
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Parallel Modular Scheduler Design for
Clos Switches in Optical Data Centre Networks

Paris Andreades, Student Member, IEEE, and Georgios Zervas, Member, IEEE

Abstract—As data centers enter the exascale computing era
their internal traffic, exchanged between network nodes, in-
creases exponentially. Optical networking is an attractive solution
to deliver the high capacity, low latency and scalable interconnec-
tion needed. Amongst other switching methods, packet switching
is particularly interesting as it can be widely deployed in the
network to handle rapidly-changing traffic of arbitrary size.
Nanosecond-reconfigurable photonic integrated switch fabrics,
built as multi-stage architectures such as the Clos network,
are key enablers to scalable packet switching. However, the
accompanying control plane needs to also operate on packet
timescales. Designing a central scheduler, to control an optical
packet switch in nanoseconds, presents a challenge especially as
the switch size increases. To this end, we present a highly-parallel,
modular scheduler design for Clos switches along with a proposed
routing scheme to enable nanosecond scalable scheduling. We
implement our scheduler as an application-specific integrated
circuit (ASIC) and demonstrate scaling to a 256 x 256 size with
an ultra-low scheduling delay of only 6.0 ns. In a cycle-accurate
rack-scale network emulation, for this switch size, we show a
minimum end-to-end latency of 32.0 ns and maintain nanosecond
average latency up to 80% of input traffic load. We achieve zero
packet loss and short-tailed packet latency distributions for all
traffic loads and switch sizes.

Index Terms—IEEE, IEEEtran, journal, LATEX, paper, tem-
plate.

I. INTRODUCTION

THE global traffic within data centres is estimated to
reach 14.7 zettabytes per year by 2021, driven by

technology trends such as cloud computing and data centre
virtualization [1]. Big data processing, workload migration,
storage replication and retrieving data residing on multiple
hosts are all examples of tasks that require data exchange
between data centre machines [1]–[3]. The growth of this
so called East-West traffic places stringent requirements on
the network latency and bandwidth, causing a shift from the
traditional hierarchical tree to the flatter leaf-spine network
topology [4], [5], shown in Fig. 1. Optical fibre is typically
installed between the leaf and spine layers to establish low loss
and high bandwidth point-to-point connections. Nonetheless,
the switches themselves are still electronic, limiting further
performance scaling. Commercial electronic switches have a
delay on the order of 200 ns [6] and limited capacity due to

This work was supported by the UK Engineering and Physical Sciences
Research Council (EPSRC) under Grant EP/R035342/1 and in part by the
EU Horizon 2020 programme (Industrial Leadership section) under Grant
687632.

Paris Andreades and Georgios Zervas are with the Electronic and Electrical
Engineering Department, University College London (UCL), London, WC1E
7JE, UK (e-mail: paris.andreades.09@ucl.ac.uk, g.zervas@ucl.ac.uk).

Manuscript received Month dd, yyyy; revised Month dd, yyyy.

the number of high-speed pins available on the switch chip
or the number of connectors fitting on a rack unit front panel
[7]. These limitations can be addressed by optical switching
reconfigurable in nanoseconds with orders of magnitude higher
capacity, using wavelength-division multiplexing (WDM).

Optical switches built as micro-electro-mechanical systems
(MEMS) have been widely proposed for data centre networks.
Notable examples include the RotorNet [8], c-Through [9],
Helios [10], Proteus [11] and Mordia [12] prototypes. How-
ever, because they are reconfigurable in milliseconds, they
are used for circuit switching at the higher network layers
where there is a larger traffic volume or in networks with
slowly changing traffic. Hence, they are intended to be used
alongside an electronic packet-switched network which would
handle any bursty and rapidly-changing traffic. Moreover, their
control plane needs to perform traffic demand estimation prior
to circuit allocation to increase utilization [12], which could
incur hundreds of milliseconds additional delay.

Optical packet switching has also been proposed based on
nanosecond-reconfigurable photonic integrated architectures
built using micro-ring resonators [13], [14], semiconductor
optical amplifiers (SOAs) [15], [16], Mach-Zehnder interfer-
ometers (MZIs) [17] or a combination of these technologies
[18]–[20]. Such switches could be deployed at any network
layer without any limitation on the traffic size and stability.
However, designing a switch control plane that operates on
packet timescales, as the switch size scales, still remains a
challenge in optical packet switch design. The Data Vortex
[21], SPINet [22], OSMOSIS [23], the OPSquare switch as
well as the work in [24], [25], all target scalable nanosecond
switch control. In all cases, fast output-port arbitration for
switch scheduling is key in implementing low-latency control.

In previous work [26], we experimentally demonstrated a
nanosecond control plane on field-programmable gate array
(FPGA) boards. It enabled optical packet switching with a
minimum 75 ns end-to-end latency in a 32-port SOA-crossbar
system, for top-of-rack (ToR) application. In [27] a new
output-port arbitration circuit for the switch scheduler was
presented, doubling the switch size for the same scheduling
delay. In [28], [29] we designed schedulers for optical switches
built in a Clos network topology [30], as shown in Fig. 1,
which is practical for photonic integration [31]. Also, this
modular switch architecture enables scaling to large sizes
while maintaining a low scheduling delay.

This work expands on [29] by implementing the central Clos
switch scheduler on hardware. Moreover, the scheduler was re-
designed as a parallel and modular hardware structure to allow
for clock speed optimization. The scheduler module designs



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

SPINE

LEAF

SOA

O/E E/O
n x m

NODES

SOA

O/E E/O 0

SOA

O/E E/O

SOA

O/E E/O 1

SOA

O/E E/O

SOA

O/E E/O r-1

0

r x r
NODES

0

m x n
NODES

1 1

r-1m-1

ToR

SERVERS

BUFFER

SCHEDULER

Fig. 1. A leaf-spine data centre with the proposed optical top-of-rack (ToR) Clos switch. Conversion from optical-to-electrical (O/E) and electrical-to-optical
(E/O) enables electronic buffering at the switch inputs, when switch path contention occurs. The electronic scheduler processes switch path requests from the
network interfaces at the servers and at the switch buffers to reconfigure the optical switch in nanoseconds.

are presented and discussed in detail and are individually
synthesized as application-specific integrated circuits (ASICs)
in a 45 nm CMOS process. The results verify scheduling
a 256 � 256 switch in 6.0 ns and identify the critical path
module, which determines the scheduler minimum clock pe-
riod. That module is then implemented on a Xilinx Virtex-7
XC7V690T FPGA board to compare our work with some of
the fastest switch designs in the literature. The switch latency
and throughput performance are evaluated in a cycle-accurate
emulation of our proposed system concept.

II. RELATED WORK

In this section we look at different notable scheduling
approaches to optical packet switch control from various
research labs in the field. The switch architecture is important
as it could simplify scheduling and reduce its impact on control
delay but at the same time it should not increase the data
plane complexity, hindering switch implementation. In gen-
eral, scheduling can be executed centrally or in a distributed
fashion, with the former usually considered to be of high
complexity and incurring a considerable control plane delay.
In this work, we aim to show otherwise. Table I compares the
scheduling delay in different optical packet switches reported
in the literature.

The Data Vortex [21], [32] and SPINet [22], [33] designs
distribute scheduling to the 2�2 modules of an N�N banyan
network, which scales by cascading log2N stages. Scheduling
per module is executed in 10.0 ns but cascading them in
many stages increases total control delay and limits the switch
throughput at large sizes.

The OPSquare wavelength-routed switch [34]–[36] is also
modular and scales by stacking modules in a 2-stage Spanke
architecture and by increasing the wavelength channels. It
avoids arbitration for the output modules by using wavelength
conversion. The arbitration time for the input modules depends
on the number of wavelengths routed, bringing the total

scheduling delay to 25 ns, independent of switch size. How-
ever, wavelength conversion and the high optical components
count increase the implementation complexity and cost.

All aforementioned designs use in-band request schemes
which have scheduling overheads for optical filtering, O/E
conversion and request detection, in addition to arbitration.
The design by Proietti et al. [24] avoids this by using optical
instead of electronic scheduling. The switch is based on
an N � N input-buffered arrayed waveguide grating router
(AWGR) and scaling is determined by the highest port-count
supported by the AWGR technology. Scheduling is optical and
distributed to the output ports, where reflective semiconductor
optical amplification (RSOA) is used for nanosecond arbitra-
tion, independent of N . However, scheduling is dominated by
laser tuning time (8 ns), switch round-trip time (5 ns) and grant
detection time (4 ns) at the input port. Also, arbitration fairness
is degraded, especially as N grows, compared to electronic
round-robin schemes.

The central schedulers in the OSMOSIS prototype [23]
and in the work by Cerutti et al. [25] use parallel iterative
algorithms to improve throughput in an N � N crossbar
switch at the cost of high scheduler complexity and long
delays. The scheduler design in our previous work [27], for
crossbar switches, trades off throughput for ultra-low delay;
reconfiguring a 64� 64 crossbar in 18.8 ns. Nevertheless, an
N � N crossbar is not practical for implementation at large
sizes, due to the N2 switch elements required to built it.

All designs that issue an acknowledgement (ACK) from the
switch back to the packet source, whether in an optical or
electrical form, incur control overheads for ACK transport,
detection and processing at the source, in addition to schedul-
ing.

This work aims at a nanosecond-reconfigurable switch de-
sign that scales both in the data plane and control plane. It
is based on a 3-stage Clos architecture and a novel routing
scheme for simplified nanosecond scheduling and practical



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE I
WORK COMPARISON - SCHEDULING DELAY

Switch Size
Switch Design 16x16 64x64 256x256 Architecture Method Request ACK

This Work (ASIC) 3.3 ns 4.2 ns 6.0 ns Clos Central Out-of-band No

Data Vortex/SPINet [32], [33] � 10.0 ns Banyan Distributed In-band Yes

Proietti et al. [24] 17.0 ns AWGR Distributed In-band Yes

This Work (FPGA) 8.7 ns 13.5 ns 21.0 ns Clos Central Out-of-band No

Andreades et al. [27] 7.0 ns 18.8 ns - Crossbar Central Out-of-band No

OPSquare Switch [34] 25.0 ns Spanke Distributed In-band Yes

OSMOSIS [23] - 51.2 ns - Crossbar Central Out-of-band Yes

Cerutti et al. [25] 1 � s - - Crossbar Central Out-of-band No

PACKET
CONTROL

REQUEST
CONTROL

λ1

λ2

λk

PACKET

t

REQUEST/
FIFO FULL

RX

x N

SCHEDULER TO
/F

R
O

M
 S

P
IN

E 
SW

IT
CH

FR
O

M
 S

ER
V

ER
TO

 S
ER

V
ER

TX

N x N
SWITCH

FIFO BUFFER

OPTICAL GATE ELECTRICAL DATA

CONTROLOPTICAL DATA

VOQs

Fig. 2. System concept. Server-side “send and forget” network interfaces and
optical top-of-rack (ToR) switch with input electronic buffers to avoid packet
loss. Every transmitted packet is divided into k wavelengths to further reduce
latency. The ToR scheduler reconfigures the switch in nanoseconds.

switch implementation. We can schedule a 256 � 256 Clos
switch in just 6.0 ns in an ASIC implementation or in 21.0 ns
in an FPGA implementation. The implementation results
are presented in section V. Out-of-band electrical requests,
processed by a central electronic scheduler, and speculative
packet transmission eliminate other control overheads besides
scheduling, as discussed in the next section.

III. SYSTEM CONCEPT

The proposed system concept is shown in Fig. 2. The
N � N optical top-of-rack (ToR) switch interconnects N
servers between themselves and to the spine switch. Internally,
it is implemented as as Clos network. The server-side network
interfaces implement a “send and forget” scheme whereby
packets are transmitted speculatively without a guaranteed path
through the switch, reducing in this way the control latency.
Hence, the optical Clos switch implements electronic buffering
at each input port to avoid packet loss for any failed path
speculations, when at least two network interfaces contend for
a switch path. The electronic scheduler processes path requests
to allocate switch paths, resolves contention where necessary
and reconfigures the optical switch to schedule traffic across it.
In the next paragraphs the flow control is described in detail.

At every server network interface, the packets are initially
buffered in a first-in, first-out (FIFO) policy. The request

control reads the destination of the head-of-line (HOL) packet
and issues a switch path request to the scheduler.

Once the request is sent, the packet control holds onto the
HOL packet for a configurable number of hardware clock
cycles before forwarding it to the transceiver for transmis-
sion. This allows for the scheduler to processes the request
and reconfigure the switch, before the packet arrives there.
Nanosecond scheduler delay, tscheduler , is crucial for packet
switching. This delay is fixed, dependent on the scheduler
design, and the main focus of this work is to optimize the
design for ultra-low delay (< 10 ns), as the switch size scales.

Unlike circuit-switched systems, where a packet is buffered
at the source for possible retransmission until a path ACK
(grant) is received, here every packet is forwarded to the
transceiver speculatively, without a scheduler grant. Compared
to the related work, this reduces the control delay by eliminat-
ing the overheads for grant transport from the switch back to
the server network interface and then for synchronizing and
processing it there. To avoid packet drop, in case of failed
speculation, buffering is used at each switch input port.

At the transceiver, every packet is divided into k seg-
ments, each serialized at a fixed data rate onto a specific
wavelength using, for example, a dedicated silicon photonic
transceiver [37] integrated onto the network interface chip.
Using wavelength-division multiplexing, the segments are
transmitted as one unit in a wavelength-parallel packet struc-
ture to the switch input port, as shown in Fig. 2. This method,
known as wavelength striping, increases the input port capacity
(no. of wavelengths � data rate) and consequently reduces
the packet (de)serialization delay (packet size � input port
capacity). More importantly, by dynamically reconfiguring the
number of wavelength channels bonded, based on the packet
size, the system can support a low (de)serialization delay for
variable-size packets.

The resulting wavelength-striped packet is transmitted on
the WDM link to the switch input port, as shown in Fig. 2.
In case of no switch path contention, hence no failed specu-
lation, the wavelength-striped packet cuts through the already
reconfigured switch and is received at the destination with the
minimum end-to-end latency. Otherwise, the packet is stored
at the switch input port.

At every switch input port, buffering is implemented as N
parallel FIFO queues, one for each output port, also known



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

as virtual output queues (VOQs). Compared to using a single
queue, the VOQ arrangement avoids the case where the HOL
packet, while waiting to be switched to its destination, blocks
the preceding packets in the queue even though they may
be destined elsewhere. Thereby, throughput is improved and
buffering delay is reduced, at the cost of increased scheduling
algorithm complexity. Optical to electrical (O/E) and electrical
to optical (E/O) conversions are required when a packet is
stored or released from a VOQ.

The central scheduler therefore receives two sets of path
requests; one from the network interfaces at the servers, in
response to new packets, and one from the network interfaces
at the switch input ports (not shown in the diagram), in
response to switch VOQ packets. Then, it arbitrates access
to switch paths, on round-robin basis, in parallel for the two
sets and reconfigures the switch accordingly, including the
VOQ control signals for storing and releasing packets. Priority
is always given to VOQ requests for strict in-order packet
delivery and low average latency.

As shown in Fig. 2, a “FIFO full” signal is asserted when a
switch VOQ is occupied beyond a threshold value, to notify the
corresponding server network interface to pause transmission
(packets and requests). This provides control backpressure and
enables managing a small VOQ size at the switch. For every
switch input port there is an N -bit wide “FIFO full” bus,
one bit for every VOQ, transmitted back to the server and
overall this is the only control signaling from the switch to the
servers. The VOQ threshold value depends on the propagation
delay (tpropagation ) between the switch and servers (round-
trip) and also the scheduler delay (tscheduler ) during which
the server packets are buffered. The threshold value is given
by the following equation and determines the minimum VOQ
size required to avoid packet loss up to 100% of traffic load:

Threshold = tscheduler + 2tpropagation (1)

In summary, the control plane latency is reduced by: (a) sched-
uler design, (b) speculative transmission, (c) switch topology
and (d) switch routing. The average end-to-end latency is
further reduced by having: (a) wavelength-striped packets and
(b) virtual output queuing (VOQ) at the switch inputs. The
focus of this work is the scheduler design, optimized for clock
speed and scalability.

IV. SCHEDULER DESIGN

The switch architecture or topology as well as the routing
scheme directly affect the scheduler design and therefore the
scheduling delay, tscheduler . In this work we design the sched-
uler for a Clos network [30] used as the switch architecture
and apply a fixed-path routing scheme, to reduce the scheduler
delay and also simplify its design.

A Clos network is built using strictly non-blocking switch-
ing modules arranged in a multi-stage topology. A 3-stage
Clos network is characterized by the triple (m; n; r), where m
is the number of central modules (CMs), n is the number of
input (output) ports on each input (output) module and r is the
number of input modules (IMs) and output modules (OMs),
as shown in Fig. 3. In an N�N Clos switch, N = n�r. The

n x m

Input Modules

r x r

Central Modules

m x n

Output Modules

n

n

0

1

r-1

0

1

m-1

0

1

r-1

Fig. 3. An (m,n,r) Clos network built with strictly non-blocking modules.
The proposed routing scheme, for m = n = r Clos networks, assigns fixed
paths to avoid contention at the central modules, simplifying the scheduler
design and reducing its delay.

case where m = n = r =
p

N , is attractive for photonic
integration [31] and it gives a re-arrangeably non-blocking
network, given an appropriate routing algorithm is used. More
importantly, the modular structure of Clos networks enables
reducing the scheduler delay because only

p
N -bit arbitration

circuitry would be needed per module, for distributed path
allocation.

Any multi-stage architecture, such as the Clos network,
requires a routing algorithm. In the Clos network there are m
paths from any input port, i, to any output port, j. The looping
algorithm [38] can be used for Clos networks with m = n; it
iterates the routing matrix, re-arranging current entries to add
new routes, without blocking others. Iterating would cause a
long scheduling delay, limiting scalability.

In this design, the routing algorithm assigns fixed paths to
minimize the routing overhead. Furthermore, it completely
eliminates contention at the central modules, as shown in
Fig. 3. Since there is no need to arbitrate for any of the central
modules, the scheduler design is simplified, less hardware
resources are required and delay is further reduced. The trade
off is that the architecture becomes blocking; at every IM at
most one input port can be allocated the route to an OM, even
if different output ports on that OM are requested. Hence, the
switch throughput will saturate at a lower input traffic load
compared to using the looping algorithm, for a given switch
size. Switch average throughput measurements are presented
in section VI.

The fixed path assignment could also be used to simplify the
switch design. Since there is no switching activity at the central
modules, these can be removed resulting in a 33% reduction
in cross-points and 50% reduction in waveguides, improving
signal integrity and reducing the power requirement. This
makes the switch more practical to implement as a photonic-
integrated circuit.

Figure 3 shows how the routing algorithm assigns the first
path (CM 0), at every IM. More specifically, at every IM,
the first path/output port leads to a different OM to avoid



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

OM

Allocator

(1)

OM

Allocator

(r-1)

OP

Allocator

(0)

OP

Allocator

(1)

OP

Allocator

(r-1)

OM

Allocator

(0)

S
W

IT
C

H
 C

O
N

F
IG

U
R

A
T

IO
N

Input

Modules

Output

Modules

Fig. 4. Central Clos switch scheduler implemented in a planar and modular
fashion. Planes operate independently and in parallel to allocate paths based
on output module (OM) and output port (OP) arbitration for the Clos input
and output modules. The switch configuration module reconfigures the switch
based on the path allocation results from both planes.

contention at CM 0. This is the case for the remaining paths
assigned. At any given IM, the path assignment to the OMs
is a circular shift by one position to the left, with respect to
the previous IM. It is calculated based on the input port (i)
and destination output port (j) associated with every packet,
according to the following equation:

p(i; j) = (bi=nc+ bj=rc) mod m (2)

where 0 � i; j � N � 1.
Since there can be no contention at the central modules,

path allocation is implemented as output port arbitration for
every input and output module. This translates to allocating
OMs to the IM input ports and then allocating OM output
ports to the IMs.

The central scheduler is implemented in a modular planar
approach as illustrated in Fig. 4. This allowed optimisation for
clock speed. There are two parallel path-allocation planes, one
responsible for processing new packet (server) requests and
one for processing VOQ packet (switch) requests. On each
plane, there are r allocation modules for the Clos IMs and
another r allocation modules for the Clos OMs, arranged in
two ranks and interconnected in a full mesh topology. The
switch configuration module processes the allocation results
from both planes to produce the configuration control signals
for the Clos input and output modules. Every allocation
module or allocator, irrespective of rank and plane, makes
decisions based on a group of round-robin arbiters, where
every arbiter is designed as outlined in [39]. In the next
sections, we present the output module (OM) allocator design
for each plane, the output port (OP) allocator design common
to both planes and the switch (re)configuration design.

A. Output Module Allocation for New Packets

The allocator design for an n � r IM, for new packet
requests, is shown in Fig. 5. For every new packet arriving
at an input port, there is a switch output port request based
on the packet’s destination. The circuit processes every request

/
Arbiter

0

Arbiter

1

Arbiter

r-1

/
n

Input Port

Selection

/
n

/
n

/
n

/
n

/
n

x
 r

x
 r

log2(N)+1

/
n

Gj

Gi

log2(N)+1

/

x
 n

N

/

x
 nRS

R

A B

R
e

q
u

e
s
t

L
o

g
ic

G
ra

n
t

L
o

g
ic

Fig. 5. Output module allocator design for new packet requests. The critical
path in the design is shown in red. Tags A and B are for cross-reference with
the example in Fig. 6.

0 0 1 0

0 0 0 0

0 0 1 0

0 1 0 0

Output

Module

0 0 1 0

0 0 0 0

0 0 0 0

0 1 0 0

Output

Module

Gj

O
u
tp

u
t 

M
o
d
u
le 0 0 0 0 0

1 0 1 0 0

2 0 0 1 0

3 0 0 0 0

Output

Port

Gi

O
u
tp

u
t

M
o
d
u
le 0 0 0

1 7 1

2 4 1

3 0 0

Input

Port

v

RS

In
p
u
t
P

o
rt

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1

6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

R

In
p
u
t

P
o
rt

4 10 1

5 4 1

6 8 1

7 5 1

Output

Port

v

A B

12840
Output Port

0
1

2
3

OM
0

4
5

6
7

OM
1

OM
2 10

11

9
8

Fig. 6. Example request processing for new packets by the output module
allocator for the 2nd input module in a (4,4,4) Clos switch. Binary matrices
are tagged for cross-reference with the digital design in Fig. 5.

and attempts to match each input port to the OM on which the
requested output port physically resides. There are two sets of
input requests to the circuit: (a) n requests for the new packets,
in matrix R, and (b) n requests for VOQ packets at the IM
input ports, in matrix RS . The VOQ requests are high-priority
and are used here only to filter out new packet requests that
they are contending against for IM input ports. This maintains
strict in-order packet delivery. For the filtered out requests, the
corresponding packets arriving at the switch are stored in the
appropriate VOQs.

Every request in R is a structure with two fields; the switch
destination port, represented by log2N bits, and a valid bit.
Every request in RS is an N -bit vector, where every bit
asserted represents a request for the output port that the VOQ
buffers packets.

The request logic checks RS to determine whether a new
packet contends with a VOQ packet for an IM input port,
in which case the new packet request is dropped. Then, it
generates a request in a format that the subsequent arbiter
logic can process; based on a new packet’s destination port an
n-bit request for the destination OM is generated, where each
bit asserted is an IM input port requesting that OM. There are
r arbiters, each allocating an OM to at most one of n requests,
based on the round-robin principle. Each arbiter outputs a one-
hot n-bit grant indicating the winning IM input port.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

/

RS

Arbiter

1

Arbiter

n-1

Arbiter

1

Arbiter

r-1

Arbiter

0

R
e

q
u

e
s
t

L
o

g
ic Arbiter

1

Arbiter

r-1

/
r

OM

Selection

Input Port

Selection

/
n

/
n

/
n

Output Port

Selection

G
ra

n
t

L
o

g
ic

/
n

/
n

/
n

/
n

/
n

/
n

/
n

/
n

/
r

/
r

/

x
 r

x
 r

log2(N)+1

/
n

Gj

Gi

/
N

/
N

/
N

R
e

q
u

e
s
t

L
o

g
ic

N

/
N

/
N

x
 n

Arbiter

0

Arbiter

0

A B C D E

Fig. 7. Output module allocator design for switch VOQ packet requests. The critical path in the design is shown in red. Tags A-E are for cross-reference
with the example in Fig. 8.

Fig. 8. Example request processing for switch VOQ packets by the output
module allocator for the 2nd input module in a (4,4,4) Clos switch. Binary
matrices are tagged for cross-reference with the digital design in Fig. 7.

The grant logic generates the circuit’s output matrices, Gi

and Gj , based on the arbiter grants. Each matrix has at most
r grants, one for every Clos OM. Every grant in Gi is a
structure with an input-port field of log2N bits and a valid
bit, to indicate the switch input port granted that OM. Every
Gj grant is a one-hot n-bit vector and the bit asserted, if any,
indicates the granted output port on that OM. Every valid grant
pair, one from Gi and one from Gj , forms a request that the
dedicated output port (OP) allocator on the same plane will
process next, as illustrated in Fig. 4.

Figure 6 shows an example of the circuit functionality for a
(4; 4; 4) Clos, for a given R and RS . The requests processed
in the example are for the second input module (IM 1) whose
input ports are in the range 4 to 7. The request logic is shown
generating a binary matrix containing the arbiter requests,
ignoring input port 5’s request as it contends with a VOQ
request for the same input and output ports. Next, every arbiter
resolves any OM contention by operating across a matrix
column, selecting only one input port for that OM. The output
matrices Gi and Gj are created based on the arbitration results.

B. Output Module Allocation for Switch VOQ Packets

In an n�r IM, due to VOQ buffering, there could be up to
N switch output port requests per input port, at the same time.
For every input port, the OM allocator grants at most one of
r OMs, for a selected output port. This design is only used in
the scheduler plane responsible for VOQ request processing,
as illustrated in Fig. 4. As shown in Fig. 7, the design is

divided in two pipeline stages to increase the maximum clock
frequency achievable.

Every input request in RS is an N -bit vector. This is the
same input matrix in the allocator for new packet requests
described above. In the first pipeline stage, the request logic
generates the arbiter input requests; n r-bit vectors in which
every bit asserted is a request for an OM.

Next, input-first separable allocation is performed to match
output modules with the local input ports. Separable allocation
is performed as two sets of arbitration; one across the input
ports and one across the output modules. This is implemented
as two separate arbiter ranks. The first rank has n r-bit arbiters
to select one OM for every input port. The second rank has r
n-bit arbiters to select one input port for every OM.

The iSLIP method [40], for round-robin separable alloca-
tion, is used to increase the number of grants. This is done
by controlling the arbiter priority in the first rank so that it
is less likely different arbiters select the same output module,
causing fewer conflicts in the second arbiter rank. Although
multiple iterations can be performed, to further increase the
number of grants and therefore the switch throughput, only a
single pass (1-SLIP) is executed to minimize the total circuit
delay. To implement iSLIP, the priority of a first-rank arbiter is
updated only if its grant output has also won arbitration in the
second arbiter rank. However, this creates a feedback which
forms the critical path in the design, as discussed in section V.
Any first-rank arbiter receives r feedback signals in total, one
from each second-rank arbiter, but only the feedback between
the first two arbiters is shown in in Fig. 7, for diagram clarity.

In the case of switch VOQ packets, since there can be
more than one output port request per OM, an additional
round of arbitration is needed to select one, after an input port
has been granted an OM. This is implemented in the second
pipeline stage. Based on the OM allocation grants from the
first pipeline stage, the request logic creates n-bit requests,
for every granted OM, and the following arbiters select one.
Effectively the two allocation rounds operate in a master-slave
fashion divided in two pipeline stages.

In the same way as in the allocator for new packet re-
quests, the grant logic generates two matrices, Gi and Gj ,
each holding a grant for every Clos output module that the
corresponding output port (OP) allocator will process.

An example of the circuit functionality is shown in Fig. 8.


