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Continuous-time multi-state Markov models can be used to describe tran-
sitions over time across health states. Given longitudinal interval-censored
data on transitions between states, statistical inference on changing health
is possible by specifying models for transition hazards. Parametric time-
dependent hazards can be restrictive, and nonparametric hazard specifica-
tions using splines are presented as an alternative. The smoothing of the
splines is controlled by using penalised maximum likelihood estimation. With
multiple time-dependent hazards in a multi-state model, there are multiple
penalty parameters and selecting the optimal amount of smoothing is a chal-
lenge. A grid search to estimate the penalty parameters is computational in-
tensive especially when combined with methods to deal with interval-censored
transition times. A new and efficient method is proposed to estimate multi-
state models with splines where the estimation of the penalty parameters is
automatic. A simulation study is undertaken to validate the method and
to illustrate the effect of interval censoring. The feasibility of the method is
illustrated with two applications.
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1. Introduction

In biostatistics, disease progression can often be investigated using lon-
gitudinal data on change of health status. Multi-state models are com-
monly used to describe transitions across a set of discrete states. When
time of transitions are observed intermittently, the data on the transition
times are interval-censored. For continuous-time multi-state models, a time-
homogeneous Markov process is usually assumed (Kalbfleisch and Lawless,
1985; Jackson, 2011). For a wide range of applications, however, the risks of
moving across states depend on the current state and on time. In this case,
a non-homogeneous Markov assumption is assumed to model the multi-state
process.

Several time-dependent models can be fitted with parametric specifica-
tions for transition hazards (Cook and Lawless, 2018; Van den Hout, 2017).
However, the functional form describing the transition hazards as a function
of time is often unknown and parametric models can be too restrictive.

Alternatively, splines can be used to model the time dependency of tran-
sition hazards. Splines are piecewise polynomial functions, and a semipara-
metric hazard model is defined by a weighted sum of basis functions, where
the weights in the sum are parameters that have to be estimated. It is pos-
sible to define a spline using many basis functions, and this will allow for a
flexible model across the whole time range in the data. Penalised maximum
likelihood estimation can be used to estimate parameters. This estimation
includes a smoothing (or penalty) parameter that balances smoothness of the
fitted hazard across the whole time range against fidelity to the data.

A penalised maximum likelihood estimation for a progressive three-state
model is developed in Joly and Commenges (1999). Estimation is performed
with an algorithm which uses analytical derivatives of the penalised log-
likelihood. The smoothing parameters are selected using a grid search with
cross-validation. In this case, models have to be fitted for every combina-
tion of smoothing parameters defined by the grid. Joly et al. (2002) use
the same method for an illness-death model. This method can be compu-
tationally intensive for models with multiple smoothing parameters; that is,
for models where multiple transition hazards each have their own smoothing
parameter. In addition, the method requires explicit expressions for the tran-
sition probabilities. Calculating those formulae can be intractable for more
complex models, such as models with more than four states and backwards
transitions (Jackson, 2011). Titman (2011) uses a numerical approxima-
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tion to calculate the transition probabilities at the level of the corresponding
differential equations. The method allows for nonparametric hazard specifi-
cations with B-spline basis functions placed equidistantly. However, the log-
likelihood is maximised without penalisation. Machado and Van den Hout
(2018) proposed a penalised likelihood method to estimate semiparametric
multi-state models with splines. The smoothing parameters are selected by
using grid search. Even though the method is general and allows for back-
ward transitions, it can become burdensome for applications that involve
multiple penalties. Therefore, the methods available in the literature cannot
fully address the problem of estimating multi-state models with splines for
interval-censored data as they are not feasible for many applications.

In the presence of interval censoring, specific methods are needed to fit
time-dependent multi-state models. For progressive processes with a limited
number of states, unknown transition times can be integrated out; see, for
example, Joly et al. (2002), Van den Hout (2017), and Cook and Lawless
(2018). For more complex processes, particularly those with backward tran-
sitions, a piecewise-constant approximation to the time dependency can be
adopted; see, for example, Kalbfleisch and Lawless (1985), Jackson (2011),
and Machado and Van den Hout (2018). As mentioned above, Titman (2011)
is an exception, as he fits time-dependent models to interval-censored data
using direct numerical solution to the Kolmogorov Forward differential equa-
tions.

In this paper, we propose a new efficient method to estimate multi-state
models with splines for interval-censored data. A Markov process frame-
work is used to formulate the models. Hazards are specified with splines
to allow for flexible modelling over time. Estimation is undertaken using a
penalised likelihood approach. Given a piecewise-constant approximation to
the hazards, the Fisher scoring algorithm presented in Kalbfleisch and Law-
less (1985) is applied. Of specific interest is the automatic method that we
present to estimate the multiple smoothing parameters. The new estimation
procedure is made possible by rewriting the optimisation problem in a gen-
eralised likelihood-based framework with penalisation (Marra et al., 2017).
The fitted multi-state model with splines can be used for flexible modelling
of time dependency, but also to check parametric specifications.

Section 1.1 introduces the data on cardiac allograft vasculopathy (CAV).
In Section 2, the hazard models with splines are defined and the likelihood
function is derived. Section 3 comprises the main methodological work; it
defines the penalised likelihood function and discusses how the smoothing pa-
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Table 1: State table for the CAV data: number of times each pair of states was observed
at successive observation times.

To state
From state 1 2 3

1 1314 223 136
2 0 411 105

rameters are estimated along with the model parameters. A simulation study
in Section 4 shows that the proposed method works and also illustrates some
effects of interval censoring. Section 5 presents the main application which
is an analysis of the CAV data, and Section 6 briefly presents an additional
analysis of a five-state process. Section 7 is the concluding discussion. Two
appendices provide technical details additional to Section 3.

1.1. Cardiac allograft vasculopathy (CAV) data

To illustrate the methods, we analyse data for cardiac allograft vasculopathy
(CAV). The data come from Papworth Hospital UK and are available in the
msm package (Jackson, 2011). CAV is a narrowing of the arterial walls and
the main cause of death in heart transplantation patients.

The data are a series of approximately yearly angiographic examinations
of heart transplant recipients. The state at each time is a grade of CAV
which can be normal, moderate or severe. Dead is the absorbing state and
time of death is known within one day. The data contain 2816 rows which
are grouped by 614 patients and ordered by years after transplant. Each row
represents an examination and contains additional covariates. The process
is biologically irreversible and of particular interest is the onset of CAV.

Diagnosis of ischaemic heart disease (IHD) and donor age are known to
be major risk factors of CAV onset (Titman, 2011). In order to investigate
this, three-state progressive models can be defined. The states are classified
as normal (1) if the patient has not developed the disease, ill (2) if the patient
has developed moderate or severe CAV and dead (3) if the patient has died,
see Figure 1. Follow-up data after 15 years are not used, since after this time
data are scarce which may cause identifiability problems. Titman (2011)
used a similar formatting of the CAV data. Table 1 gives the number of
times each pair of states was observed at successive observation times.
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1
Healthy

3
Dead

2
CAV

Figure 1: Illness-death model for progression of cardiac allograft vasculopathy (CAV) after
transplant.

For the analysis in the current paper, we use the CAV data provided in
the R package msm. This version of the data does not include the times at
which patients stopped being under observation for survival follow-up. As
a result, inference on time-dependent hazards may differ in certain aspects
from analyses that are based on an extended version of the data; such as, for
example, the analysis presented in Titman (2011).

2. Multi-state models with splines

2.1. Model representation

Let Y (t) be a continuous-time Markov chain on finite state space S, time-
homogeneous transition probabilities are given by

prs(t1, t2) = P
(
Y (t2) = s|Y (t1) = r

)
,

for r, s ∈ S, and t2 ≥ t1 ≥ 0. This Markov chain is time-homogeneous
because it is assumed that the probability of being in state s at time t2 given
the current state r at time t1, depends only on the elapsed time t2 − t1.
Transition matrix P(t1, t2) contains these probabilities such that the rows
sum up to 1. The hazards are defined by

qrs = lim
∆→0

P
(
Y (t+ ∆) = s|Y (t) = r

)
∆

,

for r 6= s. The matrix with off-diagonal entries qrs and diagonal entries
qrr = −

∑
r 6=s qrs is the generator matrix Q. Given Q, the solution for
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P(t1, t2) subject to P(t1, t2) = I for t2 = t1, is P(t1, t2) = exp((t2 − t1)Q),
see, e.g., Cox and Miller (1965).

Time-dependent models can be defined by using proportional hazards
model for transition r to s, r 6= s,

qrs(t) = qrs.0(t) exp
(
β>rsx

)
, (1)

where qrs.0(t) is the baseline hazard function, x is a covariate vector and β>rs is
a vector of unknown parameters. We focus on the nonparametric estimation
of qrs.0(t) with splines. Each hazard can be approximated by the exponential
of a linear combination of Krs spline basis functions Bk(t) and regression
coefficients αrs.k ∈ R as follows

qrs.0(t) = exp

(
Krs∑
k=1

αrs.kBk(t)

)
. (2)

Let the number of spline basis functions be large (usually Krs ≥ 10) and
define the vector of coefficients by αrs = (αrs.1, . . . , αrs.Krs)

> for r 6= s. Each
qrs.0(t) is associated to a penalty matrix, which is quadratic in the basis coeffi-
cients and measures the complexity of qrs.0(t). For each transition r → s, the
smoothing penalty can be written as λrsα

>
rsSrsαrs, where Srs is a matrix of

known coefficients. The quantities λrs are called smoothing parameters and
they control the trade-off between model fit and model smoothness. Large
values for the smoothing parameters, λrs →∞, lead to a log-linear estimate
of qrs.0, while λrs = 0 results in an unpenalised regression spline estimate
(Wood, 2006).

For the spline basis functions, Bk(t), we use cubic regression splines which
have convenient mathematical properties for multi-state modelling. However,
the method is implemented in a way that is easy to employ other splines
definitions and corresponding penalties.

2.2. Likelihood function

Given a multi-state model, maximum likelihood inference can be used to
analyse longitudinal data. For interval-censored transition times, the like-
lihood function is constructed using transition probabilities. Let the state
space be S = {1, 2, .., D}, with D the dead state.

Let Y1, ..., Yn be a series of states observed at times t1, ..., tn, respectively.
The inference is conditional on the first observed state. For Y2, ..., Yn, the
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distribution is

P (Yn = yn, ..., Y2 = y2|Y1 = y1,θ, t,X) , (3)

where θ is the vector with the model parameters, t = (t1, ..., tn)>, and the
n× p matrix X contains the values of the p covariates at each of the n time
points. A conditional Markov assumption is used to define the distribution
(3) as

n∏
j=2

P (Yj = yj|Yj−1 = yj−1,θ, tj−1,xj−1) ,

where xj−1 is the (j − 1)th row in X. Given N individuals, the likelihood
function is given by

L(θ) =
N∏
i=1

ni∏
j=2

P (Yij = yij|Yij−1 = yij−1) , (4)

where ni is the number of observation times for individual i.
If time of death is known, the likelihood contribution of the interval

(tn−1, tn] in which an individual is observed alive at time tn−1 and subse-
quently dead at time tn is given by

∑D−1
s=1 P (Yn = s|Yn−1 = yn−1) qsD(tn−1).

A similar definition of the likelihood can be found in Jackson (2011); see also
the next section.

2.3. Piecewise-constant hazards
Time-dependency of the hazard model (1) can be taken into account by

using a piecewise-constant approximation. In longitudinal data for continuous-
time models, follow-up times often vary across individuals. If that is the case,
the individual-specific follow-up times can be used to define the piecewise-
constant approximation for the individual likelihood contributions. This im-
plies that a transition probability such P (Yj = yj|Yj−1 = yj−1) is derived by
using Q(tj−1) to estimate P(tj−1, tj) by exp((tj − tj−1)Q(tj−1)). It is also
possible to impose a fixed grid to the piecewise-constant approximation as
described in Van den Hout and Matthews (2008). For most applications,
both methods lead to similar result and the method described in this section
is preferable as it is less computationally extensive.

Using the data to define the piecewise-constant approximation explains
the definition of the likelihood contribution for an observed death at time
tn in the previous section. This contribution is defined using the hazard
evaluated at tn−1.
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3. Penalised maximum likelihood estimation

3.1. Penalised log-likelihood function

For each hazard, let the number of splines basis functions be large enough
to allow for flexible modelling; see Section 2.1. This number can vary ac-
cording to the time range in the data, or the number of observations. This
is illustrated in the simulation study and the applications.

Let θ be the full set of parameter and `(θ) be the logarithm of the likeli-
hood function. The amount of smoothing is controlled by adding a smooth-
ness penalty to the log-likelihood function. The penalised log-likelihood func-
tion is given by

`p(θ) = `(θ)− 1

2
θ>Sλθ, (5)

where θ = (θ1, . . . , θq)
>, vector λ contains the the smoothing parameters,

and Sλ is the penalty matrix. Matrix Sλ is a block diagonal matrix with
blocks λrsSrs for penalising splines parameters of transition r to s and zeros
elsewhere.

3.2. Parameter estimation

Given a piecewise-constant approximation to the time dependency in the
hazard model (1), a scoring algorithm can be used to maximise the penalised
log-likelihood function (5); see Machado and Van den Hout (2018). For a
given multi-state model, if more than one hazard is specified with splines,
then estimation of λ by direct grid search can be computationally burden-
some.

There are methods available for automatic smoothing parameters estima-
tion within the penalised likelihood framework; see Wood (2006) and Radice
et al. (2016). For their method, the derivatives of the penalised log-likelihood
function have to be split into the derivatives with relation to the linear pre-
dictors, and the derivatives of the linear predictor with relation to the model
parameters. The direct use of their methods in multi-state models leads to
large sparse matrices that are difficult to deal with.

Marra et al. (2017) developed a more general method for automatic
smoothing, which uses the gradient and the Hessian (or Fisher information
matrix) as a whole instead of components that make them up. The method
consist of two parts. First, given a value for the smoothing parameters, we
aim to find an estimate of the model parameters. Second, we use such an
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estimate to find an update for the smoothing parameters. We next describe
how to perform the first part of the method.

Let g
[a]
p = g[a]−Sλθ

[a] and I [a]
p = I [a]+Sλ represent the penalised gradient

and negative of the penalised hessian matrix at iteration a, respectively,
where g[a] = ∂`(θ)/∂θ|

θ=θ[a] and I [a] = −∂2`(θ)/∂θ∂θ>|
θ=θ[a] . For fixed

value of λ̂, the ath estimate of θ can be updated by

θ[a+1] =
(
I [a] + Sλ̂

)−1√
I [a]z[a], (6)

where z[a] =
√

I [a]θ[a] + ε[a] and ε[a] =
√

I [a]
−1

g[a].
This parametrisation allows for a well founded formulation of the smooth-

ing parameters selection presented in Section 3.3 (Marra et al., 2017); see Ap-
pendix A for a justification for this parametrisation. Calculating the second
derivatives of the probability matrix can be intractable; see Kalbfleisch and
Lawless (1985). We use an approximation to the Fisher information matrix
that involves only the first order derivatives of the penalised log-likelihood
function; see Appendix B.

3.3. Smoothing parameters estimation

The penalised maximum likelihood approach described in Section 3.2 can
only estimate model parameters, θ, for fixed vector of smoothing parame-
ters, λ. In general, if there are only one or two smoothing parameters, a
common approach to estimate these parameters is to undertake a grid search
over possible values and use AIC (cf. Machado and Van den Hout 2018) or
generalised cross-validation (cf. Eilers and Marx 1996; Wu and Sickles 2018).
However, in our multi-state model there are multiple penalty parameters and
a grid search is not feasible. In this section, we briefly discuss the automatic
estimation of the smoothing parameters as presented in Marra et al. (2017).

From likelihood theory, ε ∼ N (0, I) and z ∼ N (µz, I), where I is the
identity matrix, µz =

√
Iθ and θ is the true parameter vector. The predicted

value vector for z is µ̂z =
√
Iθ̂ = Aλ̂z, where Aλ̂ =

√
I(I +Sλ̂)−1

√
I. The

smoothing parameter vector is estimated to minimise

E(||µz − µ̂z||2) = E(||z−Aλ̂z||
2)− c+ 2tr(Aλ̂),

where c is a constant. In practice, λ is estimated by minimising the Un-
Biased Risk Estimator (UBRE; Craven and Wahba, 1979)

V(λ) = ||z−Aλz||2 − c+ 2tr(Aλ). (7)
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Equation (7) can be minimised using the automatic smoothing parameters
selection method developed by Wood (2004) or in principle by using a general-
purpose optimiser.

Hazard models defined with splines can capture parametric hazards. For
an hazard that is exponential or Gompertz, the corresponding smoothing
parameter λ is infinity. For this reason, it is recommended to impose an
upper bound when estimating smoothing parameters; this will be illustrated
in the simulation study.

3.4. Summary of the algorithm

The methods described in Sections 3.2 and 3.3 can be used to define an algo-
rithm that iterates until the parameter estimator satisfies max |θ[a+1]−θ[a]| <
δ for a suitable small positive value (Radice et al., 2016). The two steps of
the algorithm are as follow:

Step 1: For fixed smoothing parameters λ[a], find an estimate of θ:

θ[a+1] = argmax
θ

`p(θ).

Step 2: Given the estimate θ[a+1], find an estimate of λ using (7):

λ[a+1] = argmin
λ

V(λ).

3.5. Confidence intervals

The distribution of the penalised maximum likelihood estimator can be used
to construct confidence intervals for non-linear functions of the estimate θ̂,
such as the hazards and probability matrices (Wood, 2006). Let Vθ represent

the covariance matrix of θ̂ at convergence. From large sample theory, samples
of the estimate θ̂ can be drawn from N(θ̂,Vθ). Confidence intervals for
functions of the model parameters can be constructed as follows:

Step 1: Draw b vectors from N(θ̂,Vθ).

Step 2: Calculate the value of the function of interest at each
simulated value.

Step 3: Using the simulated values of the function, calculate the
lower (ς/2) and upper (1− ς), quantiles.
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The parameter ς is usually set to 0.05. In this paper, we approximate the
covariance matrix Vθ by the inverse of the matrix M described in Appendix
B.

4. Simulation study

We perform a simulation study to investigate the performance of the method
presented in Section 3 for modelling time-dependency in multi-state pro-
cesses. The study will investigate the fitting of various hazard shapes, the
effect of interval censoring, and a comparison with other methods. The simu-
lation is for a progressive three-state illness-death process as shown in Figure
1. For each of the three hazards we will assume a different time-dependent
shape so that we can show that the model with splines can deal with var-
ious scenarios. The time dependency will be simulated using parametric
distributions, but the fitted hazards will be based on three-state models with
splines. The simulation study is implemented in the R software; the code can
be obtained by contacting the authors.

4.1. Scenarios

For a three-state progressive process, we define the transition hazard for
1→ 2 using a log-normal distribution with parameters µ = 1.25 and σ = 1.
This implies that the hazard increases at first and decreases at a later time.
We define a constant hazard for 1→ 3 using an exponential distribution with
rate exp(−2.5). The hazard for 2→ 3 is defined to increase strictly by using
the Gompertz distribution with rate exp(−2.5) and shape 0.1.

Given the above parametric assumptions, longitudinal data are simulated
repeatedly for N individuals. An individual illness-death trajectory is simu-
lated in two steps. First, transition times are simulated. Next a longitudinal
sample design is imposed so that transition times to state 2 are interval
censored.

Using years since baseline as the time scale, transition times are simulated
as follows. Let Trs = Trs|u represent the time of the transition to state s
conditional on being in state r at time u > 0. If state at u is 1, then the time
of transition to the next state can be obtained by taking T = min{T12, T13}.
If T = T12 then, the next state is 2, otherwise the next state is 3. If state is
2, then the time of the next state is T23. The event times T12 are simulated
using the function rgengamma in R (Jackson, 2016). The event times T13

11



and T23 are simulated with user-written code for the exponential and the
Gompertz distribution.

A sampling design is imposed by assuming that living states are observed
at years t1 = 0, t2, t3, ..., , tn = 15, where the times are in years. This leads to
interval-censored transition times for transitions 1→ 2. Death times that are
simulated within the 15-year period are used as exact times for the transitions
to the dead state. We will investigate several sequences of t1, t2, ..., tn.

Given the simulated data, the hazards functions are estimated using
splines. The package mgcv (Wood, 2007) in R is used to set the design and
penalty matrices. The number of spline basis functions (number of knots)
for each hazard is K, hence the model has a total of 3K parameters. We
use cubic regression splines, in which case the knots are placed using the
percentiles of the observation times. Therefore, knots placement is different
for every sample. The three-state model with splines is then estimated using
the procedure described in Section 3. The smoothing parameters are esti-
mated using the general-purpose optimiser optim in R. To prevent numerical
problems with smoothing parameters λ = exp(γ) estimated at infinity for
exponential and Gompertz shapes, we impose upper bound γ < 20; see also
Section 3.3.

4.2. Numerical results for 100 replications

The scenario above is repeated 100 times for N = 500 individuals, times
(t1, t2, t3, ..., tn) = (1, 2, 3, ..., 15), and K = 10. Figure 2 presents the compar-
ison between estimated hazards and true hazards. The black lines represents
the true hazards and the white lines the medians of the estimated hazards.

The means of the estimated hazards (not shown) are quite similar to the
medians up to around 14 years, with some overestimation in the last year for
hazards 1→ 2 and 1→ 3. The medians are robust to those few hazards that
were fitted with relatively high values at the later years. This large variation
between the fitted hazards towards the end of study time (as illustrated by
the grey curves in Figure 2) is due to scarceness of data at later years.

Figure 2 shows that the method seems to work quite well overall. Nev-
ertheless, there is some discrepancy between the true hazard for 1 → 2 and
the median. The fact that the true hazard starts at zero is not represented
accurately in the fitted hazards. This is due to the interval censoring defined
in the simulation. The sampling design is such that the living states are
observed at intervals of one year. For the first two years after baseline, this
design does not work well. We investigate this further in the next section.
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Figure 2: Simulation study for the illness-death model using a yearly follow-up with
N = 500 individuals. True hazards (black lines), estimated hazards (grey lines, 100
replications), and the medians of the estimated hazards (white lines).

Table 2: Simulation study to investigate the performance of the multi-state models with
splines for modelling time-dependent processes. For 10-year transition probabilities, mean,
median, and bias for R = 100 replications.

Probabilities True Mean and bias Median and bias
p11(0, 10) 0.065 0.060 0.004 0.060 0.005
p12(0, 10) 0.231 0.222 0.009 0.222 0.007
p13(0, 10) 0.704 0.718 -0.014 0.718 -0.012
p22(0, 10) 0.245 0.231 0.014 0.231 0.016
p23(0, 10) 0.755 0.769 -0.014 0.769 -0.016

Data are simulated using parametric hazards, but models are fitted using
splines. Hence, we cannot compare true parameters values with estimated
parameter values in the current simulation study. However, we can compare
summary statistics computed using the true parametric hazards with statis-
tics computed from the fitted splines. An example of such a statistic is the
transition probability matrix for a given time interval.

Table 2 presents the results of the simulation study in terms of transi-
tion probabilities. It shows the ten-year transition probabilities for the true
model, the median and mean of the estimated ten-year transition probabili-
ties, and the corresponding bias. The results show that the multi-state model
with splines can estimate transition probabilities well for the ten-year time
interval (0, 10].
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Figure 3: One-off replication for the illness-death model using N = 2500 individuals. True
hazards (black lines), hazards estimated using msm (dashed black lines), using Smooth-
Hazard (grey lines), and using the proposed method (white lines).

4.3. Comparison with other methods

To compare our method with other methods, and to further investigate
the effect of interval censoring we present a simulation with one replication
only.

The scenario in Section 4.1 is adapted by adding planned observation
times in the first two years. The design for the follow-up times (t1, t2, t3, ..., tn)
in years is (0, 0.5, 1, 1.5, 2, 3, 4, ..., 15). As before, we use K = 10. We sim-
ulated this scenario once for N = 2500 individuals, and fit a parametric
time-dependent model and two spline models.

The parametric model is defined using the Gompertz hazard in (1); that
is, by defining qrs(t) = qrs.0(t) = exp(βrs+ ξrs(t)). The model is fitted using
the package msm (Jackson, 2011).

The first spline model is fitted using the function idm in the package
SmoothHazard (Joly et al., 2002). We specify 10 knots for each transition, and
use the option in the software to estimate the three smoothing parameters
by approximated cross validation. The second spline model is fitted using
our method as specified at the end of Section 4.1.

Figure 3 compares the true hazard with the fitting of the three models.
We see that the Gompertz model fits well for the hazards for 1 → 3 and
2→ 3 despite model misspecification of the hazard for 1→ 2.

All three true hazards are captured quite well by the model fitted with
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idm and the spline model fitted with our algorithm. The former captures the
hazard for 1→ 3 a bit better at the start of the time scale, but the latter is
better at smoothing the hazard for 2→ 3 at later years.

There is quite a difference in computation time needed for the three mod-
els above. Using a laptop with Windows 7 (2GHz processor, 8GB RAM, 64-
bit), the Gompertz is fitted by msm very fast (3.03 seconds). Fitting models
with cross-validation in idm is computationally intensive. Using the default
settings, the above model needed 100.3 minutes.

We implemented our algorithm in R without using parallel computing or
internal routines in other programming languages. The algorithm for the
spline model was relatively fast, it took 15.7 minutes. The initial values for
the spline weights were αrs = −3 for the relevant (r, s), and penalty vector
λ = exp(γ) had initial values γ = (1, 1, 1). Estimated γ is (1.76, 19.97, 19.99).
The estimated penalties for 1→ 3 and 2→ 3 are at the imposed upper bound
for the entries in γ, which is in agreement with the loglinear shape of the
simulated hazards for these transitions.

4.4. Interval censoring and identifiability

Substantial interval censoring can have a deteriorating impact on estima-
tion. Consider the sample design in the current simulation design: observa-
tions of state 1 and 2 are restricted to pre-specified times (t1, t2, t3, ..., tn). If
the time between observations is this sample design is large relative to the
change in the hazards, this may lead to an identifiability problem. Following
a suggestion from an anonymous reviewer of this paper, we investigate this
by simulating data given a very specific shape of the hazard for transition
1→ 2.

In Figure 4, the black line is the true cosine-shape hazard from which we
simulated transitions from state 1 to 2. For the other transitions, we use the
same parametric shapes as before: exponential for 1→ 2, and Gompertz for
2 → 3. The reason for using a cosine-shape hazard is as follows: if we only
have observation of state 1 and 2 at times (t1, t2, t3, t4) = (0, 5, 10, 15), then
we expect to be able to identify possible change of the hazard for 1→ 2 from
time tj to tj+1, for j = 1, 2, 3, but may fail to identify the hazard in more
detail. Given the cosine-shape hazard, this might imply that we are not able
to distinguish a fitted sine shape from the true cosine shape.

We fit a three-state process for N = 500 individuals and apply two
designs for interval censoring. Design A is defined by (t1, t2, t3, ..., tn) =
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Figure 4: One-off replication for the illness-death model using N = 500 individuals. True
hazards (black lines), hazards estimated using the spline model with K = 10 and one-year
follow-up data (white lines), and hazards estimated using the spline model with K = 5
and five-year follow-up data (dashed white lines).

(1, 2, 3, ..., 15). Using K = 10, the spline model recovers the true hazards
reasonably as illustrated by the white line in Figure 4.

Next we define design B by (t1, t2, t3, t4) = (0, 5, 10, 15). In this case, we
have the same underlying process as with A, but the follow-up information is
more sparse. At the times (t1, t2, t3, t4), however, the distribution of observed
states is the same for A and B.

For the data given design B, we could not fit a spline model with K =
10, but for K = 5 the algorithm converges without problems. And the
identifiability problem is nicely illustrated by the bad fit in Figure 4: instead
of a cosine shape, a sine shape is fitted for the hazard for 1→ 2. This misfit
also leads to a bad fit for the hazard for 2→ 3. Figure 4 also shows that the
identification at the observation times (t1, t2, t3, t4) is decent. In this case,
we are able to more or less identify the change of the hazard for 1→ 2 from
time tj to tj+1, for j = 1, 2, 3, but fail to identify this hazard within the
corresponding time intervals (tj, tj+1].

Given identifiability problems, estimation is often sensitive to starting
values. We explored this also in current case, but ended up with a sine shape
for other starting values as well.
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4.5. Conclusion simulation study

The findings from the simulation results are threefold. First, they indi-
cate that the proposed method is able to estimate nonlinear, log-linear and
linear hazards in the presence of interval censoring. Second, they show that
the piecewise-constant approximation to the transition probabilities provides
satisfactory results, as we are able to recover the true curves and ten-year
transition probabilities. Third, although interval censoring can be dealt with,
the results show that it can also lead to problems if the censoring is substan-
tial relative to the volatility of the underlying process.

5. Application to CAV data

We fit an illness-death model for the CAV data defined as in Figure 1. Be-
cause time of death is known within one day, rather than being interval
censored, the likelihood contribution of individuals observed in state r < 3 at
time t and dead at time t∗ > t are given by

∑2
s=1 P (Y (t∗) = s|Y (t) = r) qs3(t).

As described in Section 2.3, transition probabilities for the likelihood function
are calculated by using a piecewise-constant approximation to the hazards.
For the CAV data, the mean length of the interval between observations
within one patient is 1.622 years with standard deviation of 0.972 and me-
dian 1.258. Assuming that change of health status can be assessed in intervals
of approximately 1.2 years, we can use the data to define the grid for the
piecewise-constant approximation.

Let t represent time since transplant. The proportional hazard model
with splines is specified with dependence on donor age (dage) and primary
diagnosis of ischaemic heart disease (IHD):

qrs(t) = exp

(
10∑
k=1

αrs.kBk(t) + β1dage+ β2IHD

)
, (8)

where (r, s) ∈ {(1, 2), (1, 3), (2, 3)} and Bk(t) are known spline basis func-
tions. We use penalised cubic regression splines. The knots are placed con-
sidering the percentiles of the observation times. This is a key factor for
fitting multi-state models with splines. Because multi-state data can become
scarce close to the end of study, there might not be enough information to
estimate some basis coefficients. Fitting multi-state models with P -splines
(Eilers and Marx, 1996) might not be possible for some applications as it
requires the knots to be equally spaced. In that case some knots might be
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Figure 5: Histogram of time since transplant in the CAV data.

placed where there is no data. Figure 5 illustrates the histogram of time
since transplant for the CAV data.

For the analysis to follow, the design and penalty matrices are set up
using the package mgcv in R. As indicated in (8), the hazards are modelled
with 10 knots each, hence the total number of parameters is 32. The vector
of smoothing parameters is λ> = (λ12, λ13, λ23). The multi-state model with
splines is estimated using the procedure described in Section 3. The smooth-
ing parameters are estimated using the general-purpose optimiser optim in
R.

The estimated smooth hazards for subjects with IHD and donor age of
26 (solid lines) and 95% confidence intervals (dashed lines) are presented in
Figure 6. The risk of moving from state 1 (healthy) to state 2 (CAV) increases
until approximately 8 years after transplant, but decreases afterwards. The
risk of going from state 1 to state 3 (dead) is very low and almost constant
until approximately 10 years since transplant, but increases pretty steep af-
terwards. The transition intensity from state 2 to state 3 is quite volatile
and upwards until 10 years after transplant and decreasing afterwards. The
confidence intervals are fairly wide after approximately 10 years, which is to
be expected given that data become scarce after 10 years.
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Figure 6: Estimated smooth hazards for subjects with IHD and with donor age of 26 (solid
lines), with 95% confidence intervals (dashed lines).

For the parametric part of the model, β̂1 = 0.018 (0.04) and β̂2 =
0.274 (0.096) indicating that donor age and IHD increase the risks of disease
progression and death. The vector of smoothing parameters is estimated at
λ̂ = (47.145, 41.668, 10.716)>.

Although estimated hazards gives insightful information about the risks of
moving across states, interpretation is more straightforward when transition
probabilities are considered. For subject with IHD and with donor age of
26, the five-year transition probabilities are estimated at

P̂(0, 5)=

 0.475 (0.412, 0.529) 0.291 (0.250, 0.335) 0.234 (0.197, 0.286)
0 0.579 (0.428, 0.675) 0.421 (0.325, 0.572)
0 0 1

, (9)
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with 95% confidence interval (in brackets) obtained using b = 1000 simula-
tions as in Section 3.5. A transition probability can be interpreted as follows.
A subject with IHD and donor age of 26 has a 29% chance of being in the
CAV five years later.

To further illustrate the improvement achieved by the method presented
in this paper, we compare the fit of the model with splines (8) with the fit of
a model with Gompertz hazards specification. The Gompertz hazards spec-
ification is common in parametric multi-state modelling due to its simplicity
and straightforward use within the msm package; see, for example, Robitaille
et al. (2018) and Marioni et al. (2012).

The proportional hazard model with Gompertz specified with dependence
on donor age (dage) and primary diagnosis of ischaemic heart disease (IHD)
is given by

qrs(t) = exp (αrs + ξrst+ β∗1dage+ β∗2IHD) , (10)

where (r, s) ∈ {(1, 2), (1, 3), (2, 3)}. The model is estimated using a scoring
algorithm. The covariates effects and standard errors (in brackets) are es-

timated at β̂∗1 = 0.018 (0.04) and β̂∗2 = 0.277 (0.094). Then the covariates
effects and their standard errors for models (8) and (10) are equivalent.

Model validation for multi-state models can be carried out by comparing
model prediction of the entry time into the dead state with the Kaplan-Meier
curve estimates (Titman and Sharples, 2010). Figure 7 depicts baseline-
specific survival as estimated by the models (10) and (8) (on the left and
right hand side, respectively) and as described by the Kaplan-Meier curves.
For the Gompertz model in (10), the fit is reasonably good up to 10 years,
but after that the model fails to predict survival. The multi-state model with
splines predicts the survival reasonably accurately throughout the years.

6. Application to ELSA data

To illustrate our method with a five-state process, we analyse data from the
English Longitudinal Study of Ageing (ELSA, www.ifs.org.uk/ELSA). The
ELSA baseline is a representative sample of the English population aged 50
and older. ELSA contains information on health, economic position, and
quality of life. Here we use a random sample of 1,000 individuals, with 544
women and 456 men. The number of observations per individual ranges from
2 up to 6. This is the same sample as used in Van den Hout (2017). ELSA
data are made available through the UK Economic and Social Data Service
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Figure 7: Comparison of model-based survival with Kaplan-Meier curves for the Gompertz
model (left-hand side) and spline model (right-hand side). Model-based survival: grey lines
for individuals, blue lines for the mean of the individual curves. Kaplan-Meier in black
lines with 95% confidence intervals.
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Table 3: State table for the ELSA data: number of times each pair of states was observed
at successive observation times. The four living states are defined by number of words
remembered.

To
From 10-7 words 6-5 words 4-2 words 1-0 words Dead
10-7 words 164 150 49 12 8
6-5 words 156 440 303 48 40
4-2 words 52 336 616 151 85
1-0 words 11 35 114 149 72

(www.esds.ac.uk). In the data that we use, information on age is rounded
to integers for reasons of data protection.

In this application, we define four living states using the score on a word-
recall test. During the interview, individuals are asked to remember words
from a list of 10 that was read out aloud at an earlier time in the same
interview. The living states are defined by the number of words an individual
can remember: state 1, 2, 3, and 4, for number of words {7, 8, 9, 10}, {6, 5},
{4, 3, 2}, and {1, 0}, respectively. We define the fifth state as the dead state.

The interval-censored five-state data are summarised by the frequencies
in Table 3. The sum of the transitions into the dead state is equal to the
number of deaths in the sample; that is, 205. Table 3 shows that the process
includes backwards transitions between the living states.

We define three models to illustrate the spline modelling. The intercepts-
only model is given by

qrs(t) = exp(βrs) for (r, s) ∈
{

(1, 2), (1, 5), (2, 1), (2, 3), (2, 5)

(3, 2), (3, 4), (3, 5), (4, 3), (4, 5)
}
.

In our models, we assume that transitions between two states that are not
contiguous imply visiting the intermediate state(s) at least once. For exam-
ple, direct transitions from state 1 to 3 are not possible—the process has to
go via state 2. With 10 possible transitions, the intercepts-only model has
10 parameters. The AIC is 8109.5.

Given that change of cognition is likely to be associated with changing
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age, we use age as time scale t in the second model given by

qrs(t) = exp(βrs + ξrst) where ξrs = 0

for (r, s) ∈
{

(1, 5), (2, 1), (3, 2), (4, 3)
}
. (11)

In this model, intercept βrs is included for all the 10 possible transitions.
The justification of the restrictions on the age effects is twofold. Table 3
shows that there is not a lot of information on transition 1 → 5, hence
ξ15 = 0. The other restrictions are imposed to define a parsimonious model.
Interest in cognitive change is often focussed on decline, hence we keep the
model simple for the backward transitions in our process. This model has 16
parameters, and the AIC is 7962.6. The improvement in the AIC illustrates
the importance of taking age into account.

In model (11), the parametric shape is defined by the Gompertz distribu-
tion. This is quite restrictive. We define a more flexible spline model by using
5 knots for each transition for which we defined an age effect in model (11).
We use the same approach as with the CAV albeit for an extended number
of transitions: penalised cubic regression splines are used, with knots being
placed using the percentiles of the observation times. The spline model has
10 intercepts and 6 × 5 spline weights, hence 40 model parameters in to-
tal. For each of the 6 fitted splines, we have a separate penalty parameter
λ = exp(γ) which is estimated using upper bound γ < 20. The AIC for this
model is 7800.4, which is based on an effective number parameters equal to
19.4.

Figure 8 shows the fitted hazards for the parametric model and the spline
model. For the transitions with the constant hazard, fitted hazards are sim-
ilar. For the other transitions, we see some discrepancy between fitted para-
metric curves and the splines. Given the reduction in the AIC when using
the spline model compared to the parametric model (11), we infer that the
former describes the transitions hazards better then the latter.

The fitted splines in Figure 8 are quite smooth. We think that this is
due to the substantial interval censoring in the ELSA data. The median of
the time intervals between interviews within one individual is 2 years. This
implies that information on the time of changing state is limited across the
age range in the data. Hence the smoothness of the fitted hazards.

The limited information across the age range is probably also the reason
that we were not able to fit spline models with K = 10 knots for the relevant
hazards.
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Figure 8: Estimated hazards in the five-state model for the ELSA data. Grey lines for
the parametric model, and black lines for the spline model (with dashed lines for the 95%
confidence intervals).
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7. Discussion

This paper presents a practical and unifying framework for estimating multi-
state models with splines for interval-censored data. The new estimation
method is made possible by rewriting the optimisation problem using a pe-
nalised general likelihood estimation (Marra et al., 2017).

The simulation study shows the importance of the method for flexible
modelling of time-dependent processes. It is shown that the method can
recover nonlinear, log-linear and linear hazards in the presence of interval
censoring. However, the simulation study also illustrates that estimation can
be biased if the interval censoring is substantial relative to the volatility of
the underlying process.

The method is applied to a three-state illness-death process without re-
covery for cardiac allograft vasculopathy (CAV), and to a five-state process
for cognitive function and mortality in the English Longitudinal Survey of
Ageing (ELSA). These applications illustrate the feasibility of the method
and its usage for flexible time-dependent modelling. There should not be
a problem to apply the method for more complex multi-state processes, as
long as there are enough observations for those transitions that are modelled
with splines. Another application can be found in Machado (2018), where a
four-state model with one backward transition is investigated for an ageing
process. In that example, the choice of Gompertz distributions is justified by
showing that the penalised-splines hazards closely resemble the parameteric
Gompertz hazards.

The simulation study and the applications also show potential problems
when our method is applied in practice. Scarceness of data can be an issue.
If there is a dead state, then multi-state data become scarcer during the
study follow-up. Although our method can be implemented for various type
of splines, splines where the placing of the knots is dependent on observation
times are to be preferred when data become scarcer during the follow-up.
When data are scarce or when there is substantial interval censoring, the
fitted shapes of the transition hazards should be interpreted with care. The
simulation study illustrated potential bias in a rather extreme case. The
analysis of the ELSA data shows a more subtle situation where fitted hazards
are very smooth—a feature that may be partly due to limited information
on changing state across the age range in the data.

The automatic smoothing parameters estimation as described in Marra
et al. (2017) requires the Hessian or the Fisher information for estimation.

25



With the simulation study an the applications, we show that an approx-
imation to the Fisher information matrix, which only uses the first order
derivatives of the log-likelihood, performs well on estimation. This is rele-
vant for interval-censored data as calculating the second derivatives of the
transition probabilities can be intractable.

As discussed in Titman (2011), CAV is a progressive disease even though
backward transitions are recorded, due to measurement errors. The work
presented here can be extended to allow for misclassification of states (Jack-
son et al., 2003). A similar extension might be useful for the analysis of the
ELSA data in Section 6, where the definition of the states by the number of
words recalled is likely to be subject to test-retest error. Allowing for mis-
classification of state in the spline models poses extra difficulty for estimation
as derivative free algorithms, e.g., a quasi-Newton algorithm, are required to
maximise the penalised log-likelihood function.

This paper shows how penalised splines can be used to model time-
dependent transition hazards. The same method can also be used to deal
with time-dependent covariates in regression models for the hazards. As an
example, one might be interested in the effect of changing blood pressure
on disease onset. In such a case, interval censoring needs extra attention.
It is possible that time intervals between observations are informative with
respect to change of disease but are too long to provide good information
about a time-dependent covariate.

Penalised splines can also be used in multi-state models outside the frame-
work in the current paper. For example, models that take time spent in a
state into account, or models that deal with left-truncation in observational
studies.

The msm package (Jackson, 2011) was primarily designed to model time-
homogeneous multi-state models. However, it is possible to fit some time-
dependent models, such as Gompertz and splines (without penalties) models.
In this case, time-dependency is dealt with by msm by using a piecewise-
constant approximation to the hazards. Our method used the same piecewise-
constant approximation and can thus be seen as a generalisation of the
method in msm.

The Gompertz hazards specification is common in many applications due
to its simplicity and straightforward use with the msm package. We show
through a model validation method that such restrictive model specifications
can lead to poor model fit. As shown in Figure 7, the multi-state model with
splines can improve considerably model fit by allowing for flexible hazards
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specification.
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Appendix A. Parametrisation in the estimation

For easy reference, we derive the parametrisation of the model-parameter
estimators as in Marra et al. (2017). A first-order Taylor expansion of g

[a+1]
p

about the current fit θ[a] is given by

g[a+1]
p ≈ g[a]

p + H[a]
p (θ[a+1] − θ[a]), (A.1)

where g
[a]
p = g[a] − Sλ̂θ

[a] and H[a]
p = H[a] − Sλ̂. Let us define I [a] = −H[a].

A new fit θ[a+1] is obtained by taking the right-hand side of equation (A.1)
to be zero

0 = g[a]
p +

(
−I [a] − Sλ̂

)
(θ[a+1] − θ[a]) ,

g[a]
p =

(
I [a] + Sλ̂

)
(θ[a+1] − θ[a]) ,

g[a] − Sλ̂θ
[a] =

(
I [a] + Sλ̂

)
θ[a+1] − I [a]θ[a] − Sλ̂θ

[a] ,(
I [a] + Sλ̂

)
θ[a+1] = g[a] + I [a]θ[a] and

θ[a+1] =
(
I [a] + Sλ̂

)−1√
I [a]

(√
I [a]θ[a] +

√
I [a]

−1

g[a]

)
.

Therefore, the new fit for the parameter estimator can be expressed as

θ[a+1] =
(
I [a] + Sλ̂

)−1√
I [a]z[a], (A.2)

where z[a] =
√

I [a]θ[a] + ε[a] with ε[a] =
√

I [a]
−1

g[a].
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Appendix B. Gradient and Fisher information matrix

In this appendix, we derive the gradient vector and an approximation to the
Fisher information matrix. The description to follow is also presented in
Van den Hout (2017).

Given piecewise-constant intensities, the likelihood contribution for an
observed time interval (t1, t2] is defined using a constant generator matrix
Q = Q(t1). For the eigenvalues of Q given by b = (b1, ..., bD), define B =
diag(b). Given matrix A with the eigenvectors as columns, the eigenvalue
decomposition is Q = ABA−1. The transition probability matrix P(t) =
P(t1, t2) for elapsed time t = t2 − t1 is given by

P(t) = A diag
(
eb1t, ..., ebDt

)
A−1.

As described in Kalbfleisch and Lawless (1985), the derivative of P(t) can
be obtained as

∂

∂θk
P(t) = AVkA

−1,

where Vk is the D ×D matrix with (l,m) entry
g

(k)
lm [exp(blt)− exp(bmt)] /(bl − bm) l 6= m

g
(k)
ll t exp(blt) l = m,

where g
(k)
lm is the (l,m) entry in G(k) = A∂Q/∂θkA

−1.
Let g(θ) denote the q× 1 gradient vector. The kth entry of g(θ) is given

by
N∑
i=1

ni∑
j=2

∂

∂θk
logP (Yij = yij|Yij−1 = yij−1) .

The Fisher information matrix is given by I(θ) = IE
[
g(θ)g(θ)>

]
, which

can be estimated by defining the q × q matrix M(θ) with (k, l) entry

N∑
i=1

ni∑
j=2

∂

∂θk
logP (Yij = yij|Yij−1 = yij−1)

∂

∂θl
logP (Yij = yij|Yij−1 = yij−1) .
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