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1

Automated Inline Analysis of Myocardial Perfusion MRI with 
Deep Learning

Key points:

1. Proposed and validated a convolutional neural network solution for cardiac 
perfusion mapping and integrated an automated inline implementation on the MR 
scanner, enabling “one-click” analysis and reporting.

2. The large training set included 1825 perfusion series from 1034 patients (mean 
age 60.6 ± 14.2 years) and the independent test set included 200 scans from 105 
patients (mean age 59.1 ± 12.5 years).

3. Comparison of automated and manual derived myocardial blood flow 
measurement showed no differences on both global and per-sector basis (P > .80).

Summary statement:

The described CNN was capable of segmenting and determining the mean stress 
and rest myocardial blood flow in a manner comparable to manual segmentation.
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Abbreviations

AHA = American Heart Association, CNN = convolutional neural network, CPU = central 

processing unit, LV = left ventricular, MBF = myocardial blood flow, RV = right ventricular 
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Abstract

Purpose

To develop a deep neural network based computational workflow for inline myocardial 

perfusion analysis that automatically delineates the myocardium, which improves the clinical 

workflow and offers a “one-click” solution. 

Methods

In this retrospective study, consecutive adenosine stress and rest perfusion scans were acquired 

from three hospitals between Oct 1, 2018 and Feb 27, 2019. The training and validation set 

included 1825 perfusion series from 1034 patients (mean age 60.6 ± 14.2 years). The 

independent test set included 200 scans from 105 patients (mean age 59.1 ± 12.5 years). A 

convolutional neural network (CNN) model was trained to segment the left ventricular cavity, 

myocardium, and right ventricle by processing an incoming time series of perfusion images. 

Model outputs were compared to manual ground-truth for accuracy of segmentation and flow 

measures derived on a global and per-sector basis with T-test performed for statistical 

significance. The trained models were integrated onto MR scanners for effective inference.

Results

The mean Dice ratio of automatic and manual segmentation was 0.93 ± 0.04. The CNN 

performed similarly to manual segmentation and flow measures for mean stress myocardial 

blood flow (MBF [ml/min/g]; 2.25 ± 0.59 vs 2.24 ± 0.59, P = .94) and mean rest MBF (1.08 ± 

0.23 vs 1.07 ± 0.23, P = .83). The per-sector MBF values showed no difference between the 

CNN and manual assessment (P = .92). A CPU based model inference on the MR scanner took 

less than 1 second for a typical perfusion scan of three-slices.

Conclusions

The described CNN was capable of cardiac perfusion mapping and integrated an automated 

inline implementation on the MR scanner, enabling “one-click” analysis and reporting in a 

manner comparable to manual assessment.
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Introduction

Myocardial perfusion MRI has proven to be an accurate, non-invasive imaging technique to 

detect ischemic heart disease (1). Quantitative MR perfusion is more objective (2) and 

automated in-line methods (3,4) offer improved efficiency of analysis. Compared with 

qualitative visual assessment, quantitative methods improve the detection of disease with a 

global reduction in flow, as seen in balanced multi-vessel obstruction or microvascular disease 

(5). 

Without automated segmentation of the MR perfusion maps, a reporting clinician would 

have to manually draw regions of interest to extract global or regional flow values. Objective 

perfusion assessment could be further facilitated by segmenting the myocardium to 

automatically generate the report leading to a “one-click” solution to improve workflow. 

Automated MR perfusion measurement could serve as the input for down-stream 

cardiovascular disease classification (6) where pre-trained CNN models receive myocardial 

flow and other imaging features to predict the probability of ischemic heart disease. These 

previous studies used manual segmentation and can be automated with the proposed approach.

In this study we propose a deep CNN based computational workflow for myocardial 

perfusion analysis using MRI. The right ventricular (RV) insertion points were determined to 

allow reporting of perfusion according to the standard 16 segment model proposed by the 

American Heart Association (AHA). To use the dynamic change of intensity due to contrast 

uptake, the proposed solution operates on the time series of two-dimensional (2D) perfusion 

images (referred to here as 2D+T) after respiratory motion correction. The performance of the 

trained CNNs was quantitatively evaluated by comparing against manually established ground-

Page 6 of 32

820 Jorie Blvd., Suite 200, Oak Brook, IL, 60523, 630-481-1071, rad-ai@rsna.org

Radiology: Artificial Intelligence

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

truth for both segmentation accuracy and global as well as regional flow measures on an 

independent hold-out test dataset. 

To promote the clinical validation and adoption of the proposed solution, the trained 

deep learning models were integrated onto MR scanners using the Gadgetron InlineAI toolbox 

(7). The CNN models were applied to the acquired images as part of the scanner computing 

workflow (inline processing) at the time of scan, rather than as a post processing. The resulting 

segmentation results and analysis reports were available for immediate evaluation prior to the 

next image series. The method described here has been used in a prospective study of  more 

than 1000 patients to demonstrate the prognostic significance of quantitative stress perfusion 

(8). A “one-click” solution to acquire free-breathing perfusion images, perform pixel-wise flow 

mapping, and conduct automated analysis with a 16-segment AHA report generated on the MR 

scanner is demonstrated.

Methods

Imaging and Data Collection 

In this retrospective study, the datasets consisted of adenosine stress and rest perfusion scans 

which were acquired at three hospitals (_ Centre, XX; _ Hospital, XH; _ Teaching Hospitals, 

XHT) between Oct 1, 2018 and Feb 27, 2019. Data was acquired with the required ethical 

and/or audit secondary use approvals or guidelines (as per each center) that permitted 

retrospective analysis of anonymized data for the purpose of technical development, protocol 

optimization and quality control. All data was anonymized and delinked for analysis by 

National Institutes of Health (NIH) with approval by the NIH Office of Human Subjects 

Research (Exemption #13156). The collected datasets was previously included in a recent study 
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(9) which developed a left ventricular blood pool detection solution for arterial input function 

images, while this study used the datasets for perfusion myocardium segmentation.

A total of 1825 perfusion scans from 1034 patients (mean age 60.6 ± 14.2 years, 692 

men) were assembled and split into training and validation sets, used for CNN model training. 

An independent hold-out consecutive test set was assembled, consisting of 200 perfusion scans 

from 105 patients (mean age 59.1 ± 12.5 years, 76 men). Table 1 summarized detailed dataset 

information. There was no overlap between the training and validation data to the independent 

test data (10). Among the assembled independent test data, 96 scans were acquired at 3T 

scanners and 104 were from 1.5T scanners.

MRI Acquisition

Perfusion imaging used a previously published dual-sequence scheme (3). The imaging started 

after administering the contrast agent and acquired typical three 2D images cutting through the 

heart. This acquisition was repeated for every heart beat to capture the contrast passage. Details 

for MRI imaging can be found in Appendix E1.

Data Preparation and Ground Truth Labeling

Perfusion image series underwent motion correction and surface coil inhomogeneity correction. 

Resulting images were spatially upsampled to 1.0mm2 and the central field of view (176 × 176 

mm2) was cropped. For the short axis perfusion slices, the LV endo- and epicardial boundaries 

were manually traced, together with the right ventricle (RV) (Fig. 1). Information for data 

preparation and labeling can be found in Appendix E2.

Model and Training
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The U-net semantic segmentation architecture (11,12) was adopted for the perfusion 

segmentation. The neural net (Fig. 2) consisted of downsampling and upsampling layers, 

each including a number of ResNet blocks (13) with Batch Normalization (14) and 

LeakyRelu (15) nonlinearity. The data for training was split into a training set (87.5% 

of all studies) and a validation set (12.5% of all studies). The CNN model and 

optimization was implemented using PyTorch (16). 

The trained model was integrated to run on MR scanners using the Gadgetron 

Inline AI (7) streaming software. A screenshot (Fig. 3) illustrates the perfusion mapping 

with overlaid CNN based segmentation and AHA report, applied to a patient with 

reduced regional perfusion. This is a “one-click” solution for automated analysis of 

quantitative perfusion flow mapping. 

Appendix E3 gave details about model, training and inline integration.

Statistical Analysis

The segmentation of automated processing was compared to the manually labeled test set. 

Performance was quantified in both segmentation accuracy and myocardial flow measures. The 

Dice ratio for manual label and automatic segmentation masks, was computed, together with 

the false positive and false negative errors. A false positive was defined as the percentage area 

of the segmented mask in the CNN result that was not labeled in the manual one. A false 

negative was defined as the percentage area of segmented mask in the manual that was not 

labeled in the automated result. The precision (defined as the percentage of segmented area in 

both the CNN and manual masks over CNN area) and recall (defined as the percentage of 

segmented area in both the CNN and manual masks over manual area) were also reported. The 
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myocardium boundary errors (17), defined as the mean distance between myocardial borders 

of two masks, and the Hausdorff distance (18) were computed for the endo- and epicardium 

borders. The detection accuracy of RV insertion was measured by the angular difference 

between auto and manual determined direction vectors for RV insertion, as only the orientation 

was needed for segmentation. Global and per-sector myocardial flow measures were used 

quantify the CNN performance compared to manual results, displayed using Bland-Altman 

plots. Additionally, contours were visually inspected for segmentation failures on all 200 test 

scans.

Results were presented as mean ± standard deviation. T-test was performed and a P-

value less than .05 was considered statistically significant (Matlab R2017b, Mathworks Inc., 

MA, USA). T-test was used to test whether there are significant differences on MBF 

values derived from manual and automated segmentation.

CNN Data Sharing

To encourage researchers on other platforms to adopt the proposed solution, the CNN 

model files, and other resources are shared openly (https://github.com/xueh2/QPerf).

Results

CNN Segmentation Overview and Optimization

An example of segmentation (Fig. 4) illustrates the contours overlaid on perfusion 

images and corresponding flow maps. The trained CNN correctly delineated the LV cavity and 

myocardium. The RV insertion direction was accurately detected to allow sector division. The 

epicardial fat, was correctly excluded from segmentation and papillary muscles were avoided.
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CNN and Ground Truth Segmentation Performance Comparisons

The mean Dice ratio of myocardium segmentation between CNN and manual ground-

truth was 0.93 ± 0.04 (90% CI: 0.88 to 0.97). False positive and false negative rates were 0.09 

± 0.06 (90% CI: 0.02 to 0.18).  and 0.06 ± 0.05 (90% CI: 0.005 to 0.13). Precision and recall 

were 0.92 ± 0.06 (90% CI: 0.81 to 0.97) and 0.94 ± 0.05 (90% CI: 0.87 to 0.99).  The 

myocardium boundary error was 0.33 ± 0.15 mm (90% CI: 0.13 to 0.52 mm). Given the training 

image spatial resolution of 1 mm2,  the mean boundary error was less than 0.5 pixels. The mean 

bidirectional Hausdoff distance was 2.52 ± 1.08 mm (90% CI: 1.42 to 4.13mm) and the mean 

angle between auto and manually determined RV insertion point directions was 2.65 ± 3.89 

degree (90% CI: 0.28 to 5.95). 

The mean stress flow was 2.25 ± 0.59 ml/min/g for the CNN and 2.24 ± 0.59 ml/min/g 

for manual segmentation (P = .94). For rest scans, the CNN gave 1.08 ± 0.23 ml/min/g and 

manual measure gave 1.07 ± 0.23 ml/min/g (P = .83). The per-sector measures showed no 

difference between the CNN and manual measures (P = .92). Bland-Altman plots (Fig. 5) 

compared automatic to manual processing of MBF for both global MBF and 16-sector values.

The performance was further evaluated separately for 3 T and 1.5 T test scans. The mean 

Dice ratio was 0.93 ± 0.04 for 3T and 0.93 ± 0.03 for 1.5T (P = .97). At 3 T, the mean stress 

flow was 2.20 ± 0.59 ml/min/g for CNN and 2.21 ± 0.59 ml/min/g for manual (P = .93). The 

mean rest flow was 1.08 ± 0.23 ml/min/g for CNN and 1.07 ± 0.23 ml/min/g for manual (P = 

0.84). At 1.5T, the mean stress flow was 2.29 ± 0.60 ml/min/g for the CNN and 2.29 ± 0.59 

ml/min/g for manual (P = .97). The mean rest flow was 1.08 ± 0.23 ml/min/g for CNN and 1.07 

± 0.23 ml/min/g for manual (P = .93).  
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Contours were visually evaluated on all 200 test scans (three slices each). There was a 

single stress case where one slice failed to properly segment the right ventricle, however, the 

myocardium was properly segmented. A second rest case had one apical slice where the 

myocardium segmentation included blood pool. There was apparent through-plane motion that 

was uncorrected. No other segmentation failures were found.

CNN Speed Performance

The CNN model was integrated on the MR scanner. On Xeon Gold, model loading time 

was approximately 120 ms and applying model on incomings perfusion series was 

approximately 250 ms per slice. For a typical three short axis acquisition, inline analysis took 

less than 1 second on CPU. On the older Xeon E5, model loading time was approximately 130 

ms and applying models took 370 ms per slice.

Discussion 

This study presents a deep neural network-based workflow for automated myocardial 

segmentation and reporting of the AHA 16 sector model for pixel-wise perfusion mapping. The 

derived myocardial measures were computed and reported inline on the MR scanner taking just 

one additional second of inline processing time. Quantitative evaluation in this initial study 

demonstrated performance of myocardial segmentation and sector-based analysis that is well 

matched to a human expert. This study used stress and rest data from seven scanners at three 

sites at 2 field strengths using over 1800 consecutive scans for training and 200 for test.  Bland-

Altman analysis demonstrated a 95% confidence interval for global MBF of 0.05 mmol/min/g 

compared to manual labeling, which is sufficient for automated detection and reporting. Prior 

work on segmenting perfusion (19) used much smaller datasets resulting in much higher 
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variance. A weighted sum loss function was used in this study and gave good accuracy. There 

are indeed many other alternatives, such as soft Dice ratio or Focal loss (20), which can be 

effective in perfusion segmentation task. Which loss function is the best may vary for different 

applications. A comprehensive overview and implementation of many loss functions can be 

found at https://github.com/JunMa11/SegLoss.

The prognostic significance of proposed artificial intelligence application was studied 

and recently published in Knott  et al. (8). In this study, 1049 patients with known or suspected 

coronary artery disease underwent stress MR perfusion scans and were analyzed with the 

proposed CNN models, showing reduced MBF and myocardial perfusion reserve measured 

automatically using artificial intelligence quantification of CMR perfusion (2). This study 

demonstrates the relevance of automated myocardial segmentation in CMR stress perfusion. 

Automated CMR image analysis has been attempted over a long period (21). Most work 

focused on cine image analysis (e.g. MICCAI 2017 ACDC challenge (22), etc.) The first deep 

learning study which was based on a large data cohort and reported performance matching 

human level, was published in 2018 (23). Since then, deep neural nets were applied to other 

CMR imaging applications, such as T1 mapping and cardiac late enhancement segmentation 

(24) . Our approach utilized the temporal information through the whole bolus passage (2D+T) 

to exploit the contrast dynamics for detecting both RV and LV which enabled finding the RV 

insertion point. The epicardial fat, showing no dynamic intensity changes, was correctly 

excluded from segmentation which would be more difficult to avoid on a single static image. 

Limitations

First, the presented study was conducted on MR scanners from a single vendor. 

Although the specific imaging dual-sequence used may not be available on other platforms, the 
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proposed segmentation method and CNN models may be still applicable. Second, although the 

proposed algorithm works well for the vast majority of cases, a few cases are challenging. For 

example, in the case of severe hypertrophy some slices may not exhibit any blood pool (ie 

complete extinction) where no endocardial contours are drawn. Third, the CNN models are 

currently trained for short-axis slices and cannot be applied to long-axis views. New training 

and test datasets are needed to extend segmentation to long-axis slices. In the case where the 

basal slice may cover some portion of out-flow tract. In this instance, the proposed algorithm 

will avoid the blood pool and divide a segment accordingly or may skip a segment entirely. 

This will result in incomplete segmentation. Fourth, in cases of severe respiratory motion that 

is beyond the capacity of the in-plane retrospective methods, portions of the myocardium may 

be blurred, where CNN segmentation can perform poorly. However, in these cases manual 

segmentation is difficult as well. 

Another limitation of this study is the single operator for data labeling. The inter-

operator reliability was not tested in this paper. Since this solution had been deployed to MR 

scanners, clinical collaborators have started to use this solution (8,25), but more clinical 

validation is required to further validate this solution.

Conclusion

In this study, we demonstrated automated analysis can be achieved on clinical scanners 

for perfusion MRI. Deep learning enabled inline analysis immediately after data acquisition as 

part of imaging computation, therefore more objective, convenient, and faster, reducing clinical 

burden.
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Appendix E1: MRI Acquisition

Perfusion imaging used a previously published dual-sequence scheme (3). A low-resolution 

arterial input function imaging module was inserted before the perfusion imaging and 

performed after the R-wave with short delay time. Typical parameters for myocardial imaging: 

FOV 360×270mm2, slice thickness 8 mm, imaging matrix 192×111, interleaved acceleration 

R=3, TE=1.04ms, TR=2.5ms, TD=40ms, flip angle 50o, FISP readout. Gadolinium [Gd] 

contrast agent (XX  and XH: gadoterate meglumine, Dotarem; Guerbet, Paris, France; LTHT: 

Gadovist, Leverkusen, Germany) was administered as a bolus of 0.05 mmol/kg at 4 ml/sec with 

20 ml saline flush using power injectors (Medrad MRXperion Injection System, Bayer). For 

stress perfusion, adenosine was administered by continuous intravenous infusion for 4 min at a 

dose of 140 g/kg/min before contrast injection (increased to 175 µg/kg/min for a further 2 

minutes based on patient’s response). The imaging started by acquiring three proton density 

weighted images, followed by saturation recovery images. Every perfusion image was acquired 

as a 2D image cutting through the heart and this acquisition was repeated for every heart beat 

to capture the contrast passage, typically lasting 60 heart beats. This resulted in the 2D+T time 

series where images were acquired consecutively in time. Details of imaging and perfusion 

mapping can be found in Kellman et al (3).  Datasets were acquired using both 1.5 T (four 

MAGNETOM Aera, Siemens AG Healthcare, Erlangen, Germany) and 3 T (three 

MAGNETOM Prisma, Siemens AG Healthcare) MR scanners.

Appendix E2: Data preparation and labeling

Perfusion image series underwent motion and surface coil inhomogeneity correction. Motion 

correction utilized non-rigid image registration in an iterative manner. To compensate for 

substantial image contrast variation during the contrast bolus passage, instead of directly 
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registering perfusion images against each other, synthetic perfusion series were derived from a 

Karhunen‐Loève transform. Motion correction was achieved by registering perfusion images 

pairwise with the synthetic series. The detailed algorithm was presented in Xue et al (4). After 

correcting respiratory motion, surface coil inhomogeneity was corrected using the proton 

density images and the normalized intensities were converted to gadolinium concentration units 

(mmol/L) (3). To compensate for heart rate variation and mis-triggering, the perfusion series 

was temporally resampled using linear interpolation which also compensated for possible 

missed triggers. This interpolation resulted in a fixed sampling corresponding to a heart rate of 

120 bpm. The temporal resampling step did not lead to spatial blurring since it was performed 

after motion correction.

Since the gadolinium concentration series was corrected for signal nonlinearity and 

surface coil inhomogeneity, it had the benefit of reducing the dynamic range and providing a 

fixed signal range for neural nets, compared to perfusion intensity images. This image series 

was spatially upsampled to 1.0 mm2 spatial resolution and the central field of view (176 × 176 

mm2) was cropped. The left ventricular (LV) blood pool was detected from the arterial input 

function series which was imaged at the basal plane at diastole. The location of the LV blood 

pool from this step was used to center the cropped image (9). For the short axis perfusion slices, 

the LV endo- and epicardial boundaries were manually traced, together with the right ventricle 

(RV) (Fig. 1). The RV insertion point was determined from the segmented right ventricular and 

LV center as the rightmost pixel. The training and test datasets were carefully labeled by one 

operator (XX, 10 years of experience in perfusion imaging).
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Appendix E3: Model, Training and Inline Integration

Details of Neural Net Model

The first 48 images were empirically selected, starting at the first saturation recovery image. 

This resulted in an image array of 176 × 176 × 48 per section, covering the first-pass bolus 

passage of injected contrast agent. A total of 262800 2D images were then used for training the 

neural networks. The U-net semantic segmentation architecture (11,12) was adopted for the 

perfusion segmentation. The neural net (Fig. 2) consisted of downsampling and upsampling 

layers, each including a number of ResNet blocks (13). The downsampling and upsampling 

operations were inserted between layers to change the spatial resolution. For simplicity, two 

convolutional layer operations with the same number of output filters were added to each block, 

together with Batch Normalization (14) and LeakyRelu (15) nonlinearity. All convolutional 

layers used a 3 × 3 kernel with stride of 1 and padding of 1. Following the principle of U-net, 

the downsampling and upsampling layers were connected with Skip-connections. The spatial 

resolution was reduced by going through the down-sampling branch with the number of 

convolution filters increased. The up-sampling branch increased the spatial resolution and 

reduced the number of filters. The network was able to learn features from this coarse-to-fine 

pyramid thereby selecting an optimal filter combination to minimize the loss function. 

The final convolutional layer output was a 176 × 176 × 3 array of scores representing 

segmented classes, which were converted to probability through a softmax operation. 

Establishing the anatomical context of LV cavity, myocardium, and right ventricle was 

facilitated by using a single trained CNN.  The loss function was a weighted sum of cross-

entropy and the intersection over union. This cost function optimizes the overlap between the 

detected mask and ground-truth while maximizing the probability for a pixel to be correctly 
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classified, previously shown to improve segmentation accuracy (26). The trained CNN models 

were applied to both stress and rest test scans. 

Training and Hyperparameter Search 

The data for training was split into a training set (87.5% of all studies) and a validation set (12.5% 

of all studies) and the CNN model and optimization was implemented using PyTorch (16). 

Training was performed on a Linux PC (Ubuntu 18.04) with four NVIDIA GTX 2080Ti GPU 

cards. ADAM optimization was used with initial learning rate equal to 0.001 (beta = 0.9 and 

0.999; epsilon = 1·10-8). Learning rate was reduced by a factor of 2 for every 10 epochs. 

Training took 60 epochs and best model was selected as the one giving best performance on the 

validation set. 

A hyperparameter search was conducted to test different network parameter 

combinations (2 to 4 resolution layers, 2 to 4 blocks per layer, and number of convolution filters 

of either 64, 128 and 256). After the hyperparameter search, best performance was found for an 

architecture containing two down-sampling and up-sampling layers, with two ResNet blocks 

for the first layer and three blocks for the second. This led to a deep net with 23 convolution 

layers in total. On the tested hardware, training took approximately 8 hours for 60 epochs.

Inline integration of trained models

The trained model was integrated to run on MR scanners using the Gadgetron Inline AI (7) 

streaming software which provides flexible interfaces to load pre-trained neural networks and 

apply them on incoming new data. This involved transferring model objects from Pytorch to 

C++ and passed data from C++ to Pytorch modules. Model inference was chosen to utilize a 

central processing unit (CPU) which was sufficiently fast for clinical usage. 
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Perfusion segmentation functionality was performed after inline perfusion mapping. As 

soon as a perfusion scan was configured, the pre-trained model was loaded into the Gadgetron 

runtime environment. Following image reconstruction and pre-processing, models were applied 

to the incoming 2D+T image series for each slice. Resulting segmentation was used to generate 

the 16-sector measurement of perfusion and produce a summary report. All steps were fully 

automatic without any user interaction. A screenshot (Fig. 3) illustrates the perfusion mapping 

with overlaid CNN based segmentation and AHA report, applied to a patient with reduced 

regional perfusion. This is a “one-click” solution for automated analysis of quantitative 

perfusion flow mapping. Trained models were tested on two computing servers for timing. 

Xeon Gold: 2×Intel Xeon Gold 6152 CPU @ 2.1GHz, released in 2017, 192 GB RAM. Xeon 

E5: Intel Xeon E5-2680 CPU, released in 2012 and 64G RAM.
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Availability of data and material

The raw data that support the findings of this study are available from the corresponding author 

upon reasonable request subject to restriction on use by the Office of Human Subjects Research. 

The source file to train the CNN model and example datasets are shared at 

https://github.com/xueh2/QPerf.git.
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Table 1. Dataset Information

Sites #Patients #Stress scan #Rest scan

XX 475 432 475

XH 345 219 345Training

XTH 214 140 214

Total 1034 791 1034

XX 54 46 54

XH 13 11 13Test

XTH 38 38 38

Total 105 95 105
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List of Captions

Figure 1 Data preparation for performing convolutional neural network-based segmentation used in this 

study. Respiratory motion correction of perfusion images provides pixel-wise alignment of myocardial 

tissue. Image intensities are corrected for surface coil inhomogeneity and converted to gadolinium 

concentration units. Images are resampled to a fixed temporal and spatial resolution and cropped 

around the left ventricular cavity. The resulting 2D+T time series of images is input for convolutional 

neural network training, together with supplied manual labeling.

Figure 2 Schematic plot of the convolutional neural network trained in this study. This network consists 

of downsampling and upsampling layers. Each layer includes a number of ResNet blocks. More layers 

and blocks can be inserted into the convolutional neural network to increase its depth. In the example 

illustration, two layers are used with two blocks for each layer. The total number of convolution blocks 

is 23. BN = Batch Normalization, C = concatenate filter response, CNN = convolutional neural network, 

CONV = convolution, LV =left ventricle, RELU = rectified linear units, RV = right ventricle

Figure 3 Example screenshot for a patient undergoing an adenosine stress study, demonstrating the 

proposed inline analysis solution on a MR scanner. Stress maps show regional flow reduction in septal 

and inferior sectors. The determined right ventricular insertion was used to split myocardium to American 

Heart Association (AHA) sectors, with the contours overlaid to mark territories. The inline reporting 

further produced a 16-sector AHA bulls-eye plot with global and per-sector flow measures reported in a 

table.

Figure 4 Example adenosine stress perfusion images and myocardial blood flow (MBF) maps illustrating 

segmentation in the format of derived American Heart Association sector contours overlaid on flow maps. 

For each case, the first row are the images in gadolinium units and the second row are the MBF maps. 

Sector contours were overlaid to mark three territories for left anterior coronary artery (yellow), right 

coronary artery (green), and left circumflex (red). (a) Patient with single vessel obstructive coronary 

artery disease in right coronary artery territory. Papillary muscle was not included in segmentation, (b) 
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patient with hypertrophic cardiomyopathy illustrating that the convolutional neural network-based 

segmentation works with thick myocardium and small cavity. The epicardial fat was correctly excluded.

Figure 5 Bland-Altman plots for independent test dataset (a) global mean myocardial blood flow (MBF) 

and (b) per-sector measures. No significant differences were found between convolutional neural 

network derived results and manual measures. The dotted lines mark the 95% confidence range. CNN 

= convolutional neural network.
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Figure 1 Data preparation for performing convolutional neural network-based segmentation used in this 
study. Respiratory motion correction of perfusion images provides pixel-wise alignment of myocardial tissue. 

Image intensities are corrected for surface coil inhomogeneity and converted to gadolinium concentration 
units. Images are resampled to a fixed temporal and spatial resolution and cropped around the left 

ventricular cavity. The resulting 2D+T time series of images is input for convolutional neural network 
training, together with supplied manual labeling. 
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Figure 2 Schematic plot of the convolutional neural network trained in this study. This network consists of 
downsampling and upsampling layers. Each layer includes a number of ResNet blocks. More layers and 

blocks can be inserted into the convolutional neural network to increase its depth. In the example 
illustration, two layers are used with two blocks for each layer. The total number of convolution blocks is 23. 
BN = Batch Normalization, C = concatenate filter response, CNN = convolutional neural network, CONV = 

convolution, LV =left ventricle, RELU = rectified linear units, RV = right ventricle. 
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Figure 3 Example screenshot for a patient undergoing an adenosine stress study, demonstrating the 
proposed inline analysis solution on a MR scanner. Stress maps show regional flow reduction in septal and 
inferior sectors. The determined right ventricular insertion was used to split myocardium to American Heart 

Association (AHA) sectors, with the contours overlaid to mark territories. The inline reporting further 
produced a 16-sector AHA bulls-eye plot with global and per-sector flow measures reported in a table. 
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Figure 4 Example adenosine stress perfusion images and myocardial blood flow (MBF) maps illustrating 
segmentation in the format of derived American Heart Association sector contours overlaid on flow maps. 

For each case, the first row are the images in gadolinium units and the second row are the MBF maps. 
Sector contours were overlaid to mark three territories for left anterior coronary artery (yellow), right 

coronary artery (green), and left circumflex (red). (a) Patient with single vessel obstructive coronary artery 
disease in right coronary artery territory. Papillary muscle was not included in segmentation, (b) patient with 
hypertrophic cardiomyopathy illustrating that the convolutional neural network-based segmentation works 

with thick myocardium and small cavity. The epicardial fat was correctly excluded. 
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Figure 5 Bland-Altman plots for independent test dataset (a) global mean myocardial blood flow (MBF) and 
(b) per-sector measures. No significant differences were found between convolutional neural network 

derived results and manual measures. The dotted lines mark the 95% confidence range. CNN = 
convolutional neural network. 
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