
A Game-Theoretic Approach
to Software Process Improvement

Carlos Gavidia-Calderon

A dissertation submitted in fulfillment
of the requirements for the degree of

Doctor of Philosophy
of

University College London

Department of Computer Science

University College London

15 April 2020

Declarations

I, Carlos Gavidia-Calderon, confirm that the work presented in this thesis is
my own. Where information has been derived from other sources, I confirm
that this has been indicated in the thesis. Parts of this document are based on
the following publications:

1. Chapters 2 and 3 are based on: Carlos Gavidia-Calderon, Emmanuel
Letier and Earl T. Barr. A Survey of Game Theory Applied to Software
Engineering. In progress.

2. Chapter 4 is based on: Carlos Gavidia-Calderon, Federica Sarro, Mark
Harman and Earl T. Barr. Game-Theoretic Analysis of Development
Practices: Challenges and Opportunities. Journal of Systems and Soft-
ware. 2019.

3. Chapter 5 and 6 are based on: Carlos Gavidia-Calderon, Federica Sarro,
Mark Harman and Earl T. Barr. The Assessor’s Dilemma: Improving
Bug Repair via Empirical Game Theory. IEEE Transactions on Software
Engineering. 2019.

This research project is a collaborative enterprise. While I led this work, I did
it in close collaboration with my supervisors. I use “I” throughout this thesis
in this sense.

Date Signature

2

Abstract

There is a plethora of software development practices. Practice adoption by
a development team is a challenge by itself. This makes software process
improvement very hard for organisations. I believe a key factor in successful
practice adoption is proper incentives. Wrong incentives can lead a process
improvement effort to failure.

I propose to address this problem using game-theory. Game theory studies
cooperation and conflict. I believe its use can speed the development of
effective software processes. I surveyed game-theory applications to software
engineering problems, showing the potential of this technique. By using
game-theoretic models of software development practices, we can verify if
the behaviour at equilibrium converges towards team cooperation.

Modern software development is performed by large teams, working multi-
ple iterations over long periods of time. Classic game representations do not
scale well to model such scenarios, so abstraction is needed. In this thesis,
I propose GTPI (game-theoretic process improvement), a software process
improvement approach based on empirical game-theoretic analysis (EGTA)
abstractions. EGTA enables the production of software process models of
manageable size.

I use GTPI to address technical debt, modelling developers that prefer quick
and cheap solutions instead of high-quality time-consuming fixes. I have also
approached bug prioritisation with GTPI, proposing the assessor-throttling
prioritisation process, and developing a tool to support its adoption.

3

Impact Statement

Software is part of many aspects of modern life: from trivial things like
ordering takeaway to vital tasks like aeroplane navigation. Software quality
does not only depend on the technical aspects of engineering, but also on the
process that drives how people build it. In the words of Linus Torvalds, ”All
the really stressful times for me have been about process: they haven’t been
about code”.

In this thesis, I propose game theory as a formal approach for the analysis
and design of software processes. Game theory is widely adopted in fields
like economics, biology and cybersecurity. I bring game theory to software
process design, using it to identify and remove incentive problems.

I used game theory to resolve real problems affecting software teams in
industry. Both technical debt and priority inflation are still relevant problems
in software development. I recommended actionable process interventions
for their removal. I used game-theoretic models to confirm the effectiveness of
established processes — like code reviews — and to challenge the adequacy
of others — like bug triage teams.

Finally, I have established the foundations of a new exciting research field.
I believe that technical debt and priority inflation are two of the many in-
centive problems that affect software processes. In this thesis, I developed a
framework to address these problems with game-theoretic models. I expect
that both practitioners and researchers adopt this novel approach of software
process improvement.

4

Acknowledgements

First, I would like to thank my supervisory team at UCL: Dr Earl Barr, Dr
Federica Sarro and Prof. Mark Harman. And Paul Baker, my mentor during
my time at Visa Europe. The path from practitioner to academic is not an
easy one, and it was your guidance that made it possible.

I would also like to thank my fellow PhD students: DongGyun Han, Matheus
Paixao, Chaiyong Ragkhitwetsagul and Bobby Bruce. The PhD was definitely
more enjoyable by sharing it with you. And also my friends at Ifor Evans
Hall: Hillary Ingram, Silvia Schmidt, Lauren Coyne, Vibhav Mishra, Razvan
Marinescu, Robbie Wilson and Mariflor Vega. Ifor Evans was my very first
home-away-from-home, thanks to your friendship.

I also like to thank Dr Angel Gavidia and Lilia Calderon, my parents, and Dr
Jorge Gavidia and Mario Gavidia, my brothers. Leaving Peru to pursue my
academic dream was only possible with your help. It is an honour to become
the third “Doctor Gavidia”.

Finally, I would like to especially thank Giovani Guizzo. In the good times,
you were always up for a pint; and in the bad ones, I could always count on
your support. And to Ireen Islam. I came to this country for a Doctorate, and
I ended up finding you. For me, that is even more valuable.

5

Contents

1 Introduction 14
1.1 Research Problem . 15
1.2 Objectives . 17
1.3 Contributions . 17
1.4 Thesis Outline . 18

2 Background 20
2.1 Concepts and Terminology . 20
2.2 Normal-form Games . 22
2.3 Extensive-form Games . 23
2.4 Multistage Games . 26
2.5 Bayesian Games . 27
2.6 Mechanism Design . 28
2.7 Cooperative Game-Theory . 30

3 Literature Review 32
3.1 Methodology . 33
3.2 Game Models in Software Engineering 35

3.2.1 Software Requirements 36
3.2.2 Software Design . 37
3.2.3 Software Construction 37
3.2.4 Software Testing . 38
3.2.5 Software Maintenance 39
3.2.6 Software Engineering Management 41
3.2.7 Software Engineering Professional Practice 43

3.3 Challenges and Opportunities 44
3.3.1 The Need for Game Abstractions 44
3.3.2 Beyond the Rationality Assumptions 48

6

Contents

4 GTPI: A Game-Theoretic Approach to Process Improvement 50
4.1 Motivating Example . 52
4.2 An Introduction to GTPI . 54

4.2.1 Software Process Modelling 54
4.2.2 Software Process Improvement 59

4.3 Practical considerations . 61
4.3.1 Data Gathering . 62
4.3.2 Technical Validation . 63
4.3.3 Securing Acceptance . 64

4.4 Related Work . 65

5 TaskAssessor: A Game-Theoretic Model of Priority Inflation 67
5.1 The Assessor’s Dilemma . 69
5.2 Identifying the Process Anomaly 71

5.2.1 Shared Prioritisation Tooling Adoption 72
5.2.2 The Cost of Priority Inflation 73

5.3 Empirical Game Design . 77
5.3.1 Bug Repair and Issue Resolution Corpus 78
5.3.2 Game Models with TaskAssessor 80
5.3.3 TaskAssessor under Twins and EGTA 82
5.3.4 Validating TaskAssessor 85
5.3.5 Threats to Validity . 88
5.3.6 Using TaskAssessor . 89

6 Assessor-Throttling: A Novel Task Prioritisation Process 91
6.1 Empirical Game Improvement 93

6.1.1 Distributed Bug Prioritisation 94
6.1.2 Do Gatekeepers Prevent Priority Inflation? 95
6.1.3 The Assessor-Throttling Process 98

6.2 Process Deployment . 106

7 Conclusion and Future Work 111
7.1 Summary of Contributions . 111
7.2 Future Work . 112
7.3 Final Remarks . 113

Bibliography 114

7

List of Figures

2.1 Normal-form representation of a two-player game (DEV1 and
DEV2), where each player has two actions (cooperate and
oppose). At equilibrium, both players adopt the opposing
action with a probability of 100%. 21

3.1 Scope of this review with respect to the SWEBOK guide [1].
For this literature review, we only consider papers focussing
on practice core knowledge areas. 34

3.2 EGTA-abstracted game for a 2-player-3-round rock-paper-
scissors game: each round victory is rewarded with 1 point
and draws give no points to either player. 46

4.1 Extensive form game for a multi-project freelancer’s dilemma:
this figure contains the part of the tree corresponding to the
first two projects. Nodes in the tree correspond to players
(Freelancer A and Freelance B) and edges to actions (C for
cooperation, and NC for no cooperation) The size of this rep-
resentation grows with the number of projects, freelancers and
actions available to them. EGTA is crucial for managing this
explosive growth (section 4.2). 53

4.2 The GTPI approach starts by detecting a candidate process
that exhibits an aberrant behaviour. Such a process is then
modelled using EGTA and the Nash equilibrium is obtained.
In case the equilibrium is not the one desired, the EGTA model
is updated iteratively until a desirable one is obtained. Finally,
the improved process is adopted by the team. 55

8

List of Figures

4.3 Empirical game design: the process engineer builds a heuristic
payoff table using heuristic strategies as actions: The entries of
this table are expected payoff values obtained via simulation.
They can later use any algorithm to calculate the NE of the
empirical game, once the payoff matrix has been built. 56

4.4 Developers in the technical debt simulation: the implementa-
tion of work items can be fixes or kludges. Fixes demand more
time but are less likely to require rework. Kludges are quick
but are more likely than fixes to be reworked. Also, kludges
negatively impact codebase health. 58

4.5 The tragedy of the test suite: job insecurity makes software
engineers deliver more features without removing potentially
useless tests. Over time, this behaviour can cause the collapse
of the test infrastructure. 62

5.1 GTPI’s software process modelling phase for priority infla-
tion: to identify the process anomaly, we conducted a devel-
oper survey and a study on prioritisation in GitHub labels.
TaskAssessor, the empirical game model, was built based on a
bug resolution corpus from the Apache Software Foundation. 68

5.2 Role in the development process: the horizontal axis repre-
sents the number of participants per role. The survey allowed
the selection of multiple roles per participant. This figure rep-
resents the answers of 152 software professionals. 74

5.3 Empirical game design stage for TaskAssessor. 77
5.4 Calculating values for a Twins Player Reduction payoff matrix:

one agent of the population is assigned strategy A, while the
others are assigned strategy B in the simulation. The value to
include in the matrix for strategy A against strategy B, is the
average payoff of the single agent over multiple simulation
iterations. 86

5.5 Validating PlayGame’s simulation model. We split the process
dataset in three parts: 1) the training dataset is used to obtain
simulation parameters, 2) the validation dataset is used for
model calibration, 3) and the testing dataset is used to assess
the simulation output. 86

9

List of Figures

6.1 GTPI’s software process improvement phase for priority infla-
tion: during software process improvement, we use TaskAsses-
sor to model current task prioritisation practices. Finding them
susceptible to priority inflation, we propose the assessor-
throttling process as a solution. To facilitate assessor-throttling
deployment, we developed TheFed. It is a Chrome plugin that
connects to JIRA tracking systems. 92

6.2 Bug prioritisation processes: the blue components are shared
between the two processes (including distributed prioritisa-
tion), the red ones are exclusive to the gatekeeper process .
The solid lines represent the input/output of an activity, and
the dashed lines link an activity with its performing role. . . . 93

6.3 PlayGame’s input-output transformation: QA engineers place
reports in the development queue. Developers in the team
then build patches to address each report. In a full-bandwidth
scenario D, all developers are available for bug fixing duties.
In a reduced bandwith scenario D

2 , only half of them are active 94
6.4 The assessor-throttling prioritisation process: after fixing a

bug, the fixer assess the priority made originally by the re-
porter. This assessment impacts the reporter’s position in the
reputation’s ranking, that determines which bugs are fixed first.100

6.5 Equilibrium profiles for prioritisation processes at the reduced
bandwidth scenario D

2 . From left to right, we see distributed
prioritisation (DP), gatekeeper (GK, with corresponding er-
ror rate Agk) and assessor-throttling (AT, with corresponding
dishonesty penalty T−). 103

6.6 Equilibrium profiles for prioritisation processes at the full
bandwidth scenario D. From left to right, we see distributed
prioritisation (DP), gatekeeper (GK, with corresponding er-
ror rate Agk) and assessor-throttling (AT, with corresponding
dishonesty penalty T−). 104

6.7 Performance comparison of task prioritisation processes in
the reduced bandwidth scenario D

2 . From left to right, we
see distributed prioritisation (DP), gatekeeper (GK, with cor-
responding error rate Agk) and assessor-throttling (AT, with
corresponding dishonesty penalty T−). 106

10

List of Figures

6.8 Performance comparison of task prioritisation processes in
the full bandwidth scenario D . From left to right, we see
distributed prioritisation (DP), gatekeeper (GK, with corre-
sponding error rate Agk) and assessor-throttling (AT, with
corresponding dishonesty penalty T−). 107

6.9 TheFed’s prioritised inbox: JIRA issues are sorted by QA engi-
neer’s reputation. 108

6.10 TheFed’s QA engineer’s ranking by reputation score Rr. 109

11

List of Tables

3.1 Publications using game-theoretic models to address software
engineering problems . 36

4.1 Pay-off matrix for the freelancer’s dilemma: each cell contains
the payoff in dollars obtained by Freelancer A and Freelancer
B given their choice to cooperate or not. 52

4.2 Input and output variables of the simulation model of tech-
nical debt: the output variable Fi corresponds to the payoff
function of developers. The process engineer needs to work
with the customer to identify the relevant variables of the
process under analysis. 57

4.3 Payoff matrix after the empirical game design stage in Fig-
ure 4.2: it has a single Nash equilibrium where developer A
and developer B adopt only the kludge-intensive heuristic
strategy. 60

4.4 Payoff matrix after the empirical game improvement stage in
Figure 4.2: it has a single Nash equilibrium where developer A
and developer B adopt only the fix-intensive heuristic strategy. 60

5.1 Pay-off matrix for the assessor’s dilemma: each cell is the
payoff Alice (A) and Bob (B) obtain, under the combination of
actions each takes. 70

5.2 The questionnaire presented to 152 software engineers. 75
5.3 Survey responses to questions about the frequency of priority

inflation and deflation in the respondent’s current software
project. 76

5.4 The TaskAssessor Corpus of Issues extracted from JIRA and
GitHub. 78

12

List of Tables

5.5 Strategy catalogue S for the task prioritisation game. PI and
PD represent the conditional probabilities that a QA engineer
inflates or deflates an issue. 80

5.6 PlayGame’s input variables. Random variables are sampled
during a run until the number of bugs fixed equals N f . The
nonrandom variables are constant during a simulation run. . . 83

5.7 Pay-off matrix TaskAssessor builds: since it is symmetric, the
game has only two players (Twin1 and Twin2) and both player
has |S| actions. Algorithm 2, Twins, computes the payoff for
each pair of actions for each cell. 84

6.1 Pay-off matrix for the assessor’s dilemma using assessor throt-
tling. 101

13

1 Introduction

Software development practices are constantly evolving. From the spiral
model in the 80s to the current dominance of modern agile software de-
velopment, practitioners are looking for the best ways to organise their
work. Methodologists nowadays are advocating practices, like pair program-
ming and test-driven development, with the aim of improving productivity
and boosting quality. These practices improve software development once
adopted; however adoption itself can be challenging [2]. Pair programming
is pointless if developers refuse to share a workstation, and test-driven de-
velopment benefits evaporate if developers write tests after implementation.
For successful practice adoption, cooperation among process performers is
essential.

Game theory is “the study of mathematical models of conflict and cooper-
ation” [3], and I believe it should be part of every process engineer toolkit.
Game theory studies interactions, called games, between rational and self-
interested agents called players. Among the multiples potential outcomes of
a game, the Nash equilibrium is arguably the most studied. Nash equilibrium
is a game state where every player is adopting the best response to the other
player’s actions. This gives this outcome stability, since any deviation from it
ends in a lower pay-off for the deviating player. Nash equilibrium has been
proven to exist for any finite game [4] and it has been observed in real-world
scenarios, especially in situations where players are extremely familiar with
the game (like professional sports [5; 6]).

Researchers have used game theory to analyse the behaviour of software
professionals and to suggest improvements to existing practices. A literature
review of the publications on the subject is available at chapter 3. Due to the
limitations of classic game theory, the proposed models are highly idealised.
Instead of modelling hundreds of software engineers working on multiple re-
leases, they only consider a few players with a limited number of interactions.

14

1 Introduction

Also, they are rarely validated against actual process data. Although these
models are informative and can provide insights about potential conflicts,
they are far from real software development scenarios.

Game representations for multi-stage games — like extended-form games
— grow exponentially with the number of players and actions [7], so we
need abstractions to keep the game size manageable. In this thesis, I propose
Empirical Game-Theoretical Analysis (EGTA) as a suitable game abstraction
approach for software development scenarios [8; 9]. The reduced games
produced by EGTA adopt the normal-form representation — used for single-
shot games — where the actions are the behaviours under study, and the
pay-off values are obtained via simulation. I rely heavily on the existing
literature on software process simulation to ensure that the models effectively
reflect the practices under analysis [10; 11].

In this thesis, I propose GTPI: an EGTA-based approach for game-theoretic
modelling of software development practices (chapter 4). Using GTPI, we can
obtain the behaviour of its players — process performers — at equilibrium.
Ideally, the behaviour at equilibrium is cooperating players. If that is not the
case, GTPI proposes to iteratively modify the game-theoretic model of the
practice until this behaviour is obtained.

1.1 Research Problem

Software processes are instrumental to the quality of a software product.
Nowadays, software process design is driven by hard-won experience in-
stead of formal theory. Game theory is a suitable tool for the formal analysis
of software development processes. However, classic game theory faces limi-
tations when modelling software development at scale. The research problem
is enabling game theory for software teams, so they can use it to improve
their development processes. In this thesis, I propose a game-theoretic ap-
proach to identify incentive problems in software development processes.
The approach, called GTPI, uses game-theoretic models to diagnose process
issues and resolve them with improved software processes.

15

1 Introduction

Game theory can be used to solve process problems affecting engineering
teams in the field. Priority inflation is one of such problems: it affects task
prioritisation processes (chapter 5). Practitioners have reported that although
their bug tracking systems support a multi-level prioritisation scheme, they
tend to be overflowed with top-priority bug reports [12]. They believe it
is caused by lack of team bandwidth. A software team overflowed with
bugs can only focus on the top-priority ones. When bug reporters notice
this, they realise that to obtain fixes reporting them as top-priority is the
only viable option. Priority inflation makes the prioritisation effort useless
— since suddenly everything is important — which can lead to a waste of
development time. I confirmed the extent of this problem with a survey
to 152 software professionals, where 25% of them reported that priority
inflation is frequent in their work environment and 31% of them believe it
has a significant impact in their activities.

For the identification of incentive problems, I rely in the analysis of the
game-theoretic model of the process under scrutiny. This model needs to
support multiple stakeholders interacting during the development project.
Since classic game theory struggles with scale, I adopt EGTA abstractions.
TaskAssessor is the EGTA-based model I designed for task prioritisation. The
data-driven modelling approach used 42,620 bug reports obtained from
Apache’s JIRA repository. From this dataset, I extracted the bug reporting
behaviours that would become strategies in the model. The players of the
game are bug reporters, who place reports with a priority label assigned
according to their strategy. The development team fix the bugs in priority
order until they reach a target number of fixes. The number of fixes reported
as high-priority represent the reporter’s pay-off value.

Once ready, the game-theoretic model can then be tailored to diagnose alter-
native designs of the software process to improve. First, I use TaskAssessor
to analyse two task prioritisation processes adopted by practitioners. The
first is the one used by open-source projects, where the end-user assigns a
priority when reporting a bug. I found a single equilibrium, where every
bug reporter adopts a dishonest strategy with 100% probability. The next
practice analysed is adopting bug triage, where the priorities assigned by bug
reporters were overridden by the triage team. The analysis shows, that as
long as the bug triage team is imperfect in their assessment, the equilibrium
still has a positive probability for dishonest strategies.

16

1 Introduction

Game-theoretic equilibrium analysis can drive the design of new software
processes that do not expose the original incentive issues. These new pro-
cesses need to be deployed, including tool support to ease their adoption.
To address the limitation of existing prioritisation processes, in chapter 6, I
propose a novel process called assessor-throttling. In assessor-throttling, bug
reporters keep assigning bug priorities, but developers evaluate their assess-
ment after delivering a fix. If the developer believes the assessment of the bug
reporter is incorrect, the reporter’s reputation score is diminished. The order
of fixes in assessor-throttling does not only depend on the reported priority:
it is also a function of the reporter’s reputation score. In that way, honest
reporters are more likely to obtain fixes than dishonest ones. After parameter
tuning, assessor-throttling has a single equilibrium where all the reporters
adopt an honest strategy, the desired outcome. To support assessor-throttling
adoption, I developed a free open-source Chrome-extension that can connect
to a JIRA repository and prioritise the developer inbox based on the bug
reporters reputation.

1.2 Objectives

The objectives of this thesis are the following:

• Develop an approach for building game-theoretic models of software
development practices based on software process data.
• Analyse existing software development practices to determine if the

incentives in place effectively encourage cooperation.
• Improve software practices that show anomalies at equilibrium by

proposing deployable interventions.

1.3 Contributions

The contributions follow:

17

1 Introduction

• This thesis is the first application of empirical game-theoretic analy-
sis to model software processes: technical debt (chapter 4) and task
prioritisation (chapter 5).
• I surveyed game-theoretic models in software engineering (chapter 3).
• I performed a complete, end-to-end analysis and fix of budget-driven

technical debt: I diagnose it using game theory, then apply mechanism
design to suggest a simple and inexpensive change, and validate the
new process via its Nash Equilibrium (chapter 4).
• I showed that task prioritisation processes in which quality assurance

(QA) engineers prioritise issues suffer from priority inflation, and that
the common solution of interposing a gatekeeper does not prevent
inflation and, in fact, reduces productivity (subsection 6.1.1 and subsec-
tion 6.1.2).
• I propose assessor-throttling, a novel and lightweight task prioritisation

process that is immune to priority inflation (subsection 6.1.3).

1.4 Thesis Outline

The rest of the thesis is organised as follows. In chapter 2, I present key
concepts from game theory and introduce the most important game repre-
sentations. Per game representation, I discuss their capabilities, limitations
and mention some representative game models.

In chapter 3, I survey the applications of game-theoretic models to software
engineering problems. I grouped the papers by knowledge area from the Soft-
ware Engineering Book of Knowledge (SWEBOK) guide. I also discuss what
I believe are the two main challenges for a massive adoption of game theory
by software engineers: the need for game abstractions and the rationality
assumptions behind game models.

In chapter 4, I introduce GTPI: the proposed software improvement approach
based on EGTA abstractions. I discuss each stage of GTPI’s two phases: 1)
software process modelling and 2) software process improvement. I illustrate
its usage with an application to budget-driven technical debt and discuss
practical aspects for GTPI’s adoption.

18

1 Introduction

I approach priority inflation using GTPI in chapter 5. In this chapter, I focus
on the software process modelling phase and its two stages: 1) identifying
process anomaly (section 5.2) and 2) empirical game design (section 5.3).
To identify the process anomaly, I perform a developer survey regarding
the extent and impact of inflated priorities on their work. I also perform an
empirical study of GitHub labels, to analyse their use as priority markers.
Next, I describe TaskAssessor, the game-theoretic model produced from the
empirical game design phase. I elaborate on the whole game design process,
starting from data gathering to the final model validation.

Continuing the GTPI approach on priority inflation, in chapter 6 I describe
the software process improvement phase. This phase has two stages: 1)
empirical game improvement (section 6.1) and 2) process deployment (sec-
tion 6.2). For empirical game improvement, I use TaskAssessor to model two
prioritisation processes adopted in industry. Both of them —- distributed pri-
oritisation and gatekeeper —- are susceptible to priority inflation according
to the equilibrium analysis. In contrast, the proposed prioritisation process,
assessor-throttling, has no priority inflation at equilibrium. Regarding pro-
cess deployment, I describe the Chrome plugin I developed to enable an
easy adoption of assessor-throttling, targeted at developers using the JIRA
tracking system.

Finally, chapter 7 concludes this thesis. I summarise the contributions and
directions for future work.

19

2 Background

This chapter is a concise, minimal reference of game theory tailored to the
papers I survey in chapter 3. I describe the main game representations and
how software engineering researchers have used them, emphasising each
representation potential and limitations.

I envision game theory as an essential tool for software engineers. This chap-
ter can provide such professionals with the best practices for game-theoretic
modelling according to their discipline and environment. Game theory offers
a plethora of representation models. Each representation comes with a set
of assumptions. For example, player’s knowledge of the game ranges from
perfect information, through imperfect information, to incomplete informa-
tion. Each of these levels have serious implications for the expressiveness
of the model. A key contribution of this chapter is to elucidate how these
assumptions impact the game-theoretic models in a software engineering
context.

2.1 Concepts and Terminology

In game-theoretic context, a game is a scenario where self-interested agents,
or players, interact and their actions impact the payoff of all of them. Games
can be represented in multiple ways, but the normal-form (section 2.2) is
arguably the most fundamental. Normal-form games are represented by
payoff matrices, like the one shown in Figure 2.1. It models a game between
2 players, named DEV1 and DEV2, where both of them have 2 possible
actions in the context of the game: to cooperate or to oppose. Each cell in
the payoff matrix contains the payoff values obtained by each player after
they perform their corresponding actions. For example, the top-right cell

20

2 Background

Figure 2.1: Normal-form representation of a two-player game (DEV1 and DEV2), where
each player has two actions (cooperate and oppose). At equilibrium, both players
adopt the opposing action with a probability of 100%.

of the payoff matrix states that when DEV1 adopts the cooperate action
and DEV2 adopts the oppose action, DEV1 obtains a payoff value of -3 and
DEV2 obtains a payoff value of 0. A payoff function assigns payoff values
to each player according to a game outcome. These are numerical values
representing the player’s valuation of a game outcome. A strategy defines the
behaviour of the player in a game. Strategies fall into two categories. In pure
strategies, players select a single action; in mixed strategies players randomise
over actions according to a probability distribution [13]. A strategy profile is a
mapping of strategies to each player.

In a Nash Equilibrium (NE) strategy profile, all the players adopt a strategy
that is the best response to their opponents’ strategies: any deviation lowers
a player’s payoff. Nash proved that every finite game has at least one NE [4].
The game described in Figure 2.1 has a single NE where both players adopt
the same strategy: To oppose with a probability of 100% and to cooperate
with probability 0%. That strategy profile corresponds to the lower-right cell
of the pay-off matrix, where both players get a pay-off of −2. NE are stable
since any deviation from them produces payoff penalties. This is visible in
the pay-off matrix in Figure 2.1: when the game is at equilibrium and both
players oppose, the player who moves to cooperate would see their pay-off
diminished to -3, while their opponent would see their pay-off increased to
0. If players are rational and understand the game, we expect that repeated
play will converge to NE. Empirical evidence in professional sports suggests
this happens in practice [5; 6].

Game theory has multiple applications in Computer Science. For example,
in distributed systems game theory has been used to analyse peer-to-peer

21

2 Background

systems, like BitTorrent. We can model these systems as games between
system users, with player actions expressed as seeding attitudes and their
payoff as a function of file availability. Researchers in distributed systems
use game-theoretic models to design system protocols that, at equilibrium,
discourage unwanted behaviours (i.e. free riders) or make these systems
resilient if such behaviours arise [14].

2.2 Normal-form Games

Normal-form games represent scenarios where players act without inter-
action or coordination [15]. In this section, I am addressing complete infor-
mation normal form games, where the game structure is common knowledge
among the players. I discuss incomplete information games in section 2.5.
A single-round rock-paper-scissors match is a good example of a complete
information normal-form game: both players are well aware of the rules
of the game and, due to the need of simultaneous play, no coordination is
possible. Leyton-Brown and Shoham [13] define normal-form game as

Definition 1 (Normal-form game) A normal-form game is a tuple (N, A, u)
where:

1. N is a set of n players.
2. A = A1 × . . .× An, where Ai is a set of actions available to player i.
3. u = (u1, . . . , un) where ui : A 7→ R is the payoff function of player i.

The Prisoner’s Dilemma: This game is arguably the most famous game-
theoretic model. Researchers have used it extensively in domains like eco-
nomics and politics [15]. In software engineering, it has been used to model
cooperation among developers (subsection 3.2.6) and between testers and
developers (subsection 3.2.4). In a popular variant, the police interrogates
two felons in separate rooms. They have evidence to prosecute them indi-
vidually for a minor offence, but need testimony to go after a more serious
crime. During interrogation, each prisoner has two options: 1) To defect and
incriminate their fellow criminal in exchange for a reduced sentence or 2)

22

2 Background

to cooperate with their fellow criminal and remain silent, which means the
police will still charge them for the minor offence. The dilemma of the game
lies in the fact that, while its convenient for both prisoner’s to cooperate,
the reduced prison time of defection moves equilibrium towards mutual
betrayal. Since both prisoners act rationally and try to minimise their prison
time, defecting is more attractive, regardless of whether the other inmate
defects or cooperates.

Hawk-Dove: This is a two-player game where each player has two actions:
1) an aggressive hawk-like behaviour or 2) a friendly dove-like behaviour.
The canonical version of the game models two animals fighting for prey [13].
If they both behave like hawks, they will be severely injured. If they both
behave like doves, they would need to share the prey, which is good but
not ideal. A player obtains the maximum payoff in this game when their
opponent is friendly and they respond aggressively. Hawk-dove models
have been used to explain lack of cooperation in software teams and to
justify the implementation of stand-up meetings (subsection 3.2.6).

Stag Hunt: Initially described by Jean-Jacques Rousseau, the game is
played by two hunters [15]. Each hunter has two possible targets: 1) a stag
with a significant payoff or 2) a hare with a modest one. Each hunter by
themselves is capable of capturing a hare. To be able to capture a stag, both
hunters must cooperate. A stag hunt game has two pure-equilibrium profiles.
In one, the hunters choose to hunt the stag together; in the other, they individ-
ually go for a hare. This model has been used to model cooperation between
developers (subsection 3.2.7). Authors used stag hunt to show the potential
of informal talk in moving equilibrium towards total cooperation.

2.3 Extensive-form Games

While normal-form games (section 2.2) are well suited for games with simul-
taneous moves, this definition falls short for games where plays in sequence
are a key feature of the game, like poker. Besides the sequencing of actions,

23

2 Background

a model of poker needs to consider the information available to a player
when taking an action. In poker, the player has limited information about the
state of the game, since not all cards are visible. Also, the state of the game
depends on probabilistic events, like the chance of obtaining an ace from the
deck. In these scenarios, extensive-form games are a better representation. By
using game trees, they support modelling players and their game knowledge,
their actions, and action sequences.

Game theory classifies games like chess and tic-tac-toe as perfect information
games. In this game representation; players, at every time step, know the
game state and all the previous actions that led to that state, without interfer-
ence from probabilistic events. Perfect-information games have been used
to model software evolution. In this game, players are end-users and devel-
opers. End-users make several change requests, and developers respond to
them by adapting the software’s design (subsection 3.2.5).

Leyton-Brown and Shoham [13] define perfect-information games in exten-
sive form as:

Definition 2 (Perfect-information game in extensive form) A perfect-information
game in extensive form is a tuple (N, A, H, Z, χ, ρ, σ, u) where:

1. N is a set of n players.
2. A, is a set of actions.
3. H, is a set of non-terminal nodes.
4. Z, is a set of terminal nodes, where H ∩ Z = ∅.
5. ρ : H 7→ N is the player function.
6. χ : H 7→ P(A) is the action function.
7. σ : H × A 7→ H ∪ Z is the successor function, such as ∀hi ∈ H, ai ∈ A, if

σ(h1, a1) = σ(h2, a2) then h1 = h2 ∧ a1 = a2.
8. u = (u1, . . . , un) where ui : Z 7→ R is the payoff function of player i.

The player function ρ determines which player is able to perform an action at
an specific non-terminal node, while the action function χ defines the actions
available at this node. The successor function σ defines the game flow, by
producing the next node after a player performs an action. Note that each
payoff function in u produce a value for each terminal node.

24

2 Background

In imperfect information games like poker, the players must act on partial
information. Poker players know their hand and the visible cards at the table
but have no access to the deck or the opponent hand. Leyton-Brown and
Shoham [13] define them as:

Definition 3 (Imperfect-information game in extensive form) An imperfect-
information game in extensive form is a tuple (N, A, H, Z, χ, ρ, σ, u, I) where:

1. (N, A, H, Z, χ, ρ, σ, u) is a perfect information game in extensive form.
2. I = (I1, . . . , In), where Ii = (Ii,1, . . . , Ii,k) is a partition of P ⊂ H such as
∀p ∈ P, ρ(p) = i and ∀pi, pj ∈ Ii,j, χ(pi) = χ(pj) ∧ ρ(pi) = ρ(pj)

Ii,j represents information set j of player i. All the nodes in information set
j are equivalent from player’s i perspective, so every node in Ii,j have the
same actions available.

Stackelberg Competition: The inclusion of time and sequence in a game-
theoretic model has important consequences in the equilibrium results. For
example, let us imagine a market with only two producers for a specific good.
Both competitors have the same production costs, and since they operate
in the same market they face the same demand. The Cournot competition
game-theoretic model of this market requires both companies to define the
quantity to produce simultaneously and without coordination, configuring a
complete information normal-form game (section 2.2). In contrast, a Stackel-
berg competion has a market leader who announces their production quantity
first, and the market follower defines their production later taking the leader
production into account. A Stackelberg competition model is better suited for
a perfect-information extensive-form game representation [15]. A Cournot
competition and a Stackelberg competition differ on the quantities produced
at equilibrium: in a Stackelberg competition, the market leader advantage
allows them to take a bigger share of the market.

In software engineering, interactions between developers and testers have
been modelled using Stackelberg competitions: The tester as leader defines
a testing strategy and the developer as follower implements the features
to test (subsection 3.2.4). Also, contributions in open-source projects were

25

2 Background

approached with this model, having the open-source organisation as leader
setting up the coding environment followed by developers contributing
either by submitting code or by engaging in project discussions (subsec-
tion 3.2.5).

2.4 Multistage Games

A multistage game consists of a finite sequence of stage games, where each
stage game is expressed in the normal-form (section 2.2). In a multistage game
setting, the same players interact over multiple stage games, collecting the
corresponding payoffs after each game ends [15]. Due to the time dimension
inherent to multistage games, imperfect information extensive-form games
(section 2.3) are a suitable representation for them.

A repeated game is a multistage game where the same stage game is played at
every interaction. Tadelis [15] define them as:

Definition 4 (Finitely repeated game) A finitely repeated game is a tuple (N, A, u, T, β)
where:

1. (N, A, u) is a normal-form game, called stage game.
2. T is the number of times the stage game is played.
3. β is the discount factor.

The total payoff player i after T stage games conclude is ∑T−1
t=1 βt−1rt

i , where rt
i

is the reward obtained by player i and stage game t. We use the discount fac-
tor β to represent that players value earlier payoff increases than increments
that will occur later. This is a common practice in economic modelling [15].

Infinitely repeated games can be used to represent uncertainty regarding the
end of game. In this model, β < 1 also represents the probability of engaging
on another stage game. Having the players interacting an indefinite number
of times enables the emergence of cooperation, even when the stage game
in isolation has a single equilibrium towards defection [15]. This model was
used to analyse the role of stand-up meetings in fostering collaboration inside
software teams (subsection 3.2.6).

26

2 Background

2.5 Bayesian Games

Bayesian games are also called games of incomplete information [13]. As men-
tioned in section 2.3, in perfect information games — like chess — players
know exactly the game state at every time step, while in imperfect infor-
mation games — like poker — players understand the game structure but
they have partial access to the game state. In contrast, games of incomplete
information are games in which the players are uncertain about their oppo-
nents preferences. To support modelling these scenarios, Bayesian games
incorporate the notion of epistemic types, that represent each player’s private
information. Leyton-Brown and Shoham [13] define Bayesian games as:

Definition 5 (Bayesian game) A Bayesian game is a tuple (N, A, Θ, p, u) where:

1. N is a set of n players.
2. A = A1 × . . .× An, where Ai is the set of actions available to player i.
3. Θ = Θ1 × . . .×Θn, where Θi is the epistemic type space of player i.
4. p : Θ 7→ [0, 1] is a common prior over epistemic types.
5. u := (u1, . . . , un), where ui : A×Θ 7→ R is the payoff function of player i.

To enable equilibrium analysis with uncertainty over payoffs, Bayesian
games require that the probability distribution p is common knowledge [15].
This is also known as the common prior assumption. In a software engineer-
ing context, Bayesian games have been proposed to model the relationship
between software vendors and their clients (subsection 3.2.6).

Auctions: Auctions are the canonical Bayesian game: although bidders
know their own valuation of the auctioned good, they do not know how
their opponents value it. Governments use auctions extensively to assign
public goods — like portions of the electromagnetic spectrum — to pri-
vate companies. In software engineering, auctions have been proposed in
middleware design as mechanisms for dealing with conflicting resource re-
quests (subsection 3.2.2). A well-designed auction discourages collusion and,
at equilibrium, assigns the auctioned good to the bidder with the highest
valuation [15].

27

2 Background

In an auction game model, the players in N are the bidders. A bidder’s i
epistemic type t ∈ Θi corresponds to their valuation of the auctioned good.
They can bid b ∈ Ai during an auction, and their payoff ui will depend
on their valuation t, their bid b and if they obtain the good at the end of
the auction, according to the auction rules. Auctions can be grouped in two
categories: In 1) open auctions, players have visibility of the bidding process
until a winner emerges, and in 2) sealed-bid auctions, players privately submit
their bids and are not aware of the bids of the rest of the players.

2.6 Mechanism Design

Instead of representing scenarios with Bayesian games, mechanism design
studies what Bayesian game a designer can implement; in order to make
players accomplish a desired outcome independent of their type [15]. In
software engineering, this outcome can be high-quality code commits (sub-
section 3.2.4) or optimal team productivity (subsection 3.2.6). Shoham and
Leyton-Brown [16] define mechanism as:

Definition 6 (Deterministic mechanism) A deterministic mechanism for a Bayesian
setting (N, O, Θ, p, u) is a pair (A, M) where:

1. N is a set of n players.
2. O is a set of outcomes.
3. Θ = Θ1 × . . .×Θn is a set of joint type vectors.
4. p is probability distribution over Θ.
5. u := (u1, . . . , un), where ui : O×Θ 7→ R is the payoff function of player i.
6. A = A1 × . . .× An, where Ai is the set of actions available to player i.
7. M : A 7→ O maps each action profile to an outcome.

Mechanism design goal is to, given a Bayesian setting, produce a mechanism
whose equilibrium exhibits specific properties. One of these properties is
incentive compatibility or truthfulness: In such mechanisms, rational players
prefer to reveal their private information instead of lying. For example, let
us imagine a government as a mechanism designer, designing an auction for
an infrastructure project. Project bidders are the players of this game, and is

28

2 Background

in the interest of the government for them to bid a fair price for the project.
In this case, the fair bid is the epistemic type the mechanism designer wants
to extract from the players with an incentive compatible auction.

Stable Marriage Problem: Also called the stable matching problem, it has
been used to model assigning students to colleges. In its canonical form,
we have a group of men and a group of woman, with equal number of
members. Each man has an ordered preference over the women in the op-
posing group. The same happens to each woman, with respect to men in
the other group. The designer’s goal is to produce a game that generates a
stable matching at equilibrium, in which there is no man desiring to match a
different woman, having this woman reciprocating his feelings. In software
project management, task assignment was approached as a stable match-
ing problem (subsection 3.2.6). The deferred acceptance algorithm, proposed
by David Gale and Lloyd Shapley, produces stable matchings. It requires
a series of iterations where one of the groups propose to the other group.
This algorithm is incentive compatible with respect to the proposing group,
meaning that none of its members can obtain a better matching by lying
about their preferences.

Principal-Agent Problem: In a principal-agent game, the players are a
principal and its agent, where the agent acts in behalf of the principal. For
example, in an industrial setting the principal can be the owner and the agent
the manager of the company. Or in a political context, the principal can be the
constituents and their agent a member of parliament. In software estimation,
the project manager has been proposed as principal, requesting estimates
from developers who act as agents (subsection 3.2.6). The principal has only
partial visibility of the agent’s actions, so the agent may have an incentive to
act in their own interest instead of focusing on the principal’s goals. From a
mechanism design perspective, the principal acts as designer with the goal
of proposing a compensation scheme — the mechanism — where the agent
maximises the principal’s payoff at equilibrium [17].

29

2 Background

Prediction markets: In a prediction market problem, the mechanism de-
signer’s goal is to elicit player’s beliefs with respect to an event, like an
election result. The resulting mechanism defines contracts that assign pay-
ments to specific outcomes. For example, a contract can pay its owner $Y in
case candidate Z wins an election. Participating players, according to their
beliefs, can buy or sell these contracts. The price of the contract at equilibrium
is an aggregate measure of the beliefs of the players [16]. A scoring rule is
a prediction mechanism to obtain the beliefs of a single player. Given a set
of outcomes, a scoring rule assigns a payoff to each outcome in case they
were both realised and reported. A proper scoring rule is incentive compatible,
which requires that truthful reporting maximises the player’s payoff [18].
In software effort estimation, proper scoring rules were proposed to elicit
accurate estimates from developers (subsection 3.2.6).

2.7 Cooperative Game-Theory

Non-cooperative game-theory focusses on individual players and the actions
they have available in a game [19]. In contrast, cooperative game-theory
focusses on groups of players, and the coalitions they can form [13]. Lets
picture, for example, a budget bill that needs a minimum number of votes to
be approved by parliament. Lets also assume that no individual party has the
required votes, and each party wants control over a part of the budget. Coop-
erative game-theoretic models can provide insights on which coalitions can
arise, and how parties should distribute the budget if parliament approves
the bill.

Bargaining problem: In this scenario, players need to select among sev-
eral collaboration settings [19]. Each collaboration setting distributes payoff
among the collaborating players. If the players do not reach an agreement,
the players receive the disagreement outcome as payoff. Myerson [3] defines
the bargaining problem as:

Definition 7 (N-person bargaining problem) A bargaining problem is a tuple
(N, F, d) where:

30

2 Background

1. N is a set of n players.
2. F ⊂ Rn is the set of feasible payoff allocations if players collaborate.
3. d = (r1, . . . , rn) is the disagreement outcome.

The bargaining problem can model salary negotiations in the workplace
or even trade deals among countries. It is also used to find a viable soft-
ware configuration when end-users have conflicting requirements (subsec-
tion 3.2.1).

31

3 Literature Review

In this chapter, I present a detailed discussion of the application of game-
theoretic models to several software engineering disciplines. I also discuss the
two main challenges for game theoretic modelling in software engineering:
the need of abstraction for making tractable games and the validity of game
theory’s rationality assumptions.

Given the ubiquitous presence of software in modern life, ensuring soft-
ware quality is of utmost importance. Software engineering is the technical
discipline whose goal is to deliver high-quality software. Every human
endeavour is subject to conflict, the process of engineering software is no
exception. Testers want to maximise defect detection while developers want
to minimise it. Project managers try to minimise cost and schedule while
technical leads want project plans with enough buffer time. Software archi-
tects want a modular and healthy codebase while clients want to focus most
resources on feature delivery.

As chapter 2 details, game theory studies scenarios where participants have
conflicting interests. Game theory studies mathematical models of conflict
and cooperation [3], with multiple applications in economics, biology and
business. There are also many applications in computer science [20]. Game
theory allows to include motivations and interests in their models. Re-
searchers and practitioners can then use these models to obtain insights
into agent behaviour when agent interactions impact their perceived util-
ity.

In a software engineering context, these agents — or players in game-theoretic
terms — can be end-users, software engineers or even software systems. For
example, Grechanik and Perry identified that many software project quality
attributes — like cost, delivery time and number of features — are valued
differently by each stakeholder community [21]. While project managers and

32

3 Literature Review

customers are interested in minimising delivery time, a tight development
schedule can translate to an overworked development team. Grechanik and
Perry propose game theory as an appropriate tool for handling these conflicts.
Like them, I believe in game theory’s potential for software engineering. In
this chapter, I review the pioneering work in this area, mentioning the main
achievements and the challenges it faces.

3.1 Methodology

In this section, I describe in detail the paper collection process I followed for
this review.

Inclusion Criteria: To explore the application of game-theoretic models to
software engineering, let’s start by defining software engineering. Among
its multiple definitions [22], the one from the ISO/IEC/IEEE Systems and
Software Engineering Vocabulary [23] seems adequate: “[software engineer-
ing is the] application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software; that is, the
application of engineering to software”.

Software engineering relies on a wide spectrum of disciplines [22]. Com-
puter science, project management and mathematics, among others, are part
of the modern software engineer toolbox. Reviewing the game-theoretic
models on software engineering including all its related disciplines requires
huge effort. Instead, I rely in the Guide to the Software Engineering Book
of Knowledge (SWEBOK) [1] to establish a boundary between what is in
scope and what to exclude from this review. The SWEBOK guide makes
a distinction between core knowledge areas for software engineers and its
related disciplines [24]. The last version of the SWEBOK guide [1] contains
15 core knowledge areas, as seen in Figure 3.1. The 15 knowledge areas are
divided in two categories: 1) practice of software engineering and 2) edu-
cational requirements of software engineering [25]. I consider a publication
to be in scope if it uses game-theoretic models to approach a problem in a
practice SWEBOK knowledge area. This excludes the knowledge areas of

33

3 Literature Review

Figure 3.1: Scope of this review with respect to the SWEBOK guide [1]. For this literature
review, we only consider papers focussing on practice core knowledge areas.

Software Engineering Economics, Computing Foundations, Mathematical
Foundations, and Engineering Foundations.

For example, publications focussed on Computer Security or Networking
are not considered in scope; since they fell into the Computing Founda-
tions knowledge area and/or the Computer Science related discipline. While
game-theoretic models have been widely applied in both disciplines [26; 27],
this literature review’s focus is on the approach to software development and
not on the properties of the final software product. We can apply a similar rea-
soning to Algorithmic Game Theory, that studies algorithm development for
game-theoretic problems [19]. We can place this discipline in the intersection
of the related disciplines of Computer Science and Mathematics.

Research that approach game-theoretic problems — with conflicting objec-

34

3 Literature Review

tives of utility maximising agents — without explicitly using game theory is
considered out of scope. For example, Yu et al. [28] propose modelling users
and their conflicting needs as part of the requirements engineering effort.
While this publication belongs to a core software engineering discipline and
can certainly be approached with game-theoretic models, the authors adopt
social modelling instead. I additionally excluded publications from regional
venues, like the work of Kumar and TV on game theory for software design
[29]. This filter was necessary to keep a manageable number of papers to
review.

Search Procedure: I used the Google Scholar search engine1 to look for
relevant publications, performing the following queries:

1. Papers that contain the phrases “game theory” and “software engineer-
ing”.

2. Papers that contain the phrases “game theory” and “software develop-
ment”.

3. Papers that contain the phrase “game theory” and where published in
a venue whose name contains “software engineering”

All these queries look for papers that contain the phrase “game theory”,
since I am looking for publications aware of game theory as a discipline and
that use its techniques and terminology. Per query, I manually inspected the
abstract of the first 50 matches to verify if they fit the inclusion criteria. I
deemed this number high enough to explore the most relevant publications.
For each publication in scope, I reviewed its bibliography and looked for
relevant papers. I initially performed the search in September 2015, and then
repeated it in January 2019 to include the latest publications. The papers I
found are listed in Table 3.1.

3.2 Game Models in Software Engineering

In this section, I describe previous work in game-theoretic models for soft-
ware development. Each of the following subsections corresponds to a SWE-

1https://scholar.google.co.uk/

35

https://scholar.google.co.uk/

3 Literature Review

Table 3.1: Publications using game-theoretic models to address software engineering prob-
lems

Reference Knowledge Area Game Representation Reference Model
Garcı́a-Galán et al [30] Software requirements Cooperative game theory Bargaining problem
Capra et al. [31] Software design Mechanism design Auctions
Kitagawa et al. [32] Software construction Normal-form game Hawk-dove
Feijs [33] Software testing Normal-form game Prisoner’s dilemma
Kukreja et al. [34] Software testing Extensive-form game Stackelberg competition
Rao et al. [35] Software maintenance Mechanism design –
Sazawal and Sudan [36] Software maintenance Extensive-form game –
Bavota et al. [37] Software maintenance Normal-form game –
Hata et al. [38] Software maintenance Extensive-form game Stackelberg competition
Oza [39] Software maintenance Bayesian games –
Bacon et al. [40] Soft. Eng. Management Mechanism design Scoring rules
Bacon et al. [41] Soft. Eng. Management Mechanism design Principal-agent problem
Lagesse [42] Soft. Eng. Management Mechanism design Stable marriage problem
Yilmaz et al. [43] Soft. Eng. Management Mechanism design –
Yilmaz and O’Connor [44] Soft. Eng. Management Mechanism design –
Hassan and Dubinsky [45] Soft. Eng. Management Normal-form game Prisoner’s dilemma
Wang and Redmiles [46] Soft. Eng. Professional Practice Normal-form game Stag hunt
Hasnain et al. [47] Soft. Eng. Professional Practice Normal-form game –

BOK core knowledge area (see Figure 3.1).

3.2.1 Software Requirements

This knowledge area deals with the elicitation, analysis, specification and
management of software requirements.

Requirement negotiation is an important part of requirement analysis [1]. It
requires to resolve conflicts between incompatible features, demanded by
different end users. In that area, Garcı́a-Galán et al [30] propose modelling
multi-user system configuration as an instance of the bargaining problem
(section 2.7). Given a system with multiple configuration options — like a
smart home — and a set of users with conflicting configuration needs, they
use a cooperative game model to produce an adequate configuration. This
configuration corresponds with the Nash bargaining solution, proven to be
unique for every bargaining problem game [3].

36

3 Literature Review

3.2.2 Software Design

Software design is the process of defining the architecture, elements, and
interfaces of a software system [23].

A key issue in software design is the management of heterogenous system
components [1]. A common approach is to delegate system integration to
middleware software. Capra et al. [31] propose a middleware layer to enable
context-aware applications on mobile devices. These applications could, for
example, display images in lower quality to save battery when this resource
is low. Such middleware would require application developers to include
policies as part of their software, to define how it should behave under given
environmental conditions. The authors define environment as any system
resource under middleware monitoring; including memory, battery or band-
width. The proposed middleware requires a conflict resolution mechanism in
case of incompatible policies. For example, while one application would like
to reduce screen brightness to save battery, another would prefer to maximise
brightness to enhance user experience. The authors propose a conflict resolu-
tion mechanism based on sealed-bid auctions (section 2.5). In their model,
the middleware plays the role of the auctioneer, the applications running on
the middleware are the bidders, and the auctioned goods are viable policies.
The author’s goal is to design a resolution mechanism that benefited the
largest number of applications, instead of classic auction models where only
one bidder obtains the good.

3.2.3 Software Construction

Software construction is the activity of building software via coding, testing
and debugging. Due to its nature, software construction is related to all
SWEBOK knowledge areas.

Constructing for verification is a fundamental topic in software construc-
tion [1]. It includes techniques that enable fault detection during the software
development lifecycle, like code reviews. Kitagawa et al. [32] posit that re-
viewer participation configures a hawk-dove game (section 2.2). Their model

37

3 Literature Review

has two reviewers as players, with the actions of review and not-review. Re-
view corresponds to the dove behaviour and not-review to a hawk attitude.
In correspondence with the hawk-dove game, their proposed game has two
pure equilibrium profiles, where one reviewer behaves like hawk and its
opponent like dove. These results do not match their empirical observations,
where single-reviewer code reviews were a minority. The authors explain
this in terms of the benefit of the code review, a model parameter that can
move equilibrium towards cooperation given a sufficiently high value. I
believe their model can be improved by changing the game representation.
Modern code review happens in sequence — one review after the other — and
not simultaneously, which violates a key assumption of normal-form games.
Extensive-form games (section 2.3) are a more suitable representation for this
scenario.

3.2.4 Software Testing

According to the SWEBOK guide, software testing consists on dynamically
executing a finite set of test cases against a system, to verify if its behaving
according to specification.

A software testing effort is constrained by the impossibility of executing
every test case possible and the resources available for testing, given a project
schedule and budget [1]. Hence, the time and effort engineers devote to
software testing should be optimal. Feijs [33] models testing resource utili-
sation using normal-form games (section 2.2). He considers developers and
testers as players and that their actions had a quality degree attached. For
developers, this translates to “poor quality” or “high quality” implemen-
tations, and for testers to “poor testing” or “high quality” testing. While
testers prefer to detect and report bugs, developers want implementations to
not have bugs reported. Both players want to minimise the invested effort.
Feijs argues that due to time constraints, software projects normally have
programming and test design activities running in parallel. So, players per-
form their actions without coordination, as required for normal-form models.
Feijs’ game model — called the Idealized Testing Game (ITG) — constitutes a
Prisoner’s Dilemma instance (section 2.2), where both testers and developers
perform their tasks with high quality at equilibrium. He briefly explores

38

3 Literature Review

an scenario where the developer performs an action before the tester does.
However, Feijs did not use the extensive form representation (section 2.3), as
is usual in games where actions have a sequence. Equilibrium analysis of the
sequential version of ITG found the same result, where both players perform
high quality activities.

The inclusion criteria for test case execution has a big impact on the effect-
iveness of software testing [1]. Kukreja et al. [34] propose a randomisation
strategy for selecting test cases over an existing suite. Their approach is based
on modelling software testing as a Stackelberg competition (section 2.3),
having the testers as leaders and the developers as followers. Unlike Feijs’
proposal [33], testers start by selecting a test randomisation strategy, and
later developers select a quality level for requirement implementation. The
authors define payoff so testers obtain a bigger payoff by testing require-
ments with high business value, while developers want to minimise time
invested by submitting low quality implementations. The authors show that
the randomisation strategies at equilibrium in their game-theoretic model
produce higher payoff values than a uniformly at random approach. By
adopting a Stackelberg competition, their model requires that developers
know the testing strategy before they submit the implementations. Although
this might not be a common use case, it can be a suitable model for some
development contexts, like outsourced testing teams.

3.2.5 Software Maintenance

Software maintenance is related to the support activities required for software
operation. They include bug fixing, adapt the software to new requirements,
and update the underlying software platform; among others.

Bug fixing is commonly perceived as the most common software maintenance
activity [1]. Rao et al. [35] approach bug fixing from a mechanism design
perspective (section 2.6). Their goal is to define a process that incentivise
addressing root causes, called deep fixes, instead of superficial workarounds,
called shallow fixes. The proposed mechanism relies on a payment scheme
that favours subsuming fixes, meaning fixes that also address bugs resolved
previously with shallow fixes. Due to the scaling limitations of classical game

39

3 Literature Review

theory, the authors adopted mean field games as their abstraction approach
(subsection 3.3.1).

Software evolution refers to the changes a software system experiences
over time. It can produce increased complexity, unless the maintenance
team adopts corrective measures [1]. Sazawal and Sudan [36] use extensive-
form games (section 2.3) to model software evolution. Their proposed Basic
Software Evolution Game has the software team and the user community as
players. The software team makes the first move by selecting an initial design,
to later respond to multiple change requests from the user community. After
each request, the software team can: 1) keep the design and address the
change request, 2) improve the design and then address the change request
or 3) simply ignore the change request. Each of these design decisions have
an impact on the final payoff. For example, an early design improvement
can make subsequent change requests cheaper for the software team, or
ignoring a change request can force the user community to migrate to a
different provider at a higher cost. The authors propose to use the equilibrium
predictions of the model to plan software maintenance activities.

Refactoring is a well-known software maintenance technique [1]. It modifies
a software system to improve maintainability while preserving its original
behaviour. Bavota et al. [37] designed a class refactoring method based on
game-theoretic models. Their goal is two split a class in two, where the
classes obtained have higher cohesion and lower coupling than the original
class. Their approach has two software agents as players, each one in charge
of extracting a class. Their actions in the game are to choose a method from
the original class. Payoffs measure the impact of the player’s chosen method
in the cohesion/coupling of their extracted class. The authors represent this
scenario using normal-form games (section 2.2). Software agents engage in
multiple rounds, until there are no methods left on the original class. On
each iteration, the methods assigned to each player’s class correspond to the
equilibrium profile of the normal-form game. This approach naturally fits
the multistage game representation (section 2.4), but it is not adopted by the
authors. Unlike Bavota et al.’s proposal, a multistage game do not necessarily
adopt the equilibrium profile of the stage game at each round.

Staffing is hard for software maintenance teams. It is not considered as attrac-
tive as developing new software [1]. This is a critical problem for open-source

40

3 Literature Review

teams, since they mostly rely on volunteers. Hata et al. [38] use Stackelberg
competitions (section 2.3) to investigate how to attract code contributions
in open source projects. In their model, the leader is the organisation of an
ongoing open source project, who start the game by selecting among two
actions: 1) To keep the current project setup or 2) To improve the setup to
make code contributions easier, for example, by improving developer docu-
mentation. The follower in their game is the open source project contributor.
Their possible actions are to: 1) contribute with code or to 2) only engage in
online discussion, without dealing with the codebase. Open source project
organisers find improving the setup more costly, but it can have the benefit of
promoting code contributions by making them cheaper for developers. The
authors performed an empirical analysis of open source projects in GitHub,
finding that projects with better setups have more code contributions.

Outsourcing software maintenance teams is becoming popular among IT de-
partments [1]. Oza [39] explores player preferences when modelling offshore
software outsourcing as a game between client and vendor. He proposes that
the most common outsourcing scenario is an incomplete information game
(section 2.5). Although the relationship is explicitly defined by a contract,
there are expectations on both sides that remain hidden so payoffs are uncer-
tain. Oza also posits that the client-vendor relationship develops over time,
so expectations can become common knowledge and the game evolves to a
perfect-information model.

3.2.6 Software Engineering Management

Software engineering management refers to the management activities re-
quired to deliver high-quality software systems. This activities include plan-
ning, monitoring, and reporting, among others.

Software project planning is part of this knowledge area. Estimates of effort,
schedule and cost are necessary for project planning [1]. Bacon et al. [40] de-
signed a mechanism for software effort estimation. In their effort estimation
mechanism, project managers estimate the tasks developers perform, and
developers invest time in completing these tasks. This mechanism is based
on scoring rules (section 2.6) for both the developers and the project manager.

41

3 Literature Review

At equilibrium, project managers make the most accurate estimate possible
and developers finish their tasks as soon as possible. Bacon et al. [41] refined
their prediction mechanism in a later work, where they frame software effort
estimation as a principal-agent problem (section 2.6). In their model, the
project manager is the principal and the development team is the agent. The
project manager, as a principal, relies on the developers to make accurate
estimations and maximise the number of tasks finished. Their improved
mechanism has three steps: 1) The developer shares information with the
manager regarding the time required to finish a task, 2) Taking the developer
input into account, the manager makes an effort estimation and 3) Finally, the
developer completes the task. Their mechanism is based on proper scoring
rules (section 2.6), to assign payoffs according to the manager’s estimation
accuracy.

Resource allocation is another relevant topic of software project planning [1].
Arguably, software engineer time is the most critical resource to allocate.
Lagesse [42] propose to model task assignment in a software development
team as a stable marriage problem (section 2.6). He models task assignment
as a Bayesian setting, having team member preferences over tasks as their
epistemic type. The author posits that the deferred acceptance algorithm
(section 2.6) would need an extension to support project-specific concerns,
like manager preferences, time and budget constraints, and team member
skills. He provides a high-level description of the algorithm, mentioning its
implementation and real-world evaluation as future work. Yilmaz et al. [43]
also approach task assignment in a software project using mechanism design.
Like Lagesse, they also consider that task preferences constitutes the team
member’s type: although they know their own task preferences they are
unaware of the preferences of the rest of the team. Yilmaz et al. define team
member payoff in terms of productivity, that is a function of their type and
the tasks they have assigned.

Yilmaz and O’Connor [44] also approach resource allocation in software
projects, but from a team structure perspective. They propose to use mech-
anism design (section 2.6) to optimise team composition and maximise its
productivity. They define a game-theoretic personality type (GTPT) taxonomy,
according to team member behaviour in a software project game. They also
propose to extract the GTPT’s from an organisation via interviews and sur-
veys.

42

3 Literature Review

Contract management is an important part of software project execution.
Service providers — including software engineers — need a contract where
scope, penalties and incentives are properly defined [1]. Hassan and Du-
binsky [45] propose that certain incentive policies can produce unwanted
Prisoner’s Dilemma instances (section 2.2). They use as an example a software
company with a bonus policy for project completition. If a two-developer
team cooperate and work together, developers share the bonus equally be-
tween them. If only one cooperates, the defecting developer obtains a bigger
cut of the bonus. In case of mutual defection, project is not finished in time
and the company do not pay a bonus. The payoff matrix Hassan and Dubin-
sky present does not have mutual defection at equilibrium, as expected on
Prisoner’s Dilemma instances.

3.2.7 Software Engineering Professional Practice

According to the SWEBOK guide, this knowledge area addresses the char-
acteristics required for a “professional, responsible and ethical” practice of
software engineering.

Group dynamics and psychology are key topics of this knowledge area [1].
Organisations expect software engineers to act cooperatively and construc-
tively inside their teams. Wang and Redmiles [46] view cooperation in soft-
ware development as a stag hunt game (section 2.2). Two developers in a
team can cooperatively work on their tasks, obtaining a high-quality output
(the stag payoff), or they can approach their tasks individually, but without
the benefits of cooperation (the hare payoff). As explained in section 2.2, stag
hunt games have two pure strategy Nash equilibria: both players cooperate
or both defect. To move equilibria towards cooperation, the authors propose
to include e-cheap talk as an extra action in the model. They define e-cheap
talk as informal conversations over the internet, like instant messaging. Their
analysis shows that e-cheap talk moves equilibrium towards full cooperation.
Instead or adopting a classic game-theoretic approach, the authors opted
for an evolutionary game-theoretic model. In this approach, they assumed
a population of agents where each agent adopt single specific strategy [13].
The number of agents per strategy varies according to a fitness function that
depends on the other strategies adopted in the population. An evolutionary

43

3 Literature Review

game-theoretic model outputs the proportion of agents per strategy after con-
vergence. While most evolutionary game-theoretic models assume very large
populations, Wang and Redmiles adopted Nowak’s method for handling
finite populations, a more suitable model for software teams [48].

Hasnain et al. [47] also explore collaboration in software teams, but using
infinitely repeated games (section 2.4). The stage game of their model has
two players and two actions for each of them: to work and contribute to the
project or to shirk and benefit from the project as a free rider. Although the
authors did not mention it, the payoff structure of their stage game corre-
sponds to a hawk-dove game (section 2.2), where working corresponds to a
dove-like behaviour and shirking is a hawk-like action. A hawk-dove game
does not have the two players behaving like doves (i.e. cooperating) at equi-
librium. The authors posit that stand-up meetings between stages can foster
cooperation They perform simulated software projects with real participants,
separating them in two groups: one group had stand-up meetings while in
the other they forbid communication. Their results show that cooperation is
more frequent in the group performing stand-up meetings.

3.3 Challenges and Opportunities

In this section, I describe two issues I believe are impeding a massive adop-
tion of game-theory in the software engineering domain, along with some
suggestions for their solution.

3.3.1 The Need for Game Abstractions

Software processes are inherently temporal. In game theory, extensive form
games (EFGs, section 2.3) represent players interacting over time. At their
core, EFGs model sequential games as trees: some nodes inject non-determinism
into the game, and the rest represent player’s actions.

A game tree grows exponentially in the out-degree of each node with the
number of interactions as the base. Naı̈ve use of EFGs requires reasoning
about astronomically huge trees. Sophisticated use of EFGs has an extensive

44

3 Literature Review

literature that details various ways to employ abstraction to reduce game
size [7]. Among these approaches, I describe two: empirical game-theoretic
analysis and the twins reduction.

Empirical Game-Theoretic Analysis: Empirical game-theoretic analysis
(EGTA), proposed by Wellman [8], is a game theoretic framework that em-
ploys two techniques to reduce game size: 1) sampling action sequences and
2) simulation to reduce an EFG to a normal form game, in which all players
move only once, simultaneously. It samples each player’s action sequences
to reduce the out-degree of player nodes and restricts the tree’s height to
the number of players, as shown in Figure 3.2. In the abstracted game, each
player’s “action” is to choose an action sequence from among that player’s
possible action sequences in the original game. This restriction of a player’s
actions to action sequences restricts the height of the tree.

EGTA compresses complex games into smaller representations, and simula-
tion is key to accomplishing this. EGTA simulates each terminal history of
the reduced representation to compute the corresponding pay-off values per
player.

Figure 3.2 models a two-player three-round rock-paper-scissors game under
EGTA: from a full game tree of height 6 and 364 nodes we obtain an abstract
game of height 2 and 7 nodes. Instead of having actions at the round level,
now a player’s action is to select an action sequence. Player 1 has two available
sequences: rock, paper, and scissors (RPS) or a stochastic sequence where
playing scissors, then paper and finally rock has a probability of 0.3 and
the probability of playing paper, rock, and scissors is 0.7 (30% SPR / 70%
PRS). Player 2 can choose between rock-rock-paper (RRP) and paper-paper-
scissors (PPS). The terminal nodes contain the pay-off values per player. For
example, when player 1 selects RPS and player 2 selects RRP, player 1 wins
twice, producing a 2-0 score. However, in the terminal nodes that involve a
stochastic sequence (like 30% SPR / 70% PRS) the expected pay-off values
must be obtained by averaging simulation results.

The first realization of EGTA, due to Walsh et al., predates the definition of
EGTA itself [9]. Walsh et al. use heuristic strategies, defined as “policies that
govern the choice of individual actions” [9]. This definition is very general:

45

3 Literature Review

Figure 3.2: EGTA-abstracted game for a 2-player-3-round rock-paper-scissors game: each
round victory is rewarded with 1 point and draws give no points to either player.

if we are using a game tree representation like the one in Figure 3.2, any
program that traverses it qualifies as a heuristic strategy. I do not need this
degree of generality, so, in this thesis, heuristic strategies are probability
distributions over the actions at a decision node, guarded by a condition
over the game state. A game analyst defines heuristic strategies based on
their understanding of the game, to test hypotheses about player behaviour,
or by interviewing experts or participants. I call the set of heuristic strategies
for an empirical game its strategy catalogue.

Normal form games (section 2.2) are those games in which all players move
only once, simultaneously, like a single round of rock-paper-scissors. Many
game representations can be reduced to a normal-form, so it is considered
“arguably the most fundamental in game theory” [13]. Walsh et al. represent
empirical games using the normal-form, whose heuristic pay-off table is
obtained via simulation [9]. Once the heuristic payoff table is ready, several
algorithms are available for obtaining its Nash Equilibria [19].

When building the pay-off table, Walsh et al. assume a symmetric game [9].
In symmetric games, pay-off values are independent of player identity and

46

3 Literature Review

depend instead only on player actions. Consider the scenario in Figure 3.2:
Both players have the same action set and their pay-offs depend only on the
action played. A symmetric game with a player set N and an action set S
needs to compute (|N|+|S|−1

|N|) entries for its pay-off table, instead of the |S||N|
entries required for an asymmetric game.

The Twins Player Reduction: EGTA is not enough to bring many inter-
esting software processes into computational reach. Game representation
size using the normal form and a pay-off matrix grows exponentially with
the number of players and strategies [49]. Game-theory researchers already
address this issue with multiple player reduction techniques [50; 51; 52].

An intuitive player reduction approach is to cluster players by their payoffs
and strategies. Modelling all the players in a cluster as a single decision
maker, however, ignores the fact that players within a cluster may act differ-
ently because of the lockstep actions of the other players within the cluster.
Thus, the Nash equilibria computed for games using naı̈ve clustering can be
inaccurate.

To solve this problem, Ficici et al. propose the Twins Player Reduction ap-
proach [52]. Given a set of pure (i. e. deterministic) strategies, Ficici et al.
compute a feature vector for each player whose components are the average
payoff for each strategy over a set of sample game instances, then cluster
them through k-means. In Ficici et al.’s nomenclature, players in the same
cluster have the same strategic view. To support a reduced game that permits
a player to deviate from their cluster’s strategy, Ficici et al. represent each
cluster with two players, the eponymous twins, in the reduced game. In a
twins game, assume Player 1 selects Strategy A and his twin, Player 2, selects
Strategy B: player 1’s payoff corresponds to an agent who plays Strategy A
in the full game while all other agents in their cluster play Strategy B and
player 2’s payoff corresponds to an agent who plays Strategy B in the full
game while all other agents in their cluster play Strategy A.

Twins Player Reduction applies to both symmetric and asymmetric games,
but is especially powerful when applied to symmetric games. When the game
is symmetric, all players have the same expected payoffs for all strategies,
hence they all have the same strategic view and fall into the same cluster. As

47

3 Literature Review

noted above, Walsh’s EGTA (section 3.3.1) assumes symmetry, so combining
it with the Twins Player Reduction reduces the number of players to two and
improves the scalability of the analysis. Although a twins game allows a twin
to defect, Ficici et al. choose to restrict their analysis to Twin Symmetric Nash
Equilibria (TSNE), a subset of Nash equilibria in which both twins adopt the
same strategy. Ficici et al.prove that all twin games have a TSNE. Ficici et
al. obtained pay-offs from a linear regression model trained with actual
game data or simulation outputs. However, Wiedenbeck and Wellman [51]
obtained better results via direct simulation, so this is the approach I adopt
in this thesis.

3.3.2 Beyond the Rationality Assumptions

Game-theoretic models rely on strong assumptions regarding player knowl-
edge. For NE convergence, game structure, player rationality and player
beliefs must be common knowledge. These assumptions do not always align
with human behaviour [15]. In contrast, bounded rationality approaches model
rationality within the limits of attention, information, and mental capabilities
of the decision maker [53]. Prospect theory is a bounded rationality model
that describes decision-making under uncertainty. According to it, agents
make decisions based on utility relative to current wealth — gains or losses—
rather than the absolute wealth obtained. Prospect theory has been success-
fully applied to the design of drone delivery systems [54] and to the study
of smart-grid adoption [55]. Cognitive hierarchy also relaxes game-theory’s
rationality assumptions. Each player in a cognitive hierarchy model has a
level, which determines the number of strategic reasoning iterations the
player can perform. Level-0 players choose actions uniformly at random;
players of superior levels are “smarter” in their decision-making. Psychologi-
cal games extend the utility function definition to also depend on the players
beliefs and their beliefs regarding the other players. This includes social
norms and emotions in the game-theoretic model. In this thesis, I adopt
the conventional game-theory approach that predicts convergence to NE
under its rationality assumptions. I believe teams of experienced developers
working over well-know codebases, like in open-source projects or in mature
software maintenance teams, meet these assumptions. Results can improve

48

3 Literature Review

by adopting a bounded rationality approach closer to team behaviour. This
is left as future work.

49

4 GTPI: A Game-Theoretic
Approach to Process
Improvement

Modern society revolves around software. We use it to communicate, un-
derstand global warming, operate machines, and decide what to buy. Like
the human beings who write it, software is fallible. Software engineers rely
heavily on tools to write and maintain robust software: tools that find bugs,
repair bugs, or help developers avoid introducing them in the first place.
Development tools are important, but so are the processes that use them. In
the words of Linus Torvalds, “All the really stressful times for me have been
about process: they haven’t been about code” [56]. Despite their importance,
researchers and practitioners have lacked the tooling to build bespoke formal,
yet still intuitive and explainable, models for software processes. Instead,
they had to rely on generic, coarse-grained models or models difficult to
elicit and often hard to understand.

Developers, customers, and managers cooperate and compete to write soft-
ware. These interactions define a software process. Examples include effort
estimation, where managers underestimate to win a project bid, while tech-
nical leaders overestimate to minimise risk [57; 58], and defect prioritisation,
where end users exaggerate the importance of their bugs to obtain their fix
quickly, while the engineering team needs accurate priorities (business value,
not technical severity) to maximise the value delivered per release [12].

These software processes can be viewed as games. When we model software
processes as games, we can compute their Nash Equilibrium (NE) to diagnose
their problems and prescribe fixes when needed. I believe that most software
processes are emergent phenomena that arise to solve problems. Since they

50

4 GTPI: A Game-Theoretic Approach to Process Improvement

are not designed, many are suboptimal: they misalign a player’s payoffs with
the overall goals of a process, permitting, even encouraging, players to act
in ways that undermine collective goals. These games have an undesirable
NE. I am proposing that process engineers [11] be game designers, who craft
software processes considering cooperation incentives and conflict avoidance
mechanisms.

Despite game theory’s obvious applicability to software processes, software
engineering researchers have not fully exploited game theory, limiting their
analysis to idealised models. The reason is that software processes are in-
herently temporal: they are not one-off events; they comprise interactions
over time. Game theory models these scenarios with extensive form games.
This formalism is intricate and its analysis must cope with exponentially
large game trees. Even constrained versions of poker have trees with 1018

leaves [59].

In this chapter, I use abstractions to build tractable game-theoretic models of
real-world software development scenarios. Empirical game-theoretic analysis
(EGTA) is an instance of a large set of abstractions for dealing with large
games [7]. EGTA relies heavily on data for simulation input analysis and
output validation. Fortunately, software engineers can now easily access a
wealth of data from building and using software products [60]. The proposed
solution — called Game-Theoretic Process Improvement (GTPI) — relies
on this data and EGTA models to improve software development processes
(section 4.2).

Many tasks can be partially completed. At one end of the scale, one can use a
quick and dirty short term fix; at the other, one takes the time and care to find
and implement a complete and lasting fix. Neither approach is always better.
Quick code can help a development team beat a competitor to market, but,
taken too far, turn a codebase into an unmaintainable mess. When developers
are not racing, we prefer more deeply considered code. Some development
workflows settle into a suboptimal point along this continuum. Lavallée
and Robillard observed that some software teams had a tendency to prefer
quick-cheap solutions over time-consuming ones, incurring technical debt
due to fear of exceeding their budget [61]. In this chapter, I use this problem
to showcase GTPI.

51

4 GTPI: A Game-Theoretic Approach to Process Improvement

Table 4.1: Pay-off matrix for the freelancer’s dilemma: each cell contains the payoff in dollars
obtained by Freelancer A and Freelancer B given their choice to cooperate or not.

B: cooperate B: not cooperate
A: cooperate A = $150, B = $150 A = $50, B = $200
A: not cooperate A = $200, B = $50 A = $100, B = $100

4.1 Motivating Example

Consider a software project that hires two freelance engineers: a frontend
engineer and a backend engineer. Their contract stipulates $50 upfront and an
additional $50 upon completion. If the project goes live before the deadline,
they each receive an additional $50. They have two actions: to cooperate and
work together or to work individually, not cooperate and ignore each other.
If they cooperate, they will certainly finish before the deadline. Otherwise,
they will certainly finish their individual tasks, but lack of integration means
the project will not go live. If only one cooperates, the isolationist will finish
their task quickly and free themselves to take another contract, while the
cooperating freelancer will not complete their task. I represent this game
with a payoff table — shown in Table 4.1 — that contains payoff information
per player given the actions they performed.

When one freelancer cooperates and the other does not, the outcome is unsta-
ble since only the uncooperative player has adopted the best response, while
the cooperative freelancer would be better off not cooperating. The Nash
equilibrium for both players is to adopt the same strategy: ignore each other.
Any deviation from this strategy allows their colleague to take advantage.
Hence, Nash equilibrium analysis predicts the freelancers work indepen-
dently and obtain $100 each without completing the project. However, in the
unstable scenario where they work together, they obtain $150 and a satisfied
client with a completed project. This dilemma faced by the freelancers is an
instance of the prisoner’s dilemma.

To model the freelancers working on multiple projects over time, a clas-
sic game-theoretic approach is to use an extensive form representation
(section 2.3). Figure 4.1 shows a game tree for a multi-project freelancer’s
dilemma. The size of an extensive form game tree can become inconveniently

52

4 GTPI: A Game-Theoretic Approach to Process Improvement

Figure 4.1: Extensive form game for a multi-project freelancer’s dilemma: this figure contains
the part of the tree corresponding to the first two projects. Nodes in the tree
correspond to players (Freelancer A and Freelance B) and edges to actions (C for
cooperation, and NC for no cooperation) The size of this representation grows
with the number of projects, freelancers and actions available to them. EGTA is
crucial for managing this explosive growth (section 4.2).

large when dealing with real-world scenarios. These sizes quickly become
unmanageable for Nash equilibrium calculation algorithms.

Software development is inherently temporal: time is a critical dimension
of most software processes. For example, the Scrum process framework
divides development in time boxes, called sprints, where development tasks
are assigned and prioritised. At the end of each sprint, the status of the
project is assessed and the project plan is refined accordingly. Other process
frameworks, like the Unified Process, also propose guidelines for sequencing
tasks and organising them over time. The extensive form is more suitable for
representing software processes than the normal form, given static games
inability to handle time [15]. However, real-world software development —
with large teams working over multiple releases — generate immense game

53

4 GTPI: A Game-Theoretic Approach to Process Improvement

trees. Hence, abstraction is needed. Empirical game-theoretic analysis (EGTA) is
one of these abstraction approaches [8] [9]. EGTA reduces the action space
by restricting it to a set of heuristic strategies, which are a subset of strategies
that are of interest to the game designer. In the freelancer scenario, let us
assume that the freelancers work together for an undetermined number of
projects under the contractual conditions of Table 4.1. Strategies can go from
“not cooperate on any project” to “imitate my colleague’s last action”. In this
strategy space, the game designer needs to select a subset of these strategies.
Heuristic strategies can be obtained from data or hand-crafted following first
principles, based on the properties of the system under study [9].

EGTA uses a simulation-based heuristic payoff table instead of the game tree
of the extended form representation. This table has an entry for each action
combination, where the actions available for each player are heuristic strate-
gies. Each entry also contains the expected payoff for each player given the
actions they perform, which are obtained through simulation. The heuristic
payoff table can then be processed by a game solver to obtain its NE.

4.2 An Introduction to GTPI

Game-theoretic Process Improvement (GTPI) is the proposed process im-
provement framework. It relies on EGTA abstractions to model software
processes, diagnose process anomalies and prescribe solutions to remove
them. GTPI has two phases — software process modelling and software
process improvement — and each phase has two stages. The output of the
software process modelling phase is an empirical game model of the process
under analysis, while the output of the software process improvement phase
is a deployed new process. GTPI is summarised in Figure 4.2.

4.2.1 Software Process Modelling

Anomalous processes are often itchy: something about them mystifies or
annoys their participants. Some behaviours that are apparently irrational

54

4 GTPI: A Game-Theoretic Approach to Process Improvement

Figure 4.2: The GTPI approach starts by detecting a candidate process that exhibits an
aberrant behaviour. Such a process is then modelled using EGTA and the Nash
equilibrium is obtained. In case the equilibrium is not the one desired, the EGTA
model is updated iteratively until a desirable one is obtained. Finally, the im-
proved process is adopted by the team.

appear due to incorrect incentives. Identifying process anomalies is the first step
of the approach.

Workers of every discipline, when approaching a task, need to choose be-
tween “cutting corners” or not. Technical debt is a software development in-
stance of this seminal problem [61]. Practitioners [62; 63] and researchers [61;
35] have identified that software teams have an incentive to deliver sub-
optimal but quick solutions — like kludges — instead of optimal but time-
consuming ones, like proper fixes. One of the causes is the pressure put on
teams to deliver on time and under budget, which triggers them to maximise
the number of features delivered regardless of quality. Individual developers
too balance getting things done quickly versus getting them done right. De-
velopers face this dilemma repeatedly and, of course, they seek a Goldilocks
solution1.

The next step is the empirical game design, where we model the process to
improve. Underlying Figure 4.3 are two models. One is a simulation model
designed to capture real world behaviour. To the simulation model, we
apply heuristic strategies to produce the other, an empirical game-theoretic
model in the form of pay-off table. Simulation of software processes is a
well-developed area, with plenty of options and paradigms [11]. I adopted
discrete-event simulation because it is easy to reproduce and evaluate [64].

The parameters for the simulation model of technical debt are described in

1“Goldilocks and the Three Bears” is a 19th century fairy tale, in which a girl, given a
series of three-way choices, consistently chooses the one between the extremes.

55

4 GTPI: A Game-Theoretic Approach to Process Improvement

Figure 4.3: Empirical game design: the process engineer builds a heuristic payoff table using
heuristic strategies as actions: The entries of this table are expected payoff values
obtained via simulation. They can later use any algorithm to calculate the NE of
the empirical game, once the payoff matrix has been built.

Table 4.2. Technical debt can arise because developers write sloppy code
under pressure. Game theory suggests the answer is incorrect incentives, so
the first modelling question to ask is “How are developers rewarded?”. The
answer is not directly money or reputation, so I look to the output of the
process; Fi features per release. I use Fi as the game’s payoff function below.
Fi is governed by D, the number of developers and the release periods of N
days. Kanban is popular among agile teams, so the development team in the
model works a Kanban board with three columns: To-Do, In-Progress and
Done2. Tasks appear as To-Do’s with probability I. On average, a task takes
T days to reach “Done” and increase Fi.

Technical debt is a tragedy of the commons: the codebase quality, the shared
resource or common, progressively degrades as the team pushes kludges.
So, I define the model to make kludges faster to code than fixes at the
expense of codebase quality and with a higher risk of rework. To this end,
I model the probability of reworking a “Done” task as due to a bug. Fixes
take Tf time and are R f likely to require rework, while kludges take Tk
time and are Rk likely to require rework. Kludges reduce the quality of the
codebase and increase the average resolution time by Qk. Of the myriad

2Kanban boards visualise workflows. They have several columns and work items flow
between them [63].

56

4 GTPI: A Game-Theoretic Approach to Process Improvement

Table 4.2: Input and output variables of the simulation model of technical debt: the output
variable Fi corresponds to the payoff function of developers. The process engineer
needs to work with the customer to identify the relevant variables of the process
under analysis.

Input Description

T Resolution time for work items in days.

Ta Resolution time for work items coded with action a ∈ { f , k}.
I Work item arrival probability at the “To-Do” column per day.

Si Heuristic strategy adopted by developer i.

D Number of developers available.

R Rework a work item after it is placed in “Done”.

Ra Rework a work item coded with action a ∈ { f , k} after it is placed

in “Done”.

N Iteration duration in days.

Output Description

Fi Work items finished by developer i.

actions developers can take, the simulation model gives a developer only
two: write a kludge or code a time-consuming fix, as Figure 4.4 shows. The
simulation model must be validated against data with respect to the targeted
behaviour, which is defined in cooperation with the customer. In essence,
one statistically compares the simulation outputs with actual process data
[65]. Consolidating data across sources is non-trivial and time-consuming: I
discuss how one might approach this problem in section 4.3.

The EGTA approach also requires a set of heuristic strategies. These strategies
model player behaviour, and the game designer employs mechanism design
to control their adoption in the empirical game improvement step. Ideal
candidates are behaviours we want to encourage or discourage. To obtain the
strategies players actually adopt, we extract data from bug tracking systems,
source code repositories, eliciting them from the customer or domain experts,
or other relevant data sources. When the available data is insufficient, we
turn to experts to expand the strategy catalogue, keeping in mind that the
number of strategies determines the size of the game.

The EGTA model of technical debt uses two strategies that I believe are worth

57

4 GTPI: A Game-Theoretic Approach to Process Improvement

Figure 4.4: Developers in the technical debt simulation: the implementation of work items
can be fixes or kludges. Fixes demand more time but are less likely to require
rework. Kludges are quick but are more likely than fixes to be reworked. Also,
kludges negatively impact codebase health.

exploring. The first commits proper fixes up to a week before the release,
when, due to pressure, it shifts to pushing kludges. This behaviour favours
fixes over kludges, most of the time. The second is sensitive to the work items
accumulating in the “To-Do” column: when the “To-Do” backlog exceeds 2
items, it starts committing kludges. In a heavily loaded project, this strategy
favours kludges. While actual player strategies will be some more subtle
mix of fix and kludge, I have picked two extremal strategies to study how to
reduce kludging. In focusing on extremal strategies, I am simply seeking to
make the process resilient to unwanted behaviour, following a long tradition
in mechanism design [66].

This model of technical debt is simple by design in order to capture funda-
mental behaviour. The key assumption is that the aberrant behaviour that
I seek to capture has such strong signal that a simple model can capture
it. Also, the explanatory power of simple models greatly favours process
adoption. I believe customers and practitioners will be more positively in-
clined towards process changes justified using concepts they can understand.
Further, capturing the essence of the phenomena under study in a simple

58

4 GTPI: A Game-Theoretic Approach to Process Improvement

model generates more flexible models. Indeed, cutting corners is not unique
to software. With just a few modifications, we could easily port the simula-
tion model to non-software domains. Below, I show how the model suggests
a simple, inexpensive solution to budget-driven technical debt: “All models
are wrong but some are useful”, G. Box.

From the simulation model and the heuristic strategies, I obtain the heuris-
tic payoff matrix by simulating each of the table entries and including the
expected values over a number of iterations. This payoff matrix represents
the game-theoretic model. Once I have the payoff matrix, I obtain its equi-
libria. Nash equilibrium calculation is a vast and diverse area with many
options [19]. I rely on the Gambit game solver: a software tool that con-
tains ready-to-use implementations of equilibrium calculation algorithms,
facilitating quick experimentation [67].

For demonstration purposes, let us model a small team working under
heavy load, with D = 2 and I = 1.0. For realistic parameter values, I rely
on information extracted from the Eclipse Platform’s bug repository. An
annual release has T = 29.79, N = 360, and a raw rework probability of
R = 0.069 [68]. I want to emphasise that I do not assume that the Eclipse
platform is kludge-prone. Kludges are more prone to rework than fixes, so
I adopt Rk = 1.05× R and R f = 0.9× R. To reflect the negative impact of
kludges on bug resolution time, I set Qk = 0.05× T. Finally, kludges take
less time to code than fixes, hence Tk = 0.75× T and Tf = 1.1× T.

I simulated each heuristic payoff table entry for 100 releases and recorded
the average Fi per developer. Table 4.3 shows the resulting heuristic payoff
matrix. Gambit finds a single equilibrium where both developers adopt
the kludge-intensive strategy. This outcome matches the itchy behaviour
identified at the first stage of GTPI, and the empirical game model offers an
explanation: developers have an incentive to kludge instead of generating
proper fixes.

4.2.2 Software Process Improvement

Following design, we proceed with the empirical game improvement step.
The goal is a process whose corresponding empirical game has a single

59

4 GTPI: A Game-Theoretic Approach to Process Improvement

Table 4.3: Payoff matrix after the empirical game design stage in Figure 4.2: it has a single
Nash equilibrium where developer A and developer B adopt only the kludge-
intensive heuristic strategy.

B: fix-intensive B: kludge-intensive
A: fix-intensive A = 9.80, B = 9.80 A = 8.34, B = 10.77
A: kludge-intensive A = 10.77, B = 8.34 A = 9.06, B = 9.06

Table 4.4: Payoff matrix after the empirical game improvement stage in Figure 4.2: it has
a single Nash equilibrium where developer A and developer B adopt only the
fix-intensive heuristic strategy.

B: fix-intensive B: kludge-intensive
A: fix-intensive A = 9.79, B = 9.79 A = 8.40, B = 7.77
A: kludge-intensive A = 7.77, B = 8.40 A = 6.83, B = 6.83

equilibrium where the heuristic strategies we believe beneficial have high
probability. To remove technical debt, we seek an equilibrium where the
fix-intensive strategy has a significantly higher probability than the kludge-
intensive one.

The analysis of Table 4.3 shows that the advantage of kludges — a reduced
coding time — is worth their cost — a higher rework probability — so it
becomes dominant at equilibrium. The absence of a code quality control
mechanism before committing makes kludges very cheap, which translates
in a progressive deterioration of codebase quality. Thus, I knew any solution
should make kludges more expensive. Adopting pair programming can
accomplish this but, due to its cost, I did not consider it. I posited that adding
a part-time experienced code reviewer who can detect 10% of the kludges
would be sufficient and also cost effective. So, I updated the simulation
model with Rk = 10% and use it to produce payoff values for a new heuristic
payoff table. In this configuration, Gambit found three equilibrium profiles
and in one of them both agents perform the kludge-intensive strategy, which
was far from ideal. However, when I set Rk = 25% and rebuild the payoff
matrix, shown in Table 4.4, its equilibrium analysis produced the desired
outcome: a single equilibrium where both players adopt the fix-intensive
strategy.

The last step is the process deployment. The results of this analysis would be

60

4 GTPI: A Game-Theoretic Approach to Process Improvement

pointless without a feasible deployment strategy. The improved process is
deployable: most software teams already review commits. Since we only
require a 25% kludge detection accuracy, the reviewer needs only to perform
a lightweight quick-pass.

4.3 Practical considerations

Adopting GTPI is challenging; data gathering, technical validation, and
securing customer and performer acceptance is hard. I will use the following
scenario to illustrate these challenges.

Imagine a large organisation whose flagship software product has been under
constant development for years. Even though software products tend to grow
by adding features, over time they also lose some of them. These lost features
obsolete some tests. The problem is that this subset is largely unknown
and, in practice, rarely removed. The main reason is that the engineering
time needed to identify these useless tests with certainty is significant. Also,
mistakenly removing a useful test can cost a software engineer their job.
There are some — perhaps folkloric — stories of engineers losing their jobs
because they removed a test that would have detected a security vulnerability.
These factors explain why potentially useless tests are rarely removed, as
illustrated in Figure 4.5. This wastes testing resources.

I call this scenario the tragedy of the test suite since it constitutes a tragedy of
the commons: the test infrastructure is a shared resource that self-interested
software engineers spoil by constantly adding tests without removing un-
needed ones. Over time, maintaining and running the test infrastructure
becomes more expensive, and test execution takes more time, which is harm-
ful for the engineering team and the organisation as a whole. Adopting a test
prioritisation technique can mitigate the problem but it does not in general
remove it. Ideally, when software engineers modify, or remove, functional-
ity that makes some tests redundant, they should proceed to remove them
from the test suite. Right after performing the change, engineers are in good
position to identify the obsolete tests, when compared to a spring cleaning
approach done later. I believe it is more efficient, and therefore cheaper, to
incentivise software engineers to keep the test suite clean and correct. GTPI

61

4 GTPI: A Game-Theoretic Approach to Process Improvement

Figure 4.5: The tragedy of the test suite: job insecurity makes software engineers deliver more
features without removing potentially useless tests. Over time, this behaviour
can cause the collapse of the test infrastructure.

is a good fit for approaching this problem from a strategic perspective, given
the large number of engineers in the company and the diversity of their
behaviour.

4.3.1 Data Gathering

Data gathering is hard in general. Depending on the complexity of the pro-
posed simulation model, the process engineer will need to mine from the
source code repository data regarding active tests, potentially useless tests
and their evolution. Also, the pay-off calculation requires data regarding how
often a deleted test fails to discover a future bug and the consequences for
the developer in case this happens. Obtaining this kind of data can be time-
consuming or even infeasible. It might be the case that the model requires
data that no one thought about collecting before the process improvement
effort. The process engineer needs to start its analysis by designing a plan
on how to build the dataset required for empirical game modelling, and
backstop plans — like proxies — in case the organisation has not collected
the required data.

In the tragedy of the test suit scenario, data identifying obsolete tests is
unavailable because the whole problem evaporates if the obsolete tests are

62

4 GTPI: A Game-Theoretic Approach to Process Improvement

known. Test prioritisation can be an effective proxy for test utility, assuming
it has been empirically validated [69]. The intuition is that the test prioriti-
sation outcome includes more useful tests than obsolete ones. Although is
an imperfect proxy, it can serve as an initial baseline until more elaborate
approaches are put in place.

4.3.2 Technical Validation

As discussed in subsection 4.2.1, after acquiring an adequate dataset the
process engineer must build a simulation model of the process under study.
Software process simulation is a well-known technique in the process engi-
neering domain [11; 10], and there is a rich literature on the topic. It is critical
in GTPI that the simulation model reflect the underlying process with fidelity.
The empirical game improvement stage in Figure 4.2 requires perturbing
a validated simulation model to obtain a process intervention that removes
the undesired behaviour. Improving an imprecise model is a waste of time,
so the validation of the simulation model is of the utmost importance. The
validation of the model has two dimensions: technical and social. I address
the technical validation dimension first.

In the tragedy of the test suite scenario, the simulation model needs the test
execution time distribution as an input. A goodness-of-fit test can be applied
to the data to see if, for example, it behaves according to an exponential
distribution [65, Chapter 9]. Given that the pay-off function depends on
the number of successful test executions, a statistical test can be applied to
samples of the simulation output to verify if they reflect what is observed
in the data [65, Chapter 10]. Simulation model validation is a hard problem,
and several iterations might be needed in order to obtain a model with the
required accuracy. Once the empirical game is ready, the process engineer can
use any software package to calculate its NE. The obtained equilibrium also
needs to be technically validated against the process data. The NE obtained
from the model of the tragedy of the test suite needs to match the useless test
accumulation observed in the organisation.

63

4 GTPI: A Game-Theoretic Approach to Process Improvement

4.3.3 Securing Acceptance

The empirical game model also needs to be accepted by stakeholders: they must
agree that the model accurately captures the process. This is essential since
GTPI’s recommendations are learned from and justified by interventions in
the model, as part of the mechanism design process. The key challenge here
is convincing the customer that the proposed model does not oversimplify.

Once the game-theoretic model is validated and accepted, we can proceed
to the empirical game improvement stage. This stage requires exploring the
space of potential process improvement interventions with a desirable NE
in their corresponding game, as discussed in subsection 4.2.2. Building an
empirical game can be computationally costly — each pay-off matrix cell
needs to be simulated by several iterations — so the search space traversal
needs to be done carefully.

A suggested process improvement intervention can fail if it is not accepted.
Going back to the tragedy of the test suite, if the improved process requires
a no-penalty policy for removing obsolete tests, companies can resist not
punishing the unlucky developer who removed the wrong test. Cost is also
an important factor: if the cost of the proposed intervention is low, convincing
the stakeholders about its implementation should be easier. Given that game
theory has been sparsely used in process engineering, I believe stakeholder
acceptance is the biggest challenge to GTPI adoption.

The process deployment stage also proposes acceptance challenges regarding
process performers, the people doing the actual work. The process engineer
needs to ensure that the adoption of the proposed practice goes as smoothly
as possible. Tool support can be crucial to this end: if the tragedy of the test
suite is improved by minimising the cost of test removal, code analysis tools
would help identify obsolete tests and the impact of its removal. The process
deployment step needs to be monitored constantly, and perform corrective
measures if needed. Without adoption, process improvement fails.

64

4 GTPI: A Game-Theoretic Approach to Process Improvement

4.4 Related Work

GTPI has two phases: 1) in software process modelling, we assess the process
in place by analysing the Nash Equilibrium of its game-theoretic model (sub-
section 4.2.1) 2) then in software process improvement, we use mechanism
design to propose and validate an improved process (subsection 4.2.2). In
the software process literature, a descriptive process model is used to describe
the current practice and a prescriptive model describes the improvements
required for the process to meet its requirements [11]. Hence, GTPI includes
both a descriptive model of the current process and a prescriptive model as an
output of mechanism design.

The Elicit method is an example of a descriptive process model: it is a pro-
cess elicitation method that includes guidelines, a modelling notation and
tool support [70]. Multi-view process modelling is another descriptive process
method, that proposes building a descriptive process model by integrating
the process views of individual process performers [71]. Both approaches
can not represent conflicts among process performers, while GTPI relies on
the equilibrium analysis of the game-theoretic model for this purpose.

Prescriptive process models fall in two categories [11]: the scope of a life-cycle
process model is the complete development process of a software product —
like in the Unified Process [72] and in Cleanroom Software Engineering [73]—
while the scope of an engineering process model is a specific practice within
this process. Statistical testing [74] and hybrid cost estimation [75] are exam-
ples of engineering process models. In this chapter, I use GTPI to produce
an engineering process model to address budget-driven technical debt. As
an outcome, I suggest implementing a code review process to minimise the
the number of kludge commits. Bringing strategic reasoning into process
analysis, to later produce a new actionable process is a key contribution of
this thesis.

Both the development of a prescriptive and a descriptive process model rely
on notation to characterise the software process under study. The Software
Process Engineering Metamodel (SPEM) notation [76] can represent roles,
tasks and work-products. In GTPI, we use game-theoretic notation — like
payoff matrices— for strategic interactions. Yu et al. [28] had already pro-
posed modelling constructs for representing strategic reasoning in software

65

4 GTPI: A Game-Theoretic Approach to Process Improvement

teams, through a strategic dependency model and a strategic rationale one.
These models do not provide the numerical information needed to guide
mechanism design. For this purpose, the equilibrium analysis of GTPI’s
payoff matrices produce probabilities for strategies at equilibrium.

The software process literature references benchmark-based approaches
to software process improvement. In them, the current software process
is compared to a reference model to later assign a maturity level. Two of
the most important reference models are CMMI [77] and ISO/IEC 15504
(SPICE) [78]. Both contain assessment guidelines for a software process.
GTPI is not benchmark-based: it guides process improvement without a ref-
erence, but through mechanism design principles and equilibrium analysis.
Benchmark-based approaches, like CMMI, assign maturity levels to process
areas that group organisational processes. In GTPI, we analyse process per-
formers at the software practice level. This allows us to make an assessment
at a finer granularity than the levels supported by CMMI and SPICE.

66

5 TaskAssessor: A
Game-Theoretic Model of
Priority Inflation

People often break projects into tasks, then prioritise them. More important
tasks, because they produce something of value or because other tasks de-
pend on them, have higher priority. In an issue tracking system with shared
prioritisation tooling, QA engineers, testers, or project managers assign a
priority label to tasks; this label informs a project team about the fixes or
features the next release should incorporate. Priority inflation occurs when an
assessor increases the priority of an issue above their true assessment, so that
tasks they care about are delivered more quickly [12; 79]. By undermining
priority labels, priority inflation can misallocate developer time.

I contend that priority inflation hampers software development for three rea-
sons: 1) Despite the fact that most teams would prefer to work on important,
unclaimed tasks first, I found that teams using GitHub tend not to use its
shared prioritisation tooling when its use is optional (subsection 5.2.1); 2) I
surveyed software development professionals who reported that priority in-
flation is frequent and significantly misallocates resources (subsection 5.2.2);
and 3) Industry leaders have deployed processes to triage bug reports and
correct inflated priorities [80; 81].

Standard game-theoretic models of real-world scenarios become intractable
when dealing with many players or numerous strategies [8]. Having a dataset
with hundreds of bug reporters and multiple strategies represents a challenge
for classic game-theoretic approaches. To overcome this, I used GTPI (chap-
ter 4) to understand priority inflation, of both new features and bug repair

67

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

Figure 5.1: GTPI’s software process modelling phase for priority inflation: to identify the
process anomaly, we conducted a developer survey and a study on prioritisation
in GitHub labels. TaskAssessor, the empirical game model, was built based on a
bug resolution corpus from the Apache Software Foundation.

tasks. As shown in Figure 5.1, in this chapter I elaborate on the software pro-
cess modelling phase of GTPI for addressing priority inflation. TaskAssessor,
the empirical game model of priority inflation, is the output of this phase. It
is the first tool to apply empirical game-theoretic analysis (EGTA) to software
engineering.

TaskAssessor simulates a process with prioritised tasks. Given an EGTA model
of that process, it computes the model’s Nash equilibrium to diagnose prob-
lems. A task prioritisation process immune to priority inflation would pro-
duce a model with a single equilibrium where all the players — people filing
tasks or reporting bugs — adopt a strategy under which players honestly
prioritise tasks.

To build the EGTA model, I used 42,620 issues collected from the JIRA
issue tracker of the Apache Software Foundation. From them, I extracted
prioritisation strategies. JIRA priority labels combine technical severity and
business value or risk of an issue. End users often confuse and conflate the
two [82]. Focussing on priority inflation means that I am concerned with the
proportion of resolved tasks that are, in fact, high priority. This is relevant
to software development teams that seek to maximise the number of tasks
resolved. So, I validated that the simulation component of TaskAssessor is
sufficiently accurate with respect to the proportion of high priority tasks
completed (subsection 5.3.4).

68

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

5.1 The Assessor’s Dilemma

I now showcase game-theoretic modelling in a software development context
and use it to illustrate priority inflation at Foo Inc, a small or medium-sized
enterprise (SME).

Economic models represent behaviours where human motivation can be
expressed as a function of price [83]. Neoclassical economists like Alfred
Marshall believed that money is also a suitable measure for intangibles like
desires and aspirations. The magnitude of a person’s preference towards a
product or service can be approximated as the amount of money this person
is willing to pay for it: this applies to both smartphones and to political
platforms. The ability to approximate motivations — although imperfectly
— with real numbers is what makes economics “the most exact of social
sciences” [83]. In particular, game-theoretic models require expressing a
player’s payoffs as real numbers [13]. In the example below, I meet this
requirement by assuming Foo Inc has a bonus policy tied to bug fixing
measures, like the companies studied by Laplante and Ahmad [84].

Foo Inc uses an Enterprise Resource Planning (ERP) system for its daily
activities. Alice and Bob work in Foo Inc’s quality assurance team. They
report bugs to a development team that cannot fix all known bugs, so Alice
and Bob are competing for development time. Foo Inc wants its developers to
fix more important bugs first, so it rewards QA engineers who report higher
priority bugs that the developer team fixes with a higher bonus [84].

Foo Inc’s finance manager tells Alice that the ERP system has two problems
— the cash management module produces incorrect figures and the financial
consolidation module is too slow. The first problem is severe and costs the
company $10,000/day; the second is inconvenient, costing only $1,000/day.
These figures are arbitrary, but consistent with the cost these bugs might
impose on an SME, like Foo Inc. I picked them to separate a severe bug from
a trivial one by an order-of-magnitude. At the same time, Foo Inc’s Human
Resources Manager informs Bob that the payroll module crashes every day
and that the learning module misplaces images when accessed from mobile
devices. The payroll bug is high priority, costing $10,000/day; while the
learning module bug is minor, costing only $1,000/day since Foo Inc does
not yet widely use mobiles.

69

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

Table 5.1: Pay-off matrix for the assessor’s dilemma: each cell is the payoff Alice (A) and
Bob (B) obtain, under the combination of actions each takes.

Bob: accurate Bob: inflate
Alice: accurate A = 125, B = 125 A = 100, B = 150
Alice: inflate A = 150, B = 100 A = 112.5, B = 112.5

At Foo Inc, a fixed, high priority bug increases the reporting QA engineer’s
bonus by $100, while the resolution of a trivial bug increases it by $50. I
assume that Foo Inc has found that these values are sufficient incentive and
within the bonus it is willing to pay. For the next release, the development
team can only fix three of the four bugs that Alice and Bob report. Thus, they
have both the means and the motivation to inflate their bugs’ priorities. Ta-
ble 5.1 shows Alice’s and Bob’s expected bonuses, assuming that developers
resolve higher priority bugs first and that bugs with the same priority have
the same probability of being fixed. For example, when both Alice and Bob
inflate their priorities, all four bugs are labelled high priority and have the
same probability of getting fixed. In this case, Alice’s and Bob’s expected
pay-off is

0.5(0.5× $100 + 0.5× $50) + 0.5($100 + $50) = $112.5.

Let us analyse Table 5.1 from Alice’s perspective. If Bob accurately prioritise
his bugs, Alice’s best option is to inflate hers since she would obtain $150
instead of the $125 she would receive if she too were honest. If, instead, Bob
inflates his bugs’ priorities, Alice’s best option remains inflating, since her
bonus would be $112.5 vs. $100. Thus, Alice is better off inflating no matter
what Bob does. This same analysis symmetrically holds for Bob. In game
theory, this outcome is the Nash equilibrium of the game: no player has an
incentive to change their actions in response to any other player’s actions.

This Nash equilibrium is bad for Foo Inc: it represents a bug repair process
that encourages testers to inflate priorities and misallocate developer time.
Specifically, the Nash equilibrium entails 0.5 probability that one of the
high priority bugs is not fixed in the next release. In monetary terms, the
equilibrium scenario reduces costs only by $16,500/day, not the $21,000/day
that could have been achieved.

70

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

Also, Table 5.1 shows that, if Bob and Alice honestly reported priorities, they
would be better off than if they took the actions leading to the equilibrium
— $125 vs. $112.5. Rational play, however, dictates priority inflation; hence,
Alice and Bob face a dilemma. I call this game the Assessor’s Dilemma, since it
is an instance of the Prisoner’s Dilemma [85].

5.2 Identifying the Process Anomaly

Prioritisation is challenging and important, since it drives how time, money
and energy are spent [86]. Thus, I take for granted that prioritisation is
essential for efficient and effective bug repair. Without prioritisation, one
tends to fall into the trap of neglecting important tasks for the merely urgent1.
Task prioritisation is also at the core of agile software development [63]. For
example, Scrum development starts with a prioritised list of tasks created by
the project sponsor, called the product backlog. In Extreme Programming,
low-priority tasks — called slack — are included in each iteration to be
discarded first in case of unexpected delays.

Shared prioritisation tooling (SPT) is a means for a team to share their assess-
ments of task priority. The shared dimension of SPT requires the assessment
to be public among team members, so they can both avoid overlapping and
prioritise their work. By tooling I want to include only software solutions in
this category. Mental prioritisation and pen-and-paper mechanisms do not
constitute SPT solutions. Bug tracking systems — like Bugzilla and JIRA —
have an SPT as part of their functionality. The SPT on bug tracking systems
requires the inclusion of a measure of the importance of the bug filed. Bug
importance has two dimensions: impact on system functionality — called
severity — and impact on system value — called priority [88]. For example,
a web application that crashes on Internet Explorer 5.0 has a high severity
since functionality is lost, but low priority if the user base of that browser is
minimal.

1In a speech in 1954, Dwight D. Eisenhower said “I have two kinds of problems, the
urgent and the important. The urgent are not important, and the important are never
urgent.”. This quote is the basis of the Eisenhower matrix, to which I refer here [87].

71

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

5.2.1 Shared Prioritisation Tooling Adoption

SPT exploits collective intelligence to assess and focus work. To find out how
widely SPT is used, we ask:

RQ: Do developers adopt shared prioritisation tooling?

The GitHub platform offers issue tracking functionality for software projects,
but unlike other issue trackers like JIRA, it does not assign priority labels
to issues by default. Instead, GitHub offers a generic labelling system, that
developers can use to “signify priority, category, or any other information
you find useful” [89].

Thus, to answer this research question, I performed an exploratory study
over GitHub repositories. I collected GitHub projects and counted how many
use GitHub’s labelling system as SPT. To determine whether a project is
using labels as SPT, I applied two heuristics to its label’s text and colour: a
project uses SPT 1) if the tokenisation and stemming of label text snippets
intersects a bag of priority related words or 2) if its colour scheme suggests a
priority ranking. For #1, I took the list of priority-related words from the field
names and default priority rankings used by JIRA v6.3 (subsection 5.3.1),
JIRA v6.4 [90] and Bugzilla [91] . For #2, I used the semaphore colours (red,
yellow and green) to identify repositories that colour-encode priorities, as
suggested by industry practitioners [92] [93]. I evaluated the heuristics by
applying them to 60 GitHub repositories, sampled uniformly. I manually
assessed these projects’ use of SPT and found that the heuristics have an F1
score of 0.8 for repositories using labels as SPT.

I applied these heuristics to the labels I extracted from the 600 most forked
repositories created between January 2017 and April 2018. The GitHub de-
velopment model requires contributors to first create a copy of the repository
via a fork, and then submit code contributions using pull requests [94]. The
number of forks is a good indicator of project activity [95], as it is highly cor-
related with the number of contributors, number of commits, and number of
branches [96]. I conservatively considered that the most forked repositories
are more likely to use SPT, as they are more likely to have active teams that
would benefit from the coordination that SPT provides. The finding is that

72

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

developers on GitHub, a pre-eminent developer collaboration site, rarely use
its prioritisation facilities:

Finding: Only 6.3% of 600 uniformly sampled GitHub projects adopt shared
prioritisation tooling.

To the extent to which GitHub generalises, development teams rarely use
SPT when its use is optional. I argue that this is not evidence that shared
prioritisation is unneeded, but rather evidence that existing SPT is not fit
for purpose. In the next section, I describe a survey of developers who use
SPT. The key finding is that priority inflation is, indeed, a problem. This may
explain the initial finding that developers do not adopt SPT when given the
option.

Threats to Validity: The study faces the standard external validity threat:
it generalises only to the extent GitHub does. I uniformly sampled the most
active GitHub repositories to mitigate this threat. Since I rely on the number
of forks as a proxy measure for projects more likely to use prioritisation, the
study faces a construct validity threat. This threat is mitigated by empirical
studies that show the number of forks is correlated with project activity [95;
94].

5.2.2 The Cost of Priority Inflation

Previous finding shows developers generally tend not to use SPT when its
adoption is optional. Here, I investigate whether priority inflation is the
reason, via an online survey.

Participant Selection: I solicited survey participants from Apache Soft-
ware Foundation (ASF) contributors and using social networks. I obtained
ASF developer’s contact information from the dataset built mining their JIRA
and Git repositories (subsection 5.3.1). After contacting them by email, 39
contributors took the survey. My supervisors and I also shared the survey on

73

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

Figure 5.2: Role in the development process: the horizontal axis represents the number of
participants per role. The survey allowed the selection of multiple roles per
participant. This figure represents the answers of 152 software professionals.

social networks (Facebook and Twitter), obtaining 113 responses from soft-
ware engineers. Convenience sampling2 is appropriate given the exploratory
nature of this study [97].

Figure 5.2 reports the roles covered in the software development process
by the survey respondents in their organisations. The distribution of data
in Figure 5.2 indicates that the sample is diverse, with an emphasis on the
developer role. Since I did not know how many roles a respondent might
perform, I allowed them to select more than one role. Only-developers are
the largest group with 34 participants, followed by developer-architects with
13 participants. 3 participants reported performing all 5 roles included in
the survey. Participants are also diverse with respect to expertise: the most
experienced reported 10 years of industrial experience, while the most novice
only 1. The average participant experience is 7.14 years. I posted complete
survey responses at the project page [98].

2In convenience sampling, the main selection criteria is ease of collection.

74

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

Table 5.2: The questionnaire presented to 152 software engineers.
Bug Reporting Duties
R1: When you create a bug report, which fields do you usually fill out?
R2: If a bug report changes, who changes it?
R3: When does your bug report need updating?
R4: In what percentage of your bug reports does the priority field change?
R5: When writing bug reports, how often do you overstate the priority to speed resolution?
Bug Fixing Duties
F1: How useful are bug reports for fixing bugs?
F2: In what percentage of your bug reports are the priority fields useful?
Bug Prioritisation
P1: How many priority levels are typically supported by the bug reporting system(s) you use?
P2: How many priority levels do you think are needed for your current project(s)?
P3: Considering your current software project(s): How often is priority understated (or deflated) in bug reports?
P4: Considering your current software project(s): How often is priority overstated (or inflated) in bug reports?
P5: Is priority inflation/deflation affecting your work?
P6: If priority inflation/deflation is affecting your work, please detail how and what steps are being taken to address it.

Questionnaire: I surveyed using the questionnaire in Table 5.2. While ques-
tion P6 is an open-ended question, the rest of the questionnaire is multiple-
choice. The questions fall into three groups by role: bug reporting, fixing, and
prioritisation. I instructed participants to only answer questions pertaining
to roles they actually perform.

An indicator that priority inflation may have occurred is that the priority
value filled by the original reporter was later corrected by another member
of the team, such as a software developer or a business analyst. I formulated
the survey questions about bug reporting to investigate this behaviour. In
the limit, as priority inflation becomes the rule, the priority field of issues
becomes irrelevant, since developers will learn to ignore it. The survey’s
bug-fixing questions seek to elucidate the relevance of the priority field
information for bug fixers, when compared with other fields included in the
bug report. I asked survey participants about the usefulness of a list of bug
report fields, including “steps to reproduce”, “attached screenshot” and, of
course, “priority”. Survey participants can then indicate, for each field, if
they normally find useful information, or if they find blank, incomplete, or
incorrect information. Finally, the bug prioritisation questions ask developers
directly how prevalent priority inflation (or deflation) is, how it impacts their
work, and what measures are taken to alleviate it.

RQ: How does priority inflation impact software development teams?

The bug prioritisation questions aim to discover whether the bug reporters

75

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

Table 5.3: Survey responses to questions about the frequency of priority inflation and defla-
tion in the respondent’s current software project.

Anomaly Question Never Occasionally Frequently

Priority Inflation P3 11% 64% 25%

Priority Deflation P4 20% 65% 15%

assign priorities that differ from their true assessment. Reporters can dis-
honestly over or understate bug priority. As seen in Table 5.3, 25% of the
participants reported working on projects where priority inflation is fre-
quent while another 64% reported that priority inflation occurs occasionally.
Regarding priority deflation, 15% work on projects where the bug report pri-
orities are frequently understated, while 64.63% report that deflation occurs
occasionally.

31% of those who answered P5 affirm that understated/overstated priorities
have a significant impact on their daily duties, while 50% of them believe
the impact is minimal. P5 is inadvertently ambiguous: I contend that most
readers would interpret it to be one-sided and only about negative impact,
but I recognise that some may interpret it as two-sided. To address this, I
analysed P6 in depth and found that from the participants that include an
impact description, 82% reported a negative impact, resource misallocation
being the most common response with 37%. These numbers show that many
participants found that priority inflation has a negative impact on their daily
activities.

Question P6 of the survey is optional. Among 65 responses, the most popular
measures were the following: 1) 34% reported a gatekeeping procedure, where
a third-party verifies the priority included by the original reporter. This
implies that the reported priority might become irrelevant if the gatekeeper
unilaterally overwrites it; 2) 12% mentioned user training, indicating the
requisites and characteristics required by each level on the priority hierarchy.
In summary:

Finding: In a survey of 152 developers, 31% of respondents reported that
inaccurate priorities misallocated development effort, 25% stated that priority
inflation occurs frequently in their projects, and 15% reported working on
projects where priority deflation is frequent.

76

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

Figure 5.3: Empirical game design stage for TaskAssessor.

This finding suggests that priority inflation is a common problem in software
teams adopting SPTs and that it has a negative impact on their daily activities.
Using convenience sampling to recruit participants for the survey is a strong
threat to this finding’s external validity. It is, however, standard practice in
an exploratory study such as this [97].

5.3 Empirical Game Design

Figure 5.3 describes the empirical game design stage (subsection 4.2.1) of
TaskAssessor, the approach for modelling priority inflation. It has three inputs.
Two involve strategies, which players use to decide which actions to take.
The game analyst must find sufficient process data from which to extract
empirical strategies, strategies they observe players following in the data,
and inputs for the process simulator. Heuristic strategies are obtained from
domain experts. The game analyst can also propose heuristic strategies to
test hypotheses about how participants interact in the game. The analyst
must generate a reduced game to make the analysis tractable. They merge
the empirical and heuristic strategies, then feed them, along with the relevant
process data and the reduced game, to the simulator to compute the payoff
matrix. Finally, they compute the Nash equilibria.

With Nash equilibria in hand, the game analyst compares them with the goals
of the process they are analysing. When they apply TaskAssessor to ineffective
processes, they expect to find mismatches between the desired equilibrium
and a player’s equilibrium strategies. They diagnose how a player’s action
set and incentives cause these mismatches, then use mechanism design to

77

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

Table 5.4: The TaskAssessor Corpus of Issues extracted from JIRA and GitHub.

Project Name Drive-by R. Engaged R. Issues Non-default

OFBIZ 151 95 5120 51.5%

CASSANDRA 281 116 7417 53.7%

CLOUDSTACK 115 99 7463 47.9%

MAHOUT 54 25 1044 36.8%

ISIS 15 5 1125 67.3%

SPARK 35 14 1330 44.4%

consider changes to the action set and rewards to reduce or eliminate these
mismatches.

This section introduces and validates TaskAssessor, the game-theoretic mod-
elling approach for bug repair and issue resolution. In subsection 5.3.1, I
describe the bug repair and issue resolution corpus with which I built and
validated TaskAssessor. Modelling task prioritisation requires deciding what
is relevant and important to capture and what is not. In subsection 5.3.2, I
detail those decisions and subsection 5.3.3 describes how I built TaskAssessor.
In subsection 5.3.4, I validate TaskAssessor, then subsection 5.3.5 discusses the
threats to TaskAssessor’s validity. In subsection 5.3.6, I describe how to use
TaskAssessor.

5.3.1 Bug Repair and Issue Resolution Corpus

I collected bug repair and issue resolution data from open source projects in
the Apache Software Foundation JIRA Repository (version 6.3.4) [99], using
its public REST API [100]. JIRA manages issues, which represent software
artefacts, such as bugs, feature requests, or tasks. From these data sources,
I built a corpus of issue lifecycle data. In the corpus, 53% of the issues
are bug reports. I dropped JIRA projects that I could not match with a Git
repository [101], because I used Git commits to determine whether or not an
issue was resolved. After this, 15 projects remain.

The game-theoretic model of bug prioritisation is suitable for scenarios where
1) teams resolve bugs according to their assigned priority and 2) QA engi-

78

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

neers are interested in obtaining fixes for their reported bugs and therefore
compete for developer time and attention. Such projects are subject to the
assessor’s dilemma. Despite the cost of developer time, many projects do not
use the priority field, so I exclude them. I consider a project is not actively us-
ing priorities if the proportion of issues with non-default priorities is less than
30.0%, the rounded median of non-default priority usage over the dataset.
This project-using-priority filter left 6 projects and their issues, as shown
in Table 5.4. When building and evaluating TaskAssessor, I consolidated the
issues across these projects to maximise the total data available.

Reporters that participate sporadically in bug repair and issue resolution are
not really involved in the task assessment game and will not learn from or
respond to changing rewards: they are not acting as QA engineers. I define an
engaged reporter as one who files at least 10 different issues on 10 different
days. Under this definition, 53.3% of reporters are engaged. I deem the rest
to be drive-by, unengaged reporters, and discard their issues. Under this
engaged-reporter, i.e. QA engineer, filter, I extracted 23,499 issues from these
6 projects, reported between May 2006 and November 2015 and involving
354 reporters. The code to extract the corpus from JIRA is available at the
project page [98].

I applied the using-priorities and engaged-reporter filters to focus on people
and projects actively using JIRA’s shared task prioritisation tooling. They can,
of course, also introduce bias. Ablation showed that removing these filters
just slows experimentation without changing the results. Game generation
for distributed prioritisation under reduced bandwidth (subsection 6.1.1)
takes 96% more time without the filters. When only the engaged-reporter
filter is active, game generation takes 44% more time. This figure is in 28%
when the only filter active is using-priorities. All three of these scenarios
produce the same Nash equilibria.

Out-of-the-box, JIRA supports five priority labels: Blocker, Critical, Major,
Minor, Trivial [102]. JIRA defines these labels, but few developers know
JIRA’s definitions and rely instead on their meanings in ordinary language.
These meanings naturally split these five labels in two: {Blocker, Critical,
Major} and {Minor, Trivial}. Within each subset, distinctions can be hard
to make: is Blocker worse than Critical? Further, different definitions and
rankings will emerge in different projects, especially in a corpus that is not

79

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

Table 5.5: Strategy catalogue S for the task prioritisation game. PI and PD represent the
conditional probabilities that a QA engineer inflates or deflates an issue.

Strategy PI PD Cluster Size Origin Description

Honest 0.00 0.00 – Heuristic Players adopting this strategy always report their priority assessment

Always Inflate 1.00 0.00 – Heuristic Players adopting this strategy report every bug discovered as high priority

Empirically Honest 0.05 0.01 50.39% Apache data Empirical strategy with the lowest probability for dishonesty

Empirically Inflater 0.19 0.02 9.06% Apache data Empirical strategy with the highest probability for priority inflation

Persistent Deflater 0.08 1.00 7.87% Apache data Empirical strategy with the highest probability for priority deflation

Regular Deflater 0.04 0.58 16.54% Apache data Empirical strategy with a significant probability for priority deflation

Occasional Deflater 0.06 0.26 16.14% Apache data Empirical strategy with a high probability for priority deflation

Google-scale. For these reasons, I reduced these labels to two, mapping
Blocker, Critical, Major to High and Minor and Trivial to Low. This boosts
signal and allows focussing on harmful mislabelling of priority (whether
inflation or deflation).

5.3.2 Game Models with TaskAssessor

Developers are expensive; their attention is a scarce resource for which
new features and bug fixes compete [103]. Some software processes rely on
“Quality Assurance” (QA) engineers to report issues, monitor their progress,
and verify their resolution. I modelled such processes as a tragedy of the
commons in which QA engineers — the players — compete with each other
for the shared commons of developer time.

The focus is priority inflation in shared prioritisation tooling, so, in the
game, QA engineers can inflate, deflate, or honestly report an issue’s priority.
In line with the competent programmer hypothesis [104], I assume QA
engineers are competent and usually know the ground truth priority of
an issue. In this work, I am using classic game theory, in which players
behave rationally. Thus, QA engineers seek to maximise the number of their
issues that developers resolve. Later sections show that this simple model is
sufficient to capture actual issue prioritisation behaviour and to provide a
solid foundation for a mechanism design solution to the problem of priority
inflation. Considering behavioural game theory is future work [53].

In a game model produced by TaskAssessor, a QA engineer’s strategy is their
propensity to change an issue’s ground truth priority. Let Pg be a random

80

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

variable that denotes the ground truth priority of an issue, Hq be a random
variable for the QA engineer q reporting an issue as high and Lq denote
reporting an issue as low priority. A QA engineer’s inflation probability is
PI = P(Hq|Pg = L); it is a QA engineer’s conditional probability to inflate a
low priority task. A QA engineer’s deflation probability is PD = P(Lq|Pg = H);
it is a QA engineer’s conditional probability to deflate a high priority task.
Hence, the probability for a QA engineer to honestly assess an issue is 1− PI
and 1− PD. A QA engineer is “honest” if s/he never knowingly misprioritises
an issue, i.e. PI = PD = 0 for her/him, and as “dishonest” if s/he always
inflates or deflates, i.e. PI = PD = 1 for her/him.

To determine the players’ empirical strategies, I looked to the data. To learn
an engineer’s strategy is to learn his PI and PD. To do this from data, I needed
the ground truth. Using labelled data is a possibility, but I adopted a different
strategy: the expedient of 3rd party assessment. In the data set, 3rd party
assessment manifests itself as a report whose priority label was changed by a
3rd party; 254 bug reporters filed such a report. In subsection 5.3.5, I discuss
the construct threat this proxy for misprioritisation poses.

To extract empirical strategies from the corpus, I clustered observed strate-
gies. I used the k-means algorithm implementation from scikit-learn [105] to
cluster the players and infer these strategies. In Table 5.5, the rows whose Ori-
gin is “Apache data” show the empirical strategies obtained. I am also very
interested in assessing how the honest and “Always Inflate” (PI = 1, PD = 0)
strategies perform in the assessor’s dilemma because I want to encourage
honest prioritisation and discourage inflation. Thus, I added these two heuris-
tic strategies (subsection 3.3.1) to the empirical strategies I mined. Table 5.5,
as a whole, is TaskAssessor’s strategy catalogue.

Surprisingly, deflation dominates inflation in three of the five empirical strate-
gies in Table 5.5; indeed, persistent deflaters deflate all high priority issues
that pass through their hands. Just over 40.0% of all reporters are deflaters.
Clearly, a large portion of reporters are focusing on reducing the number
of high priority issues that developers see, rather than merely maximising
the number of their issues that developers fix. A payoff function that counts
all of a QA engineer’s issues, would implicitly penalise deflators and fail
to explain their behaviour. Thus, the payoff function is simply the count
of issues that a QA engineer files as high priority that the developer team

81

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

fixes:
payoff (r) = ∑

f∈F
h(r, f), (5.1)

where F is the set of all fixes or features the development team implements
and h returns 1 if r files f with high priority.

A classical game consists of players, actions, strategies, and payoff functions
(chapter 2). Here, I have described such a game. Unfortunately, classical
game theory does not scale.

5.3.3 TaskAssessor under Twins and EGTA

Now, let us discuss how to reduce the game to make its analysis of priority
inflation tractable. It requires two major changes. Working top down, I re-
duced the number of players by clustering them following the Twins Player
Reduction, then implemented the payoff function as a simulation model to
handle temporality, as required by EGTA (subsection 3.3.1).

PlayGame is the implementation of TaskAssessor’s process simulator compo-
nent (Figure 5.3). Table 5.6 describes its parameters. ND is the size of the
development team. TaskAssessor uses the queueing discipline of the devel-
opment queue to model whether developers consider the reported priority.
Mdev = Priority specifies total trust in priority labels; Mdev = FIFO specifies
total mistrust. When Mdev = Priority, tie breaking is FIFO. A simulation run
stops when the development team fixes N f bugs.

I also assume that bug fixes and new features are independent from each
other and can be resolved with a single commit, since evidence suggests
this happens in the majority of cases [106]. QA engineers file reports in the
tracking system in batches after executing a group of test cases. Hence, I
modelled report arrival with two random variables: the time between batches
TIA and the number of reports per batch Nb.

Each report has a ground truth JIRA priority Pg and is assigned to QA engi-
neer R. The JIRA project observed that its users tended to confuse severity,
the technical difficulty of a task, with its priority, its value to an enduser [82].
Thus, they decided to only keep one field — priority — whose purpose is to

82

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

Table 5.6: PlayGame’s input variables. Random variables are sampled during a run until the
number of bugs fixed equals N f . The nonrandom variables are constant during a
simulation run.

Nonrandom Parameters

R The set of QA engineers (reporters).

ND Size of the developer team.

Mdev Queuing discipline of the development queue (FIFO or Priority).

Nr Number of simulation runs.

N f Number of bugs to fix in a simulation run.

Random Parameters

TIA Interarrival time of report batches.

Nb Count of bug reports contained in a report batch.

Pg Ground-truth priority of a bug (High or Low).

R QA engineer (reporter) who filed a report or issue.

{Sr} Set of mixed strategies over inflate/deflate/honest each reporter r adopts.

Trp Resolution time of issues/bug reports with JIRA priority p.

Qp Probability the developer team ignores a bug with priority p.

define “the order in which engineers should work on issues” [107]. Since I
used JIRA data, I used JIRA priorities. A QA engineer’s assessment strategy
Sr governs the priority they assign to a task. Tasks require different time to be
fixed, which depends on their JIRA priority; Trp determines, for each priority
p, the amount of time to resolve a task. Developers ignore some reports;
Qp captures this probability. To set these parameters to TaskAssessor, I built
empirical probability distributions based on a linear interpolation between
sample quantiles [108]. I define I to be a tuple of settings bound to all the
parameters in Table 5.6. I treat I as an associative array and use I[name] to
access its components.

Under the Twins Player Reduction, ours is a symmetric, two player game.
From |S| and I, TaskAssessor, as defined in Algorithm 1, forms the payoff
matrix in Table 5.7. The coordinates of each cell are a pair of actions, i.e. an
action profile. Each cell contains Twins(s1, s2, I), the payoff for each player
under that action profile.

Algorithm 2, which defines Twins, manifests TaskAssessor’s use of the Twins

83

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

Algorithm 1 [TaskAssessor] This algorithm uses Twins, Algorithm 2, to con-
struct a payoff matrix for the priority inflation game.

Input: S, The strategy catalogue, defined Table 5.5.
I, tuple of PlayGame’s simulation parameters in Table 5.6.

Output: payoffMatrix, TaskAssessor’s payoff matrix.
1: for all (si, sj) ∈ S× S do
2: payoffMatrix[i, j] := Twins(si, sj, I)
3: return payoffMatrix

Table 5.7: Pay-off matrix TaskAssessor builds: since it is symmetric, the game has only two
players (Twin1 and Twin2) and both player has |S| actions. Algorithm 2, Twins,
computes the payoff for each pair of actions for each cell.

Twin2: s1 · · · Twin2: sn

Twin1: s1 u1, u2 = Twins(s1, s1, I) · · · u1, u2 = Twins(s1, sn, I)
· · · · · · · · · · · ·

Twin1: sn u1, u2 = Twins(sn, s1, I) · · · u1, u2 = Twins(sn, sn, I)

players reduction, in the context of a symmetric game: it binds one action to
a distinguished player and binds the other action to all the other players on
line 4, as described in Figure 5.4. Then swaps those bindings on line 6.

PlayGame, defined in Algorithm 3, lies at Algorithm 2’s core. Algorithm 2
calls PlayGame Nr times and returns the average of the results of the payoffs
of each run. When

⋃
Ai = A, the set of agents, PlayGame({(Ai, si)}, I) runs

the issue resolution and bug repair game among the players in A, using the
action si for the agents in Ai and the simulation parameters in I. It returns
the payoff function defined in Equation 5.1.

Adapting TaskAssessor to a new task prioritisation process requires only
redefining PlayGame, a simple but extremely general task prioritisation sim-
ulation. In this thesis, I used three different definitions to model the three
different processes I discuss in the next chapter. For each of these prioritisa-
tion processes, I was able to reuse large parts of the PlayGame algorithm.

Finally, TaskAssessor passes the resulting payoff matrix to a game solver.
Although I am using Gambit [67] in this work, TaskAssessor is solver agnostic.

84

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

Algorithm 2 [TWINS] This algorithm uses symmetric twins player reduc-
tion to estimate the payoff of an action profile in a symmetric twins game
(subsection 3.3.1) via the PlayGame simulation.

Input: s1, Twin1’s action.
s2, Twin2’s action.
I, tuple of PlayGame’s simulation parameters in Table 5.6.

Output: Average payoffs for Twin1 and Twin2.
1: r := choose I[R]
2: U1, U2 := {}, {}
3: for i = 1 to I[Nr] do
4: payoffs := PlayGame({({r}, s1), (I[R] \ {r}, s2)}, I)
5: U1 := U1 ∪ {payoffs(r)}
6: payoffs := PlayGame({({r}, s2), (I[R] \ {r}, s1)}, I)
7: U2 := U2 ∪ {payoffs(r)}
8: return 1

I[Nr]
∑u∈U1

u, 1
N ∑u∈U2

u

TaskAssessor produces payoff values for each cell of the payoff matrix, that
can then be organised in the format required by a specific solver. The solver
computes one or more probability distributions over each player actions
(the rows or columns in Table 5.7, corresponding to heuristic strategies),
or a mixed strategy per player in game-theoretic terms. This map of players
to strategies is called a strategy profile, and each strategy profile produced
by the solver corresponds to a Nash equilibrium. According to the TSNE
definition (subsection 3.3.1), TaskAssessor only considers strategy profiles in
which both twin players perform the same mixed strategy. There are various
ways to interpret the probability distributions TaskAssessor returns. I adopt
the learning interpretation: the probability associated to each action is the
fraction of the time this action is adopted in the limit, when the game is
played multiple times [13].

5.3.4 Validating TaskAssessor

There is no point in diagnosing or fixing a process using an inaccurate model;
useful models capture a phenomenon under study with sufficient accuracy

85

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

Figure 5.4: Calculating values for a Twins Player Reduction payoff matrix: one agent of the
population is assigned strategy A, while the others are assigned strategy B in the
simulation. The value to include in the matrix for strategy A against strategy B,
is the average payoff of the single agent over multiple simulation iterations.

Figure 5.5: Validating PlayGame’s simulation model. We split the process dataset in three
parts: 1) the training dataset is used to obtain simulation parameters, 2) the
validation dataset is used for model calibration, 3) and the testing dataset is used
to assess the simulation output.

86

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

Algorithm 3 [PlayGame] This algorithm is a discrete-event queueing simula-
tor for generating the number of resolved issues per QA engineer.

Input: I = 〈Mdev, ND, N f , TIA, NB, Pg, PR, Trp, {Sr}, Qp〉,
the simulation parameters defined in Table 5.6.

Output: Fixes, a map from reporters to their fixes.
1: time := 0
2: IssueQueueDev := createQueue(Mdev)
3: Devs := initDeveloperTeam(ND)
4: Fixes := {} # An empty map
5: while notFinished(Fixes, N f) do
6: if newBatch(TIA, time) then
7: Batch := generateBatch(NB, Pg, PR, Trp)
8: for all issue ∈ Batch do
9: reportedPriority := assignPriority(issue, {Sr})

10: enqueue(issue, reportedPriority, IssueQueueDev)
11: for all dev ∈ Devs do
12: devIssue := dev.currentIssue
13: if done(devIssue, time) then
14: Fixes[devIssue.reporter] += payoff (devIssue)
15: if notIgnore(IssueQueueDev, Qp) then
16: dev.currentIssue := dequeue(IssueQueueDev)
17: time += 1
18: return Fixes

to support decisions. Thus, validation is key to assuring stakeholders that
the model effectively reflects their software development process and, there-
fore, is a solid test bed for evaluating the effects of the mechanism design
decisions.

To validate TaskAssessor, I assessed the ability of its core simulator, PlayGame,
to produce an output indistinguishable from the process it is modelling.
Specifically, PlayGame outputs fl, the percentage of low, and fh, high priority
issues resolved. As seen in Figure 5.5, I started by splitting the dataset into
training, validation and testing. I obtained PlayGame’s parameters from the
training dataset (Table 5.6). I calibrated PlayGame on the validation dataset.
As usual, I reserved the test data to measure the quality of PlayGame’s sim-

87

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

ulation. I selected 60% of the data for training-validation purposes and the
other 40% for testing.

In discrete-event simulation, validation techniques range from hypothesis
testing to human assessment. Hypothesis testing can be too strict and rule
out simulation models that are sufficiently precise for decision making [65],
which in the context of TaskAssessor is process diagnosis. The adopted ap-
proach evaluates if the simulation output and the real system are close
enough to ensure stakeholder trust via confidence intervals. To this end, I
built a confidence interval from the simulation output, obtain the best-case
and worst-case error of the interval with respect to the measure in the testing
dataset, and accept or reject the simulation model by comparing the errors
obtained with a threshold ε. The value of ε should be “small enough to allow
valid decisions” [65]. I set ε = 20% to ensure PlayGame is at most 20% wrong
when predicting the percentage of reported bugs that were fixed. Despite
this imprecision, the subsequent results show that PlayGame captures the
influence of priorities in bug fixing while keeping PlayGame’s model simple,
easy to understand, and quick to execute.

Results: In the testing dataset, 16.1% of low priority bugs were fixed on av-
erage and 33.8% of high priority ones. When Mdev = Priority, the 95.0% con-
fidence interval for fl, obtained from 1,000 simulation runs, is [18.1%, 20.4%].
When the tested value falls outside the confidence interval as ours does,
the best-case error is 18.1% − 16.1% = 2.0% and the worst-case error is
20.4% − 16.1% = 4.0%. Under the validation procedure [65, Chapter 10,
p.326], the validation of PlayGame for fl succeeds because its worst-case error
is 4.0% ≤ 20.0% = ε. By similar reasoning, validation succeeds for fh as
well, since the worst-case error is 17.0% ≤ 20% = ε, despite the fact that
fh = 33.8% /∈ [45.6%, 50.1%].

5.3.5 Threats to Validity

TaskAssessor faces the standard threat to its external validity: its results gen-
eralise only to the extent to which its corpus is representative. It is drawn
from JIRA projects, filtered for use of Git, use of prioritisation, and engaged

88

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

reporters. These filters can introduce bias not already present in the JIRA
projects. In subsection 5.3.1, however, the last two filters do not change the
computed Nash equilibria. To extract empirical strategies from the corpus, I
used the number of third-party corrections to indicate dishonest reporting.
Their use to proxy inflation or deflation rates represent a construct validity
threat. Of course, a third-party may reprioritise a report for reasons other
than a dishonest initial assessment, including honest mistakes and new infor-
mation. However, under this assumptions, a dishonest QA engineer benefits
from an inflated report while a third-party assessor does not. Thus, I think
it is reasonable to assume that third-party assessment is more likely to be
accurate. Mistakes or logic errors in TaskAssessor’s design or implementation
are the main internal validity threat to this work. I mitigated this threat in
two ways. First, I have detailed TaskAssessor’s construction so that readers
can themselves assess its logical validity. Second, I validated TaskAssessor
output using state of practice techniques from the simulation community as
described in subsection 5.3.4.

5.3.6 Using TaskAssessor

TaskAssessor is a diagnosis tool for task prioritisation processes, tailored
to a specific process by redefining its PlayGame process simulator. When
modelling a process that is immune to priority inflation, TaskAssessor outputs
a single equilibrium with a probability of 1.0 for the Honest Strategy. Such
output means that at equilibrium every task has a reliable priority. In contrast,
processes susceptible to priority inflation have a positive probability for
inflationary strategies — where PI > 0 like “Always Inflate” or “Empirically
Inflater” in Table 5.5 — at one of its equilibria. A non-zero probability for
these strategies means inflated reports at equilibrium. A worst-case scenario
is a single equilibrium where “Always Inflate” has a probability of 1.0. It
is also possible that TaskAssessor finds multiple, opposing equilibria for a
task prioritisation process: like “Always Inflate” with a probability of 1.0 in
one equilibrium and Honest with a probability of 1.0 in another. As stated
in chapter 2, a Nash equilibrium is stable: once reached, players have no
incentive to deviate. When a game-theoretic model has multiple equilibria,
the analyst can then adopt a learning model that explains how players

89

5 TaskAssessor : A Game-Theoretic Model of Priority Inflation

interact and reach an specific equilibrium profile [9].

One needs to discuss TaskAssessor’s equilibrium results with stakeholders to
validate whether they explain a prioritisation process. Process modelling is
hard: usually one needs to discuss several models before stakeholder accep-
tance. If stakeholders reject TaskAssessor’s results, revise the simulation model:
over-simplification or over-engineering can distort pay-off calculations. Also,
ensure that the strategy catalogue does not obviate common or impactful
prioritisation behaviour. Once stakeholders agree with TaskAssessor’s results,
it can also evaluate process interventions to improve a prioritisation process,
as shown in chapter 6.

I implemented TaskAssessor in Python3. I implemented TaskAssessor’s Algo-
rithm 2 component in SimPy, a discrete-event simulation library [109]. For
example, you issue

taskAssessor . py −r 100 −d 50 −n 50 −o e q u i l i b r i a . csv

to generate a payoff matrix for 100 QA engineers and 50 developers, running
until Nt = 50 bugs are fixed and storing the equilibria in e q u i l i b r i a . csv.

3TaskAssessor is available on the project page [98].

90

6 Assessor-Throttling: A Novel
Task Prioritisation Process

In this chapter, I elaborate on the software process improvement phase of
GTPI’s approach to priority inflation, as shown in Figure 6.1. I start by using
TaskAssessor to model distributed prioritisation, which distributes prioritisation
to the person filing a task or bug report [110]. After building the model, I
computed its Nash equilibrium and found that the equilibrium shows that
the “Always Inflate” strategy is optimal (subsection 6.1.1). In this way, I have
used game theory to corroborate the conventional wisdom that distributed
prioritisation is prone to priority inflation.

To combat priority inflation, development teams have incorporated bug triage
into their prioritisation processes [12]. In this process, a team of gatekeepers,
typically distinct from those who file or report issues, checks (and may
reprioritise) each issue. Gatekeepers can be technical or business-focused
employees. In subsection 6.1.2, I show that gatekeeper processes reprise
distributed prioritisation, which implies that they are also susceptible to
priority inflation. I confirmed this using TaskAssessor and found that, at
equilibrium, task filers and QA engineers still have an incentive to inflate
priorities in a gatekeeper process. I used a Jackson network, from queueing
theory [111], to show that gatekeeping slows development, even in the
presence of duplicate tasks or bug reports. Thus, while gatekeepers can
improve the prioritisation of issues in terms of better matching priorities with
their business value, I have used game theory to contradict the conventional
wisdom; showing that the gatekeeper process does not mitigate priority
inflation and slows development.

The game theoretic analysis, in short, shows that the current state of practice
does not fix priority inflation which may explain the extraordinarily low use

91

6 Assessor-Throttling: A Novel Task Prioritisation Process

Figure 6.1: GTPI’s software process improvement phase for priority inflation: during soft-
ware process improvement, we use TaskAssessor to model current task prioriti-
sation practices. Finding them susceptible to priority inflation, we propose the
assessor-throttling process as a solution. To facilitate assessor-throttling deploy-
ment, we developed TheFed. It is a Chrome plugin that connects to JIRA tracking
systems.

of priority mechanisms in GitHub (subsection 5.2.1). To fix priority infla-
tion, I turned to mechanism design, the branch of game theory concerned
with designing games whose equilibrium strategies constrain players to be-
have in desirable ways. Using TaskAssessor to evaluate process interventions
(or mechanisms), I devised a novel, lightweight prioritisation mechanism,
assessor-throttling, to tackle priority inflation (subsection 6.1.3). When they
have completed a task or fixed a bug, developers have also assessed its
JIRA priority along the way: they know its technical severity and often have
acquired the expertise needed to evaluate its business value [112]. When
they finish a task, assessor-throttling merely requires developers to record
their assessment of the task’s priority label. If the developer’s assessment dif-
fers from the task’s priority label, the offending reporter’s reputation drops,
which restricts the reporter’s ability to submit tasks or bugs. Via simulation, I
show that assessor-throttling matches an ideal gatekeeper in the completion
of high priority tasks (section 6.1.3). To help developers transition to assessor-
throttling and thereby combat priority inflation, I realised it in TheFed, a
browser plugin for Chrome (section 6.2) that individual developers can easily
download and install from the project page [98].

92

6 Assessor-Throttling: A Novel Task Prioritisation Process

Figure 6.2: Bug prioritisation processes: the blue components are shared between the two
processes (including distributed prioritisation), the red ones are exclusive to the
gatekeeper process . The solid lines represent the input/output of an activity,
and the dashed lines link an activity with its performing role.

6.1 Empirical Game Improvement

Figure 6.2 describes task prioritisation using the Software Process Engi-
neering Metamodel (SPEM) notation to represent its roles, tasks and work
products [76]. Three tasks, coloured blue, are common to all the task pri-
oritisation processes under analysis: reporting, prioritising, and resolving
tasks.

Two different task prioritisation processes superimpose in Figure 6.2. In
distributed prioritisation, the reporter role both files and prioritises tasks. In
subsection 6.1.1, I show that distributed prioritisation is susceptible to pri-
ority inflation. To correct distributed prioritisation’s tendency to priority
inflation, development teams have taken prioritisation away from reporters
and given it to a gatekeeper (light red in Figure 6.2). In subsection 6.1.2, I
present two findings. First, I make an argument from queueing theory that
gatekeeping only slows task resolution. Second, I show that even a perfect
gatekeeper that correctly prioritises all reports does not remove the incentive
for inflating priorities. In short, I first confirm the conventional wisdom about
distributed bug prioritisation, then I contradict the conventional wisdom that
gatekeepers improve bug repair.

I am especially interested in the impact of developer bandwidth on prior-
ity inflation: intuitively, scarce development time magnifies the reward for
inflating priorities. As shown in Figure 6.3, I computed Nash equilibria for

93

6 Assessor-Throttling: A Novel Task Prioritisation Process

Figure 6.3: PlayGame’s input-output transformation: QA engineers place reports in the de-
velopment queue. Developers in the team then build patches to address each
report. In a full-bandwidth scenario D, all developers are available for bug fixing
duties. In a reduced bandwith scenario D

2 , only half of them are active

the following two scenarios: in full bandwidth D, all the developers actively
remove reports from the development queue; in reduced bandwidth D

2 , only
half of them are active. In all scenarios, I assume the developers consider a
task’s priority label when deciding whether to work on the task. Without
this assumption, I cannot distinguish the inflationary propensity of the two
processes analysed below.

6.1.1 Distributed Bug Prioritisation

A bug prioritisation process can assign the reporting and prioritisation of
bugs to the QA engineer role. Such processes are common in both FOSS
and industry projects. A company, for instance, adopts such a process when
they decide to outsource the development services to an external IT provider.
In this scenario, the outsourcing company fixes the bug that the contracted
company reports and prioritises [110]. A QA role appears in some agile
settings, where the team member that discovers a bug is in charge of logging
a bug and assigning its priority [113].

94

6 Assessor-Throttling: A Novel Task Prioritisation Process

I call bug prioritisation process involving a QA engineer distributed bug
prioritization, because it distributes bug prioritisation to QA engineers, or
bug reporters. Common knowledge suggests that this process encourages
priority inflation as is already reported by practitioners [79] [12]. To verify
this, we ask

RQ: Is distributed bug prioritisation susceptible to priority inflation?

I built game-theoretic models by applying TaskAssessor (chapter 5) to each
bandwidth scenario D and D

2 , finding a single equilibrium where the prob-
ability of “Always Inflate” is 1.0. This differs from the desired outcome of
an equilibrium with a probability of 1.0 for Honest. This finding corrobo-
rates conventional wisdom and validates the accuracy of the approach. In
summary:

Finding: Distributed bug prioritisation is susceptible to priority inflation.

6.1.2 Do Gatekeepers Prevent Priority Inflation?

A standard approach to address priority inflation is to appoint a bug triage
team, that inspects and corrects bug reports, including the reported prior-
ity [12]. I call such a process a gatekeeper process, because these teams act as
gatekeepers who control access to developer time. In this section, I show that
a gatekeeper process does not prevent priority inflation and, in fact, can only
slow development.

Not all software organisations use gatekeepers, but several have reported
on their use. For example, Microsoft reports that their gatekeeper is a cross-
discipline team [81], while Google reports that some teams delegate this task
to a tester-developer pair [80]. In open-source projects, developers estab-
lish a gatekeeping rota, or they rely on volunteers from the community to
perform gatekeeping duties [114; 115]. Teams adopting an agile process can
also include bug triage tasks, where the product owner, a developer, or a
customer representative performs the gatekeeper role [116; 117]. The survey
also shows that a gatekeeper is a common way to tackle priority inflation:
34% of responses (subsection 5.2.2). Although developers can be part of the
gatekeeping process, in my experience, gatekeepers are usually not software

95

6 Assessor-Throttling: A Novel Task Prioritisation Process

developers. Given the high salaries of developers, I believe teams prefer to
invest their time in building features rather than gatekeeping.

In a gatekeeper process, QA engineers place their issues into the gatekeeper’s
queue, not the development team’s queue. This process reprises distributed
prioritisation in one of two ways. In the first one, gatekeepers face priority
distortion instead of developers; while in the second one gatekeepers are the
ones distorting priorities for the development team.

Two justifications are usually advanced for adopting a gatekeeper process.
One is to involve business expertise in task prioritisation to ensure that
priorities correctly reflect business value. The other is economic: gatekeepers
are usually cheaper than developers [103] and, since they focus on issue/bug
report quality, become more efficient at that task than developers. These two
justifications are often in tension because of the cost of business expertise.

When an organisation opts for business expertise, it assigns product man-
agers, business analysts, or even clients to the gatekeeper role. These stake-
holders can potentially be scarce, expensive, and busy even before taking on
a gatekeeper role. As gatekeepers, they tend to make development slower
and more costly. The economic justification of gatekeeping breaks down
when gatekeeping is a role that developers or product managers play. Recall
that JIRA priorities, which I use in this work, combine technical severity, i.e.
difficulty of resolution, and value, including risk, to end-users. Regardless of
who fills the gatekeeper role, in general gatekeepers do not learn their tech-
nical severity, since they do not actually resolve issues. When gatekeepers
are drawn from technical employees, like testers, they are no better or worse
at learning to assess business value than developers.

The gatekeeping process includes a bug triage queue that protects developers
from poor issue descriptions, but can be a bottleneck, especially if the gate-
keeping team lacks resources. To represent this process, I added two elements
to the process simulation (PlayGame in subsection 5.3.3): a bug triage queue,
with a queuing discipline of Mgk = FIFO, and a gatekeeping team G, whose
members take R time to triage a task with an error rate of Agk.

RQ: What is the impact of a gatekeeper on issue resolution?

Researchers have successfully used queuing systems with Poisson arrivals
and exponential service times to model real-world bug repair processes [118;

96

6 Assessor-Throttling: A Novel Task Prioritisation Process

119]; I followed their lead. I assume QA engineers file issues under a Poisson
distribution, a gatekeeper takes exponentially distributed time to review
them, and the development team take exponentially distributed time to fix
them. When E(WG) is the mean sojourn time of an issue in the gatekeeper
(or triage) queue, E(WD) is the mean sojourn time of an issue in the develop-
ment team queue, and E(WGP) is the mean, end-to-end, sojourn time of an
issue/bug report in a gatekeeping process, I have

Finding: Over a sequence of issues, a gatekeeper can only slow issue reso-
lution: E(WGP) = E(WG) + E(WD).

Given the assumptions of Poisson arrivals and exponential service times,
the gatekeeper process is a Jackson network using tandem queues (a triage
queue for gatekeepers and a developer queue) [111]. In Jackson networks,
the mean sojourn time of the whole system at steady state — that is, the time
an issue/bug spends in the system from reporting to fixing — is the sum of
the mean sojourn times of each individual queue of the system [120].

This finding matters even when an organisation adopts gatekeeping to detect
and remove duplicate issues before they reach developers. In general, a gate-
keeper must observe and consider several issues before 1) determining that
they are duplicates and 2) learning to quickly identify and drop them. Let
k denote the expected number of issues one needs to view before realising
that they are duplicate and that each gatekeeper filters reports for a team of
n developers. A developer is at least as good as a gatekeeper at detecting du-
plicate bug reports, but each developer learns independently, so, collectively,
they will need to see nk duplicates before they all can quickly drop them.
Both gatekeepers and developers can learn in parallel; so, given enough
duplicates, the expected time needed to learn recognise duplicates for both a
gatekeeper and a developer team is the same. For m duplicate reports, there
are three cases. If m < k, gatekeeping does not remove duplicates before they
reach developers. If m > kn, then all the developers will have learned to
identify and remove them. In this case, the gatekeeper provides no advantage
in the limit. It is only when k ≤ m ≤ kn that gatekeepers remove duplicates
at less cost than simply asking developers to do it.

Under this finding, whenever an issue’s mean sojourn on the triage queue
exceeds zero, a gatekeeper reporting process slows the delivery of bug fixes.

97

6 Assessor-Throttling: A Novel Task Prioritisation Process

Despite the overhead the gatekeeper process imposes, if it reduces or elimi-
nates priority inflation, it might be worth adopting, so we ask

RQ: Is gatekeeper prioritisation susceptible to priority inflation?

For the equilibrium analysis, I considered a team of G = 2 gatekeepers
that spend R = 20 minutes assessing the priority of an issue. I set G = 2
because Ayewah reported that Google used this number [121]; I set R =
20 because Page reported 20 minutes as the approximate triage effort per
bug at Microsoft [81]. I also explored three performance profiles: a fallible
gatekeeper with an error rate of Agk = 50%, an expert gatekeeper with
an error rate of Agk = 10% and an ideal gatekeeper with an error rate of
Agk = 0%.

In both bandwidth scenarios D and D
2 , the fallible gatekeeper (Agk = 50%)

has a single equilibrium with probability 1.0 for inflating priorities, the
“Always Inflate” strategy. This is the expected result: a fallible gatekeeper
leaves the door open to QA engineers profiting from inflating their reports.
The expert gatekeeper (Agk = 10%) does no better: in both D and D

2 , the
expert gatekeeper also has a single equilibrium profile with probability
1.0 for the “Always Inflate” strategy: even 90% prioritisation accuracy is
insufficient. What about perfect accuracy? Under the ideal gatekeeper (Agk =

0%), each scenario produces multiple equilibria: 3 under D
2 bandwidth and 4

under D, not the desired result: a single equilibrium with probability 1.0 for
honest prioritisation1. These equilibria do not rule out priority inflation. The
reason is, under the ideal gatekeeper, each QA engineer’s pay-off is the same
regardless of their prioritisation decisions. In summary,

Finding: Gatekeeper prioritisation is susceptible to priority inflation.

6.1.3 The Assessor-Throttling Process

The gatekeeper process slows issue resolution and bug repair and does
not prevent priority inflation. In this section, I present assessor-throttling: a

1These equilibria are available at the project page [98].

98

6 Assessor-Throttling: A Novel Task Prioritisation Process

novel task prioritisation process that, unlike gatekeeping, is lightweight and
removes priority inflation.

I first apply mechanism design (section 2.6) to priority inflation to define and
model assessor throttling, the proposed task prioritisation process. Later, I
validate that assessor-throttling prevents priority inflation. Finally, I compare
distributed prioritisation, gatekeeping, and assessor-throttling with respect
to the expected proportion of high priority issues resolved.

Modelling Assessor-Throttling: Assessor-throttling (AT) rests on the in-
sight that developers naturally assess tasks while resolving them. Currently,
this developer assessment is wasted. We can use it to assess the priority as-
signed to a task by the bug reporter or QA engineer who filed it. To construct
an incentive compatible mechanism from this developer assessment of task
priority, AT rates each QA engineer’s assessment accuracy; this rating be-
comes a QA engineer’s reputation. A QA engineer’s reputation then controls
their access to the developer team in two ways: 1) AT uses reputation to
control how many issues a QA engineer can add to the development queue
when it is under contention and 2) AT displays the QA engineer’s reputation
when developers are considering whether to take up a task from the work
queue. Honest QA engineers tend to get more developer time; dishonest (or
incompetent) ones will get less, and eventually, no access.

The assumption that underlies this reputation mechanism is that developers
can accurately assess a task’s or bug’s priority. JIRA priorities combine tech-
nical severity and business value. Developers necessarily overcome a task’s
technical severity when they resolve it. While developers vary in expertise
and some might find a bug more difficult, and thus more severe, than other
developers, they are better placed to assess severity than testers or triage
teams. Assessing business value is harder. The ground-truth assessment of
business value relies on the role that generates software requirements, like
the customer, a business analyst, or the business owner. Nonetheless, soft-
ware engineers can estimate the business value when they work in the same
domain long enough, they can eventually qualify as domain experts [112].

Like distributed prioritisation, assessor-throttling decentralises prioritisation:
AT does not introduce a second queue, in contrast to gatekeeping, and re-

99

6 Assessor-Throttling: A Novel Task Prioritisation Process

Figure 6.4: The assessor-throttling prioritisation process: after fixing a bug, the fixer assess
the priority made originally by the reporter. This assessment impacts the re-
porter’s position in the reputation’s ranking, that determines which bugs are
fixed first.

quires both QA engineers and developers to assess task priority. AT models
developer assessment mistakes with Adev. The developer’s assessment is the
green task in Figure 6.4. QA engineers and task assessors have a reputation
Rr. When a developer finishes a task, they consider its assigned priority. If the
developer agrees with that priority, they reward the assessor by increasing
Rr by T+; if they disagree, they penalise the assessor by decreasing Rr by
T−. To allow an assessor to recover from a mistake, AT has T+ > 0; to dis-
courage priority distortion, T+ � T−. Assuming that developer assessment
approximates the ground-truth, this behaviour penalises both dishonest and
incompetent QA engineers. AT does not rely on QA engineer’s intentions to
improve bug prioritisation: both dishonest and incompetent prioritisation
are indistinguishable and discouraged under the model, under the weak
assumption that QA engineers learn over time.

Under AT, developers take action: they reward or penalise QA engineers.
This action implies that developers should be strategic agents in the model,
or players, rather than a commons, as TaskAsessor currently does. Indeed,
developers might abuse their power to rank QA engineers who prioritise
tasks they like. As explained in subsection 5.3.3, however, adding developers
as players to the game-theoretic model would produce an immense game
tree and break the symmetry assumption on which a number of the game re-
duction techniques depend (subsection 3.3.1). Treating developers as players
is future work.

100

6 Assessor-Throttling: A Novel Task Prioritisation Process

Table 6.1: Pay-off matrix for the assessor’s dilemma using assessor throttling.
Bob: accurate Bob: inflate

Alice: accurate A = 125, B = 125 A = 125, B = 100
Alice: inflate A = 100, B = 125 A = 112.5, B = 112.5

The simulation demonstrates the effectiveness of the mechanism. This is
unsurprising, because it aligns with previous work: restricted to bug repair,
Guo et al. found that bug reporter reputation is a key factor in the likelihood of
a bug being fixed [122]. They define reputation as the proportion of reported
bugs that are fixed, following Hooimeijer and Weimer [123]. Neither of
these prior works propose a new process that exploits reputation. AT is a
novel task prioritisation process that exploits a reporter’s reputation and
permits developers to change a QA engineer’s reputation. Further, AT defines
reputation as an agreement with a task resolver, not the proportion of bugs
reported and fixed. Integrated into AT’s reward system, this operationally
changes the definition of reputation into a measure of honest reporting.

Assessor-Throttling Prevents Priority Inflation: Let us see how throttling
works in the situation described in section 5.1. If Alice reports the accurate
priorities of her bugs and Bob inflates his reports, we have two possible
outcomes: Alice gets only her high priority report fixed — Bob’s inflation
was detected after all his patches were delivered — or she gets two fixes,
because Bob’s inflated trivial bug was fixed first so he was marked as an
offender. Hence, Alice’s expected pay-off is 0.5× 100+ 0.5× (100+ 50) = 125
and offender Bob obtains 0.5× (100 + 50) + 0.5× 50 = 100.

If we update the original pay-off matrix with the throttling pay-off values,
we obtain the matrix in Table 6.1. The Nash Equilibrium of the new matrix
has both Alice and Bob reporting the accurate priorities, which is in Foo Inc.’s
best interest. Assessor-throttling appears to prevent priority inflation. To
confirm, we ask

RQ: Is assessor-throttling susceptible to priority inflation?

Assessor-throttling depends on two parameters: the error rate of the devel-
opment team (Adev) for detecting dishonesty and the penalty they apply

101

6 Assessor-Throttling: A Novel Task Prioritisation Process

when they detect such behaviour (T−). In the experiments, the development
team error rate was fixed to Adev = 5%: it is a more palatable value than
Adev = 50%, which makes the priority field irrelevant, or Adev = 100%,
which would necessarily lead to an equilibrium with dishonest prioritisation.
Regarding inflation penalty T−, it needs to have a value big enough so that
the expected benefits from inflation are less than the expected penalty due
to reputation loss. For the sake of deployability, we want T− to be small
since big penalties can face resistance. I started with T− = 3% and progres-
sively augment it until obtaining an equilibrium with honest prioritisation.
Each value of T− was analysed under the reduced bandwidth D

2 (Figure 6.5)
and full bandwidth D (Figure 6.6) scenarios used in subsection 6.1.1 and
subsection 6.1.2.

When applying TaskAssessor to assessor-throttling with T− = 3%, the D
bandwidth scenario produced a single equilibrium where the probability of
the “Always Inflate” strategy was 1.0. As explained in subsection 5.3.6, that
result identifies a process susceptible to priority inflation. This suggests that
the value of the penalty with respect to the inflation reward is too low to
discourage this behaviour.

If the dishonesty penalty is set to T− = 10%, TaskAssessor produced one
TSNE equilibrium for each bandwidth scenario. In the D

2 bandwidth scenario,
TaskAssessor outputs the desired equilibrium where the honest strategy has a
probability of 1.0, while in the D bandwidth scenario this probability is 0.97.
Although close, for the D bandwidth scenario I still did not obtain priority
inflation immunity. By increasing the penalty value, equilibria with high
probability for honest behaviour start to appear.

When applying TaskAssessor to an assessor-throttling process with T− = 20%,
I obtained the same result in both scenarios: a single equilibrium where the
honest strategy has a probability of 1.0. I obtained the same result with a
dishonesty penalty of T− = 22%. Having the expected equilibrium with
such a low penalty value is an indicator of the actionability of the assessor-
throttling process. This also reflects that penalty calibration is a key factor
for its effectiveness. In summary:

Finding: Assessor-throttling prevents priority inflation.

102

6 Assessor-Throttling: A Novel Task Prioritisation Process

Figure 6.5: Equilibrium profiles for prioritisation processes at the reduced bandwidth sce-
nario D

2 . From left to right, we see distributed prioritisation (DP), gatekeeper
(GK, with corresponding error rate Agk) and assessor-throttling (AT, with corre-
sponding dishonesty penalty T−).

After calibrating the penalty-value parameter, assessor-throttling produces
an equilibrium where the honest strategy has a probability of 1.0, which
implies honest bug prioritisation.

Racing to the Fixes: I now compare each of the task prioritisation processes
presented under the mean percentage of high priority bugs that were fixed
E(gh). I show that assessor-throttling always performs at least as well as
the other two prioritisation processes in the bandwidth scenarios used in
subsection 6.1.1 and subsection 6.1.2. In fact, assessor-throttling is statistically
indistinguishable from an ideal gatekeeper. The comparison is made in terms
of impact on software quality, so the last research question is

RQ: What is the impact of the adopted task prioritisation process on the quality of
the software product?

103

6 Assessor-Throttling: A Novel Task Prioritisation Process

Figure 6.6: Equilibrium profiles for prioritisation processes at the full bandwidth scenario D.
From left to right, we see distributed prioritisation (DP), gatekeeper (GK, with
corresponding error rate Agk) and assessor-throttling (AT, with corresponding
dishonesty penalty T−).

104

6 Assessor-Throttling: A Novel Task Prioritisation Process

Several techniques are available in the simulation and operations research
communities for finding the best simulated system design according to an
expected performance measure [124]. The two-stage Bonferroni procedure
proposed by Nelson and Matejcik [125] is one of the many techniques that
rely on an indifference zone. Indifference zone techniques are known to be
statistically conservative: they guarantee a lower bound to the probability
of selecting the best system 1− α given that this system is at least ε better
than the rest of the systems [126]. In this section, the system designs under
comparison are the prioritisation processes at their equilibria (Figure 6.7)
and the performance measure is E(gh). The two-stage Bonferroni procedure
takes three parameters: ε, 1− α, and the first-stage sample size R0. I executed
R0 iterations on each task prioritisation process at equilibrium. The output is
then used as an input to obtain the second-stage sample size R. When R > R0,
two-stage Bonferroni requires executing additional R− R0 iterations. From
the simulation iterations, I obtained E(gh) per task prioritisation process at
equilibrium. From the simulation results, I built confidence intervals. From
them, we can conclude that a task prioritisation process is either inferior to
the best performer or statistically indistinguishable from it.

Due to computational costs, I simulated each scenario for R0 = 120 iterations.
I would also like a 95% confidence of obtaining the best process, given that
the best differs from the second best by at least gh = 5%. That translates to
1− α = 0.95 and ε = 0.05. Figure 6.7 presents the E(gh) for each task prioriti-
sation process in a D

2 bandwidth scenario. The statistically indistinguishable
best repair processes are gatekeeper with Agk = 10% error rate, gatekeeper
with a Agk = 0% error rate, assessor-throttling with T− = 20% dishonesty
penalty and assessor-throttling with T− = 10% dishonesty penalty. The best
performer has a performance value of E(gh) = 0.97, which is significantly
better than the ones marked as inferior.

Under D, when all developers are available, the best performer is one of the
equilibria of the gatekeeper with Agk = 0% error rate with a performance
value of E(gh) = 0.96 (see Figure 6.8). Distributed prioritisation with E(gh) =
0.57 and assessor-throttling with a T− = 3% dishonesty penalty and E(gh) =
0.16 are inferior, while the rest are statistically indistinguishable from the best
performing equilibrium of a gatekeeper with Agk = 0%. Given a sufficiently
strong penalty value, we find

105

6 Assessor-Throttling: A Novel Task Prioritisation Process

Figure 6.7: Performance comparison of task prioritisation processes in the reduced band-
width scenario D

2 . From left to right, we see distributed prioritisation (DP),
gatekeeper (GK, with corresponding error rate Agk) and assessor-throttling (AT,
with corresponding dishonesty penalty T−).

Finding: Developers fix as many high priority bugs under assessor-throttling
as under an ideal, error-free gatekeeper.

6.2 Process Deployment

Assessor-throttling relies on a reputation system for task assessors, so I built
a software tool to track assessor reputation and support the teams who want
to adopt assessor-throttling. The tool, TheFed2, is a Chrome extension for
JIRA. TheFed is open source [127] and has these key features: TheFed

1. tracks each QA engineer’s reputation.

2TheFed stands for Federal Reserve: the central banking system of USA. As such, it
defines target inflation rates.

106

6 Assessor-Throttling: A Novel Task Prioritisation Process

Figure 6.8: Performance comparison of task prioritisation processes in the full bandwidth
scenario D . From left to right, we see distributed prioritisation (DP), gatekeeper
(GK, with corresponding error rate Agk) and assessor-throttling (AT, with corre-
sponding dishonesty penalty T−).

107

6 Assessor-Throttling: A Novel Task Prioritisation Process

Figure 6.9: TheFed’s prioritised inbox: JIRA issues are sorted by QA engineer’s reputation.

2. allows developers to penalise inflation.
3. rewards honest QA engineers.

In assessor-throttling, developers and task assessors make decisions based on
the reputation score Rr, so TheFed must calculate and store these values. To
this end, TheFed uses JIRA’s REST API [128] to obtain how many times a QA
engineer incorrectly prioritised an issue, relative to the priority assessment of
the developer who resolved the issue. Rr is a function of the number of these
“infractions”, so developers need to update it when a priority assignment is
inaccurate. To support this feature, TheFed relies on JIRA’s existing function-
ality for updating priority; issue resolvers use this functionality to state that
they disagree with a QA engineer’s priority assessment. Assessor-throttling
aims to give high-reputation task assessors a higher probability that their
bugs will be fixed than low-reputation assessors. To this end, TheFed pro-
vides a prioritised inbox, as shown in Figure 6.9. This inbox shows open and
unassigned bugs sorted by Rr: honest QA engineers will have their bugs
listed on top. As shown in Figure 6.10, TheFed can also displays QA engineers
ranked by Rr.

108

6 Assessor-Throttling: A Novel Task Prioritisation Process

Figure 6.10: TheFed’s QA engineer’s ranking by reputation score Rr.

I hope that development teams adopt assessor-throttling. This cannot hap-
pen if its adoption disrupts existing practices and tools. To maximise its
deployability, TheFed

1. is compatible with existing toolkits;
2. tackles priority inflation immediately after installation; and
3. deploys to clients, not servers.

The penalty value per infraction is a key parameter. As is shown in sec-
tion 6.1.3, a penalty value that is too low might not produce the desired
output of a single equilibrium with the honest strategy probability of 1.0.
TheFed allows this parameter to be configurable. To this end, users of TheFed
can customise its behaviour via the options page of Chrome extensions. Some
of the parameters available are penalty per infraction, issues in inbox

and JIRA project.

Tools drive software development: text editors, IDE’s and bug tracking sys-
tems are among them. TheFed integrates easily with existing tools. The current
version of TheFed is a Chrome extension that relies on JIRA’s REST API to

109

6 Assessor-Throttling: A Novel Task Prioritisation Process

access issue data. Chrome extensions are also compatible with the Opera
browser; TheFed can be extended to other bug tracking systems that expose
a RESTful API, like Bugzilla [129]. From the moment it is installed, TheFed
provides value: it immediately tackles priority inflation, calculating Rr us-
ing priority updates accessed through JIRA’s API. From this useful starting
point, TheFed only improves through network effects. Developers directly
and immediately benefit from TheFed since it helps them better prioritise their
work. Crucially, developers can install TheFed locally. This allows individual
team developers to adopt it without requiring support from a JIRA system
administrator, unlike a JIRA plugin.

110

7 Conclusion and Future Work

In this chapter, I summarise the contributions of this thesis and elaborate on
research directions for future work.

7.1 Summary of Contributions

Researchers have already approached software development problems using
game-theoretic models. In chapter 3, I surveyed the work published on each
software engineering discipline. While I found a wide range of scenarios
and techniques, most of the proposed models suffer from scalability issues.
Classic game representations (chapter 2) only support a limited number of
players, actions and interactions while keeping a manageable model size
for analysis. This limits the application of game theory to modern software
development, where large distributed teams release software continuously
at a high pace.

In this thesis, I enabled the application of game theory to large scale soft-
ware development using empirical-game theoretic analysis (EGTA). EGTA
is a simulation-based game abstraction technique, and this thesis is its first
application to the software engineering domain. In chapter 5, I described
TaskAssessor: an EGTA-based model of task prioritisation for software teams.
EGTA is at the core of GTPI (Game-Theoretic Process Improvement), the
end-to-end approach to software process improvement approach I proposed
in chapter 4.

GTPI uses EGTA models for the diagnosis of software process problems.
In chapter 4, I used GTPI to describe how technical debt can accumulate
as a consequence of software teams protecting their budget. In chapter 6, I

111

7 Conclusion and Future Work

showed that bug triage teams — an industry best-practice — do not address
priority inflation and, in fact, slow the delivery of bug fixes.

GTPI is not only a diagnosis tool: it can also prescribe solutions. The game-
theoretic model of an inefficient software process can be used to test inter-
ventions for their improvement. Using GTPI, I found that software teams can
address technical debt by including a lightweight code review process in their
workflow (chapter 4). Also, GTPI enabled the design of a new prioritisation
process — assessor-throttling — immune to priority inflation (chapter 6).

7.2 Future Work

EGTA allows the modelling of more complex scenarios than with classic
game-theoretic techniques. However, the scale of modern software develop-
ment can surpass EGTA capabilities. For example, the number of users in
the bug reporting dataset (chapter 5) made it impossible to model bug fixing
using only EGTA, so TaskAssessor relies on an additional player reduction
technique — the twins’ reduction — to produce models of tractable size.
The design decision of not modelling developers as strategic agents (chap-
ter 6) was also a consequence of EGTA limitations. Including developers
as additional players with their corresponding actions would produce an
intractable game. In future work, I would like to develop game abstraction
techniques tailored to the software development context, that produce mod-
els of tractable size while preserving the equilibria of the original game.

Classic game theory’s predictions on player behaviour rely on hard assump-
tions regarding their knowledge, rationality, and motivations. In the field
of behavioural economics, researchers are exploring models where these
assumptions are relaxed. This research area is intensive on human studies,
and model predictions are usually verified empirically via controlled experi-
ments with human participants. For the game-theoretic models in this thesis,
I assumed rational players with perfect knowledge of the game, as in classic
game theory. In future work, I would like to explore with real developers how
often these assumptions hold and, if they not, apply modelling paradigms
with less strict rationality assumptions.

112

7 Conclusion and Future Work

Besides priority inflation and technical debt, I believe software estimation
can benefit from game-theoretic analysis. This scenario naturally fits the defi-
nition of a game. Considering developers, managers and clients as players;
the utility of each player is tied to the actions of their ”opponents”. Clients
want a speedy release, managers need a competitive bid, and developers rely
on a buffer to avoid overwork. The main challenge for a GTPI approach to
software estimation is data gathering. Given the commercial context, it is not
possible to rely on open-source data like in this thesis. Assembling a dataset
of project bids with estimate’s accuracy is left as future work, as it highly
depends on an industrial partner.

7.3 Final Remarks

Inefficiencies in software processes can translate to quality problems in the
final software product. Conflicting incentives built inside software practices
can produce process issues. I believe that game-theoretic models can be used
to identify these problems and remove them. I proposed GTPI as an end-to-
end software process improvement framework, using game-theoretic models
from anomaly identification to process deployment. In this thesis, I used
GTPI to diagnose and prevent budget-driven technical debt and priority
inflation, both relevant problems in modern software development. I posit
that GTPI, and game-theoretic models in general, can be used to diagnose
and fix many other common software process problems.

113

Bibliography

[1] IEEE Computer Society, Guide to the Software Engineering Body
of Knowledge (SWEBOK): Version 3.0, 3rd ed., P. Bourque and
R. Fairley, Eds. IEEE Computer Society Press, 2014. [Online]. Avail-
able: https://www.computer.org/education/bodies-of-knowledge/
software-engineering

[2] B. W. Boehm and R. Turner, “Management challenges to implementing
agile processes in traditional development organizations,” IEEE
Software, vol. 22, no. 5, pp. 30–39, 2005. [Online]. Available:
https://doi.org/10.1109/MS.2005.129

[3] R. B. Myerson, Game theory - Analysis of Conflict. Harvard University
Press, 1997. [Online]. Available: http://www.hup.harvard.edu/
catalog/MYEGAM.html

[4] J. Nash, “Non-cooperative games,” Annals of mathematics, pp. 286–295,
1951.

[5] I. Palacios-Huerta, “Professionals play minimax,” The Review of Eco-
nomic Studies, vol. 70, no. 2, pp. 395–415, 2003.

[6] M. Walker and J. Wooders, “Minimax play at wimbledon,” American
Economic Review, vol. 91, no. 5, pp. 1521–1538, 2001.

[7] T. Sandholm, “Abstraction for solving large incomplete-information
games,” in Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA,
B. Bonet and S. Koenig, Eds. AAAI Press, 2015, pp. 4127–4131.
[Online]. Available: http://www.aaai.org/ocs/index.php/AAAI/
AAAI15/paper/view/10039

114

https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://doi.org/10.1109/MS.2005.129
http://www.hup.harvard.edu/catalog/MYEGAM.html
http://www.hup.harvard.edu/catalog/MYEGAM.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10039
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10039

Bibliography

[8] M. P. Wellman, “Methods for empirical game-theoretic analysis,”
in Proceedings, The Twenty-First National Conference on Artificial
Intelligence and the Eighteenth Innovative Applications of Artificial
Intelligence Conference, July 16-20, 2006, Boston, Massachusetts,
USA. AAAI Press, 2006, pp. 1552–1556. [Online]. Available:
http://www.aaai.org/Library/AAAI/2006/aaai06-248.php

[9] W. E. Walsh, R. Das, G. Tesauro, and J. O. Kephart, “Analyzing complex
strategic interactions in multi-agent systems,” in AAAI-02 Workshop on
Game-Theoretic and Decision-Theoretic Agents, 2002, pp. 109–118.

[10] R. Madachy, Software Process Dynamics. Wiley, 2007.

[11] J. Münch, O. Armbrust, M. Kowalczyk, and M. Soto, Software Process
Definition and Management, ser. The Fraunhofer IESE Series on Software
and Systems Engineering. Springer Berlin Heidelberg, 2012.

[12] P. Butcher, Debug It!: Find, Repair, and Prevent Bugs in Your Code, ser.
Pragmatic Bookshelf Series. Pragmatic Bookshelf, 2009.

[13] K. Leyton-Brown and Y. Shoham, Essentials of Game Theory: A
Concise Multidisciplinary Introduction, ser. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2008. [Online]. Available: https://doi.org/10.2200/
S00108ED1V01Y200802AIM003

[14] I. Abraham, L. Alvisi, and J. Y. Halpern, “Distributed computing
meets game theory: combining insights from two fields,” SIGACT
News, vol. 42, no. 2, pp. 69–76, 2011. [Online]. Available: https:
//doi.org/10.1145/1998037.1998055

[15] S. Tadelis, Game Theory: An Introduction. Princeton University Press,
2013.

[16] Y. Shoham and K. Leyton-Brown, Multiagent Systems - Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge University Press,
2009.

115

http://www.aaai.org/Library/AAAI/2006/aaai06-248.php
https://doi.org/10.2200/S00108ED1V01Y200802AIM003
https://doi.org/10.2200/S00108ED1V01Y200802AIM003
https://doi.org/10.1145/1998037.1998055
https://doi.org/10.1145/1998037.1998055

Bibliography

[17] R. Aumann, Handbook of game theory with economic applications. Ams-
terdam New York New York, N.Y., USA: North-Holland Distributors
for the U.S. and Canada, Elsevier Science Pub. Co, 1992, vol. 2.

[18] Y. Chen and D. M. Pennock, “Designing markets for prediction,” AI
Magazine, vol. 31, no. 4, pp. 42–52, 2010. [Online]. Available: http:
//www.aaai.org/ojs/index.php/aimagazine/article/view/2313

[19] N. Nisan, T. Roughgarden, É. Tardos, and V. V. Vazirani, Eds.,
Algorithmic Game Theory. Cambridge University Press, 2007. [Online].
Available: https://doi.org/10.1017/CBO9780511800481

[20] Y. Shoham, “Computer science and game theory,” Commun.
ACM, vol. 51, no. 8, pp. 74–79, 2008. [Online]. Available: https:
//doi.org/10.1145/1378704.1378721

[21] M. Grechanik and D. E. Perry, “Analyzing software development
as a noncooperative game,” in ”Sixth International Workshop on
Economics-Driven Software Engineering Research (EDSER-6)” W9L
Workshop - 26th International Conference on Software Engineering. IEE,
2004. [Online]. Available: https://doi.org/10.1049/ic:20040282

[22] The Joint Task Force on Computing Curricula, “Curriculum Guidelines
for Undergraduate Degree Programs in Software Engineering,” As-
sociation for Computing Machinery, New York, NY, USA, Tech. Rep.,
2004.

[23] International Organization for Standardization, International Elec-
trotechnical Commission, and Institute of Electrical and Electronics
Engineers, 24765-2017 - ISO/IEC/IEEE International Standard - Systems
and software engineering–Vocabulary, 2nd ed. IEEE, 2017.

[24] P. Bourque, R. Dupuis, A. Abran, J. W. Moore, and L. L. Tripp,
“The guide to the software engineering body of knowledge,”
IEEE Software, vol. 16, no. 6, pp. 35–44, 1999. [Online]. Available:
https://doi.org/10.1109/52.805471

[25] SEBoK authors, “The guide to the systems engineering body of
knowledge (sebok), v. 2.1,” 2019, [Online; accessed 02 Dec 2019].
[Online]. Available: www.sebokwiki.org

116

http://www.aaai.org/ojs/index.php/aimagazine/article/view/2313
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2313
https://doi.org/10.1017/CBO9780511800481
https://doi.org/10.1145/1378704.1378721
https://doi.org/10.1145/1378704.1378721
https://doi.org/10.1049/ic:20040282
https://doi.org/10.1109/52.805471
www.sebokwiki.org

Bibliography

[26] X. Liang and Y. Xiao, “Game theory for network security,” IEEE
Communications Surveys and Tutorials, vol. 15, no. 1, pp. 472–486, 2013.
[Online]. Available: https://doi.org/10.1109/SURV.2012.062612.00056

[27] C. T. Do, N. H. Tran, C. S. Hong, C. A. Kamhoua, K. A. Kwiat,
E. Blasch, S. Ren, N. Pissinou, and S. S. Iyengar, “Game theory for
cyber security and privacy,” ACM Comput. Surv., vol. 50, no. 2, pp.
30:1–30:37, 2017. [Online]. Available: https://doi.org/10.1145/3057268

[28] E. Yu, P. Giorgini, N. Maiden, and J. Mylopoulos, Social Modeling for
Requirements Engineering, ser. Cooperative information systems. MIT
Press, 2011.

[29] K. K. Vajja and P. TV, “Quality attribute game: a game theory
based technique for software architecture design,” in Proceeding
of the 2nd Annual India Software Engineering Conference, ISEC 2009,
Pune, India, February 23-26, 2009, K. Deshpande, P. Jalote, and
S. K. Rajamani, Eds. ACM, 2009, pp. 133–134. [Online]. Available:
https://doi.org/10.1145/1506216.1506244

[30] J. Garcı́a-Galán, P. Trinidad, and A. R. Cortés, “Multi-user variability
configuration: A game theoretic approach,” in 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2013,
Silicon Valley, CA, USA, November 11-15, 2013, E. Denney, T. Bultan,
and A. Zeller, Eds. IEEE, 2013, pp. 574–579. [Online]. Available:
https://doi.org/10.1109/ASE.2013.6693115

[31] L. Capra, W. Emmerich, and C. Mascolo, “A micro-economic approach
to conflict resolution in mobile computing,” in Proceedings of the Tenth
ACM SIGSOFT Symposium on Foundations of Software Engineering 2002,
Charleston, South Carolina, USA, November 18-22, 2002. ACM, 2002, pp.
31–40. [Online]. Available: https://doi.org/10.1145/587051.587057

[32] N. Kitagawa, H. Hata, A. Ihara, K. Kogiso, and K. Matsumoto, “Code
review participation: game theoretical modeling of reviewers in gerrit
datasets,” in Proceedings of the 9th International Workshop on Cooperative
and Human Aspects of Software Engineering, CHASE@ICSE 2016, Austin,
Texas, USA, May 16, 2016. ACM, 2016, pp. 64–67. [Online]. Available:
https://doi.org/10.1145/2897586.2897605

117

https://doi.org/10.1109/SURV.2012.062612.00056
https://doi.org/10.1145/3057268
https://doi.org/10.1145/1506216.1506244
https://doi.org/10.1109/ASE.2013.6693115
https://doi.org/10.1145/587051.587057
https://doi.org/10.1145/2897586.2897605

Bibliography

[33] L. Feijs, “Prisoner’s dilemma in software testing,” in Proceedings 7e
Nederlandse Testdag (Eindhoven, The Netherlands, November 8, 2001), ser.
Computer Science Reports, L. Feijs, N. Goga, S. Mauw, and T. Willemse,
Eds. Technische Universiteit Eindhoven, 2001, pp. 65–80.

[34] N. Kukreja, W. G. J. Halfond, and M. Tambe, “Randomizing regression
tests using game theory,” in 2013 28th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2013, Silicon
Valley, CA, USA, November 11-15, 2013, E. Denney, T. Bultan,
and A. Zeller, Eds. IEEE, 2013, pp. 616–621. [Online]. Available:
https://doi.org/10.1109/ASE.2013.6693122

[35] M. Rao, D. C. Parkes, M. I. Seltzer, and D. F. Bacon, “A framework
for incentivizing deep fixes,” in Proceedings of the AAAI Workshop on
Incentives and Trust in E-Communites, 2015.

[36] V. Sazawal and N. Sudan, “Modeling software evolution with game
theory,” in Trustworthy Software Development Processes, International
Conference on Software Process, ICSP 2009 Vancouver, Canada, May
16-17, 2009 Proceedings, ser. Lecture Notes in Computer Science,
Q. Wang, V. Garousi, R. J. Madachy, and D. Pfahl, Eds., vol.
5543. Springer, 2009, pp. 354–365. [Online]. Available: https:
//doi.org/10.1007/978-3-642-01680-6 32

[37] G. Bavota, R. Oliveto, A. D. Lucia, G. Antoniol, and Y. Guéhéneuc,
“Playing with refactoring: Identifying extract class opportunities
through game theory,” in 26th IEEE International Conference on
Software Maintenance (ICSM 2010), September 12-18, 2010, Timisoara,
Romania. IEEE Computer Society, 2010, pp. 1–5. [Online]. Available:
https://doi.org/10.1109/ICSM.2010.5609739

[38] H. Hata, T. Todo, S. Onoue, and K. Matsumoto, “Characteristics of
sustainable OSS projects: A theoretical and empirical study,” in 8th
IEEE/ACM International Workshop on Cooperative and Human Aspects
of Software Engineering, CHASE 2015, Florence, Italy, May 18, 2015,
A. Begel, R. Prikladnicki, Y. Dittrich, C. R. B. de Souza, A. Sarma, and
S. Athavale, Eds. IEEE Computer Society, 2015, pp. 15–21. [Online].
Available: https://doi.org/10.1109/CHASE.2015.9

118

https://doi.org/10.1109/ASE.2013.6693122
https://doi.org/10.1007/978-3-642-01680-6_32
https://doi.org/10.1007/978-3-642-01680-6_32
https://doi.org/10.1109/ICSM.2010.5609739
https://doi.org/10.1109/CHASE.2015.9

Bibliography

[39] N. V. Oza, “Game theory perspectives on client: Vendor relationships in
offshore software outsourcing,” in Proceedings of the 2006 International
Workshop on Economics Driven Software Engineering Research, ser. EDSER
’06. New York, NY, USA: ACM, 2006, pp. 49–54. [Online]. Available:
http://doi.acm.org/10.1145/1139113.1139125

[40] D. F. Bacon, E. Bokelberg, Y. Chen, I. A. Kash, D. C. Parkes, M. Rao,
and M. Sridharan, “Software economies,” in Proceedings of the Workshop
on Future of Software Engineering Research, FoSER 2010, at the 18th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010, G. Roman
and K. J. Sullivan, Eds. ACM, 2010, pp. 7–12. [Online]. Available:
https://doi.org/10.1145/1882362.1882365

[41] D. F. Bacon, D. C. Parkes, Y. Chen, M. Rao, I. A. Kash, and
M. Sridharan, “Predicting your own effort,” in International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2012, Valencia,
Spain, June 4-8, 2012 (3 Volumes), W. van der Hoek, L. Padgham,
V. Conitzer, and M. Winikoff, Eds. IFAAMAS, 2012, pp. 695–702.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2343796

[42] B. Lagesse, “A game-theoretical model for task assignment in project
management,” in 2006 IEEE International Conference on Management of
Innovation and Technology, vol. 2, June 2006, pp. 678–680.

[43] M. Yilmaz, R. V. O’Connor, and J. Collins, “Improving software
development process through economic mechanism design,” in
Systems, Software and Services Process Improvement - 17th European
Conference, EuroSPI 2010, Grenoble, France, September 1-3, 2010.
Proceedings, ser. Communications in Computer and Information
Science, A. Riel, R. O’Connor, S. Tichkiewitch, and R. Messnarz,
Eds., vol. 99. Springer, 2010, pp. 177–188. [Online]. Available:
https://doi.org/10.1007/978-3-642-15666-3 16

[44] M. Yilmaz and R. V. O’Connor, “A software process engineer-
ing approach to improving software team productivity using
socioeconomic mechanism design,” ACM SIGSOFT Software Engi-
neering Notes, vol. 36, no. 5, pp. 1–5, 2011. [Online]. Available:
https://doi.org/10.1145/2020976.2020998

119

http://doi.acm.org/10.1145/1139113.1139125
https://doi.org/10.1145/1882362.1882365
http://dl.acm.org/citation.cfm?id=2343796
https://doi.org/10.1007/978-3-642-15666-3_16
https://doi.org/10.1145/2020976.2020998

Bibliography

[45] O. Hazzan and Y. Dubinsky, “Social perspective of software
development methods: The case of the prisoner dilemma and
extreme programming,” in Extreme Programming and Agile Processes
in Software Engineering, 6th International Conference, XP 2005,
Sheffield, UK, June 18-23, 2005, Proceedings, ser. Lecture Notes in
Computer Science, H. Baumeister, M. Marchesi, and M. Holcombe,
Eds., vol. 3556. Springer, 2005, pp. 74–81. [Online]. Available:
https://doi.org/10.1007/11499053 9

[46] Y. Wang and D. F. Redmiles, “Cheap talk, cooperation, and trust
in global software engineering - an evolutionary game theory
model with empirical support,” Empirical Software Engineering,
vol. 21, no. 6, pp. 2233–2267, 2016. [Online]. Available: https:
//doi.org/10.1007/s10664-015-9407-3

[47] E. Hasnain, T. Hall, and M. J. Shepperd, “Using experimental games
to understand communication and trust in agile software teams,”
in 6th International Workshop on Cooperative and Human Aspects of
Software Engineering, CHASE 2013, San Francisco, CA, USA, May 25,
2013. IEEE Computer Society, 2013, pp. 117–120. [Online]. Available:
https://doi.org/10.1109/CHASE.2013.6614745

[48] M. A. Nowak, Evolutionary dynamics : exploring the equations of life.
Cambridge, Massachusetts: The Belknap Press of Harvard University
Press, 2006.

[49] É. Tardos and V. V. Vazirani, “Basic solution concepts and computa-
tional issues,” in Algorithmic game theory, N. Nisan, T. Roughgarden,
É. Tardos, and V. V. Vazirani, Eds. Cambridge University Press, 2007,
ch. 1, pp. 3–28.

[50] M. P. Wellman, D. M. Reeves, K. M. Lochner, S. Cheng, and R. Suri,
“Approximate strategic reasoning through hierarchical reduction
of large symmetric games,” in Proceedings, The Twentieth National
Conference on Artificial Intelligence and the Seventeenth Innovative
Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh,
Pennsylvania, USA, M. M. Veloso and S. Kambhampati, Eds. AAAI
Press / The MIT Press, 2005, pp. 502–508. [Online]. Available:
http://www.aaai.org/Library/AAAI/2005/aaai05-079.php

120

https://doi.org/10.1007/11499053_9
https://doi.org/10.1007/s10664-015-9407-3
https://doi.org/10.1007/s10664-015-9407-3
https://doi.org/10.1109/CHASE.2013.6614745
http://www.aaai.org/Library/AAAI/2005/aaai05-079.php

Bibliography

[51] B. Wiedenbeck and M. P. Wellman, “Scaling simulation-based game
analysis through deviation-preserving reduction,” in International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2012,
Valencia, Spain, June 4-8, 2012 (3 Volumes), W. van der Hoek, L. Padgham,
V. Conitzer, and M. Winikoff, Eds. IFAAMAS, 2012, pp. 931–938.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2343830

[52] S. G. Ficici, D. C. Parkes, and A. Pfeffer, “Learning and solving many-
player games through a cluster-based representation,” arXiv preprint
arXiv:1206.3253, 2012.

[53] K. Holyoak and R. Morrison, The Oxford Handbook of Thinking and
Reasoning, ser. Oxford Library of Psychology. OUP USA, 2012.

[54] A. Sanjab, W. Saad, and T. Başar, “Prospect theory for enhanced cyber-
physical security of drone delivery systems: A network interdiction
game,” in 2017 IEEE International Conference on Communications (ICC).
IEEE, 2017, pp. 1–6.

[55] W. Saad, A. L. Glass, N. B. Mandayam, and H. V. Poor, “Toward a
consumer-centric grid: A behavioral perspective,” Proceedings of the
IEEE, vol. 104, no. 4, pp. 865–882, 2016.

[56] The Register, “Talk of tech innovation is bullsh*t. shut up and
get the work done – says linus torvalds,” 2017, accessed: 17-09-
2018. [Online]. Available: https://www.theregister.co.uk/2017/02/
15/think different shut up and work harder says linus torvalds/

[57] S. McConnell, Software Estimation: Demystifying the Black Art, ser. De-
veloper Best Practices. Pearson Education, 2006.

[58] F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective software
effort estimation,” in 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), May 2016, pp. 619–630.

[59] T. Sandholm, “The state of solving large incomplete-information
games, and application to poker,” AI Magazine, vol. 31, no. 4, pp.
13–32, 2010. [Online]. Available: http://www.aaai.org/ojs/index.php/
aimagazine/article/view/2311

121

http://dl.acm.org/citation.cfm?id=2343830
https://www.theregister.co.uk/2017/02/15/think_different_shut_up_and_work_harder_says_linus_torvalds/
https://www.theregister.co.uk/2017/02/15/think_different_shut_up_and_work_harder_says_linus_torvalds/
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2311
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2311

Bibliography

[60] F. Sarro, “Predictive analytics for software testing: Keynote paper,” in
Proceedings of the 11th International Workshop on Search-Based Software
Testing, ser. SBST ’18. New York, NY, USA: ACM, 2018, pp. 1–1.
[Online]. Available: http://doi.acm.org/10.1145/3194718.3194730

[61] M. Lavallée and P. N. Robillard, “Why good developers write bad code:
An observational case study of the impacts of organizational factors
on software quality,” in Proceedings of the 37th International Conference
on Software Engineering-Volume 1. IEEE Press, 2015, pp. 677–687.

[62] P. Goodliffe, Becoming a Better Programmer: A Handbook for People Who
Care About Code. O’Reilly Media, 2014.

[63] A. Stellman and J. Greene, Learning agile: Understanding scrum, XP, lean,
and kanban. ” O’Reilly Media, Inc.”, 2014.

[64] A. Greasley, “A comparison of system dynamics and discrete event
simulation,” in Proceedings of the 2009 Summer Computer Simulation
Conference. Society for Modeling & Simulation International, 2009, pp.
83–87.

[65] J. Banks, J. Carson, and B. Nelson, Discrete-event System Simulation.
Prentice Hall, 2010.

[66] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, ser.
Always learning. Pearson, 2016.

[67] R. D. McKelvey, A. M. McLennan, and T. L. Turocy, “Gambit:
Software Tools for Game Theory, Version 15,” 2014. [Online]. Available:
http://www.gambit-project.org

[68] Q. Mi and J. Keung, “An empirical analysis of reopened bugs based on
open source projects,” in Proceedings of the 20th International Conference
on Evaluation and Assessment in Software Engineering. ACM, 2016, p. 37.

[69] S. Yoo and M. Harman, “Regression testing minimization, selection
and prioritization: a survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012.

122

http://doi.acm.org/10.1145/3194718.3194730
http://www.gambit-project.org

Bibliography

[70] N. H. Madhavji, D. Holtje, Won Kook Hong, and T. Bruckhaus, “Elicit:
a method for eliciting process models,” in Proceedings of the Third Inter-
national Conference on the Software Process. Applying the Software Process,
1994, pp. 111–122.

[71] M. Verlage, “Multi-view modelling of software processes,” in Software
Process Technology, Third European Workshop, EWSPT ’94, Villard de Lans,
France, February 7-9, 1994, Proceedings, ser. Lecture Notes in Computer
Science, B. Warboys, Ed., vol. 772. Springer, 1994, pp. 123–126.
[Online]. Available: https://doi.org/10.1007/3-540-57739-4 17

[72] I. Jacobson, G. Booch, and J. E. Rumbaugh, The unified software devel-
opment process - the complete guide to the unified process from the original
designers, ser. Addison-Wesley object technology series. Addison-
Wesley, 1999.

[73] H. D. Mills, M. G. Dyer, and R. C. Linger, “Cleanroom software
engineering,” IEEE Software, vol. 4, no. 5, pp. 19–25, 1987. [Online].
Available: https://doi.org/10.1109/MS.1987.231413

[74] T. Bauer, F. Bohr, D. Landmann, T. Beletski, R. Eschbach, and J. Poore,
“From requirements to statistical testing of embedded systems,” in
Fourth International Workshop on Software Engineering for Automotive
Systems (SEAS ’07), 2007, pp. 3–3.

[75] A. Trendowicz, J. Heidrich, J. Münch, Y. Ishigai, K. Yokoyama, and
N. Kikuchi, “Development of a hybrid cost estimation model in
an iterative manner,” in 28th International Conference on Software
Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006, L. J.
Osterweil, H. D. Rombach, and M. L. Soffa, Eds. ACM, 2006, pp. 331–
340. [Online]. Available: https://doi.org/10.1145/1134285.1134332

[76] Task Force for SPEM, “Software & systems process engineering meta-
model specification,” Object Management Group (OMG), Standard,
Apr. 2008. [Online]. Available: https://www.omg.org/spec/SPEM/2.
0/PDF

[77] C. P. Team, “Capability maturity model R© integration (cmmi), version
1.1–continuous representation,” 2002.

123

https://doi.org/10.1007/3-540-57739-4_17
https://doi.org/10.1109/MS.1987.231413
https://doi.org/10.1145/1134285.1134332
https://www.omg.org/spec/SPEM/2.0/PDF
https://www.omg.org/spec/SPEM/2.0/PDF

Bibliography

[78] K. E. Emam, W. Melo, and J.-N. Drouin, Spice: The Theory and Practice
of Software Process Improvement and Capability Determination, 1st ed.
Washington, DC, USA: IEEE Computer Society Press, 1997.

[79] M. B. Doar, Practical Development Environments. ”O’Reilly Media, Inc.”,
2005.

[80] J. A. Whittaker, J. Arbon, and J. Carollo, How Google tests software.
Addison-Wesley, 2012.

[81] A. Page, K. Johnston, and B. Rollison, How we test software at Microsoft.
Microsoft Press, 2008.

[82] Atlassian, “Bug tracking for JIRA server,” 2002, accessed: 2019-03-22.
[Online]. Available: https://jira.atlassian.com/browse/JRASERVER-
886

[83] S. Brue and R. Grant, The Evolution of Economic Thought. Cengage
Learning, 2012.

[84] P. A. Laplante and N. B. Ahmad, “Pavlov’s bugs: Matching repair
policies with rewards,” IT Professional, vol. 11, no. 4, pp. 45–51, 2009.
[Online]. Available: https://doi.org/10.1109/MITP.2009.80

[85] R. Axelrod, The Evolution of Cooperation: Revised Edition. Basic Books,
2009.

[86] R. Banfield, Product leadership : how top product managers Launch awesome
products and build successful teams. Beijing: O’Reilly, 2017.

[87] M. Krogerus and R. Tschäppeler, The Decision Book: Fifty models for
strategic thinking (New Edition). Profile, 2017.

[88] R. Black, Managing the Testing Process: Practical Tools and Techniques for
Managing Hardware and Software Testing. Wiley, 2013.

[89] GitHub, “About labels - user documentation,” 2018, accessed:
2018-10-19. [Online]. Available: https://help.github.com/articles/
about-labels/

124

https://jira.atlassian.com/browse/JRASERVER-886
https://jira.atlassian.com/browse/JRASERVER-886
https://doi.org/10.1109/MITP.2009.80
https://help.github.com/articles/about-labels/
https://help.github.com/articles/about-labels/

Bibliography

[90] Atlassian, “What is an issue (v6.4) - atlassian documentation,” 2018,
accessed: 2018-10-19. [Online]. Available: https://confluence.atlassian.
com/jira064/what-is-an-issue-720416138.html

[91] MediaWiki, “Bugzilla/fields - mediawiki,” 2018, accessed: 2018-10-
19. [Online]. Available: https://www.mediawiki.org/wiki/Bugzilla/
Fields

[92] A. Savchenko, “Github labels for better workflows - yoast,” 2015,
accessed: 2018-10-19. [Online]. Available: https://yoast.com/dev-
blog/github-labels/

[93] Mediocre Laboratories, “How we use labels on github issues
at mediocre laboratories,” 2014, accessed: 2018-10-19. [Online].
Available: https://mediocre.com/forum/topics/how-we-use-labels-
on-github-issues-at-mediocre-laboratories

[94] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. Germán,
and D. E. Damian, “The promises and perils of mining github,” in
11th Working Conference on Mining Software Repositories, MSR 2014,
Proceedings, May 31 - June 1, 2014, Hyderabad, India, P. T. Devanbu,
S. Kim, and M. Pinzger, Eds. ACM, 2014, pp. 92–101. [Online].
Available: https://doi.org/10.1145/2597073.2597074

[95] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “A systematic
mapping study of software development with github,” IEEE
Access, vol. 5, pp. 7173–7192, 2017. [Online]. Available: https:
//doi.org/10.1109/ACCESS.2017.2682323

[96] O. Jarczyk, B. Gruszka, S. Jaroszewicz, L. Bukowski, and A. Wierzbicki,
“Github projects. quality analysis of open-source software,” in Social
Informatics - 6th International Conference, SocInfo 2014, Barcelona,
Spain, November 11-13, 2014. Proceedings, ser. Lecture Notes in
Computer Science, L. M. Aiello and D. A. McFarland, Eds.,
vol. 8851. Springer, 2014, pp. 80–94. [Online]. Available: https:
//doi.org/10.1007/978-3-319-13734-6 6

[97] P. Lavrakas, Encyclopedia of Survey Research Methods: A-M., ser. A SAGE
reference publication. SAGE Publications, 2008.

125

https://confluence.atlassian.com/jira064/what-is-an-issue-720416138.html
https://confluence.atlassian.com/jira064/what-is-an-issue-720416138.html
https://www.mediawiki.org/wiki/Bugzilla/Fields
https://www.mediawiki.org/wiki/Bugzilla/Fields
https://yoast.com/dev-blog/github-labels/
https://yoast.com/dev-blog/github-labels/
https://mediocre.com/forum/topics/how-we-use-labels-on-github-issues-at-mediocre-laboratories
https://mediocre.com/forum/topics/how-we-use-labels-on-github-issues-at-mediocre-laboratories
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1109/ACCESS.2017.2682323
https://doi.org/10.1109/ACCESS.2017.2682323
https://doi.org/10.1007/978-3-319-13734-6_6
https://doi.org/10.1007/978-3-319-13734-6_6

Bibliography

[98] Carlos Gavidia-Calderon, Federica Sarro, Mark Harman, and
Earl T. Barr, “Improving software processes via empirical game
theory,” 2015, accessed: 2019-02-14. [Online]. Available: https:
//cptanalatriste.github.io/priority-inflation-site/

[99] Atlassian, “JIRA- issue and project tracking software,” 2018, accessed:
2018-10-21. [Online]. Available: https://www.atlassian.com/software/
jira

[100] Apache Software Foundation, “System dashboard - ASF JIRA,” 2018,
accessed: 2018-10-21. [Online]. Available: https://issues.apache.org/
jira/

[101] ——, “Github - the apache software foundation,” 2018, accessed:
2018-10-21. [Online]. Available: https://github.com/apache

[102] Atlassian, “What is an issue (v6.3) - atlassian documentation,” 2015,
accessed: 2018-10-21. [Online]. Available: https://confluence.atlassian.
com/jira063/what-is-an-issue-683542485.html

[103] J. Spolsky, Joel on software : and on diverse and occasionally related matters
that will prove of interest to software developers, designers, and managers,
and to those who, whether by good fortune or ill luck, work with them in some
capacity. Berkeley, CA: Apress, 2004.

[104] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34–41, 1978.

[105] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[106] M. Rath, J. Rendall, J. L. C. Guo, J. Cleland-Huang, and P. Mäder,
“Traceability in the wild: automatically augmenting incomplete
trace links,” in Proceedings of the 40th International Conference
on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27

126

https://cptanalatriste.github.io/priority-inflation-site/
https://cptanalatriste.github.io/priority-inflation-site/
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://issues.apache.org/jira/
https://issues.apache.org/jira/
https://github.com/apache
https://confluence.atlassian.com/jira063/what-is-an-issue-683542485.html
https://confluence.atlassian.com/jira063/what-is-an-issue-683542485.html

Bibliography

- June 03, 2018, M. Chaudron, I. Crnkovic, M. Chechik, and
M. Harman, Eds. ACM, 2018, pp. 834–845. [Online]. Available:
https://doi.org/10.1145/3180155.3180207

[107] D. Radigan, “Organizing issues with priority to opti-
mize delivery,” 2014, accessed: 2019-03-24. [Online]. Avail-
able: https://www.atlassian.com/blog/jira-software/organizing-
issues-priority-optimize-delivery

[108] G. Fishman, Discrete-Event Simulation : Modeling, Programming, and
Analysis. New York, NY: Springer New York, 2001.

[109] K. G. Müller and T. Vignaux. (2011) Simulation with simpy - in
depth manual. [Online]. Available: https://pythonhosted.org/SimPy/
Manuals/Manual.html

[110] J. Watkins and S. Mills, Testing IT: an off-the-shelf software testing process.
Cambridge University Press, 2010.

[111] D. Gross, Fundamentals of queueing theory. John Wiley & Sons, 2008.

[112] S. Kelly, Domain-specific modeling : enabling full code generation. Hobo-
ken, N.J: Wiley-Interscience IEEE Computer Society, 2008.

[113] M. Lacey, The Scrum field guide : practical advice for your first year.
Addison-Wesley Professional, 2012.

[114] H. Naguib, N. Narayan, B. Brügge, and D. Helal, “Bug report assignee
recommendation using activity profiles,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR ’13, San
Francisco, CA, USA, May 18-19, 2013, T. Zimmermann, M. D. Penta,
and S. Kim, Eds. IEEE Computer Society, 2013, pp. 22–30. [Online].
Available: https://doi.org/10.1109/MSR.2013.6623999

[115] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Trans.
Softw. Eng. Methodol., vol. 20, no. 3, pp. 10:1–10:35, 2011. [Online].
Available: https://doi.org/10.1145/2000791.2000794

127

https://doi.org/10.1145/3180155.3180207
https://www.atlassian.com/blog/jira-software/organizing-issues-priority-optimize-delivery
https://www.atlassian.com/blog/jira-software/organizing-issues-priority-optimize-delivery
https://pythonhosted.org/SimPy/Manuals/Manual.html
https://pythonhosted.org/SimPy/Manuals/Manual.html
https://doi.org/10.1109/MSR.2013.6623999
https://doi.org/10.1145/2000791.2000794

Bibliography

[116] L. Crispin, Agile testing : a practical guide for testers and agile teams.
Upper Saddle River, NJ: Addison-Wesley, 2009.

[117] E. Brechner, Agile project management with Kanban. Redmond, WA:
Microsoft Press, 2015.

[118] S. S. Gokhale and R. E. Mullen, “Queuing models for field defect reso-
lution process,” in 17th International Symposium on Software Reliability
Engineering (ISSRE 2006), 7-10 November 2006, Raleigh, North Carolina,
USA, 2006, pp. 353–362.

[119] B. Luong and D.-B. Liu, “Resource allocation model in software de-
velopment,” in Annual Reliability and Maintainability Symposium. 2001
Proceedings. International Symposium on Product Quality and Integrity
(Cat. No.01CH37179), 2001, pp. 213–218.

[120] S. Bose, An Introduction to Queueing Systems. Boston, MA: Springer
US Imprint Springer, 2002.

[121] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou, “Eval-
uating static analysis defect warnings on production software,” in
Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering. ACM, 2007, pp. 1–8.

[122] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Charac-
terizing and predicting which bugs get fixed: an empirical study of
microsoft windows,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town,
South Africa, 1-8 May 2010, 2010, pp. 495–504.

[123] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in Pro-
ceedings of the twenty-second IEEE/ACM international conference on Auto-
mated software engineering. ACM, 2007, pp. 34–43.

[124] S.-H. Kim and B. L. Nelson, “Selecting the best system,” Handbooks in
operations research and management science, vol. 13, pp. 501–534, 2006.

[125] B. L. Nelson and F. J. Matejcik, “Using common random numbers for
indifference-zone selection and multiple comparisons in simulation,”
Management Science, vol. 41, no. 12, pp. 1935–1945, 1995.

128

Bibliography

[126] K. Inoue, S. E. Chick, and C.-H. Chen, “An empirical evaluation of sev-
eral methods to select the best system,” ACM Transactions on Modeling
and Computer Simulation (TOMACS), vol. 9, no. 4, pp. 381–407, 1999.

[127] C. Gavidia-Calderon, “TheFed at GitHub,” 2017, accessed: 2019-03-
10. [Online]. Available: https://github.com/cptanalatriste/inflation-
tracker-extension

[128] Atlassian, “The JIRA Cloud Platform REST API,” 2019, accessed: 2019-
03-10. [Online]. Available: https://docs.atlassian.com/jira/REST/
cloud/

[129] Bugzilla, “WebService API Reference,” 2019, accessed: 2019-03-10.
[Online]. Available: http://bugzilla.readthedocs.io/en/latest/api/

129

https://github.com/cptanalatriste/inflation-tracker-extension
https://github.com/cptanalatriste/inflation-tracker-extension
https://docs.atlassian.com/jira/REST/cloud/
https://docs.atlassian.com/jira/REST/cloud/
http://bugzilla.readthedocs.io/en/latest/api/

	Introduction
	Research Problem
	Objectives
	Contributions
	Thesis Outline

	Background
	Concepts and Terminology
	Normal-form Games
	Extensive-form Games
	Multistage Games
	Bayesian Games
	Mechanism Design
	Cooperative Game-Theory

	Literature Review
	Methodology
	Game Models in Software Engineering
	Software Requirements
	Software Design
	Software Construction
	Software Testing
	Software Maintenance
	Software Engineering Management
	Software Engineering Professional Practice

	Challenges and Opportunities
	The Need for Game Abstractions
	Beyond the Rationality Assumptions

	GTPI: A Game-Theoretic Approach to Process Improvement
	Motivating Example
	An Introduction to GTPI
	Software Process Modelling
	Software Process Improvement

	Practical considerations
	Data Gathering
	Technical Validation
	Securing Acceptance

	Related Work

	TaskAssessor: A Game-Theoretic Model of Priority Inflation
	The Assessor's Dilemma
	Identifying the Process Anomaly
	Shared Prioritisation Tooling Adoption
	The Cost of Priority Inflation

	Empirical Game Design
	Bug Repair and Issue Resolution Corpus
	Game Models with TaskAssessor
	TaskAssessor under Twins and EGTA
	Validating TaskAssessor
	Threats to Validity
	Using TaskAssessor

	Assessor-Throttling: A Novel Task Prioritisation Process
	Empirical Game Improvement
	Distributed Bug Prioritisation
	Do Gatekeepers Prevent Priority Inflation?
	The Assessor-Throttling Process

	Process Deployment

	Conclusion and Future Work
	Summary of Contributions
	Future Work
	Final Remarks

	Bibliography

