UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Small rainbow cliques in randomly perturbed dense graphs

Aigner-Horev, E; Danon, O; Hefetz, D; Letzter, S; (2021) Small rainbow cliques in randomly perturbed dense graphs. (In press).

[img] Text
2006.00588v2.pdf - Accepted version
Access restricted to UCL open access staff until 24 May 2021.

Download (679kB)

Abstract

For two graphs G and H, write G rbw −→ H if G has the property that every proper colouring of its edges yields a rainbow copy of H. We study the thresholds for such so-called anti-Ramsey properties in randomly perturbed dense graphs, which are unions of the form G ∪ G(n, p), where G is an n-vertex graph with edge-density at least d > 0, and d is independent of n. In a companion paper, we proved that the threshold for the property G ∪ G(n, p) rbw −→ K` is n −1/m2(Kd`/2e) , whenever ` ≥ 9. For smaller `, the thresholds behave more erratically, and for 4 ≤ ` ≤ 7 they deviate downwards significantly from the aforementioned aesthetic form capturing the thresholds for large cliques. In particular, we show that the thresholds for ` ∈ {4, 5, 7} are n −5/4 , n −1 , and n −7/15, respectively. For ` ∈ {6, 8} we determine the threshold up to a (1 + o(1))-factor in the exponent: they are n −(2/3+o(1)) and n −(2/5+o(1)), respectively. For ` = 3, the threshold is n −2 ; this follows from a more general result about odd cycles in our companion paper.

Type: Article
Title: Small rainbow cliques in randomly perturbed dense graphs
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Mathematics
URI: https://discovery.ucl.ac.uk/id/eprint/10107286
Downloads since deposit
1Download
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item