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Abstract 

 

Background and aims: Bioelectrical impedance analysis (BIA) is widely considered a body 

composition technique suitable for routine application. However, its utility in sick or 

malnourished children is complicated by variability in hydration. A BIA variant termed vector 

analysis (BIVA) aims to resolve this, by differentiating hydration from cell mass. However, 

the model was only partially supported by children’s data. To improve accuracy, further 

adjustment for body shape variability has been proposed, known as specific BIVA 

(BIVAspecific). 

Methods: We re-analysed body composition data from 281 children and adolescents (46% 

male) aged 4-20 years of European ancestry. Measurements included anthropometry, 

conventional BIA, BIVA outcomes adjusted either for height (BIVAconventional), or for height 

and body cross-sectional area (BIVAspecific), and fat-free mass (FFM) and fat mass (FM) by the 

criterion 4-component model. Graphic analysis and regression analysis were used to 

evaluate different BIA models for predicting FFM and FM. 

Results: Age was strongly correlated with BIVAconventional parameters, but weakly with 

BIVAspecific parameters. FFM correlated more strongly with BIVAconventional than with BIVAspecific 

parameters, whereas the opposite pattern was found for FM. In multiple regression 

analyses, the best prediction models combined conventional BIA with BIVAspecific parameters, 

explaining 97.0% and 89.8% of the variance in FFM and FM respectively. These models could 

be further improved by incorporating body weight 

Conclusions: The prediction of body composition can be improved by combining two 

different theoretical models, each of which appears to provide different information about 

the two components FFM and FM.  Further work should test the utility of this approach in 

pediatric patients. 

 

Keywords: body composition; bioelectrical impedance analysis; children; adolescents; 

bioelectrical impedance vector analysis 

  



 3 

1. Introduction 

There is increasing interest in the assessment of body composition in children, for 

several reasons. Body composition measurements could inform clinical diagnosis, improve 

routine management, help determine nutritional and fluid requirements as well as some 

therapeutic doses, and assess longer-term cardio-metabolic risk [1]. However, obtaining 

accurate measurements is challenging in sick or malnourished children, who often cannot 

comply with demanding protocols. For many decades, routine body composition assessment 

was restricted to simple anthropometry, such as body mass index (BMI), skinfold thicknesses 

and body circumferences. Recently, more sophisticated methods have become available, 

including air-displacement plethysmography, dual-energy X-ray absorptiometry and isotope 

dilution [2, 3], but remain restricted to specialist research centres. There is still a need for 

simpler methods that can be widely used, especially in community studies [2]. In this 

context, bioelectrical impedance analysis (BIA) has long attracted interest. The method 

involves passing a very small imperceptible current between different parts of the body and 

measuring the resistance of the tissues. Raw data are quick and easy to collect, though 

individuals must stay still in standardised position and relaxed state for a few seconds. 

 Conventionally, whole-body impedance (Z) is measured between the wrist and the 

ankle. The height (H)–adjusted impedance index (H
2
/Z) is then a strong predictor of either 

total body water (TBW) or fat-free mass (FFM) [2]. Resistance is more often measured in 

place of Z; though similar in magnitude, it is more closely related to TBW (see below). 

However, associations of H
2
/Z(or R) with TBW or FFM vary between populations and 

population-specific calibration studies are recommended. Even then, subtle variation in 

traits such as body proportions (e.g., the ratio of limb to trunk length), maturation state and 

ethnic ancestry result in significant random error in individuals [4-8]. Since FM is typically the 

smaller component of weight, random error on FFM is relatively greater when propagated to 

FM. Several solutions to this predicament have been suggested, such as incorporating more 

predictors in calibration equations, conducting segmental analysis or using different 

bioelectrical frequencies to predict different fluid compartments, but none of these 

approaches has substantially reduced predictive error [9-11]. 

An alternative approach, developed by Piccoli et al and known as bioelectrical 

impedance vector analysis (BIVA), divides Z into its components, resistance (R) and 

reactance (Xc), normalizing each for H [12]. Based on bioelectrical theory, R is expected to 
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correlate negatively with body fluids, whereas Xc should correlate positively with body cell 

mass [13]. On this basis, if the data are plotted on ‘R/H-Xc/H’ graphs, data from a population 

will form an ellipse as expected for bivariate data, where one diagonal axis represents 

variability in hydration, and the orthogonal axis variability in body cell mass, closely 

correlated with FFM [13]. A key advantage of Piccoli’s approach is that no predictive 

equations are required, however the resulting data are both qualitative and semi-

quantitative, and still require some form of processing to aid interpretation. For example, 

BIVA traits vary with age, which may in part by due to changes in body size [14]. As one 

solution to this, we previously published BIVA reference data from children and adolescents 

aged 5 to 20 years, allowing the use of age- and sex-standardized z-scores [15]. 

Recently, studies of disease states have supported several assumptions of BIVA 

theory [16, 17], however in healthy children the findings were only partially supportive [15]. 

While BIVA variables correlated as expected with hydration, they did not correlate with FFM. 

A new variant known as specific BIVA (BIVAspecific), aims to improve the correlation with body 

composition by adjusting R and Xc not only for height, but also for body cross-sectional area 

[18, 19]. This addresses fundamental bioelectrical theory, since according to Ohm’s law, the 

resistance of a conductor (e.g., a cylinder) to a current varies proportionally with its length 

but inversely with its cross-sectional area [18, 19]. Research in adults has shown that 

BIVAspecific measurements correlate strongly with % fat as opposed to FFM [18]. 

We therefore aimed to evaluate specific BIVA data in a large dataset of body 

composition in children from a wide range of nutritional status, which we previously 

analysed for our assessment of conventional BIVA. We also conducted exploratory analyses, 

combining both conventional BIA and specific BIVA approaches to see if they contributed 

independently to the prediction of body composition. 

 

2. Methods 

 

The data has been described in detail previously [15], and came from two prior studies 

conducted by our group, both approved by the Ethical Committee of UCL Institute of Child 

Health and Great Ormond Street Hospital. Informed consent was obtained from all 

participants and/or their parents as appropriate. For this analysis, we included children of 
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European ancestry only, as ethnicity has been associated with variability in fat and lean 

distribution [6, 20] and the loci of BIVA ellipses [21]. 

 

2.1 Participants 

 

Most individuals were from a study of healthy children/adolescents aged 4 to 20 years, with 

no BMI exclusion criteria except that they could not be attending a weight loss clinic, and 

they must not have any disease that might affect growth and development. Baseline data 

from obese children aged 7 to 14 years participating in weight loss intervention studies were 

also used. In combination, the two datasets cover a wide range of BMI [22, 23].  

 

2.2 Data collection 

 

Anthropometry and body composition were measured as described previously, with FFM 

and FM calculated using the 4-component model [24]. Single-frequency BIA was conducted 

at 50 kHz (Quadscan 4000 instrumentation; Bodystat, UK). This frequency is proposed to 

maximise signal-to-noise ratio and minimise frequency-dependent errors and variability of 

electric flow paths [25, 26], though the optimal frequency also varies between individuals 

and by age [27]. Participants lay supine on a non-conducting couch. Disposable EKG-style 

Ag/AgCl gel electrodes were attached in standard tetrapolar manner to left hand and foot 

[28]. Z, R, Xc and PA were recorded in duplicate, and the average used in analyses. The 

device was regularly calibrated, and on all occasions the device was within the 

manufacturer’s specifications. 

 

As usual in the conventional BIVA (BIVAconventional) approach, R and Xc were standardised for 

height (H) and expressed as R/H and Xc/H in ohm (Ω)/m [12]. Prior to analysis, we excluded 

individuals with PA>8.0 (values in healthy people range between 5° and 7°, hence allowing 

for measurement error, values above 8° were considered implausible; n=14 excluded) [29], 

as well as those with poor repeatability (exclusion criteria were duplicates >0.5 for PA, and 

≥6.0 for R/H and Xc/H; n=25 excluded). In those data retained for analysis, technical error of 

the mean calculated using the formula of Ulijaszek and Kerr [30] was 1.9 ohm for Z and R 

and 1.1 ohm for Xc. 
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The new data incorporated in this analysis were body girths, which were available for all but 

one of the subjects in the previous analysis. Girths were measured for the mid-upper arm, 

waist and maximal calf, using a non-stretchable tape. Technical error of the mean for girth 

data in our research centre is 0.2 cm for waist and 0.1 cm for arm and calf girth. The raw 

data are available as Supplementary online Data. 

 

2.3 Data processing and statistical analysis 

 

Three age groupings were derived, broadly representing pre-pubertal (4-9 years), pubertal 

(10-14 years) and post-pubertal (15-20 years) individuals. Assessment of nutritional status 

was based on UK BMI z-scores, using cut-offs of <-2 to define thinness, >1 to define 

overweight and >2 to define obesity. 

 

For conventional BIA, the impedance index was calculated as the square of height divided by 

Z (HT
2
/Z) in cm

2
/ohms. For specific BIVA (BIVAspecific), following the approach of Buffa and 

colleagues [18], cross-sectional areas (A) of the arm, torso and leg were first calculated as 

follows: 

 

A = [girth^2]/(4*pi)      Equation 1 

 

These were then summed, again as recommended [18], to give a whole body area correction 

factor as follows: 

 

 Area [A] = (0.45 * arm area_ + (0.1 * waist area) + (0.45 * leg area)  Equation 2 

 

We obtained a value for length from height, again as recommended [18]:  

 

Length [L] = height (m) * 1.1       Equation 3 

 

In BIVAspecific, R and Xc are then multiplied by the correction factor, A/L, to give Rspecific and 

Xcspecific respectively. 
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Graphs were plotted with sex-specific LOESS lines, fitted with 75% span, for BIVAconventional 

and BIVAspecific outcomes against age, and for FFM and fat mass against BIVAconventional and 

BIVAspecific parameters. Correlations between conventional or specific BIVA parameters and 

body composition outcomes were calculated. Multiple regression models were used to test 

independent associations of conventional BIA and BIVAconventional and BIVAspecific parameters 

with body composition outcomes, adjusting for age and sex (males coded 1, females coded 

2).  

 

We developed a series of multiple regression models, intended to reveal the differing 

associations of anthropometry and different BIA approaches with the two body composition 

outcomes. We evaluated the different models in terms of the proportion of variance in the 

outcome explained (adjusted r
2
 value, which aids comparison across models) and the 

standard error of the estimate (SEE) in individuals. To aid comparisons across models, we 

also provide the t-statistic for each individual predictor, and the overall F-statistic of each 

model. 

 

Baseline models included only age and sex, in order to help understand how the addition of 

any further anthropometric or BOA parameters improved the accuracy of predicting 

outcomes. We then developed models that introduced only anthropometric parameters 

(either weight, or the three girths). Subsequent models introduced either conventional BIA 

parameters (HT
2
/Z), or conventional BIVA parameters (R/H, Xc/H), or specific BIVA 

parameters (Rspecific, Xcspecific). Finally, we developed ‘combined models’ incorporating both 

conventional BIA and specific BIVA parameters, as well as testing the addition of weight. All 

graphs and analyses were run in IBM SPSS Statistics, version 24. 

 

3. Results 

 

After data cleaning, full data were available for 281 individuals, comprising 130 boys and 151 

girls. The average age was 11.8 (SD 3.7) years, range 4.2 to 19.9 years. There was no 

difference in average age between the sexes. Table 1 presents values for raw 

anthropometry, body composition and BIA values stratified by age group and sex. There 
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were sex differences in body size, shape and composition, especially in younger and older 

children, which may reflect the greater representation of obesity in the middle age group. 

Most traits varied significantly by age. Regarding nutrition status, BMI z-score ranged from -

3.3 to +4.3, and the sample included 9 (3.2%) who were underweight, 161 (57.3%) who were 

normal weight, 49 (17.4%) who were overweight, and 62 (22.1%) who had obesity. 

 

Figure 1 illustrates associations of BIVAconventional and BIVAspecific parameters with age. 

Adjusted for height, BIVAconventional parameters were strongly associated with age (R/H r = -

0.78; Xc/H r = -0.67; both p<0.0001), whereas BIVAspecific parameters were more weakly 

associated (Rspecific r = 0.13, p=0.027; Xcspecific r = 0.31, p<0.0001). For BIVAconventional 

parameters, the sexes showed very similar associations by sex until around 12 years, when 

values stopped declining with age in females but continued to decline in males. Conversely, 

BIVAspecific parameters were consistently higher in females compared to males at all ages, 

with this difference increasing with age for Rspecific. 

 

Figure 2 illustrates correlations of BIVAconventional and BIVAspecific parameters with absolute 

FFM. For BIVAconventional parameters, there were strong and relatively tight negative 

associations in both sexes, that were slightly curvilinear (R/H r = -0.91; Xc/H r = -0.80; both 

p<0.0001). In contrast, BIVAspecific parameters were positively correlated with FFM, though 

relatively weakly (Rspecific r = 0.27; Xcspecific r = 0.46; both p<0.0001), and here the male FFM 

values tended to be greater than those of females for a given BIVA value, though this 

difference was not linear. Overall, BIVAconventional parameters correlated with FFM 

substantially better than did specific BIVAspecific parameters. 

 

Figure 3 illustrates equivalent correlations of BIVAconventional and BIVAspecific parameters with 

absolute FM, where the contrast between the two analytical approaches took the opposite 

pattern.  For BIVAconventional parameters, there were moderately strong negative associations 

in both sexes, that were linear in males but curvilinear in females (R/H r = -0.53; Xc/H r = -

0.54; both p<0.0001). In contrast, BIVAspecific parameters were positively and tightly 

correlated with FM, with the association almost linear for Rspecific and weakly curvilinear for 

Xcspecific (Rspecific r = 0.89; Xcspecific r = 0.85; both p<0.0001). Here the sex differences were 
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negligible. Overall, BIVAspecific parameters correlated with FM substantially better than did 

BIVAconventional parameters. 

 

Table 2 presents multivariable regression models for associations of BIVAconventional and 

BIVAspecific parameters with body composition outcomes, taking into account age, sex and 

weight. To compare the additional information provided by the two different BIVA 

approaches, the first model included only age and sex. This model explained 72.2% of the 

variance in FFM, with an SEE of 6.87 kg, and 15.8% of the variance in FM, with an SEE of 

12.13 kg. The model had overall F-values of 365 and 27 for FFM and FM respectively. 

 

Adding in weight to this model improved accuracy of the prediction for both outcomes, 

producing identical r
2
 (89.4%) and SEE values  (4.25 kg). This model had overall F-values of 

788 and 813 for FFM and FM respectively. Adding in the three girths instead of weight 

further improved accuracy for predicting FM (r
2
 91.5%, SEE 3.86 kg) but reduced the 

accuracy of predicting FFM (r
2
 85.0%, SEE 5.04 kg). The model had overall F-values of 319 

and 601 for FFM and FM respectively. This model indicates that upper body girths primarily 

predict fatness, with waist being the strongest predictor followed by arm, whereas calf was 

not significant. Instead, calf girth was the only girth that was a significant predictor of FFM.  

 

Removing weight, the next model represented a conventional approach to BIA, and 

therefore included HT
2
/Z alongside age and sex. This model explained 89.4% of the variance 

in FFM, with an SEE of 2.46 kg, and 34.1% of the variance in FM, with an SEE of 10.73 kg. The 

model had overall F-values of 2,523 and 49 for FFM and FM respectively. 

 

Dropping HT
2
/Z, and adding instead the two BIVAconventional parameters to the model, only 

R/H contributed significantly for FFM whereas both terms contributed for FM. The 

proportion of variance explained was lower for FFM (87.0%) but higher for FM (36.7%), while 

the SEE value increased substantially for FFM (4.70) and decreased slightly for FM (10.51 kg). 

The model had overall F-values of 470 and 42 for FFM and FM respectively.  

 

Replacing BIVAconventional with BIVAspecific parameters, the proportion of variance for FFM 

decreased further (78.1%), while the SEE increased substantially (6.10 kg). However the 
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prediction was greatly improved for FM (r
2
 84.7% and SEE 5.16 kg). The model had overall F-

values of 251 and 391 for FFM and FM respectively. 

 

The next model combined both BIVAconventional and BIVAspecific terms. For FFM, the 

contributions were broadly additive, though Rspecific did not contribute significantly to the 

model. The model explained 97.0% of the variance in FFM, with an SEE of 2.27 kg. For FM, 

both Rspecific  and Xcspecific  contributed to the model, which explained 89.8% of the variance 

with an SEE of 4.22 kg. The model had overall F-values of 1,800 and 493 for FFM and FM 

respectively. 

 

Finally, weight was added back to the model, which resulted in the r
2
 and SEE being identical 

for FFM and FM models. The coefficients of the predictor variables were also near-identical 

but with opposite signs, the exception being weight which showed a higher coefficient, 

suggesting it plays a more important role in predicting FM than FFM. All terms were 

significant in both models, which explained 97.5% of the variance in FFM and FM with an SEE 

of 2.06 kg. The model had overall F-values of 1,821 and 1,870 for FFM and FM respectively.  

 

The F-values for both the combined models are slightly lower than that for FFM in the 

conventional BIA model (F=2,523), but this reflects the inclusion of more predictors. In terms 

of the proportion of variance explained and SEE, the two combined models provided the 

most accurate predictions of FFM, and the second combined model provided the most 

accurate prediction of FM. 

 

4. Discussion 

 

The conventional approach to predicting body composition from BIA relies on the close 

association of height-adjusted resistance or impedance with body components that conduct 

electricity, the most obvious of which are TBW or FFM. These associations are strong in any 

given population, though the slope varies between populations according to age, maturation 

state and ethnicity [6, 8]. Using carefully designed calibration studies, where children are 

sampled in equal numbers across a wide range of nutritional status, the SEE in individuals 

can be reduced to 1 kg of FFM [31], meaning that predicted values lie within ±2kg of the 
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‘true’ value.  In our study, the best SEE value using conventional BIA was slightly greater 

(2.46 kg of FFM), but this is due in part to our including a very wide range of both age and 

BMI, and we expect that better accuracy could be obtained using our approach in more 

homogeneous populations. 

 

Our aim was to see if we could improve the prediction of FFM, using approaches based on 

BIVA. Expressing BIA data as height-adjusted vectors, using the BIVAconventional approach, did 

not show strong associations with FFM, while for FM the approach was no better than that 

using conventional BIA. Indeed, no simple BIA model performed better for FM than a model 

containing only age, sex and three body girths. It has previously been recognised that 

BIVAconventional parameters remain strongly associated with body shape, as impedance of 

body components is influenced by both cylinder length and cross-sectional area [18, 19]. We 

therefore tested a new variant of BIA [18, 19], which adjusts impedance for body cross-

sectional area as well as length, with the aim of addressing more effectively variability in 

body morphology. 

 

We first showed that two girths (arm and waist) were significant predictors of FM but not 

FFM, whereas the reverse scenario was apparent for calf girth. This supports the notion that 

incorporating upper body girths into regression models addresses variability in fatness. This 

is similar to data from adults, where for example girths tend to show higher correlations 

with FM than skeletal muscle mass, especially in females, though the arm is an exception to 

this pattern [32]. Consistent with that, we found overall that BIVAspecific parameters were 

more accurate predictors of FM than BIVAconventional parameters, though this pattern was 

reversed for FFM. Nonetheless, even though the SEE for FM was substantially reduced, it 

was still large (5.16 kg), and the equivalent SEE for FFM (6.10 kg) compared very poorly 

compared to that obtained by conventional BIA. Thus, incorporating girths into conventional 

BIVA models improves the sensitivity of BIVA variability to body fat content, but without 

improving the accuracy of FFM prediction. 

 

Intriguingly, the prediction models showed improvement when the conventional BIA and 

BIVAspecific parameters were combined. This approach resulted in the lowest SEE values for 

both FFM and FM (2.27 kg and 4.22 kg respectively) compared to either conventional BIA, 
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BIVAconventional or BIVAspecific, while the r
2
 values were also the highest across these models 

(97.0% and 89.8% respectively). The BIA parameters appeared broadly additive in these 

models, indicating that the two theoretical approaches extract different information from 

the raw bioelectrical data, and that each component of information improves the prediction 

of the two main components of body composition.  

 

Adding weight to this model generates identical r
2
 and SEE values, because of it summing 

FFM and FM. In each case, the r
2
 value is 97.5% and the SEE is 2.06 kg. This approach may be 

particularly successful in our own sample due to the high range of BMI, and further work is 

needed to test the effect of including weight in other samples that have lower degrees of 

BMI variability. 

 

Our study shows for the first time in healthy children covering a wide range of nutritional 

status that BIVAspecific performs more poorly than conventional BIA in predicting FFM, but 

performs substantially better in predicting FM. This suggests that correcting bioelectrical 

data for cylinder cross-sectional area as well as height improves the correlation with body 

composition outcomes, as shown previously for body fatness in adults [18]. Nonetheless, 

this approach still could not match the accuracy of conventional BIA for predicting FFM, and 

it was only by combining the two approaches that the prediction of both tissue masses 

improved. 

 

A combined approach to BIA would be easy to operationalize without greatly complicating 

the quick and simple protocol for data collection, even in young patients, which is a key 

strength of BIA as a technique. Simply by adding in the 3 additional girths, both 

BIVAconventional and BIVAspecific parameters could be obtained, and the same data also allow 

other analytical approaches to be used, including the assessment of phase angle as a proxy 

for cellular health [29], and Piccoli’s graphical approach which provides information on 

hydration status [13, 33]. 

 

The strengths of our study include the high-quality measurements of body composition 

obtained using the four-component model, the relatively large sample size, and the wide 
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range of body composition and BMI assessed. Restricting the analysis to children of 

European ancestry avoided the potential complication of ethnic variability in shape. 

 

However, there are also some limitations to our analysis. At this stage, we do not know how 

much ethnicity might influence BIVAspecific, as has already been assessed for conventional BIA 

in the pediatric age range [6-8]. Second, we have not considered children aged under 5 

years, though this population has particular need of simpler protocols. Third, we have not 

yet addressed patients, in whom the need for simpler protocols is again particularly 

important. Moreover, we do not know how perturbations of body composition associated 

with illness (dehydration, wasting, oedema) might affect the ability of BIVAspecific parameters 

to index body fatness. Further work in younger children and patients is therefore required to 

fully appreciate the potential of this BIA variant for clinical assessment. 

 

In summary, our analysis shows for the first time that conventional BIA and the new 

BIVAspecific approach make independent and additive contributions to predicting body 

composition variability in healthy children and adolescents across wide range of age and 

BMI. Further work may extend this approach to patients, and may potentially improve the 

accuracy of BIA for predicting body composition variability in those most in need of such 

measurements. 
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Legends for illustrations 

 

Figure 1. Associations of BIVAconventional parameters (R/H and Xc/H) and BIVAspecific parameters 

(R-specific, Xc-specific) with age, stratified by sex. 

 

Figure 2. Associations of BIVAconventional parameters (R/H and Xc/H) and BIVAspecific parameters 

(R-specific, Xc-specific) with absolute fat-free mass (FFM) measured by the 4-component 

model, stratified by sex. 

 

Figure 3. Associations of BIVAconventional parameters (R/H and Xc/H) and BIVAspecific parameters 

(R-specific, Xc-specific) with absolute fat mass (FM) measured by the 4-component model, 

stratified by sex. 
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Table 1. Anthropometry, body composition and bioelectrical variables stratified by age and sex 

 

Males 4-9 years (n=31) 10-14 years (n=73) 15-20 years (n=26)  

Trait Mean SD Mean SD Mean SD p-value $ 

Height (cm) 122.3 * 11.9 154.1 11.4 178.8 * 6.5 <0.0001 

BMI (kg/m2) 17.4 * 3.8 20.7 * 5.3 23.8 8.7 <0.0001 

R50 683.7 64.6 604.1 85.4 514.0 * 75.0 <0.0001 

Xc50 62.9 7.4 61.0 8.9 60.8 * 8.2 0.55 

Arm girth (cm) 19.5 * 3.5 25.1 * 5.0 29.5 7.1 <0.0001 

Waist girth (cm) 59.2 9.6 72.2 14.3 82.3 20.4 <0.0001 

Calf girth (cm) 26.0 * 3.4 32.5 4.4 37.0 4.5 <0.0001 

Fat-free mass (kg) 20.3 4.5 36.3 9.1 58.9 * 8.4 <0.0001 

Fat mass (kg) 6.4 * 6.5 13.8 * 11.5 17.2 20.6 0.005 

        

Females 4-9 years (n=59) 10-14 years (n=67) 15-20 years (n=25)  

Trait Mean SD Mean SD Mean SD p-value $ 

Height (cm) 129.2 10.4 155.4 9.3 165.3 7.6 <0.0001 

BMI (kg/m2) 19.4 5.2 23.0 6.9 24.8 7.2 <0.0001 

R50 686.7 85.5 616.7 83.6 612.6 71.2 <0.0001 

Xc50 65.9 7.9 61.8 7.4 65.8 9.2 0.009 

Arm girth (cm) 22.6 4.9 27.1 5.7 29.4 5.5 <0.0001 

Waist girth (cm) 63.5 12.7 74.2 15.6 78.2 15.6 <0.0001 

Calf girth (cm) 28.3 4.7 33.8 5.4 36.8 4.2 <0.0001 

Fat-free mass (kg) 22.7 5.6 36.6 7.7 43.7 6.0 <0.0001 

Fat mass (kg) 10.9 8.3 19.4 13.3 24.2 14.3 <0.0001 

* difference between the sexes significant p<0.05, by independent samples t-test   

$ difference between the age groups, tested by ANOVA 

 

 



Table 2. Prediction of Fat-free mass and fat mass from age, sex and conventional BIA and BIVA and/or specific BIVA parameters 

 

 Fat-free mass (kg) Fat mass (kg) 

 Beta SE t p r
2
 F SEE (kg) Beta SE t p r

2
 F SEE 

(kg) 

No BIA               

Constant 5.097 1.920 2.65 0.008 0.722 365 6.87 -8.038 3.389 -2.37 0.018 0.158 27 12.13 

Age (years) 2.908 0.110 26.42 <0.0001    1.323 0.194 6.81 <0.0001    

Female sex -3.288 0.824 -3.99 <0.0001    4.763 1.454 3.275 0.001    

               

Constant 6.052 1.187 5.10 <0.0001 0.894 788 4.25 -6.031 1.187 -5.08 <0.0001 0.897 813 4.24 

Age (years) 1.543 0.094 16.49 <0.0001    -1.545 0.094 -16.52 <0.0001    

Female sex -3.765 0.510 -7.39 <0.0001    3.760 0.509 7.383 <0.0001    

Weight (kg) 0.322 0.015 21.23 <0.0001    0.678 0.015 44.65 <0.0001    

               

Constant -12.657 2.282 -5.55 <0.0001 0.850 319 5.04 -42.641 1.746 -24.42 <0.0001 0.915 601 3.86 

Age (years) 1.926 0.112 17.25 <0.0001    -0.296 0.085 -3.46 0.001    

Female sex -4.299 0.659 -6.53 <0.0001    3.732 0.504 7.40 <0.0001    

Arm girth (cm) 0.299 0.724 1.34 0.084    0.529 0.171 3.09 0.002    

Waist girth (cm) 0.016 0.071 0.23 <0.0001    0.663 0.055 12.16 <0.0001    

Calf girth (cm) 0.695 0.155 4.48 0.004    -0.156 0.119 -1.32 0.18    

               

Conventional BIA               

Constant -1.845 0.707 -2.61 0.010 0.964 2,523 2.46 -14.191 3.079 -4.61 <0.0001 0.341 49 10.73 

Age (years) 0.430 0.069 6.21 <0.0001    -0.873 0.302 -2.89 0.004    

Female sex 0.260 0.306 0.85 0.3    7.908 1.335 5.92 <0.0001    

Height
2
/Z 0.820 0.019 43.43 <0.0001    0.727 0.082 8.84 <0.0001    

               

Conventional BIVA               

Constant 54.371 3.095 17.57 <0.0001 0.870 470 4.70 51.870 6.926 7.49 <0.0001 0.367 42 10.51 

Age (years) 1.232 0.121 10.20 <0.0001    -0.520 0.270 -1.93 0.055    

Female sex -1.658 0.571 -2.90 0.004    6.726 1.277 5.27 <0.0001    



R/H (ohms/cm) -6.706 0.602 -11.13 <0.0001    -4.187 1.348 -3.11 0.002    

Xc/H (ohms/cm) -6.64 6.184 -1.07 0.28    -53.184 13.837 -3.84 <0.0001    

               

Specific BIVA               

Constant 1.322 2.033 0.65 0.5 0.781 251 6.10 -37.218 1.718 -21.67 <0.0001 0.848 391 5.16 

Age (years) 2.529 0.111 22.77 <0.0001    0.867 0.094 9.23 <0.0001    

Female sex -4.333 0.751 -5.77 <0.0001    -0.285 0.634 -0.449 0.6    

Rspecific (ohms.cm) -2.121 0.927 -2.29 0.023    11.037 0.784 14.08 <0.0001    

Xcspecific (ohms.cm) 46.742 8.494 5.50 <0.0001    2.052 7.177 0.286 0.7    

               

Combined model 1               

Constant -3.035 0.762 -3.98 <0.0001 0.970 1,800 2.27 -39.501 1.420 -27.81 <0.0001 0.898 493 4.22 

Age (years) 0.460 0.065 7.12 <0.0001    -0.217 0.120 -1.80 0.073    

Female sex -0.327 0.295 -1.11 0.26    1.814 0.550 3.30 0.001    

Height
2
/Z 0.773 0.019 41.55 <0.0001    0.405 0.035 11.68 <0.0001    

Rspecific (ohms.cm) -0.737 0.347 -1.07 0.28    11.953 0.647 18.46 <0.0001    

Xcspecific (ohms.cm) 12.874 3.258 3.95 <0.0001    -15.694 6.072 -2.585 0.010    

               

Combined model 2               

Constant 5.669 1.336 4.24 <0.0001 0.975 1,821 2.06 -5.641 1.336 -4.22 <0.0001 0.976 1,870 2.06 

Age (years) 0.410 0.059 6.93 <0.0001    -0.413 0.059 -6.98 <0.0001    

Female sex -0.631 0.271 -2.33 0.021    0.630 0.272 2.32 0.021    

Height
2
/Z 0.532 0.036 14.85 <0.0001    -0.532 0.036 -14.83 <0.0001    

Rspecific (ohms.cm) -2.742 0.443 -6.19 <0.0001    2.737 0.443 6.18 <0.0001    

Xcspecific (ohms.cm) 13.454 2.965 4.54 <0.0001    -13.439 2.967 -4.53 <0.0001    

Weight (kg) 0.205 0.027 7.62 <0.0001    0.796 0.027 29.64 <0.0001    

 

Z – impedance, R – resistance, Xc – reactance, H - height 

Rspecific and Xspecific – R and Xc adjusted for both height and cross-sectional area 

SE – standard error, SEE – standard error of the estimate 

 








