch in the presence of (partially-applied) higher-order methods.

4.1 Overview of the Transformation Rules
In this section, we present an overview of the CLOVER transformation rules and in

troduce our notations. A CLOVER program is transformed into a standard functional

program, then compiled and executed. We express the program transformation as a set

4.1. Overview o f the Transformation Rules 43

of high-level translations, as illustrated in Table 4.1 (the terms are expanded in Table

4.2 and explained fully in subsequent sections).

Table 4.1: Summary of Main CLOVER Translations

Translation Source Target Description

V Object-Flow APQo Parses visual language into abstract code

n APQo APQ Resolves overloaded methods

i APQ APC Expands inherited attributes and methods

T APC IDS Flattens and inverts program structure

Q IDS TC Generates target code

Table 4.2: Terms Used During Translations

Term Description

APQo

APC,

APC

IDS

TC

Abstract Program Code with Inheritance and Overloading

Abstract Program Code with Inheritance

Abstract Program Code

Intermediate Data Structure

Target Code

We define the translation T of Object-Flow into TC as the complete transformation,

composing the other translations as shown below:

Translation of Object-Flow into TC

I---1
T :: ProgramoF -+ Programrc

T[o f] = G o P o I o 7 Z o P [o f]

As discussed above, presentation of the first translation, V, is omitted from this

thesis. The second translation, 7Z, resolves method overloading by transforming APQo

into APQ. The third translation, X, expands inherited attributes and methods by

4.1. Overview o f the Transformation Rules 44

transforming A PQ into APC. The fourth translation, T , flattens and inverts the code

to create an intermediate data structure (that is more amenable to later functional code

generation) by transforming APC into IDS. Finally, the translation Q generates target

code in a simple abstract functional language.

4.1.1 Notation

We use two main notations within this chapter: one to define the abstract syntax of our

languages and data structures, and the other to define the transformation rules which

operate on them.

We define abstract syntax by induction on syntactic structure, using Extended-BNF

notation. We use to define syntactic categories, () for grouping, [] to indicate zero-

or-one, * to indicate zero-or-more, + to indicate one-or-more, | to separate alternatives

and ' ' for terminals.

We define transformation rules to manipulate syntactic categories directly. The

rules are higher-order and exploit curried notation, with rule names not italicised so that

curried rule applications, e.g. “(expAttrs ns a s ln h)”, can be differentiated from se

quences of syntactic categories, e.g. “(cld at t rs m s) ”. There is no special bracketing

notation for lists; instead, we define the following operators and rules for direct manip

ulation of syntactic categories.

Operators and transformation rules for list functionality

x © (y i ... yn)

(zi ... xn) ® (yi ... yn)

hd (xx ... xn)

tl (xi x2 ... xn)

map f ()

map f (x 0 xs)

concat ()

concat (x © xs)

(f x) © (map f xs)

o
x ® (concat xs)

mapconcat f xs = concat (map f xs)

4.2. Abstract Program Code (APC) 45

4.2 Abstract Program Code (APC)

We use “Abstract Program Code” to describe three language forms that are syntactically

very similar: (i) Abstract Program Code with Inheritance and Overloading (APQ0),

(ii) Abstract Program Code with Inheritance (APQ), and (iii) Abstract Program Code

(APC).

APQo provides all the object-oriented features discussed in Chapter 1. After an

Object-Flow program has been parsed into APQo, it is first translated into APQ (which

has no method overloading) and then into APC (which has explicit, rather than implicit,

inherited attributes and methods). The syntax of APQo and A PQ are identical, and are

almost identical to APC. The semantics of these language forms are, however, consid

erably different and the translations must, of course, preserve the original program se

mantics.

4.2.1 Syntax of Abstract Program Code

APC is a pair consisting of a class hierarchy and a program invocation definition (see

below). The class hierarchy is a recursively-defined tree structure with each node con

sisting of a class definition and its subclasses. A class definition contains the class name,

a list of attributes and a list of methods. An attribute consists simply of an attribute name

and its type, and a method consists of a method name, its type and an expression repre

senting the method implementation. Similarly, the program invocation definition is an

expression (except that the semantics prohibit it from containing A-abstractions).

The expression syntax is based on the typed A-calculus, with the addition of object

constructors which require the type (i.e. the class name) of the object to be constructed

together with a list of arguments. The constructor definitions themselves have the same

syntax as method definitions, although the semantics are somewhat different (see Sec

tion 4.4.2). Note that all expressions are annotated with an explicit type tag.

APC’s type system is purely object-oriented. Values can be objects (of class type),

messages (of function type) or literals (of primitive type). Note the bracketed function

types; these are necessary for higher-order messages so that we may identify the distin

guished object — see Chapter 3 for full details.

4.2. Abstract Program Code (APC) 46

Syntax of APCio and APC|

P r ogram m e "= Node P r ln v D e f

P r l n v D e f ::= Expr

Node ClassDef Node*

ClassDef ClassName Attribute* Method*

Attribute AttributeName Type

Method ::= MethodName Type Expr

'Object' ClassN ame Expr* Type

'Variable' VariableName Type

'Variable' MethodName Type

'B u iltin ' PrimFunction Type

'Apply' Expr Expr Type

'Lambda' VariableName Expr Type

'Let' Binding* Expr Type

'L iteral' PrimValue Type

VariableName Expr

'BoolVal' bool | 'CharVal' char | 'NumVal' num

'Plus' | 'Minus' | 'M ultiply7 | 'Divide' | ...

| 'If' | 'And' | 'Or' | 'Not' | ...

| 'Equal' | 'GreaterThan' | 'LessThan' | ...

Type 'ClassType' ClassN ame

| 'FunctionType' Type Type

| 'BrFunctionType' Type Type

| 'PrimitiveType' PrimType

Binding

PrimValue

PrimFunction

PrimType 'boo l' | 'ch ar ' num

ClassN ame, Attribute Name, MethodName, VariableName E { I d en t i f i e r s }

The syntax of APC is defined by extending A PQ o and A P Q with R eused expressions.

Such expressions are created during the expansion of inherited methods (see later trans-

4.2. Abstract Program Code (APC) 47

lation) and indicate explicitly that the implementation is inherited (but not overridden)

and should be reused from a superclass.

Syntax of APC

i I

As for APQo and APQ, except Expr is extended as follows:

Expr ::= ... | 'Reused' ClassN ame

4.2.2 Translation of APCI0 into A PQ

We translate APQo into APQ by resolving method overloading. This involves gen

erating new names for each separate type-instance of a method definition: these new

method names must be used appropriately wherever the overloaded method name is ap

plied, so the entire program must be transformed and the type of every application must

be checked.

Overloading resolution proceeds in two phases:

1. Scan all classes and, where overloaded method definitions are found, generate

new names and add them to a translation table. Each entry in the table is a triple

comprising the overloaded method name, the type, and the resolved method name.

2. Use the translation table from the first phase to tranform the program (i.e. both

the left-hand-side and right-hand-side of all method definitions, together with the

invocation), so that all occurrences of overloaded method names are translated

according to the types at which the methods are applied.

Note that the techniques for resolving method overloading have been implemented

in many compilers (Haskell’s type classes provide a purely functional example and

Smalltalk provides a purely object-oriented example); we, therefore, do not present the

algorithm in detail here. However, for a CLOVER example, see the translation of over

loaded method minus into minus_l and minus_2 in Appendix B.3.

4.2. Abstract Program Code (APC) 48

4.2.3 Translation of APCi into APC

We translate APQ into APC by making implicit method and attribute inheritance ex

plicit, as shown in translation X below. The implementations for inherited (i.e. not over

ridden) methods are not duplicated; instead we make the methods explicit by creating a

Reused tag as each one’s implementation. This results in much shorter target code, but

complicates the later generation of method despatchers. The transformation defines the

inheritance semantics.

Translation of APCi into APC

X :: PrograrriAPCj —> Programxpc

X[apci] = (h" pid)

w here h" — expMeths () h!

h! = expAttrs () h

(h pid) = apci

The rule “expAttrs” takes an (initially empty) list of attributes and an (initially complete)

class hierarchy, and expands the inherited attributes. The resulting class hierarchy con

tains explicit definitions for every class’s attributes, including inherited ones. The sup

porting function “comAttrs” combines inherited and introduced attributes to produce a

complete set of attributes for a particular class. Note that, unlike traditional OOP lan

guages, CLOVER does not give special status to built-in (primitive) classes such as

Number: in CLOVER, it is possible to define subclasses of the primitive classes (for

example, BoundedNumber). However, this requires that if a primitive class (or a sub

class of a primitive class) is being extended for the first time, then the inherited attribute

of primitive type (i.e. a type that is built-in, rather than being associated with a class)

must be coerced to the appropriate class type.

For a CLOVER example, see the inherited primitive attribute prim and the

introduced attributes upperbound and lowerbound in class BoundedNumber in

Appendix B.3.

4.2. Abstract Program Code (APC) 49

Rule for expanding inherited attributes

I--- 1
expAttrs :: Attribute* —> Node —»■ Node

expAttrs aslnh (cDef ns) = (c D e f ns ')

w here c D e f = (cld as' ms)

as1 = comAttrs aslnh as

ns' = map (expAttrs as') ns

(cld as ms) = cDef

comAttrs :: Attribute* —> Attribute* —> Attribute*

comAttrs () aslnt = aslnt

comAttrs aslnh () = aslnh

comAttrs ((n ('PrimType' p)) © aslnh) aslnt = (n ('PrimType' p)) ©

(aslnh (g) aslnt)

comAttrs aslnh aslnt = aslnh © aslnt

The rule “expMethods” takes an (initially empty) list of methods and an (initially com

plete) class hierarchy, and expands the inherited (i.e. not overridden) methods. The

resulting class hierarchy contains explicit method definitions for every class’s methods,

including inherited ones. We merely create a Reused tag for every inherited method’s

implementation, providing an indirection to a superclass containing the most recent

implementation. For a CLOVER example, see the inherited implementation for

method dec in class BoundedNumber in Appendix B.3.

Rule for expanding inherited methods

expMeths :: Method* —> Node —y Node

expMeths mslnh (cDef ns) = (c D e f ns')

w h ere c D e f — (cld as ms')

ms' = expMs ms mslnh

ns' = map (expMeths mslnh') ns

mslnh' = upMs mslnh ms cld

(cld as ms) = cDef

4.2. Abstract Program Code (APC)

expMs :: Method* —> Method* —> Method*

expMs ms () = ms

expMs ms (mlnh 0 mslnh) = expMs ms' mslnh

w here ms' = expM ms mlnh

expM :: Method* —»■ Method —>■ Method*

expM () mlnh = (mlnh)

expM (m 0 ms) mlnh = m 0 ms, if m id = m lnh ld

= m 0 (expM ms mlnh), otherw ise

-w here (m ld lnh mTInh mEInh) = mlnh

(m id mT mE) = m

upMs :: Method* — Methods* —> Name —► Method*

upMs mslnh () cld = mslnh

upMs mslnh (m 0 ms) c/d = upMs mslnh' ms cld

w here mslnh' — upM mslnh m cld

upM :: Method* —»• Method —> ClassName —¥ Method*

upM methslnh m cld = (mlnh'), if methslnh = ()

— mlnh' 0 mslnh, if m ld ln h = m id

= mlnh 0 (upM mslnh m cld), otherw ise

w here mlnh' = (mid mT ('Reused' cld))

(mldlnh mTInh mEInh) = mlnh

(mid mT mE) = m

(mlnh 0 mslnh) = methslnh

4.3. Intermediate Data Structure (IDS) 51

4.3 Intermediate Data Structure (IDS)

The compilation of APC into TC is a complex transformation comprising two main

tasks: (i) reorganising the program structure by flattening the hierarchy and inverting

the class-method containment relationship, and (ii) generating functional target code.

We use an intermediate data structure (IDS) to pass the results from the first task (trans

lation F) to the second task (translation Q). This data structure has been designed to

organise object-oriented functional programs such that subsequent generation of stan

dard functional code is simplified.

4.3.1 Syntax of Intermediate Data Structure

The intermediate data structure is a triple consisting of a list of IDS class definitions,

a list of IDS method definitions and a program invocation definition. Being a “flat

tened” form of APC (i.e. without an explicit class hierarchy), the class definitions and

method definitions must now be self-contained. We have thus changed from a “hier

archy of classes (each class containing its methods and attributes)” representation to a

“classes (containing attributes) and methods (containing associations of implementa

tions to classes)” representation, which is equivalent to flattening and inverting.

Each IDS class definition is simply a class name and a list of attributes. IDS method

definitions are more complex as each one must encapsulate all the functionality for a

particular method, including the information required to perform appropriate dynamic

despatch (based on method reuse and overriding). Each method definition therefore

consists of a method name, a type and a list of implementation definitions. Each im

plementation definition contains a method implementation (i.e. an expression) and a

list of class names for which this implementation is defined.

Note that an implementation is defined for the class in which it is introduced and

the subclasses in which it is reused, but not for any subclasses in which it is overridden.

Also note that IDS shares the syntax of expressions, attributes, invocation and types with

APC (defined in Section 4.2.1).

4.3. Intermediate Data Structure (IDS) 52

Syntax of IDS

1

Programjos

" 1

::= C lD e f * MethDef* P r ln v D e f

C lD ef ::= ClassName Attribute*

MethDef ::= MethodName Type Im pD ef+

ImpDef ::= Expr ClassName+

4.3.2 Translation of APC into IDS

We translate APC into IDS by flattening and inverting the class hierarchy. This creates

IDS class definitions and IDS method definitions (and also retains the program invoca

tion definition), as shown in T below.

Translation of APC into IDS

T :: P r o g r a m m e P rogram iD S

T \ ape] = (clDefs methDefs pid)

w here clDefs = createClDefs h

methDefs = createMethDefs h ()

(ih pid) = ape

The rule “createClDefs” takes an (initially complete) class hierarchy and creates the IDS

class definitions by simply extracting the class name and attributes from each class and

flattening the hierarchy, as shown below. For a CLOVER example, see the definition

for class BoundedNumber in Appendix B.4.

Rule for creating IDS class definitions

I---1
createClDefs :: Node —> ClDe f *

createClDefs (cDef ns) = (cld as) © (mapconcat createClDefs ns)

w here (cld as ms) = cDef

4.3. Intermediate Data Structure (IDS) 53

The rule “createMethDefs” takes an (initially complete) class hierarchy and an (ini

tially empty) list of method definitions and creates IDS method definitions. The rule

is more complex than “createClDef” as we must encapsulate all the functionality for

each method (such as implementation reuse implicitly defined by subclassing — later

required for determining dynamic despatch) as we flatten the hierarchy and invert the

class-method containment relationship. This requires us to maintain a list of the method

implementations, overridings and reuses defined so far for each method when descend

ing the hierarchy.

The core of the rule is the insertion of method implementations in the supporting

rule “insimp”. This handles the insertion of a new method (by creating a new method

definition), an overriding (by adding a new implementation definition in the appropriate

method definition) and a reuse (by adding a new class name in the appropriate imple

mentation definition).

For CLOVER examples, see Appendix B.4: (i) the single method implementa

tion for f ac associated to the two classes Number and BoundedNumber, and (ii) the two

method implementations for minus_l, one associated with class Number and the other

with class BoundedNumber.

Rule for creating IDS method definitions

createMethDefs :: Node MethDef* —> MethDef*

createMethDefs ((cld as ms) ns) m sD ef

= crMethDefs ns (insimps m sD ef ms cld)

crMethDefs :: Node* —> MethDef* —>■ MethDef*

crMethDefs () m sD ef = m sD ef

crMethDefs (n ® ns) m sD ef = crMethDefs ns (createMethDefs n msDef)

inslmps :: MethDef* —> Method* —> ClassName —> MethDef*

inslmps m sD ef () cld = m sD ef

inslmps m sD ef (m ® ms) cld = inslmps (insimp m sD ef m cld) ms cld

4.4. Target Code (TC) 54

insimp :: MethDef* —> Method —»■ ClassName —y MethDef*

insimp m sD ef (m id mT mE) cld

— imp' 0 imps

w here imp' = (m i d mT ((mE (cld)))), if imp = ()

= (m id i mTI (applmp impsl cld)), if reused mE

= (m i d i mTI (impsl 0 (mE (cld)))), otherw ise

(m i d i mTI impsl) = hd imp

(imp imps) = spDef m sD ef m id ()

reused ('Reused' c ld l) = True

reused e = False

spDef:: MethDef* —> MethodName —»• MethDef* —> (MethDef* MethDef*)

spDef () m id accDef = (() accDef)

spDef (mDe f © msDef) m id accDef = ((mDef) accDef © msDef) ,

if m id = m i d i

= spDef m sD ef mid

(accDef © (mDef)), otherw ise

w here (m i d i mTI impsl) = m D ef

applmp :: ImpDef* -» ClassName —> ImpDef*

applmp ((e c/c?s)©()) cld = (e (elds <g> (cld)))

applmp (i 0 is) cld = i ® (applmp is cld)

4.4 Target Code (TC)
In our prototype implementation, we generate Miranda code but, for the purposes of this

thesis, we define a simple abstract functional language, Target Code (TC), which cap

tures the features we require. We assume the properties of a typical modern functional

language, including lazy evaluation, curried partial applications and automatic garbage

collection.

4.4. Target Code (TC) 55

4.4.1 Syntax of Target Code

TC consists of a single type definition and a list of function definitions. The type def

inition is an algebraic data type containing a unique constructor and underlying type

for every class and message type. All other generated code is in the form of standard

function definitions comprising a function name, function arguments and function body

(with local definitions in where blocks).

Syntax of TC

Programme ~= TarTypeDef TarDef*

TarD ef

TarExpr

:= TarVarName TarExpr* '= ' TarExpr

:= TarVarName | TarExpr TarExpr

| '[* [TarExpr (',' TarExpr)*] ']'

| TarConsName TarExpr* ')'

| TarExpr 'where' T a r D e f+

| TarExpr ')' \ TarPrimFunc | Literal

*' I ' / ' I V' I '< '

TarTypeDef

TarConsAlt

T arC onsType

T arT ype

:= TarTypeName TarConsType TarConsAlt*

:= ' | ' TarConsType

:= TarConsName TarType*

:= TarTypeName \ ' f TarType '];

| TarType '— TarType

| ' (TarType '—>' TarType ')'

I 'boo l' I 'ch a r ' I 'mun'

TarVarNam e , TarConsName , TarTypeName E { Identifiers }

We define no new type synonyms, do not require type variables and the only aggregate

type we use is a list to collect together the attributes for a given class. Note that, to re

duce complexity in the transformation rules, primitive functions are prefix and function

type signatures are omitted (all types can be deduced in the target language compiler by

standard type inference). For an example of our target code, see the generated programs

in Section 4.5.

4.4. Target Code (TC) 56

4.4.2 Translation of IDS into TC

We translate IDS into TC by generating the components of the target program, as shown

in Q below. The components include, inter alia, a program invocation definition, a meta

type definition, method despatchers, wrapped method despatchers, method implemen

tations and message appliers.

Translation of IDS into TC

Q :: P r o g r a m ' s —>• P r o g r a m x c

Q[ic] = (metaDef (iDef <S> mWraps ® mDesps <%> mlmps <g> dObjs® apps))

w h ere metaDef = genMetaDef clDefs maxAr

iD e f = genlnvDef pid

mWraps = map genMethWrap methDefs

mDesps = mapconcat genMethDesp methDefs

mlmps — map genMethlmps methDefs

dObjs = genDefObjs clDefs

apps = genAppliers maxAr

maxAr = max (map arity methDefs)

(■clDefs methDefs pid) = ic

In the remainder of this section, we divide the target code generation rules into six

categories, corresponding to the component generated. However, we first define a

subsidiary rule, “arity”, which determines the arity of an IDS method definition.

Rules for determining arities

arity :: MethDef —»■ Number

arity (m id mT imps) = ar mT

w h ere ar ('FunctionType' t l £2) = 14- (ar £2)

ar £ = 0

4.4. Target Code (TC) 57

Invocation definition

The rule “genlnvDef” takes a program invocation definition and generates the highest-

level function (arbitrarily named main) in the target code. The function body is gen

erated using the rule “genExpr” (part of method implementation generation). For a

CLOVER example, see main in Appendix B.5.

Rule for generating a program invocation

genlnvDef :: P r l n v D e f —> TarDef

genlnvDef pid = ('main' '= ' (genExpr pid))

Meta type definition

We implement dynamic typing by attaching type information to every object. These

“type tags” (corresponding to class names) are constructors for an algebraic type — ob

jects are encoded as the constructor plus a list of attributes or a primitive value. Mes

sages are also represented as a type tag constructor together with the actual message,

thereby supporting partially-applied, higher-order functions (the constructor provides

arity data that is used at run-time to determine whether the message is fully applied and

should be despatched: the algebraic type therefore requires constructors for every mes

sage type in the program).

We wish to implement subtyping in the single-rooted class hierarchy via subsump

tion rather than via coercion, since coercion to a supertype loses information. Given a

target functional language that does not support subtyping, and given that in the limit

the root class subsumes all other classes, the only way to do this is to utilise a single

algebraic type with constructors for every class. Parametric polymorphism (where an

argument can be either an object or a message) is implemented by combining the type

tags for both objects and messages into a single monolithic algebraic type.

The result is an elegant and flexible meta type representation, generated from the

list of IDS class definitions and the maximum method arity by the rule “genMetaDef ”.

For a CLOVER example, see m etatype in Appendix B.5.

4.4. Target Code (TC) 58

Rule for generating a meta type

genMetaDef :: C l D e f * —» N u m b er —)■ T a r T y p e D e f

genMetaDef c l D e f s m a x A r = ('m etatype' (m et aCl 0 metaFunc))

w here m eta C l = map genMetaCl c l D e f s

m eta F un c = genMetaFunc m a x A r

genMetaCl:: C l D e f —> T a r C o n s A l t

genMetaCl (c l d ())

genMetaCl (cld, (n ('P rim itiveT ype' p)))

genMetaCl (c l d as)

genMetaFunc :: N um ber —> Ta rC onsA l t*

genMetaFunc 0 = ()

genMetaFunc ar = ('|' ('Message' ar) type) © (genMetaFunc (ar — 1))

w here type = ('('m etatype' (rep ar '—> m etatype') ')')

rep 0 x = ()

rep n x — x © (repeat (n — 1) x)

Method despatchers

The provision of dynamic method despatch requires a mechanism that selects a par

ticular method implementation at run-time from a list of candidates (comprising the

method’s initial implementation and any overridings in subclasses) according to the ac

tual type of a distinguished object. We wish to avoid code duplication for reused (i.e.

inherited but not overridden) implementations and therefore require the mechanism to

support many-to-one mappings between a distinguished object type and the appropriate

implementation. We also require the method despatchers to support standard FP fea

tures, such as curried and partially-applied methods (see Chapter 3 for details of the

design of CLOVER’s curried message application).

We provide this functionality using explicit despatchers, one for each method.

Each despatcher adopts the same arity as the method and performs an explicit indirec

tion to the appropriate implementation, with selection occurring by pattern matching on

the type tag of the distinguished object. This allows us to apply despatchers (rather than

= (T ad ())
= ('|' c l d p)

= ('I' c l d '[m etatype]')

4.4. Target Code (TC) 59

the actual method implementations) to arguments, permitting curried dynamic despatch

ers that can be partially-applied. The complete rule for generating a method despatcher

from an IDS method definition is shown below.

For CLOVER examples, see Appendix B.5: (i) the two despatchers in d_f ac

which select the same implementation ijfac-Number, and (ii) the two despatch

ers in d_minus_l which select either the implementation i.minus_1-Number or

i .minus _1-BoundedNumber.

Rule for generating a method despatcher

genMethDesp :: M ethDef —y TarDef*

genMethDesp m D ef = genMDesp imps m id args

w here args = genArgs (arity mDef)

genArgs 1 = ()

genArgs (n + 1) = (genArgs n) <g> ('a' n)

(m i d mT imps) = m D e f

genMDesp :: ImpDef* -* MethodName —> TarExpr* —»• TarDef*

genMDesp () m i d args = ()

genMDesp (i ® is) m i d args = (genMDImp elds c ld lm p m i d args) <S>

(genMDesp is m id args)

w here (c ld lm p® cldReuses) = elds

(mE elds) = i

genMDImp :: ClassN ame* —* ClassN ame —> MethodName —» TarExpr* —>•

TarDef*

genMDImp elds c ld lm p m id args

— () , if elds = ()

= mDesp ® (genMDImp elds' c ld lm p m i d args), otherw ise

w here mDesp = ((;d_' mid) parms body)

body = ((' i f m id 'J cld lmp) parms)

parms = args ® distObj

distObj = ('(7 cld 'as' ')')

(cld ® elds') = elds

4.4. Target Code (TC) 60

Wrapped method despatchers

CLOVER is higher-order and we wish to use messages as first-class values. This

involves encoding messages in the meta type and also using encoded versions of the

method despatchers (which we call wrapped). The rule “genMethWrap” takes an IDS

method definition and generates a wrapped version of the method despatcher. Generated

code always uses and refers to these wrapped versions instead of the original despatch

ers. For a CLOVER example, see the wrapped method wjf ac (and its use in main) in

Appendix B.5.

Rule for generating wrapped method despatchers

genMethWrap :: M ethD ef —* TarD ef

genMethWrap m D ef = (('w_' mid) '= ' body)

w h ere body = ('(' ('Message' ar) ('d_' mid) ')')

ar = arity m D e f

(mid mT imps) = m D ef

Method implementations

A key part of the target code is the method implementations themselves. Each method

may have several implementations (an initial implementation and overridings in sub

classes). For each implementation definition in IDS, we need to know in which class

it was first implemented (i.e. the head of the list of class names) but not in which sub

classes it was reused (because our method despatchers provide the appropriate many-

to-one mappings to implementations).

All A-abstractions are at the top level of a CLOVER method body (having outlawed

the undesirable creation of new methods as local definitions) and are handled by the rule

“genMIArgs”, which generates appropriate method arguments. The rule “genExpr” is

called on a method body and recursively generates corresponding target code for all pos

sible expression types. A message application generates a call to an explicit message ap-

plier (which one depends on the the number of arguments to be applied — see Message

Appliers later).

4.4. Target Code (TC) 61

CLOVER handles object construction differently, both syntactically and seman

tically, to message sending. Constructors do not have a distinguished object (and so

do not undergo dynamic despatch) and are always applied to their arguments en masse

(and so we never need manipulate unapplied or partially-applied constructors). The ex

pressive power of CLOVER’s message application mechanism is therefore not required

for object constructors; they are simply translated into standard function definitions that

aggregate their arguments (e.g. i_new_Account a l a2 a3 = (Account [a l, a2, a3))

and are invoked by standard function calls. However, constructor definitions for primi

tive classes (Num ber, C h a r a c t e r and B o o le a n) are a special case as no aggregation

is required (e.g. i_new_Number a l = (Number a l)).

Note that the rules “genPVal” and “genPFunc” merely map primitive values and

primitive functions in APC onto their wrapped counterparts in TC. For example, the

rule to map a primitive number is: genPVal ('NumVal' n) = '(' 'Number' n ')'.

The above functionality is provided by the rule “genMethlmps”, which takes

an IDS method definition and generates the target code for each of its implemen

tations. For CLOVER examples, see the method implementations i_ fac -Number,

i_minus_l.Number and i_minus_l .BoundedNumber in Appendix B.5.

Rule for generating method implementations

genMethlmps :: MethDef —> TarDef*

genMethlmps (m id mT ()) = 0

genMethlmps (mid, mT (z ® is)) = m/rap® (genMethlmps (m id mT is))

w here m lm p = (f n l d args '= ' body)

f n l d = ('i_' m id '_' c ld)

body = genExpr mE'

{mE1 args) = genMIArgs mE ()

(mE (c/d® elds)) = i

4.4. Target Code (TC) 62

genMIArgs :: E x p r —► T a r E x p r * —> T arE xpr*

genMIArgs ('Lambda' a i d e t) args = genMIArgs e (args <g) ('w_' a id))

genMIArgs e args — (e args)

genExpr :: E x p r —y T a r E x p r

genExpr ('O bject' c l d es t) = ('(' ('i_new_' c ld) (map genExpr es) ')')

genExpr ('V ariab le ' v l d t) = ('w_' v ld)

genExpr ('Apply' e l e2 t) — genApp ('Apply' e l e2 t)

genExpr ('Let' bs e t) = ((genExpr e) 'where' (genBinds bs))

genExpr ('L i te r a l ' pV a l t) = genPVal pV al

genExpr ('B u il t in ' pF u n t) — genPFunc pF u n

genApp :: E x p r —y T a r E x p r

genApp e

= (('apply7 n) (genExpr e') args)

w h ere (e' n args) = gA e 0 ()

gA ('Apply' e l e2 t) n as = gA e l (n + 1) ((genExpr e2) ©

gA e n as = (e n as)

genBinds :: Binding* —»• T a rE x p r*

genBinds () = 0

genBinds ((v l d e) 0 bs) = I D e f 0 (genBinds bs)

w h ere I D e f = (('vf cld) '= ' (genExpr e))

4.4. Target Code (TC) 63

Message appliers

Message sending is implemented in standard OOP by applying a method to all its ar

guments and a distinguished object. We must also support the FP features of curried

arguments, partially-applied functions and higher-order functions. We observe that all

run-time values, including messages, are wrapped in a meta type; this requires message

application to unwrap a message, apply it to arguments and (if a partial application) wrap

it again. Standard A-calculus function application is therefore insufficient. The desired

abstract semantics for message application are as follows (where (M n e) is a wrapped

message of arity n):

£[(A fi eai^ 2) x a*\ = S l e ^ 2J Six"*}

S l(M n) x h*} = S K M n-i (eCTl-+ - x ff*))}

w h ere a x G\

The first equation represents a standard message send: having already been applied to

all its message arguments, the method is applied to the distinguished object (its final

parameter). The second equation represents a curried partial application, with the result

being a wrapped message.

We note that much of the repeated unwrapping and wrapping resulting from a list of

curried arguments can be eliminated by applying arguments en m asse whenever avail

able. This corresponds to the following optimised semantics (where m is the statically-

determined number of curried arguments to be applied).

S l(M m ... < -] = £ [e ^ x ^ ...

S I (M n x l " ... = e\(Mn_m x*1' ... x ”™))}

w h ere aXi ■< i = 1 ...m, m < n

Note that, for each message arity, we require a set of appliers — one for each number

of arguments to be applied. We use the above semantics to define the following rule

to generate explicit message appliers from the maximum method arity. For CLOVER

examples, see app ly 1... apply3 in Appendix B.5.

4.5. Summary 64

Rule for generating m essage appliers

genAppliers :: N u m b e r —> T a r D e f *

genAppliers m a x A r = genApps m a x A r m a x A r

genApps :: N u m b e r —¥ N u m b e r —y T a r D e f *

genApps 0 0 = ()

genApps n 0 = genApps (n — 1) (n - 1)

genApps n m = a p p 0 (genApps n (m — 1))

w h e re app = (('apply ' m) args '= ' body)

args = ('(' ('Messag e' n) 'f ' ') ') © x s

body = ('f ' xs), if m = n

= {'(' ('Message' (n — m)) ('(' 'f ' xs ')')

o th e rw ise

xs = genXs 1

genXs x = (), if x > m

genXs x = ('a' x) 0 (genXs (x + 1))), o th e rw ise

Other target code components

In this section, we have presented the key components of generated target code. There

are several other subsidiary components which have been omitted. These include

record operations, input/output and error handling. Note that standard record op

erations have been presented many times in the literature — illustrative examples

include: (i) labelled field selection and update in [AG93]; and (ii) record calculus

encoding with extensible tuple values, selectors and updators in [CL91].

4.5 Summary
We have presented the implementation of CLOVER as a translation from OOFP to

FR In doing this, we have demonstrated how to support completely type-safe dynamic

despatch in the presence of (partially-applied) higher-order methods. We have also

demonstrated how objects and messages may be encoded, and subsumption supported.

The CLOVER transformation rules incorporate all of the key features of OOP and are

4.5. Summary 65

purely functional. They include a set of high-level translations which resolve method

overloading, expand inherited attributes and methods, flatten and invert the code to cre

ate an intermediate data structure and, finally, generate target code. The notion of object

identity is the only aspect where CLOVER departs from mainstream OOP, as discussed

in the next chapter.

Chapter 5

Object-Flow

In this chapter, we discuss the inappropriateness of the traditional OO notion of

object identity for OOFP and propose an alternative notion of object identity that could

be adopted for OOFP.

There have been many attempts to integrate OOP with FP [BC96], VP with OOP

[BGL95], and VP with FP [Hil92]. However, to date we know of no language that

integrates OOP and FP with VP, and yet retains the key features of both the functional

and object-oriented paradigms. Existing attempts, such as object-oriented dataflow

[Kim95], typically sacrifice important features from either OOP or FP. We present the

novel visual aspects of object-flow, a visual OOFP notation that is purely functional and

also object-oriented. The key contributions of this notation include: (i) an application

of VP to the integration of OOP and FP, giving a visual representation for OOFP, and

(ii) a visual representation of type-safe, curried, higher-order method sending.

5.1 Inappropriateness of Traditional Object Identity
Whilst encapsulation is an extremely important concept for software engineering, it is

not clear that mutable internal state is as important. Indeed, it is not clear that object

identity should be enforced in OOFP in the same manner as in OOP.

We propose that a finer level of identity should be assumed in OOFP, based on the

concept of object behaviour (similar to that used in the Actor model [AH87] for dis

tributed OOP). For example, a digital watch has entirely different behaviour according

to whether it has or does not have a new battery installed. These two behaviours can

be viewed as different “incarnations” of the watch, and given different names. A watch

5.1. Inappropriateness o f Traditional Object Identity 67

may go through several phases of having or not having a fully charged battery, with each

incarnation having a separate identity.

In this way, we provide a history of identities which provide immediate “hooks”

back into the past. For example, a student might have different option choices in differ

ent years: by providing different identities to the different stages of each student, it is

possible to ask questions about (send messages to) the different stages of the student’s

academic study. This also provides obvious benefits for searching algorithms which use

backtracking; previous incarnations of an object are immediately accessible. The idea is

not new: CLAIRE [CL96] provides versioning for the entire object database, however

we provide versioning on a per-object basis.

As a final example of the inappropriateness of the traditional notion of object iden

tity in OOFP, we note that the message-passing view of OOP requires discrete messages

to be passed as an atomic action to an object: not only is there no explicit declaration of

the behaviour that is expected from that object, but there is also no way in which lazy

evaluation could be given meaning in such a system. By contrast, if we view objects

as having identities which explicitly change as their behaviour changes, then expected

behaviour is made explicit and sequencing of behaviour change is made explicit; this

latter change opens the way to the incorporation of lazy evaluation (as shown below).

From the foregoing discussion, it can be seen that we align ourselves with the

Actor model used for distributed OOP based on sequences of behaviours rather than

state changes. This is also similar to the continuation-passing style often used by FP

programmers.

This notion of separating identities by behaviour requires a new object identi

fier to be created for each change in the internal state of an object, and has two main

consequences. Firstly, it affects the utility of the resulting language and, in particu

lar, the patterns of programming that are supported most naturally. Typical functional

patterns, such as mathematical algorithms exploiting laziness, are captured well (and

also benefit from the addition of OO features). 0 0 patterns exploiting mutable state,

such as network simulations, are captured less naturally and require additional “plumb

ing”. Secondly, it affects the execution efficiency by requiring what is essentially copy

semantics: to update the state of an object, the old object is copied'and given a new state

5.2. Object-Flow: a N ew Visual Notation 68

and identity. Fortunately, it is possible to implement this procedure with low overhead

and without name proliferation, as illustrated below.

5.2 Object-Flow: a New Visual Notation
CLOVER provides a visual programming interface. Methods are defined using nodes

and arcs to build up a representation of a CLOVER expression.

The choice of a visual notation should be straightforward, yet it is not. This choice

is of paramount importance and yet there is no existing suitable notation. Control-flow

diagrams are clearly inappropriate for a single-assignment, expression-based language,

and dataflow graphs [DK82] provide no semantics for 0 0 notions of object identity

(with or without behaviours), subsumption, dynamic despatch, etc. A common OO

notation is the object diagram [Boo94], otherwise known as message-passing or

message-flow notation; unfortunately, this notation relies on multiple assignment and

does not support the concept of laziness.

The object-oriented message send o . f (x) can be represented visually using an

object diagram, as in Figure 5.1(a). The functional definition a = f (x , y) can be

represented visually using a dataflow graph, as in Figure 5.1(b).

(a) Object diagram (b) Dataflow graph

Figure 5.1: Standard Visual Representations

Our goal is to provide a visual notation that integrates the semantics of both the object-

oriented and functional representations, despite their apparently-conflicting require

ments. In particular, we wish to integrate object identity with referential transparency,

and support higher-order methods, curried partial applications and lazy evaluation. Our

solution is to use a notation that is almost the dual of object diagram notation, and is

similar to Uflow notation [SKA94]. Instead of nodes representing objects and messages

flowing along arcs, in our notation the nodes represent the application of methods to

their arguments and objects flow along the arcs — this makes the changing state of an

5.2. Object-Flow: a New Visual Notation 69

object explicit. When we include higher-order methods, we allow both objects and mes

sages (which may be partial) to flow along the arcs. We call this notation object-flow.

We follow CLOVER’S approach of extending FP towards OOP, rather than the

other way around. This requires us to build upon a referentially transparent dataflow

base. We first note that standard dataflow semantics do not provide support for key

object-oriented notions such as dynamic despatch. We thus provide extra semantics

to facilitate dynamic despatch by identifying the final parameter to be applied as the

distinguished object.

Our next step is a notation change so that higher-order methods can be handled

naturally. In the traditional functional dataflow model, each node contains a function

name, and this function is applied to its incoming arguments. In order to permit the

function itself to flow into a node, it is necessary to make each node an application site

(see Figure 5.2) that receives a method, its arguments and a distinguished object.

Object-flow does not permit fan-out; we use aggregate types instead, with explicit

selection. This results in an equally expressive and powerful, but less concise, nota

tion. However, a pleasant consequence is that we can eliminate arrows indicating flow

direction; we merely work backwards from the result.

The semantics of lazy evaluation are captured and visualised in object-flow by the

use of a mechanical winder (see Figure 5.3) that “pulls” wires through application nodes

from the left. Each method definition contains one winder — the result that is returned.

Being demand driven, an object or message is only pulled along an arc (evaluated) if

and when it is required. Shared demand for any object will be evaluated by whichever

method issues the first demand. All incarnations of an object are preserved for as long

as the run-time system can determine that they may be required: as soon as there are no

remaining links to an incarnation, it is automatically garbage-collected.

Figure 5.2: Application Site

5.2. Object-Flow: a N ew Visual Notation 70

Figure 5.3: Object-Flow Winder

This visual metaphor can be extended with a node represented as a stack of tubes, each

tube open at the appropriate end depending on whether it produces or consumes. Object-

flow places the result at the top, followed by the method, its arguments and finally the

distinguished object to give nodes with structures like Figure 5.4(a). We can also reduce

visual clutter due to a plethora of arcs by allowing named values, as in Figure 5.4(b).

(a) Basic node (b) Node with names

Figure 5.4: Object-Flow Nodes

Object-flow is naturally curried — adding another pipe to an application node adds

another argument. To represent partial applications, we omit one or more pipes. To aid

identification of partial applications, the editor automatically adds an exposed connector

to the bottom-most tube, indicating that further pipes are required for full application.

For example, we can partially apply + to create the local definition i n c (see Figure 5.5)

which increments a number.

xnc

Figure 5.5: Local Definition for i n c

We can represent the function definition i n c L i s t s e l f = map (+ 1) s e l f ,

which increments every element in a list by employing the higher-order function map

to apply (+ 1) to each element, as the object-flow method in Figure 5.6.

5.3. Examples o f Object-Flow Notation 71

lincList
inc

map

self

Figure 5.6: Method Definition for i n c L i s t

In object-flow, each arc carries a single atomic object or message, not a stream of

objects or messages. Also, recursion is supported by simply naming a method within

its object-flow definition.

5.3 Examples of Object-Flow Notation

Figure 5.7 illustrates an A c c o u n t object flowing into a node which represents the

application of the d e p o s i t method to the argument 1 0 0 . 0 0 . The node comprises

a sequence of boxes — the top box represents the result, the box under that

represents the method to be applied, the next box represents the parameter and the last

box represents the distinguished object. The distinguished object flows into the node

from the bottom right and flows out as the result from the top left; this is a new

incarnation of the object, which has a different state. Thus, state changes are explicit

and object-flow notation provides a timeline for the life of the object. Each stage

of the object’s life is accessible, providing a versioning feature which supports easy

exploration of search spaces through backtracking.

 original account

1
odated account

deposit)
100.00 j

>

Figure 5.7: Using the Method d e p o s i t

5.3. Examples o f Object-Flow Notation 72

Figure 5.8 illustrates the definition of the method d e p o s i t . The arguments (the credit

amount and the account) flow in from the right and are given names (the account is

called s e l f because it is the distinguished object). The method updates1 s e l f with a

new balance, which is calculated by adding the credit amount to the existing balance.

The result of a node can either be transmitted via an arc or it can be given a name and

referenced elsewhere (see n e w B a la n c e) .

1 deposit :: Money -> Account -> Account

creditnewBalance
plus

get:balance

put: balance]
newBalance

self

Figure 5.8: Method Definition for d e p o s i t

Our final examples illustrate method overriding, dynamic despatch and higher-order

functions. We assume that the method charge is defined in class Account and in

herited in the two subclasses CorpAccount and Per sAccount. This method calcu

lates the bank charges (of type Money) if an account balance is too low. It is overridden

in both of the two subclasses to reflect different charging thresholds and charging rates.

Figure 5.9 demonstrates how the charge method might be used on a list of Accounts.
The method is passed as a higher-order parameter to map (a method of the List class),

which applies it to every Account in the list. This produces a list of Money, which is

then summed by the sum method (also a method of the List class). The original list

of accounts can include both CorpAccounts and PersAccounts — the appropriate

charge method for each is selected using dynamic despatch.

]In the implementation, of course, the result is a modified copy of s e l f . *

5.4. Development Environment 73

list of accounts
(corporate and personal)

mapsum charge

total charges

Figure 5.9: Using the Method charge

The two overridden definitions of charge are illustrated in Figure 5.10(a) and

Figure 5.10(b). Note that corporate accounts are charged as soon as their balance is

negative, whereas personal accounts are allowed to be 100 units overdrawn before

incurring charges.

I charge :: CorpAccount -> Money

1 if
get:balance

self
50

(a) Definition in class CorpAccount

charge :: PersAccount -> Money

if
get: balance'

self1 0 0
20

(b) Definition in class PersAccount

Figure 5.10: Method Definitions for c h a r g e

5.4 Development Environment
In our current CLOVER prototype, the development environment consists of a three

pane Smalltalk-like front-end comprising: (i) the class hierarchy, (ii) the class attributes

and method types, and (iii) a graphical editor for defining methods using object-flow

notation.

5.5. Summary 74

5.5 Summary
Object-flow is a new visual notation that facilitates the integration of OOP and FP. In

particular, it integrates object identity with referential transparency, and supports higher-

order methods, curried partial applications and lazy evaluation. The notation’s main

contribution is its resolution of a core incompatibility between OOP and FP by making

object state changes explicit via an alternative notion of object identity.

Chapter 6

Conclusion

In this chapter, we assess the work presented in this thesis, discuss the project status,

suggest directions for future work, summarise and conclude.

6.1 Critical Assessment
This thesis presented the design and implementation of a new language, CLOVER, that

integrates OOP and FP. The language retains all the key features of FP, such as refer

ential transparency, whilst also retaining all the key features of OOP. This compares

favourably with the related languages identified in Chapter 2, each of which resolved

the paradigm conflicts by omitting one of more of the problematic features.

However, several limitations have arisen from the design and implementation of

CLOVER, including:

• OO patterns of programming which rely heavily on mutable state are not captured

concisely by CLOVER’S copy semantics and require additional explicit

“plumbing”;

• In order to ensure complete type safety, the user must provide an explicit type

declaration for every method definition and every message send;

• The contravariant rule for subtyping higher-order functions and binary methods

is counter-intuitive for OO programmers (because, in these cases, the type of the

first argument is anti-monotonic);

• As presented in this thesis, compilation is monolithic. No refinements have been

made to facilitate separate compilation (e.g. using a module mechanism).

6.2. Project Status 76

6.2 Project Status
The CLOVER system comprises a prototype compiler (written in Miranda) to translate

from CLOVER concrete syntax to Miranda target code. In additition, a prototype three

pane Smalltalk-like browser has been produced to investigate appropriate development

environments. Subsequent CLOVER-based projects by students at University College

London have included: (i) re-writing the system in Clean and generating Clean target

code, (ii) developing a spreadsheet-based front-end, and (iii) enhancing the translator to

produce comprehensive error reporting.

6.3 Further Work
The language design for CLOVER is largely complete except for two main consider

ations: container classes and real-world interfaces. The former are required to support

data aggregates such as lists and trees (e.g. via parameterised classes). File input/output,

user interaction and event-driven programming is a large area of further work.

We have implemented proofs-of-concept for key CLOVER components, including

the translations and type checker presented in this thesis and the visual programming

notation. We have yet to supply formal semantics for our visual object-flow notation,

although the approach outlined in [Erw97] might be appropriate. We also expect to con

tinue applying the integration of OOP and FP to related areas, such as object-oriented

functional spreadsheets [CB97].

There are still some areas where additional functionality is required — for example,

the provision of su p er to perform dynamic despatch as if the distinguished object has

the type of its superclass. We have not yet provided proofs of referential transparency or

soundness and completeness for the type system and the various stages of compilation.

Additionally, apart from simple optimisations of the message appliers, little attention

has been paid to the performance of executable code.

Further work would also include the full implementation of a subtype checker and

the design of an incremental type checker [PM93]. Run-time analyses would be assisted

by the addition of algorithm animation and the extension of lexical profiling [CCP95]

to visual profiling. Additionally, a revised object-oriented analysis and design notation

is required because existing notations assume stateful objects. Alternatively, a transla

6.4. Summary 77

tion from a standard implicit-state notation into explicit-state object-flow notation may

prove useful. Finally, extensive usability testing would be required in order to establish

meaningful usability results.

6.4 Summary
This thesis began by providing a background of related work in the area of object-

oriented functional programming and then established the key research problems by

discussing the difficult design issues. We then presented the design of a new language

CLOVER (its design features, syntax, type system and abstract expression semantics),

which resolved many of these design issues. Next, we presented an implementation of

CLOVER as a translation from OOFP to FR Finally, we discussed the inappropriateness

of the traditional notion of object identity for OOFP and proposed an alternative notion,

together with a supporting new visual programming notation.

6.5 Conclusions
The goal of this work was to investigate the following hypothesis:

The functional and object-oriented paradigms can be integrated, whilst retaining:

• higher-order functions, curried partial applications, referential transparency,

laziness and complete type safety from the functional paradigm;

• subtyping, subsumption, inheritance, method overriding, method overloading

and dynamic despatch from the object-oriented paradigm.

This goal has been achieved and the hypothesis demonstrated in Chapters 3 ,4 and 5 by

the design and implementation of the CLOVER language. Additionally, this work has

contributed to the understanding of the design space of object-oriented and functional

programming languages. In particular, we have provided the following contributions:

• a new design for completely type-safe dynamic method despatch and overloading;

• a new object-oriented semantics for partially-applied, higher-order methods;

• a new design for full overloading of methods in the presence of curried partial

applications and dynamic despatch;

• a new visual notation and semantics for object state, object identity and object-

oriented lazy evaluation.

Appendix A

Type Checking Algorithm

This appendix presents a simple type checking algorithm for CLOVER. The

algorithm operates on programs in A PQ form (see Section 4.2.1); we therefore

assume that programs have been parsed from their concrete syntax and overloading

resolution has also been performed (see Section 4.2.2). Note that full type inference

for inclusion polymorphism has long been considered problematic and is likely to be

undecidable for CLOVER due to dynamic despatch, although recent work on soft typing

(e.g. [AW93, BM96]) indicates research progress in this area.

The type checker takes a CLOVER program in A PQ form and returns True if the

program is type correct and False if the program is not type correct. It achieves this by

first constructing a representation of all types in the class hierarchy and then passing this

and the program on to the function “tCheck”.

Function for type checking APC|

typeCheck :: P rograrriA P C i —> B o o le a n

typeCheck apci = tCheck apci cTypes env tContext

w h ere cTypes = deriveClassTypes apci

env — ()

tContext = 'in v o c a tio n '

Two key data structures are introduced for use by the type checker: ClassType to define

the type of each class (via set inclusion in a list of class names), and TypeContext to

79

define the context of a type (for scoping resolution).

Data structures for class types and type contexts

ClassType

.......... 1

ClassN ame ClassN ame*

TypeContext ::= 'in v o c a tio n '

1
| 'S e lf ' ClassN ame

The type of every class can be found by applying the function “deriveClassTypes” to a

CLOVER program.

Function for deriving all class types

deriveClassTypes :: ProgramapCj —>■ ClassType*

deriveClassTypes apci = fst (deriveClassTypes’ h)

w h e re (h pid) = ape

deriveClassTypes’ :: Node —> (<ClassType* ClassN ame*)

deriveClassTypes’ (cD ef ns) = ((cld al lCIds © types) allCIds)

w h ere allCIds = cld © C ld s

elds = concat (map snd subTypes)

types = concat (map fst subT ypes)

subTypes = map deriveClassTypes’ ns

[C ld as ms) — cDef

The function “tCheck” forms the core of the typechecker and performs case-based se

lection on expression types. Note that, for applications, the function, the argument and

the application itself are checked. For A-expressions, the body is checked whether well-

typed and also whether a subtype of the return type of the overall expression. For Let-

expressions, the body of each binding and the main expression are checked whether

well-typed and also whether the expression is a subtype of the overall Let-expression.

80

“tCheck” function for type checking APC|

tCheck :: ProgramapCj —> ClassType* —»■ (VariableName Expr)* —»•

TypeContext —y Boolean

tCheck (h ('O bject' cld es t)) cTypes env se lf = T ru e

tCheck (h ('V ariab le ' v ld es £)) cTypes env sel f

= (member (map fst env) vld) an d (inScope self)

w h e re inScope 'In v o c a tio n ' = False

inScope ('S e lf ' cld) = checkScope cld v ld h

tCheck (h ('B u il t in ' pFun £)) cTypes env se lf — T ru e

tCheck (h ('Apply' e l e2 £)) cTypes env se l f

= (tCheck (h el) cTypes env' self) a n d

(tCheck (h e2) cTypes env self) an d

(subtype (getExprType e2) t l ' cTypes) an d

(subtype t l ' t cTypes)

w h e re env' = ('DUMMY' e2) ® env

('FunctionType' t l ' £2') = getExprType e l

tCheck (h ('Lambda' a id e £)) cTypes (('DUMMY' de) ® env) se lf

= (tCheck (h e) cTypes ((aid de) ® env) self) a n d (f (getExprType e) £)

w h ere f £1 ('FunctionType' £1' £2') = subtype £1 £2' cTypes

f £1 £2 = False

tCheck (h ('Lambda' a id e £)) cTypes env se lf = False

tCheck (h ('L et' bs e t) cTypes env se lf

= check an d £e an d (map f e)

w h ere check = subtype (getExprType e) £ cTypes

te = tCheck (h e) (bs<g>env) self

f (vld ex) = tCheck (h ex) (bs<g>env) self

81

The function “checkScope” determines whether a given name is a valid attribute or

method name for a particular class.

Function for checking name scope

checkScope :: ClassN ame —>■ VariableName —»• Node Boolean

checkScope cld v l d ((cld as ms) ns) = checkScope’ v ld as ms

checkScope cld v ld ((cld' as ms) ns) = or (map (checkScope cld vld) ns)

checkScope’ :: VariableN ame —»• Attribute* —>• Method* —> Boolean

checkScope’ v ld as ms = (member (map hd as) vld) or

(member (map hd ms) vld)

The function “getExprType” takes an expression and returns its (upper bound) type.

Function for obtaining type of an expression

getExprType:: Expr —> Type

getExprType ('O bject' cld es t) = t

getExprType ('V ariab le ' v ld t) = t

getExprType ('Apply' e l e2 t) = t

getExprType ('L et' bs e t) = t

getExprType ('L i te r a l ' pVal t) = t

getExprType

1

('B u il t in ' pFun t) = t

The function “subtype” determines whether a given type is a subtype of another given

type. This function supports function types (via contravariant subtyping) and primitive

types.

82

Function for determining subtyping

I---
subtype :: Type —> Type —> ClassType* —> Boolean

subtype ('C lassType' cld) ('FunctionType' t l t2) cTypes = False

subtype ('FunctionType' t l t2) ('C lassType' c ld) cTypes = False

subtype ('FunctionType' t l t2) ('P rim itiveT ype ' pType) cTypes = False

subtype ('P rim itiveT ype ' pType) ('FunctionType' t l t2) cTypes = False

subtype ('C lassType' cld) ('P rim itiveT ype ' 'bool') cTypes

= subtype ('C lassType' cld) ('C lassType' 'Boolean') cTypes

subtype ('C lassType' cld) ('P rim itiveT ype ' 'char ') cTypes

= subtype ('C lassType' cld) ('C lassType' 'C h a rac te r7) cTypes

subtype ('C lassType' cld) ('P rim itiveT ype ' 'num') cTypes

= subtype ('C lassType' cld.) ('C lassType' 'Number') cTypes

subtype ('P rim itiveT ype ' 'bool') ('ClassType' cld) cTypes

= subtype ('C lassType' 'Boolean') ('C lassType' cld) cTypes

subtype ('P rim itiveT ype ' 'char') ('C lassType' cld) cTypes

= subtype ('ClassType' 'C h arac te r ') ('C lassType' cld) cTypes

subtype ('P rim itiveT ype ' 'num') ('C lassType' cld) cTypes

= subtype ('C lassType' 'Number') ('ClassType' cld) cTypes

subtype ('C lassType' cld l) ('C lassType' cld2) cTypes

= subtype’ (getClassType cldl) (getClassType cld2)

subtype ('FunctionType' t l t2) ('FunctionType' £3 £4) cTypes

= (subtype £3 £1 cTypes) an d (subtype £2 £4 cTypes)

subtype £1 £2 cTypes = (£1 = £2)

subtype’ :: ClassN ame* —> ClassN ame* —y Boolean

subtype’ () () = T ru e

subtype’ () ys = T rue

subtype’ (ar ® xs) ys = (member ys x) an d (subtype’ xs (remove ys x))

getClassType :: ClassN ame —>• ClassType* —> ClassN ame*

getClassType cld cTypes = snd (hd (filter ((= c ld) . fst) cTypes))

Appendix B

Example Translation

This appendix provides an example CLOVER program and the results of its translation

from the concrete syntax (defined in Section 3.4), via the various stages of APC (defined

in Section 4.2.1) and IDS (defined in Section 4.3.1), into target code (defined in Section

4.4.1).

The example illustrates the use of a class hierarchy (Number and subclass

BoundedNumber), inheritance (method f a c defined in Number and reused in

BoundedNumber), overloading (two definitions of method m inus in class Number),

overriding (definition of method m inus in subclass BoundedNumber), partial applica

tion (definition of method dec using method m inus), primitive attributes (p rim in class

Number) and primitive methods (£ —’ in method minus).

B.l Concrete Instance
The following CLOVER program contains a hierarchy and an invocation. The class

hierarchy has been simplified to the classes O bject, Number, BoundedNumber and

Boolean. The program invocation evaluates the factorial of 5. Note that the arguments

to methods minus and i f (and their built-in counterparts £ —’ and i f) are in an unusual

order: in the former case, the application £minus x y ’ sends the message £minus x ’

to the distinguished object y and therefore computes £y - x ’; in the latter case, the dis

tinguished object is the value to be tested (thereby placing i f in the class Boolean) and

therefore the test appears last in the argument list (for exam ple,£ i f 3 4 T rue’ returns

the value 3).

The notation £...’ indicates code that has been omitted for clarity.

B .l. Concrete Instance

class Object
attributes {}
methods {}
subclasses {

class Number
attributes {

prim :: num ;
}
methods {

fac :: Number -> Number {
fac self
= let {g = (multiply :: Number -> Number -> Number

self :: Number)
:: Number -> Number
x :: Number
:: Number ;

x = fac :: Number -> Number
y :: Number
:: Number ;

y = dec :: Number -> Number
self :: Number
:: Number ;

t = (greaterthan :: Number -> Number -> Boolean
new Number (0 :: num) :: Number)
:: Number -> Boolean
self :: Number
:: Boolean ;

> in
((if :: Object -> Object -> Boolean -> Object

g :: Number):: Object -> Boolean -> Object
new Number (1 :: num) :: Number)

:: Boolean -> Object
t :: Boolean
:: Object

}
minus :: Number -> Number -> Number {
minus x self
= new Number (

(- :: num -> num -> num
(getprim :: Number -> num
x :: Number)
:: num) :: num -> num
(getprim :: Number -> num
self :: Number) :: num

:: num)
:: Number

B .l. Concrete Instance 85

}
minus :: Number -> Number {
minus self
= new Number (

(- :: num -> num -> num
(getprim :: Number -> num
self :: Number)
: : num) : : num -> num
0 :: num) :: num)

:: Number
>

dec :: Number -> Number {
dec = minus :: Number -> Number -> Number

new Number (1 :: num) :: Number
:: Number -> Number

}
greaterthan :: Number -> Number -> Boolean { ... }
lessthan :s Number -> Number -> Boolean { ... }
multiply :: Number -> Number -> Number { ... }
getprim :: Number -> num {
getprim self = prim :: num
}

>

subclasses {
class BoundedNumber
attributes {upperbound :: Number ;

lowerbound :: Number ;>
methods {
minus :: Number -> BoundedNumber -> BoundedNumber {
minus x self
= let {result = new BoundedNumber (checkedval :: Number;

ub :: Number;
lb :: Number)

:: BoundedNumber ;
checkedval = ((if :: Number -> Number -> Boolean -> Number

lb :: Number)
:: Number -> Boolean -> Number
(((if :: Number -> Number -> Boolean -> Number

ub :: Number)
:: Number -> Boolean -> Number
tempval :: Number)
:: Boolean -> Number
uppertest :: Boolean) :: Number

lowertest :: Boolean)
:: Number ;

lowertest = (lessthan :: Number -> Number -> Boolean
lb :: Number) :: Number -> Boolean

B .l. Concrete Instance

tempval :: Number
;: Boolean ;

uppertest = (greaterthan :: N mber -> Number -> Boolean
ub :: Number) :: Number -> Boolean
tempval :: Number
:: Boolean ;

tempval = new Number (
(- :: num -> num -> num

(getprim :: Number -> num
x :: Number) :: num)

:: num -> num
(getprim :: BoundedNumber -> num
self :: BoundedNumber)
:: num :: num) :: Number ;

lb = (getlowerbound :: BoundedNumber -> Number
self :: BoundedNumber) :: Number ;

ub = (getupperbound :: BoundedNumber -> Number
self :: BoundedNumber) :: Number ;

> in
result :: BoundedNumber

>

minus :: BoundedNumber -> BoundedNumber { ... >
multiply :: BoundedNumber -> BoundedNumber -> BoundedNumber { ..
getlowerbound :: BoundedNumber -> Number {
getlowerbound self ■ lowerbound :: Number
>

getupperbound :: BoundedNumber -> Number {
getupperbound self = upperbound :: Number
}
subclasses {}

}

class Boolean
attributes {

prim :: bool ;
>

methods {
if :: Object -> Object -> Boolean -> Object { ... }

>
subclasses {)
>

invocation
fac :: Number -> Number
new Number (5 :: num) :: Number
:: Number

B.2. AP Q o Instance 87

B.2 APCIO Instance
The previous concrete instance of our example program translates into the following

APCio instance. To reduce complexity, all type information has been omitted.

Object () ()
(Number (prim)
((fac (Lambda self (Let

((g (Apply (Apply (Variable multiply)
(Variable self)) (Variable x)))

(x (Apply (Variable fac) (Variable y)))
(y (Apply (Variable dec) (Variable self)))
(t (Apply (Apply (Variable greaterthan)

(Object Number (Literal NumVal 0)))
(Variable self)))))

(Apply (Apply (Apply (Variable if) (Variable g))
(Object Number (Literal NumVal 1))) (Variable t))))

(minus (Lambda x (Lambda self
(Object Number (Apply (Apply (Builtin Minus)
(Apply (Variable getprim) (Variable x)))
(Apply (Variable getprim) (Variable self)))))))

(minus (Lambda self (Object Number (Apply (Apply
(Builtin Minus) (Apply (Variable getprim)
(Variable self))) (Literal NumVal 0))))))

(dec (Apply (Variable minus) (Object Number (Literal NumVal 1))))
(greaterthan ...)
(lessthan ...)
(multiply ...)
(getprim (Lambda self (Variable prim))))

(BoundedNumber
(upperbound lowerbound)
((minus (Lambda x (Lambda self (Let

((result (Object BoundedNumber ((Variable checkedval)
(Variable ub) (Variable lb))))

(checkedval (Apply (Apply (Apply (Variable if)
(Variable lb)) (Apply (Apply (Apply
(Variable if) (Variable ub))
(Variable tempval)) (Variable uppertest)))
(Variable lowertest)))

(lowertest (Apply (Apply (Variable lessthan)
(Variable lb)) (Variable tempval)))

(uppertest (Apply (Apply (Variable greaterthan)
(Variable ub)) (Variable tempval)))

(tempval (Object Number (Apply (Apply (Builtin Minus)
(Apply (Variable getprim) (Variable x)))
(Apply (Variable getprim) (Variable self)))))

(lb (Apply (Variable getlowerbound) (Variable self)))

B.2. A P Q o Instance

(ub (Apply (Variable getupperbound) (Variable self)))
(Variable result))))

(minus ...)
(multiply ...)
(getlowerbound (Lambda self (Variable lowerbound)))
(getupperbound (Lambda self (Variable upperbound))))

())

Boolean (prim) ((if ...)) ())

(Apply (Variable fac) (Object Number (Literal Numval 5)))

B.3. APC Instance 89

B.3 APC Instance
The previous APCio instance of our examnle program translates into the following APC

instance. This illustrates: (i) the resolution of overloaded method m inus as a result of

translation from APCio to APCi, and (ii) the expansion of inherited attributes and meth

ods in subclass BoundedNumber as a result of translation from A P Q to APC.

Object () ()
(Number (prim)
((fac (Lambda self (Let

((g (Apply (Apply (Variable multiply)
(Variable self)) (Variable x)))

(x (Apply (Variable fac) (Variable y)))
(y (Apply (Variable dec) (Variable self)))
(t (Apply (Apply (Variable greaterthan)

(Object Number (Literal NumVal 0)))
(Variable self)))))

(Apply (Apply (Apply (Variable if) (Variable g))
(Object Number (Literal NumVal 1))) (Variable t))))

(minus_l (Lambda x (Lambda self
(Object Number (Apply (Apply (Builtin Minus)
(Apply (Variable getprim) (Variable x)))
(Apply (Variable getprim) (Variable self)))))))

(minus_2 (Lambda self (Object Number (Apply (Apply
(Builtin Minus) (Apply (Variable getprim)
(Variable self))) (Literal NumVal 0))))))

(dec (Apply (Variable minus_l) (Object Number (Literal NumVal 1))))
(greaterthan ...)
(lessthan ...)
(multiply ...)
(getprim (Lambda self (Variable prim))))

(BoundedNumber
(prim upperbound lowerbound)
((fac (Reused Number))
(minus_l (Lambda x (Lambda self (Let

((result (Object BoundedNumber ((Variable checkedval)
(Variable ub) (Variable lb))))

(checkedval (Apply (Apply (Apply (Variable if)
(Variable lb)) (Apply (Apply (Apply
(Variable if) (Variable ub))
(Variable tempval)) (Variable uppertest)))
(Variable lowertest)))

(lowertest (Apply (Apply (Variable lessthan)
(Variable lb)) (Variable tempval)))

(uppertest (Apply (Apply (Variable greaterthan)
(Variable ub)) (Variable tempval)))

B.3. APC Instance

(tempval (Object Number (Apply (Apply (Builtin Minus)
(Apply (Variable getprim) (Variable x)))
(Apply (Variable getprim) (Variable self)))))

(lb (Apply (Variable getlowerbound) (Variable self)))
(ub (Apply (Variable getupperbound) (Variable self)))

(Variable result))))
(minus_2 ...)
(dec (Reused Number))
(greaterthan (Reused Number))
(lessthan (Reused Number))
(multiply ...)
(getprim (Reused Number))
(getlowerbound (Lambda self (Variable lowerbound)))
(getupperbound (Lambda self (Variable upperbound)))))

())

Boolean (prim) ((if ...)) ())

(Apply (Variable fac) (Object Number (Literal Numval 5)))

BA. IDS Instance 91

B.4 IDS Instance
The previous APC instance of our example program translates into the following IDS

instance, illustrating reorganisation of the program structure by flattening the hierarchy

and inverting the class-method containment relationship.

((Object ())
(Number (prim))
(BoundedNumber (prim upperbound lowerbound))
(Boolean (prim)))
((fac (Lambda self (Let

((g (Apply (Apply (Variable multiply)
(Variable self)) (Variable x)))

(x (Apply (Variable fac) (Variable y)))
(y (Apply (Variable dec) (Variable self)))
(t (Apply (Apply (Variable greaterthan)

(Object Number (Literal NumVal 0)))
(Variable self)))))

(Apply (Apply (Apply (Variable if) (Variable g))
(Object Number (Literal NumVal 1))) (Variable t)))

(Number BoundedNumber))
(minus_l ((Lambda x (Lambda self

(Object Number (Apply (Apply (Builtin Minus)
(Apply (Variable getprim) (Variable x)))
(Apply (Variable getprim) (Variable self))))))

(Number))
(Lambda x (Lambda self (Let

((result (Object BoundedNumber ((Variable checkedval)
(Variable ub) (Variable lb))))

(checkedval (Apply (Apply (Apply (Variable if)
(Variable lb)) (Apply (Apply (Apply
(Variable if) (Variable ub))
(Variable tempval)) (Variable uppertest)))
(Variable lowertest)))

(lowertest (Apply (Apply (Variable lessthan)
(Variable lb)) (Variable tempval)))

(uppertest (Apply (Apply (Variable greaterthan)
(Variable ub)) (Variable tempval)))

(tempval (Object Number (Apply (Apply (Builtin Minus)
(Apply (Variable getprim) (Variable x)))
(Apply (Variable getprim) (Variable self)))))

(lb (Apply (Variable getlowerbound) (Variable self)))
(ub (Apply (Variable getupperbound) (Variable self)))

(Variable result)))
(BoundedNumber)))

(minus_2 ((Lambda self (Object Number (Apply (Apply

BA. IDS Instance

(Builtin Minus) (Apply (Variable getprim)
(Variable self))) (Literal NumVal 0)))))

(Number))
(...

(BoundedNumber)))
(dec (Apply (Variable minus_l) (Object Number (Literal NumVal 1)))
(Number BoundedNumber))

(greaterthan ...
(Number BoundedNumber))

(lessthan ...
(Number BoundedNumber))

(multiply (...
(Number))

(. . .
(BoundedNumber))

(getprim (Lambda self (Variable prim))
(Number BoundedNumber))

(getlowerbound (Lambda self (Variable lowerbound))
(BoundedNumber))

(getupperbound (Lambda self (Variable upperbound))
(BoundedNumber)))

(if ...
(Boolean)))

(Apply (Variable fac) (Object Number (Literal Numval 5)))

B.5. Target Code Instance 93

B.5 Target Code Instance
The above IDS instance of our example program translates into the following target code

instance, illustrating the generation of a meta type (m eta type) with class and message

types, a program invocation (main), a class constructor (i jiew JJum ber), a dynamic

method despatcher (d jfa c) , a method implementation (i_ f ac) and message appliers

(a p p ly l , a p p ly 2 and app ly3).

Note that, in the prototype which targets Miranda code, it is necessary to permute

the arguments for the built-in operators ’ —’ and ’i f ’.

|| Metatype definition

metatype ::= Number num
| BoundedNumber [metatype]
| Boolean bool
| Message3 (metatype->metatype->metatype->metatype)
| Message2 (metatype->metatype->metatype)
| Messagel (metatype->metatype)

|1 Invocation

main = applyl w_fac (i_new_Number (Number 5))

|| Constructors

i_new_Number al = (Number al)
i_new_BoundedNumber al a2 a3 = (BoundedNumber [al,a2,a3])
i_new_Boolean al = (Boolan al)

|| Method definitions

w_fac = (Messagel d_fac)
d_fac (Number as) = i_fac_Number (Number as)
d_fac (BoundedNumber as) = i_fac_Number (BoundedNumber as)
i_fac_Number w_self
= apply3 w_if w_g (i_new_Number 1) w_t

where w_g = apply2 w_multiply w_self w_x
w_x = applyl w_fac w y
w_y = applyl w_dec w_self
w_t = apply2 w_greaterthan (i_new_Number 0) w_self

B.5. Target Code Instance

w_minus_l = (Message2 d_minus_l)
d_minus_l al (Number as) = i_minus_l_Number al (Number as)
d_minus_l al (BoundedNumber as)
= i_minus_l_BoundedNumber al (BoundedNumber as)
i_minus_l_Number w_x w_self
= i_new_Number ((-) (applyl w_getprim w_x) (applyl w_getprim w_Self))

i_minus_l_BoundedNumber w_x w_self
= w_result

where w_result = i_new_BoundedNumber w_checkedval w_ub w_lb
w_checkedval = apply3 w_if w_lb

(apply3 w_if w_ub w_tempval uppertest)
w_lowertest

w_lowertest = apply2 w_lessthan w_lb w_tempval
w_uppertest = apply2 w_greaterthan w_ub w_tempval
w_tempval = i_new_Number((-) (applyl w_getprim w_x)

(applyl w_getprim w_Self)
w_lb = applyl w_getlowerbound w_self
w_ub = applyl w_getupperbound w_self

w_minus_2 = (Messagel d_minus_2)
d_minus_2 (Number as) = i_minus_2_Number (Number as)
d_minus_2 (BoundedNumber as) = i_minus_2_BoundedNumber BoundedNumber as)
i_minus_2_Number w_self
= i_new_Number ((-) (applyl w_getprim w_self) 0)
i_minus_2_BoundedNumber ...

w_dec = (Messagel d_dec)
d_dec (Number as) = i_dec_Number (Number as)
d_dec (BoundedNumber as) = i_dec_Number (BoundedNumber as)
i_dec_Number w_self = applyl w_minus_l (i_new_NUmber 1)

w_greaterthan = (Message2 d_greaterthan)
d_greaterthan al (Number as) = i_greaterthan_Number al (Number as)
d_greaterthan al (BoundedNumber as)
= i_greaterthan_Number al (BoundedNumber as)
i_greaterthan_Number ...

w_lessthan = (Message2 d_lessthan)
d_lessthan al (Number as) = i_lessthan_Number al (Number as)
d_lessthan al (BoundedNumber as)
= i_lessthan_Number al (BoundedNumber as)
i_lessthan_Number ...

w_multiply = (Message2 d_multiply)
d_multiply al (Number as) = i_multiply_Number al (Number as)
d_multiply al (BoundedNumber as)
= i_multiply_BoundedNumber al (BoundedNumber as)

B.5. Target Code Instance

i_multiply_Number ...
i_multiply_BoundedNumber ...

w_if = (Message3 d_if)
d_if al a2 (Boolean as) = i_if_Boolean al a2 (Boolean as)
i_if_Boolean ...

|| Labelled field selectors

w_getprim = (Messagel d_getprim)
d_getprim (Number as) = i_getprim_Number (Number as)
d_getprim (BoundedNumber as) = i_getprim_BoundedNumber (BoundedNumber as)
i_getprim_Number w_self
= prim

where (Number prim) = w_self
i_getprim_BoundedNumber w_self
= prim

where (BoundedNumber [(Number prim),w_upperbound,w_lowerbound]) = w_self

w_getlowerbound = (Messagel d_getlowerbound)
d_getlowerbound (BoundedNumber as)
= i_getlowerbound_BoundedNumber (BoundedNumber as)
i_getlowerbound_BoundedNumber w_self
= w_lowerbound

where (BoundedNumber [(Number prim),w_upperbound,w_lowerbound]) = w_self

w_getupperbound = (Messagel d_getupperbound)
d_getupperbound (BoundedNumber as)
= i_getupperbound_BoundedNumber (BoundedNumber as)
i_getupperbound_BoundedNumber w_self
= w_upperbound

where (BoundedNumber [(Number prim),w_upperbound,w_lowerbound]) = w_self

|| Message appliers

apply3 (Message3 f) al a2 a3 = f al a2 a3
apply2 (Message3 f) al a2 = (Messagel (f al a2))
apply2 (Message2 f) al a2 = f al a2
applyl (Message3 f) al = (Message2 (f al))
applyl (Message2 f) al = (Messagel (f al))
applyl (Messagel f) al = f al

Bibliography

[AC96]

[AF95]

[AG93]

[AH87]

[AM90]

[AP93]

[AS97]

M. Abadi and L. Cardelli. A Theory o f Objects. Springer-Verlag, 1996.

A. Aiken and M. Fahndrich. Dynamic Typing and Subtype Inference.

Conference on Functional Programming Languages and Computer

Architecture (FPCA’95), pages 182-191, June 1995.

H. Ait-Kaci and J. Garrigue. Label-Selective A-Calculus, Syntax and

Confluence. In Proceedings o f the 13 th International Conference on Foun

dations o f Software Technology and Theoretical Computer Science, Lec

ture Notes in Computer Science 761, pages 24-40, Springer-Verlag, 1993.

G. Agha and C. Hewitt. Actors: A Conceptual Foundation for Concur

rent Object-Oriented Programming. In B. Shriver and P. Wegner, editors,

Research Directions in Object-Oriented Programming, pages 47-74, MIT

Press, 1987.

A. Aiken and B. Murphy. Static Type Inference in a Dynamically

Typed Language. In Proceedings o f the Eighteenth ACM Symposium on

Principles o f Programming Languages (POPL’91), pages 279-290,

January 1991.

H. Ait-Kaci and A. Podelski. Towards a Meaning of LIFE. Journal o f Logic

Programming, Volume 16(3&4), pages 195-234, August 1993.

K. Achatz and W. Schulte. Functional Object-Oriented Programming with

Object-Gofer. In Informatik ’97: Informatik als Innovationsmotor, pages

552-561, Springer-Verlag, September 1997.

Bibliography 97

[AW93]

[AWL94]

[Bac78]

[BB64]

[BC96]

[BC97]

[BC97a]

[BC97b]

[BC98]

A. Aiken and E. Wimmer. Type Inclusion Constraints and Type Inference.

Technical Report, IBM Almaden Research Center, 1993.

A. Aiken, E. Wimmers, and T. Lakshman. Soft Typing with Conditional

Types. In Proceedings o f the 21st ACM Symposium on Principles o f Pro

gramming Languages (POPL’94), pages 163-173, January 1994.

J. Backus. Can Programming be Liberated From the Von Neumann Style?

A Functional Style and its Algebra of Programs. Communications o f the

ACM (CACM), Volume 21(8), pages 613-641, August 1978.

E. Berkeley and D. Bobrow, editors. The Programming Language LISP, its

Operation and Applications. Information International Inc, 1964.

L. Braine and C. Clack. Introducing CLOVER: an Object-Oriented

Functional Language. In W. Kluge, editor, Implementation o f Functional

Languages, 8th International Workshop (IFL’96), Selected Papers,

Lecture Notes in Computer Science 1268, pages 1-20, Springer-Verlag,

September 1996.

L. Braine and C. Clack. An Object-Oriented Functional Approach to Infor

mation Systems Engineering. In Proceedings o f the CAiSE’974th Doctoral

Consortium on Advanced Information Systems Engineering, 12 pages, June

1997.

L. Braine and C. Clack. Object-Flow. In Proceedings o f the 13th IEEE

Symposium on Visual Languages (VL’97), pages 422-423, September

1997.

L. Braine and C. Clack. The CLOVER Rewrite Rules: A Translation from

OOFP to FP. In Draft Proceedings o f the 9th International Workshop on

Implementation o f Functional Languages (IFL’97), pages 467^188,

September 1997.

L. Braine and C. Clack. Simulating an Object-Oriented Financial System

in a Functional Language. In Draft Proceedings o f the 10th International

Bibliography 98

[BDG+88]

[Ber92]

[BGL95]

[BGW91]

[BKK+86]

[BM96]

[BM97]

[Boo94]

Workshop on Implementation o f Functional Languages (IFL’98), pages

487-496, September 1998.

D. Bobrow, L. DeMichiel, R. Gabriel, S. Keene, G. Kiczales, and D. Moon.

Common Lisp Object System Specification. SIGPLANNotices, 23(Special

Issue), September 1988.

E. Berger. FP + OOP = Haskell. Technical Report, Department of Com

puter Science, University of Texas at Austin, March 1992.

M. Burnett, A. Goldberg, and T.Lewis, editors. Visual Object-Oriented

Programming: Concepts and Environments. Manning Publications, 1995.

D. Bobrow, R. Gabriel, and J. White. CLOS: Integrating Object-Oriented

and Functional Programming. Communications o f the ACM (CACM),

34(9):28-38, September 1991.

D. Bobrow, K. Khan, G. Kiczales, L. Masinter, M. Stefik, and F. Zdy-

bel. CommonLoops: Merging Lisp and Object-Oriented Programming. In

Proceedings o f the Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA’86), SIGPLAN Notices 21(11),

pages 17-29, November 1986. Reprinted in A. Cardenas and D. McLead,

editors, Research Foundations in Object-Oriented and Semantic Database

Systems, pages 70-90, Prentice-Hall, 1990.

F. Bourdoncle and S. Merz. Primitive subtyping A implicit polymorphism

(= object-orientation. Presented at Third International Workshop on Foun

dations o f Object-Oriented Languages (FOOL 3), July 1996.

F. Bourdoncle and S. Merz. Type checking higher-order polymorphic

multi-methods. In Proceedings o f the 24th ACM Symposium on Principles

o f Programming Languages (POPL’97), pages 302-315, January 1997.

G. Booch. Object-Oriented Analysis and Design with Applications, Second

Edition. Benjamin-Cummings, 1994.

Bibliography 99

[Bud95]

[Can82]

[Car88]

[CB97]

[CCP95]

[CL91]

[CL96]

[CSK+97]

[CW85]

T. Budd. Multiparadigm Programming in Leda. Addison-Wesley, 1995.

H. Cannon. Flavors: A non-hierarchical approach to object-oriented

programming. Symbolics, Inc., 1982.

L. Cardelli. A Semantics of Multiple Inheritance. Information and

Computation, Volume 76(2/3), pages 138-164, February/March 1988.

First appeared in Proceedings o f the International Symposium on

Semantics o f Data Types, pages 51-67,1984.

C. Clack and L. Braine. Object-Oriented Functional Spreadsheets. In Pro

ceedings o f the 10th Glasgow Workshop on Functional Programming

(GlaFP’97), 12 pages, September 1997.

C. Clack, S. d aym an, and D. Parrott. Lexical Profiling— Theory and Prac

tice. Journal o f Functional Programming, Volume 5(2), pages 225-277,

1995.

L. Cardelli and G. Longo. A Semantic Basis for Quest. Journal o f Func

tional Programming, Volume 1(4), pages 417—458,1991.

Y. Caseau and F. Laburthe. Introduction to the CLAIRE Programming

Language. Technical Report, Department Mathematiques et Informatique,

Ecole Normale Superieure, Paris, April 1996.

J. Chang, J. Song, J. Kim, H. Kim, and S. Han. Implementation of an

Object-Oriented Functional Language on the Multithreaded Architecture.

In Proceedings o f the 1997 International Conference on Parallel and Dis

tributed Systems, pages 294-301, December 1997.

L. Cardelli and P. Wegner. On understanding types, data abstraction, and

polymorphism. Computing Surveys, Volume 17(4), pages 471-522,1985.

February 1998.

[Dil88] A. Diller. Compiling Functional Languages. John Wiley & Sons, 1988.

Bibliography 100

[DK82]

[DK94]

[DM82]

[DV96]

[Erw97]

[FHM94]

[FM95]

[GJL87]

[GR83]

A. Davis and R. Keller. DataFlow Program Graph. In IEEE Computer,

Volume 15(2), page 26-41,1982.

S. Drossopoulou and S. Karathanos. ST&T: Smalltalk with Types.

Technical Report DOC 94/11, Department of Computing, Imperial

College, London, July 1994.

L. Damas and R. Milner. Principal type schemes for functional programs.

In Proceedings o f the Ninth ACM Symposium on Principles o f Program

ming Languages (POPL’82), pages 207-212, January 1982.

L. Dami and J. Vitek. Introduction to HOP, a Functional and Object-

Oriented Language. Submitted for publication, 1996. Available from

http ://cui sun9.unige.ch/dami/Hop/

M. Erwig. Semantics of Visual Languages. In Proceedings o f the 13th

IEEE Symposium on Visual Languages (VL’97), pages 300-308, Septem

ber 1997.

K. Fisher, F. Honsell, and J. Mitchell. A lambda calculus of objects and

method specialization. Nordic Journal o f Computing, Volume 1(1), pages

3-37, Spring 1994. First appeared in Proceedings o f the Eighth IEEE

Symposium on Logic in Computer Science, pages 26—38, June 1993.

K. Fisher and J. Mitchell. The Development of Type Systems for Object-

Oriented Languages. Theory and Practice o f Object Systems, Volume 1(3),

pages 189-220,1995.

D. Gelernter, S. Jagannathan, and T. London. Environments as First Class

Objects. In Proceedings o f the Fourteenth ACM Symposium on Principles

o f Programming Languages (POPL’87), pages 98-100, January 1987.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its

Implementation. Addison-Wesley, 1983.

Bibliography 101

[GWM+93] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J. Jouannaud.

Introducing OBJ. Tutorial and Manual, Computing Laboratory, Oxford

University, October 1993.

[Hil92] D. Hils. Visual Languages and Computing Survey: Data Flow Visual

Programming Languages. Journal o f Visual Languages and Computing,

Volume 3(1), pages 69-101, 1992.

[HL91] F. Henglein and K. Laufer. Programming with Structures, Functions, and

Objects. In Proceedings o f the 17th Latin American Informatics Confer

ence (PANEL’91), pages 333-352, July 1991.

[Hol90] C. Holt, viz: A Visual Language Based on Functions. In Proceedings o f the

1990 IEEE Workshop on Visual Languages, pages 221-226,1990.

[Jon94] M. Jones. The Implementation of the Gofer Functional Programming

System. Research Report YALEU/DCS/RR-1030, Yale University, New

Haven, May 1994.

[Kim95] T. Kimura. Object-Oriented Dataflow. In Proceedings o f the 11th IEEE

Symposium on Visual Languages (VL’95), pages 180-186, September

1995.

[Lan64] P. Landin. The Mechanical Evaluation of Expressions. The Computer

Journal, Volume 6 , pages 308-320,1964.

[LBF+91] D. Lau-Kee, A. Billyard, R. Faichney et al. VPL: An Active, Declarative

Visual Programming System. In Proceedgings o f the 1991 IEEE Workshop

on Visual Languages, pages 40-46, 1991.

[Ler95] X. Leroy. The Caml Special Light System: Modules and Efficient Compi

lation for Caml. Research Report 2721, Institut National de Recherche en

Informatique et Automatique (INRIA), 21 pages, November 1995.

[MCB90] M. Mannino, I. Choi, and D. Batory. The Object-Oriented Functional Data

Language. In IEEE Transactions on Software Engineering, Volume 16(11),

pages 1258-1272, November 1990.

Bibliography 102

[McC97]

[Mey91]

[MHH91]

[Mil78]

[MMM91]

[MMR95]

[M0086]

[MTH90]

C. McClure. Software Reuse Techniques. Prentice-Hall, 1997.

B. Meyer. Eiffel: The Language. Prentice-Hall, 1991.

W. Mugridge, J. Hammer, and J. Hosking. Multi-Methods in a Statically-

Typed Programming Language. In P. America, editor, Proceedings

o f the Fifth European Conference on Object-Oriented Programming

(ECOOP’91), Lecture Notes in Computer Science 512, pages 307-324,

Springer-Verlag, 1991.

R. Milner. A Theory of Type Polymorphism in Programming. Journal o f

Computer System Science, Volume 17, pages 348-375,1978.

J. Mitchell, S. Meldal, and N. Madhav. An Extension of Standard ML

Modules with Subtyping and Inheritance. In Proceedings o f the Eighteenth

ACM Symposium on Principles o f Programming Languages (POPL’91),

pages 270-278, January 1991.

M. Muller, T. Muller, and P. Roy. Multiparadigm Programming in Oz. In D.

Smith, O. Ridoux and P. Roy, editors, Visions for the Future o f Logic Pro

gramming: Laying the Foundations for a Modern Successor o f Prolog”,

Workshop in Association with ILPS’95, December 1995.

D. Moon. Object-Oriented Programming with Flavors. In Proceedings o f

the Conference on Object-Oriented Programming Systems, Languages,

and Applications (OOPSLA’86), SIGPLAN Notices 21(11), pages 1-8,

November 1986.

R. Milner, M. Tofte, and R. Harper. The Definition o f Standard ML, MIT

Press, 1990.

[MYH+84] N. Monden, I. Yoshimoto, M. Hirakawa et al. HI-VISUAL: A Language

Supporting Visual Interaction in Programming. In Proceedings o f the 1984

IEEE Workshop on Visual Languages, pages 199-205, 1984.

Bibliography 103

[NA92]

[Oor96]

[Pey87]

[PHA+97]

[PM93]

[PVM95]

[QM97]

[RR96]

R. Nikhil and Arvind. Id: a Language with Implicit Parallelism. In J. Feo,

editor, A Comparative Study o f Parallel Programming Languages: The

Salishan Problems, pages 169-215, Elsevier Science Publishers, 1992.

W. Oortmerssen. The Bla Language: Extending Functional Programming

with First Class Environments. Masters thesis, Department of Computa

tional Linguistics, University of Amsterdam, 1996.

S. Peyton-Jones. The Implementation o f Functional Programming

Languages. Prentice-Hall, 1987.

J. Peterson, K. Hammond, L. Augustsson, B. Boutel, W. Burton, J. Fasel,

A. Gordon, J. Hughes, P. Hudak, T. Johnsson, M. Jones, E. Meijer, S.

Peyton-Jones, A. Reid, and P. Wadler. Report on the Programming Lan

guage Haskell. A Non-strict, Purely Functional Language, Version 1.4,

April 1997. Available from http://haskell.org/report/

J. Poswig and C. Moraga. Incremental Type Systems and Implicit Para

metric Overloading in Visual Languages. In Proceedings o f the 9th IEEE

Symposium on Visual Languages (VL’93), pages 126-133, August 1993.

J. Poswig, G. Vrankar, and C. Moraga. Visa Vis: a Higher-order Functional

Visual Programming Language. Journal o f Visual Languages and Comput

ing, Volume 5, pages 83-111, 1995.

Z. Qian and B. Moulah. Combining Object-Oriented and Functional

Language Concepts. Department of Mathematics and Computer Sci

ence, University of Bremen, available from http://www.informatik.uni-

bremen.de/~qian/abs-comcon.html, August 1997.

J. Reppy and J. Riecke. Simple Objects for Standard ML. In Proceedings o f

the ACM SIGPLAN’96 Conference on Programming Language Design and

Implementation (PLDI), SIGPLAN Notices 31(5), pages 171-180, May

1996.

http://haskell.org/report/
http://www.informatik.uni-

Bibliography 104

[RV97]

[RW91]

[Sar93]

[SKA94]

[Soc93]

[SPL89]

[Ste84]

[Sto85]

[Tur85]

D. Remy and J. Vouillon. Objective ML: A Simple Object-Oriented Exten

sion of ML. In Proceedings o f the 24th ACM Symposium on Principles o f

Programming Languages (POPV97), pages 40-53, January 1997.

J. Rasure and C. Williams. An Integrated Data Flow Visual Language and

Software Development Environment. Journal o f Visual Languages and

Computing, Volume 2, pages 217-246, 1991.

J. Sargeant. Uniting Functional and Object-Oriented Programming. In S.

Nishio and A. Yonezawa, editors, Object Technologies for Advanced Soft

ware (ISOTAS’93), Lecture Notes in Computer Science 742, pages 1-26,

Springer-Verlag, November 1993.

J. Sargeant, C. Kirkham, and S. Anderson. The Uflow Computational

Model and Intermediate Format. Technical Report UMCS-94-5-1, Depart

ment of Computer Science, University of Manchester, May 1994.

A. Socorro. Design, implementation and evaluation of a declarative object-

oriented programming language. DPhil thesis, Computing Laboratory,

University of Oxford, Trinity Term 1993.

M. Szpakowski, T. Pietrzykowski, J. Laskey et al. Prograph Reference: A

very high-level, pictorial, object-oriented programming environment. TGS

Systems, 1989.

G. Steele, Jr. Common LISP: The Language. Digital Press, 1984.

W. Stoye. The Implementation of Functional Languages using Custom

Hardware. PhD thesis, Computer Laboratory, University of Cambridge,

May 1985.

D. Turner. Miranda: A non-strict functional language with polymorphic

types. In Proceedings o f the 2nd Conference on Functional Program

ming Languages and Computer Architecture (FPCA’85), Lecture Notes in

Computer Science 201, pages 1-16, Springer-Verlag; 1985.

Bibliography 105

[Tur85a] D. Turner. Functional Programs as Executable Specifications. In C. Hoare

and J. Shepherdson, editors, Mathematical Logic and Programming

Languages, pages 29-54, Prentice-Hall, 1985.

[WB89] P. Wadler and S. Blott. How to Make ad-hoc Polymorphism Less ad-

hoc. In Proceedings o f the Sixteenth ACM Symposium on Principles o f

Programming Languages (POPL’89), pages 60-76, January 1989.

[WR13] A. Whitehead and B. Russell. Principia Mathematica. Cambridge, 1913.

