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1 Highlights
® Coupled LCA and LCC showed that producing alumnoanfsecondary
aluminum dross had lower environmental impactsemmhomic costs than dross
process.
® Steam, sodium hydroxide and electricity contributemkt to impact values.
Suggestions for dross transportation and alumimduastry migration in China

were proposed.



2  Word Count: 6623

3 Abstract

Secondary aluminum dross is regarded as a hazasttidsvaste in many countries.
A coupled life cycle assessment and life cycleingsinethod was used to evaluate

the environmental impact and economic cost of twac@sses for producing alumina

4
5

6

7 from bauxite and secondary aluminum dross. Thelteeshowed that the total

8 normalized midpoint value of the dross processAsl@% lower than that of the

9 bauxite process. The cost of producing 1 t alunigadross process is 130.01 $,
0 accounting for only 49.54% of that of bauxite p&e Ammonium sulfate as a
11 by-product also brought in a profit of 22.18 $. $&dindings could be attributed to
12 the decrease in energy and raw material consumftemn steam, sodium hydroxide,
13 electricity) and the relatively low cost of secondaluminum dross. Adjusting raw
14  materials for steam production and optimizing eleity structure could reduce the
15  overall environmental impact of secondary alumindross recovery. Based on the
16  forecast of environmental impact and policy adjwestimn the future, inter-provincial

17  dross transportation and southwest aluminum ingusigration in China could be

18 feasible solutions.

® Climate change

Aluminum Al Dross e

= Fossil depletion

' Particulate matter formation
f

Marine eutrophication
= Human toxicity
» Others

Alumlna
Environmental Impact

Baumte
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1.Introduction

In recent years, China has become the world'ssaegeminum producer. During
the process of producing 1 t aluminum, more thankgOof aluminum dross is
generated (Meshram and Singh, 2018). In 2017, Qtvioduced 32.3 million tons of
primary aluminum, which means that the output afrahum dross exceeded 1.29
million tons (National Bureau of Statistics of China, 2018). Té@mponent of
aluminum dross is determined by its source, usuatigtaining aluminum metal,
aluminum oxide, iron oxide, silicon dioxide, alumm nitride, aluminum carbide and
other metal oxides, chlorides and fluorides (Mabasta and Allahverdi, 2018b).
According to the number of times of aluminum drossovery and the metal
aluminum content in dross, aluminum dross is ugudiNided into two categories:
primary aluminum dross and secondary aluminum dr®ssondary aluminum dross
has a low metal aluminum content of about 5-10 wi®gh oxide and salt content,
whereas primary aluminum dross contains a high Infretetion of about 30 wt% and
small amounts of oxide and salt compounds (Mahstaand Allahverdi, 2018).

Secondary aluminum dross is regarded as a hazavamste in many countries.
In humid environment, secondary aluminum drossleasacts with water, forming
flammable or toxic gases such as methane, hydrageh,ammonia. Direct landfill

may let heavy metals such as Cd, Cr and Pb in thesdpenetrate through soil and

water, causing harm to animals and plants (Mahsteo@nd Allahverdi, 2018b)

Besides, the aluminum metal and aluminum oxidenan gecondary aluminum dross
are both components with recovery valliee alumina resources contained in 1 t
secondary aluminum dross are generally equivalenthat from 1.8 t bauxite.
Therefore, the accumulation of aluminum dross noly ccauses environmental
pollution, but also causes loss of valuable mdteria

At present, primary aluminum dross recovery tecbgglis relatively mature in
various countries around the world. However, seaondluminum dross recovery
technologies are still in the stage of laboratorgleration. Hiraki et al. (2005) used
aluminum dross to produce hydrogen but ignoreddtsromic utilityMurayama et al.
used aluminum dross to make specific materials saghAIPQ-5 type zeolitic
materials (Murayama et al., 2006) and Zn-Al typgetad double hydroxides
(Murayama et al., 2012). Nevertheless, these metluashnot solve the practical

problem of massive dross accumulation. Mahinroadtaal. (2018a) successfully
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extracted alumina from secondary aluminum dross liow-energy and safe process.
However, the purity of alumina is hard to reach #tendard. In a nutshell, these
existing secondary aluminum dross recovery prosebsee shortcomings such as
high cost, small scale, and low valkartunately, our research group successfully
recovered alumina from secondary aluminum drossusing sodium hydroxide,
which not only had good yield but also ntle¢ national quality standafdi et al.,
2019; Jin et al., 2019; Song Ming, 2018).

In order to evaluate the environmental and econ@uperiority of our process,
life cycle assessment (LCA) coupled with life cyclasting (LCC) method is used,
which is an effective method to quantify the eneegyd materials invested in a
process and analyze the economic and environmbeuatdens caused by the process
(Hong et al., 2018). Unfortunately, there are eny LCA studies on aluminum dross.
Nakajima et al. (2007) conducted LCA of hydrogeodurction from aluminum dross.
However, the output only included waste and carntioide emissions. Hong et al.
(2010) compared the resource consumption and wigstharge of aluminum-silicon
alloys production and alumina production from aloom dross. Nevertheless, no
common LCA model was used to characterize the itovgnmaking their LCA results
lack systematicity and comparability. In conclusiocurrent LCA studies on
aluminum dross have serious limitations.

Since the process for recovering alumina from sgapn aluminum dross is
promising and its environmental impact remains wwkm this study aims to use the
LCA coupled with LCC method evaluating the envirantal impact and economic
cost of this innovative process. For comparisoa,dinrently widely used process for
extracting alumina from bauxite through Bayer mdthvaas chosen as a baseline
scenario. The results are expected to provide slgtport for the industrialization of
secondary aluminum dross recovery. Based on traigbien of industrial adjustment
for China's aluminum industry, suggestions for pssoptimization and site selection
of dross recovery industry in China were proposed.

2. Methodology
2.1 Goal and scope

This study chose Bayer process as a baseline smetarcompare the
environmental impact and economic cost of recoged@umina from secondary
aluminum dross. The production of 1 t alumina waleced as the functional unit,
which was the base for life cycle inventory comsgani. All materials, energy

4
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consumption, emissions, waste disposal and econawsts were based on this
functional unit (International Organization for Sterdization, 2006).

System boundaries were set by applying a cradigate-approach, which only
focused on industrial production in the entire ldgcle of alumina. Since the
composition of aluminum dross is close to bauxitanf the perspective of resource
attribute, dross and bauxite were set as the sfathe system boundary in two
scenarios. Figure 1 shows the system boundary i@ar processes. Since the
transportation of the two processes is similar asmdmpacts in alumina production
accounts for less than 1#ansportation was not included in this study.

For baseline scenario, bauxite is the raw matéoialproducing alumina with
Bayer method. Under high temperature and high presbauxite can be dissolved in
a solution of high concentration sodium hydroxidéer precipitation and filtration,
sodium aluminate solution and red mud are obtarasgectively. Due to the chemical
nature, sodium aluminate will gradually transformoi aluminum hydroxide crystals
through dilution and stirringThe remaining alkaline solution can be recycle@raft
evaporation and concentration. Aluminum hydroxid# ke converted into alumina
after calcination.

For dross scenario, secondary aluminum dross igathenaterial. The additional
process is ‘gas production’, in which metal alummmualuminum carbide and
aluminum nitride react with sodium hydroxide atQ0producing hydrogen, methane
and ammonia. Ammonia is absorbed by sulfuric agidkitain ammonium sulfate in
another unique ‘acid absorption’ unit. Hydrogen andthane are used as fuel for
‘calcination’ unit, achieving energy recovery. Qtlpgocesses in these two scenarios
were similar, in which dosage or condition may hghsly different. The alumina
from dross is dissolved by sodium hydroxide at 250After filtration and dilution,
clear sodium aluminate solution would be obtairidter being diluted 2.5 times and
stirred at room temperature for 72 hours, sodiunmaiate solution will precipitate
out aluminum hydroxide. The remaining alkaline $iolu can also be recycled after
evaporation and concentration. After calcinati@yuminum hydroxide will be
converted to alumina. Under the above conditiohs, recovery rate of alumina in
secondary aluminum dross can reach 88.20% (Li.e2@19). The entire process will
produce dust, wastewater, and filter residue.
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122 Fig. 1. System boundary of two processes: a) bauxite scetd dross scenario.

123 2.2 Lifecycleinventory

124 Life cycle inventory data for the bauxite processswirom the average data of
125 relative industries in China. Data for the secopdaluminum dross process was
126 mainly from the average data of our experimentallts (Li et al., 2019; Jin et al.,
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127  2019; Song Ming, 2018). Since some processes ost@narios were identical, some
128 data for energy consumption and emissions alsareefeo bauxite scenario. The
129  electricity type in this study was a hybrid eledtsi based on China's national
130  conditions (70.99% thermal power, 18.59% hydropowad 10.42% other forms of
131 power)(Yu Chongde, 2018). The steam used in this studyagal based. In addition,
132 the environmental impact data was from the latession 3.6 Ecoinvent database
133 integrated in GaBi 6.0 software. The cost of rawanals referred to market prices.
134 According to EN ISO 14040 standard, the life cyiolentory is an inventory of
135 the input/output data of the processes (Internati@rganization for Standardization,

136 2006). Table 1 displays the inventory of two scergar

137 Tablel
138  Life cycle inventory

Materials Ecaetilxailtr(ieo scDerngio Units

Bauxite 2.48x1H 0 kg

Secondary aluminum dross 0 1.42%10 kg

Lime 3.20x16 0 kg

Sodium hydroxide 6.15x10 5.70x10 kg

Rgf}gﬂ;)ces Steam 243x10  2.21x10 kg

Water 2.00x10 1.24x16 t

Electricity 1.69x16 2.14x16 kwh

Natural gas 7.25x10 2.34x10 m?3

Sulfuric acid 0 3.01x10 kg

Waste water 7.91x%0 3.13x16 kg

Filter residue 7.58x%0 2.89x10 kg

Dust 2.90x10 1.58x10° kg

Ammonia 1.25x18 8.93x1(° kg

Chromium 1.32x18 1.32x10° kg

Emissions Bromine 1.15x18 1.14x10° kg

(Output) Carbon monoxide 1.16x10  8.60x10" kg

Hydrogen fluoride 1.57x1d 1.47x10° kg

Hydrogen sulfide 6.44x1D 3.57x10° kg

Sulfur dioxide 3.41x1% 2.77x10 kg

Propane 2.52x1H 1.99x10° kg

Xylene 9.17x16 9.16x10° kg
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Particulate matters 10 1.61x10  3.74x10 kg

Particulate matters 2.5 1.03¥10  9.90x10" kg

Biochemical oxygen
demand

Chemical oxygen demand 2.60%10  2.60x10" kg
2.3 Impact assessment

9.52x10° 1.39x10° kg

On the one hand, since secondary aluminum drcas énerging issue in recent
years, there is no industrialized treatment procas®ntly. The process of recovering
alumina from secondary aluminum dross is promising,it is still in the early stage.
Therefore, the LCA of dross process in this stuslam ex-ante type. On the other
hand, the bauxite process is very mature and mosgs and materials of both
processes are the same, which helps to estimatéatheof dross process based on
industrial scale. Overall, in order to evaluateehergy consumption and emissions of
the two processes, the comparative LCA study otwiteprocesses is an attributional
type.

The LCA results were calculated at midpoint leveing the version 1.08 of
ReCiPe 2008 model, which is one of the most auihiore approaches in LCA
analysis,including eighteen representative environmental acbhpcategories. The
characterization factors were based Ecoinvent da&al3.6 integrated in GaBi 6.0
software. The reference values for normalizatiomevtbe global midpoint values for
ReCiPe 2008 model, in which the normalization fextewere updated in December
2014 (Goedkoop et al., 2014; Sleeswijk et al., 2008e costs of two processes were
assessed through LCC method. The LCC method idasind LCA, wherein the
evaluation considers the cost of energy and rawemadd listed in the inventory
instead of the environmental impac&nce the gap of costs of labor in the raw
material, energy production and manufacture sthgéseen two processes is small,
those costs were not included in this paper. Th€ k€sults were calculated based on
the price and amount of materials.

2.4 Interpretation

Main contributing processes and key substances wiemtified through life
cycle interpretation. In dross scenario, sincegheironmental impact and economic
cost caused by alumina productaecounted for more than 95% of the entire process,
the allocation of environmental and economic burdesm ammonium sulfate

production was not considered for the convenieridtis work. In section 4.3.1, the
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benefit of using natural gas based steam was disdusfTwo new scenarios were
assumed: (1) Using natural gas as raw materialddyze steam at 85% efficiency; (2)
Using natural gas as raw material to produce ste®5% efficiency. In section 4.3.2,
the adjustment of electricity structure was propossince Henan and Shandong, the
two largest alumina production provinces in China,rsgig depend on thermal power,
the power structure of Qinghai Province (24.8% rtharpower, 53.9% hydro power,
18.3% solar power, 2.9% of wind power) was takeramasxample to analyze the
reduction of environmental impacts. In section X.4inter-provincial dross
transportation was proposed and its benefits anmhats were discussed. In section
4.4.2, suggestion for the south and southwest tgraf the aluminum industry in
China was discussed.
3. Results
3.1 LCA midpoint results

Table 2 shows the midpoint results of life cyclepant assessment pointing out
the contribution of most significant processes. Ibaih scenarios, steam consumption
represented dominant contribution in most categofusually over 50%), indicating
that alumina production is an energy-intensive stdu Furthermore, the dross
scenario had less potential impact in all categodaed the improvements in most
categories was over 30%, which was mainly due fterént alumina content in
bauxites and dross. Concretely speaking, the alumim bauxite is relatively less
than secondary aluminum dross, resulting in highexterial input and energy
consumption during the extraction. In addition, ttiearacteristic value of metal
depletion category in secondary aluminum drossge®avas -0.257. That’'s because
the dross process uses industrial residual as anaerial, avoiding the consumption
of bauxite. Another interesting point was that gieity was not found to dominate
the environmental impact, for example, its contitou to climate change was only
17.52%. That was because the amount of electiisiég in both processes was much
lower than the amount of steam. Thus, steam regplagectricity as the main

contributor to the climate change category.
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Table 2 ReCiPe midpoint results for two processes

Bauxite scenario

_ _ Dross scenario Improve
Categories Units i _ _
Results Main contributing process Results Main icboating process ment %
Climate change kg C£2q 1.09x10 Steam (55.5%) + NaOH (23.1%) 7.36%10 Steam (68.1%) 32.48
Terrestrial acidification kg SLeq 2.16x10  Steam (47.8%) + NaOH (21.2%)  1.52%10 Steam (52.4%) + }3Ox(31.2%)  29.63
Freshwater eutrophication kg P eq 1.60%10 NaOH (88.1%) 2.86xI0  NaOH (46.9%) + K50, (29.7%)  82.13
Ozone depletion kg CFC-11 eq 3.13%10 NaOH (87.5%) 3.09x1Y  NaOH (39.6%) + K50, (37.9%) 1.28
Fossil depletion kg oil eq 4.26x40 Steam (55.0%) 3.21x10 Steam (52.5%) 24.65
Freshwater ecotoxicity kg 1,4-DB eq 1.55%10 NaOH (71.0%) 4.87x10  Steam (34.2%) + NaOH (24.4%) 68.58
Human toxicity kg 1,4-DB eq 7.86x10 Steam (48.1%) 6.29x10 Steam (77.8%) 19.97
lonizing radiation U235 eq 2.62x10 NaOH (92.0%) 1.92x10  H,SO, (47.9%) + NaOH (40.3%)  26.72
Marine ecotoxicity kg1,4-DBeq  6.74x10 Steam (34.6%) + NaOH (35.9%)  4.23%10 Steam (55.0%) 37.24
Marine eutrophication kg N eq 7.40%x10 Steam (50.3%) + NaOH (27.1%) 5.10%10 Steam (68.4%) 31.08
Metal depletion kg Fe eq 6.46x10 Bauxite (91.3%) -2.57x10 Dross (100.0%) 100.40
Particulate matter Steam (36.6%) + Bauxite
_ kg PMyo eq 1.53x10 T 5.90x10" Steam (61.9%) 61.44
formation (28.2%) + Electricity (22.8%)
Photochemical oxidant kg NMVOC 32.23
_ 2.11x16 Steam (52.2%) + NaOH (23.8%)  1.43%10 Steam (65.1%)
formation eq
Terrestrial ecotoxicity kg 1,4-DBeq  4.03%40 Steam (54.7%) 3.39x10 Steam (79.7%) 15.88
) NaOH (35.7%) + Electricity 14.24
Water depletion h 6.11x10 NaOH (78.6%) 5.24xf0

(36.5%)

10
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3.2 Normalized L CA midpoint results

In order to compare the differences between varategories, characteristic
values need to be normalized. As shown in FiguteuBan toxicity accounted for the
largest proportion in the normalized value of bpthcesses, which was caused by a
variety of reasons: (1) Both processes produceticpkate matters and harmful gases
such as hydrogen sulfide, sulfur dioxide, etc. Kgrmful components such as
chromium and xylene were present in the waste wgggiThe amount of solid waste
was considerable, especially the red mud from hayptocess. (4) Alumina extraction
required high consumption of electricity, steam,d amatural gas. During the
production of these energy, various toxic and hdmas substances were produced,
which was the hidden and main cause of high huragicity value. Compared with
the proportion of 47.6% in bauxite scenario, thenradized human toxicity value of
dross process accounted for 63.0% of the totalevaowever, the actual human
toxicity normalization value was lower than thatloé bauxite process, indicating that
the total values of all categories in dross scenaas significantly lower.

In addition, the normalized values of the two pssss in the fossil depletion
category were apparently different. Fossil depletias mainly caused by electricity
and steam consumption. Since the alumina that earedovered from per unit mass
of dross was higher than that from per unit madsaoixite, the energy requirement of
dross scenario was relatively low under the santpubuFurthermore, according to
the dross process proposed by our group, hydrogeh naethane generated by
aluminum and aluminum carbide was used as fuelhencalcination unit, which
made up part of the energy demand.

Overall, the total normalized values of bauxitegess and dross process were
1.99 and 1.35 respectively, indicating that prodgcalumina by dross process had

better environmental benefits.

11
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Fig. 2. Normalized midpoint results
3.3. Senditivity analysis

Figure 3 presented the sensitivity analysis resafitnain contributors (steam,
sodium hydroxide, and sulfuric acid) for both preses. The amounts of these main
contributors were reduced by 5%.

For bauxite scenario, despite the high sensitivafy sodium hydroxide in
freshwater eutrophication, ozone depletion, iomgziadiation, and water depletion,
steam showed the highest sensitivity in other categ. For dross scenario, due to the
reduced use of sodium hydroxide and the introdaabbsulfuric acid, the sensitivity
of sodium hydroxide to the above categories wasiaed absolutely by 1% to 3%,
partly replaced by sulfuric acid. Steam showedhilgbest sensitivity in 12 categories.
However, this highlight was not due to the amounsteam but the decrease in the
sensitivity of other materials. While the consuraptiof other resources reduced,
steam consumption still accounted for 90.9% ofdblesumption in bauxite process,
making its sensitivity more pronounced. As for @iedy and water, neither of the
two scenarios showed high sensitivity. Therefoeglucing steam demand or using
renewable energy is the key to reducing the ovenalironmental impact of dross
process.

12



243
244

245
246
247
248
249

250

251
252
253
254

® Steam @ Sodium hydroxide @ Sulphuric acid

(%))

a
_ 45 )
o
S
5 4
@ 3.5
2
= 3
Ro) o o )| o
€25 . o °
i
4 2
o e} s}
=
° 1.5
3!
2 1
L
M 0.5
0

»
®

_
=
X
<
2 3.5 ® °
= <
7] <
L 3
—
= @
g - .
© 2.5
j=¥ -
o=
& 2 @ e
3 - ¢
= 1.5
o
= ©
Q
= 1
o
&
0.5
0
s '\OQ '\0(\ \0(\ '\OQ -(}C\ &* ° -\Q\ '\OQ '\OQ \00 & \OQ
N X X X x> N N X g X X X & X
L@ P S RS R LS &
< & £ bQ’Q & & &8 S & \O\(\ & S ¥
G @ o NS G 2 o 2 <
IS I AR O g R PO
N 2 e 20 o x& D G & RS b’b O >
K70 « o > & & &N & N
) & Q& é\ & ) &
& B P & e A
& & ¥
& L& L
< & &
DL
N
o
N

Fig. 3. Sensitivity analysis: a) bauxite scenario, b) dresenario.
3.4 LCC results
The LCA results proved that the environmental intpzEcdross process is less
than that of bauxite process. In order to findwhether dross process is also superior
in economic term, the raw material cost and energst of two processes were

compared in Table 3. In the calculation, the exgearate of USD to RMB is set to 1
$ equal to 7.136¥ .

The total cost of producing 1 t alumina from baexitas 262.46 $, while the cost
of dross process was 130.01 $, accounting for d8l$% of the bauxite scenario.

This gap was mainly caused by the difference inmaaterial prices. Since secondary
aluminum dross was regarded as an industrial sediste and the dross used in the

13
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experiment was freely donated by the enterpriseptice of the secondary aluminum
dross was set as 0 $. In fact, due to the dangemayerties of secondary aluminum
dross, ordinary companies do not have the proagsgilifications (Meshram and
Singh, 2018), and even need to spend money to thgk qualified organizations to
properly handle the dross. In addition, when pratyd t alumina, dross process
obtained 406 kg ammonium sulfate as a by-produith & profit of 22.18 $, which
was higher than the cost of sulfuric acid, water] &lectricity. The absorption of
ammonia by sulfuric acid not only reduced its pdln to the atmosphere, but also
achieved economic benefits.

Table 3

LCC results of two processes

. . | Cost [3]
Materials Price Units : : :
Bauxite scenario Dross scenario
Bauxite 52.971 $/t 131.37 0
Secondary
) 0 $/it 0 0
aluminum dross
Lime 11.911 $/it 0.38 0
Sodium hydroxide  197.590 $it 12.15 11.26
Steam 28.728 $/t 69.81 63.49
Water 0.392 $/t 0.78 0.49
Electricity 0.149 $/kWh 25.10 31.79
Natural gas 0.315 $/m3 22.86 7.38
Sulfuric acid 51.850 $/t 131.37 15.61
Total 262.46 130.01

Figure 4 shows the environmental impact coupledh witonomic costs of the
key material used in dross process. The Y axis shibw economic cost of water,
sodium hydroxide, sulfuric acid, electricity, artéam. The X axis represents the sum
of normalized values of all environmental impadegaries for each material. As can
be seen, the polyline continues to extend to theeupight, meaning that for dross
scenario, the environmental loads of materials progortional with the economic
costs. The use of steam brought the largest emmeatal impact and consumed
highest economic cost&nvironmental pollution and economic costs causgd b

electricity cannot be ignored neithérherefore, reducing the use of steam and
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275 electricity or using clean energy could be the keyreducing the environmental

276  impacts as well as economic costs of secondaryialumprocess.
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277 Sum of normalized values

278  Fig. 4. Environmental impact coupled with economic cosiglysis for dross process
279  4.Discussion

280 4.1 Unit analysis

281 Due to the differences in the partial process af s@enarios, the gas production
282 unit and the gas absorption unit are unique inglecess. To further optimize the
283 environmental benefits of the dross process, itnecessary to identify the
284  environmental impact of these two units. Figure hbves the ratio of the LCA

285 midpoint values of these two units to the totalreal of the entire process.

——Gas production = ——Gas absorption

Climate change
" 100% . : o -
‘Water depletion Terrestrial acidification
80%
Freshwater

Terrestrial ecotoxicity 0% critroplication
o

Photochemical oxidant

formation Ozone depletion

Particulate matter

formation Fossil depletion

Marine eutrophication Freshwater ecotoxicity

Marine ecotoxicity Human toxicity

286 Ionizing radiation
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Fig. 5. Proportion of the characteristic values of twoqui units

In the gas absorption unit, the proportion wastretty small because of the low
material and energy input in this unit. Fossil @dph had the highest proportion of
16%. As the main input of this unit, sulfuric acided in the process was produced
from pyrites. During the production of pyrites, Ihigemperature processing and
catalytic heating reaction were required, leadimdigh energy consumption (Yuan
and Wang, 2012). Together with the input of eletyiand water, fossil depletion
accounted for the largest proportion.

In the gas production unit, freshwater eutrophagtifreshwater ecotoxicity,
ionizing radiation, water depletion and fossil dg@n accounted for a large
proportion of the total characteristic values. Tdtearacteristic value of ionizing
radiation in gas production unit accounted for 98.0f that value of the whole
process, which was mainly caused by the consummifosodium hydroxide for
dissolving secondary aluminum dross. In additiaalism hydroxide also exacerbated
freshwater eutrophication and ecotoxicity to someem. Furthermore, in order to
prepare the sodium hydroxide solution and reachre¢laetion temperature, this unit
also consumed a large amount of water as well estrigity, resulting in large
proportion of water and fossil depletion. Howevdespite of the environmental
hazards caused by sodium hydroxide in dross prpdhssbauxite process also
required large amounts of sodium hydroxide, whiaswven 8% higher (Zhang et al.,
2016).

4.2 Key substancesidentification

Identifying key substances emitted by the two psses is beneficial to better
analysis of their environmental impaEigure 6 shows the key substances produced
by two processes that mostly affecting the clinetange and fossil depletion. Since
carbon dioxide is the main cause of global warmihg, key substances of climate
change for both processes were identified as cadomade, with a proportion over
92%. Methane and Nitrous oxide accounted for about 2%thef contribution.
Although the distributions of key substances in ta@enarios were similar, the
characteristic value of dross process was lowereftbre resulting less greenhouse
gas emissions. Additionally. the key substancefosdil depletion in two scenarios
were quite differentOn the one hand, high energy consumption of bayxadeess led
to the high proportion of natural gas. On the otm&nd, secondary aluminum dross

process consumed 44.86 kWh more electricity tham bauxite process when
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338

producing 1 t alumina, leading to higher contribatbf coal based on China's current
power generation modAs the backward small power plants gradually shgttdown,
the energy source of electricity will be much cleafCui et al., 2012; Wang et al.,
2019). Furthermore, it can be reasonably inferreat if dross process can be
industrialized after years, electricity consumpteond overall energy demand will be
significantly reduced (Zhang et al., 2015). Teclggl development will bring 50%
reduction in greenhouse gas emission factors hftgrears (Liu et al., 2016).

b)\\

® Carbon Dioxide ® Methane = Carbon Dioxide = Methane

= Nitrous oxide Others = Nitrous oxide Others

= Coal = Natural gas u Coal = Natural gas
Qil Others Oil Others

Fig. 6. Contribution of significant substances to the midpscore: a) Climate change
from dross scenario, b) Climate change from bawsdenario, c) Fossil depletion
from dross scenario, d) Fossil depletion from beugcenario.

4.3 Scenario analysis

Compared with the bauxite scenario, dross scemapesents lower economic
costs and higher environmental benefit in all categ. According to the coupled
LCC and LCA in Figure 4, the environmental and exoit burden of dross scenario
was mainly due to the strong dependence on stednelantricity. In order to further
reduce the environmental impact caused by drossepsp adjusting its energy
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structure was proposed.
4.3.1 Steam material replacement

Table 2 identified the key processes in most caiegoas steam, which was
produced from coal at 95% efficiency in the oridisalculation. As mentioned in
section 2.4, two new scenarios using natural gasateam were proposed. Table 4
shows the changes of characteristic values of i€jodes that are most affected by
steam.

When using natural gas as raw material to prodteans at 85% efficiency, the
characteristic values of all environmental categpriexcept fossil depletion
significantly decreased. When utilization rate eased from 85% to 95%, the
characteristic values were further decreased. Humoautity, particulate matter
formation and terrestrial ecotoxicity showed thegédst decline, all of which exceeded
50%.Since the characterization factor of natural gahénfossil depletion category is
slightly higher than that of coal (Steubing et &016), fossil depletion showed a
small increase of 9.91%. However, denying the dseatural gas based on only one
indicator is unreasonabl&rom other evaluation indicators of the ReCiPe rhode
(Goedkoop et al., 2014; Sleeswijk et al., 2008, $mall increase in fossil depletion
was followed by a tremendous improvement in theirenment and human health.
Obviously, the advantages of using natural gah@steam material outweighed the
disadvantages. Besides, if the utilization efficienof steam is improved, the
characteristic value of fossil depletion may alswrédase. Furthermore, changes in
steam production materials will also lead to changezconomic costs. Producing 1 t
steam at 95% efficiency consumes about 75.8natural gas, 21.62 kWh electricity,
and 0.17t water (Althaus et al., 2007). Based an glhoduction of 1 t alumina,
compared with the original steam cost of 63.49h$, ¢ost of producing steam with
natural gas would be 60.05 $. Therefore, whilegh@ronmental impact was greatly
reduced, the economic cost also reduced by 2.65%.

Table4

Changes of characteristic values in new scenarios

Changes of Characteristic Vall#s

Categories
85% Natural Gas 95% Natural Gas
Climate change -14.65 -20.20
Terrestrial acidification -42.00 -43.00

18



Fossil depletion 19.44 9.91

Freshwater ecotoxicity -27.20 -27.92
Human toxicity -76.70 -76.80
Marine ecotoxicity -49.08 -49.69
Marine eutrophication -31.34 -35.20
Particulate matter formation -53.85 -54.95
Photochemical oxidant formation -30.98 -34.51
Terrestrial ecotoxicity -76.85 -76.95

368 4.3.2 Electricity structure adjustment

369 In dross scenario, the environmental impact oftetgty ranked second only to
370 steam. Henan, Shandong and Qinghai are the thosepes with the highest primary
371 aluminum production in China (Hao et al., 2016). #&ntioned in section 2.4,
372 assuming the electricity composition of dross recgvfollows the example of

373  Qinghai, the reduction in environmental impactshewn in Table 5.

374 Table5
375 Improvement of characteristic values under eleityrgtructure adjustment
Categories Reduction /%
Climate change 12.58%
Terrestrial acidification 9.94%
Freshwater eutrophication 4.34%
Ozone depletion 14.34%
Fossil depletion 10.07%
Freshwater ecotoxicity 7.70%
Human toxicity 14.30%
lonizing radiation 5.75%
Marine ecotoxicity 10.76%
Marine eutrophication 13.60%
Metal depletion 0.19%
Particulate matter formation 11.42%
Photochemical oxidant formation 12.83%
Terrestrial ecotoxicity 14.36%
Water depletion 10.60%
376 After adjusting the electricity structure, all eronmental categories showed a
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certain degree of improvement, mostly over 10%. fidason why the improvement
of metal depletion is extremely slight was becatgemain process in this category is
aluminum dross. Since the recovery of second alumidross has already achieved
environmental benefits in metal depletion, the entrresult is acceptable. Therefore,
if these high aluminum production provinces wantecover alumina from secondary
aluminum dross, increasing the proportion of hyploaver could be an effective way
to solve environmental problems. However, sinceahgninum industry is already
mature, it is not easy to change the local elattristructure. In this case, dross
transportation could be a feasible solution.
4.4 Industrial recommendations
4.4.1 Drosstransportation

Transporting secondary aluminum dross from nearbyipces that heavily rely
on thermal power to hydropower-type provinces fotHer recovery could also be a
beneficial suggestion. Figure 7 shows the powerctire of each province in China.
As can be seen, Qinghai could be trensport destination for aluminum dross in
Xinjiang and Ningxia, which are also two provinaegh high aluminum production.
Hubei could be the transport destination for alummdross in Henan and Shandong.

Jﬁﬂﬁﬂﬁﬁﬁﬂ““

S\\%“ao“%

- Y =9
®/¢Z%“% .
Q009900069

Fig. 7. The power structure of each province in China

=

%

Long-distance transportation may cause additiomalirenmental problems,

especially climate change and particulate mattemébion (Zhang et al., 2016).
Transportation distance is the most important fa(ffan et al., 2018Jor the case of
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dross transportation, as the distance increasesgrbenhouse gas emissions will
gradually increase, eventually exceeding the enwental benefits brought by
hydropower. According to the power structure of ghiai and NingxigYu Chongde,
2018), hydropower replacement can reduce the cleaistec value of climate change
by 107.7 kg C@eq when producing 1 t alumina. As shown in Figdirevhen dross is
transported over 664 kilometers, electricity stowetadjustment will no longer be a
wise choice. Similarly, when the distance exceedS Rilometers, the particulate
matter discharged from transportation exceeds thpravement from electricity
structure adjustment (0.2646 kg PM10 eq).

FurthermoreQinghai Province has the lowest industrial eletttriprice in China
at 0.053 $/kWh. The industrial electricity priceHmbei is similar to that in Shandong
and HenarfYu Chongde, 2018). If using the average hydropopvere in Hubei and
Qinghai as the standard, the electricity cost aanelduced by 5.64 $ when producing
1 t alumina. According to trucks’ general energynsaamption and diesel prices in
China(Ministry of Transport of the People’s Republic difi@a, 2018), the cost of 100
km transportation is about 0.717 $/t. When thedpantation distance exceeds 554
kilometers, the economic cost of dross transpamatvill exceed the original plan.
Therefore, from the perspective of economic caafgporting the dross to Qinghai

and Hubei has limited benefits but acceptable.
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Fig. 8. Relationship between environmental impact andsprartation distance
4.4.2 Industry migration

According to bauxite and alumina statistics infotima from United States
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Geological Survey (United States Geological Sun&§19), compared with other
countries, China is facing a dilemma of low ressraed high demand for bauxite.
Such situation requires China to increase thezatitbn of bauxite, which means that
the aluminum industry must pay attention to theovecy of million tons of tailings
such as secondary aluminum dross. Since dross egcas the end industry of
aluminum production and it has not been indushalj the site selection should
particularly focus on the future trends of aluminunaustry.

Previous analysis showed that hydropower couldgbsignificant environmental
benefits for dross recovery. Therefore, hydropoype provinces will be suitable
construction sites. Similar perspectives were olethi according to the LCA of
China’s aluminum industry (Guo et al., 2019; Haalet2016). At the provincial level,
industry migration to south and southwest areaslrfpower-type provinces) was
reasonable from the perspective of environmentiifpan.

According to thamineral resources report from Ministry of Naturadeurces of
China (Ministry of Natural Resources of the PeapRépublic of China, 2019), as the
demand for bauxite increases year by year, HenarShanxi, which provides bauxite
for Shandong, is facing shortage of resources auding in the bauxite quality.
Evaluation of China's bauxite potential indicatldttmore than 100 million tons high
qguality laterite type bauxite was discovered in @pa Province in recent years.
Other southern provinces such as Yunnan, GuizhoauGuangdong were believed
having huge exploration potentidlhe distribution of bauxite shows that aluminum
industry will likely migrate from traditional indtisal provinces such as Henan and
Shandong to southern provinces in the future.

Both policy and environmental factors suggest thelsand southwest migration
of the aluminum industry. Based on a comprehen$ivecast of environmental
impact and policy adjustment, Yunnan and Guangxitiae most suitable destinations
for the aluminum industry migration and secondduyrenum dross recovery.
5.Conclusion

In this paper, LCA method is used to compare théremmental impacts and
economic costs of two processes for producing alanfiiom secondary aluminum
dross as well as bauxite. Both characteristic walaed normalized values of all
environmental impact categories of the secondamnaum dross process are lower
than the bauxite process. LCC results showed ttustisgorocess could reduce the cost

of 132.45 $ by producing 1 t alumina compared taxiia process. The characteristic
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value caused by sodium hydroxide accounts for dngekt proportion of the unique
gas production unit in dross scenario, while itth 8% lower than bauxite scenario.

The LCA coupled with LCC results showed that the assteam and electricity
were the keys to reducing the environmental impastsvell as economic costs of
dross process. Using natural gas as raw mater@otuce steam instead of coal can
significantly reduce the environmental impact of thhole dross process. Increasing
the use of hydropower in China’s high aluminum picitcbn provinces can generally
bring 10% environmental benefits for dross proc&ssss transportation within 591
km or south and southwest migration of aluminumustdy could be feasible
solutions in China.

This study provides data support for the indusiaaion of secondary aluminum
dross recovery. However, the current study hasraklimitations. Some data of the
dross process were based on experiments, whicht hegtsmall changes in actual
industrial production. Some background data werecssd from the European
database, which may have slight difference fromatteial situation in China. Thus,

further research on secondary aluminum dross regas@ecessary.
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