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• A novel large and realistic multi-focus dataset with ground truth is constructed.

• The proposed dataset can serve as a test bench for multi-focus image fusion methods.

• Benefit future development of deep-learning-based methods for multi-focus image fusion.
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ABSTRACT

Multi-focus image fusion, a technique to generate an all-in-focus image from two or
more partially-focused source images, can benefit many computer vision tasks. How-
ever, currently there is no large and realistic dataset to perform convincing evaluation
and comparison of algorithms in multi-focus image fusion. Moreover, it is difficult to
train a deep neural network for multi-focus image fusion without a suitable dataset. In
this letter, we introduce a large and realistic multi-focus dataset called Real-MFF, which
contains 710 pairs of source images with corresponding ground truth images. The dataset
is generated by light field images, and both the source images and the ground truth im-
ages are realistic. To serve as both a well-established benchmark for existing multi-focus
image fusion algorithms and an appropriate training dataset for future development of
deep-learning-based methods, the dataset contains a variety of scenes, including build-
ings, plants, humans, shopping malls, squares and so on. We also evaluate 10 typical
multi-focus algorithms on this dataset for the purpose of illustration.

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

For most computer vision tasks, such as object detection and
identification, it is desirable to use the in-focus images as input
rather than blurred ones. However, due to the limited depth-
of-field (DOF) of cameras, it is usually difficult to capture the
all-in-focus images directly. Therefore, multi-focus image fu-
sion, a technique to fuse two or more partially-focused source
images into an all-in-focus image, is very important in the fields
of computer vision and image processing, and has drawn con-
siderable attention in recent years.

Existing multi-focus image fusion methods can be roughly
categorized into three groups: transform-domain-based meth-
ods, spatial-domain-based methods, and deep-learning-based
methods.

Transform-domain-based methods usually first decompose
the source images in a transform domain, then fuse the features
in the transform domain, and finally reconstruct the all-in-focus

∗∗Corresponding author.
e-mail: liusj14@tsinghua.org.cn (Shaojun Liu)

image. Laplacian pyramid (LP) [5], ratio of low-pass pyra-
mid (RP) [6], curvelet transform (CVT) [7], discrete wavelet
transform (DWT) [8], dual-tree complex wavelet transform
(DTCWT) [9], non-subsampled contourlet transform (NSCT)
[10], principal component analysis (CPA) [11], and sparse
representation-based methods [12–14] have been explored to
build transform-domain-based methods.

Spatial-domain-based methods can be further classified into
three sub-groups: block-based methods, region-based methods
and pixel-based methods. The block-based methods [15] first
divide images into blocks, then calculate the focus measure of
each block, and finally choose the block with the highest focus
measure as the corresponding block in the fusion result. Con-
sequently, these algorithms are often affected by the granular-
ity of block partitioning. The region-based methods [16] first
segment the input images and then fuse the focused segments
of these input images. Therefore, the fusion results of region-
based methods highly rely on the segmentation accuracy. The
pixel-based methods [17] calculate the focus measure and fuse
the images at the pixel level. Usually, pixel-based methods of-
ten produce poor results near the boundary between a focused
area and a defocused area.
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(a) (b) (c)

(d) (e) (f)

Fig. 1: Examples in our dataset. (a) and (d) are the source images focused on the foreground; (b) and (e) are the source images focused on the background; and (c)
and (f) are the all-in-focus images. The upper row is for a complex example and the lower row is for a simple example.

Table 1: Characteristics of various datasets.

Dataset Data generation method size realistic ground truth
Lytro [1] Captured by light field camera 20 pairs, 520×520 Yes No
CNN [2] Synthetically generated based on the ImageNet dataset 1,000,000 pairs, 16×16 No Yes
BA-Fusion [3] Synthetically generated based on the Matting dataset 2,268,000 pairs, 16×16 No Yes
FuseGan [4] Synthetically generated based on segmentation datasets 5,850 pairs, 320×480 No Yes
Our Real-MFF Captured by light field camera 710 pairs, 625×433 Yes Yes

In the past several years, many deep learning methods have
been proposed for multi-focus image fusion. Liu et al. [2] used
a deep convolutional neural network (CNN) to generate a deci-
sion map just like the pixel-based methods, and then did some
post-processing to produce a final decision map. FuseGan [4]
used a generative adversarial network (GAN) to generate deci-
sion map. Such methods can be regarded as the network-based
implementations of the spatial-domain-based methods. Differ-
ent from them, Wen et al. [18] designed an end-to-end neural
network for image fusion.

One of the bottlenecks of using deep neural networks to solve
multi-focus fusion problems is the lack of suitable large and
realistic database with ground truth for the network training.
The most widely used dataset in this area is the Lytro Multi-
focus dataset [1], which contains 20 pairs of multi-focus im-
ages with size 520×520 pixels. This dataset is very small and
has no ground truth, therefore, it cannot be used for training a
deep neural network. To break through this bottleneck, there
are some valuable trials. Liu et al. [2] used high-quality nat-
ural images blurred by Gaussian filters with five different lev-
els of blur to generate a dataset. The images generated by this
method were not as real as naturally defocused images, because
they were blurred with a spatially invariant defocus kernel and
therefore lacked defocus changes. [4, 18] used segmentation
datasets with manually labeled segmentation as the ground truth
map. The ground truth was used as a 0-1 mask map, with 0 for
foreground and 1 for background. The foreground and back-

ground were then blurred by Gaussian filters separately and fi-
nally merged together. In our previous work of BA-Fusion [3],
we generated a dataset based on a matting dataset. We chose
matted object as the foreground object and high-quality picture
as the background. However, the images generated by these
methods do not follow the real defocus model and thus need
further improvement.

In this letter, we propose a new large and realistic dataset for
multi-focus image fusion. The dataset, called Real-MFF, con-
sists of various natural multi-focus images with ground truth,
generated by light field images. Fig. 1 shows two pairs of
partially-focused source images and their all-in-focus ground-
truth images in our dataset for examples. The contributions of
our work can be summarized as follows.

Firstly, we construct a new large and realistic multi-focus
dataset, which contains 710 pairs of images that can be used
for training deep neural networks. Each pair of images contains
two partially-focused images as the source images and an all-in-
focus image as the ground truth. The dataset is generated using
a light field camera: Lytro illum camera. The source images are
produced by choosing different focus planes.

Secondly, to the best of our knowledge, our dataset is the
first large and realistic dataset that can serve as a test bench for
validating multi-focus image fusion methods.

Finally, the proposed dataset is both large and realistic so that
it can benefit the development of deep-learning-based multi-
focus image fusion methods.
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2. Related Work

2.1. Multi-focus image fusion dataset

As mentioned in Section 1, Lytro [1], currently the most
widely used multi-focus image fusion dataset, only has 20 pairs
of images without ground truth. Therefore, it cannot be used
for training of deep neural networks. Alternatively, many deep-
learning-based algorithms [2–4, 18] generated datasets artifi-
cially as the training set. But these generated datasets are
not natural or realistic, especially near the focused/defocused
boundary. The characteristics of these datasets are summarized
in Table 1.

2.2. Light field image processing

Different from the conventional cameras, the light field cam-
era records the complete light field information in one shot, and
generates images afterwards. In 2005, Ng proposed a Fourier
Slice Photography Theorem [19], which proved that images fo-
cused at different depths can be computed from a single light
field image. Dansereau et al. [20] designed a 4D hyperfan
shaped band-pass filter in the frequency domain, which can
control the range of focused depths of images in the spatial do-
main.

3. Dataset

3.1. Image capture and categories

We use the Lytro illum camera to capture light field images
at different places, such as square, campus, shopping mall and
street. Photo categories include people, plants, buildings, ob-
jects, etc. In addition to the photos taken by us, we also selected
443 images from the Stanford database [21], which mainly in-
clude some scenes with obviously separable foreground and
background, especially those with more complex boundary be-
tween foreground and background.

3.2. Pre-processing

We use the LFLytroDecodeImage function in the light field
toolbox (LFtoolbox) [22] to decode light field data and obtain
the raw 4D light field data as well as the 2D Lenslet images. A
two-dimensional representation of 4D light field data is shown
in Fig. 2(a).

Then, we use the LFdisp function to generate 2D images.
However, the images generated by LFtoolbox are with color
deviation and shape distortion effects. We fix the color differ-
ence problem through the gamma transform; and with the help
of a calibration plate, the problem of shape distortion is solved.
An illustrative example is shown in Fig. 3. In Fig. 3(a), the
image before color correction is dim and lacks color details;
in Fig. 3(b), the problem has been fixed after color correction.
However, it still can be seen that the object shape in Figs. 3(a)
and (b) has obvious distortions (e.g. the table is curved). After
distortion correction, the table becomes straight in Fig. 3(c).
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Fig. 2: Refocusing. (a) is the 4D light field captured by a Lytro camera and
(b) is the corresponding 4D Fourier spectrum. (c) shows three 2D slices of the
4D Fourier spectrum, and (d) demonstrates the images generated via applying
inverse 2D transforms on (c).

3.3. Refocusing

The main processing of the dataset is refocusing. For better
visualization, we illustrate the processing with an example in
Fig. 2. Firstly, a 4D light field image (Fig. 2(a)) is transformed
to a 4D Fourier spectrum space (Fig. 2(b)):

F(Ωu,Ωs,Ωv,Ωt) = DFT ( f (u, s, v, t)), (1)

where f denotes the 4D light field image, DFT represents
the discrete Fourier transform, F is 4D Fourier spectrum,
(u, s, v, t) are the two-plane parameterizations of light rays, and
(Ωu,Ωs,Ωv,Ωt) denotes the corresponding coordinates in the
4D Fourier spectrum space.

According to the Fourier Slice Photography Theorem [19],
we then use 4D hyperfan, LFBuild4DFreqHyperfan in
LFtoobox [22], as a high-dimensional passband filter to filter
the 4D Fourier spectrum (Fig. 2(c)):

Fdepth = HHF(Ωu,Ωs,Ωv,Ωt, θ1, θ2)F(Ωu,Ωs,Ωv,Ωt), (2)

where HHF is the 4D hyperfan passband filter, Fdepth means
the 4D Fourier spectrum of 2D image focused on the specific
depth, and parameters θ1 and θ2 are the slope parameters of the
4D hyperfan.

Finally, the 2D images (Fig. 2(d)) can be generated by the in-
verse Fourier transform of the processed 4D Fourier spectrum:

I = IDFT (Fdepth), (3)

where IDFT represents inverse discrete Fourier transform, and
I denotes the 2D image focused on the specific depth.
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(a) (b) (c)

Fig. 3: Example for pre-processing. (a) is the original image before pre-processing, (b) is the intermediate image after color correction and (c) is the final image
after color correction and distortion correction.

Since the depth range usually changes for different scenes,
we need to first manually select the specific depth range of fo-
cus in the Lytro software, then record the depth of focus for
each image, and finally generate the desired image focused on
different depth ranges. Therefore, θ1 and θ2 usually change for
different images. Typically, both θ1 and θ2 are in the range of
[-2, 2]. The pseudocode of the algorithm is shown in Algo-
rithm 1.

Algorithm 1 Refocusing

for each light field image do
Decode the light field data: f ;
Transform f into the frequency domain by FFT:
F = DFT ( f );
j = the depth at foreground;
k = the depth at background;
l = ( j + k)/2 ;
# Generate the foreground focused image
Build the 4D hyperfan with slopes j and l:
HFG = HHF( j, l);
FFG = HFGF;
IFG = IDFT (FFG);
# Generate the background focused image
Build the 4D hyperfan with slopes k and l:
HBG = HHF(k, l);
FBG = HBGF;
IBG = IDFT (FBG);
# Generate the all-in-focus image
Build the 4D hyperfan with slopes j and k:
HAF = HHF( j, k);
FAF = HAF F;
IAF = IDFT (FAF);

end for

4. Experiments

4.1. Dataset

Our Real-MFF dataset contains 710 pairs of images, where
each pair includes two partially-focused source images focused
on the foreground or background respectively, and an all-in-
focus image as the ground truth. We hope that the ground truth
is similar to the composition of two source images: the fore-
ground region should be similar to the source image focused on

(a)

(b)

(e)(d)

(c)

Fig. 4: Example of the generated images. (a) is the all-in-focus image; (b) is the
image focused on the background; (c) is the image focused on the foreground;
(d) is the difference map between (a) and (b); and (e) is the difference map
between (a) and (c).

the foreground, and the background region should be similar to
the source image focused on the background. Fig. 4 shows an
example for the difference maps between the all-in-focus image
and the two source images. The difference shown in Fig. 4(d)
indicates that the ground truth (Fig. 4(a)) matches the back-
ground of the image focused on the background (Fig. 4(b)); and
the difference shown in Fig. 4(e) indicates that the ground truth
(Fig. 4(a)) matches the foreground of the image focused on the
foreground (Fig. 4(c)).

Furthermore, in order to evaluate the effect of difficulty level
on an algorithm, especially for simple and complex boundaries,
we manually divide the dataset into a simple set (260 pairs)
and a complex set (450 pairs) according to the complexity of
focused/defocused boundary. The division is conducted via a
three-person majority voting to reduce the bias caused by sub-
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(a) Image A (b) Image B (c) All-in-focus

(d) Dsift [17] (e) CNN [2] (f) SR [12]

(g) GF [23] (h) LP [5] (i) RP [6]

(j) DTCWT [9] (k) CVT [7] (l) NSCT [10]

(m) NSCT-SR [13]

Fig. 5: Visual comparison. (a) and (b) are the two partially-focused source images; (c) is the ground truth all-in-focus image; and (d)-(m) are the fusion results of
the 10 methods.
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Fig. 6: Significance testing results for the performance of different methods in terms of (a) PSNR, (b) SSIM, (c) EPE and (d) the intersection (denoted by ‘ALL’) of
(a)-(c), where ‘1’ indicates that the algorithm of the row is significantly better than the algorithm of the column, and ‘0’ otherwise, at the significance level of 0.05.

Table 2: Quantitative comparison of multi-focus image fusion methods on our dataset.

Dsift [17] CNN [2] SR [12] GF [23] LP [5] RP [6] DTCWT [9] CVT [7] NSCT [10] NSCT-SR [13]

on the whole dataset
PSNR 36.42 40.46 39.68 40.74 41.32 40.37 40.86 40.90 41.18 41.32
SSIM 0.9744 0.9880 0.9857 0.9890 0.9904 0.9891 0.9896 0.9892 0.9905 0.9906
EPE 2.738 1.901 2.060 1.865 1.790 1.939 1.876 1.886 1.762 1.736

on the simple dataset
PSNR 38.48 43.41 42.13 43.45 43.93 42.88 43.46 43.52 43.72 43.87
SSIM 0.9797 0.9920 0.9888 0.9921 0.9924 0.9914 0.9922 0.9921 0.9926 0.9927
EPE 2.078 1.375 1.526 1.357 1.294 1.408 1.349 1.349 1.268 1.244

on the complex dataset
PSNR 35.23 39.76 38.26 39.18 39.81 38.92 39.35 39.38 39.72 39.85
SSIM 0.9714 0.9857 0.9838 0.9873 0.9892 0.9878 0.9881 0.9876 0.9894 0.9894
EPE 3.119 2.205 2.368 2.159 2.076 2.245 2.181 2.196 2.048 2.020

jective selection. Two examples are shown in Fig. 1, where
Fig. 1(a) is a complex case and Fig. 1(d) is a simple case. For
the complex case in Fig. 1(a), we can find it difficult to draw
a curve as the boundary of the foreground and the background,
whereas for the simple case in Fig. 1(d), we can easily take the
border of the cistern as the boundary.

4.2. Test Bench

We evaluate 10 typical multi-focus image fusion methods,
including some transform-domain-based methods (LP [5], RP
[6], DWT [8], CVT [7], DTCWT [9], NSCT [10], SR [12],
NSCT-SR [13]), some spatial-domain-based methods (Dsift
[17], GF [23]), and a deep-learning-based methods (CNN [2]),
on our dataset.

We employ the peak signal to noise ratio (PSNR), structure
similarity (SSIM) and end point error (EPE) as the evaluation
measures, and in terms of these measures, the performances of
the 10 multi-focus image fusion methods on the whole dataset,
the simple dataset and the complex dataset are listed in Table 2.
Unsurprisingly, the results of these algorithms on the simple
dataset are generally better than those on the complex dataset.
The results also show that, among these algorithms, NSCT and
NSCT-SR are the top two on our dataset.

For illustration, we choose an example with complex fore-
ground borders from our dataset, and show the visual results of

various methods in Fig. 5. We can see the difference among
these 10 methods in the regions of the falling leaves and the
people in the background. It is hard for the spatial-domain-
based methods to generate a precise decision map, which means
that the resultant images from these methods have some quite
blurry areas. Consequently, their PSNRs are usually lower than
those of other methods. For the transform-domain-based meth-
ods, complex boundaries will decrease the performance of the
algorithms, but fortunately this bad effect will not result in com-
plete failure of the algorithms. Moreover, we can see that CNN
has blurred results for the falling leaves, and Dsift has blurred
results for the person, while NSCT-SR has better results in both
areas.

In order to further analyze whether the performances of these
methods are statistically significantly different from each other,
we perform the Wilcoxon signed rank tests [24] on the exper-
imental results in Table 2. The significance testing results in
PSNR, SSIM and EPE are shown in Fig. 6, as well as the in-
tersection of these three results (denoted by ‘ALL’), in all of
which the number ‘1’ indicates that the algorithm of the row is
significantly better than the algorithm of the column at the sig-
nificance level of 0.05, and the number ‘0’ otherwise. Based on
the results, NSCT-SR performs the best on our dataset.
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5. Conclusions

In this letter, we propose a large and realistic dataset for
multi-focus image fusion tasks. To the best of our knowledge,
our Real-MFF dataset is the first large and realistic dataset for
this purpose. The dataset is generated by light field images cap-
tured with a light field camera. We use the 4D hyperfan in the
frequency domain as a band-pass filter to produce images fo-
cused on different depths manually. The proposed dataset can
serve as a test bench for evaluating multi-focus image fusion
methods; furthermore, it can benefit the development of deep-
learning-based methods for multi-focus image fusion in the fu-
ture. It is also our future work to continuously increase the size,
diversity and quality of this dataset.
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