UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Strategically-Timed Actions in Stochastic Differential Games

Mguni, David H.; (2020) Strategically-Timed Actions in Stochastic Differential Games. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Mguni__thesis.pdf]
Preview
Text
Mguni__thesis.pdf

Download (1MB) | Preview

Abstract

Financial systems are rich in interactions amenable to description by stochastic control theory. Optimal stochastic control theory is an elegant mathematical framework in which a controller, profitably alters the dynamics of a stochastic system by exercising costly control inputs. If the system includes more than one agent, the appropriate modelling framework is stochastic differential game theory — a multiplayer generalisation of stochastic control theory. There are numerous environments in which financial agents incur fixed minimal costs when adjusting their investment positions; trading environments with transaction costs and real options pricing are important examples. The presence of fixed minimal adjustment costs produces adjustment stickiness as agents now enact their investment adjustments over a sequence of discrete points. Despite the fundamental relevance of adjustment stickiness within economic theory, in stochastic differential game theory, the set of players’ modifications to the system dynamics is mainly restricted to a continuous class of controls. Under this assumption, players modify their positions through infinitesimally fine adjustments over the problem horizon. This renders such models unsuitable for modelling systems with fixed minimal adjustment costs. To this end, we present a detailed study of strategic interactions with fixed minimal adjustment costs. We perform a comprehensive study of a new stochastic differential game of impulse control and stopping on a jump-diffusion process and, conduct a detailed investigation of two-player impulse control stochastic differential games. We establish the existence of a value of the games and show that the value is a unique (viscosity) solution to a double obstacle problem which is characterised in terms of a solution to a non-linear partial differential equation (PDE). The study is contextualised within two new models of investment that tackle a dynamic duopoly investment problem and an optimal liquidity control and lifetime ruin problem. It is then shown that each optimal investment strategy can be recovered from the equilibrium strategies of the corresponding stochastic differential game. Lastly, we introduce a dynamic principal-agent model with a self-interested agent that faces minimally bounded adjustment costs. For this setting, we show for the first time that the principal can sufficiently distort that agent’s preferences so that the agent finds it optimal to execute policies that maximise the principal’s payoff in the presence of fixed minimal costs.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Strategically-Timed Actions in Stochastic Differential Games
Event: UCL
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Civil, Environ and Geomatic Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10106719
Downloads since deposit
198Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item