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a b s t r a c t 

Although the value of portfolios of real options is often affected by both exogenous and endogenous 

sources of uncertainty, most existing valuation approaches consider only the former and neglect the lat- 

ter. In this paper, we introduce an approach for valuing portfolios of interdependent real options un- 

der both types of uncertainty. In particular, we study a large portfolio of options (deferment, staging, 

mothballing, abandonment) under conditions of four underlying uncertainties. Two of the uncertainties, 

decision-dependent cost to completion and state-dependent salvage value, are endogenous, the other two, 

operating revenues and their growth rate, are exogenous. Assuming that endogenous uncertainties can be 

exogenised, we formulate the valuation problem as a discrete stochastic dynamic program. To approxi- 

mate the value of this optimisation problem, we apply a simulation-and-regression-based approach and 

present an efficient valuation algorithm. The key feature of our algorithm is that it exploits the problem 

structure to explicitly account for reachability – that is the sample paths in which resource states can 

be reached. The applicability of the approach is illustrated by valuing an urban infrastructure investment. 

We conduct a reachability analysis and show that the presence of the decision-dependent uncertainty has 

adverse computational effects as it increases algorithmic complexity and reduces simulation efficiency. 

We investigate the way in which the value of the portfolio and its individual options are affected by 

the initial operating revenues, and by the degrees of exogenous and endogenous uncertainty. The results 

demonstrate that ignoring endogenous, decision- and state-dependent uncertainty can lead to substantial 

over- and under-valuation, respectively. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

A fundamental issue in real options analysis and decision-

aking under uncertainty is how to account correctly and ade-

uately for the multiple sources of uncertainty occurring in most

ractical real-life situations. In these situations it is generally as-

umed that the effective sources of uncertainty are purely exoge-

ous and, as such, are independent of both the actions taken by

he decision maker and the state of the underlying system affected

y these decisions. For example, in the case of investment in a
� This paper is a significantly expanded version of a paper first presented at the 

1st Annual International Real Options Conference in Boston, MA (USA), in June/July 

017. 
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ew wind farm, the wind farm’s performance depends on factors

uch as location, time of day and the wind turbines’ characteristics;

owever, parameters such as the wind speed, and consequently the

mount of power generated, are independent of the investor’s de-

ision of whether to build the wind farm or not. Likewise, if the

mount of power generated by such a wind farm is sufficiently

mall and/or the relevant wholesale electricity market to which the

ower is sold is comparatively large, then the underlying whole-

ale price of electricity, and consequently the investor’s potential

evenues are also independent of the investor’s decision. 

There are, however, many practical situations in which the rel-

vant sources of uncertainty are endogenous, i.e. dependent on the

ecision maker’s actions or the underlying system’s state, or both.

n the case of the wind farm example, if the above-mentioned

onditions are violated, i.e. if the new wind farm is sufficiently

arge and/or the electricity market relatively small, then the

ntroduction of a new wind farm will affect the wholesale price
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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of electricity and hence the investor’s future revenues. Similarly,

although the “off-the-shelf” cost of new wind turbines may be

known and a feasibility study may provide a construction cost es-

timate, the actual cost of building a new wind farm will not be

known until the investor actually builds it. During the building

process, the investor learns and reveals the wind farm’s true capi-

tal cost. If the investor wants to sell the wind farm at the end of its

lifetime, in the absence of a second hand market, the resale value

will depend on its “state”, which may include such factors as its

lifetime, asset value, wear and tear, and decommissioning cost. 

Despite the prevalence of exogenous and endogenous sources

of uncertainty in many real-life situations, there remains a need

for a unified approach that accounts for both when real options

analysis is used to evaluate practical investment problems. Includ-

ing both types of uncertainty in a real options approach has rarely

been studied in the related literature ( Ahsan & Musteen, 2011 ).

Although portfolio of real options approaches have been applied

when there is only exogenous uncertainty, there is a need to in-

clude both types because that enables decision-makers to manage

the two uncertainty types simultaneously ( Otim & Grover, 2012 ).

Some authors have therefore suggested that future work should

examine the interactions between different sources of uncertainty

and the portfolio’s individual options, e.g. see Tiwana, Keil, and

Fichman (2006) and Li, James, Madhavan, and Mahoney (2007) .

More recently, a critical review of Trigeorgis and Reuer (2017) has

suggested four extensions, three of which are addressed here: port-

folios of interdependent real options, multiple sources of uncer-

tainty, and endogenous resolution of uncertainty through learning. 

This paper introduces a valuation approach for portfolios of

interdependent real options under exogenous and endogenous

sources of uncertainty. Studying the problem of a sequential and

partially reversible investment project, we consider a portfolio of

options to: defer investment; stage investment; temporarily halt

expansion; temporarily mothball the operation; and permanently

abandon the project during either construction or operation. In the

problem studied here, the portfolio’s value is affected by four un-

derlying uncertainties. Of these, the project’s actual cost to com-

pletion and its salvage value are decision- and state-dependent,

respectively. These uncertainties evolve endogenously, whereas the

operating revenues and their growth rate evolve exogenously. Sim-

ilar to Maier, Polak, and Gann (2018) , we use an influence diagram

to graphically model the interdependencies between the portfo-

lio’s real options and mathematically translate these into a set of

constraints. The constraints and the stochastic processes describing

the uncertainties’ dynamics are then integrated into a multi-stage

stochastic optimisation problem which is formulated as a stochas-

tic dynamic program. 

Our decision model is a stochastic dynamic, discrete-time

(Markovian) model: the transition of the state S t of the under-

lying system at time t to state S t+� after a time increment �

is driven by our decisions as well as by the random processes

describing the uncertainties. Here we distinguish between exoge-

nous and endogenous sources of uncertainty. Modelled as stochas-

tic Markovian processes, the evolution of endogenous uncertain-

ties depends on the decision maker’s strategy or the system’s state,

or both, while those of exogenous uncertainties are unaffected by

decisions and states. Compared to standard real option models,

models with decision- or state-dependent random variables are

much more difficult to solve by simulation-and-regression meth-

ods since it is generally impossible to use random deviates which

have been sampled once at initialisation. However, as shown in

Supplementary Material C, it is sometimes possible by a reformu-

lation termed exogenisation to use the same fixed set of random

deviates even for endogenous uncertainty. In this paper it is there-

fore assumed that endogenous uncertainty can be exogenised. To

approximate the value of this optimisation problem, we use an
xtension of standard simulation-and-regression methods (e.g. see

ortazar, Gravet, & Urzua, 2008; Glasserman & Yu, 2004; Longstaff

 Schwartz, 2001; Nadarajah, Margot, & Secomandi, 2017; Tsitsik-

is & Van Roy, 2001 ) whose basic structure and principles are de-

cribed in Supplementary Material D. 

The main contributions of this work are in the following three

reas: 

(1) Our model extends the standard models in several ways:

(i) standard models generally assume a single time step,

meaning that the time evolves from t to t + 1 after a de-

cision has been made at t , but here the decisions a t ∈ A S t 

imply the time delay �h , i.e. the moment in time for the

next decision is t + �h . This makes our model more flexi-

ble as it allows us to address problems with multiple time

steps; (ii) unlike standard problems, here the random vari-

ables ξ t appearing in the transition function depend on the

state of the system S t . To enable computational tractability,

however, we show how exogenised random factors εt can

be used instead by assuming that the ξ t can be written in

the form ξt (ω) = f (S t (ω) , ε t (ω )) , where εt ( ω ) is indepen-

dent of S t ( ω) when following a sample path ω (see Supple-

mentary Material C); (iii) we explain how the parametric re-

gression model can be made dependent on the state S t to

account for the circumstance that some basis functions of

the parametric model are impossible for some states. 

(2) We present an extended algorithm to account for complex-

ities induced by the extended model. First, compared to

standard algorithms for problems with only exogenous un-

certainty, the incorporation of the decision-dependent un-

certainty results in an additional path-dependency. We

therefore propose a forward induction procedure in which

the resource state space generation is interleaved with the

Monte Carlo sampling steps of the information state space

generation. Secondly, we include reachability in our forward

pass to account for the circumstance that some resource

states may not be reachable, or only in a subset of sam-

ple paths. This is a key feature as it enables us to design

an efficient backward approximation algorithm that consid-

ers only reachable resource states and the set of paths in

which they can actually be reached. Thirdly, we describe

how the structure of the problem to be solved can be ex-

ploited through dynamically and appropriately adapting the

set of basis functions used in the parametric model in order

to avoid numerical inaccuracies related to 1(iii). 

(3) We demonstrate the applicability of our approach and per-

form a set of detailed numerical analyses using an illustra-

tive example of an urban infrastructure investment in Lon-

don. We first conduct a reachability analysis to investigate

the complexity of the problem in terms of the number of

both resource states and sample paths, and show that the

presence of the endogenous, decision-dependent uncertainty

generally leads to an increase in algorithmic cost and a de-

crease in simulation efficiency. Subsequently, we investigate

the sensitivity of the value of the portfolio and its individual

options to the initial level of annual revenues, as well as to

the degrees of exogenous and endogenous uncertainty. We

illustrate that the availability of real options is more valu-

able for low values of initial revenues, and that the port-

folio is substantially more valuable than individual options.

We also illustrate that the portfolio value increases mono-

tonically in both the exogenous and the endogenous, state-

dependent uncertainty, but that there is a non-monotonic

effect with respect to the endogenous, decision-dependent

uncertainty. More importantly, this work shows that

ignoring decision- and state-dependent uncertainty can lead
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to substantial over- and under-valuation, respectively, and

also provides the reasons for this. 

The rest of this article is organised as follows: Section 2 re-

iews the relevant literature with an emphasis on the operational

esearch as well as on the finance and management literature.

ection 3 describes the investment problem by specifying both the

ortfolio of interdependent real options ( Section 3.1 ) and the set of

ncertainties ( Section 3.2 ) considered in this work. In Section 4 we

resent the modelling and valuation approach together with the

imulation-and-regression-based valuation algorithm ( Section 4.3 ).

he approach and the algorithm are then applied to the real-case

f a district heating network expansion investment in the Lon-

on borough of Islington ( Section 5 ). Results are presented and

iscussed in Section 5.4 . Finally, some concluding remarks and

uggestions for future research are provided in Section 6 . Addi-

ional information regarding the exogenisation of endogenous un-

ertainty, the basic algorithm, input data and illustration of sample

aths is provided as supplementary material. 

. Literature review 

The classification of uncertainties into exogenous and endoge-

ous has received considerable attention in different branches of

iterature, and importantly in the operational research as well as

n the finance and management literature. With regard to the for-

er, to the best of our knowledge, the work of Jonsbråten, Wets,

nd Woodruff (1998) was the first to classify the formulation of

tochastic programs into “standard” formulations with decision in-

ependent random variables and “manageable” formulations, in

hich the distribution of the random variables is dependent on

ecisions. Calling the former “exogenous uncertainty” and the lat-

er “endogenous uncertainty” ( Goel & Grossmann, 2004 ), Goel and

rossmann (2006) specified the way in which decisions can affect

he stochastic process – which describes the evolution of an uncer-

ain parameter ( Kirschenmann, Popova, Damien, & Hanson, 2014 ) –

y presenting two types of endogenous uncertainty. The first is

hen the decision alters the probability distribution, whereas the

econd relates to the decision affecting the timing of uncertainty

esolution, a process often described as information revelation. 

Considering the above specification of endogenous uncertain-

ies, several relevant works have appeared in the operations re-

earch literature over the last few decades. As for the first type

f endogenous uncertainty, Pflug (1990) was the first to take into

ccount decision-dependent probabilities in a stochastic optimisa-

ion problem by considering a controlled Markov chain where the

ransition operator depends on the control, i.e. the decision. Other

elevant articles related to this type are in the context of stochas-

ic network problems ( Held & Woodruff, 2005; Peeta, Salman,

unnec, & Viswanath, 2010 ), global climate policy ( Webster, San-

en, & Parpas, 2012 ) and natural gas markets ( Devine, Gabriel, &

oryadee, 2016 ). By contrast, the second type of endogenous un-

ertainty has received considerable more attention in the litera-

ure. The first work related to this type was ( Goel & Grossmann,

004 ), which presented a stochastic programming approach for the

lanning of an investment into a gas field with uncertain reserves

epresented through a decision-dependent scenario tree. Other rel-

vant works include the optimisation of R&D project portfolios

 Solak, Clarke, Johnson, & Barnes, 2010 ) and pharmaceutical clin-

cal trial planning ( Colvin & Maravelias, 2010; 2011 ). 

Moreover, several works have incorporated both the second

ype of endogenous uncertainty and exogenous uncertainty in the

ormulation of stochastic programmes. For generic problem formu-

ations and solution strategies see the rather theoretical works of

upa ̌cová (2006) , Goel and Grossmann (2006) , and Tarhan, Gross-

ann, and Goel (2013) . Recent advances and summaries over ex-
sting computational strategies have been presented by Grossmann,

pap, Calfa, Garca-Herreros, and Zhang (2016) and Apap and

rossmann (2017) . However, although almost all publications of

his branch of literature refer to the classification and specification

f Jonsbråten et al. (1998) and Goel and Grossmann (2006) , respec-

ively, Mercier and Van Hentenryck (2011) argued that problems in

hich merely the observation of an uncertainty depends on the

ecisions, but the actual underlying uncertainty is still exogenous

 = second type of endogenous uncertainty) should be classified as

stochastic optimization problems with exogenous uncertainty and

ndogenous observations”. 

Unlike the operational research literature, the finance and man-

gement literature appears to be rather ambiguous, even some-

hat inconsistent when it comes the classification of uncertain-

ies. Indeed, although the importance of taking this distinction

nto account has been widely recognised in this branch of lit-

rature, especially in works related to the field of real options

 Bowman & Hurry, 1993; Folta, 1998; Li, 2007; Oriani & Sobrero,

008 ), there is no clear and widely accepted definition. For exam-

le, Pindyck (1993) distinguishes between technical and input cost

ncertainty while noting their different effects on investment deci-

ions as these incentivise investing and waiting, respectively. Build-

ng upon this distinction, McGrath (1997) called for a third form

f uncertainty that lies in-between. Furthermore, McGrath, Ferrier,

nd Mendelow (2004) refers to the exogenous and endogenous

esolution of uncertainty through the passing of time and learn-

ng, respectively. By contrast, Van der Hoek and Elliott (2006) took

ote of uncertainties that are state-dependent rather than depen-

ent on the option holder’s decisions. 

Various researchers have applied real option approaches to

aluation problems with both exogenous and endogenous uncer-

ainty. Generalising the work of Roberts and Weitzman (1981) ,

indyck (1993) evaluated a staged-investment with technical (en-

ogenous) and input cost (exogenous) uncertainty using a finite

ifference method. Other relevant articles considered both types

f uncertainty in the context of information technology invest-

ent projects ( Schwartz & Zozaya-Gorostiza, 2003 ), patents and

&D projects ( Schwartz, 2004; Schwartz & Moon, 20 0 0 ), pharma-

eutical R&D projects ( Hsu & Schwartz, 2008; Pennings & Sereno,

011 ), product platform flexibility planning ( Jiao, 2012 ), and nu-

lear power plant investments ( Zhu, 2012 ). However, according to

iltersen and Schwartz (2007) , the algorithms of Miltersen and

chwartz (2004) , Schwartz (2004) , Hsu and Schwartz (2008) , and

hu (2012) , which are plain extensions of the basic algorithm

f Longstaff and Schwartz (2001) for single American-style op-

ions, “cannot easily handle temporary suspensions of the” invest-

ent project nor isolate the options’ values. Also, these works

onsidered only the abandonment option, rather than a real op-

ions portfolio. With regard to state-dependent uncertainty, Sbuelz

nd Caliari (2012) studied the influence of state-dependent cash-

ow volatility on the investment decisions related to corporate

rowth options, whereas Palczewski, Poulsen, Schenk-Hopp, and

ang (2015) examined optimal portfolio strategies under stock

rice dynamics with state-dependent drift. 

Nevertheless, these real option approaches are rather inflexi-

le and restricted in terms of the size of the real options port-

olio, the number and types of uncertainties as well as the

aluation method applied. This paper takes a fundamentally dif-

erent approach by introducing a framework for valuing portfo-

ios of real options under exogenous and endogenous uncertain-

ies. In particular, we study an investment problem with sev-

ral types of real options (deferring, staging, mothballing, and

bandoning), two exogenous uncertainties (operating revenues and

heir growth rate), and two endogenous uncertainties (decision-

ependent cost to completion and state-dependent salvage value).

sing an illustrative example of a district heating network in
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1 This, of course, does not change the exogenous and endogenous dynamics of 
London, we provide portfolio insights and find that the port-

folio value increases monotonically in both the exogenous (rev-

enue) and the endogenous, state-dependent (salvage value) un-

certainty, but that the endogenous, decision-dependent (cost to

completion) uncertainty has a non-monotonic effect. This effect is

largely due to the availability of abandonment options, whose val-

ues – enabled by partial reversibility – are directly and indirectly

driven by state- and decision-dependent uncertainty, respectively.

Most notably, we show that, in general, ignoring the former re-

sults in under-valuation, whereas ignoring the latter leads to over-

valuation, thereby highlighting the importance of accounting cor-

rectly for uncertainty. 

3. The investment problem 

In this section, we present the investment problem studied here

by specifying both the portfolio of interdependent real options and

the set of underlying uncertainties. 

3.1. Portfolio of interdependent real options 

We study the problem of a decision maker wanting to deter-

mine the value of a sequential and partially reversible investment

in a project whose stage-wise expansion (development) can be de-

ferred, temporarily halted and/or abandoned altogether, and, once

operating, whose cash flow generating asset can be used until the

end of the asset’s project life in T max 
3 

time periods, temporarily

mothballed and/or abandoned early. 

Representing the set of flexibilities as a portfolio of interdepen-

dent real options, the portfolio’s single, well-defined options are: 

(a) Option to defer investment: Instead of starting immediately

at time 0, the decision maker may choose to defer the start

of the expansion until the expiration of the right to under-

take this investment in T max 
1 

time periods, without incurring

any direct costs associated with deferring. 

(b) Option to stage investment: As the development takes time

to complete, the decision maker can invest at a rate of

0 < C t ≤ I max in period t as long as the remaining investment

cost K t at the beginning of period t is greater than 0 – i.e.

while the construction is not yet completed –, where I max 

and K 0 are the maximum rate of investment and the initial

(expected) cost of completion, respectively. 

(i) Option to temporarily halt expansion: If conditions turn

out to be unfavourable, the decision maker can halt the ex-

pansion (i.e. set C t = 0 ) at a cost of C d , h , maintain the halted

expansion for a total of T max 
2 

time periods at a periodic cost

of C h , and, if desirable, resume development at a cost of C h , d .

(ii) Option to abandon the project during construction (i.e.

when K t > 0): Whether developing or halted, the project can

be permanently abandoned at any given point in time t for

the salvage value X t , which is assumed to contain any costs

that abandonment during construction involves. 

(c) Option to temporarily mothball the operation: If operation

of the asset becomes uneconomic, the decision maker can

mothball the operating asset at a cost of C o , m , maintain the

mothballed asset at a periodic cost of C m , and, if conditions

become favourable again, reactivate the asset at a cost of

C m , o . 

(d) Option to abandon the project during operation (i.e. when

K t = 0 ): Whether operating or mothballed, the decision

maker retains the right to permanently abandon the project

at any time t for its salvage value X t , which is assumed to
contain all costs related to abandoning during operation. u
The above described individual real options are well-known and

ave been widely examined in the real options literature – such

s “time to build” effects in Majd and Pindyck (1987) –, for an

verview see Trigeorgis (1996) . 

.2. Characterisation of uncertainties 

This study considers four sources of uncertainty – also re-

erred to as stochastic factors or random variables – denoted by

 t , V t , μt and X t , representing the project’s actual cost to comple-

ion at time t , the revenues (net cash flow) generated by opera-

ion in period t , the growth rate of revenues in t and the salvage

alue at time t , respectively. The first and the fourth uncertainty

re decision- and state-dependent, respectively. These uncertain-

ies evolve endogenously, whereas the dynamics of the second and

hird factor are exogenous. While the choice of stochastic factors

bviously depends on the specific investment problem at hand,

ur choice, which is sufficient for the purpose of this work, cov-

rs several relevant and widely applicable stochastic factors, so is

mportant for many practical applications where the sources of un-

ertainty are exogenous and endogenous. Unlike previous studies,

hich have considered these uncertainties mostly in isolation, here

e consider the four uncertainties jointly since they are relevant to

ost projects’ major phases including construction (cost to com-

letion), operation (revenues), and decommissioning/disposal (sal-

age value). Note that the consideration of a stochastic growth rate

llows us to model random variations in the general economic con-

itions and adds complexity to the problem, enabling us to both

emonstrate the capability and test the robustness of our proposed

aluation approach. 

The four stochastic factors are described by discrete-time ran-

om walks with drift, in a general form by: 

 t+� = ϕ t M t + f t (M t , θ1 )� + σt (M t , θ2 ) 
√ 

�ε m 

t+�, (1)

here ϕt is a discounting multiplier, f t is the drift function, � is

he time step, σ t is the diffusion function, and ε m 

t+�
is the driv-

ng zero-mean process. Note that for endogenous stochastic factors,

he parameters θ1 or θ2 , or both depend on the decision or state,

r both. The driving process ε m 

t+�
is always Gaussian white noise

GWN), i.e. a standard normal random variable whose increments

re iid, but drivers for different stochastic factors may be corre-

ated. 1 Table 1 summarises the stochastic factors considered here. 

The dynamic of the project’s actual cost to completion, K t , de-

ends on the rate of investment, 0 ≤ C t ≤ I max , chosen by the deci-

ion maker, and is given by: 

 t+� = K t − C t � + σk 

√ 

C t K t �ε k t+�, (2)

here σ k is the degree of technical uncertainty. The above equa-

ion is a discrete approximation of the controlled diffusion pro-

ess proposed by Pindyck (1993) . As analytically shown by Pindyck

1993) , Schwartz and Zozaya-Gorostiza (2003) and referred to as

bang-bang policy” by Schwartz (2004) , the optimal rate of invest-

ent is either 0 or I max , i.e. C t ∈ {0, I max }, because the processes

2) and (3) –(5) are uncorrelated. 

The revenues received at time t for operation between t and t +
, V t , and their rate of growth, μt , evolve exogenously according

o: 

 t+� = e −κv �V t + (1 − e −κv �) V 0 (1 + μt t) + σv 

√ 

1 − e −2 κv �

2 κv 
ε v t+�, 

(3)
ncertainties. 
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Table 1 

Summary of stochastic factors considered in this study. 

Description Factor Defining eq. Dynamics Driving process a 

Cost to completion K t (2) Decision-dep. GWN, independent of (3) –(5) 

Operating revenues V t (3) Exogenous GWN, correlated with (4) and (5) 

Growth rate μt (4) Exogenous GWN, correlated with (3) and (5) 

Salvage value X t (5) State-dep. GWN, correlated with (3) and (4) 

a Gaussian white noise. 
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a⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
w  

f  

c  

a  

l  

p  

s  
t+� = e −κμ�μt + (1 − e −κμ�) ̄μ + σμ

√ 

1 − e −2 κμ�

2 κμ
ε μ

t+�
, (4)

here σv and σμ are the standard deviations of changes in V t and

t , respectively, as well as κv and κμ are positive mean rever-

ion coefficients that describe the rate at which the correspond-

ng factors converge to their linear trend, V 0 (1 + μt t) , and long-

erm average, μ̄, respectively. The nested model (3) –(4) is similar

o the discrete versions of Schwartz and Moon (2001) , who also

sed an Ornstein–Uhlenbeck process 2 to describe the evolution of

t . For the evolution of V t , however, we apply a trending Ornstein–

hlenbeck model with stochastic linear trend adapted from Lo and

ang (1995) , which is more realistic than both the revenue dy-

amics in Schwartz and Moon (2001) and the geometric mean re-

ersion with deterministic exponential trend (i.e. V 0 e ̄
μt ) considered

y Metcalf and Hassett (1995) . 

The state-dependent salvage value obtained for abandoning the

roject at time t , X t , is a function of the expected asset value at

ime t , Z t , which is a deterministic function of the state S t (see

6) ), and of a homoscedastic noise term (i.e. error independent of

he state), which is considered to be random. The salvage value

rocess is described by: 

 t+� = Z t+� + σx Z t+�ε x t+�, (5)

here σ x is the standard deviation of X t . Unlike the existing ap-

roaches that allow for stochastic salvage (or abandonment) val-

es such as Myers and Majd (1990) , Adkins and Paxson (2017) ,

hich assume these values evolve exogenously, we introduce a

tate-dependent salvage value as suggested in Van der Hoek and

lliott (2006) , thereby represent one of the many practical situa-

ions in which the salvage value depends on endogenous factors

 Trigeorgis, 1993 ). It is important to note that by “state” we actu-

lly mean its “resource” component (see Section 4.1 ), rather than

ts “information” component, because the latter’s three stochastic

actors given by (2) –(4) are, of course, state-dependent too because

arkovian. 

. Methods 

This section contains the modelling of the investment problem

s a multi-stage stochastic decision problem, the formulation of

he valuation problem as a discrete stochastic dynamic program,

nd the description of the valuation algorithm applied. A summary

f the notation used is presented in Appendix A . 

.1. Modelling 

The flexibilities available to the decision maker when having

he portfolio of interdependent real options of Section 3.1 are

hown by the influence diagram in Fig. 1 . It contains nine nodes
2 This simple mean-reverting process is more realistic than a geometric Brown- 

an motion process in problems that involve natural gas and electricity price uncer- 

ainty (such as district heating networks) given that the underlying price processes 

n general exhibit mean reversion. 

a  

i  

d

 

S

f which five are decision nodes and four are terminal nodes, as

ell as 18 transitions that link these nodes. The set of nodes, de-

ision nodes and transitions is given by N = { 1 , 2 , . . . , 9 } , N 

d =
 1 , 3 , 5 , 6 , 8 } and H = { 1 , 2 , . . . , 18 } , respectively, and the duration

f transition h ∈ H is �h time period(s). To help understand the in-

uition behind Fig. 1 see the influence diagram for a comparatively

imple American-style option in Maier et al. (2018) . 

The state of the investment project at time t is written as: 

 t = ( t, N t , T t , Q t ︸ ︷︷ ︸ 
R t 

, K t , V t , μt , X t ︸ ︷︷ ︸ 
I t 

) , (6)

here N t ∈ N is the node at time t ; T t is the time left at t to de-

er investment/halt expansion/use the developed asset; Q t is the

mount invested up to time t ; and K t , V t , μt and X t are as defined

n Section 3.2 . The first four variables of S t are part of the resource

tate R t , whereas the information state I t is made up of the prob-

em’s four random variables, two of which are exogenous and two

re endogenous. 

To each decision node n ∈ N 

d we associate binary (0–1) vari-

bles a th in such a way that a th = 1 indicates that transition h is

ade at time t and 0 otherwise. It is clear that the action space

 

D ( N t ), which represents the set of outgoing transitions of node N t ,

s given by 

 

D (N t ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

{ 1 , 2 , 3 } , if N t = 1 , 

{ 4 , 5 , 6 , 7 } , if N t = 3 , 

{ 8 , 9 , 10 } , if N t = 5 , 

{ 11 , 12 , 13 , 14 } , if N t = 6 , 

{ 15 , 16 , 17 , 18 } , if N t = 8 , 

{} , otherwise. 

(7) 

he decision variables a t = (a th ) h ∈ b D (N t ) 
must satisfy the feasible

egion A S t , which describes the set of feasible transitions given S t 
nd is defined by the following constraints: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∑ 

h ∈ b D (N t ) 
a th = 1 , ∀ N t ∈ N 

d , (8) 

a t1 T 
max 

1 < T t + T max 
1 , (9) 

a th T t = 0 , ∀ h ∈ { 3 , 12 , 16 } , (10) 

a t5 K t = 0 , (11) 

(1 − a t5 − a t7 ) K 0 < K t + K 0 , (12) 

a th T 
max 

2 < T t + T max 
2 , ∀ h ∈ { 6 , 9 } , (13) 

(1 − a th ) T 
max 

3 < T t + T max 
3 , ∀ h ∈ { 12 , 16 } , (14) 

here a th ∈ { 0 , 1 } , ∀ h ∈ H. The meaning of these constraints is as

ollows: (8) enforces that exactly one transition is made at a de-

ision node; (9) and (13) ensure the investment can be deferred

nd the expansion halted, respectively, only if there is enough time

eft; (10) makes sure the development opportunity can only ex-

ire at T t = 0 but not before, and, together with (14), these con-

traints make sure the developed project is completed at T t = 0 ;

nd, finally, (11) ensures that the asset’s operation can only begin

f K t = 0 , at which point the developed asset has to be abandoned

ue to (12) if not operated. 

The transition function, which is generically written as

 

M (S t , a t , W t+� ) , describes the evolution of S t from t to t + �h 
h 
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1
Undeveloped

2 Expired

3Developing 6
Operating

4 Unfinished

9

Completed

5
Halted

7 Uncompleted

8
Mothballed

Defer (1)

Continue (4) Continue (11)

Reactivate (15)

Mothball (13)

Maintain (17)

Abandon (18)

Complete (16)

Develop (2)

Operate (5)

Resume (8)

Halt (6)
Maintain (9)

Abandon (10)Expire (3)

Abandon (7) Abandon (14)

Complete (12)

Fig. 1. Flexibilities provided by portfolio of interdependent real options. 
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after having made decision a t with respect to A S t and learned

new information W t+�h 
. It is composed of the resource transition

function S R (·) : R t → R t+�h 
and the information transition function

S I (·) : I t → I t+�h 
. With regard to the former, the transition of t is

trivial as it simply evolves to t + �h ; the transition of N t is implic-

itly given by the adjacency matrix (not shown here) of the directed

graph (N , H) underlying the influence diagram; the transition of T t 
is given by: 

T t+�h 
= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

max { T t − �h , 0 } , if a th = 1 , h ∈ H 1 , 

T max 
2 , if a t2 = 1 , 

T max 
3 − �5 , if a t5 = 1 , 

T t , otherwise, 

(15)

where T 0 = T max 
1 

and H 1 = { 1 , 6 , 9 , 11 , 13 , 15 , 17 } ; and the transi-

tion of Q t is given by: 

Q t+�h 
= 

{
Q t + I max �h , if a th = 1 , h ∈ { 2 , 4 , 8 } , 
Q t , otherwise, 

(16)

where Q 0 = 0 . In contrast to the deterministic transitions of the

variables of R t , the information state variables evolve generally

stochastically according to: 

K t+�h 
= 

⎧ ⎨ 

⎩ 

max 
{

K t − I max �h 

+ σk 

√ 

I max K t �h ε 
k 
t+�h 

, 0 

}
, if a th = 1 , h ∈ { 2 , 4 , 8 } ,

K t , otherwise, 

(17)

 t+�h 
= e −κv �h V t + (1 − e −κv �h ) V 0 (1 + μt t) + σv 

√ 

1 − e −2 κv �h 

2 κv 
ε v t+�h 

, (18)

μt+�h 
= e −κμ�h μt + (1 − e −κμ�h ) ̄μ + σμ

√ 

1 − e −2 κμ�h 

2 κμ
ε μ

t+�h 
, (19)

X t+�h 
= Z t+�h 

(S t+�h 
) + σx Z t+�h 

(S t+�h 
) ε x t+�h 

, (20)

where Z t ( S t ), the expected asset value at time t , is given by: 

Z t (S t ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

−αI max , if N t = 3 , K t > 0 , 

γ Q t , if N t = 3 , K t = 0 , 

−βI max , if N t = 5 , 

γ Q t e 
−ζ (T max 

3 −T t ) , if N t = 6 , 

δQ t e 
−ζ (T max 

3 −T t ) , if N t = 8 , 

0 , otherwise, 

(21)

where α ≥ 0 and β ≥ 0 define the expected abandonment cost

when Developing or Halted , respectively; γ ≥ 0 and δ ≥ 0 are pay-
ut ratios determining the expected asset value when Operating or

othballed , respectively; and ζ is the periodic depreciation rate. 

Lastly, the pay-off function is represented by: 

t (S t , a t ) = −I max (�2 a t2 + �4 a t4 ) + V t (a t5 + a t11 ) 

+ X t (a t7 + a t10 + a t14 + a t18 ) + X t (a t12 + a t16 ) 

− C d,h a t6 − (C h,d + I max �8 ) a t8 − C h �9 a t9 

− C o,m a t13 + (V t − C m,o ) a t15 − C m �17 a t17 , (22)

here the first two terms on the right-hand side represent the cost

or developing and the income from operations, respectively; the

econd line’s terms represent the net income from abandoning and

ompleting, respectively; the third line contains costs related to

alting, maintaining and resuming (during development), respec-

ively; and the last line’s terms represent the cost of mothballing,

he net income from reactivating and the maintenance cost when

othballed, respectively. Note that, for simplicity, it is assumed

hat completing the project – by making either transition 12 (when

perating ) or transition 16 (when Mothballed ) – results in a pay-off

f the salvage value X t , which thus represents the project’s residual

alue. 

.2. Valuation problem 

The value of the portfolio of interdependent real options at time

 given state S 0 , G 0 ( S 0 ), is obtained by solving the following multi-

tage stochastic optimisation problem: 

 0 (S 0 ) = max 
(a t ) t∈T 

E 

[ ∑ 

t∈T e 
−rt �t (S t , a t ) 

∣∣S 0 ] , (23)

here S 0 = (0 , 1 , T max 
1 

, 0 , K 0 , V 0 , μ0 , X 0 ) , a t = (a th ) h ∈ b D (N t ) 
,

 th ∈ {0,1}, a t ∈ A S t , T is the set of decision times, S t+�h 
=

 

M (S t , a t , W t+�h 
) , and r is the discount rate. 

Applying Bellman’s well-known “principle of optimality”, the

tochastic optimisation problem in (23) can be solved recursively,

ith the stochastic dynamic programming (SDP) recursion for cal-

ulating the optimal value of being in state S t given by: 

 t (S t ) = max 
a t 

(
�t (S t , a t ) + E 

[
e −r�h G t+�h 

(S t+�h 
) 
∣∣S t , a t ]) (24)

s.t. a th ∈ { 0 , 1 } , ∀ h ∈ b D (N t ) , (25)

a t ∈ A S t , (26)
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3 In many practical applications we can correct for obviously incorrect approxi- 

mations of the continuation function, e.g., by simply bounding the approximation 
S t+�h 
= S M (S t , a t , W t+�h 

) , ∀ h ∈ b D (N t ) , (27) 

here W t+�h 
= 

(
ε k 

t+�h 
, ε v 

t+�h 
, ε μ

t+�h 
, ε x 

t+�h 

)
describes the informa-

ion that arrives between time t and t + �h . The aim is then

o determine G 0 ( S 0 ), given the boundary (or terminal) condition

 t (S t ) = 0 , ∀ t ∈ T , N t ∈ N \ N 

d . 

.3. The simulation-and-regression-based valuation algorithm 

In order to approximate the value of the portfolio of interde-

endent real options characterised by the SDP recursion (24) –(27) ,

e implement an extended simulation-and-regression-based algo-

ithm, which differs from previous ones by the following details: 

– The decisions a t ∈ A S t imply the time delay �h , that is the

moment in time for the next decision is t + �h ; 

– The random variables ξ t appearing in the transition func-

tion depend on the state of the system. However, it is

assumed that they can be written in the form ξt (ω) =
f (S t (ω) , ε t (ω )) , where εt ( ω ) is independent of S t ( ω ). Thus

the random factors εt can be considered as exogenous (see

Supplementary Material C); 

– Some basis functions are impossible for some combinations

of states and actions. 

Furthermore, our proposed algorithm is both a generalisation

nd formalisation of the solution procedures offered by Miltersen

nd Schwartz (2004) , Schwartz (2004) , Hsu and Schwartz (2008) ,

hu (2012) , which are plain extensions of the algorithm for sin-

le American-style options proposed by Longstaff and Schwartz

2001) . A somewhat similar, but more special algorithm was in-

roduced by Maier et al. (2018) . While our algorithm also consists

f an induction procedure with a forward and a backward pass as

n standard simulation-and-regression methods (e.g. see Cortazar

t al., 2008; Glasserman & Yu, 2004; Longstaff & Schwartz, 2001;

adarajah et al., 2017; Tsitsiklis & Van Roy, 2001 ), the proce-

ure’s individual steps need to be extended in a number of

ays to account for the complexity of the extended model. See

ppendix B for a description of the solution procedure’s steps in

hich we assumed, for the sake of simplicity, that �1 = �2 =
4 = �6 = �8 = �9 and �5 = �11 = �13 = �15 = �17 . 

The forward induction procedure generates the discrete state

pace S t through “exploration” of the resource state space R t and

imulation (Monte Carlo sampling) of the information state space

 t for all t ∈ T . However, in contrast to standard methods, where

he resource state space can be generated independently of the in-

ormation state space, in our forward pass these have to be in-

erleaved. This is because, in addition to the path dependency of

 t due to the sequential decision process underlying the portfo-

io of real options, now both R t and I t are path-dependent due

o the decision-dependent cost to completion, K t . In fact, whether

 resource state and its corresponding information state can be

eached at time t (and are therefore part of R t and I t , respectively)

oes not solely depend on the sequence of decisions made up to

his point, but also on how K t evolves stochastically; for instance,

t might be that a particular R t can be reached in only a subset of

aths denoted by �R t , where �R t ⊆ � and � is the set of all sam-

le paths. Moreover, since the stochastic cost to completion can be

irectly translated into a stochastic time to completion, the deci-

ion times in T are also path-dependent. 

As a strategy in our procedure to overcome the curse of dimen-

ionality related to both I t and the outcome space (for a discussion

ee Maier et al., 2018; Nadarajah et al., 2017 ), whenever needed we

pproximate the conditional expectation in (24) , which represents

he continuation function 

t (S t , a t ) = E 

[
e −r�h G t+�h 

(S t+�h 
) 
∣∣S t , a t ], (28)
u

y the following continuous, finite-dimensional function (“the

arametric model”): 

ˆ L S t 
t (S t , a t ) = 

L S t ∑ 

l=0 

ˆ αl (S R (R t , a t )) φS t l (I t ) , (29)

here L S t is the model’s dimension; { φS t l 
(·) } L S t 

l=0 
are called basis

unctions (or features), which depend only on I t and not the full S t ;

nd the coefficients 
(

ˆ αl (S R (R t , a t )) 
)L S t 

l=0 
are obtained by the least-

quares regression in (B.4) . Unlike the parametric models of stan-

ard simulation-and-regression methods, here L S t and φS t l 
depend

n S t . This dependency enables us to reduce the model’s dimension

f N t = 1 ( N t = 3 ∧ K t = 0 or N t ∈ {6, 8}) by omitting functions of K t 

nd X t ( K t ) in the regression since these stochastic factors are con-

tant or non-existent in these situations, thereby avoiding numeri-

al and implementation issues. Importantly, the parametric model

29) is determined separately for each relevant and feasible deci-

ion a t , given state S t = (R t , I t ) , whilst taking into account the set

f paths �R t in which R t can actually be reached. By contrast, in

tandard algorithms for problem with only exogenous uncertainty

very R t can be reached along each path ω ∈ �. 

The valuation procedure shown in Algorithm 1 applies a

ackward induction to approximate the value of the stochastic

ynamic program (24) –(27) . Starting at t = max T and moving

ackwards to t = min T \ 0 , for each state S t ∈ S t perform the

ollowing three steps: (i) approximate (28) by both (29) and

B.4) separately for all feasible a t that do not lead to a termi-

al node, otherwise set them to 0 ( lines 3–9 ) 3 ; (ii) compute the

athwise optimisers ˆ a t (ω) for all ω ∈ �R t in which R t can be

eached ( line 11 ); (iii) using these pathwise optimisers, determine

he approximation Ḡ t (S t (ω)) for each path ω ∈ �R t ( line 12 ). At

 = 0 , we have (K 0 , V 0 , μ0 , X 0 ) = (K 0 (ω) , V 0 (ω) , μ0 (ω) , X 0 (ω)) , so

e can simply calculate the value of (28) by taking averages of

he pathwise continuation values over all | �| paths, and make op-

imal decisions based on these average values, giving Ḡ 0 (S 0 ) ( line

7 ). Importantly, using the reachability analysis from the forward

ass, in the above three steps only paths ω ∈ �R t in which re-

ource states R t can be reached are used, rather than the full

et of paths �. An illustration of the main steps of this val-

ation approach when in state S t at t is given by Fig. 6.2 of

aier (2017) . 

.4. Numerical accuracy and simulation efficiency 

While standard simulation-and-regression approaches in gen-

ral give a lower bound on the optimal solution since the

ontinuation function is approximated by a finite-, and usually

ow-dimensional function, the quality of this approximate solu-

ion depends on a range of factors (see, e.g., Fabozzi, Paletta, &

unaru, 2017; Nadarajah et al., 2017 and the literature therein).

or example, considering a one-dimensional setting and polyno-

ials as basis functions in the parametric model, Glasserman and

u (2004) examined the relationship between the number of sim-

lated paths (| �|) and the number of basis functions ( L ), and

howed that the required | �| for ensuring worst case convergence

ncreases exponentially in L . Under general assumptions and con-

idering shifted Legendre polynomials, Stentoft (2004) proved con-

ergence in a multi-dimensional setting if both L → ∞ and | �| → ∞
rovided that L 3 /| �| → 0. Cortazar et al. (2008) have shown that

aking advantage of the problem structure and carefully choos-

ng an appropriate set of basis functions (e.g. call and put
sing an appropriate deterministic bound to ensure non-negativity. 
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Algorithm 1: Approximation of optimal value of problem (24) –(27) . 

Data : All the above 

Result : Ḡ 0 (S 0 ) 

1 for t = max {T \ 0 } do 

2 forall S t ∈ S t do 

3 forall a t ∈ A S t do 

4 if a th = 1 , h ∈ { 3 , 7 , 10 , 12 , 14 , 16 , 18 } then 

5 F t (S t (ω) , a t ) ← 0 , ∀ ω ∈ �R t 

6 else 

7 Use both (29) and (B.4) to determine: F t (S t (ω) , a t ) ← 

ˆ �
L S t 
t (S t (ω) , a t ) , ∀ ω ∈ �R t 

8 end 

9 end 

10 forall ω ∈ �R t do 

11 Compute pathwise optimisers: ˆ a t (ω) ← arg max 
a t (ω) ∈A S t (ω) 

{ 

�t 

(
S t (ω) , a t (ω) 

)
+ F t 

(
S t (ω) , a t (ω) 

)} 

12 Approximate optimal portfolio value along each path ω: 

Ḡ t 

(
S t (ω) 

)
← �t 

(
S t (ω ) , ̂  a t (ω ) 

)
+ e −r�h Ḡ t+�h 

(
S M 

(
S t (ω ) , ̂  a t (ω ) , W t+�h 

(ω ) 
))

13 end 

14 end 

15 T ← T \ t 
16 end 

17 At t = 0 , S 0 = (0 , 1 , T max 
1 

, 0 , K 0 , V 0 , μ0 , X 0 ) , determine: Ḡ 0 (S 0 ) ← max 
a 0 ∈A S 0 

{
�0 (S 0 , a 0 ) + 

1 
| �| 

∑ 

ω∈ �
e −r�h Ḡ �h 

(
S M 

(
S 0 , a 0 , W �h 

(ω) 
))}
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t  
options on the expected spot price ( Andersen & Broadie, 2004;

Nadarajah et al., 2017 ), rather than simply using high-order poly-

nomials of information state variables as in Glasserman and Yu

(2004) and Stentoft (2004) , allows one to substantially reduce the

required L for a given level of accuracy, and is computationally

more efficient. 

However, while the accuracy of the approximation and hence

the quality of the lower bound can be improved by choosing the

set of basis functions appropriately, here the algorithm’s simula-

tion efficiency – in terms of actually utilisable sample paths –

depends on the Monte Carlo sampling steps. Unlike standard ap-

proaches, where the number of sample paths available at each

step of the valuation procedure is chosen in advance ( = | �|) and

remains constant within the backward pass, in our extended al-

gorithm the number of paths in which resource states can ac-

tually be reached ( | �R t | ) is generally not known in advance

and varies across resource states. 4 Moreover, although disregarded

by Miltersen and Schwartz (2004) , Schwartz (2004) , Hsu and

Schwartz (2008) , and Zhu (2012) , the additional path-dependency

caused by the decision-dependent uncertainty K t may result in

| �R t |  | �| , which means that the simulation efficiency is reduced

as | �R t | / | �|  1 . To avoid potential effects on the accuracy of the

approximation, it may be necessary to increase | �| in order to

ensure sufficiently large values | �R t | (in addition to adapting L S t 
appropriately). Future work might therefore investigate the compu-

tational complexity of such an extended approach in terms of con-

vergence and efficiency, and explore the development of a duality-

based, upper bound algorithm to provide performance bounds. 

5. An illustrative example 

This section provides details about the numerical example, de-

scribes the computational implementation of our valuation algo-

rithm, and presents and discusses the results. 
4 A different approach is to use the simulated evolution of K t to determine the 

probability distribution describing the probability that construction will be com- 

pleted given Q t (see Pennings & Sereno, 2011 ). 

a  

r  

o  

t  
.1. Expansion of district heating network 

We consider the real case of an investment into the expansion

f the district heating network in the London borough of Isling-

on. We focus here on the development of the network’s “north

xtension”, as identified in a recent report ( Grainger & Ethering-

on, 2014 ) which investigated the development of a borough-wide

etwork on behalf of the local council. It should be noted, how-

ver, that their economic assessment is based on simple tempo-

al discounting in a deterministic setting and does not account for

ime to build nor the project’s residual value. According to this

eport, the capital expenditure of this expansion and the initial,

nnual operating revenues are estimated at £9.94 millions ( K 0 )

nd £564,600 ( V 0 ), respectively. The report also noted that the

sset can be used for up to 25 years (i.e. T max 
3 

= 300). The inter-

st rate, used to discount monetary values, is 3.5% per year (i.e.

 = 3 . 5% / 12 ), as recommended by HM Treasury (2011) . In addi-

ion, we assume the following: a maximum rate of investment of

1.0 million per month ( I max ); the possibility of deferring develop-

ent/halting expansion for up to one year (i.e. T max 
1 

= T max 
2 

= 11);

nd the following durations of transitions (in months): �h =
 , ∀ h ∈ { 1 , 2 , 4 , 6 , 8 , 9 } ; �h = 12 , ∀ h ∈ { 5 , 11 , 13 , 15 , 17 } ; and 0 for

he remainder of the transitions. A summary of the input data is

iven in Supplementary Material E. 

.2. Generated state space and utilised basis functions 

The discrete state space was generated by applying the forward

nduction procedure described in Section 4.3 (and Appendix B ) and

sing the data of Section 5.1 . More specifically, 10 0,0 0 0 paths (| �|)

ere generated to describe the stochastic evolution of the four fac-

ors K t , V t , μt and X t for all t ∈ T (see Supplementary Material F for

n illustration of five sample paths). With regard to the paramet-

ic model in (29) , we apply as basis functions φl ( · ) polynomials

f the information state variables as well as both call and put op-

ions on the expected value of these variables partially based on
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Fig. 2. Impact of introduction of decision-dependent uncertainty on the evolution of both the number of reachable resource states (left) and the average number of paths 

in which these are reachable (right) over t . 
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5 At the same time, the computational effort – in terms of elapsed (wall-clock) 

time – required to solve the valuation problem increased by approximately 165%. 

All computations were performed on a desktop computer with Intel Core i7-3770 

CPU (3.40 GHz), 24 GB RAM, and Windows 7 Enterprise (64-bit OS). 
 Andersen & Broadie, 2004; Cortazar et al., 2008; Nadarajah et al.,

017 ). In case (N t = 3 ∧ K t > 0) ∨ N t = 5 , we use a constant term,

he four information state variables, polynomials of degree two (i.e.

he squares of each variable and their cross products), polynomials

f degree three, as well as the value of call and put options on

he expected value of each variable and the square of this value.

therwise, if N t = 1 ( N t = 3 ∧ K t = 0 or N t ∈ {6, 8}), as mentioned

n Section 4.3 , we can reduce L S t by eliminating all the functions

f K t and X t ( K t ) because K t = K 0 and X t is non-existent ( K t = 0 ),

o these variables do not add any information value to the least-

quares regression. This selection of the set of basis functions φl ( · )

eans that: 

S t l (I t ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

φl (V t , μt ) , if N t = 1 (⇒ L S t = 18) 

φl (K t , V t , μt , X t ) , if N t = 3 , K t > 0 , ( ⇒ L S t = 51) 

φl ( V t , μt , X t ) , if N t = 3 , K t = 0 , ( ⇒ L S t = 32) 

φl ( K t , V t , μt , X t ) , if N t = 5 , ( ⇒ L S t = 51) 

φl ( V t , μt , X t ) , if N t ∈ { 6 , 8 } . ( ⇒ L S t = 32) 

(30) 

o avoid numerical problems the basis functions were properly

caled before performing the least-squares regression based on a

ingular value decomposition (SVD) algorithm. The solution proce-

ure described in Appendix B was implemented in MATLAB. 

.3. Reachability analysis 

To support the claim made in Section 4.3 that resource states

ay not be reachable in every simulation path, this subsection

umerically analyses the impact of the decision-dependent uncer-

ainty in the context of reachability. Figs. 2 (a) and (b) show the

umber of resource states reachable at each time t , |R t | , and the

verage number of paths in which resource states can be reached

t t ∈ T , 
∑ 

R t ∈R t 
| �R t | / |R t | , respectively. As can be seen, the num-

er of reachable resource states is substantially higher in almost

very point in time as σ k increased from 0.00 to 0.35. In fact,

he total number of reachable resource states, 
∑ 

t∈T |R t | , increased
ore than tenfold 

5 (from 3635 to 41,815), highlighting the algorith-

ic complexity introduced by the decision-dependent uncertainty

 t . At the same time, the introduction of the decision-dependent

ncertainty resulted in a sharp decline in the average number

f paths in which resource states are reachable, with an almost

levenfold decrease – from 10 0,0 0 0 to 90 02 paths – in the average

umber of paths available for each reachable resource state, given

y N̄ �R = ( 
∑ 

t∈T 
∑ 

R t ∈R t 
| �R t | ) / ( 

∑ 

t∈T |R t | ) . While such a decrease

n the number of paths generally reduces the complexity associ-

ted with solving both the least-squares regression (B.4) and the

nteger programs ( line 11 of Algorithm 1 ), and thereby might coun-

eract the overall increase in computational efforts, it has a poten-

ially adverse impact on the accuracy of the parametric model fit,

s discussed in Section 4.4 . 

In addition to this twofold effect, the introduction of the

ecision-dependent uncertainty has important implications for the

ature of our simulation-based approximation procedure. Figs. 3 (a)

nd (b) report the impact of both the degree of the decision-

ependent uncertainty ( σ k ) and the number of sample paths gen-

rated (| �|) on the total number of reachable resource states, i.e.
 

t∈T |R t | , and on the ratio of the average number of paths in

hich resource states are reachable to the number of paths gen-

rated, i.e. N̄ �R / | �| , respectively. It can be seen that if there is no

ecision-dependent uncertainty ( σk = 0 ) then the total number of

eachable resources states is independent of the number of gen-

rated paths, and the average number of paths available for each

eachable resource state, N̄ �R , is equal to | �|, so each resource

tate R t can be reached in | �| paths, i.e. | �R t | = | �| for all R t ∈ R t .

owever, while the total number of reachable resource states, as

xpected, increased in both | �| and σ k , the ratio N̄ �R / | �| de-

reased not only in the latter, but, somewhat paradoxically, also in

he former. In fact, in our analysis we found that in more than 65%

f the 90 relevant cases the ratio N̄ �R / | �| actually decreased in

 �| and remained virtually constant in the remainder of the cases.
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Fig. 3. Impact of both the degree of the decision-dependent uncertainty ( σ k ) and the number of sample paths (| �|) on algorithmic complexity (left) and simulation efficiency 

(right). 

Table 2 

Value (in £millions) of investment project with and without real options portfolio as well as value of individual real options for different levels 

of initial annual revenues. 

Annual Value Value of During expansion During operation Value with 

revenue without option to Value of option to Value of option to portfolio of 

(£m) options Defer Halt Abandon Stage Mothball Abandon Switch options 

V 0 (–) (a) (b-i) (b-ii) (b) (c) (d) (c,d) (a,b,c,d) 

0.40 0 ∗ 0 0 0 0 0 0 0 0 ∗

(-) † (-) (-) (-) (-) (-) (-) (-) 

0.45 0 ∗ 0 0 0 0 0 0 0 0.0 0 0 042 

(-) (-) (-) (-) (-) (-) (-) (-) 

0.50 0 ∗ 0.0 0 06 0 0 0 0 0 0 0.1448 

(-) (-) (-) (-) (-) (-) (-) (-) 

0.55 0.5868 0.0760 0.0045 0.1321 0.1618 0 0.1643 0.1643 0.9110 

(12.95) (0.77) (22.51) (27.57) (0) (28.00) (28.00) (55.24) 

0.5646 0.8586 0.0702 0.0043 0.1112 0.1419 0 0.1412 0.1412 1.1438 

(8.18) (0.50) (12.95) (16.53) (0) (16.44) (16.44) (33.22) 

0.60 1.5178 0.0556 0.0040 0.0754 0.1029 0 0.0978 0.0978 1.7296 

(3.66) (0.26) (4.97) (6.78) (0) (6.45) (6.45) (13.96) 

0.65 2.4487 0.0353 0.0035 0.0442 0.0658 0 0.0590 0.0590 2.5838 

(1.44) (0.14) (1.80) (2.69) (0) (2.41) (2.41) (5.52) 

0.70 3.3797 0.0161 0.0029 0.0260 0.0433 0 0.0361 0.0361 3.4621 

(0.48) (0.08) (0.77) (1.28) (0) (1.07) (1.07) (2.44) 

0.75 4.3106 0.0 0 08 0.0027 0.0153 0.0306 0 0.0222 0.0222 4.3588 

(0.02) (0.06) (0.36) (0.71) (0) (0.51) (0.51) (1.12) 

Note : the sets of transitions available in the different settings are as follows: H 

− = { 2 , 3 , 4 , 5 , 11 , 12 } in (–); H 

− ∪ { 1 } in (a); H 

− ∪ { 6 , 8 , 9 } in 

(b-i); H 

− ∪ { 7 , 10 } in (b-ii); H 

− ∪ { 6 , . . . , 10 } in (b); H 

− ∪ { 13 , 15 , 16 , 17 } in (c); H 

− ∪ { 14 , 18 } in (d); H 

− ∪ { 13 , . . . , 18 } in (c,d); and H in (a,b,c,d). 
∗ No investment. 
† Numbers in parentheses represent the value of the option(s) as a percentage of the value without options. 
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This means that, in contrast to simulation-based approaches for

standard problems, generating more sample paths will in general

not equally increase the number of actually utilisable paths when

addressing problems with such decision-dependent uncertainty. 

5.4. Results and discussion 

In order to illustrate the extent to which the profitability of the

district heating investment project depends on the initial value of

the annual revenues, V 0 , Table 2 shows the sensitivity of the value

of different portfolio configurations to varying levels of V . As can
0 
e seen, for values of V 0 of £0.50 millions and below, the value of

he investment project without options – configuration (–) – is 0.

his is because the expected NPV of the project is −£2.2060 mil-

ions, −£1.2751 millions, and −£0.3441 millions for values of V 0 

f £0.40 millions, £0.45 millions, and £0.50 millions, respectively,

o the optimal “now-or-never strategy”, which does not take any

exibility into account, is to leave the project undeveloped. The

ame strategy is optimal for the project with the portfolio of op-

ions (a,b,c,d) for the lowest value of V 0 under consideration. How-

ver, for levels of V 0 of £0.45 millions and £0.50 millions, the value

f the project with the options portfolio (a,b,c,d) is positive, re-
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Fig. 4. Value of investment project with portfolio of real options and without op- 

tions as well as portfolio’s most valuable individual option (filled circles), as a func- 

tion of degrees of revenue ( σv ) and technical ( σ k ) uncertainty. 
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Fig. 5. Value of investment project with portfolio of real options and without op- 

tions as well as portfolio’s most valuable individual option (filled circles), as a func- 

tion of pay-out ratios ( γ , δ) and standard deviation of salvage value, σ x . 
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t  
ecting the substantial value of having the flexibility provided by

he portfolio of interdependent real options. Interestingly, in the

rst case, although the portfolio with all options achieves a pos-

tive value there is no individual option that provides sufficient

dded value on its own (i.e. in isolation), whereas in the case

 0 = £0 . 50 millions , having the option to defer alone – configura-

ion (a) – also results in an economically viable project. 

As can be seen from Table 2 , beginning at a V 0 of £0.55 mil-

ions, the values of both the project without any flexibilities and

lmost all portfolio configurations are positive. 6 In most cases the

alue of the project with portfolio (a,b,c,d) is considerable larger

han without options (–), revealing the significant added value that

s obtained by considering such a complex portfolio. While the val-

es of the project without any options and the portfolio with all

ptions both increase in V 0 , the values of almost all of the individ-

al options in isolation show a different trend. Indeed, the values

f the options to defer (a), to halt (b-i), and to abandon the project

uring construction (b-ii) and operation (d) are decreasing in V 0 ,

eaning there is less value in deferring, halting, and abandoning

s the value of initial annual revenues increases. This is because

he annual revenues, although still uncertain (i.e. stochastic), re-

ert now to a linear trend that is shifted upwards, so their level

s generally higher, which makes deviating from the static now-or-

ever strategy, and consequently the flexibility provided by indi-

idual real options less valuable. For all values of V 0 under consid-

ration, the option to temporarily mothball the operation – con-

guration (c) – is of no value because the simulated values of V t 

re always positive, making mothballing an economically unattrac-

ive option. Also, as is apparent from this table, and in line with

he real options literature, the values of the portfolio’s individual

ptions are generally non-additive since the value of the portfo-

io (a,b,c,d) does not equal the sum of the values of its individual

ptions (a), (b) and (c,d). 7 

The effects of the degrees of exogenous and endogenous un-

ertainty on both the value of the portfolio of options and the

omparative performance of the portfolio’s individual options are

articularly important for understanding the influence of differ-

nt underlying uncertainties. In order to illustrate these effects for

he exogenous annual revenues, V t , and the endogenous, decision-

ependent cost to completion, K t , Fig. 4 shows for C o,m = C m,o =
 

m = 0 the way in which the standard deviation of changes in rev-

nues, σv , and the degree of technical uncertainty, σ k , affect the

alue of the investment project. While the effects of changes of σv 
n the value of the project without options is negligible, the value

f the portfolio is generally increasing in σv , particularly steep for

igher levels of σv and it seems the increase is more pronounced

or lower values of σ k . This monotonic increase in project values

esults from the flexibilities provided by the portfolio of real op-

ions, which allow a decision maker to limit downside risk and ex-

loit the upside potential of increased annual revenues, as com-

ared to the negligibly affected value of the investment project

ithout options, which applies a static now-or-never strategy. 

On the other hand, increasing σ k from 0 to 0.05 (i.e. in-

roducing some construction cost uncertainty) results in a sharp

ecline in values of the investment project, but the decline is

maller for the project with the portfolio of real options. The rea-

on for this sharp decline is mainly due to the increase in actual

ost of completion caused by the introduction of technical uncer-

ainty, but also because of the discretised investment expenditures.
6 As expected, the deterministic NPV of £2.1m reported by Grainger and Ether- 

ngton (2014) for V 0 = £0.5646m is larger than the expected NPV we obtained for 

he project without any flexibility since they assume there is no construction cost 

ncertainty, thereby overvalue the district heating investment. 
7 Here, interactions between the portfolio’s individual real options result in the 

um of individual option values being greater than the value of the portfolio. 

a  

d  

t

 

v  

t  

t  
nlike the investment project without options, whose value is al-

ays decreasing in σ k , beginning at a σ k of 0.1, the value of

he portfolio is increasing in σ k . This somewhat unexpected non-

onotonic behaviour is because the flexibility provided by the

ortfolio, particularly by its option to abandon during operation

d), allows one to partially reverse the investment by recovering

ncreased investment expenditures in situations with high values

f σ k , thereby taking advantage of relatively high state-dependent

alvage values. This seems to explain why option (d) is the port-

olio’s most valuable individual option when the degree of techni-

al uncertainty ( σ k ) is high, whereas in most other situations, the

ption to defer (a) is the portfolio’s most valuable option. Interest-

ngly, for high values of σv , there are even situations in which op-

ions (b-i) and (c) are most-valuable, reflecting the ability of such

 complex portfolio of real options to manage exogenous and en-

ogenous uncertainties simultaneously in a wide range of uncer-

ain environments. 

To show the effect of the endogenous, state-dependent salvage

alue, X t , on investment decisions, Fig. 5 shows the extent to which

he value of the investment project is affected by the pay-out ra-

ios γ and δ as well as by the standard deviation σ x . The value
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of the project without options – where X t is received as residual

value when completing the project after 25 years of operation –

is positive for all parameters under consideration. Furthermore, its

value increases virtually linearly in ( γ , δ) because of the linear de-

pendence of the expected asset value, Z t , on ( γ , δ), but is prac-

tically unaffected by changes in σ x simply because the expected

value of X t does not change. Although the value of the project

with the portfolio of options is always greater than the value of

the project without options, the difference remains relatively con-

stant for low values of ( γ , δ) and for both low σ x and moderate

( γ , δ), with the option to defer (a) being the portfolio’s most valu-

able individual option in these situations. As can be seen, however,

for high expected asset values and fairly high yet risky salvage val-

ues, the portfolio considered here is capable of extracting consider-

able value from flexibilities, especially from abandoning the project

during either construction (b-ii) or operation (d). The above results

therefore highlight the importance of applying such a portfolio of

real options approach when there is both exogenous and endoge-

nous uncertainty. 8 

6. Conclusions 

This paper presents an approach for valuing portfolios of inter-

dependent real options under both exogenous and endogenous un-

certainties. We illustrate this approach by valuing the expansion

of a district heating network in London. Unlike existing valuation

approaches, which have considered only exogenous uncertainty or

rather inflexible and restricted portfolios, this work has studied

a complex yet practical real options portfolio under conditions of

four relevant sources of uncertainty. The portfolio’s options were

to defer investment, to stage investment, to temporarily mothball

the operation, and to permanently abandon the project. Two of

the underlying uncertainties, decision-dependent cost to comple-

tion and state-dependent salvage value, were endogenous, whereas

the other two, operating revenues and their growth rate, were ex-

ogenous. We have extended standard models in several ways in or-

der to address this complex investment problem. In our extended

model we considered the possibility of multiple time steps, and we

made the parametric model state-dependent to account for the fact

that basis functions are impossible for states in which the values

of the corresponding decision- or state-dependent factors are con-

stant or non-existent. Computational tractability was enabled by

assuming that it is possible to exogenise endogenous uncertainty. 

We have presented an extended simulation-and-regression-

based algorithm to approximately solve the valuation problem. In

our algorithm’s forward induction procedure, the resource state

space generation is interleaved with the Monte Carlo sampling

steps of the information state space generation because of the ad-

ditional path-dependency resulting from the presence of decision-

dependent uncertainty. The key insight underlying our algorithm is

that some resource states may not be reachable or only in a subset

of sample realisations. Therefore, our algorithm’s forward pass cru-

cially includes reachability. We have demonstrated the applicability

of our modelling approach and algorithmic strategy using an ur-

ban infrastructure investment in London. The reachability analysis

showed that the presence of the endogenous, decision-dependent

uncertainty has adverse impacts on algorithmic complexity and

simulation efficiency. We also showed how our approach can be

used to isolate individual options’ values and provided insights into

which types of options are most useful. As expected, the availabil-

ity of real options is more valuable for low values of initial rev-
8 It is important to note that while we have not included an example with only 

exogenous uncertainty ( V t , μt ) – i.e. without endogenous uncertainty ( K t , X t ) –, the 

combined impact of K t and X t can be identified from Fig. 4 at ( σk , σv ) = (0,0.10) and 

Fig. 5 at ( σ x , ( γ , δ)) = (0,0.70), respectively. 

 

 

 

nues and the portfolio is substantially more valuable than individ-

al options. Of these, we found that abandoning during operation

rovides the highest individual value with mothballing being of no

alue. 

We have also investigated the way in which the value of the

eal options portfolio is affected by the degrees of exogenous

nd endogenous uncertainty. The sensitivity analysis demonstrated

hat the portfolio value increases monotonically in both the ex-

genous and state-dependent uncertainty, but we made the sur-

rising observation that the decision-dependent uncertainty has a

on-monotonic effect, which is due to the availability of abandon-

ent options. Most notably, our numerical analysis demonstrates

hat ignoring endogenous, decision- and state-dependent uncer-

ainty can lead to substantial over- and under-valuation, respec-

ively, thereby highlighting the importance of correctly accounting

or sources of uncertainty. The illustrative example shows that our

pproach is flexible and powerful, and could be used without dif-

culty to value more complex portfolios and their individual real

ptions under both types of uncertainty. Future work will explore

ays to model the dynamics of other sources of endogenous un-

ertainty as well as investigate how these can be integrated into

he valuation framework presented here. Other promising exten-

ions of our framework could include the consideration of risk

version ( Chronopoulos, De Reyck, & Siddiqui, 2011 ) and, especially

n the context of district heating networks, competition and mar-

et power ( Virasjoki, Siddiqui, Zakeri, & Salo, 2018 ). 
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ppendix A. Nomenclature 

Table A1 contains a summary of most of the notation used in

his work. 

ppendix B. Solution procedure 

The forward induction procedure consists of the following

teps: 

1. Starting at time 0 and using (17) , sample | �| paths of K t 

conditional on a 0 , 2 = 1 and a t4 = 1 until K t (ω) = 0 , ∀ ω ∈ �,

where �con (ω) = { min t : K t (ω) = 0 } and T con = { �con (ω) : ω ∈
�} denote the construction time in path ω and the set of con-

struction times, respectively. 

2. Determine the set of decision times, T n , for all decisions nodes

n ∈ N 

d : 

https://doi.org/10.13039/501100000761
https://doi.org/10.13039/501100000269
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Table A1 

Summary of notation. 

Sets and indices 

N Set of nodes, { 1 , . . . , N} 
N 

d Set of decision nodes, N 

d ⊂ N
H Set of transitions, { 1 , . . . , H} 
t Time index, t ∈ T , where T is the set of decision times 
S t State space at time t 
R t Resource state space at time t 
I t Information state space at time t 
ω Sample path, ω ∈ �, where � is the set of all sample paths 
�R t Set of sample paths in which R t is reachable, �R t ⊆ �
l Index of summation, l = 0 , . . . , L S t , used to specify the l th dimension of the parametric model, 

where l = 0 refers to a constant term 

Parameters 

�h Duration of transition h ∈ H
r Discount rate 
φS t l (I t ) A basis function (or feature) that extracts information from I t 
L S t Dimension of parametric model given that we are in state S t 

Variables 

S t State at time t , so that S t = (R t , I t ) 
R t Resource state variable 
I t Information state variable 
a th (Binary) decision at time t for transition h , so that a t = (a th ) h ∈ b D (N t ) 

a t Action (or decision) at time t 
A S t Feasible region when in S t at time t 

αl ( S 
R ( R t , a t )) Regression coefficient (or weight) when we are in resource state R t at time t and take action a t 

W t Exogenous information that first becomes known at time t 

Functions and mappings 

b D ( N t ) Set of outgoing transitions of node N t 
S M (S t , a t , W t+�h 

) Transition function, giving state S t+�h 
given that we are in state S t , take action a t (i.e. make 

transition h ), and then learn W t+�h 
, which is revealed between t and t + �h 

S R ( R t , a t ) Resource transition function, giving resource state R t+�h 
given that we are in resource state R t and 

take action a t (i.e. make transition h ) 
�t ( S t , a t ) Payoff at time t given we are in state S t and take action a t 
G t ( S t ) Value of portfolio of real options when in state S t at time t 
Ḡ t (S t ) Approximation of G t ( S t ) 
�t ( S t , a t ) Continuation value at time t when in state S t and taking action a t 
ˆ �

L S t 
t (S t , a t ) Approximation of �t ( S t , a t ) 

 i + 

in (1

 i + 

 Z ≥0

T ma
3 

 Z ≥0

T ma
3 

.1) 

 

ax −
 

ax −
 

, 

on I ma

− �

on I ma

− 2�

.2) 
T n = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

{
i �1 : i ∈ Z ≥0 , 0 ≤ i �1 ≤ T max 

1 

}
, {

τ1 + �1 (1 + i + 2 j + m ) : τ1 ∈ T 1 , i, j, m ∈ Z ≥0 , �1 (1 +
�1 ( j + m ) ≤ T max 

2 max (0 , m{
τ1 + �1 (2 + i + 2 j + m ) : τ1 ∈ T 1 , i, j, m ∈ Z ≥0 , �1 (1 +

�1 (1 + j + m ) ≤ T max 
2 

}
, {

τ1 + τ con + �1 i + �5 (1 + j) : τ1 ∈ T 1 , τ con ∈ T con , i, j ∈
�1 i ≤ T max 

2 , �5 (1 + j) ≤{
τ1 + τ con + �1 i + �5 (2 + j) : τ1 ∈ T 1 , τ con ∈ T con , i, j ∈

�1 i ≤ T max 
2 , �5 (2 + j) ≤

3. Generate the possible resource state space R nt for each decision

node n and time t : 

R nt = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(t, 1 , T max 
1 − t/ �1 , 0) , {

(t, 3 , T , Q ) : τ1 ∈ T 1 , T , Q ∈ Z ≥0 , t = τ1 + Q/I max + T m2 
τ1 < t, �1 ≤ Q/I max ≤ �con (ω) , ∃ ω ∈ �,

0 ≤ T max 
2 − T ≤ max (t − τ1 − 2�1 , 0) 

}
, {

(t, 5 , T , Q ) : τ1 ∈ T 1 , T , Q ∈ Z ≥0 , t = τ1 + Q/I max + T m2 
τ1 < t, �1 ≤ Q/I max < �con (ω) , ∃ ω ∈ �,

�1 ≤ T max 
2 − T ≤ max (t − τ1 − �1 , �1 ) 

}{
(t, 6 , T , Q ) : τ1 ∈ T 1 , τ con ∈ T con , T , Q, i ∈ Z ≥0 , Q = τ c

T = T max 
3 − t + τ1 + τ con + �1 i, T ≤ T max 

3 

T mod �5 = 0 , i ≤ T max 
2 

}
, {

(t, 8 , T , Q ) : τ1 ∈ T 1 , τ con ∈ T con , T , Q, i ∈ Z ≥0 , Q = τ c

T = T max 
3 − t + τ1 + τ con + �1 i, T ≤ T max 

3 

T mod �5 = 0 , i ≤ T max 
2 

}
, 
if n = 1 , 

j) ≤ max T con , 

 , j)) 
}
, if n = 3 , 

j) < max T con , 

if n = 5 , 

 

, 

x 
}
, if n = 6 , 

 

, 

x 
}
, if n = 8 . 

(B

if n = 1 , t ∈ T 1 , 
T , 

if n = 3 , t ∈ T 3 , 
T , 

if n = 5 , t ∈ T 5 , 
x , 

5 , 

if n = 6 , t ∈ T 6 , 
x , 

5 , 

if n = 8 , t ∈ T 8 . 

(B
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4. For all R t ∈ R t , t ∈ T , where R t = 

⋃ 

n ∈N d R nt and T = 

⋃ 

n ∈N d T n ,
compute the set of paths �R t in which R t = (t, n, T t , Q t ) is

reachable: 

R t 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

�, if n = 1 , {
ω ∈ � : t − τ1 − T max 

2 
+ T t ≤ �con (ω) , Q t /I max ≤ �con (ω) , τ1 ∈ T 1 

}
, if n = 3 , {

ω ∈ � : t − τ1 − T max 
2 

+ T t < �con (ω) , Q t /I max < �con (ω) , τ1 ∈ T 1 
}
, if n = 5 , {

ω ∈ � : �con (ω) = Q t /I max 
}
, if n ∈ { 6 , 8 } . 

(B.3)

5. Use (18) and (19) to sample | �| paths of V t and μt , respectively.

6. Use (20) and (21) to sample | �| realisations of X t . 

The backward induction procedure is shown by Algorithm 1 ,

with the optimal values of the coefficients 
(
αl (S R (R t , a t )) 

)L S t 
l=0 

,

given R t and a t , in line 7 determined by (B.4) . 

(
ˆ αl (R t+�h 

) 
)L S t 

l=0 
= arg min 

(αl (·)) 
L S t 
l=0 

{ ∑ 

ω∈ �R t 

[ 
e −r�h Ḡ t+�h 

(S t+�h 
(ω)) 

−
L S t ∑ 

l=0 

αl (R t+�h 
) φS t l (I t (ω)) 

] 2 }
, (B.4)

where R t+�h 
= S R (R t , a t ) and S t+�h 

(ω) = (R t+�h 
, I t+�h 

(ω)) . 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.ejor.2019.01.055 . 
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