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Abstract

Computational methods have been used to investigate properties of the doubly 
charged molecules (dications), SiF32+, 0 32+ and BC12+. Ab Initio electronic structure 
calculations have been performed on all systems to provide information on 
equilibrium geometries and ground and excited state energies. Other computational 
techniques have also been used dependent on the system under study.

For SiF32+, relative product ion intensities following electron-transfer reactions 
between SiF32+ and the rare gases neon, argon, krypton and xenon have been 
rationalised using a combination of ab initio electronic structure techniques and 
Landau-Zener reaction window theory. The calculations show that the 
experimentally observed products derived from the dications (SiF3+, SiF2+ and SiF+) 
require the ions in the dication beam to be present in three different electronic 
states. The predicted and experimental product ion distributions, given this energy 
distribution, are in very close agreement. The combined computational approach 
adopted in this study is valuable for large molecular systems where the reactant 
molecules have several degrees of freedom and adopt markedly different 
equilibrium geometries depending on the degree of ionisation.

The theoretical study of the ozone dication 0 32+ was prompted by experimental 
studies into the double ionisation of neutral ozone. No stable 0 32+ ions were 
detected in the experiments and this study determines a possible mechanism for the 
rapid dissociation of the ozone dication upon formation via double ionisation of 
neutral 0 3. The dication ground singlet state is found to have a linear equilibrium 
geometry that is stable with respect to dissociation to 0 + and 0 2+. However at the 
Franck-Condon zone for formation of 0 32+ from the neutral molecule the singlet 
potential energy surface intersects with a dissociative triplet state. It is proposed 
that crossing to this dissociative triplet state can account for the absence of any 
long lived 0 32+ ions in the electron impact mass spectrum of ozone.

For BC12+ state averaged complete active space, SA-CAS, calculations have been 
used to determine the stabilities of the ground electronic state and 34 excited 
states. Vibrational level energies and tunnelling lifetimes have been determined for 
those states found to be quasibound. The majority of the states are found to be 
unbound, and of the bound states the ground *E+ state has the largest barrier to 
dissociation at 2.57 eV. Nine other excited states are found to be quasibound, 
although crossing to unbound states through strong spin orbit coupling is likely to 
reduce the lifetime of these states. The long lifetime of the ground state and the 
presence of other low lying quasibound states suggest that BC12+ could be made 
and studied successfully in electron ionisation experiments.
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Chapter 1

Introduction

1.1 Introduction

In this thesis ab initio computational calculations have been used to investigate 

properties of the doubly charged molecules SiF32+, 0 32+ and BC12+. For SiF32+ the 

calculations have allowed the interpretation of experiments investigating the 

collision between this doubly charged molecule and rare gas atoms. The 0 32+ 

molecule decays rapidly when formed experimentally, and computational 

investigations are used to discover a likely decay pathway for the molecule. BC12+ 

has not been studied experimentally and the calculations are used to predict its 

likely stability when BC1 is doubly ionised.

Singly charged positive ions have been studied extensively [1] and there exists a 

substantial amount of data on many of these species. Doubly charged positive ions, 

dications, due to the relatively high energies required for their formation and an 

inherent instability complicating experimental studies, have only recently been 

intensively studied. Hence, the amount of information on dicationic properties is 

relatively small compared to that on singly charged ions, although it is increasing 

rapidly due to advances in experimental techniques and an increased interest in 

dicationic properties.

Experiments on highly reactive or unstable molecules, such as dications, are often 

complicated and the experimental information obtained can be limited or 

complicated to interpret. Computational studies can be particularly useful for these 

experiments, providing information on molecular properties to aid the experimental 

set-up and also in interpreting inconclusive experimental results. The calculations 

performed for the studies in this thesis are geared toward the interpretation of
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particular experimental results concerning dications and show the power of a 

combined experimental and computational approach to solving problems in 

chemical physics.

1.2 Computers and Chemistry

In the past two decades, the computational prediction of chemical properties has 

become an increasingly powerful tool for work in chemistry, producing a shift in 

emphasis away from chemistry being a purely experimental subject. The increasing 

power and reduced cost of computers has encouraged theoretical chemists and 

later physical, organic and inorganic chemists to use and develop sophisticated 

computational techniques. The subject of computational chemistry has become 

distinct from theoretical chemistry as it uses known theory to develop computer 

software to solve chemical problems. Computational chemistry is performed on all 

sizes of computer from desktop personal computers and workstations up to super 

computers. The size of the system under study or the required accuracy of the 

results is the guiding factor for which computer to use, but cost and the time 

available are also important. Generally, personal computers are not powerful 

enough to perform sophisticated calculations but they allow graphical 

representations of the results of calculations, manipulation of data and restricted 

calculations which can be used as a starting point for subsequent larger 

calculations. Workstations costing a few thousand pounds can be used for almost 

the entire range of computational chemistry and have become widely used by many 

research groups. Also, by linking several workstations together it is possible to 

achieve as much computational power as larger mainframes without the large cost.

Supercomputers, costing millions of pounds are at the top end of computational 

power and are used for studies on particularly large systems of thousands of 

molecules or to obtain results to very high accuracy. Such results can then be used 

as benchmark figures for subsequent studies. The power of supercomputers also



means that they can have hundreds of different users and each user can then use a 

small fraction of the computing power for smaller, but still sophisticated, 

calculations. Computational chemists are amongst the largest users of super 

computing time and some of the leading industrial companies own the most 

powerful machines in order to serve the chemists’ needs.

1.2.1 Types of Calculation [2-4]

Single molecules', calculations on a single molecule can in principle give 

information on almost any physical observable. Molecular properties that are 

typically calculated include stable geometries (i.e. bond lengths and angles), 

barriers to internal rotation about bonds, vibrational frequencies, electron 

distribution, ionisation potentials, electron affinities, dipole moments and spin orbit 

coupling constants. The software to calculate these properties is often provided as 

a single package containing a suite of different programs. The packages used for 

the calculations in this thesis are capable of calculating many of the properties 

given above and are described in Chapter 2.

Molecular Assemblies: when calculations are performed on a large number 

of molecules, particularly solvent molecules, it is possible to determine 

thermodynamic properties, such as enthalpies, free energies, heat capacities and 

equilibrium constants. The binding energy between small molecules can be 

determined, as can partition coefficients, ionisation constants, potentials of mean 

force and free energy as a function of a particular co-ordinate.

Molecular reactions'. The calculation of absolute rate constants for 

chemical reactions performed on a macroscopic scale is beyond the capability of 

computational chemistry, but it is possible to gain an idea of relative rate constants 

and the structure of transition states. Solvent effects in simple reactions have been
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determined and the behaviour of macromolecules over time of a few hundred 

picoseconds.

1.3 Properties of doubly charged ions

Molecular ions with two positive charges, dications, are thought to play a role in 

atmospheric chemistry[5], combustion chemistry[6] and in the interstellar 

medium[7]. There is also interest in dications because small molecular dications 

display unusual bonding properties. Experimental studies of dications are difficult 

though, due to their high reactivity and the short lifetimes of many of their 

electronic states, and hence the information that can be obtained by experimental 

studies is often limited and hard to interpret[8]. Studies have also tended to 

concentrate on diatomic dications, although recent advances in experimental 

apparatus have allowed triatomics and larger dications to be studied in detail [9].

1.4 Stability of Dications

Molecular dications are energy rich species with the two positive charges 

producing an internal energy of 20-30 eV. The coulomb repulsion between the two 

positive charges would be expected to result in rapid fragmentation of the 

molecular dication and indeed a large number of dications are highly unstable, 

dissociating to two singly charged ions and, in some cases, additional neutral 

molecules, Eqns 1.1 & 1.2.

XY2+-> X + + Y+

XY22*-> X++ Y* + Y 1,2

However, a significant number of molecular dications with long-lived electronic 

states do exist, the first long-lived molecular dication, C 02+, being observed in 

1930 [10], and many more have been observed and studied since [11-16].
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Molecular dications are often detected in mass spectrometric studies in which the 

ions must survive for at least 1 x 1CT6 s in order to be observable. Thus the ions 

must possess at least one electronic state which has a barrier with respect to 

charge-separating dissociation, Eqns 1.1 & 1.2. These electronic states often lie at 

energies above the charge-separation asymptote and are thus termed metastable. In 

Figure 1.1 a typical metastable dication potential curve is shown, along with a 

purely repulsive curve and a stable bonding curve for comparison.

repulsive curve

metastable curve
2+

stable curve

r

Fig 1.1 Plot o f repulsive, metastable and stable potential curves. Bond length, r, is plotted on 
the x axis and the energy, E, on the y  axis.

There are two theories currently proposed to account for the metastability of 

molecular dications. The first theory considers metastable states to arise from an 

avoided crossing between an attractive electronic state converging to a fragment 

dication plus neutral, (X2+ + Y), and a purely repulsive state correlating to the 

charge separation asymptote, (X+ + Y+). This is shown schematically in Figure 1.2. 

An alternative explanation is proposed by O’Neill and co-workers from 

computational studies of F22+; the potential curves for the F22+ dication were found 

to be well reproduced by combining the well-established curves of isoelectronic 0 2
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with a coulomb repulsion [17]. From this, they proposed that dication states can be 

pictured as arising from the combination of an ordinary chemical binding potential 

and the constituent ion Coulomb repulsion potential. Thus metastable states will 

exist when the chemical bond is strong enough to overcome the repulsion of the 

two positive charges. But, studies on some heteronuclear diatomics such as HC12+ 

have shown that the positive charges can both reside on one atom at small 

intemuclear separation [18], the additive model is thus inappropriate for these 

systems and they are better described by the avoided crossing theory.

w<

X+ +Y*

Fig 1.2 Schematic potential energy curves showing a metastble dication state arising from the 
avoided crossing (dashed lines) o f potential energy curves which correlate with the 
charge separated X* + Y+ and neutral loss X2+ + Y asymptotes.

1.5 Experimental studies of dications

Although many dications have been detected experimentally, detailed studies of 

their electronic structures are hampered by the dication’s high reactivity, short 

lifetimes and limited accessibility of electronic states suitable for high resolution 

studies. Laser spectroscopic studies have provided detailed information on the
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structures and energetics of many monocations [19] but similar studies on dications 

are limited to only a handful of molecules.

Metastable electronic states of N2 2+ have been studied with rotational resolution by 

laser predissociation spectroscopy [20-26]. This technique detects photoabsorption 

between metastable dication electronic states by monitoring the fragment ions from 

the photoinduced unimolecular charge separation of the upper state as in 

equation 1.3.

N22+(*) + /iv -> N22%4) ^ N *  + N+ 13

No other dications have yielded such detailed information on their excited 

electronic states from spectroscopic studies although recently the first high 

resolution IR laser predissociation spectra of DC12+ have been recorded, which 

resolve several vibrational levels [27]. The carbon monoxide dication has been 

studied with vibrational resolution [15] and the dications N 0 2+ and CF2+ are 

thought to be good candidates for spectroscopic studies, but as yet no spectra have 

been recorded [28,29].

Experimental information on the electronic structure of three and four atom 

molecular dications is less detailed, with most information obtained from collisional 

studies, and some from threshold electron spectroscopy experiments. These 

techniques provide information on electronic energy levels and their stability, 

double ionisation potentials and kinetic energy release, and are described below. 

Collisional studies are discussed in detail in Chapter 3. Larger polyatomic dications 

have only been studied by analysis of the fragmentation products observed upon 

double ionisation of the neutral [30,31], These studies determine the double 

ionisation potential, kinetic energy release and fragmentation pathways of the 

dication.
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1.6 Experimental Techniques

Many techniques have been developed to study dicationic molecules and their 

reactions, and a detailed discussion of all these techniques is beyond the scope of 

this thesis. But, as the experimental studies of the dications SiF32+ and 0 32+ are 

relevant to the calculations described in Chapters 3 & 4, some discussion of the 

techniques used in these studies is given below, along with descriptions of some of 

the current state of the art techniques for high resolution studies of dications.

1.6.1 Dication formation

The experimental studies of dications commonly form the ions by one of three 

different methods:-

(i) Electron-impact ionisation forms the ions by passing the neutral molecules 

through a region where they collide with fast moving electrons and the 

impact ionizes the molecules.

(ii) Photoionisation uses a photon of a known energy to ionise electrons from 

the molecule.

(iii) Collisional ionisation forms the ions by colliding the neutral molecules with 

high energy ions.

As well as the dications that are desired, these processes often form many other 

ions such as singly or triply charged species and also charged fragments o f the 

precursor molecules, as the high energy processes are capable of breaking up the 

molecules as well as ionising them. The required dications are extracted from these 

other ions by mass spectrommetric techniques that separate the ions by their mass 

to charge ratio. The experimental studies of SiF32+ and 0 32+ both form the ions by 

electron impact ionisation.
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1.6.2 Time of flight mass spectrometry

Many dication experiments use the mass spectrometric technique of time of flight 

mass spectrometry. This technique identifies ions by the length of time they take to 

travel a set distance within the mass spectrometer. Ions are accelerated by passing 

them through a controlled potential difference and their resulting velocity is 

dependent on the ion’s mass to charge ratio. The ions produced in the S1F3  

experiments are identified and studied by time of flight spectroscopy [32].

1.6.3 Coincidence techniques

In the mass spectrometric study of doubly charged molecules, identifying the ions 

by their mass to charge ratio encounters problems for a doubly charged diatomic 

such as N22+, as the parent dication has the same mass to charge ratio as the 

fragment ion 1ST. The signal for N22+ then overlaps with any IST signal, making it 

hard to obtain useful information on the dication. To overcome this problem 

coincidence techniques have been developed to study molecular dication 

dissociation [33]. Coincidence techniques are used in time of flight mass 

spectrometric studies and measure the difference between the flight times of 

selected dissociation products of an unstable dication. These techniques are used to 

study both electron ionisation and photoionisation of the neutral molecule. 

Coincidence experiments yield information on the dynamics of the double 

ionisation process, electronic information on the dications and fragmentation 

pathways.

1.6.3.1 Ion-Ion Coincidence and PIPICO

In an electron impact time of flight mass spectrometer the ion-ion coincidence 

technique [34-36] is used to investigate the following dissociation process.

e' + XY -> XY2+ + 3e' -> X* + Y+ + 3e' 14
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Ion pairs detected within a certain time of each other are assumed to both be the 

dissociation products of the same molecule. From this technique, the kinetic energy 

release upon dissociation can be determined, as well as branching ratios for various 

dissociation routes and the mechanism of the dissociation reaction. The ion-ion 

coincidence technique is used in the C>32+ experiment (see chapter 4), identifying the 

dications dissociation products and determining the double ionisation potential and 

kinetic energy release [37]. Where the dication is formed by photoionisation the 

technique is called photoion - photoion coincidence (PIPICO) [8,38-40]. These 

techniques have the advantage that the energy of the ionizing photon is known.

1.6.3.2 PEPIPICO

As the ion-ion coincidence and PIPICO experiments measure the time of flight 

difference between fragment ion pairs, when these two particle coincidence 

techniques are applied to ion pairs of equal mass the time difference is zero and the 

identity of the ion pair cannot be determined. Also, complex polyatomic dications 

may have a number of fragmentation channels that yield ion pairs with the same 

time of flight difference, so the ions are not unambiguously identified. For such 

cases, triple coincidence techniques have been developed which, as well as the 

fragment ion pair, also detect one or more of the ejected electrons. These 

photoelectron - photoion - photoion coincidence (PEPIPICO) [41,42] techniques 

record the actual ion flight times, thus allowing the fragments to be identified.

1.6.3.3 TPEsCO

When forming dications by photoionisation techniques, if the photon is of the 

correct energy to doubly ionise the neutral species and form the dication exactly at 

a specific electronic state then there is no excess energy to go into the kinetic 

energy of the ejected electrons, so the photoelectrons detected will have zero 

energy. This Threshold Photo Electrons Coincidence, TPEsCO, technique [43] 

detects the pair of ejected electrons whilst the ionising photon’s energy is varied
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scanning for zero energy electrons. This technique provides information on the 

electronic energy levels and some vibrational levels. The resolution of this 

technique is limited by the choice of zero energy actually being as close to zero as 

is feasible with the experimental set-up. The closer to zero energy, the higher the 

resolution of the experiment but the weaker the electron signal that is detected.

1.6.4 DFKER

Due to the thermal motion of the parent molecule, the results of experiments using 

the techniques described above suffer from Doppler broadening which limits the 

energy resolution of the kinetic energy release spectra. However, using the 

technique Doppler Free Kinetic Energy Release spectroscopy (DFKER) [44] the 

Doppler broadening is eliminated through simultaneous measurement of both 

fragment ions energies. The kinetic energy release spectra recorded contain 

vibrational fine structure and this technique allows detailed investigation of the 

electronic and vibrational states of the dications, DFKER has been used to study 

the dications N22+, 0 22+ and N 0 2+ [12,45,46].

1.6.5 Double charge transfer

Another method used to investigate dications is the Double Charge Transfer 

(DCT) technique [47], where a monocation, P+, is collided with the neutral, AB at 

keV energies. In the reaction

P* + AB P' + AB2* 15

the anion P‘ is monitored, and providing the transition P+ P* is well understood, 

kinetic energy analysis of the anion gives concise information about the various 

electronic states of the dication AB2+. Unfortunately the DCT techniques can only 

be applied to neutral molecules which exist as bulk compounds and the dication is 

only probed indirectly as it is the anion P* which is detected.
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1.6.6 Collisional studies

As well as probing the properties of the isolated dication, experiments have

recently been developed to investigate the reactions of dications upon collision
2+

with neutral species [48]. The early studies focused on the collisions between CO 

and rare gas atoms at high collision energies (keV) in conventional mass 

spectrometers [49-52]. However, for a more chemically realistic study, lower 

collision energies (eV) need to be employed requiring specialist spectrometers [9]. 

The collision studies using rare gases observe an electron-transfer reaction 

occurring where the dication strips an electron from the rare gas. The electron- 

transfer reaction is discussed in more detail in Chapter 3 which investigates 

collisions between the dication SiF32+ and rare gas atoms. In the collision reaction 

with neutral molecules bond forming reactions have been observed. A wide variety 

of dications have been found to form chemical bonds upon low energy collisions 

with D2 and 0 2 of which typical reactions observed are:

CF2* + D2 -> DCF2+ + D*

c f 32+ + d 2 -> d c f 2+ + [F + D]+

OCS2+ + D2 DS+ + [D + O + C f

CF2+ + 0 2 -> CO* + [F + 0 ]+.

The reactions occur more readily with D2 and recent analysis has determined that 

reactions with D2 occur via hydride, D', transfer from the neutral molecule to the 

dication [9].

The SiF3 2+ experiments investigate the charge transfer reaction that occurs between 

the SiF3 2+ dication and rare gas atoms and are described in more detail in chapter 3.

1.7 Ab initio calculations on dications

Computational studies of dications require sophisticated quantum chemistry 

calculations due to their unusual bonding properties. The formation of the potential
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well due to competition between an ordinary bond and electrostatic repulsion, as 

described earlier, complicates calculations as the coulomb component is described 

very accurately by the ab initio calculations, but the chemical bonding term is 

described with less accuracy. In neutral systems the error in the bonding potential 

is tolerable, but in dications the coulomb term cancels most of the binding energy, 

thus the error is magnified as it is now a larger fraction of the well depth [53,54].

Although the error in the ab initio calculations of the dication potential curves is 

small it can result in the barrier heights and widths being underestimated, with the 

result that experiments have observed vibrational levels for dication electronic 

states above the highest predicted by calculation [53], In addition, underestimating 

the barrier width resulted in calculations on N22+ predicting that the predominant 

decay route for certain electronic states would be tunnelling through the potential 

barrier [55]. Subsequent high resolution experiments on N22+ though, determined 

that the electronic states actually decayed via crossing to other electronic states

[20], indicating that the tunnelling lifetimes, and thus the barrier widths, were 

greater than the calculations suggested. But high level calculations on dications do 

achieve good agreement with experimental transition frequencies and equilibrium 

bond lengths [55-57], and the discrepancies described above are only noticed in 

detailed comparisons of calculation and experimental results. The information 

gained from computational studies of dications is still of great use for studying 

dication properties and as a guide to experimental studies.

1.8 Chapter Summaries

1.8.1 Molecular electronic structure theory

The basic principles behind the current molecular electronic structure theories and 

how they are applied in computational calculations are presented in Chapter 2. The
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software packages used for the calculations performed in this thesis are discussed 

along with the computational resources used.

1.8.2 Electron transfer reactions of the SiF32+ dication with the rare gases 

neon, argon, krypton and xenon

Recent advances in experimental techniques have allowed the reactive properties of 

some dications to be studied mass spectrometrically. Typically, dications are found 

to undergo a charge transfer reaction where the high positive charge of dications 

can strip an electron off a neutral species. Experimental studies of the charge 

transfer reactions of OCS2+, C 022+ and SiF22+ with rare gas atoms found good 

agreement with the current theories to model the charge transfer reaction and the 

experimental results. However, the experimental results for SiF32+ were found to 

show marked discrepancies from the theory predictions [58].

In Chapter 3, ab initio calculations of the equilibrium geometries and excited state 

energies of SiF3+ and SiF32+ provide vital information for use in Landau-Zener 

calculations. These calculations are used to predict the experimental product ion 

yields following the reaction of SiF32+ with the rare gases, and good agreement is 

found with the experimental results.

1.8.3 On the dissociation of the ozone dication

Dications are thought to play an important part in atmospheric chemistry, and so 

the dication of ozone, 0 32+, is likely to be important in the atmospheric ozone 

cycle. However, recent experiments to form 0 32+ by electron impact ionisation did 

not detect any 0 32+, only the dissociation products 0 2+ and 0 +, showing that any 

dications produced are formed in an unstable state with lifetimes < 10"6 s [36].

In Chapter 4, ab initio calculations on the ground singlet and first excited triplet 

states are used to create potential energy surfaces for the ozone dication



dissociating to C>2+ and 0 +. From these surfaces, a dissociation mechanism is 

proposed where the ozone dication rapidly crosses from a quasibound singlet state 

to weakly bound triplet state. The singlet and triplet states are found to lie close in 

energy at the geometry at which the dication is formed in experiments; the 

calculations suggest that forming the dication via single ionisation of (V  could 

result in long lived C>3 2+ ions.

1.8.4 An ab initio study of the structure and stability of low lying electronic 

states of the dication BC12+

The BC12+ dication has not been studied experimentally, so in Chapter 5 a series of 

ab initio calculations are performed on the dication to provide information on its 

likely stability to aid possible experiments. Potential curves of the 35 electronic 

states that dissociate to first six dissociation asymptotes of BC12+ have been 

calculated, and the molecular orbital configurations that make up the electronic 

states are determined. The calculations suggest that BC12+ ions should be 

observable in mass spectrometric studies due to the presence of metastable 

electronic states and some discussion of the possible origin of this metastability is 

undertaken.
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Chapter 2

Molecular electronic structure theory

2.1 Introduction

Modem electronic structure theory has become a powerful tool for the solution of 

many chemical problems, often enabling the determination of molecular properties 

that can be very difficult or impossible to probe experimentally. The use of 

computers is essential to most modern work with different techniques available 

allowing the accuracy of the calculations to be balanced with computational 

resources available.

Studies on large molecular systems may use techniques such as Extended Hiickel 

Theory [1] that employ extensive approximations to produce a simplified 

description of the system under study; here the interaction between electrons in 

different orbitals is not calculated but replaced by an experimentally determined 

constant. For smaller systems the more accurate ab initio computational 

techniques can be used; here an attempt is made to solve the Schrodinger equation 

from first principles, treating the molecule as a collection of positive nuclei and 

negative electrons moving under a coulomb potential. In these methods some initial 

approximations are made. The first is the Born-Oppenheimer approximation in 

which the motion of the nuclei is considered to be so slow (relative to electronic 

motion) that it has no effect on the motion of the electrons (i.e. the electrons move 

in the potential field of the fixed nuclei). Also relativistic effects are ignored, the 

particles are influenced only by electrostatic forces. In the ab initio techniques the 

important aspect is that the molecular properties are calculated without using any 

prior knowledge of the species’ chemical behaviour. Unfortunately ab initio studies 

require large calculations but with the power of modem computers molecular
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systems of tens of atoms can be studied to a very high accuracy and calculations on 

three to five atom molecules are routine.

Underlying many of the computational techniques is the Variation Principle [2] 

which states that so long as the equations used to model the systems under study 

conform to certain rules then an approximate wavefunction used to calculate the 

energy of a system will never give a value lower than that possible with the 

‘perfect’ wavefunction. This principle is important to many of the techniques in 

computational chemistry because with the power of modern computers it is 

possible to create highly flexible wavefimctions with literally thousands of 

variables. If the wavefunction conforms to the Variation Principle then providing 

there is sufficient computer power to efficiently vary all the parameters in the 

wavefunction it is possible to come close to the ‘perfect’ wavefunction and obtain 

highly accurate results.
/

2.2 Hartree-Fock equations

The Schrodinger equation, Eqn 2.1, provides a theoretical basis for determining the 

properties of almost any chemical system, but an exact solution of the equation for 

a system with any more than one electron is not possible due to the complication of 

solving the electron-electron interaction. However, computational techniques have 

been developed that are able to give very detailed and reliable numerical solutions 

to the Schrodinger equation for many systems.

H V  = E V  2 1

Douglas Hartree originally introduced these techniques before the advent of 

computers [3] then they were subsequently modified by Vladimer Fock to correctly 

account for the Pauli exclusion principle [4], hence they are known now as 

Hartree-Fock equations.
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The full derivation of the Hartree-Fock equations from the Schrodinger equation is 

non-trivial [2] and has the Schrodinger equation expressed as

=  eA 2.2

where HSCF is in the form necessary to be used in the Self Consistent Field 

equations described later, and <(),• are the one electron molecular orbitals. HSCF 

contains the kinetic and potential energy terms of the system and is given by

-?'*}
where if*  describes the electrons moving in the electronic field of the nuclei, and J  

and K  represent the electron / electron interaction.

h sc f  =  L y N + 2 y

In J  is a shorthand notation for the coulombic repulsion between two
i

electrons in orbitals fa and <j)j where the second electron is represented as a 

spherical charge distribution; the fully expanded form of J  is given in Eqn. 2.4. The
9

second summation term £  K  is performed over pairs of electrons with the same
i

spin and is necessary so that, the equations obey the Pauli exclusion principle. 

Again, K  is shorthand notation, the expanded form of A'is given in Eqn. 2.5.

^ , ( 1 ) =  1 ^ ( 2 ) — dv
V 712

W M  J4>j ( % ( 2 )2 - d v 2
i r\2

2.4

<f\0)

"v 2.5

The ^  K  summation is generally called an exchange term and is purely a quantum
j

mechanical artifact with no direct classical analogue, although it can be thought of 

as a modification of the coulomb potential to take account of like spin electrons’ 

increased tendency to avoid each other. In Eqn. 2.4 J  is described as ‘local’ 

because the calculation of ̂ (|)i requires the knowledge of <(>i only at a single point in 

space, whereas K  is ‘non-local’ because has <j)j within the integral so a 

knowledge of <j>i over all space is required.
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2.3 Self Consistent Field Calculations

In the Hartree Fock form of the Schrodinger equation, Eqn. 2.2, a description of 

the molecular orbitals of the system, (j>i, is required to solve the equations and 

obtain the energy of the molecular system. This introduces a problem because to 

obtain an accurate energy, accurate molecular orbitals for the system are required, 

but before performing calculations on a system it is not possible to know what the 

accurate orbitals of the system will be, as they are an integral part of the results 

expected from the calculations. To address this problem an initial guess of the form 

of the molecular orbitals is made to act as a starting point for the calculations. 

Then, using an iterative process a cyclical series of calculations gradually improves 

the molecular orbitals, and thus the energy, until the energy difference between 

successive calculations is within a specified limit.

The general scheme can be neatly represented as the sequence below.

Start, I Guess initial molecular orbitals,

2

(j)2, <j>3 ••• <j>n

Solve Hartree-Fock equation for (j)j in the field  of

3

electrons in <j>2, <j>3 ... <j>n 

Obtain $ lt <j>2, ^  ... </>„

4 Solve Hartree-Fock equation for fa in the field  o f

5

electrons in (f>3 ... <j)n 

Obtain <j>,}, <t>2, <t>3 ... <t>n

6 Repeat process to find </>'i, <j>f2, <t>*3 ... (j>'n

7 Compare </>]t <j>2, </>3 ••• & 

with fij, (j)'2, ft3 ••• <t>'n

8 If difference is small and within set limits end 

cycle, otherwise let <fr'„ = (j>„ repeat steps 2 to 8
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In its simplest form the Hartree-Fock equation can only be used on closed shell 

systems where all the electrons are paired, this is called Restricted Hartree-Fock, 

RHF, theory. To allow calculations on open shell systems the more sophisticated 

Unrestricted Hartree-Fock, UHF, theory uses two sets of orbitals, one representing 

the alpha spin electrons and the other the beta spin electrons. Each set of UHF 

orbitals is represented by a different spatial wavefunction, thus unpaired electrons 

are created by occupying one spin molecular orbital and not its corresponding 

opposite spin orbital. Paired alpha and beta spin orbitals correspond to the doubly 

occupied orbitals of the RHF system. Unfortunately the UHF wavefunction for a 

given system contains contributions from higher spin states of the same symmetry, 

a problem called spin contamination. Energies obtained from UHF calculations can 

sometimes be more negative than a corresponding RHF calculation, thus creating 

difficulties if the neutral and ionized versions of a molecule need to be compared. 

To counter the problem of spin contamination in open shell calculations the 

Restricted Open shell Hartree-Fock, ROHF, method has been developed; here the 

doubly occupied orbitals are constrained to be identical for alpha and beta spin 

preventing the mixing of higher spin states.

2.3.1 Molecular orbitals

In producing a molecular wavefunction, 'F, to adequately describe the molecular 

system under study, accurate molecular orbitals, <)>, are required. 'P represents the 

molecular wavefunction,

where each <|>i can be considered as a three dimensional function which determines 

the properties of an individual electron in the molecule. There are certain 

constraints necessary on VF in Eqn 2.6. The Pauli Exclusion Principle tells us that 

the total wavefunction must be anti-symmetric, change sign, upon the interchange
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of any two electron co-ordinates as the electron has a spin of XA. To conform to 

these requirements 'F is expressed as a Slater determinant where the columns for 

the determinant are single electron wavefunctions, orbitals, and the rows are the 

electron co-ordinates. Expressing ¥  is in the form of Eqn 2.6 is short hand 

notation for the leading diagonal of the Slater determinant (i.e. *F is not a simple 

product wavefunction).

In most ab initio studies the molecular orbitals are unknown and are created using 

a linear combination of known atomic orbitals, the LCAO method. Using the 

LCAO method each molecular orbital, (fc, can be written as

where Xk is a one electron atomic wavefunction and C an expansion coefficient 

which describes the extent of the contribution of the atomic orbital to the 

molecular orbital. Bonding molecular orbitals are created when the atomic orbitals 

add constructively, increasing the electron density between the atoms. Conversely, 

anti-bonding molecular orbitals can be formed when the atomic orbitals sum 

destructively reducing the electron density between the atoms. So for the simple 

case o f a molecular orbital, <(), created from the combination of a Is atomic orbital 

on atom A, Xu(A), and a Is atomic orbital on atom B , %\S(B \  the bonding 

molecular orbital would be

The extent to which atomic orbitals will interact, constructively or destructively, is 

governed by the overlap between the orbitals, the overlap integral S. For two 

orbitals x(d) and x(£)

4>. = Z Q x * 2.7
k

$ = CiXiM)  + C2Xn(.B) 2.8

and the antibonding molecular orbital would be

2.9

S = jx(A)x(B )dv 2.10
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and in some cases simple formulae can be written for overlap integrals, for example 

for two hydrogenic Is orbitals on nuclei at a separation R

S  = r ZRV

V « o ;

—ZR / Oq 2.11

Here Z is the nuclear charge and a0 the Bohr radius, (5.292 x 10'11 m). For two Is 

orbitals at the equilibrium bond length of H2+, 1.06 x 10'10 m, [5] S  = 0.59, which is 

unusually large, generally for higher lying atomic orbitals S  is in the range 0.2 to 

0.3. The extent to which orbitals overlap is obviously dependent on separation but 

also on the energy of the orbitals and their symmetry. Only orbitals of the same 

symmetry can overlap and also the greater the energy difference between the 

orbitals the smaller the overlap. Also, the more terms in the molecular orbital 

expansion, Eqn 2.7, the more flexible the wavefunction and so by the variation 

principle an infinite expansion would give an energy which is the largest negative 

number possible for the SCF process, this energy is commonly called the Hartree- 

Fock limit.

2.3.2 Atomic orbitals and basis sets

By creating the molecular orbitals from a combination of atomic orbitals in the 

LCAO method described above it is obvious that the atomic orbitals used are 

important. The most sensible atomic orbitals, Xk, to use in the molecular orbital 

expansion are the exponential functions suggested by Slater [6]. These Slater type 

orbitals, STO’s, have the form,
xt = Q %  2.12

where C is a normalising constant, Y\m, a spherical harmonic function describing the 

angular dependence of the orbital and C, is the orbital exponent. STO’s are used 

because they describe the atomic orbitals in the exact solution of the Schrodinger 

equation for the hydrogen atom. But integrals involving exponentials of the form 

present in STO’s are at best expensive computationally and at worst can be
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intractable for molecules, so Gaussian functions are actually used in calculations. 

The use of Gaussian functions was suggested by Boys [7] because they are more 

practical for computer calculations being easily and effectively evaluated and 

efficient routines exist for the analytic evaluation of integrals over Gaussian 

functions.

Wavefiinctions created from either Gaussian type orbitals (GTOs) or STO’s have 

the same angular dependence (i.e. 5, p, d, etc.) and thus GTOs and STOs differ 

only in their radial part. The Gaussian radial dependence has the form exp(-ar2) 

which is a poor description of the atomic orbital both near and far from the 

nucleus. To produce a satisfactory atomic orbital several Gaussian functions are 

combined to give a best fit to an STO, and it is found that the ratio of the number 

of Gaussians to the number of STO’s required to obtain comparable accuracy is 

not very large. Although four Gaussians are needed to obtain energies within 10'3 

hartrees, (0.002 eV), of the exact energy of the hydrogen atom, for atoms further 

down the periodic table the ratio is reduced i.e. for argon the ratio is around 

2.6 : 1.

The set o f atomic orbitals used in a calculation is called the basis set. The use of 

basis sets is essentially another approximation used in ab initio methods. 

Expanding an unknown molecular orbital as a set of known atomic orbitals, as 

described above, is not an approximation if the basis set is complete but a complete 

basis is one that is infinite. To use an infinite number of functions in actual 

calculations would be impossible so a compromise is made, balancing the size of 

the basis with computational resources.

As well as representing the occupied atomic orbitals on an atom extra functions are 

often added to a basis set to improve the accuracy of calculations, these are 

polarisation and diffuse functions. Polarisation functions are atomic orbitals of a



higher angular momentum than is normally occupied on an atom, so p  type orbitals 

on hydrogen or d  orbitals on p-block elements, /  orbitals on d-block etc. The 

polarization functions are important as bonding between atoms often involves 

contribution from higher lying orbitals. Also, the asymmetry in the charge density 

around an atom that is introduced by the presence of other atoms cannot always be 

described properly without the flexibility provided by polarisation functions. 

Diffuse functions are functions with small exponents and are needed for systems 

with loosely bound electrons such as anions or excited states or for determining 

properties such as polarisability.

There are many different basis sets available for use in ab initio calculations, often 

with distinctive names that outline the complexity of the basis. The simplest basis 

sets are the STO-nG series where the name means Slater type orbitals consisting of 

n Gaussians [8], The STO-nG are called a minimal type basis as they only use one 

STO for each atomic orbital. An STO function is not actually used; as mentioned 

above the STO is created by fitting n Gaussian functions to it. Basis sets with 

n = 2 - 6  have been derived but it was found that using more than 3 Gaussians 

gives little improvement and the STO-3G basis was the most widely used of this 

type. However, computers today are so fast the minimal basis set calculations have 

been superseded by more sophisticated basis sets.

Basis sets using two STO’s to represent each atomic orbital is the obvious way to 

improve the flexibility of the basis. These are called double zeta (DZ) type bases, 

the term zeta comes from the exponent in the STO function, Eqn. 2.12, which is 

often represented by the Greek letter zeta, C- If there are three STOs are used per 

atomic orbital then the basis is called a triple zeta (TZ).

As chemical bonding occurs between valence orbitals, increasing the flexibility of 

the description of core orbitals close to the nucleus is not as important as
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improving the description of the valence orbitals. To account for the importance of 

valence orbitals a variety of basis sets are available that use two STO’s for the 

valence orbitals and one for the core orbitals, these are called split valence basis 

sets (technically these are valence double zeta bases: there are also split valence 

versions of TZ basis sets called triple split valence). The split valence basis sets 

have the general name k-nlmG where k is the number of Gaussians representing 

core orbitals and nlm represents both how many STO functions the valence orbitals 

are split into and how many Gaussians are used for their representations. If there 

are two values after the hyphen, i.e. nl, then it is a split valence basis set and if 

there are three values, i.e. nlm, this is a triple split valence basis. An example of a 

split valence basis set is 6-31G, here the core orbitals are described by one STO 

approximated by 6 Gaussians and the valence orbitals by 2 STO’s created from 3 

and 1 Gaussian functions respectively. A triple split valence basis set is 6-311G 

where again the core orbitals are represented by one STO created from 6 

Gaussians but the valence orbitals are three STOs created by 3,1 and 1 Gaussians 

respectively.

The addition of diffuse and/or polarization functions to split valence basis sets is 

indicated by symbols added just before or after the G. The general notation for 

diffuse orbitals is to use a + or ++ before the G as they are usually s or p  functions, 

the first + indicates one set of diffuse 5- and p- functions on heavy atoms, the 

second + shows diffuse s- functions added to hydrogen. Polarisation functions are 

either written explicitly in brackets after the G or as one or two *. The 6-31G** is 

identical to 6-31G(d,p) both representing d  polarisation functions on heavy atoms 

and p  on hydrogen. In the brackets the heavy atom polarisation functions are 

written first then the hydrogen polarisation functions after the comma.
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2.3.3 Contracted basis sets

Valence electrons are more important in chemistry than the core electrons but as 

they contribute little to the energy, optimizing the energy of the system will not 

effectively optimise the valence orbitals. Thus an energy optimized basis set which 

gives a good description of the valence orbitals needs to be very large. But in a 

large basis the majority of the functions are used to describe the energetically 

important but chemically uninteresting core orbitals. To minimize the 

computational effort used to calculate these ‘uninteresting’ core orbitals the 

method of basis set contraction was introduced by Clementi [9] and Whitten [10].

A typical basis set for carbon may have 10 Gaussian s functions, six of which 

describe the Is orbital, three describe the ‘inner’ part of the 2s orbital and the 

remaining orbital actually describes the chemically important ‘outer’ region of the 

2s orbital. As the computing power required for Hartree-Fock calculations 

increases with the fourth power of the number of basis functions, having 8 of the 

10 functions describing the inner region of the s orbitals is inefficient. In a 

contracted basis set the first six functions, called primitives, are described by one 

variational parameter. Thus, the Is orbital is described by a fixed linear 

combination of six primitives. Similarly the next three functions are combined, 

describing the inner region of the 2s orbital, the remaining function describing the 

outer region. The number of parameters to be optimized is thus reduced from 10 to 

3 reducing the computational load but also increasing the energy of the system as 

the flexibility of the wavefunction is reduced. The resulting functions created by 

contracting the primitive Gaussians are called the contracted Gaussian orbitals. A 

similar contraction process is applied to p  orbitals but rarely to d  or higher orbitals.

Typically the number of primitives making up a contracted orbital is between 1 and 

10, and the specification of a basis set in terms of primitive and contracted 

functions is given by the notation (1 Qs4p 1 d/4slp) -> [2s2p\dJ2s\p], Here the
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number of primitives is on the left hand side and the contracted orbitals on the right 

hand side, the numbers before the slash are for heavy atoms (non hydrogen), and 

for hydrogen after the slash.

2.4 Electron correlation

Solving the Schrodinger equation for a molecular system using the Hartree-Fock

method introduces some fundamental errors due to the way the electron / electron

repulsion is handled. From Eqns2.4 and 2.5 it can be seen that the electron

potential energy functions J  and K  contain terms of the form —  to describe the
r\,2

inter-electron repulsion. Describing the electrons in this way has each electron 

moving in an average electron density representing the other electrons, but the 

electrons are better described as point charges which will try to avoid each other 

resulting in the motion of one electron being correlated to the other’s position. The 

error in the calculated energy introduced by describing the electrons in this way is 

called the correlation energy [11] and its magnitude is generally taken to be the 

difference between the RHF energy and the exact non-relativistic energy of a 

particular system. A Hartree-Fock calculation with a sufficiently large basis set 

accounts for -99 % of the total energy of the system, but the remaining 1 % is 

often the same magnitude as a chemical bond.

Electron correlation can be broadly divided into two types, static and dynamic, 

where dynamic correlation is the error introduced by the average electron density 

assumption described above. Static correlation is an error caused by Hartree-Fock 

theory inaccurately describing a molecule over a range of bond lengths. Although 

these two types of electron correlation have two distinct causes, techniques to 

recover electron correlation do not recover solely static or dynamic. Generally a 

mixture of static or dynamic correlation is recovered with certain methods often 

recovering a majority of one type. For example the Configuration Interaction 

technique recovers mostly static correlation and some dynamic whereas the
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Complete Active Space method efficiently recovers dynamic correlation. These 

techniques are discussed in detail in subsequent sections.

RHF

Exact

Bond length

Fig 2.1 Potential energy curves for an RHF calculation and an ‘exact' calculation showing the 
failure o f a single determinant calculation as the calculations approach dissociation.

Static correlation is particularly noticeable in SCF calculations of molecular 

dynamics. In Fig 2.1 the dissociation curve of a typical molecule is well represented 

by an RHF calculation around the equilibrium bond length but at large bond- 

lengths the RHF curve overestimates the dissociation energy by a large extent; the 

curve becomes characteristic of ionic interaction rather than neutral molecules. The 

reason for the static correlation error can be seen by considering the RHF 

wavefunction of the X’STg ground state of H2. The H2 ground state wavefunction 

has the form

>Px = A<T“(l)af(2 )

where A is required to make the molecular wavefunction anti-symmetric, a  and P 

are one electron spin functions and c g is the bonding orbital Xa + Xb with %a an 5- 

like orbital centered on atom A and xb an 5-like orbital centered on atom B. At
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infinite separation Xa becomes the Is orbital of atom A, lsA, and Xb the Is orbital 

of atom B, l5B thus expansion of Eqn 2.13 gives

¥ x * f a t f  + + l.S'“ l ^ ) .  2.14

The terms IsaA 1 and Is" ls f  represent one electron located on atom A and one 

on atom B, which is a correct description of H2 separated to two H atoms. But the 

15“ lsf  and ls“ ls f  terms represent both electrons either on atom A or both on 

atom B, so a FT IT ion pair, thus the H2 molecule is 50 % covalent and 50 % ionic. 

The overall energy of Tx is greater than the energy of two H atoms by half the 

difference of the ionization energy and electron affinity of H, i.e. -6.4 eV, and at 

large bond lengths the wavefunction has an inaccurate R'1 behaviour.

2.5 Configuration Interaction

A frequently used method to regain the correlation energy is the technique of 

configuration interaction, Cl, [12]. In the Hartree-Fock equation the wavefunction 

is created from a single Slater determinant, i.e. one particular configuration of the 

electrons in the molecular orbitals. For a closed shell RHF calculation the Hartree- 

Fock wavefunction is the ground state configuration of two electrons in each 

occupied molecular orbital, with the molecular orbitals filled in order of increasing 

energy. In a calculation with N electrons and M basis functions there will be N/2 

occupied molecular orbitals and M-N/2 unoccupied (virtual) orbitals. Except for a 

minimal basis calculation there will always be more virtual than occupied molecular 

orbitals. Using the virtual orbitals new configurations can be created by taking 

electrons out of occupied molecular orbitals and placing them in virtual orbitals, 

and the new configurations can be denoted by the number of electrons excited out 

of the original configuration to create the new configuration, i.e. singly, doubly, 

triply excited configurations. In the Cl method a wavefunction is created using a 

linear combination of different configurations (each of which is described by a 

single Slater determinant) with coefficients determined by the variation method. 

The Cl wavefunction has the form
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* c , = Z c A  2 1 5
I

where C, is the coefficient and (j), the electron configurations (Slater determinants).

The flexibility of a Cl wave function is demonstrated by considering the ground

state wave function of H2, Eqn. 2.14 and an excited state of H2, 'Fe, made from

the anti-bonding orbital, cyu- The excited state is
y E = Acr“(1)crf (2) 2 J6

where A is required to make the equation anti-symmetric and ctu is an anti-bonding 

orbital made by the destructive combination of the 5-like orbitals centered on atoms 

A and B, c u = Xa - Xb-

At infinite separation the Xa is again essentially the Is orbital on atom A, lsA, and 

Xb the Is orbital on atom B, lsB, and the expansion of Eqn 2.16 is

'J 'e  ~ ( -  -  1«B l5f  + 1SA1SA + K 1SB ) 2 1 7

Like 'Fx, (Eqn 2.14), 'Fe contains a mixture of covalent and ionic terms, but by 

taking a linear combination of *Fx and 'Fe either the covalent ls“ or the ionic 

ls “ ls f  terms will cancel. For H2 a Cl wave function, T'a, can be constructed

Va =Cx<Vx + C ^ E 2.18

where Cx and Ce coefficients are allowed to vary. Thus, a correct description of H2 

at dissociation is given by Cx = -Ce i.e. 'Fx - 'Fe as the ionic l ^ l s f  and lSgls^ 

terms are removed. But near equilibrium the RHF wave function is a good 

approximation so the Ce coefficient is small.

As important chemical changes generally involve the valence orbitals, 

configurations involving excitation from core orbitals contribute little to the Cl 

wave function. So most calculations will only use configurations where the core 

orbitals are kept doubly occupied, frozen. The small influence of the core orbitals 

on the Cl energy can be seen in Fig 2.2 where the energy of a Cl calculation on 

SiF3 2+ is plotted against the number of frozen molecular orbitals, the energy
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improvement for configurations from core orbital excitation rapidly decreases. Also 

the highest energy unoccupied virtual molecular orbitals are excluded from the 

calculations as configurations involving excitations to these orbitals also contribute 

little to the Cl energy.

-587.178

-587.180 -

-587.182 -co
-587.184 -

-587.186 -

-587.188 -

-587.192 -

-587.194 -

-587.196 -

-587.198
18 16 14 12 810 6 4 2 0

No. of frozen core orbitals
Fig 2.2 Energy o f SiF3+ for a series o f Cl calculations using decreasing number o f frozen core 

orbitals showing the small improvement in energy achieved using the core molecular 
orbitals.

As the Cl wave function is a sum of configurations which are themselves a 

combination of molecular orbitals which are a sum of atomic orbitals, Cl 

calculations require the evaluation of a large number of integrals and are 

computationally expensive. Fortunately there are rules within Cl theory that restrict 

the number of configurations included in a calculation and also methods to choose 

which molecular orbitals are used to create the configurations. In Cl calculations 

only configurations of the same symmetry as the reference configuration will 

contribute to the Cl wave function. Also the number of electrons excited out of the 

reference to create a configuration is important as singly excited configurations 

make no contribution to the Cl wave function if only singly excited configurations 

are considered; this is called Brillouin’s Theorem [2]. However, singly excited 

configurations can become important in the presence of doubly excited 

configurations. Triply or higher configurations generally lead to little improvement 

in energy. The greatest improvement in energy is found in calculations involving

43



singly and doubly excited configurations; this is shown in Fig 2.3 where the energy 

of SiF3+ is plotted against the electron excitation level for a series of Cl 

calculations.

-586.638 T

-586.640 --

-586.642 -■

-586.644 --

C. -586.646 --

h  -586.648 --

-586.650 --

-586.652 --

-586.654
652 3 40

Electron excitation level

Fig 2.3 Energy o f SiF3+ for a series o f Cl calculations using an increasing level o f electron 
excitation in the configuration creation.

The maximum level of electron excitation possible is twice the number of electrons 

in the molecule, calculations which include all configurations created from all 

possible excitations are called Full CL Full Cl calculations provide highly accurate 

results but are extremely intensive computationally and are only performed on 

small systems, the results being used as benchmark tests for other smaller 

calculations.

2.5.1 Size Consistency

Restricting the number of configurations used in the Cl wave function avoids large 

calculations and the problems of slow convergence often found with high 

excitation levels, but it does introduce a problem of size inconsistency. A method is 

said to be size consistent if it calculates the energy of a species AB at infinite bond 

length to be equal to the sum of the energies of A and B calculated separately by 

the same method. The energy of N non-interacting bodies should equal N times the
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energy of a single body. However, for a singles and double Cl the energy is found 

to vary as Vn .

The discrepancy between treating two bodies at infinite separation and separately 

can be illustrated by a Cl singles and doubles treatment of Be2 . The Be ground 

state is ls ^ s 2. A small Cl calculation which includes the double excitation \s22p2 

in the wave function for two separate Be atoms, A and B, will contain the 

configurations lsj2s;j, \ s \ 2 p \ ,  \s \2 s \  and \s \2 p ^ . For Be2  the ground state 

would be ls2Als2B2s2A2s2B and double excitation of the 2s electrons creates the 

configurations \s \ l s \2 s \2 p \  and \ s \ l s \2 p \2 s \ .  The configuration 

\s \ \s \2 p \2 p ^  which was included for 2Be corresponds to a quadruple excitation 

from the Be2  ground state. A quadruple excitation is not possible for the Cl singles 

and doubles calculation on Be2 so the energies obtained for Be2  and 2Be cannot be 

identical.

The size consistency error is corrected for in calculations using methods developed 

by Siegbahn [13] or by Langhoff and Davidson [14] which estimate the 

contribution that higher order excitations would make to the correlation energy. 

For example the contribution that quadruple excitations would make to the energy 

AEq can be estimated from the double excitations using the formula

AEQ= ( l - C 02)4ED 2.19

developed by Davidson AED is the energy lowering obtained from all double 

excitations and Co the coefficient of the main reference in the Cl wave function. 

The full Cl technique mentioned earlier is fully size consistent as all possible 

excitations are considered but the computational expense of Full Cl is so large it is 

better to use a Cl singles and doubles calculation with the true correlation energy 

recovered by a correction term such as Eqn 2.19.
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2.5.2 Excited States

The Cl method allows the calculation of excited states relatively easily as the 

solution of the Cl wave function has many possible values depending on which 

root of the equation is required. Thus the nth root corresponds to the (n-l)th 

excited state as the first root is the ground state.

The excited states can be distinguished depending on whether they are the lowest 

energy state of a particular symmetry or a higher lying state. For the first state of a 

given symmetry (not the ground state) the calculations can treat it analogously to 

the ground state. By specifying the orbital occupations that correspond to the 

excited state in a Hartree-Fock calculation and adding electron correlation, the first 

states of a given symmetry can be calculated. The calculation of higher lying states 

of a given symmetry is most easily performed by Cl methods, other methods for 

recovering electron correlation collapse to the lowest energy state.

2.5.3 Multi-Reference C l

Performing Cl out of a single reference configuration only gives accurate energies 

if the state under consideration is well described by that particular configuration. 

Ground state energy calculations around the equilibrium geometry are well 

described by single reference Cl calculations as they are often dominated by the 

ground state configuration. However, over a range of bond lengths or for 

calculations requiring the evaluations of several excited states an accurate 

description requires the specification of more than one reference wave function.

Calculations which use more than one reference are called Multi Reference Cl, 

MRCI, these are also called Multi Configuration SCF, MCSCF, when the atomic 

orbitals are also optimised in that calculation. Generally, for Cl and MRCI the 

molecular orbitals are calculated in an initial Hartree-Fock calculation and only the 

weighting of each configuration is optimised. Also optimising the atomic orbitals
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would obviously improve the accuracy but the added computational effort is large 

and so MCSCF calculations are only performed on small systems, although open 

shell systems sometimes require a small MCSCF calculation to provide suitable 

atomic orbitals to use in subsequent Cl or MRCI calculations.

2.5.3.1 Table Cl

In going from single reference to MRCI calculations the number of configurations 

produced increases by a factor approximately equal to the number of 

configurations making up the multi reference. MRCI calculations are therefore very 

expensive computationally but techniques have been developed to limit the number 

of configurations that are actually used in creating the Cl wave function.
i

The Table Cl method [15] is an MRCI technique that uses a configuration 

selection technique to limit the number of configurations in the MRCI wave 

function. Using a set of reference configurations specified at the start of the 

calculation a series of test configurations are created by a singles and doubles 

excitation of each reference. The energy lowering of each test configuration, 

relative to the value obtained from the reference configurations alone, is estimated 

via solution of the Cl wave function created by the reference wave function plus 

the test species. Any test species with an energy lowering below a threshold value, 

typically around 10'5 hartrees, are discarded, and thus the MRCI wave function is 

created out of the reference configurations and the test configurations with energy 

lowerings greater than the threshold value.

The energy lowering that the discarded configurations would have made is 

recovered by estimating their total contribution to be a sum of their energy 

lowerings determined in the selection process. The energy of a calculation with no 

selection criteria, E, is given by the equation
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E « E (r)+ ^ A E r 2.20
r

where E(T) is the energy of the Table Cl wave function and AEr is the energy 

lowering of a test configuration.

The Table Cl method will calculate more than one root of a particular symmetry 

providing the set of main configurations is sufficiently large to allow for a realistic 

representation of all the states of interest. Although the selection technique of 

Table Cl limits the amount of electron correlation energy that is recovered it does 

achieve a balance in the correlation effects for different electronic states of the 

same system or for different nuclear conformations of the same state.

2.5.3.2 Complete Active Space SCF

In MRCI techniques such as Table Cl, described above, the selection of the 

configurations in the multi reference is crucial to the success of the calculation. In 

the Complete Active SCF, CASSCF technique [16], also called Fully Optimised 

Reaction Space, FORS, the problem of selecting important configurations is 

replaced by the more tractable choice of important molecular orbitals. For a 

CASSCF calculation the molecular orbitals are partitioned into active and inactive 

spaces where the active molecular orbitals are usually some of the highest occupied 

and lowest unoccupied molecular orbitals from an RHF calculation. The inactive 

molecular orbitals are kept either doubly occupied or empty, i.e. virtual orbitals 

outside the of the active space remain empty and occupied orbitals outside of the 

active space always contain two electrons. The molecular orbitals to include in the 

active space are dictated by which will be important in the problem being 

investigated and the computational resources available. So, if several points on a 

potential surface are required, the active space should include all orbitals which 

change significantly or for which the electron correlation is expected to change.
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The configurations for a CASSCF calculation are then created by performing Full 

Cl within the active space and selecting the configurations with the correct 

symmetry for the system under study. As it uses a Full Cl calculation the CASSCF 

wave function grows rapidly with the number of orbitals in the active space and 10 

to 12 electrons in 10 to 12 orbitals is the limit for most calculations. A CASSCF 

calculation can give an unbalanced description of a system as all the electron 

correlation recovered is in the active space. This is not a problem if the active 

space includes all the valence electrons, but this is only possible for small systems. 

To recover electron correlation from outside the active space Cl can be performed 

out of each of the configurations generated by the CASSCF into all the virtual 

molecular orbitals. This will obviously restrict the size of the active space by a 

greater extent and will result in Cl being performed out of configurations that are 

not important. But, using a Full Cl expansion enables the use of efficient selection 

techniques [17] and the routine calculation of the systems with hundreds of 

reference configurations.

2.6 Geometry Optimisation

As well as determining the energy at a single geometry, many electronic structure 

techniques can also be used to determine equilibrium geometries and transition 

states. By calculating the first derivative of the energy, the gradient, and also the 

second derivative, the hessian, minima on a molecule’s potential energy surface can 

be located. Geometries at which the energy gradient is zero correspond to a 

minimum on the potential surface and to determine if they are a local minimum or 

the equilibrium geometry, the global minimum, a calculation of the hessian is 

required.

A hessian calculation at a particular geometry creates a matrix from which the 

vibrational modes of a molecule can be determined. At a global minimum the 

curvature of the potential surface is positive in all directions and at a local



minimum at least one direction on the potential surface will have negative 

curvature. So, as the frequency of a vibrational mode is dependent on the square 

root of the curvature a non-global minimum has at least one mode with a frequency 

that is the square root of a negative number i.e. an imaginary number. The hessian 

matrix thus has no imaginary frequencies at the equilibrium geometry; one 

imaginary frequency corresponds to a transition state and geometries with more 

than one imaginary frequency are local minima with no real chemical significance.

Most computational methods calculate the energy gradients analytically using 

derivatives of the one and two-electron integrals. These integrals require evaluation 

of derivatives of the basis functions with respect to the nuclear coordinates of their 

centres. From the analytical energy gradients the hessian can be computed and the 

geometry classified as described above. For the Table Cl technique analytical 

gradients are not calculated so the gradient has to be determined numerically. The 

numerical gradient is calculated by taking each atom in turn and displacing it by a 

set amount in a given direction and recalculating the energy, the new energy is then 

compared to the original geometry’s energy. Once each atom has been displaced in 

each co-ordinate, (i.e. x , y  and z) then the curvature of the potential surface at the 

geometry can be determined. If the new energy is lower in one or more 

displacements this it is obviously not a global minimum. Once all possible 

displacements have been tried a numerical Hessian can be determined and the 

frequencies of the modes can be calculated.

2.7 Mulliken Population Analysis

From an electronic structure calculation information on the charge distribution of a 

molecule is obtained relatively easily through a Mulliken population analysis [18]. 

This gives a value representing the number of electrons associated with a particular 

atom, all electrons within the molecule are thus assigned to a particular atom even 

though they may not spend much time close to a nucleus.
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Taking the molecular orbital wave function defined in equation 2.7, the net atomic 

population of a given atomic orbital, %, is defined as

P*=2 Z chl 2.21
i

Here i labels the molecular orbital and k refers to the atomic basic function. Also, 

the square of the wave function represents the charge density. The electron 

population shared by atomic orbitals k  and / is an overlap given by

o  = 2 £ C ,1C,A, 2.22
i

where S  is the overlap integral between orbitals k  and / defined in equation 2 . 10. 

Since P*=0*/ the gross population of atomic orbital % is given by

P * = Z ° «  2.23
I

Thus the total electron population at any nucleus can be found by adding all the 

values ofP* for orbitals x K which are centred on a particular atom and a charge for 

the atom can be calculated as the nuclear charge is known.

2.8 Software Packages

Sophisticated software packages have been developed to perform electronic 

structure calculations, using the ab initio methods described above. Graphics 

packages are also available either as part of the electronic structure packages or as 

stand alone packages that use the output from electronic structure calculations. 

Molecular structures, molecular orbitals, charge distribution and other molecular 

properties can be visualised. Each of the packages used in the calculations 

described in this Thesis is now briefly discussed.

2.8.1 GAMESS-US

GAMESS stands for General Atomic and Molecular Electronic Structure System. 

It is a software package developed separately in America and the UK, the
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American version being called GAMESS-US and the UK version GAMESS-UK. 

GAMESS-US is maintained at the Department of Chemistry of Iowa State 

University and described in detail in the literature [19]. Created from several older 

quantum chemistry programs, particularly a package called HONDO, GAMESS- 

US can perform standard RHF, UHF, ROHF, Cl and MRCI ab initio calculations 

as well as semi-empirical calculations. Also, geometry optimisations, vibrational 

frequencies calculations and Infra Red absorption spectra can be calculated along 

with one and two electron properties such as dipole, quadruple and higher 

moments, electron density distribution and polarizability. Many other types of 

calculation are also possible, including following reaction, co-ordinates, finding 

saddle points, excited state energies and spin-orbit coupling coefficients. The 

GAMESS-US package is very versatile allowing many different chemical 

properties to be calculated although it is not geared towards very high accuracy 

calculations. t

The official GAMESS-US website has more information and is at 

“http ://www. msg. ameslab.gov/gamess/gamess. html”.

2.8.2 MOLPRO

MOLPRO is a package for ab initio molecular electronic structure calculations. It 

is maintained by H-J Werner and P.J Knowles at the University of Birmingham. 

The package is geared towards performing high accuracy calculations with 

extensive treatment of electron correlation through MRCI and other associated 

methods. As with GAMESS-US many molecular properties such as dipole 

moments, electron density polarisation functions etc. can be computed.

The CASSCF/MRCI software in MOLPRO uses a sophisticated configuration 

selection routine that allows many reference configurations to be used in the MRCI
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calculation. This MRCI routine has been used extensively to generate the potential 

energy curves and surfaces used to study C>32+ and BC12+ in chapters 4 and 5.

More information on MOLPRO can be found at the website, 

“http://tcpc.bham.ac.uk/molpro”.

2.8.3 LEVEL

LEVEL is a computer program for solving the radial Schrodinger equation for 

bound and quasibound levels and calculating various expectation values. It is 

maintained at the University of Waterloo, Ontario, Canada by Robert J LeRoy and 

it is version 6.1 that has been used in the studies in chapters 4 and 5.

The solutions to the Schrodinger equation are obtained using the Numerov method 

[20] which expresses the integrals of the Schrodinger equation in a mathematically 

tractable form. For the quasibound potentials vibrational level lifetimes are also 

calculated. The Level software is available by contacting Robert LeRoy at 

leroy@Uwaterloo. ca

2.8.4 MOLDEN

The molecular orbital and electron density plots produced for BC12+ were made 

using the program MOLDEN. This package uses the output from an electronic 

structure calculation and depending on the information in the output can produce 

two or three dimensional plots of molecular orbitals and electron density. The 

packages GAMESS, MOLPRO and GAUSSIAN amongst others produce output 

that can be visualised by MOLDEN.

The MOLDEN website contains more information on the software and is 

“http://www.caos.kun.nl/~schaft/molden/molden.html”.
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2.9 Computational Resources

The computers used in the calculations presented in the subsequent chapters are:

i) A Silicon Graphics indigo 2 with a 150 MHz R4400 processor for the 

calculations on SiF3 2+ in Chapter 3.

ii) Silicon Graphics Power Challenge with six R8000 processors used for the 

C>3 2+ and BC12+ potential energy calculations in chapters 4 and 5.

iii) IBM RS6000 Model 43P with a 166 MHz processor used for general data 

manipulation and running the MOLDEN package.
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Chapter 3

Electron-transfer reactions of the SiF32+ dication with the 

rare gases, neon, argon, krypton and xenon.

3.1. Introduction

Early experimental studies of molecular dications have concentrated on the 

properties of the isolated species. However, recently improvements in experimental 

techniques has enabled sophisticated studies into the fate of dications upon 

collision with atoms or molecules. [1-3] In the collision of a dication XY2+ with a 

neutral A the following two processes may be observed

XY2++ A -» X Y ++ A + 3.1

XY2+ + A -> XY+* + A+ -> X+ + Y + A+ 3.2

where Eq. 3.1 represents non-dissociative electron-transfer and Eq. 3.2 represents 

dissociative electron-transfer. In the latter reaction an unstable excited state of the 

product molecular cation, XY+\  fragments to X" + Y. Other reactions observed in 

dication / neutral collisions are collision-induced neutral-loss Eq. 3.3 and also bond 

forming reactions. [2,4-6]

XY2+ + A -» X2+ + Y + A  3.3

This study is concerned with rationalising the electron-transfer reactions of SiF3 2+.

Mathematical modeling of electron-transfer reactions is possible using reaction

window theory [7-13], an extension of Landau-Zener theory which is explained
2+

below. This methodology has been used in studies of the reactions of OCS , 

C 022+, SiF22+ and SiF32+ with rare gases [1,14] and was found to model the

reactions successfully except when applied to SiF32+. The lack of success was felt,
•  •  2+in part, to be due to the greater degree of geometrical freedom o f SiF3

introducing the possibility of significant equilibrium geometry differences 

depending on the degree of ionisation.
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In this study of SiF32+ the energetic and geometric changes associated with passing 

between the SiF3 cation and dication are determined by ab initio computational 

calculations. Also, the energies of the first few excited states of these ions have 

been determined and used, together with the geometric and energetic information, 

in the Landau-Zener algorithm. Combining this information enables a more 

satisfactory interpretation of the experimental product ion distribution o f the 

SiF32+/rare gas electron transfer reactions and a more detailed insight into the 

electron-transfer reactions of larger dications.

As will be shown below, the key conclusion to be drawn from this study is that 

successful modeling of the electron-transfer reactions of polyatomic molecular 

dications requires the consideration of the geometry at which the reaction occurs. 

In these systems, this is the dication equilibrium geometry.

3.2. Preliminary Considerations: Reaction Window Theory

To successfully model the electron-transfer reactions of SiF32+ with the rare gases, 

and to rationalise the product ion yields observed experimentally from these 

reactions, a one-dimensional reaction window theory based on the Landau-Zener 

model of electron-transfer reactions is employed. [15-17] This methodology has 

been used successfully to model electron-transfer reactions of several dications 

including C 02+, C022+ and OCS2+. [1,3,7,12] In this model the molecular dication 

and rare gas atom are pictured as approaching each other along a potential curve 

dominated by polarisation attraction. At some point this curve may cross a 

Coulomb repulsion curve which represents the repulsive potential between the two 

cationic products that are formed by the electron-transfer reaction. These two 

diabatic potentials are shown schematically for a generalised dication XY2+ in 

Figure 3.1.
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The point at which the two curves cross, the curve crossing radius, is the 

theoretical optimum inter-species separation for an electron to ‘hop* between the 

neutral and the dication. Depending on the degree of coupling between the 

attractive reactant curve and the repulsive product curve there may be a high or 

low probability of electron-transfer occurring. This coupling depends on the 

interspecies separation of the curve crossing. If the curve crossing is at a small 

interspecies separation (< ca. 3 A), there is a strong interaction between the 

reactant and product diabatic potentials and a high probability of electron-transfer 

between dication and neutral. But, as the colliding species will pass back through 

the curve crossing again as they travel out along the product curve there is again a 

high probability of an electron being transferred between the two species and thus 

no net reaction will be observed.
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Fig 3.1 Schematic reactant and product potential energy curves for the electron-transfer reactions 
of a molecular dication (XY2+) with a rare gas atom (Rg). For this value o f the reaction 
exothermicity (AE) the curve crossing lies within the reaction window. As discussed in the 
text, the reactant potential is plotted with a dotted line at small interspecies separations to 
indicate that in this regime the true potential may be both significantly anisotropic and 
deviate from a simple electrostatic potential.
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For systems where the curve crossing is at a large interspecies separation, (> ca. 6 

A), there is a weak coupling between the potentials so a low probability of an 

electron being transferred on either pass through the curve crossing. Between 

these two extremes there is a so called reaction window at approximately 3 - 6 A. 

If a curve crossing lies within this ‘window* the probability of an electron-transfer 

reaction, as given by the equations below, can approach the Landau-Zener 

maximum of 50%.

These concepts can be qualified as follows: an electron-transfer reaction between 

an atomic dication and a neutral entails entering on the reactant potential and 

exiting on the product potential. This involves passing through the curve crossing 

radius twice but only crossing between the potentials once. The overall probability 

for this, P, is given by
P = 2 8 ( l - 8 )  3.4

where 8 is the probability of the system remaining on the same diabatic potential 

curve through the crossing region and is given by the standard Landau-Zener 

equation.

'  ■ -2 ^ 3.5
8  = exp

2h\V, - V 2 k  
I 1 2 1 b j

| |2
Hn | is the electronic coupling matrix element between the two states 1 

(A2+ + B) and 2 (A+ + B+), \VX ~V2 \ is the difference between the slopes o f the 

potential curves at the curve crossing, and vb is the relative radial velocity o f the 

two atoms. To model the potential curves simple electrostatics can be used to 

produce approximate curves with the form

Vx = - Z V a  /  47re0r 4 +AE  3.6

V2 = e 2 /  4 x s 0r 3.7

where the reactant channel Vj is a polarisation attraction function dependent on the 

reactant exothermicity AE , see Figure 3.1, the polarizability a  of the neutral the
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charge Z on the ion (Z = 2 for a dication) and 8 0  vacuum permitivity. For the 

product potential, the curve is simply the Coulombic repulsion between the two 

monocations.

Using these curves the curve crossing radius rc is the value of r when Vj = V2 , and

differentiation of the potential curves at this point gives the relative slopes. The

proposed empirical functions. For the reaction of a diatomic molecular dication 

with a neutral atom, Olsen e ta l  have put forward one function using the ionisation

From these equations the electronic coupling |Z/12| is predicted to decrease 

exponentially with increasing distance that the electron must tunnel between the 

two reactants. As described qualitatively above, at values of rc between three and 

six Angstroms the coupling switches from being strongly adiabatic (5—>0, low 

probability of remaining on the reactant diabat) to diabatic (8 -» l), allowing the 

probability P  to reach its maximum value of 0.5.

The Landau-Zener methodology was originally formulated for atom-atom systems 

and extension of the model to polyatom-atom systems introduces several 

complications. For an atom-molecule reaction the electron-hopping probability can 

be extended to include the Franck-Condon overlap of the vibrational states o f the 

reactant dication with the product monocation[ll]. Also, the potential surfaces for 

atom-molecule reactions contain an angular as well as a radial dependence; this is

determination of the electronic coupling matrix |/f12| is possible via a variety of

potential I<xy+) for forming the reactant dication XY2+ from the product ion XY+ 

and the ionisation potential of the neutral reactant /a-[18]

3.8

where

v y

3.9



ignored in simple Landau-Zener theory as it was designed for isotropic collisions. 

For the SiF32+ system the polarisation attraction will become markedly anisotropic 

at small interspecies separation. This is indicated in Figure 3.1 as a dotted region 

of the potential energy curve. But, as the curve crossing occurs at moderate 

interspecies separation, we assume that in this region the polarisation attraction 

curve provides a good approximation of the inter-reactant potential. Despite these 

complications, the basic principle of a localised avoided crossing still applies in 

atom-molecule collisions and reactions are still found to occur in the region 

dictated by Landau-Zener theory with the coupling at the crossing dependent on its 

interspecies separation.

In this adapted Landau-Zener model of electron-transfer the exothermicity of the 

reaction is a key factor in determining the likelihood of an electron-transfer 

reaction. The general form of the reactant and product potential energy curves 

does not vary with the reaction exothermicity AE. Thus, a small exothermicity 

produces a curve crossing at large interspecies separation and large exothermicity 

places the crossing at a small interspecies separation. This results in a “window” of 

exothermicities (typically between 2 and 5 eV) where the curve crossing occurs 

within the reaction window and electron-transfer is favoured. In electron-transfer 

reactions between dications and the rare gases, He and Ne have large ionisation 

energies making their electron-transfer reactions generally endothermic or only 

slightly exothermic. Hence, by the above arguments electron-transfer is often 

disfavoured with these reactants. However, the heavier rare gases have lower 

ionisation energies and thus larger exothermicities for electron-transfer with the 

result that electron-transfer reactions are more likely for the heavier rare gases in 

dication-rare gas collision experiments[l,3,12,14].

The exothermicity of the electron-transfer reactions with the heavier rare gases 

often is sufficiently large though that the curve crossing to the lowest state of the



product cation often occurs at small inter-species separations, outside the reaction 

window. That the electron-transfer reactions still occur at all can be understood if 

one considers the possibility of electron-transfer to excited states of the product 

molecular cation. Product potential curves for excited electronic states of the 

product molecular cation will lie higher in energy than that for the ground state, 

thus having a lower exothermicity and, as shown in Figure 3.2, the curve crossing 

for forming an excited state lies at larger interspecies separations than the ground 

state and may therefore lie in the reaction window. If electron-transfer occurs to 

an unstable excited state of the product molecular ion then this can result in the 

formation of fragment ions, e.g. SiF+ and SiF2+ from SiF3+. So for collision 

experiments between dications and rare gases a trend is observed with increasing 

reaction exothermicity; that is, no electron-transfer, then monocation ground state 

population and finally monocation excited state population leading to dissociation. 

Such a trend has been noted experimentally for several dications [3,12,14] and the 

experimental results for SiF32+ also display such a trend as can be seen in 

Figure 3.3b.
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Fig 3.2 Schematic potential energy curves for the electron-transfer reactions o f a molecular 
dication (X}/2+) with a rare gas atom (Rg), where the reaction exothermicity favours the 
formation o f excited state states o f the product monocation (XY* ).
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Fig. 3.3 A comparison o f (a) the relative ion yields predicted by the calculations described in the 
text, the results of which are displayed in Table 3.4, and (b) the actual values obtained 
in the experiment together with experimental uncertainties (Table 3.1) [14].

As described below, in Section 3.3.2, using the Landau-Zener equations it is 

possible to quantify these qualitative ideas and derive the electron-transfer cross 

section for populating a given electronic state of the molecular monocation. 

Combining this with a knowledge of the stabilities of the accessible electronic 

states of the product molecular monocation it is possible to derive a theoretical 

product ion distribution that can be compared with experimental measurements. 

This procedure has been applied successfully in the modeling of the ion yields 

recorded following collisions of OCS2+ with the rare gases[l]. Unfortunately, 

information is often not available on the stabilities of the electronic states o f the 

product molecular ion and in such cases the assumption is made that electronic 

states of the product molecular ion lying above a thermodynamic dissociation 

asymptote are dissociative, and dissociate to the nearest lower lying asymptote.
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Evidence to support this assumption comes from studies in which molecules are 

excited to the energy of a dissociation asymptote and the appearance of the 

products associated with this asymptote are observed when the excitation energy is 

just above the energy of the asymptote[19]. For SiF3+ experimental information on 

the energies of the excited states is unavailable and in this study ab initio 

calculations have been performed to determine the energies of the low lying excited 

states of SiF3+.

Studies comparing low, (~ eV) and high, (~ keV), energy collision reactions 

between doubly charged molecules and neutrals [20] have shown that although the 

timescale of the low energy collisions is closer to a molecular vibrational period, 

the electron-transfer process itself is significantly faster. Thus, even at low 

collision energies the electron-transfer process between a dication and a neutral 

species can be considered as effectively a vertical transition. So, for the SiF32+ 

system the formation of the monocation occurs as a vertical transition from the 

dication and the excited state energies of SiF3+ must be determined at the 

equilibrium geometry of the dication not the monocation. It is important to take 

into consideration the geometries of the cation and dication in the electron-transfer 

reactions of polyatomic dications as these species have a large number of 

geometrical degrees of freedom and it is likely that equilibrium geometries may 

differ between the singly and doubly charged states. These considerations have not 

been important in previous studies of diatomic and triatomic dications as the 

equilibrium geometry of the singly charged cation has been similar to the dication. 

For example, in the electron-transfer reactions of OCS2+ and C(>22+ [1] in going 

from cation to dication the electron is removed from a non-bonding orbital so will 

have little effect on the geometry of the species.

3.3 Experimental and theoretical details
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As this is a theoretical study, the details of the acquisition of the experimental data 

that is to be modeled will not be repeated but can be found elsewhere 

[12,14,21,22]. The experiments form the SiF32+ dications by electron-impact 

ionisation and mass select them using a quadrupole mass spectrometer. The 

collisional reactions occur when the dications pass through an interaction region 

containing the rare gas. Mass-to-charge selection of the products of these collisions 

is carried out using a time-of-flight mass spectrometer and the ion yields from these 

experiments are presented in Table 3.1 and Figure 3.3b. The experimental results 

reported were recorded at a laboratory kinetic energy of 49 eV.

Table 3.1 Experimental product ion yields following collisions o f S iF f+ with the rare gases at 
ELab=49 eV (see reference [14]). The yields are expressed in parts per thousand o f the 
parent ion signal and have been corrected for mass discrimination effects. The 
figures in parentheses give the uncertainty in the last figure o f the tabulated ion yield.

Product ion

Rare gas Si+ F* SiF* SiF2+ SiF2J+ S iF /

Ne 0.6(2) 0.5(3) 0.0(1) 0.9(3) 36.5(50) 0.0(2)

Ar 0.8(3) 0.4(2) 4.2(10) 8.4(20) 28.9(35) 4.6(15)

Kr 0.0(1) 0.5(2) 5.3(15) 80.2(10) 5.1(10) 9.8(30)

Xe 0.0(1) 2.1(5) 14.7(20) 56.3(80) 22.9(40) 10.4(30)

The electron-transfer and reaction window theories are applied to the SiF32+ system 

using ab initio calculations of the cation and dication equilibrium geometries and 

excited state energies. The energies of several excited states of the cation SiF3 + at 

the geometry of the dication are combined with electron-transfer cross section 

calculations to produce a theoretical product ion ratio for the electron-transfer 

reaction of SiF32+ with the rare gases.

3.3.1 Ab initio calculations
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The ab initio calculations on SiF3+ and SiF32+ ground and excited states were 

performed using the GAMESS_UK program suite [23] employing the 6-311G* 

basis set in all cases. The geometries of both SiF3+ ( D 3h )  and SiF32+ ( C 2 v )  were 

optimised at the HartreeFock level and characterised by harmonic vibrational 

analysis. Following the observation of no negative eigenvalues in the Hessian 

matrices, the geometries were re-optimised using configuration interaction (Cl) at 

the singles and doubles level. Of the 84 molecular orbitals, 20 are occupied by the 

40 electrons of SiF3+ and 39 electrons of SiF32+. For all the Cl calculations the 20 

least stable unoccupied molecular orbitals were discarded and the 8 most stable 

molecular orbitals kept doubly occupied, leaving 24 (SiF3+) and 23 (SiF32+) 

electrons to be distributed amongst the remaining 56 molecular orbitals. To 

calculate the ground and excited state energies of SiF3+ and SiF32+ multi reference 

Cl, (MRCI) was used, employing the TableCI method of Buenker et al. [24], 

described in Chapter 2, with a configuration selection threshold of 10‘5 hartrees.

As described below, previous work and this study have determined that SiF32+ has 

a C2v equilibrium ground state geometry. The calculations of the electronic state 

energies of SiF3+ were performed with the monocation at the C2v geometry of 

SiF32+ by analysis of the first two roots of the Hamiltonian in each MRCI 

calculation. The energies of the first two singlet states and the first two triplet 

states of each of the four irreducible representations of (Ai, A2 , Bi, and B2) 

were calculated. Multiplicites greater than triplet were not calculated as these were 

considered to lie too high in energy to be populated in the electron-transfer 

reactions. That is, although there will be electronic states lying above those 

calculated it is felt that a sufficient number have been considered, (see below), so 

as to encompass all states that are energetically accessible in the electron-transfer 

reactions. This is shown in more detail in subsequent paragraphs.
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The energies of the low-lying electronic states of the dication SiF32+ were 

determined in the same way as for the cation. The ground state of the dication has 

one unpaired electron and is of doublet multiplicity. As for the cation, the energy of 

the first two roots of each irreducible representation of C2v were calculated giving a 

total of eight states as only doublet states were considered. The energy of 

dication’s excited states was not necessary for the subsequent Landau-Zener 

calculations so to save computational time calculations were only performed in the 

ground state multiplicity.

In an electron-transfer reaction between a dication and a rare gas the amount of 

energy that can be transferred to the product molecular cation is the difference in 

energy between the ionisation potential of the rare gas and the energy difference of 

the cation and dication, Eq. 3.10. This energy difference is represented as AE in 

Figure 3.1.

Ae(x Yj+ -*  XY*)- AE(Rg -> Rg*) 3.10

For the SiF32+ system Eq. (3.10) will have a maximum value for the rare gas with 

the lowest ionisation potential i.e. Xenon (IP = 12.13 eV). The energy difference 

between the cation and dication was determined using ab initio calculations. Using 

the setup described earlier the energy of the dication at its equilibrium geometry 

was determined and then the energy of the cation at this geometry was calculated, 

the difference between these two values being the first part of Equation. 3.10; 

ab initio calculations determined this to be 20.45 eV. Thus, the maximum possible 

electron excitation of SiF3+ is (20.45- 12.13), 8.32 eV. However, previous 

collision experiments on CF22+ [3] determined that more than one electronic state of 

the dication may have a lifetime long enough to be present in the dication reactant 

beam and so dications in various excited states were participating in the electron- 

transfer reactions. Thus, if excited states of SiF32+ are to be considered in the 

calculations then the value of (XY2+ —» XY*) in Eq 3.10 will be greater than the
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figure of 20.45 eV mentioned above and therefore the maximum possible electronic 

excitation of SiF3+ will be increased. The increase in the maximum possible energy 

transferred to the product molecular cation is equal to the electronic excitation of 

the dication. So, in order to account for the possibility of increased energy 

transferred to the cation SiF3+ excited states lying up to 17 eV above the cation 

ground electronic state were calculated. This allows for us to assess the reactivity 

of excited states of the dication SiF32+ lying up to 9 eV above the dication ground 

state.

3.3.2 Landau-Zener cross section calculations

The algorithm used to give the electron-transfer cross sections for the formation of 

SiF3+ from a given state of SiF32+ in a rare gas collision reaction is based on 

Landau-Zener theory. Using the ab initio methodology described above, the 

electron-transfer exothermicity for populating a given electronic state of SiF3+ from 

SiF32+ is determined. Given the polarisability a  of the rare gas atom, Eqs 3.4 - 3.9 

can be used to determine the curve crossing radius, \Huf t rc\  |Fj' -V 2\, 5 and 

finally P, as a function of the radial velocity v*. To calculate the state-to-state 

electron-transfer cross section, the expression for P(yb) is integrated as a function 

of impact parameter from 0 to the value of b for which the collision system just 

reaches the curve crossing radius. .

Accurate prediction of the .product ion intensities from these state-to state electron- 

transfer reactions requires the knowledge of which states of SiF3+ are stable and 

which are dissociative. This stability information is necessary as the ion ratios 

detected are a combination of whole ions from stable states of SiF3+ and fragment 

ions from the dissociation of unstable states of SiF3+. Unfortunately, for SiF3+ this 

stability information is not available so it is necessary to make some 

approximations. The method used, as described earlier, assumes that any excited 

states of SiF3+ lying above a thermodynamic dissociation asymptote, e.g. to
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SiF2+ + F, are dissociative to the asymptote lying closest in energy below them. 

Given these approximations, it is possible to sum the cross sections for populating 

the different states of SiF3+ which are predicted to yield a given product ion, such 

as SiF2+. A summation is performed for each of the three accessible product 

channels (formation of SiF32+, SiF2+ and SiF*) yielding a total cross section for the 

formation of each of these products. This calculated ratio can then be compared 

with the experimentally observed product ion yields.

The calculations of the product ion yields must also consider the possibility of more 

than one long-lived electronic state of SiF32+ being present in the experimental 

dication beam. This is incorporated in to the Landau-Zener calculations by simply 

employing an appropriately adjusted value of the electron-transfer 

exothermicity[3]. The exothermicity of the reaction for an excited state of the 

dication will be greater than for the ground state by an amount equal to the energy 

difference between the ground state and excited state. The adjusted value of the 

exothermicity, AE, is then used in the Landau-Zener formula and calculations 

performed as for the ground state.

3.4 Results and Discussion

3.4.1 Geometries of the SiF3  neutral, cation and dication 

Before discussing the product ion yield calculations it is interesting to discuss the 

geometric properties of the SiF3 molecule upon successive ionisations from neutral 

through to dication. Neutral SiF3 has been determined by experimental studies to 

possess a pyramidal C3v equilibrium geometry [25] that can undergo a geometrical 

inversion process analogous to the ammonia molecule, passing through a planar 

intermediate [26], The exact geometry of this intermediate is unclear, but 

geometry optimisation performed with the molecule constrained to allow only 

planar geometries determined a C2V intermediate structure with angle and
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bondlengths as given in Table 3.2. These calculations of the SiF3 planar 

intermediate were performed at the ROHF and UHF level of theory with the basis 

sets 3-21G, 3-21G* and 6-31G* because they were used to reproduce the results 

of earlier studies of SiF3 [26] as a test to check that the computer packages were 

set up correctly and producing reliable results.

Table 3.2 Geometries o f the SiF3  neutral, cation and dication. All values are for the equilibrium 
geometry except SiF3  neutral C2v which is the geometry o f the planar intermediate; 
results for SiF3 are for the 6-31G* basis set. Details o f the D3̂  C2v and C3v structures 
are shown in the bottom three figures.

n / A r2 / A 0/°

SiF3 C3v 1.575 - 107.7

C2v 1.602 1.578 96.0

SiF3+ D3h 1.527 - 120.0

SiF32+ C2v 1.881 1.502 102.0

Geometries for Table 3.2

D3h C2V c3v
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Geometry optimisation of SiF3+ found a planar D3h equilibrium geometry and 

optimisation of the dication SiF32+ found a C2v distorted ‘T* shape with one Si-F 

bond significantly longer than the other two. These geometries are summarised in 

Table 3.2. This trend in changing equilibrium geometry with ionisation level
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suggests that the shape of the molecular orbital that the ionised electron has been 

removed from strongly influences the equilibrium geometry of the molecule. In 

fact, examination of the highest occupied molecular orbital, the HOMO, of the SiF3 

neutral reveals that it contains significant silicon p  orbital character with electron 

density localised above the silicon atom, a plot of the molecular orbital is shown in 

Figure 3.4.

Fig. 3.4 Molecular orbital plot o f the highest occupied molecular orbital, HOMO, o f SiF3  

showing the significant electron density located above the silicon atom, located at the 
centre o f the picture, pushing the Si-F bonds ‘down ’ to the observed Cjv geometry.

The principles behind these geometry changes are similar to those used in the 

construction of a Walsh diagram of molecular orbital energy versus molecular 

geometry. Here a planar geometry is a minimum energy configuration for the
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molecular orbital involved in bonding silicon to the three fluorines, call this orbital 

a , but is unstable for the out-of-plane molecular orbital with significant p  orbital 

character mentioned above, orbital b. Changing the molecular geometry from 

planar D3h to a pyramidal C3V destabilizes orbital a, moving the fluorine atoms 

closer together increasing electrostatic repulsion between them, and stabilizes 

orbital b, as it brings the fluorine atoms away from the electron density localised 

above the silicon atom. Thus, the molecular geometry could be predicted if it is 

known whether orbital b is occupied or empty. For the SiF3 neutral which has one 

electron in orbital b a C3V geometry would be expected as the destabilsation of 

orbital a caused by moving the three fluorines closer together is slight compared to 

the stabilisation of orbital b achieved as the fluorines are moved away from the 

electron density above the silicon. For SiF3 + the electron is removed from orbital b 

so there is no electron density above the silicon atom and the Si—F bonds can 

‘relax* to the now more stable planar D 31, geometry.

The C2V shape of the dication SiF3 2+ can not be described by this simple model, but 

a possible explanation can be obtained by drawing analogies with isoelectronic 

BF3+. The ground state of BF3 + has a ‘T’ shape similar to SiF3 2+ with one bond 

shorter than the other two [27,28]. The C2V shape of BF3+ is attributed to a pseudo 

Jahn-Teller effect where moving to a C2v shape allows mixing of the HOMO and 

same symmetry components of higher lying doubly degenerate orbitals stabilizing a 

distorted, non D3h ground state geometry. There is as yet no experimental 

evidence to support this as an explanation for the ground state geometry of SiF32+ 

but the similarities in the molecules, (trihalogenated, isoelectronic) makes this a 

plausible explanation for the interesting SiF3 2+ ground state geometry.

Experimental evidence for a C2V SiF32+ ground state comes from postulated 

geometries proposed to rationalize the observations of collisional excitation of 

fluorinated species [14], In these collision experiments it was observed that tri-
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fluorinated systems, such as CF32+ readily fragmented, losing one fluorine atom, 

suggesting that these molecules possessed one weakly bound fluorine atom. A 

distorted ‘T’ shape will have a one fluorine less strongly bound than the other two 

and so was proposed as being the most probable geometry to explain these 

observations. It is satisfying to note that the ab initio calculations on SiF32+ 

support this postulated geometry.

Recent high level ab initio calculations on the dication CF32+ have determined that 

it possesses a C2v ground state equilibrium geometry [27,29] similar to that found 

in this study of SiF32+. The reason for the reduced symmetry of the ground state of 

CF32+ is proposed to be the same mechanism as occurs for SiF32+ [27]

The calculations performed for this chapter have shown that the SiF3 molecule 

displays interesting changes in equilibrium geometry upon successive ionisations to 

SiF32+. The neutral has a pyramidal C3v equilibrium geometry due to electron 

density in a molecule orbital with significant silicon p  orbital character. This 

electron density is located above silicon (see Fig 3.4) and ‘pushes down’ the 

fluorine atoms away from a planar arrangement. Ionisation to SiF3+ removes the 

electron density from above the molecule allowing it to adopt a planar D3h 

structure, minimising electron/electron repulsion between the fluorine atoms. Upon 

further ionisation to the dication SiF32+ the equilibrium geometry is a distorted ‘T’ 

shape with one bond longer than the other two. Rationalisation of this equilibrium 

geometry is more complicated but by analogy to isoelectronic BF3+ it seems likely 

that a pseudo Jahn-Teller distortion produces the stabilisation of this geometry.

3.4.2 Landau-Zener Calculations

As described above, the equilibrium geometry of SiF3+ is of D3h symmetry [14,30] 

and the present ab initio calculations determine a bond length of 1.527 A. The 

dication SiF32+ has a C2v structure analogous to the calculated ground state
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geometry of CF32+ and the experimentally determined geometry of valence 

isoelectronic BF3+ [28]. The calculated C& geometry of SiF32+ has one fluorine at a 

distance of 1.881 A from the central fluorine, the other two Si-F bond lengths 

being 1.502 A. The Faxiai-Si-Fequatorui angle is 102.0°. In the modeling of the 

experiments it is assumed that when SiF32+ is formed there are sufficient collisions 

in the ion source to relax it to its equilibrium geometry. As mentioned previously 

when an electron is transferred from the rare gas neutral to the dication in an 

electron-transfer reaction it is assumed that this occurs on a time-scale fast enough 

for it to be considered as a Franck-Condon transition, so forming the monocation 

at the same geometry as reactant dication. From the ab initio calculations it was 

determined that SiF3+ at the C2v geometry has an energy 1.92 eV above its 

equilibrium ( D 3h )  geometry. Also, the dication at its ground state geometry ( C 2 v )  

lies 22.37 eV above the monocation at its ground state geometry (D3h). These 

energy differences along with the calculated excited state energies of SiF3+ and 

SiF32+ are displayed in Table 3.3 and plotted in Fig. 3.5.
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Fig. 3.5 Plot o f the electronic energies o f S iF f and SiF32+ given in Table 3.3. The SiF3+ singlet 
and triplet states are all at the C2v equilibrium geometry o f SiF32+ except where 
marked. Also shown cure the dissociation asymptotes giving SiF2+ and SiF* lieing at 
6 . 8  eV and 10.0 eV respectively. The energies are plotted relative to ground state SiF3+ 
at its equilibrium D3h geometry.
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Table 3.3 Relative energies (eV) o f the electronic states ofSiF3+ and SiF32+ and their associated 
symmetry labels. The energy zero is taken as SiF3+ in its ground electronic state and at 
its equilibrium geometry. The energy zero is the only calculation at the D& 
conformation; all other energies are calculated at the C2v geometry which is the ground 
state geometry of the dication.

SiF3+a SiF32+b

Singlet Triplet Doublet

0 (AO c

1.92 (A 0d 6.87 (B2) 22.37 (B2) e

8.34 (B2) 6.99 (B0 22.58 (B0

8.92 (BO 8.40 (A0 24.24 (A0

10.00 (A2) 9.13 (A2) 29.23 (A0

10.67 (AO 11.00 (BO 29.57 (A2)

11.66 (BO 11.43 (B2) 31.51 (B0

12.05 (A2) 15.57 (AO 31.97 (B2)

13.18 (B2) 17.50 (A2) 34.32 (A2)

a All values are for the C3v geometry unless stated otherwise. 
b Energies are all for the dication in its equilibrium ground state f a v) geometry. 
c SiF3+ in its ground state equilibrium D3h geometry.
d Ground electronic state of SiFf but in a distorted geometry fa v geometry ofSiF32+).
* SiF32+ ground electronic state.

The arbitrary zero point to which all the energies given in Table 3.3 and Figure 3.5 

are referenced to is taken to be the energy of SiF3 + in its ground state D3h 

geometry. Using published thermodynamic data [31] it was determined that the 

first dissociation asymptote for SiF3 + results in the formation of SiF2 + + F and lies 

6.8 eV above SiF3 + ( D 3h ) ,  the second dissociation asymptote lies at 10.0 eV and is 

for the formation of SiF+ + 2F.[31] As described above, electron-transfer reactions 

may produce SiF3+ in a variety of excited states which are assumed to dissociate 

rapidly to the dissociation products associated with the first asymptote lying below
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the given state. Thus, population of SUiV states lying between 6.8 eV and 10.0 eV 

will result in an SiF2+ signal in the mass spectrum, and population of states above

10.0 eV will give SiF+. States of SiF3+ below 6.8 eV do not predissociate and so 

SiF3 + will be observed in the mass spectrum. The energies of the cation and 

dication electronic states along with these dissociation asymptotes are plotted 

relative to each other in Figure 3.5.

The experimental product ion ratios [14] displayed in Figure 3.3b show clearly the 

high state-selectivity of the electron-transfer reactions. As described earlier, the 

product ion ratios for dications are usually predicted reasonably accurately by 

Landau-Zener theory [1,3,12]. In this analysis of the SiF32+ system ab initio 

calculations of the monocation’s electronic state energies have been used with 

Landau-Zener calculations to predict product ion yields for collision reactions 

between SiF32+ and the rare gases. However, in Figure 3.6a the predicted product 

ion yields when only the ground state of the dication is considered as a reactant are 

plotted and it can be seen that this does not achieve a satisfactory fit with the 

experimental ion yields (Figure 3.3b). Hence, calculations of the product ion yields 

which allowed multiple states of the reactant dication to be present were performed 

using the theoretical method outlined previously. The best fit to experimental data 

occurs for three electronic states of SiF3 2+ being present in the reactant beam. The 

three electronic states are at energies of 21.9 eV, 26.2 eV and 30.4 eV, and 

correspond to the ground state and excited states 4.3 eV and 8.5 eV above the 

dication ground state. Also if the three states are considered to be present in equal 

amounts, Figure 3.6b, a poor fit with the experimental product ratios is obtained a 

far better fit is obtained when the states are present in the ration of 1 : 0.8 : 0.1, 

this is shown in Figure 3.3a. Given the approximations used in the derivation of 

these ratios they should only be taken as rough estimates of the relative populations 

of the SiF32+ electronic states in the ion beam. However, comparisons of the 

experimental results and the Landau-Zener calculations clearly indicate that in the
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dication reactant beam a significant number of the dications are in one excited 

electronic state and a smaller number in a higher lying state.

(b ) X e
K r

A r

N e

1
Fig. 3.6 Plot o f the product ion yields predicted by the calculations when (a) only the ground 

state o f the dication is present and (b) three electronic state o f the dication present in 
the ion beam in equal amounts. As for Figure 3.3 the hatched boxes cure SiFf, the white 
boxes SiF2+, and the black boxes for SiF*.

From Figure 3.6a it can be clearly seen that if excited states of SiF32+ are not 

included in the modeling then the ground state of the dication on its own will not 

form SiF+ in any electron-transfer reactions with the rare gases. Yet SiF+ is clearly 

seen in the experimental data (Table 3.1, Figure 3.3b). Also, the Landau-Zener 

calculations indicate that SiF2+ should only be observed in reactions of the ground 

state of SiF32+ with xenon, Figure 3.3b shows clearly that SiF2 + is detected 

experimentally for all the rare gases except neon.

Comparison of the dication electronic state energies from the Landau-Zener 

calculations with the ab initio electronic state energies in Table 3.3 shows a good



agreement, the Landau-Zener derived value of 21.9 eV being with in 0.5 eV of the 

calculated energy of the SiF32+ ground state and the other energies lying close to 

other states. It is important to realise that the ab initio calculations are restricted 

to the C2v geometry of the dication ground state and the relevant excited states may 

have different equilibrium geometries. Hence, the restricted calculations are only 

employed to indicate approximately where the excited states of SiF32+ lie so as to 

determine if the predictions of the Landau-Zener model are reasonable.

The reactivity of the SiF32+ ground and excited states is shown diagramatically in 

Figure 3.7, where the electron-transfer cross sections of the three electronic states 

of SiF32+ are plotted as a function of the electronic energy of the SiF3+ product. 

The figure clearly shows how on collision with argon, the ground state of SiF32+ 

can only populate the ground state of SiF3+, so excited dication states must be 

present to form the SiF2+ and SiF+ observed experimentally. This figure shows 

clearly the necessary presence of dication states at energies above the SiF32+ 

ground state to achieve a satisfactory fit with the experimental data.

3.4.2.1 Neon

From Table 3.1 it can be seen that the experimental product ion distribution for the 

reaction of SiF32+ with neon is dominated by collision-induced neutral loss Eq. (3), 

resulting in the loss of F to form SiF22+. The Landau-Zener calculations predict 

such a result for neon as dication states with energies of 21.9 eV, 26.2 eV and

30.4 eV above the SiF3+ equilibrium geometry undergo no significant electron- 

transfer. The ionisation energy of neon is sufficiently large for the reactant and 

product potentials to cross at a large interspecies separation where the probability 

for electron-transfer is small. The dication state at 26.2 eV is predicted to have a 

small cross section for the formation of SiF3+, see Table 3.4, but this would be 

below the experimental detection limit.
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Fig, 3,7 Landau-Zener electron-transfer cross sections acajc for each o f the three dication 
electronic states present in the dication beam, plotted against the electronic energy o f 
SiFf. The S iF f ion is constrained to have the C2v geometry o f the ground state o f the 
dication. Also shown are the monocation’s electronic states and the dissociation 
asymptotes to SiF2+ + F at 6.8 eV and SiF* + 2F at 10.0 eV, which are represented as 
hatched boxes at the energies at which they lie. The ground state o f S/Fj+ lies at 
1.92 eV. The electronic states o f S iF f are represented as vertical lines from the energy 
axis and are extended to the value o f the electron-transfer cross section at that energy to 
give a representation o f the probability for populating the given state. The values o f 
(Jcaic have been scaled to be in the ratio o f 1: 0.8: 0.1 for the dication state at the 
energies 21.9 eV, 26.2 eV and 30.4 eV. Plots are represented for collisions with the rare 
gases neon, argon, krypton and xenon.
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If there were any states of the dication lying at energies between 26.2 eV and

30.4 eV then any electron-transfer reactions would populate the ground state SiF3+ 

as these energies lie in the reaction window for the population of the cation ground 

state. But, in Figure 3.7 it can be seen that the calculated cross section (Ocaic) has a 

characteristic shape with a distinct maximum at a particular energy. For neon the 

exothermicity of the reaction with the dication state at 30.4 eV is just sufficient that 

the cross section envelope maxima lies between the SiF3+ ground state and first 

excited state. Due to the SiF3+ ground state being a closed shell system a 

significant amount of energy is required to un-pair the electrons resulting in a large 

energy gap, 4.95 eV, between the ground state and the first excited state. Thus, 

with neon there are no states of SiF3+ lying at energies which are accessible for 

electron-transfer with a dication state at 30.4 eV.

3.4.2.2 Argon

From Figure 3.3b it can be seen that a wider range of products are observed 

following the reaction of SiF32+ with argon than were observed with neon, 

indicating that electron-transfer reactions form SiF3+ in a range of electronic states. 

The strongest product ion signal though is for SiF22+ (Table 3.1) the collision- 

induced neutral loss process. As can be seen in Figure 3.6a the ground electronic 

state of SiF32+ is predicted to form only SiF3+ in an electron-transfer reaction with 

argon, but the excited dication states at 26.2 eV and 30.4 eV react to populate 

excited states of SiF3+ that dissociate to the SiF2+ and SiF+ asymptotes. As is shown 

in Figure 3.7 the Landau-Zener algorithm predicts the dication state at 26.2 eV to 

populate two states of SiF3+ lying just above the SiF2+ asymptote. The higher lying 

dication state at 30.4 eV has its maximum for electron-transfer cross section just 

above the SiF+ asymptote at 10.0 eV (Figure 3.7) so populating some states below

10.0 eV (which dissociate to form SiF2+) and a few above 10.0 eV (giving SiF+).
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Incorporating the three reactant dication states in the ratio of 1 : 0.8 : 0.1 gives a 

product ion distribution for reactions with argon with almost equal amounts of 

SiF3 + and SiF2 + and much less SiF+. From Figure 3.3 it can be seen that the 

predicted product ion yield is in good agreement with experiment.

Table 3.4 Calculated and scaled relative cross sections for the formation o f SiFf, SiF2 + and 
SiF* via electron-transfer between SiF32+ and a rare gas. The values shown are for 
SiF32+ states lying at 21.9, 26.2 and 30.4 eV above SiF3+ (D3rf equilibrium geometry. 
The ratio o f the three states in the ion beam is 1: 0.8: 0.1.

Relative electron-transfer cross sections

Product Neon Argon

Ion 21.9 26.2 30.4 Total 21.9 26.2 30.4 Total

SiF3+ 0 0.2 0 0.2 18.9 0.1 0 19.0

SiF2+ 0 0 0 0 0 17.5 2.7 20.2

SiF+ 0 0 0 0 0 0 4.6 4.6

Krypton Xenon

21.9 26.2 30.4 Total 21.9 26.2 30.4 Total

SiF3+ 3.4 0.1 0 3.5 1.7 0.4 0 2.1

SiF2+ 0 59.0 0.5 59.5 10.5 58.5 0.6 69.6

SiF+ 0 0 6.5 6.5 0 21.8 3.3 25.1

3.4.2.3 Krypton

The experimental product ion yields for the collision reaction between SiF32+ and 

krypton (Table 3.1) show that electron-transfer is now the dominant process, 

predominantly forming states of SiF3+ that dissociate to SiF2+ + F (Figure 3.3b). 

Thus the product ion spectrum has a large SiF2 + signal with small amounts of SiF3 +, 

SiF+ and SiF22+. The Landau-Zener model predicts the dication state at 26.2 eV to
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have a large cross section for the formation of SiF3+ ions with energies between 6.8 

and 10.0 eV. States at these energies should dissociate to the SiF2 + + F asymptote. 

The ground state dication has a cross section maximum below the SiF2+ + F 

asymptote at energies where SiF3+ has no electronic states, although there is a small 

cross section for the formation of ground state SiF3+. The highest lying dication 

state at 30.4 eV reacts to populate only SiF3+ states lying above 10.0 eV which 

would dissociate to SiF+. From Figure 3.3 it can be seen that the Landau-Zener 

calculations for this system produce predicted product ion yields that are again in 

good agreement with experiment.

3.4.2.4 Xenon

The product ion distribution for xenon, as with krypton, has SiF2 + as the dominant 

product with similar, smaller amounts of SiF3+ and SiF+. However, the signal for 

SiF22+, formed via collision induced neutral loss, is stronger for xenon than it was 

for krypton (Table 3.1). The increase in the neutral loss signal on moving from 

krypton to xenon is probably due to the larger centre of mass collision energy with 

xenon.

In the Landau-Zener algorithm the lower ionisation energy of xenon produces 

more SiF3+ in the higher lying excited states than for krypton. The ground state of 

the dication has a small electron-transfer cross section for the formation of SiF3+ 

ground state and also a state of the cation lying just above the first dissociation 

asymptote. The dication state at 26.2 eV populates a variety of states either side of 

the asymptote at 10.0 eV (Figure 3.7) so contributing to the SiF2 + and SiF+ signals. 

The dication state at 30.4 eV reacts solely to produce SiF3+ in electronic states that 

will dissociate to SiF+ + 2F.

The experimental and predicted product ion yields for xenon are in reasonable 

agreement, although the methodology has not been as successful for xenon as it



has been for krypton and argon. The main discrepancy is the small ratio of SiF3 + to 

SiF+ which are observed in similar amounts experimentally although with 

significant uncertainties. The agreement between the calculated and experimental 

values, although good, seems to decrease with the larger rare gas atoms. The 

larger rare gases are more polarisable and this would affect the polarisation 

attraction curve (Figure 3.1) making its shape at small interspecies separations 

harder to model successfully and affecting calculations.

3.5. Conclusions

The product ion yields for the electron-transfer reactions of SiF32+ with the rare 

gases have been interpreted by a combination of ab initio and Landau-Zener 

calculations. By investigating the SiF32+ system this work is intended to evaluate 

the applicability of a simple Landau-Zener algorithm to the electron-transfer 

reactions , of large molecules, specifically those with more than three atoms and 

subsequently a greater degree of geometrical freedom.

The ab initio calculations enabled the evaluation of the energy differences between 

SiF3 cationic and dicationic ground state geometries, and also the energies of their 

low lying excited states. Using all of these data it has been possible to achieve a 

satisfactory agreement between predicted and experimental product ion yields 

better than has been achieved in a previous study. The best agreement is obtained 

when the reactant beam is modeled as containing the dication in its ground 

electronic state and also two excited states lying at 4.25 eV and 8.5 eV above the 

dication ground state. The dication states are present in the reactant beam in the 

approximate ratio of 1 : 0.8 : 0.1. The good agreement between calculation and 

experiment shows that the Landau-Zener algorithm is still applicable for these 

larger systems, although the cation and dication geometries and excited state 

energies must be carefully taken nto consideratio.
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Chapter 4

On the dissociation of the ozone dication

4.1 Introduction

The presence of ozone in the Earth’s stratosphere is essential to biological life as it 

absorbs much of the UV radiation coming from the sun, preventing it from 

reaching the Earth’s surface where it would be harmful. Many of the properties of 

this important molecule have been elucidated in recent intensive research into the 

chemistry and physics of ozone depletion. [1,2] However, despite this interest into 

O3 little attention has been paid to the behaviour of ozone upon electron ionisation. 

The properties of the ozone cation (V  have been studied successfully, [3] but 

attempts to produced long lived C>3 2+ ions by electron-induced double ionisation of 

the neutral have been unsuccessful.[4] In experiments to form the ozone dication 

only the dissociation products of C>32+ were observed, (0 + and O2  ) indicating that 

unstable regions of the dicationic potential energy surface have been populated. 

The nature of this instability is unclear though, and could be due to the lack of any 

metastable electronic states. It is also possible that the experimental set-up may be 

forming the dication in unstable geometries. Elucidating the dissociation 

mechanism of C>32+ is the focus of the work described in this chapter.

Previous theoretical work on C>32+ is scarce. An early study of cyclic 0 3 2+, in 

electronic singlet states, determined this geometry to be unstable with respect to 

fragmentation to 0 + and C>2+.[5 ] Two investigations into 22 electron triatomics, 

which include C>32+, have been reported by Pyykkd.[6,7] These calculations were 

restricted to linear geometries and determined that the ground singlet state is 

quasibound. Also, Pykko determined that there is a dissociative triplet state that 

cuts this singlet state but the intersection lies away from the equilibrium geometry
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and at the equilibrium geometry the triplet state is significantly higher in energy 

than the singlet state.

The calculations presented in this investigation determine a possible fate of C>3 2+, 

following formation from neutral O3 , by inspection of the form of the potential 

energy surfaces of the ground singlet and ground triplet electronic states and the 

geometry of the dication upon formation in the experimental set-up. Also, 

calculated values of the double ionisation potential and kinetic energy release are 

compared with reported experimental values.

4.2 State Averaging Technique

As described in Chapter 1 the metastability of dication electronic states can be 

considered to arise from an avoided crossing between two states of the same 

symmetry, the attractive X + Y2+ curve and repulsive X* + Y* curve. Potential 

curves of this nature can, for standard ab initio techniques, present problems where 

the calculations do not converge on the required electronic state. This produces a 

discontinuous potential energy curve with the difficulties tending to occur in the 

region of the avoided crossing; this is the region that usually corresponds to the 

barrier maximum. The state averaging technique used in this investigation avoids 

this problem by using a set of orbitals that are optimised so as to minimise the 

energy of two or more states simultaneously,[8] and each state has a particular 

weighting controlling its contribution to the overall wavefunction. Generally, in 

the calculation of dication potential energy curves at least two states need to be 

included in the state averaging procedure, that is the two states corresponding to 

X + Y2+ and X+ + Y+ mentioned above.

The state averaging technique has been applied successfully to calculate potential 

energy curves and molecular properties of many systems [9-11]. Also neutral 

molecules with strong ionic character such as LiF [12] require the state averagin



technique as the ground state is characterised by an ionic-neutral curve crossing 

between the Li+-F' and Li-F states.

4.3 Theoretical and computational methodology and results

All electron ab initio calculations were performed for the first singlet and first 

triplet states of C>32+ using the SA-CASSCF / MRCI (State Averaged-Complete 

Active Space Self Consistent Field Multi Reference singles and doubles 

Configuration Interaction) method [13,14] implemented in the program MOLPRO.

[15] The standard 6-311G basis set supplemented with two d  and one/ polarisation 

functions, was used for most calculations. However, for calculations of the kinetic 

energy release and double ionisation potential the basis sets 6-31G(2d) and VTZ 

were also employed. As described above the state averaging technique was 

required for a correct description of the dissociation of singlet and triplet C>32+ and 

to produce a continuous curve through the barrier found in the potential correlating 

with the charge separation asymptote for the 0 32+ singlet state.

CASSCF geometry optimisation of the ozone neutral found a C2v equilibrium 

geometry with bond length r(O-O) = 1.2826 A and bond angle 0 - 0 - 0  = 116.59°, 

in excellent agreement with experiment: 1.2717 A and 116.7°.[16] For the 

geometry optimisation a full valence active space was employed with only the Is 

orbitals of each oxygen being kept doubly occupied (frozen).

For the potential energy surface calculations a smaller active space was employed 

to reduce computational time, this was necessary due to the large number of 

calculations required for each surface. The seven most stable valence molecular 

orbitals were kept doubly occupied in all of the calculations of the potential energy 

surfaces, leaving eight electrons to be distributed amongst the remaining eight 

valence molecular orbitals. Configuration Interaction employing single and double 

excitations from this reduced active space into the 76 external molecular orbitals
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was performed in order to produce the final energy of each point on the potential 

energy surfaces. Cs symmetry was employed for each point on the surfaces.

The method used to determine the symmetries of the dissociation asymptotes of 

C>32+ that correlate with the ground singlet and triplet states is as used by Katani in 

reference [17] and involves determining the symmetries of the constituent species 

in the completed molecule’s symmetry. Then the fragments are combined and the 

direct product of the fragment symmetries gives the possible symmetries of the 

combined molecule (e.g. C>32+) that can dissociate to the fragments in those 

particular electronic states. The possible total spin values, S, of the combined 

molecule are obtained by vectorial addition of the individual spin values of the 

dissociated fragments, Si, that is

S = 4.1

So for each pair of individual spin values, 5, and S*, partial resultants have to be 

formed according to the rule:

Stk = Si + Sk, Si + Sk - 1 , . . |St - Sk\ 4.2

which are then added according to the same rule.

Applying this to C>32+ the electronic states of the dissociated species, 0 + and 02+, 

need to be resolved into the symmetry of C>3 2+, that is C2v, using the descent in 

symmetry given in Table 4.1. For C>2+ the ground state is 2n g and first excited state 

4Ilu [18], for 0 + the ground state and first excited state are 4S„ and 2DU 

respectively.[19] Taking the lowest energy dissociation asymptote i.e. ground 

state 0+ (4SU) and ground state C>2 + (2ng), the 0+ 4S„ corresponds to quartet A2  in 

C2V symmetry and for C>2 + 2IIg is doublet A2 and B2. Using the direct products 

given in Table 4.2 the product of these symmetries is

^ 2 ( ^ 2  +  B 2 )  =  A }  +  B ]  

and the possible S  values, using Eq. (4.2), are

1.5 + 0.5, 1 .5-0 .5  = 2, 1 
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thus quintet and triplet states are possible. Thus states of C>3 2+ that can dissociate 

to ground state 0 + and ground state C>2 + are 3 ,5 Ai and 3,5Bi.

Table 4.1 Descent in symmetry table for the full rotational group to C2v and for linear D ^  to 
C2v. For Dcci, to C2v the the C2v system lies in the zy plane.

Full rotation C2v Dooh C2v(z->y)

sg A! Ai

s. a 2 b 2

p. A2 + Bi + B2 M
09 1 Bi

p. Ai + Bi + B2 a 2

D* 2Ai + A2 + Bi + B2 ng A2  + B 2

D . Ai + 2A2 + Bi + B2 n„ Ai + Bi

Table 4.2 Direct product table for the C2v point group.

At a 2 Bi b 2

A! Ai a 2 Bi b 2

a 2 A, b 2 B,

B i A! a 2

b 2 a 2

The energy difference between the ground and first excited state of 0 + is 3.3 eV 

and for O2 4.10 eV, [18,19] therefore the next dissociation asymptote for C>3 2+ is 

ground state C>2 + and first excited state 0 +, i.e. 0 + 2D„ and C>2+ 2ng. As before, 

using Table 4.2, 2ng is doublet A2 and B2 in C2V, and 2Duis doublet Ai + 2 A2  + Bi 

+ B2 . The product of these is
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A2(Aj +  2A2 +  Bj +  B^) = A2 +  2Ai + B2 + Bj

B2(Aj + 2A2 +  Bj + Bz) = B2 + 2Bj + A2 +  Aj

— 3A j + 3B] +  2B2 +  2A2 

and the possible S  values are

0.5+ 0.5, 0 .5 -0 .5  = 1 ,0  

so triplet and singlet multiplicities are possible. Therefore, molecular states of C>3 2+

that can dissociate to the second dissociation asymptote, O Du + O2  ng, are

1,3A,, u Bi, 1,3B2, 1,3A2.

The ozone dication singlet ground state is a closed shell system so in C2V is of Ai 

symmetry. Calculations on the ground triplet state determined it to be of Bi 

symmetry, so in light of the above discussion the following correlations are 

expected:

o J+,a , - > o ; 2n g + o + 2d u 

o 2+3b , - > o ; 2n g + o +4s u

which, as shown below, are reproduced by the calculations.

In order to allow the state averaging technique to describe correctly the 

dissociations given in Eqns 4.3 and 4.4 at all distances of the 0 + from the C>2 +, it is 

necessary to include a sufficient number of states of the correct symmetry to 

describe fully both the associated and dissociated C>3 2+. It is therefore necessary to 

consider the arrangement of the electrons in the dissociated products, and the 

change in symmetry which occurs on going from those products to the associated 

dication. As the dissociation lowers the symmetry of C>3 2+ from Czv to C*, the 

calculations of the potential energy surfaces have been performed exclusively in the 

latter symmetry. The symmetries of the dissociated products are, of course, R3 for 

0 + and Dooh for C>2+.
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In C>2 + the HOMO is the ng antibonding orbital, which contains one electron. The 

ground electronic state of 0 2 + is therefore 2ng. Lowering of the symmetry to C8 

lifts the degeneracy of this state and creates two new possibilities, 2  A' and 2 A", 

according to whether the electron is in the 7CX or 7Cy orbital (in D«h notation) 

respectively. This may be represented as follows:

nx 71y — 2A'

nx ----  7Iy 2A"

where the xz plane is defined to be the Cs mirror plane.

The situation is rather more complicated for 0 +. 0 + has the electronic

configuration [He]2522/?3, and the different arrangements of the three 2p  electrons 

in the px, py and pz orbitals will lead to several electronic states on account of 

differing electron/electron repulsions. The states produced by p 3 are, in fact, 4SU, 

2Du and 2PU. The 4SU state (the dissociation limit of the first triplet state of C>3 2+) is 

produced by only one arrangement of the 0 + 2 p  electrons:
X

x f -  z f -  V -

Lowering of the symmetry from R3 -> Cs converts the 4SU state to 4 AH, as the p z and 

px orbitals are defined to have d  symmetry in the above diagram and the py orbital 

a" (i.e. the xz plane forms the mirror plane of Cs). Thus in order to describe fully 

the dissociation of the lowest energy triplet surface of C>32+ we must include 

AM 0  (A' + A") = A" + A' states (i.e. one A" and one A') in the state averaging 

approach.

The dissociation limit of the lowest singlet state of C>3 2+ is 2D„(0+) and 2n g(C>2+). 

We have already considered the 2IIg state of 0 2+, and must now examine the 

arrangements of the three 2p  electrons of 0 + which contribute to the 2DU state.
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The eight possible arrangements of the three 2p  electrons of 0 + which give rise to 

the spatial components of the 2DU and 2P„ states are as follows:

Ml Symmetry in C8

— 4 4 -2 2A'

1- 4 — +1 2A’

4 — +2 2a

— 4 -1 2A'

u — 4 +1 2Am

— 4 4 -1 2Am

4 4 4 0 2Ah

4 4 4 0 2A"

The 2D u state is associated with five of these arrangements (microstates) - with ML 

values -2, -1, 0 1, 2 and the 2PU state with three Ml = -1, 0, 1. However, with 

the exception of the M l  = ± 2  microstates we can’t assign a particular microstate to 

a particular state (this process is really just a book-keeping exercise) and, hence, it 

is most sensible to include all eight microstates in the state averaging approach. 

Thus to correctly describe dissociation of the singlet curve it is safest to include the 

following 16 states:

!ng (o2+) 0+
A’ 4A' 4A'

A' ® 4AH 4AM

A" 4A' 4A”
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A" ® 4AM = 4A'

i.e. 8 states of A' symmetry and 8 of A".

We saw earlier that the states of C>32+ that can dissociate to ground state 0 +(4S„) 

and ground state 02+(2n g) a re3,5 Ai and 3,5Bi. Descent in symmetry from -»  C8 

tells us that Ai -> A' and Bi -> A*. Thus the most stable triplet state of A' 

symmetry is used to form the lowest energy triplet surface disscussed in this 

chapter. We also saw th a t1,3Ai, u Bi, 1,3B2 and 1,3A2 C>32+ can dissociate to O+(2DU 

) and 02+(2n g). The lowest energy singlet surface of C>32+ may therefore be either 

of A' or A" symmetry. In practice it is found that the lowest energy singlet surface 

is of A' symmetry.

It was not initially clear that the state averaging procedure would be necessary for 

the calculations on 0 2+. Early attempts using single reference Cl and non CAS or 

state averaged methods were unsuccessful and displayed all the problems of root 

flipping and discontinuous potential energy curves described earlier. Even when the 

SA-CASSCF MRCI method was found to be successful almost two weeks of 

computer time was necessary to calculate all the points necessary for both surfaces.

The C>3 2+ surfaces were created by keeping one bond length fixed at 1.2826 A (the 

equilibrium bond length for O3 neutral determined by the earlier CASSCF 

calculations) with the other ranging from 1.2 A to 3.0 A. The bond angle, theta, 

was varied between 80° and 180° at 10° intervals. This approach is illustrated in 

Figure 4.1 where r is the bond length that is varied. The full surfaces were 

generated by reflecting these points about the 6= 180° line. This created 273 

points for each surface, which was then fitted to a 50 x 50 grid using a spline 

function. The singlet surface is shown in Figure 4.2 and the triplet surface in 

Figure 4.3.
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This methodology in which one 0 - 0  bond length was kept fixed, was adopted 

both for reasons of computational economy (since only a qualitative explanation of

theta

Fig 4.1 The model o f the ozone dication used in the calculations, 01 and 02 are kept at a 
distance o f 1.2826A whilst the distance between 02 and 03 is allowed to vary, 6  is the 
angle made between 03, 02 and 01.

the experimental results is being sought), and since it is known from experiment 

that 0 3 2+ dissociates to 02+ and 0 +. Thus, the cleavage of the 02+- 0 + bond is the 

crucial element of the dynamics. Further support for this approach involves the 

fact that the experiments that are being studied form 0 3 2+ in a vertical transition 

from the neutral geometry. Hence, the critical dynamics of the dissociation will 

occur in the region of the potential energy surface where the 0 - 0  bond length is 

close to that of O3 . So, although containing approximations (such as trapping some 

internal energy in the 0 2 + fragment), the calculations probe the key points of the 

0 3 2+ potential energy surface.
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Fig. 4.2 Potential energy surface for the ground singlet state o f 0 3:+. Energies are in electron 
volts, r is in A and is the distance o f the oxygen atom that dissociates to the 0 + unit 
(atom 3 in Figure 4.1) from the central oxygen atom and 0 the angle made behveen this 
bond and the 0 2 unit (atoms 1 and 2 in Figure 4.1).

Fig. 4.3 Potential energy surface for the ground triplet state o f 0 3:+, E, r and dare as described 
for the singlet surface.

To allow a clearer picture of the region where the two calculated surfaces intersect 

they are overlaid and plotted together in Figure 4.4. Also, to ensure that the two 

surfaces are correctly plotted relative to each other the spectroscopically
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determined separation of 3.33 eV between their asymptotes at dissociation was 

enforced. This was done by calculating the energy of the singlet and triplet 

surfaces at very large r (60 A), where the molecule is essentially fully dissociated to 

0 + and 0 2+. At this geometry the singlet surface was set to lie 3.33 eV above the 

triplet surface so ensuring a correct representation of the surfaces with respect to 

the spectroscopic measurements. This scaling involved only adding a minor offset 

( » 0.1 eV) to the calculated singlet states.

Fig. 4.4 The singlet surface (dark grey) and the triplet surface (light grey) plotted relative to 
each other with the Franck Condon zone (r=1.27 A, 0=116.7°) marked by an arrow.

To estimate an approximate lifetime of 0 32+ on the singlet and triplet electronic 

surfaces vibrational level and lifetime calculations were performed with the 

computer program LEVEL [20] described in Chapter 2. In these calculations the 

lifetime for vibrational levels of 0 32+ vibrating in the dissociation co-ordinate [0 2+ -  

0 +] at the equilibrium value of 6  are determined. It is important to realise that the 

purpose of these calculations is only to provide a guide as to whether the 0 32+ ion 

is likely to be stable on a mass spectrometric time-scale, in a quasibound electronic
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state, not to produce an actual model of the vibrational frequencies in the dication 

states.

4.4 Discussion

4.4.1 Key experimental data

As these calculations on the ozone dication were prompted by previous 

experimental studies of O3 [4], the relevant conclusions from these studies will now 

be set out. As this is a theoretical study, the details of the acquisition of the 

experimental data will not be repeated but can be found elsewhere. [4] In the 

experiments, electron double ionisation of ozone was investigated using ion-ion 

coincidence spectroscopy coupled with time-of-flight mass spectrometry. (>2 + and 

0 + fragment ion pairs were detected but no stable dications were observed, 

indicating that any C>3 2+ ions formed are not stable on a mass spectrometric time 

scale. Hence, experiment indicates that the majority of the Franck Condon zone 

for the population of the ground state of C>32+ from O3 lies in an unbound region of 

the dication’s potential energy surface. From this work the experimentally 

determined double ionisation potential for ozone is 34 ± 2 eV and the kinetic 

energy release for its dissociation to C>2+ + 0 + has a mean value of 7.5 ± 0.3 eV and 

a half-width of 4.6 eV.

4.4.2 Dissociation of O32*

Examination of Figures 4.2 and 4.3 reveals that both of the potential energy 

surfaces possess minima that could support vibrational levels. The singlet surface 

has the largest barrier to dissociation at 2.3 eV, this is for a linear geometry with a 

value of r of 1.2 A. The triplet surface has a shallow minimum for a bent 

configuration at an angle of 120°, the potential barrier here is 0.14 eV and the 

minimum is at a value of r of 1.3 A. For the singlet surface the crude lifetime
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calculations found 7 vibrational states with lifetimes > 1CT6 s at a geometry 

approximately that of neutral ozone (116°) and 15 at a linear geometry where the 

global minimum exists. However, on the triplet surface the lifetime calculations 

determined that the barrier to dissociation is too small, no more than three 

vibrational levels are supported and none have sufficient lifetimes (i.e. greater than 

a microsecond) to allow any triplet (>32+ to be observed in simple mass 

spectrometry experiments. These lifetime calculation results are summarised in 

Table 4.3.

Table 4.3 Number o f vibrational energy levels and their associated tunneling lifetimes for
ground singlet and ground triplet states at a linear geometry and at an angle o f I 2 (f 
corresponding to the equilibrium geometry o f neutral ozone. Also shown is the 
potential energy barrier to dissociation at these geometries.

No.
vibrational
levels

Barrier

/eV

Lifetimes

Singlet 120° 10 0.75 v = 0 - 6 : >  lO^s 

v = 9: 10'l2s

< II •-J lO"6* v = 8: 10'9s

linear 21 2.3 v = 0 - 6: > lO^s v =  15 

v = 1 8 :1 0 '"s  v =  19

-16: > 10"*s 

: 10'l2s

v =  17: 10''°s 

v = 20: 10'14s

Triplet 120° 2 0.14 v = 0: 10"9s v=  1: 10'l2s

linear 3 0.41 v = 0: 10‘7s v=  1: lff’s v = 2: 10'lls

But if the singlet surface is predicted to be bound why is no long-lived C>32+ 

observed experimentally? There is no experimental evidence that electron 

ionisation should disfavour the formation of C>32+ in its singlet state, so it is 

proposed that the singlet C>32+ ions must be being removed via a crossing to the 

triplet surface and subsequent dissociation. In fact, examination of Figure 4.4 

reveals that around the geometry at which C>32+ would be formed, via double 

ionisation of neutral O3 , the singlet and triplet surfaces lie very close in energy. 

Figure 4.5 shows detail from Figure 4.4 showing that the separation of the singlet
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and triplet states at an angle of 116 ° (the equilibrium geometry of neutral O3) is 

only a few tenths of an eV. Crossing between the singlet and triplet states would 

normally be a forbidden transition but spin orbit coupling between the two states is 

likely to be strong enough to allow such a transition. Indeed, in some dication 

systems it has been established that spin orbit coupling between bound and 

unbound states provides a mechanism for rapid dissociation, and that the spin-orbit 

lifetimes are much shorter than tunnelling lifetimes. This dissociation mechanism is 

the predominant mechanism for decay of quasibound dication states crossed by 

unbound states of differing multiplicities and has been studied in HC12+ and HS2+ 

[21,22].

Applying this mechanism to the double ionisation of ozone then any dications 

formed must either be in the triplet state, in which case they dissociate rapidly, or 

in the singlet state and cross rapidly to the triplet state before having time to 

stabilise on the singlet surface. Therefore, a possible route to forming stable 0 3 2+ 

would be to populate the singlet surface closer to the global minimum which is at a 

linear geometry and away from the crossing to the triplet surface. This might be 

achieved by forming the dication at a geometry closer to linear, i.e. via ionisation of 

the monocation which has a C& equilibrium geometry with 0 = 130° and 

r = 1.26 A.

4.4.3 Kinetic energy release and double ionisation potential calculations 

The experimental study of the ozone dication determined values for the kinetic 

energy release and double ionisation potential and so a series of ab initio 

calculations were performed to compare with these experimental quantities. First, 

an optimised geometry of the ozone neutral was determined. Then the energy of 

the dication was calculated at this geometry and the energy difference between it 

and the neutral was taken as a measure of the vertical double ionisation potential. 

The energies of the dissociation products 0 + and C>2 +, with C>2 + at its equilibrium

100



11

Singlet10

9

8

7

6 Triplet

5

4
1.271 1.5 2 2.5 3

r/A

Fig. 4.5 Detail from Figure 4.4 showing the separation o f the singlet and triplet states o f 
0 32+ at an angle o f 116° (see Figure 4.1). A bond length r o f 1.27A is the 
equilibrium geometry o f neutral ozone.

geometry, were also calculated. The energy difference between the ground state of 

C>32+ and the 0 + + C>2+ asymptote may be compared with the kinetic energy release 

observed by experiment.

The experimentally determined values of the kinetic energy release and double 

ionisation potential are 34 ± 2 eV and 7.5 ± 0.3 eV respectively. Previous 

theoretical studies of C>32+ determined the vertical double ionisation potential to be 

around 35-36 eV [6,7]. From Table 4.4 it can be seen that the ab initio 

calculations performed here agree well with experiment determining the double 

ionisation potential to lie between 34.69 eV and 35.03 eV, depending on the size of 

basis set used.

101



For the kinetic energy release the calculated values are between 9.63 eV and 

9.79 eV overestimating the experimental value by approximately 2 eV. This 

discrepancy implies that the fragmentation products 0 + and C>2 + are not being

Table 4.4 Calculated and experimental values[4] o f (a) the double ionisation potential and (b) 
the kinetic energy release o f0 32+. Values are shown for three basis sets and are in units 
o f electron volts.

6-31G(2d) 6-311G(2d j)  VTZ Expt.

(a) 0 3 -> 0 32+ 34.69 35.03 34.9 34 ± 2

(b) 0 3 2 * - > 0 2+ + 0 + 9.79 9.69 9.63 7.5 ±0.3

formed in their ground electronic or vibrational states as the extra 2 eV could be 

stored as internal energy of 0 + and C>2 +. For 0 + the first excited electronic state 

lies 3.4 eV above its ground state and for C>2 + the first electronic state is 4.1 eV 

above its ground state [18,19], so a larger discrepancy would be expected between 

the experimental and calculated kinetic energy release if the dissociation products 

were being formed in excited electronic states. However, the fragmentation of 

C>3 2+ from the Franck Condon zone into 0 + and C>2 + forms C>2 + at a bond length 

significantly longer than its equilibrium geometry allowing the possibility of 

vibrational excitation. Using the Morse potential as given in Equation 4.5 it is 

possible to determine the potential vibrational excitation in C>2 + when formed away 

from its equilibrium geometry.

V = De^ - e - a{R-Rt)}  4.5

a  =
V.2A

<y, on -  (ofln c

Published spectroscopic constants for C>2+ [23] give De = 6.663 eV,

C0e ~ 1904.7 cm*1, Re= 1.1164 A and the reduced mass p = 1.3284 x 1 0 * 2 6  kg. 

The equilibrium bond length of O3 is 1.2717 A and using all o f these values in the 

Morse potential gives a value of V of 0.843 eV. Also, as a check on the Morse

102



potential calculations, MRCI calculations on C>2 + using a VTZ basis set at the 

optimised bond length of 1.12 A and at 1.217 A give an energy difference of 

0.78 eV. Hence it is possible that C>2 + is being formed with considerable 

vibrational excitation which could account for the discrepancy between the 

calculated values and the experimental values. Indeed, the large width o f the 

kinetic energy release distribution observed experimentally may result from the 

large variation in the vibrational energy content of the O2 product with the small 

variations in the O—O bond length in the neutral O3 molecule at the instant of 

ionisation. This rapid variation comes about as the O—O bond length in O3 is well 

away from the equilibrium bond length in C>2 +, hence small changes in r (0 —O) of 

O3 result in large changes in the vibrational excitation of O f-  This is shown 

schematically in Figure 4.6 where the curve centered about n  is equivalent to C>2 + 

and the other curve O3, so here small changes in r about the equilibrium geometry 

of O3 require little energy but the equivalent change in r for C>2 + which is not at its 

equilibrium geometry translates to significant vibrational excitation.

&
1 AE

Bond length

Fig. 4.6 Schematic diagram o f two potential energy curves, one with a minimum at ri 
(representing Of, see text) and the other at r2  (representing O3, see text). Lines marked 
on the diagram show that a displacement from r2  to r3  results in a greater change in 
energy for the curve centered about rh AEi, than the curve centered about r2„ AE2.
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4.5 Conclusion

Ab initio calculations on the ground singlet and triplet electronic states of the 

ozone dication, C>3 2+, have demonstrated a possible mechanism to explain the 

instability of the dication upon formation by double ionisation of neutral ozone. 

The dication’s ground singlet state is determined to have a large barrier to 

dissociation able to support several long lived vibrational states but it is crossed by 

the lowest triplet potential energy surface which is only very weakly bound 

supporting no long-lived vibrational states. The intersection of the two surfaces 

occurs at a geometry close to the geometry of neutral ozone and, as this is the 

geometry at which the dication would be formed in experiment, dissociation via a 

crossing to the triplet state seems the most likely fate of any formed.

The calculations suggest that long-lived dications could be created if they are 

formed at geometries where the triplet surface lies further in energy from the 

singlet surface and so would be less strongly coupled to it, making a crossing 

between the two surfaces unlikely. Such stability is most strongly favoured at 

linear geometries where the singlet surface has its global minimum.
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Chapter 5

An ab initio study of the structure and stability of low lying 

electronic states of the dication BC12+

5.1 Introduction

Computational analysis of molecular dications that have not yet been studied 

experimentally often provides important information on the likely stability of the 

ion and potential routes for successful synthesis. For BC12+ synthesis via electron 

impact ionisation of BCI3 is likely to be a successful synthetic route but to aid 

experimental studies it was decided to undertake a computational study of BC12+ in 

order to provide information on the likely stability and electronic state energies to 

guide future experimental work.

The existence of long lived metastable states of doubly charged molecules is a 

common feature among many polyatomic and diatomic molecules. The double 

charge on polyatomics is readily shared amongst all the atoms so that the overall 

repulsion between individual positive charges is small. For a doubly charged 

diatomic however, the high charge per atom might be expected to break the 

molecule apart. Nevertheless, as indicated in Chapter 1 the existence of doubly 

charged diatomics indicates that sometimes the chemical binding wins out over the 

large electrostatic repulsions.

Potentially the dication BC12+ could possess several long lived electronic states, as 

XY2+ species containing at least one atom from group 2 or 13 are relatively stable 

due to the standard oxidation states +2 or +3 of these atoms. For example BeF2+, 

MgF2+, MgN2+ and MgNe2+ are predicted to have bound states [1,2]. So for BC12+ 

metastable states should be favoured through the formation of the attractive 

structures B2+C1 and B3+C1\ Also the isoelectronic molecule C2 has several strongly
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bound electronic states [3] which often provides a good guide to dicationic 

bonding being able to overcome the coulomb repulsion of the charges.

In this chapter 35 potential energy curves of BC12+ have been calculated by state 

average CASSCF calculations. Of the 35 states, 10 were found to be quasibound 

with the l2,+ ground state possessing the largest barrier to dissociation at 2.57 eV 

and an equilibrium bond length of 1.541 A. For the quasibound states subsequent 

MRCI calculations were performed and vibrational energy levels and tunnelling 

lifetimes calculated. Analysis of the electronic states and molecular orbitals 

provides information on important electronic configurations and their charge 

distributions. This allows discussion of possible origins of the stability of the 

dicationic states.

5.2 Technical Details

The correlation consistent triple zeta (VTZ) basis set of Dunning et al [4], which 

incorporates diffuse d  and /  functions has been used to describe each atom in the 

ab initio calculations. The potential curves for elongation of the B-Cl bond were 

created using calculations performed at 0.2 A intervals from 1.2 A to 6.0 A. Extra 

calculations were also performed at 10 A, 15 A and 50 A to obtain information on 

the energy separations of the dissociation asymptotes and for the subsequent 

vibrational energy level calculations. The calculated points were then fitted to a 

spline curve creating points with a 0.05 A separation. The computer program 

MOLPRO running on a Silicon Graphics Power Challenge was used in all the 

ab initio calculations. For the vibrational energy level and lifetime calculations the 

program LEVEL was used, see Chapter 2 for more information on these programs.

The state averaging SA-CAS technique as described in Chapter 4 was used in all 

the ab initio calculations to correctly model the molecular orbitals throughout the 

potential curves. In all the ab initio calculations the first four a  moecular orbtals
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were kept doubly occupied and all the configurations created came from the 

distribution of the remaining 12 electrons amongst the next 10 molecular orbitals. 

For the quasibound states the subsequent MRCI calculations were performed by 

carrying out a singles and doubles Cl calculation out of each reference created by 

the previous SA-CASSCF calculation.

Table 5.1 Calculated and experimental values for the energy separation (in eV) o f the first few 
electronic states o f the ions B+ and C t. Experimental values are taken from 
spectroscopic data [5] and calculated values from the potential curves at very long bond 
length (50 A) representing the molecule at dissociation.

Experimental Calculated

B+ ‘Sg (s2p 2) 0 0

3PU (s2p !)______________ 463______________ 4.66

C f 3Pg (3s23p4) 0 0

'Dg (3s23p4) 1.44 1.50

'Sg (3s2 3p4) 3.46 3.45

5.3 Atomic energies, dissociation channels and correlating molecular states

Experimental and calculated values of the energy separations of the electronic 

states of B+ and Cl+ are given in Table 5.1. The calculated values are taken from 

the potential curve calculations at 50 A simulating a dissociated molecule. 

Although these are not calculations on the individual atoms the agreement with 

experimental values is very good, within 0.01 eV for Cl+ ;*S'g, showing that these 

calculations are a good representation of the molecule at dissociation. Table 5.2 

shows the first six dissociation asymptotes of BC12+ and the correlating molecular 

states. Asymptotes I to III are for the ground state of B+ (*Sg) with the first 3 

states of Cl+ (3Pg, *Dg, ]Sg), and asymptotes IV to VI for the first excited state of 

B+ (3PU) with the first three states of Cl+. The majority of states of BC12+, (18 out
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of 35), decay to asymptote IV due to it correlating with singlet, triplet, and quintet 

states.

Table 5.2 Relative energies (in eV) for the first six dissociation asymptotes ofBCl2+. Also shown are 
the electronic states o f the product ions B+ and C t  and the correlating molecular states.

Asymptote Products

b + c r

Calculated Experimental Correlating 

molecular states

I % % 0 0 1 3S‘; l 3n

II % % 1 . 5 0 1 . 4 4 X 'I +; i ' l l ; l ‘A

III ' ĉg % 3 . 4 5 3 . 4 6 i ‘e *

IV 3P1 u % 4 . 6 6 4 . 6 3 2 'Z * ;  1,2*2"; 2,3'n ,  2 'A; 

13£+; 2,33Z‘; 2,33H  13A 

15Z+; 1,2S£'; 1,2*11; 15A

V 3P■* u ' D m 6 . 1 8 6 . 0 7 2,33£*; 43r ;  4,5,63n ; 

2,33A; l 3<t

VI 3P* u % 8 . 0 9 8 . 0 9 43!*; 73n

5.3.1 Determination of correlating states

The method used to determine the molecular electronic states of BC12+ that 

correlate with each dissociation asymptote is similar to that used in chapter 4 on 

the ozone dication. By combining the spin and angular momentum o f the 

dissociated species the resulting molecular electronic states are determined by 

vector addition of these individual L and S values.

The possible molecular A values are obtained by algebraic addition of the M u 

values of the individual atoms as in Eqn. 5.1.

A=I2X. |  5.1

where for each atom M u takes the values L i ,  L i - 1  . . .  - L i .  The combined molecule 

BC12+ is of CooV symmetry so states with A = 0 can be either L+ or S'. If at least

110



two M u values are not zero then the E states occur in pairs of E+ and E'. When all 

M u  = 0 then the one I  state that arises that is not part of a pair is either E+ or E' 

depending of whether the sum of Eqn. 5.2 is even or odd respectively.

L\ +̂ 2 + 4 + 52
The sum £ / ,  are extended over all the electrons in each atom so even or odd £ / ,  

corresponds to even or odd parity (g or w).

The possible total spin values, S , that the completed molecule can take are 

determined by the same method used for ozone, using vector addition o f the 

individual spin values, as shown in Eqn. 4.1.

Applying this to BC12+ it is possible to determine the symmetry and number of 

states correlating with each dissociation asymptote. For the first asymptote, ground 

state B+ *Sg has Lj = 0, Si = 0, 2 / ; = g  (even) and ground state C f, 3Pg, has Lt = 1, 

Sj = 1, 2 / ,  -  g  (even). For the A values Mu  = 0, and M u -  1, 0, -1 giving A = 1, 

0 so one E and one n  state result. Applying equation 5.2 to the E state gives 

( l + 0 + #  + g), overall odd, so a E* state. Combining the multiplicities as 

described in equation 4.1 gives S=  11+01=1, so triplet states. Bringing this all 

together gives the result that one 3E' state and one 3n  state correlate with the first 

dissociation asymptote. Table 5.3 summarises the determination of the correlating 

states for all the dissociation asymptotes.

5.4 Molecular orbital composition and charge distribution

The XE+ ground state of BC12+ is the most strongly bound of all the electronic states 

calculated with a barrier to dissociation of 2.57 eV, this is discussed in more detail 

in the next section. At 1.6 A the molecular orbital configuration in this state is 

5a26a227i4, the dominant configuration changing to 5a26a227i27a2 from 2.60 A
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onwards (which is just beyond the barrier maximum). Plots of the valence 

molecular orbitals, 5a 6a 2n and 7a are given in Figure 5.1.

Table 5.3 Summary o f the determination o f the molecular states o f B C f+ that correlate with the 
first six dissociation asymptotes, see text for details.

B+ c r BC12+

Li Si 2 /, l 2 & S /2 A s Result*

'sg 0 0 even % 1 1 even 0,1 1 3r ,  3n

% 0 0 even % 2 0 even 0,1,2 0 ‘z +, 'n, 1a

% 0 0 even •Jg 0 0 even 0 0 ‘r

3Pu 1 1 odd % 1 1 even 0(3), 2, 1,0 5Alr ,

1(2), 2 5'3,IZ'(2),

’■31n (2),

5’3-*A

3P1  U 1 1 odd lDg 2 0 even 0(3), 1 3I +(2), 3I \

1(3), 3n(3),

2(2), 3 3A(2), 30

3P1  u 1 1 odd 1sg 0 0 even 0,1 1 3r ,  3n

aNumber in parenthesis indicates the number o f states when greater than one.

By analysis of the atomic orbital contribution to each of the molecular orbitals it 

was possible to approximately determine on which atom the majority of the 

electron density lies for each molecular orbital. Table 5.4 shows such an analysis 

of the first 11 molecular orbitals of BC12+ at the ground state equilibrium geometry 

of 1.6 A. Molecular orbitals 5a, 6a and 2 k  are located primarily on chlorine and 

7a  on boron. A similar analysis of the BC12+ molecular orbitals at a bond length of

6.0 A is shown in Table 5.5 showing that 5a switches to being localised on boron 

at long bond lengths. Under a simplifying assumption that at 1.6 A the 5a, 6a and 

271 electron density is located primarily on chlorine and 7a on boron then the 12 +
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7a

Fig 5.1 Plot o f the molecular orbitals 5 a, 6 a, 2 k  and 7a  o f B C f+ at 1.6 A, the chlorine atom lies 
above the boron in each o f the plots.
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state has 6 valence electrons on chlorine and none on boron, corresponding to the 

ionic structure B3+Cf.

Table 5.4 Energy and atomic orbital contribution o f the first 11 molecular orbitals o fB C f+ at a 
bond length o f 1.6 A. The atom upon which the majority o f the electron density lies is 
also shown.

Energy / h Molecular

orbital

Atomic orbital 

contribution

Electron density 

location

-105.7 lcr Cl 5 Cl

-11.4 2a C\s Cl

-8.85 3a Cl p z Cl

-8.85 1 n Cl pxpy Cl

-8.38 4 a B s B

-1.85 5 a Cl 5 p 2 Cl

-1.29 6a Cl s p z Cl

-1.09 2k Cl pxPy Cl

-0.735 l a B s B

-0.516 3k B pxpy B

-0.184 8<t Cl s p z Cl

In figure 5.2 electron density plots of BC12+ at a series of bond lengths between 

1.6 A and 3.0 A show the increase of electron density between boron and chlorine 

as the atoms approach each other. In Table 5.6 the charge in each atom, as 

calculated from a Mulliken population analysis, at the bond lengths plotted in 

Fig 5.2 are shown. At 3.0 A there is an approximately equal +1 charge on boron 

and chlorine but as the atoms approach each other the charge increases on boron 

and decreases on chlorine suggesting a transfer of electron density from boron to 

the more electronegative chlorine. This change in the charge on each atom suggests 

a charge transfer mechanism to account for bonding in BC12+.
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(d)

Fig 5.2 Electron density plots o f B C f+ at the bond lengths (a) 1.6  A, (b) 2 . 0  A, (c) 2.4 A and (d) 
3.0 A.
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Table 5.5 Energy and atomic orbital contribution o f the first 11 molecular orbitals o f BC?+ at a 
bond length o f 6 . 0  A, the atom upon which the majority o f the electron density lies is also 
shown.

Energy / h Molecular Atomic orbital Electron density

orbital contribution location

-105.4 l a Cl 5 Cl

-11.16 2 a Cl 5 Cl

-8.63 3 a Cl Pz Cl

-8.63 In Cl PxPy Cl

-8.24 4 a Cl 5 Cl

-1.56 5 a B s B

-0.844 6a Cl p z Cl

-0.843 2 n Cl PxPy Cl

-0.822 l a B s B

-0.360 3 n B pxpy B

-0.360 %a Cl s p z Cl

Table 5.6 Charge on the boron and chlorine atoms o f BCl2+, at the bond lengths o f the plots in 
figure 5.2, showing the increase o f the positive charge on boron as the atoms approach 
each other and how the electron density is transferred to chlorine.

?-L ' 1 ■-  ■!' MS M— M M — »

Atom Bond length / A

_______ \_6_____________2f)____________2A____________ 3.0

boron +1.216 +1.141 +1.125 +1.040

chlorine +0.783 +0.858 +0.875 +0.961

5.5 Molecular states of BCI2+

Potential curves have been calculated for all 35 electronic states of BC12+ that 

dissociate to the first six dissociation asymptotes given in Table 5.2. The output 

from the SA-CASSCF calculations gives the configurations which have the 

greatest contribution to each electronic state and also the extent to which the
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configuration contributes. Several different electronic configurations are found to 

contribute to the molecular electronic states. These configurations are listed in 

Table 5.7 where they are grouped into three sections, A, B  and C where using the 

simplifications described previously all A configurations have a charge distribution 

(B2+C1), B  configurations (B+C1+) and C configurations (B3+Cf).

Table 5.7 Important configurations o f BCl2+

Label Configuration3 Charge distribution1*

A 1 6g 2k47g B2+C1

A2 6o227c337t b 2+ci

A3 6g22%37g b 2+ci

A4 6a2n43n b 2+ci

AS 6a27i37a8a b 2+ci

B l 6a2 2k23k2 B+C1+

B2 6a22n2la 3 n b +ci+

B3 6a27i37o2 b +ci+

B4 6g 22ti27g 2 b +ci+

BS 6g 2k33k2 b +ci+

B6 6g 2k37g 3k b +ci+

Cl 6g 227138g b 3+ci*

C2 6g 22714 B3+cr
“The 1-5 ct and In orbitals are doubly occupied throughout. 
b At a short BC1 bond length as described in the text.

The dominant molecular orbital configurations at two bond lengths, 1.6 and 6.0 A 

are given for all 35 states in Table 5.8. Of the electronic states calculated, 4 singlet 

and 6 triplet states were found to be metastable, all quintet states are unbound.
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Table 5.8 Relative energies (in eV) with respect to asymptote I  and the dominant configurations, 
_______in %, at two BCl bond lengths._____________________________________________

R= 1.6A R = 6.0A

State AE Configuration® AE Configuration®
XV 4.80 70 C2; 21 A2 3.82 91 B4
I3!! 5.66 94 A3 2.13 91 B3
11n 5.98 96 A3 3.86 58 B3; 41
iV 8.98 55 Al; 36 A2 6.88 25 Bl; 75 B6
13A 10.13 37 Al; 57 A2 6.88 25 Bl; 75 B6
11A 10.26 81 Al; 15 A2 3.87 33 B4; 64 2k41g2
iV 10.28 94 A2 2.09 91 B4
2V 10.34 94 A2 8.54 98 6a22rc27o8a
2V 10.46 82 A2; 12 B4 6.80 98 6a227i27a8a
i 1r 10.54 94 A2 6.80 98 6a227c27a8a
iV 10.57 95 A2 5.35 57 B4; 38 2tc47ct2
i5n 12.21 99 B2 6.83 95 A5
23n 13.07 94 B2 6.83 95 A5
21A 13.40 81 B4; 10 B1 6.89 99 B6
3*11 13.72 80 A4 6.84 95 B2
21n 13.91 87 B2 6.84 20 B2; 56 A5
2V 14.23 11 Bl; 80 B4 6.89 99 B6
43n 14.43 99 B2 8.58 13 B2; 87 A5
5*U 14.60 65 B2; 22 B3 8.58 100 B2
iV 14.70 7 Bl; 93 B6 6.87 93 B6
6 ^ 15.27 86 B2; 7 B3 8.58 87 B2; 13 A5
15A 15.32 100 B6 6.68 100 B6
i*f 15.32 96 B6 6.79 98 6a22rc27a8a
31n 15.40 92 A4 6.84 66 B2; 19
i 3o 15.75 40 B2; 37 B3 8.64 64 B2; 36 2?c47a8a
3V 16.48 95 B6 6.88 98 B6
3V 16.52 94 B6 8.59 36 27i47c8a; 65
7 ^ 16.57 82 B2; 10 Cl 10.11 62 B2‘ 35 2tc47ct3tc 

98 6a 2rc27a8a4V 16.60 96 B6 8.54
23A 16.71 15 Bl; 69 B6 8.62 50 Bl; 49 B6
33A 17.54 7 Bl; 83 B6; 8.62 49 Bl; 48 B6
2*F 17.58 98 6a227C27a8a 6.88 98 B6
4V 17.91 66 Bl; 33 B6 10.07 60 6a227t27a8a; 30
21r 18.01 7 Bl; 87 B6 6.89 98 B6
2®n 19.25 99 B5 6.83 95 B2

Configurations are defined in Table 5.6. Relative weights are given in percent.

Table 5.9 lists equilibrium data for the quasibound states. In this table the energy of 

the minima before the potential barrier, Te, is given relative to the asymptote I, the 

dissociation energy, Dc, is the energy difference between the metastable minima 

and the dissociation asymptote and Deff is the barrier height; these terms are 

explained in figure 5.3. As can be seen from the data in Table 5.9 half of the 

metastable states are relatively well bound with dissociation barriers, Deff, greater
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than 0.5 eV. Of the metastable states, six correlate with asymptote IV , two to 

asymptote II, one to asymptote I and one to asymptote V.

Table 5.9 Calculated data for the metastable states o f BCl2+.a

State Asymptote Teb Rc De Deff° Configuration*1

x ' r II 4.00 1.56 -2.56 2.57 70 C2; 21 A l

i 3n I 4.87 1.83 -4.87 0.33 94 A3

i ‘n n 5.12 1.83 -3.68 1.06 96 A3

i3r IV 8.27 1.83 -3.61 0.99 55.41; 36 A2

23n IV 8.41 2.55 -3.75 0.06 94 B l

23r IV 9.08 1.83 -4.42 0.53 82 A2; 12 B4

i ‘r IV 9.20 1.92 -4.54 0.23 94 A l

2‘A IV 9.24 2.10 -4.58 0.22 8154; 10 51

23r V 9.28 1.38 -3.10 0.93 94 A l

13A IV 9.40 2.01 -4.74 0.49 37Al- 57 A l
*Rt is in A, all other values in eV 
b With respect to asymptote I  o f column 2.
0 Effective dissociation barrier. 
d Numbers are the relative contribution in percent.

The potential energy curves for the calculated electronic states are plotted in 

figures 5.4 - 5.9 and are grouped together as singlet and triplet I + (3 and 4 states 

respectively), singlet and triplet I* (2 and 4 states), singlet IT (3 states), triplet II (7 

states), singlet and triplet A (2 and 3 states) and the quintet states (one I +, two E‘, 

two II, one A). As the electronic states are plotted together according to symmetry 

the 130  state is not plotted as it is the only state of this symmetry and also it is not 

a quasibound state; it is listed in Table 5.8. Also, the ground state X*E+ is included 

in each plot as a guide to the relative energies and shapes of the excited state 

curves.
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e f f

Curve Assymptote

Assymptotel

B + C lR(B-C1)

Fig 5.3 Figure explaining terms used in tale of equilibrium data Table 5.9, note far right hand side 
o f plot represents BCl2+fully dissociated to B+ and C t.

5.5.1 and 3 Z+ states

The potential curves of 1E+ and 3 Z+ plotted in Figure 5.4 include the BC12+ ground 

state X*L+ which is the most strongly bound of the calculated electronic states. At 

2.57 eV the dissociation barrier of X*I+ is the largest of all the metastable states 

and is more than twice that of any other quasibound state. The high stability of 

X*L+ results from the contribution of the attractive C2 and A2 configurations (see 

Tables 5.8 and 5.7). For the other 1I + states, 1 *E+ is mostly attractive A2 and has a 

shape at small R  suggesting a small barrier could form but an avoided crossing with 

2 1E+ at 2  A prevents this forming. The 21I>+ is mostly composed of the repulsive B l 

and B4 configurations and is unbound but with a slightly distorted curve shape due 

to the avoided crossing mentioned above.
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Two of the 3 I + states are quasibound, (13 Z+ ,2 3 E+), and are dominated by the 

attractive A configurations. The two other higher lying 3 I + states (33 X+ and 43 L+) 

are unbound and like the unbound states are dominated by the repulsive 5  

configurations.

5.5.2 !E' and 3 Z' states

The singlet and triplet I* states are plotted in Fig 5.5. The l 1! '  and 23 2 ' are 

quasibound but only very weakly with De values of 0.23 and 0.53 eV respectively 

and are a mixture of mostly attractive A2 and some repulsive B4 configuration. As 

with the E+ states the unbound I '  states (2 1! ',  3 and 43 L‘) are predominantly B  

configurations and the bound states, although only slightly bound, are 

predominantly A configurations with some B.

Table 5.10 Dominant configurations, in %, at increasing bond lengths for the molecular states 1 
3r ,  33riand3ln

Configurations

R /A_______ 13£- 33n  3 lU

1.6 94 A2

2.0 8 6  54; 6 Bl

2.4 90 54; 4 B \

________2^8 91 54; 4B I

The exception to this is 13 I* which is unbound yet is predominantly made up of 

attractive A2 configurations. In Table 5.10 the dominant configurations at bond 

lengths from 1 . 6  -> 2 . 8  A are given for 1 3 I ‘ and it can be seen that the important 

configurations change from A to B after 1.6 A. Therefore this change to repulsive

B  configurations results in the unbound nature of 1 3 Z‘. Note that this approach

assumes that the electron density within each of the molecular orbitals remains 

constant over the bond length change. This is reasonable assumption as this is only

80/14

64 B2; 15 £3 

77 B2; 1 Cl 

76 B2

92 A4

47 53; 26 Cl

64 52; 1 2  Cl

65 52
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intended as a guide and the change to the repulsive B  configuration occurs within 

only 0.4 A

5.5.3 !II  and 3 I1 states

The singlet and triplet II states are plotted in Figs. 5.6 and 5.7 respectively. 

Although there are more II states than any other symmetry calculated there is only 

one quasibound *11 state (1 !II) and only two quasibound triplet states (1 and 2 

3 II). The De values of the quasibound 3II states are 0.33 and 0.06 eV for 1 3II and 

2 3II respectively, the value for 2  3II is the smallest of all the quasibound states and 

is so small that the state could effectively be considered unbound.

As with Z+ and £*, the quasibound II states are dominated by attractive A 

configurations and the unbound states (including 23 IT) are completely repulsive B 

configurations, notably B2 for the 3n  states. However, a few n  states go against 

the trends displayed by £+ and Z* states, the 31n  and 33n  are unbound yet are 

mostly of A configurations. The dominant configurations of 31II and 33II at a 

series of bond lengths are shown in Table 5.10 to try to determine if B  

configurations dominate at longer bond lengths. And, like 13Z* the 31IT and 33II 

states are dominated by B  configurations just beyond 1.6 A.

5.5.4 *A and 3  A states

The singlet and triplet A states comprise only five states and are plotted in Fig. 5.8. 

This is the smallest number of states for any of the symmetries calculated. From 

the Deff data given in Table 5.9 it can be seen that only two of the 1,3A states are 

quasibound with one being moderately bound, 1 3A  D ef f  =  0 . 4 9  eV, and one weakly 

bound, 2 lA Deff = 0.49 eV. The shallow minimum of 2*A is one of the smallest of 

all the quasibound states and results from an avoided crossing between 1*A and 

2lA. The unbound states, 23A and 33 A, are composed mostly of repulsive B  

configurations (Table 5.8) and the quasibound state 13A of attractive A
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configurations. The 2*A state consists mostly of repulsive B  configurations so 

would be expected to be unbound but is quasibound as an avoided crossing with 

1*A forces it into a small barrier with respect to dissociation. Similarly, 1*A is 

composed of attractive A configurations but is not quasibound. This is again due to 

the avoided crossing altering the shape of the potential curve.

5.5.5 Quintet states

In Fig. 5.9 all the quintet states calculated are plotted together, comprising of one 

5 I +, two 5 I \  two 5I1, one 5A. All the quintet states are unbound and like other 

unbound states of the other multiplicities the quintet states are all composed of B 

configurations (Table 5.8).

5.6 Tunneling lifetimes and stabilities

As mentioned earlier all electronic states of BC12+ were initially determined by SA 

CAS calculations and only those states that possessed a potential barrier were 

subsequently recalculated using the more sophisticated CASSCF / MRCI method. 

The results of the MRCI calculations were then used in determining the vibrational 

level energies and tunneling lifetimes of the metastable states by use of the 

computer program LEVEL [6 ]. The results of these calculations are summarised in 

Table 5.11.

The MRCI calculations of the quasibound states are plotted in Figures 5.10-5.13. 

They are grouped together in a similar way to the SA CAS calculations with 

Fig. 5.10 !E+ and 1L' states, Fig. 5.11 3 E+ and 3 Z' states, Fig. 5.12 1,3II states and 

5.13 1,3 A states. Plotting the quasibound states separately allows them to be seen 

clearly and it is also possible to compare the MRCI curve shapes with the SA CAS 

calculations. Studying the SA CAS and MRCI calculations it can be seen that the 

curve shapes and barrier heights are very similar, although the MRCI curves lie 

~ leV lower in energy in the region plotted. The difference in energy in this region
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is a little surprising as they are both referenced to their own zero points, i.e. the 

zero point on the SA CAS curves is a SA CAS calculation at 50 A, and the MRCI 

zero point is an MRCI calculation at 50 A.

Table 5.11 Number o f vibrational levels and tunnelling lifetimes for the quasibound states ofBCl2+.

State No. vibrational Lifetime 
levels

l ‘E+ 23 v = 0 -  17: >103s 
v =2 0 : 1 0 '7s

v=18: 1 0 ' ‘s 
v= 2 1 : 1 0 10s

v=19: lO^s 
v= 2 2 : 1 0 ' l2s

i 3n 5 v = 0 : 1 0 2s 
v=3: 10'9s

v = l: 1 0 '2s 
v=4: 10'“ s

v= 2 : 1 0 '5s

i ‘n 14 v = 0  - 8 : > 1 0 3s 
v = ll :  1 0 '5s

v=9: 102s 
v = 1 2 : 1 0 '8s

v = 1 0 : 1 0 '2s 
v=13: 10'‘‘s

i 3r 14 v = 0  - 8 : > 1 0 3s 
v = ll :  lO^s

v=9: 102s 
v = 1 2 : 1 0 '8s

v = 1 0 : 1 0 ' 's  
v=13: 10'los

2 3n 2 v =0 : 1 0 ‘8s v = l: 1 0 ' l2s

2 3r 8 v = 0  - 2 : > 1 0 3s 
v=5: 10‘8s

v=3: 10‘s 
v= 6 : 1 0 ‘10s

v=4: 10'5s 
v=7: 10‘12s

i ' r 4 v = 0 : 1 0 2s 
v=3: 10‘10s

v = l: 1 0 ‘2s v= 2 : 1 0 '7s

2'A 2 v= 0 : 1 0 ‘3s v = l: 1 0 ‘9s

23r 14 v = 0 - 9: >104s 
v = 1 2 : 1 0 ‘8s

v = 1 0 : 1 0 's 
v=13: 10'"s

v = l l :  lO^s

13A 8 v = 0  - 2 : > 1 0 6s 
v=5: lO^s

v=3: 10‘s 
v = 6 : 1 0 ' 10s

v=4: 10'3s 
v =7: 10'12s

The most strongly bound of the BC12+ states are the four states X*E+ (Fig. 5.10),

1,2 3 Z+(Fig. 5.11), and l 1!! (Fig. 5.12), all having essentially infinite lifetimes for
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their first few vibrational levels. Less strongly bound but still relatively stable are 

l 1! '  (Fig. 5.10), 23r  (Fig. 5.11), 13II (Fig. 5.12) and 13A (Fig. 5.13), these states 

all have lifetimes of > 102  s for at least their ground vibrational state. The two most 

weakly bound states with the lowest number of bound vibrational states are 23II 

(Fig. 5.12) and 21A (Fig. 5.13) although the lifetimes of the v = 0 vibrational levels 

for these states differ significantly. The lifetime of v = 0 for 2*A is ~ 10' 2  s which 

is potentially detectable in mass spectrometric studies but for 23II the lifetime of 

v = 0  is ~ 1 0 '8 s which is far too short for the parent ion to be detectable 

experimentally. It is interesting to notice that 2 ]A and l 1! '  have almost identical 

Deff values, 0.22 and 0.23 eV respectively, but the v = 0  lifetime for 2lA is shorter 

by five orders of magnitude, this difference in stability is due to the sharp barrier 

for 2lA caused by the avoided crossing with 1*A (Fig. 5.8). The sharp barrier of 

2!A creates a small barrier width and the lifetime is dependent on the distance an 

atom must ‘tunnel* through the barrier, so a smaller barrier width will reduce the 

lifetime.

5.6.1 Predissociation

The large number of long lived vibrational levels found for the quasibound states of 

BC12+ suggest that once formed the dication would be kinetically stable with 

several accessible long lived electronic states. But the large number of unbound 

states that are present are likely to intersect with several of the quasibound states 

providing a mechanism for predissociation and a subsequent shortening of dication 

lifetime. In Fig 5.14 all the calculated states are plotted together with the 

quasibound states as solid lines and the unbound states as dotted lines and it can be 

seen that about half the quasibound states lie in regions with many intersecting 

dissociative states. As mentioned in Chapter 4 studies on the dications HC12+ [7] 

and HS2+ [8 ] have shown that predissociation via crossing to an unbound state can 

be a route for depopulating quasibound states. From inspection of Fig 5.14 it can

130



be seen that crossing from a quasibound state to an unbound state is likely to leave 

only X*I+, l 3 n , 11II and perhaps 13 Z+ and 23 E+, observable.

18-,

b q
16

14-

12 -

w  10

2Y

1^

1 2 3 4 5 6

R(B-C1) A

Fig 5.14 Plot o f all the calculated electronic states o f BC f + dissociating to the first 6  

dissociation asymptotes. The 10 quasibound states are plotted with solid lines 
and the unbound states with dotted lines, only certain states are labelled as the 
plot is used as a guide to which quasibound states are likely to be long lived, see 
text.

The quasibound states X1!*, 13II and I 1]! are plotted in Fig 5.15 along with the 

unbound state l 3! '  which is the only state that intersects these quasibound states. 

Also the first ten vibrational levels are overlaid onto the X*I+ state.

Examination of X*I+ shows that it is crossed by bound 11TT and l 3n  and unbound 

l3! '.  Taking into account where X!Z+ is crossed by other states the BC12+ ground 

state would be very stable in the first 4 or 5 vibrational levels, i.e. up to a 

vibrational excitation of approximately 0.7 eV. Between the v = 5 and v = 6  

vibrational levels XxE+ is crossed by the l 3n  state so vibrational excitation of the 

ground state to these levels could lead to crossing to the 13II state. From 

Table 5.11 it can be seen that l3n  has only 5 vibrational levels so a crossing to this
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state is likely to lead to rapid dissociation if any state other than the ground 

vibrational state of l3n is populated due to the short lifetimes of these vibrational 

levels. Between the v = 7 and v = 8  vibrational levels X*I+ is crossed by the 1 !II 

state and from Table 5.11 it can be seen that the 11IT state is strongly bound, 

supporting 14 vibrational levels so crossing to this state would not lead to 

predissociation. Near the barrier maximum of X 1E+ it is intersected by the 

unbound 1 3 I* state, but as this is in a region where the tunneling lifetimes of the 

X lL+ vibrational states would be very short, (in the microsecond or less range), 

BC12+ would rapidly dissociate whether it crossed to the 13 I* state or not.

BCT
7.5 -

6.5

90>
5

1.715A 1.742A 

/
5.5 -

i3n

4.5

1.5 31 2 2.5 3.5 4

R(B-C1)/A

Fig S,1S Detail o f the strongly bound X 1 i f , l 177 and l 317 states along with l 3Z  the only 
unbound state to interact with these quasibound states. The first 10 vibrational 
levels o fX * lf and the bond lengths o f BCl3 (1.742 A) and BCl (1.715 A) are also 
marked on.

The 13 X+ and 23 S+ states ire both strongly bound with 14 vibrational levels, see 

Table 5.11, and from inspection of Fig 5.14 they are seen to lie just at the edge of a 

region o f many unbound states so it is possible that they could be observable. 

Detail from Fig 5.14 showhg the region around 1,23 L+ is shown in Fig 5.16 and it 

can be seen that a signifcant number of states cross 2 3 E+ so there is a high
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likelihood of crossing to one of these states, rapidly dissociating the molecule. The 

13 Z+ state is crossed by fewer states than 23 Z+ but the crossings are evenly spaced 

along the curve and so it seems likely that this state also would not survive for any 

significant length of time.

b c i

10

1.5 2.5 3 3.51 2 4

R(B-C1 ) ( k

Fig 5.16 Detail o f the strongly bound 1 and 2s I f  states, showing the one dissociative state 
(13Z) intersecting l 3 i f ,  and some o f the many unbound states crossing ^ i f .

5.7 Formation of BC12+

Experimental synthesis of BC12+ is most likely to involve electron ionisation of 

gaseous BCI3 . This is the process generally used in the formation of CF2+ from CF4  

as it obtains high ion yields[9,10]. By this process BC12+ could form via two 

routes, either double ionisation then fragmentation (Eqn 5.3) or neutral 

fragmentation then subsequent double ionisation (Eqn 5.4).

B C b-> BC12++ 2C1 + 2e' 5.3

BCb -> 2C1 + BCI -> BC12+ + 2C1 + 2e' 5.4

So via Eqn. 5.3 the BC12+ molecule would be formed at the bond length of BCI3 , 

1.742 A, and via Eqn. 5.4 at the bond length of BCI, 1.715 A. These two bond 

lengths are marked on Fig. 5.15 showing where they cross the X1̂ ,  13 I1 and 11TI
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states. The two bond lengths are so similar that it seems unnecessary to discuss 

them separately but to assume that the behaviour of BC12+ would be similar if 

formed at either 1.742 A or 1.715 A.

Assuming BC12+ is formed at the equilibrium bond lengths mentioned above, i.e. 

little vibrational excitation of the precursor, then in the ground state X 1Z+ it should 

be stable and the dication should be observed as the BCI and BCb bond lengths 

correspond to the third vibrational level which is very long lived. If BC12+ is formed 

in the 13II state then it is likely to dissociate rapidly due to the state’s short 

vibrational lifetimes. Slightly higher in energy lies the 1 *11 state which is strongly 

bound and excitation to this state should result in long lived BC12+ ions. So, from 

the discussion above, experiments to form BC12+ from BCI3 should observe the 

following trend with increasing ionization energy of the precursor, stable BC12+ 

ions, B+ Cl+ fragments (dissociation via l3n), stable BC12+ (11Y[) then B+ Cl+ 

fragments again as excitation is to the region with many unbound states.

5.8 Summary and Conclusions

This study of BC12+ has determined that it possesses several quasibound electronic 

states that should be accessible experimentally via ionization of gaseous BCI3. 

Also, by studying the electron density distribution of the molecular orbitals, 

possible bonding mechanisms for the stable electronic states have been proposed. 

Of the 35 states calculated 1 0  are predicted to be thermodynamically unstable but 

kinetically stable with four of these states having barriers to dissociation greater 

than 0.9 eV.

The ground state X!I + has the largest barrier to dissociation at 2.57 eV and 

subsequently the greatest number of long lived vibrational energy levels, 18, with 

lifetimes > 1 O' 3 s (the limit for a state to be observable in mass spectrometric 

studies). Of the other quasibound states only 1 *11 is likely to be observable due to
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the large number of unbound electronic states that intersect with the quasibound 

states providing a mechanism for predissociation.

Analysis of the electron density distribution of the molecule at a series of 

bondlengths shows a movement of electron density from boron to chlorine 

suggesting a charge transfer mechanism could stabilise the molecule. Also, from 

the electron density distribution of the molecular orbitals it appears that the most 

important configurations describing the metastable states are ones with a charge 

distribution of B2+ Cl and B3+ Cf due to the attraction between the unlike charges. 

The unbound states consist mostly of configurations of the form B+C1+ with the 

coulomb repulsion between the like charges destabilizing the molecule.

The calculations suggest that formation of BC12+ via ionization of BCI3 should 

produce stable BC12+ assuming sufficient vibrational relaxation of the precursor. 

Also experiments should observe the following product trend BC12+, B+C1+, BC12+ 

then B+C1+ with increasing ionization energy of BCb as excitation occurs to 

different electronic states.
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Chapter 6

Future work

6.1 Chapter 3: Electron transfer reactions of the SiF32+ dication with the rare 

gases neon, argon, krypton and xenon

In the study into the electron transfer reactions of SiF32+, there are several areas 

where more study would be beneficial. As discussed in the Chapter 3, Landau- 

Zener theory, in our application to atom-molecule reactions contains 

approximations as it does not account for vibrational states or angular dependence 

of the potential curves. More advanced formulations of Landau-Zener theory have 

been developed that incorporate Frank Condon overlap of vibrational states [1] and 

these could be used to improve the SiF32+ study.

The ab initio calculations on the electronic states of SiF32+ could be used to 

produce potential energy curves and to determine the stability of the states. This 

information could be applied to the product ion yield calculations where previously 

all excited states were assumed to be unstable. The calculations also determined 

that excited states of SiF32+ are present in the reactant ion beams. These excited 

states could have markedly different equilibrium geometries to the dication ground 

state, thus forming the cation at a different geometry to that considered in the 

study. At present Zdenek Herman et al in Prague are performing detailed 

calculations on SiF32+ to calculate potential surfaces for electronic states of the 

molecule.

6.2 Chapter 4: On the dissociation of the ozone dication

In the calculations to create the ozone dication singlet and triplet surfaces one of 

the bonds is kept at a fixed length for all calculations. Allowing this bond to relax 

by optimising the energy of each calculation would produce more accurate
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surfaces. Also, only the first singlet and first triplet electronic states were studied, 

higher lieing excited states could also be involved in the dissociation of the ozone 

dication and investigating these could elucidate more detail of the ozone dication 

dissociation.

At the geometry at which the dication is formed the coupling between the singlet 

and triplet states is assumed to be sufficient to allow the rapid crossing between the 

two states. Spin-orbit coupling calculations at the crossing would allow a lifetime 

of the singlet state to be determined. The dissociation of O32* could also be 

investigated using collision dynamics calculations. A series of potential energy 

surfaces for the ground singlet states were calculated to be used in a collision 

dynamics study but no results are available from this study yet.

A conclusion from the C>32+ study is that formation of the dication via single 

ionisation of the cations could form stable O32* ions. No experimental work has yet 

been performed to investigate this but it would be interesting to test this 

conclusion.

6.3 C hapter 5: ab initio study of the structure and stability of low lying 

electronic states of the dication BCI2*

The study of BCI2* undertakes some discussion of the mechanism of stability of the 

dication and it would be interesting to investigate such mechanisms further. Also, 

spin-orbit coupling calculations on the intersecting electronic states would improve 

the discussion on the likely stability of the dication upon formation. The 

calculations suggest that BCI2* would be detected in mass spectrometric studies but 

no such experimental work has been carried out as yet, although some is planned 

by Dr Price’s research group. Some of the low lying electronic states could also be 

amenable to laser spectroscopic study similar to that performed on HC12* [2] giving 

experimental infomation on the electronic energy levels.
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Appendix

LEVEL - Principles and Concepts

1 Introduction

LEVEL is a FORTRAN computer program for solving the radial Schrodinger 

equation for bound and quasibound levels of any smooth one dimensional potential. 

The program can also calculate expectation values, centrifugal distortion constants 

for specified levels and generate radiative lifetimes for transitions between 

vibration-rotation levels of a given potential to levels of either the same or another 

potential. LEVEL was written by Robert J. LeRoy who maintains and updates the 

code and is presently at the University of Waterloo, Canada. Copies of the source 

code can be obtained by contacting LeRoy at Lerov@uwaterloo.ca.

1.1 Vibration and Rotation of molecules

1.1.1 Vibration

A particle undergoing harmonic motion experiences a restoring force, F, 

proportional to its displacement from equilibrium, x,

F= -kx 11

Where k  is the force constant. The potential energy, V, and the force, F, are related 

by F  = -dV/dx, thus the potential energy of the system is

V= '/ikx2. 12

The Schrodinger equation for the particle is given by

1.3
2m dx2

2 +y2kxlx¥  = E ¥

and the permitted energies of the harmonic oscillator, E Vi are

Ev = (v + y3)h  a v = 0, 1,2,... 1,4

14(0
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6) is the angular velocity and is given by

CD = —

Thus the energy level separations are given by fi co, and the particle has a minimum 

energy, the zero point energy Eo, of V2 h co.

1.1.2 Rotation

For a body rotating about a given axis, x, the energy is given by E  = V2lxo)x where

cox is the angular velocity and Ix the moment of inertia. Extending this to rotation

about three axes the energy term becomes

E  = V2lxG)x + folyCdy + V2IZCDZ  ̂ ^

The classical formula for angular momentum about an axis, x, is Jx = IxcoXi so for 

the three axes

J 2 J 2V J 2 1.6
21 21 21x y  z

For a spherical rotor, a molecule with all three moments of inertia equal e.g. CH4 , 

the classical expression of the energy is

where J  is the magnitude of the angular momentum and J2 = Jx + Jy2 + Jz . A 

quantum expression for the energy is achieved by making the replacement f  

J(J+1) h 2 J=  0, 1,2 ... The quantized energy for a spherical rotor is thus

£ , = j ( y  + l ) ^ :  .7=0, 1 ,2 ,... 18

Expressing the energy in terms of the rotational constant B , where hcB = h 2//, the

energy of a rotational state is given by the rotational term F(J)

F(J) = BJ(J+1) B= h/4ncl 19
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For a symmetric rotor, a molecule with two equal moments of inertia e.g. NH3, 

Ix = Iy * Iz where z is the principal axis. The classical expression for the energy here 

is

J l + J l  J ]  1.10
21x 21,

Which when expressed in terms of f  = Jx2 + Jy + Jz by dividing through by 

Jz /  21 z becomes

t J ]  J ]

21 * 21 * 21 * 1.11

J 2 (  1 1 '
21.

■ +
21  21 .

J:
z V * *  Z J

This is expressed quantum mechanically by replacing f  by J(J+1) h 2, and also by 

using the fact that the component of angular momentum about any axis is restricted 

to the values

J, = K h K  = 0, ±1, ±2, ... ±J  1 ,2

The rotational terms F(J) for a symmetric rotor are then 

F(J, K) = BJ(J+1) + (A-B)K2 

J  = 0, J, 2, ... K  = 0, ±1, ±2, ... ±J j j 3

A = - ± -  B= H
47icl 4tvcI,

For a linear rotor where the moment of inertia about the axis is zero e.g. CO2  and 

HC1, Eqn. 1.13 can be used with K = 0. The rotational terms are thus

F(J) = BJ(J+1) 114
also, for a diatomic the moment of inertia, I, equals fiR2 where pi is the reduced

mass and is given by — = —  + — , the rotational energies can then be written as 
pi m] m2

E j = j ( j + i ) j ^ -  j = 0, 2,...
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1.1.3 Diatomic Molecular Vibration

Close to the minimum of a typical molecular potential energy curve, around the 

equilibrium geometry, the curve is well represented by a parabola. The potential 

energy can be written as for the harmonic oscillator,

V = V ,k(R-Rf 115

where k  is the force constant of the bond, Re the equilibrium bond length and R  the

atom-atom separation. The Hamiltonian for the motion of two particles of masses

mi and m2 moving with this potential energy is

*  = + k  U 6
2mx cbc{ 2m2 dx2

and using the reduced mass, ju, the Schrodinger equation for this system can be 

written as

- — t ^ -  + W  = E ¥  1 1 7
2 dx

The vibrational energy levels are given by

Ev = (v + Vi) Tl co v = 0, 1, 2,...

CO =

r k \'A
1.18

.R )

Which can be expressed in wavenumbers using the vibrational terms G.

G(v) = (v + v3) v v =
I 2 7 X

1.19

1.1.3.1 Anharmonicity

At high vibrational excitation the diatomic potential energy curve deviates 

significantly from a parabola and becomes anharmonic as the force constant is no 

longer proportional to the displacement. Also, as the curve becomes less confining 

than a parabola at higher excitation the energy levels become less widely spaced.
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One approach to more accurately represent this anharmonic potential energy curve 

is to use a Morse potential

V = De{ a  =
1.20

CO

which resembles a parabola around Re and allows for dissociation by tending 

toward an asymptote, lying at energy Dei at large R.  Solving the Schrodinger 

equation for the Morse potential gives the permitted vibrational energy levels

1.21
G(v) = (v + Vi) v -(v + V ifx«v x ,  =

f  21  ̂a h
2^m

where x* Is the anharmonicity constant and the number of vibrational levels is 

finite.

The Morse potential is still an approximation and in practice a more general 

expression for the vibrational energy levels is

G(v) = (v + l/2)v - (v + Y2)2%eV2 + (v + VlfyeV3 + ... 1.22

Several other functions have been produced to model a typical molecular potential 

energy curve. Examples of these include the Lennard-Jones (n,6)-potential [1] 

which has the form

V  =  £ j l - £ ±  1.23
r" r 6

where C„ and C6 are arbitrary coefficients chosen to give a best fit to experimental 

data. The potential curve shape forms as a consequence of competition between 

the attractive -C ^r6 term and the repulsive + C / /  term. Generally n is chosen to be 

between 10 and 12 so that at short range +Cn/r/l dominates the curve giving a steep 

repulsive wall. At large r the - C / /  term dominates so that the curve is attractive, 

and at intermediate distances a potential well forms due to competition between the 

r 6 and r ” terms.
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Representing the repulsion term as —  is often found to be a poor representation
r"

of a typical curve and an exponential term is more realistic. To account for this the 

exponential -  R*6 function, also know as “Buckingham” or “Hill” type potential [2] 

can be used, this is given by

V = Ae-s' ~  1.24
r

where A, B  and C are again constants chosen to fit experimental data.

One method of determining the potential without imposing any assumed analytic 

form is the Rydberg-Klein-Rees, RKR, method [3-5]. Here the potential is 

determined using experimental vibrational and rotational spectroscopic terms.

2 Solving for the Vibrational Wavefunction

At the heart of the LEVEL program is the determination of the eigenvalues and 

eigenfunctions of the radial Schrodinger equation

h2 d 2̂ VJ(R) 91
  ( R)  = K j  ( « )  2 12ju ax

where FViJ(R) incorporates vibration and rotation. The vibration and rotation 

quantum numbers are v and J  respectively and the potential, Vj(R), is a sum of the 

rotationless potential plus a centrifugal term.

In solving Eqn. 2.1 the equation is integrated numerically using the Numerov 

algorithm as the Numerov formula can be used to solve numerically differential 

equations of the form y "  = F(x,y). Taking the one dimensional Schrodinger 

equation as given in Eqn. 1.3, this can be written as

xp,=̂ gf)=_2E {E_ V(x)mx)=f{xmx) 22
dX ft

here F(x, y)=f(x)y and the Numerov formula for this case is
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y n+i =
h 2

2 y„-y„-,+— (l o/(*„ )y „ + /(V i K - . )
2.3

-1
+ R n + 1

x* - x„.i = h and n labels the successive points at which y  is computed. The residual 

term R„+i can be computed from

r d * y \ /
'240K *  = - h ' dx6 ,

\  s  n+\

Using the Numerov method an iterative process can be used to determine 

numerically the wavefiinction and subsequently the eigenfunctions and eigenvalues 

can be computed by methods outlined below.

The method used to locate accurately the eigenvalues and eigenfunctions is based 

on the Cooley procedure [6]. This method involves two series of calculations of 

the wavefunction for a trial energy, one proceeds inwards from R m a x  R m in  and 

the other outwards from R m in  R m a x • The values R m a x  and R m in  must lie 

sufficiently inside the classically forbidden region of the potential that the 

wavefunction has decayed by several orders of magnitude, (~109), relative to its 

amplitude in the classically allowed region. For the inward calculation an arbitrary 

small value (effectively zero) is assigned to 'F* and the numerical integration 

carried out inwards to an arbitrary point Rx. The outward integration begins with a 

boundary condition of = 0 and a small value to the next point, the numerical 

integration is then performed outwards to Rx. A correction to the trial energy can 

then be determined by the discontinuity in the slopes of the outward and inward 

wavefunctions at Rx, the process is then repeated for this new energy and another 

correction term determined. This procedure is repeated in an iterative process until 

the successive values of the energy differ by less than a set value.
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The Cooley procedure is rapid and applicable to any function and for a single 

minimum potential it is insensitive to the choice of Rx provided that it lies within 

the classically allowed region. Also, a maximum number of iterations should be set 

as the process can eventually oscillate between two values.

non-classical reflection 
vibrational level

quasibound 
vibrational level

R

Fig 1.1 Schematic potential energy curve with three turning points a, b and c marked for a 
particular energy. Also marked are two vibrational levels, a quasibound level lying 
above the asymptote but below the barrier maximum, the other lying above the barrier 
maximum and existing, despite it having sufficient energy to overcome the potential 
barrier, due to quantum mechanical anti-tunneling effects.

To determine the highest vibrational levels of a potential a near dissociation 

expansion (NDE) function is employed [7] that estimates the energy of vibrational 

levels that lie near and above the barrier maximum. NDE’s are based around the 

theory that vibrational levels lying very near the barrier maximum have properties 

that depend on the long range inverse power tail of the potential and simple 

analytical expressions can be devised for the vibrational energy levels spacings and 

other properties. Levels can occur above the barrier maximum as a result of anti­

tunneling effects also known as non-classical reflection, where the quantum 

mechanical effects allow a vibrational state to exist even though classically it has 

sufficient energy to pass over the barrier, an example is shown schematically in

147



Fig 1. The lifetimes of such states of a quasibound potential are very short but they 

are important in calculations to determine the vibrational energy required to 

dissociate a molecule.

3. Treatment of quasibound levels

Quasibound or orbiting resonance levels are vibrational states that lie above the 

dissociation asymptote but below a local maximum in the potential, see Fig 1. 

These levels require special treatment as the finite width of the potential barrier 

means that these levels are able to quantum mechanically tunnel through the barrier 

resulting in the states possessing a finite lifetime before dissociation.

The energies of the quasibound vibrational states correspond approximately to the 

eigenvalues the potential would have if the asymptote was the barrier maximum 

energy. It is possible to use “exact” quantum mechanical methods to determine 

these quasibound levels but these methods are lengthy and time consuming [8]. A 

more efficient technique is to impose an approximate boundary condition where the 

wavefunction is required to have some chosen behaviour at the outer boundary and 

also at R=0. With these boundary conditions imposed it is then possible to 

determine the eigenvalues and eigenfunctions of the wavefunction by techniques 

such as the Cooley method described above. Among the most successful boundary 

conditions found, and the one used in LEVEL, is that the wavefunction behaves as 

an Airy function of the second kind [8] at the second turning point, marked b in 

Fig 1.

To determine the lifetimes of the quasibound vibrational levels LEVEL uses a 

uniform semi-classical approximation. In the classically forbidden region of the 

potential within the barrier, between points b and c in Fig 1, LEVEL uses the semi- 

classical result that the wavefunction dies off exponentially with an exponent of
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RMX(v,J)

R2{v,J)
| [ V j W - E ^ d R 3.1

The limits of this integration are set so that R.2(v,J) is the outer end of the

amplitude in the classically allowed region. The uniform semi-classical 

approximation for calculating the lifetimes requires the evaluation of an integral 

similar to that in Eqn 3.1, in the classically forbidden region within the barrier.

4. Potential generation

The potential used by LEVEL in its calculations is stored as an array of finely 

spaced points that are determined either from turning points given by the user, one 

of several internal analytic functions or a user entered function. For user entered 

turning points LEVEL fits either a polynomial function to the points or a spline 

function. The spline function is a function that is often used to fit a smooth curve 

to a set of points, it uses the constraint that the second derivative of the fitted 

curve is zero at each read in point. Also, LEVEL adds the condition that for 

distances shorter than the second of the read in turning points the potential is 

extrapolated inward with an exponential function fitted to the last three points. The 

asymptotic tail of the potential can also be fitted to an exponential or an inverse 

power function.

LEVEL has several in built functions that can be used to create the potential, these 

functions only require a few variables to be entered to generate the potential. 

Among the in-built functions are the Lennard-Jones and Morse potentials 

mentioned above and also several other more sophisticated functions. It is also 

possible to replace the potential generating subroutine by a user’s own code to 

generate a potential using a function of their own.

classically accessible region for this level, b in Fig 1.1, and RMX is set within the 

barrier at a point such that the wavefunction amplitude is less than ~10‘9 of its
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5. O ther properties calculated

As well as vibration-rotation energy levels and tunneling lifetimes LEVEL can also 

calculation centrifugal distortion constant for the calculated levels. Also, it is 

possible to calculate radiative lifetimes for a transition between levels of two 

different potentials or among levels of one potential. The Franck-Condon factor for 

the coupling of the two states the states 'Fvt and is calculated by the equation

and the rate of spontaneous emission from the higher lying state is calculated from 

the Einstein A coefficient where

In Eqn. 5.2 M(R) is the dipole moment and v the emission frequency, S(J\J") the 

overlap integral is originally set up for singlet - singlet transition with the selection 

rules AA=0, ±1 but can be generalised for other multiplicities.

5.1

^=3.1361861xl0-7[5 (r ,r ) /(2 y '  + l )p |( ' f v7.|M(i?)|4'vV.)|2 5.2
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