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ABSTRACT
Image-to-image translation has drawn great attention during the past few years. It aims to translate an
image in one domain to a target image in another domain. However, three big challenges remain in
image-to-image translation: 1) the lack of large amounts of aligned training pairs for various tasks; 2)
the ambiguity of multiple possible outputs from a single input image; and 3) the lack of simultaneous
training for multi-domain translation with a single network. Therefore in this paper, we propose a
unified framework for learning to generate diverse outputs using unpaired training data and allow
for simultaneous multi-domain translation via a single model. Moreover, we also observed from
experiments that the implicit disentanglement of content and style could lead to undesirable results.
Thus we investigate how to extract domain-level signal as explicit supervision so as to achieve better
image-to-image translation. Extensive experiments show that the proposed method outperforms or is
comparable with the state-of-the-art methods for various applications.

1. Introduction
Image-to-image translation aims to learn a mapping that

can transfer an image from a source domain to a target do-
main, while maintaining the representative content of the in-
put image. It has received significant attention since many
problems in computer vision can be formulated as cross-
domain image-to-image translation tasks (Isola et al., 2017;
Zhu et al., 2017a,b), including super-resolution (Ledig et al.,
2017), image inpainting (Yu et al., 2018a,b; Nazeri et al.,
2019) and style transfer (Gatys et al., 2016), for example.

Despite of the great success, learning the mapping be-
tween two visually different domains is still challenging in
three crucial aspects. First, exquisite large-scale datasets
with thousands of aligned training pairs for various tasks are
often unavailable. Second, in many scenarios, such map-
pings of interest are inherently multi-modal (i.e., a single in-
put may correspond to multiple possible outputs). Third, for
multi-domain image translation tasks, most existing meth-
ods learn individual two-domain mappings separately, and
thus with n domains, they needs to train (n2

)

= O
(

n2
) mod-

els. They are incapable of jointly learning the mapping be-
tween all available domains in different datasets. To address
these issues, several recent efforts have been made.

To tackle the limitation of paired training data, many stud-
ies propose unsupervised learning frameworks for image-
to-image translation. Most methods are inspired by the in-
tuition that the unpaired images from two domains should
be consistent with their reconstructions in a cyclic mapping
(Zhu et al., 2017a) or primal-dual relation (Yi et al., 2017).
Superiority of this cycle consistency loss has been demon-
strated on several tasks where paired training data hardly ex-
ist. However, thesemethods fail to producemulti-modal out-
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puts conditioned on the given input image.
To capture the full distribution of possible outputs, simply

incorporating noise vectors as additional inputs often leads
to the mode collapsing issue and thus does not increase the
variation of the generated images. Zhu et al. (2017b) try
to encourage the one-to-one relationship between the output
and the latent vector to generate diverse outputs. However,
the training process of Zhu et al. (2017b) requires paired im-
ages to supervise. Very recently, Lee et al. (2018) andHuang
et al. (2018) propose the disentangled representation frame-
work to generate diverse outputs with unpaired training data.
These two multi-modal unsupervised image-to-image trans-
lation methods assume that the latent space (Zhang et al.,
2017, 2020) of images can be decomposed into a content la-
tent space and a style latent space, and the images in different
domains vary in the style but share a common content. Thus
multi-modality can be achieved by recombining the content
vector of an image from the source domain with a random
style vector in the target style latent space.

To simultaneously train multi-domain translation with a
single model, Choi et al. (2018) use a label (e.g., binary or
one-hot vector) to represent domain information. They in-
put both images and the corresponding domain information
to the model, and learn to flexibly translate the images from
the source domain to the target domain. By controlling do-
main labels, an image can be translated into any desired do-
main. Instead of using domain labels to represent domain
characteristics as in Choi et al. (2018), Lin et al. (2019) use
domain information as explicit supervision. They pre-train a
classification network to classify images into domains. The
classification features, together with the latent content fea-
tures of the image in the source domain, are used to gener-
ate an image in the target domain. Such features extracted
from the pre-trained network is used to represent domain in-
formation, thus they can be called domain features and the
training with domain features can be called domain supervi-
sion. However, both Choi et al. (2018) and Lin et al. (2019)
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Table 1
Feature-by-feature comparison of image-to-image translation methods. Our model achieves unsupervised multi-domain
multi-modal image-to-image translation with explicit domain-constrained disentanglement.

Pix2pix CycleGAN BicycleGAN StarGAN DosGAN MUNIT DRIT Ours

Unsupervised learning - ✓ - ✓ ✓ ✓ ✓ ✓

Multi-modal - - ✓ - - ✓ ✓ ✓

Multi-domain - - - ✓ ✓ - - ✓

Disentangled representation - - - - ✓ ✓ ✓ ✓

Domain supervision - - - - ✓ - - ✓

produce a single output and are lack of output diversity.
Several recent methods (Lee et al., 2018; Huang et al.,

2018; Liu et al., 2018) adopt disentangled representations for
unsupervised image-to-image translation, but we observed
in experiments that implicit disentanglement learning can
confuse content with style in some cases. As shown in Fig-
ure 3, if the framework of Lee et al. (2018) is adapted for im-
age de-blurring tasks, the de-blurred imagesmay have differ-
ent face contour from the original one, which means that the
attribute extractor of Lee et al. (2018) has not only learned
the blur distortion pattern but also misrecognized some con-
tent representations like face contour as style. This can be
attributed to the ambiguous and implicit disentanglement of
content and style.

What’s more, domain information is currently under-
exploited in the area of image-to-image translation. For
photo-to-art translation, we can distinguish that the gener-
ated image is either in the style of Pablo Picasso or in the
style of Isaac Levitan. Similarly, different weather condi-
tions, such as sunny, foggy, rainy, snowy and cloudy, should
contain specific modalities, and the same is true for seasons.
That is, the style itself can be learned from the collected data
of a unique domain (e.g., artist and weather) and then ex-
ploited for image-to-image translation.

Therefore, in this paper we propose a new approach
termed unsupervised Multi-domain Multimodal Image-to-
image Translation with explicit Domain-Constrained disen-
tanglement (DCMIT).To the best of our knowledge, DCMIT
is the first approach to tackling all the aforementioned chal-
lenges and issues in image-to-image translation. DCMIT is
a unified framework for learning to generate diverse out-
puts with unpaired training data and allow for simultane-
ous multi-domain translation with a single model. Fur-
thermore, DCMIT utilizes domain information and explic-
itly constrains the disentanglement for desired unsupervised
image-to-image translation.

To sum up, our key contributions are:
• We introduce the first unsupervised image-to-image

translation method that achieves diverse outputs and si-
multaneous training of multi-domain translation with a
single model.

• We propose explicit disentanglement learning con-
straints with domain supervision. We investigate how
to extract domain supervision information so as to learn

explicit disentangled representations to avoid the con-
fusion of content and style.

• Extensive qualitative and quantitative experiments are
conducted on multiple datasets, and they show that the
proposed method outperforms or is comparable with
the state-of-the-art methods for various applications.

2. Related work
We initially provide an overview of the recent advances

with Generative Adversarial Networks (GANs), then intro-
duce some existing image-to-image translation methods and
disentangled representations. We also give a brief intro-
duction to style transfer and domain adaptation, two tasks
closely related with image-to-image translation.
2.1. Generative adversarial network

The GAN framework (Goodfellow et al., 2014; Schmid-
huber, 2020) has achieved excellent results in many tasks
such as image super-resolution (Ledig et al., 2017) and im-
age inpainting (Yu et al., 2018a,b; Nazeri et al., 2019).
GANs usually consist of a generator G and a discriminator
D. The training procedure for GANs is a minimax game be-
tween G and D, where D is trained to distinguish whether
the input image is real or fake, and G is trained to fool D
with the generated samples. The ideal solution is the Nash
equilibriumwhereG andD could not improve their cost uni-
laterally (Heusel et al., 2017).

Various improvements have been proposed to handle chal-
lenges in GANs including model generalization and training
stability. Arjovsky et al. (2017) and Gulrajani et al. (2017)
propose to minimize the Wasserstein distance between the
model and data distributions. Berthelot et al. (2017) opti-
mize a lower bound of the Wasserstein distances between
auto-encoder loss distributions on real and fake data. Mao
et al. (2017) propose a least square loss for the discrimina-
tor, which implicitly minimizes the Pearson 2 divergence,
leading to stable training, high image quality and consider-
able diversity.
2.2. Image-to-image translation

Isola et al. (2017) propose the first general image-to-image
translation method (pix2pix) based on conditional GANs.
Wang et al. (2018a) propose an HD version of pix2pix by
utilizing a coarse-to-fine generator, several multi-scale dis-
criminators, and a feature matching loss, which increase the
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resolution to 2048×1024. Since it is usually time-consuming
and expensive to collect such an exquisite large-scale dataset
with thousands of image pairs, many studies have also at-
tempted to tackle the paired training data limitation. Zhu
et al. (2017a), Kim et al. (2017), Yi et al. (2017) and Liu et al.
(2017) leverage cycle consistency to regularize the unsuper-
vised training process Song et al. (2020). Manymethods aim
to produce diverse outputs, including Zhu et al. (2017b), Lee
et al. (2018) and Huang et al. (2018). Some other methods
such as Choi et al. (2018), Lin et al. (2019), Liu et al. (2018)
and Anoosheh et al. (2018) are proposed to improve the scal-
ability of unsupervised image-translation methods. Table 1
shows a feature-by-feature comparison among some existing
image-to-image translation methods.
2.3. Disentangled representations

There are many recent studies on disentangled represen-
tation learning. For example, Lu et al. (2019) disentan-
gle content from blur; Denton et al. (2017) separate time-
independent and time-varying parts; Johnson et al. (2016)
iteratively optimize the image by minimizing a content loss
and a style loss, which can also be regarded as an implicit dis-
entanglement of content and style; Zhu et al. (2017b) com-
bine cLR-GAN and cVAE-GAN to model the distribution
of possible outputs; and Chen et al. (2016a) decompose rep-
resentation by maximizing the mutual information between
the latent factors and the synthesized images without utiliz-
ing paired training data. Some other studies (Xiao et al.,
2018; Liu et al., 2018; Lee et al., 2018; Huang et al., 2018)
focus on disentanglement of content and style or attribute.
It is difficult to explicitly define content or style and differ-
ent methods adopt different definitions due to their specific
tasks. In our setting, we refer to content as domain-invariant
visual elements that can be shared across domains and style
as domain-specific visual elements. We disentangle an im-
age into domain-invariant and domain-specific representa-
tions to facilitate learning diverse cross-domain mappings.

3. Methodology
Our goal is to achieve unsupervised multi-domain multi-

modal image-to-image translation via disentangled repre-
sentationswith a singlemodel. The pipeline of ourmethod is
shown in Figure 1. For multi-domain translation, we design
an intra-domain and inter-domain supervision mechanism,
which is able to represent the essence of different domains
and translate images across different domains with only one
single model. For multi-modal generation between two do-
mains, we regularize the style codes in the training phase so
that they can be represented by a Gaussian distribution. By
controlling the parameters of style codes, multi-modalities
of generated images are possible. The model architecture
and loss functions are also coherently designed for diverse
and realistic image-to-image translation.
3.1. Problem formulation

Assume in a dataset there are n different domains
{1,2,⋯ ,n}. Our goal is to achieve unsupervised

multi-domain multimodal image-to-image translation with
explicit domain-constrained disentanglement by using a sin-
gle model. For each image xi ∈ i, the unique disentangledrepresentations of content latent code c ∈  and the style
latent code si ∈ i can be extracted from content encoder
Eci

and style encoder Esi
. The generator Gi can produce

an image of certain style if given specific style latent code
and content code. For example, let x1 ∈ 1 and x2 ∈ 2 beimages from two different domains, the content encodersEc1and Ec2 map images onto a domain-invariant content space
(Eci ∶ i → ) and the style encoders Es1 and Es2 map im-
ages onto the domain-specific style spaces (Esi ∶ i → i).The generator Gi generates images conditioned on the given
content codes and style codes (Gi ∶ {,i} → i). We pos-
tulate that only the content latent part can be shared across
domains and that the style part is domain-specific.
3.2. Intra-domain and inter-domain supervisions

To exploit domain information and explicitly constrain
the disentanglement of content and style, we propose ex-
plicit domain-constrained disentanglement by first introduc-
ing intra-domain and inter-domain supervisions.

Let x1→2 be a sample produced by translating image x1 indomain1 to its counterpart x2 in domain2 (similarly for
x2→1). Then for a pair images (x1, x2

), we have
x1 = G1(c, s1), x2 = G2(c, s2),

x1→2 = G2(c, s2), x2→1 = G1(c, s1).
(1)

Since s1 and s2 are domain-specific style codes extracted
from single images x1 and x2, respectively, from different
domains, we call this translation inter-domain translation.

The style code extracted from a single image contains
more information than the generalized style of a collection
of images. In the training phase, the model may extract some
content features as style features incorrectly as illustrated
in Figure 3. To alleviate this situation, we design an intra-
domain supervision to constrain the disentangled representa-
tion learning and represent the essence of different domains.
The main idea to achieve this is relatively simple: “Two
images from the same domain exchange their style codes,
the generated images should be consistent with themselves.”
Different from the style codes extracted from a single image
si ∈ i, the style codes extracted at the domain level should
be domain-specific and represent generalized domain style
representations. For n domains {1,2,⋯ ,n}, we have
n domain style representations {1 ,2 ,⋯ ,n

}. We can
call this translation as intra-domain translation.

As shown in Figure 2, inter-domain and intra-domain
translation can be represented as

x1 = G1(c, s1), x2 = G2(c, s2),
x1→2 = G2(c, s2), x2→1 = G1(c, s1),
x1→1′ = G1(c,1 ), x2′→2 = G2(c,2 ).

(2)

The intra-domain translation aims to learn the essence
style of a domain, which means that the learned style rep-
resentations of images from the same domain do not vary to
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Figure 1: The pipeline of our method: (a) n domains; (b) two batches of images x ∈  , y ∈  with labels, randomly
selected from two different domains; (c) the first translation; (d) style-swapped images; (e) the second translation; and (f)
cycle-reconstructed images. To achieve image translation between domains, we first randomly select two domains, then load
two batches of images x ∈  , y ∈  with labels. Images from different domains are encoded as domain-invariant content
representations c and domain-specific style representations s. The two translations are achieved by swapping the style codes
and using generator G to produce the translated output images. The first translation constrains the translated images x′ and
y′ with the proposed disentanglement constrained loss. The second translation constrains the image reconstruction with the
cycle consistency loss. Due to the disentangled representations, the style representations are constrained to match the prior
Gaussian distribution, so that we can generate several possible outputs by random sampling from this prior. The domain style
representations are extracted by the pre-trained feature extractor Es

 from the collections of a certain style and used to constrain
the disentanglement of content and style (similarly for y, which is omitted for simplicity of the diagram). The multi-domain
simultaneous training is implemented by adding specific discriminative labels for the domains.

Figure 2: Illustration of (a) self translation, (b) intra-domain translation and (c) inter-domain translation. For better comparison,
we follow the representations as with MUNIT (Huang et al., 2018), and to avoid unnecessary confusion, we change the descriptions.
Our model consists of two types of auto-encoders (denoted by red and blue arrows, respectively). Similarly to MUNIT (Huang
et al., 2018) and DRIT (Lee et al., 2018), the latent code of each auto-encoder is composed of a content code c and a style code
s. The model is trained with adversarial objectives (dashed dotted lines) that ensure the translated images to be indistinguishable
from real images in the target domain, as well as with bidirectional reconstruction objectives (dashed lines) that reconstruct both
images and latent codes.

an unreasonable degree. Specifically, all images converge to
the “mean” style of the domain. After the training on care-
fully selected images, this constraint helps the content and
style encoders learn explicit disentangled representations for
accurate inter-domain translation. We can readily control its
influence by changing the weight parameters.

3.3. Pre-training of domain style representation
extractor

Differently from many previous works regarding multiple
domains as different sources of images, we treat each domain
as explicit supervision. Similarly to Lin et al. (2019), we pre-
train a domain style representation extractor for each domain
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Figure 3: Translation results of DRIT (Lee et al., 2018) for
image de-blurring task: (a) real image; (b) blurred version of
(a); (c) real blurred image; and (d) de-blurred version of (c)
by DRIT. We can see that when DRIT is adopted for image
de-blurring, the de-blurred image has different face contours
from the original ones, which means that the attribute ex-
tractor has not only learned blur distortion pattern but also
misrecognized some content representations such as face con-
tour as attribute. It might be attributed to the ambiguous and
implicit disentanglement of content and style.

as explicit domain supervision.
For domain supervision, Lin et al. (2019) train a classi-

fier that tries to correctly distinguish images of different do-
mains. Then they regard the output of second-to-last layer
of the classifier as the domain style. Different from this am-
biguous and implicit definition, we try to learn the domain
style representations by intra-domain translation.

Given images from n different domains, we train a CNN
by switching style codes of images from the same domain.
The goal of this CNN, which we call domain representation
extractor Esi

, is to learn domain-specific style representa-
tions i

for domaini and to correctly classify the domain
of an image. Then this pre-trained model Esi

is used as ex-
plicit domain supervision for inter-domain translation.

3.4. Model
As aforementioned, the pipeline of our model is shown

in Figure 1. Similar to other unsupervised image-to-image
translation via disentangled representations (Liu et al., 2018;
Lee et al., 2018; Huang et al., 2018), our model consists of
content encoder Eci , style encoder Esi , decoder G and dis-
criminatorDi for each domaini, i = 1, 2,… , n. Moreover,
we have the domain classifierDcls pre-trained together withthe domain style representation extractor Esi

.
As shown, to achieve image translation between two do-

mains {1,2}, images x1, x2 from different domains are
encoded as domain-invariant content representations c1 =
Ec1

(

x1
), c2 = Ec2

(

x2
), and domain-specific style represen-

tations s1 = Es1
(

x1
), s2 = Es2

(

x2
). Then swap the style

codes and use G2 to produce the translated output image
x1→2 = G2

(

c1, s2
).

3.5. Network architecture
Figure 4 shows the network architecture of our model. It

consists of a content encoder, a style encoder and a decoder.
Content encoder. The content encoder consists of several
convolutional layers to down-sample the input images to get
high-dimensional features and several basic blocks for fur-
ther processing. There are many choices for basic block
such as residual block (He et al., 2016), residual dense block
(Zhang et al., 2018b), and residual in residual dense block
(Wang et al., 2018b). Here we use the traditional residual
block for simplicity and replace Batch Normalization (BN)
(Ioffe and Szegedy, 2015) with Instance Normalization (IN)
(Ulyanov et al., 2016). For diversity, we add noise in the last
two basic blocks as with Lee et al. (2018).
Style encoder. The style encoder includes several strided
convolutional layers, followed by an adaptive average pool-
ing layer and a convolutional layer. We do not use IN layers
in the style encoder, as IN removes the original feature mean
and variance which contain important style information.
Decoder. The decoder generates images from their con-
tent codes and style codes. For multi-domain translation,
we also add the domain class as input. Specifically, the do-
main class and style codes are concatenated by channel and
then fed into a multi-layer perceptron (MLP). The content
codes and outputs generated by the MLP are further pro-
cessed via several concatenation blocks. We equip the resid-
ual blocks with Adaptive Instance Normalization (AdaIN)
layers (Huang and Belongie, 2017), whose parameters are
dynamically generated by the MLP from the style codes y:

AdalN(x, y) = �(y)
(

x − �(x)
�(x)

)

+ �(y), (3)

inwhichwe simply scale the normalized content input xwith
the variance �(y) and shift it with the mean �(y).
Discriminator and domain classifier. The architecture
of discriminator is similar with Choi et al. (2018). The do-
main classifier is built on top of the discriminator, as shown
in Figure 5. It consists of six convolution layers with ker-
nel size 4 × 4 and stride 2, followed by two separated con-
volutional branches that are implemented for discriminative
output and domain class.
Domain style representation extractor. The domain
style representation extractor shares the same architecture
with the style encoder. Specifically, it consists of one convo-
lution layer with kernel size 4×4 and stride 1; six convolution
layers with kernel size 4 × 4, stride 2 and ReLU followed by
an adaptive average pooling layer and a convolutional layer
with kernel size 1 × 1, stride 1.
3.6. Loss functions

Our loss functions are designed for unsupervised multi-
domain multi-modal image-to-image translation. For unsu-
pervised training, we adopt the image reconstruction loss
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Figure 4: Network architecture. For more details, refer to Section 3.5.

and the latent reconstruction loss based on the cycle consis-
tent loss. We also add constraints to improve the represen-
tations of content and style codes by the self-reconstruction
loss. For multi-modality, we introduce a distribution match-
ing loss to make the style codes extracted by the content en-
coder close to a prior Gaussian distribution. By doing this,
we are able to sample style codes from the prior Gaussian
distribution at the test phase. Since the sampled style codes
are stochastic, the decoder can produce diverse samples shar-
ing the same content. For simultaneous training of multiple
different domains, we use the domain classification loss.
Self-reconstruction loss. Given an image from a certain
domain, we should be able to reconstruct itself after encod-
ing and decoding. Thus, for example for x1 from domain
1, the self-reconstruction loss sr can be written as

x1sr = Ex1∼p(x1)
[

‖

‖

‖

G1
(

Ec1
(

x1
)

, Es1
(

x1
))

− x1
‖

‖

‖1

]

. (4)

Image reconstruction loss. Given an image sampled from
the data distribution, we should be able to reconstruct it after
encoding and decoding. The image reconstruction loss cc

is adopted in two stages. In the pre-training of domain rep-
resentations, we use the image reconstruction loss to obtain
a domain-specific style representation extractor Esi

during
image reconstruction; e.g. when i = 1:

xcc = Ex∼p(x)
[

‖

‖

‖

‖

G1
(

Ec1 (x) , E
s
1

(

x′
)

)

− x
‖

‖

‖

‖1

]

, (5)

where x and x′ are from the same domain 1.In inter-domain translation, the image reconstruction loss
cc is used on the style from a single image. The image
reconstruction loss can be represented as

xcc = Ex,y
[

‖

‖

‖

G1
(

Ec2(y
′), Es1(x

′)
)

− x‖‖
‖1

]

,

ycc = Ex,y
[

‖

‖

‖

G2
(

Ec1(x
′), Es2(y

′)
)

− y‖‖
‖1

]

,
(6)

where
x′ = G1

(

Ec2(y), E
s
1(x)

)

, y′ = G2
(

Ec1(x), E
s
2(y)

)

. (7)
Disentanglement constrained loss. To utilize domain in-
formation and explicitly constrain the disentanglement, we
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Figure 5: Discriminator and domain classifier.

propose the disentanglement loss. For a style extracted in
the domain style representation, the disentanglement con-
strained loss dc can be expressed as

xdc = Ex,y
[

‖

‖

y′ − y′′‖
‖1
]

, (8)
where y′′ = G2

(

Ec1(x),
), and is the extracted domain

style.
Latent reconstruction loss. Given latent (style and con-
tent) codes sampled from the latent distribution at the trans-
lation time, we should be able to reconstruct them after de-
coding and encoding. Take the path to reconstruct x′ for
example:
c1lr = Ec1∼p(c1),s2∼q(s2)

[

‖

‖

‖

Ec2
(

G2
(

c1, s2
))

− c1
‖

‖

‖1

]

,

s2lr = Ec1∼p(c1),s2∼q(s2)
[

‖

‖

‖

Es2
(

G2
(

c1, s2
))

− s2
‖

‖

‖1

]

.
(9)

c2lr and s1lr are similarly defined at the path to reconstruct
y′, as shown in Figure 1.
Distribution matching loss. We adopt a distribution
matching loss to make the style codes close to a prior Gaus-
sian distribution. At the test phase, we are able to sample
randomly from the prior Gaussian distribution and regard it
as a style code. The measure of distance between two dis-
tributions can be covariance, Maximum Mean Discrepancy
(MMD) or KL divergence. Instead of implementing the KL
divergence as inMUNIT (Huang et al., 2018) andDRIT (Lee
et al., 2018), here we choose MMD. We will illustrate the
reasons for this choice in Section 4.7.

The distribution matching loss dm described by MMD
can be written as

dm = E
[

DMMD (q(z)|N(0, 1))
]

, (10)

where
DMMD(q|p) = Ep(z),p(z′)

[

k
(

z, z′
)]

− 2Eq(z),p(z′)
[

k
(

z, z′
)]

+ Eq(z),q(z′)
[

k
(

z, z′
)]

,
(11)

q(z) is attribute representation and k(⋅, ⋅) can be any pos-
itive definite kernel, such as Gaussian kernel k (z, z′) =

e−
‖
z−z′

‖

2

2�2 .
Domain classification loss. To achieve simultaneous
training ofmultiple domainswith a singlemodel, we assign a
unique class label for each domain as with Choi et al. (2018).
While translating input image x1 with domain class c1 to im-
age x2 with class c2, the auxiliary domain classifier tries to
distinguish images from different domains. The correspond-
ing domain classification loss can be defined as

realcls = Ex,c′
[

− logDcls
(

c′|x
)]

,

fakecls = Ex,c
[

− logDcls(c|G(x, c))
]

,
(12)

where Dcls
(

c′|x
) represents the probability of a domain la-

bel calculated byD. The goal of this term is thatD can cor-
rectly classify a real image x to its original domain c′ and
G tries to generate images that can be recognized as from
target domain c by D.
This auxiliary domain classifier is built on top of discrimi-

natorD. In the training phase, the domain classification loss
of real images is used to optimize parameters of discrimi-
nator D and the domain classification loss of fake images is
used to optimize G.
In our experiment, the domain classifier Dcls is pre-

trained together with the domain style representation extrac-
tor Esi

.
Adversarial loss. For high image quality, stable training
and considerable diversity, we use the least-squares GAN
proposed by Mao et al. (2017). Thus adv can be formulated
as

min
D1

adv
(

D1
)

=1
2
Ex∼p(x)

[

(

D1(x) − b
)2
]

+

1
2
Ez∼pz(z)

[

(

D1
(

G1(z)
)

− a
)2
]

,

min
G1

adv
(

G1
)

=1
2
Ez∼pz(z)

[

(

D1
(

G1(z)
)

− c
)2
]

.

(13)

Overall training loss. The total training loss functions of
the encoder E, decoder G and discriminator D are defined
as follows:

totalE◦G = adv + �srsr + �cccc + �dcdc
+ �dmdm + �lrlr + �cls

fake
cls , (14)

totalD = adv + �clsrealcls , (15)
where hyper-parameters �sr , �cc, �dc, �dm, �lr and �cls areweights to control the importance of each term.
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Figure 6: Samples from datasets. We mainly use three multi-domain datasets for experiments: Art, Season and Weather. Each
contains four domains.

The overall process. The overall process is summarized
in Algorithm 1. The training process consists of two phases:
the intra-domain style representation extractor training and
the inter-domain translation training. Both phases share al-
most the same network architecture and loss functions except
the following differences. Since we want to learn the domain
style representation from each domain and adopt it to inter-
domain translation as domain supervision, we select images
from the same domain and swap their style codes. Ideally,
the style-exchanged images should be consistent with the
original ones. Only one-step translation is required to get
the domain style representation. So the loss functions of the
domain style representation extractor training can be defined
as

totalE◦G = adv + �srsr + �dmdm + �clsL
fake
cls

+ �ccLcc, (16)
totalD = adv + �clsrealcls , (17)

where hyper-parameters �sr , �dm, �cls and �cc are weights tocontrol the importance of each term.
Thus we get the domain style representation extractor

Esi
. It is mainly used in image reconstruction loss to con-

strain feature disentanglements.

4. Experiments
4.1. Experiment settings

For training, we adopt the Adam optimizer with a batch
size 8, a learning rate of 0.0001with exponential decay rates
�1 = 0.5, �2 = 0.999. We resize all input images into
216 × 216 in experiments. The hyper-parameters are set as
�sr = 10, �cc = 10, �dm = 0.01, �lr = 10 and �dc = 0.15.

Parameter �cls ofG is 5.0 and �cls ofD is 1.0. We do not im-
plement domain supervision if the training data are paired.

4.2. Datasets
We use three multi-domain datasets for experiments: Art,

Weather, Season. Notice that all images in these datasets are
not paired.

Art: This dataset contains four domains: real images,
Monet, Ukiyo-e and Van Gogh. These art images can
be downloaded from Wikiart1 and the real photos are
from Flickr with tags landscape and landscapephotogra-
phy. We use the datasets of monet2photo, vangogh2photo,
ukiyoe2photo and cezanne2photo collected by Zhu et al.
(2017a).

Weather: This dataset contains four domains: sunny,
cloudy, snowy and foggy, which is randomly selected from
the Image2Weather (Chu et al., 2017).

Season: This dataset consists of approximately 6, 000 im-
ages of the Alps mountain range scraped from Flickr. The
original dataset collected by Anoosheh et al. (2018) catego-
rizes photos individually into four seasons based on the pro-
vided timestamp of when it was taken. But this lead to many
misclassifications. We revise each category by deleting am-
biguous images or misclassified images to the right category
to make them more distinguishable.

Since Zhu et al. (2017b) need paired data for training,
we evaluate multi-modality on edges → shoes and edges →
handbags. The edges → shoes dataset contains 50k train-
ing images from the UT Zappos50K dataset (Yu and Grau-
man, 2014). The edges → handbags dataset contains 137K
Amazon Handbag images from Zhu et al. (2016). Edges are

1https://www.wikiart.org/
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Figure 7: Results of StarGAN, DosGAN, ComboGAN and ours on the Season dataset. Images in the first column are input
images randomly selected from the four seasons. Following are results generated by ours, StarGAN, ComboGAN and DosGAN.
For each method, the four columns are arranged successively as spring, summer, autumn and winter. Better look by zooming in.

computed by the HED edge detector (Xie and Tu, 2015) and
post-processing. Both datasets can be downloaded at Cycle-
GAN (Zhu et al., 2017a) website2.
Samples from these three datasets are visually demon-
2https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

strated in Figure 6 to illustrate their styles. Table 2 lists
domain information and corresponding number of training
data.
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Figure 8: Multi-domain multi-modal image translation results on Art. The Art dataset contains four domains: real image, Monet,
Van Gogh and Ukiyo-e. Better look by zooming in.

Figure 9: Multi-domain multi-modal translation results on Season. The Season dataset contains four domains: spring, summer,
autumn and winter. Notice that all these image are generated via one training process. Better look by zooming in.

4.3. Baselines
We perform the evaluation on the following baseline ap-

proaches:
BicycleGAN. BicycleGAN (Zhu et al., 2017b) is the first

image-to-image translation model that aims to generate con-
tinuous and multi-modal output images. However, it needs
paired images for training.

DRIT and MUNIT. DRIT (Lee et al., 2018) and MU-
NIT (Huang et al., 2018) propose to simultaneously generate
diverse outputs given the same input image without the re-
quirement of paired supervision via disentangled represen-

tations. It is designed for translation between two domains.
StarGAN. StarGAN (Choi et al., 2018) aims to handle

scalability of unsupervised image-to-image translation prob-
lems. It uses one generator and discriminator in common for
all domains by adding domain labels. The generator requires
images and the desired domain label specifying the target
domain as inputs, and the discriminator is trained to classify
the domain labels of generated images and judge whether it
is real or fake. By doing this, it is able to take any number
of domains as input. However, the model was just applied
to the task of face attribute translation in its original paper.
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Algorithm 1: TRAINING PROCESS.
1 Input: n different domains k ∀k ∈ [n], batch size

K , learning rate �;
Stage 1: domain style representation extractor
training

2 Randomly initialize the parameters ΘE of domain
representation extractor Es;

3 Randomly select one domain k, k ∈ [n]. Get amini-batch of data k satisfying Dk ⊂ k and
|

|

Dk
|

|

= K;
4 Update the network as follows:
ΘE◦G ← ΘE◦G − �∇ΘΘE◦Gtotal

E◦G
(

D
)

ΘD ← ΘD − �∇ΘD
total
D

(

D
)

5 where total
E◦G

(

D
) and total

D
(

D
) are defined in

Eq.(16) and Eq.(17), respectively.
6 Repeat from step 3 until convergence.

Stage 2: cross-domain translation training
7 Randomly initialize the parameters ΘE◦G of content

encoder Ec , style encoder Es, decoder G and
parameters �G of discriminator D;

8 Randomly select two different domains
A,B , A, B ∈ [n] . For each selected domain lwhere l ∈ {A,B}, get a mini-batch of data Dlsatisfying Dl ⊂ l and ||Dl

|

|

= K .
9 if Training then

10 Update the parameters as follows:
ΘE◦G ← ΘE◦G − �∇ΘΘE◦Gtotal

E◦G
(

DA
)

ΘD ← ΘD − �∇ΘD
total
D

(

DA
)

11 where total
E◦G

(

DA
) and total

D
(

DA
) are defined in

Eq.(14) and Eq.(15), respectively.
12 Repeat from step 8 until convergence.

Table 2
Features of each dataset.

Art Num. Weather Num. Season Num.

Photos 2853 Sunny 70601 Spring 1382
Monet 1074 Cloudy 45662 Summer 1512

Van Gogh 401 Foggy 357 Autumn 1606
Ukiyo-e 1433 Snowy 1252 Winter 993

It did not validate on datasets with various categories. Fur-
thermore, it did not pay attention to the problem of multi-
modality.

DosGAN. DosGAN (Lin et al., 2019) shares the similar
idea of StarGAN (Choi et al., 2018) to achieve simultane-
ous training for multi-domains. It further introduces domain
supervision, which uses domain-level information as super-
vision and pre-trains a classifier to predict which domain
an image is from. The authors believe that the classifier
should carry rich domain signal. Therefore, the output of
the second-to-last layer of this classifier can be leveraged to
extract the domain features of an image. Still, it has the same
drawback in diversity as with Choi et al. (2018).

ComboGAN. Unlike StarGAN (Choi et al., 2018) and
DosGAN (Lin et al., 2019), ComboGAN (Anoosheh et al.,
2018) does not use domain labels to achieve simultaneous
training for multi-domains. Instead, it uses n generators and
discriminators for translations among n domains. Specifi-
cally, it divides each generator network in half, labeling each
one as an encoder and decoder, respectively, and then assigns
an encoder and decoder to each domain.

Since that these methods are designed for different pur-
poses, we conduct comparisons in two scenarios. For simul-
taneous training, we compare our approach with StarGAN
(Choi et al., 2018), DosGAN (Lin et al., 2019) and Com-
boGAN (Anoosheh et al., 2018). For multi-modality, we
compare our method with BicycleGAN (Zhu et al., 2017b),
DRIT (Lee et al., 2018) and MUNIT (Huang et al., 2018).

4.4. Evaluation metrics
We use the Fréchet inception distance and the LPIPS dis-

tance to evaluate the quality and diversity of the generated
images.

LPIPS distance. Similarly to Zhu et al. (2017b), we use
the Learned Perceptual Image Patch Similarity (LPIPS) met-
ric (Zhang et al., 2018a) to measure translation diversity.
The LPIPS distance is calculated by a weighted 2 distancebetween deep features of randomly-sampled translation re-
sults from the same input. It has been shown to correlate
well with human perceptual similarity.

FID score. The Fréchet inception distance (FID) (Heusel
et al., 2017) is a measure of similarity between two datasets
of images. It was shown to correlate well with human judge-
ment of visual quality and is most often used to evaluate the
quality of samples of Generative Adversarial Networks. FID
is calculated by computing the Fréchet inception distance be-
tween two Gaussians fitted to feature representations of the
Inception network.

4.5. Qualitative evaluation
Qualitative comparisons of our approach with baselines

for simultaneous multi-domain translation on the Season
dataset are illustrated in Figure 7. The results produced by
StarGAN (Choi et al., 2018) have clear artifacts. DosGAN
(Lin et al., 2019) generates fewer artifacts than StarGAN;
however, its results are still unpleasing and lack diversity for
different seasons: in most cases, the translated spring and
summer images are almost indistinguishable, and all four
translated season images are nearly the same in the last row
of DosGAN. ComboGAN (Anoosheh et al., 2018) gener-
ates better results in terms of both realism and diversity than
DosGAN and StarGAN. However, it needs 8 generators and
4 discriminators to achieve conversion of four seasons be-
tween any two. The green boxes on the panel of Combo-
GAN in Figure 7 indicate the input images of ComboGAN:
as ComboGAN translates an input image into the other n−1
domains, we use green boxes to highlight the positions (and
thus the corresponding domains) of the input images, as well
as to distinguish them from the images generated by Com-
boGAN.
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Figure 10: Results of our method on Weather. The images in
the first row demonstrate that our method can handle images
with complex and elaborate structures; the rest images show
its potential for image defogging. Better look by zooming in.

Figure 11: Results of edges → shoes and edges → handbags
translations. The first column shows the input and ground
truth image. Each following column shows three random pos-
sible outputs from a method. Better look by zooming in.

Comparedwith the baselinemethods, our approach gener-
ates high-quality images which are more photo-realistic and
diverse. In terms of realism, the real input images are not
better than the four images generated by our method; while
in terms of diversity, the four generated images can be easily
classified into corresponding seasons.

More results of our method on art, season and weather
translations can be found in Figure 8, Figure 9 and Figure
10, respectively. For example, Figure 10 shows the results
of our methods conducted on the Weather dataset. The im-
ages in the first row demonstrate that our method can handle
images with complex and elaborate structures. The rest im-
ages show its potential to achieve well for image defogging
tasks.

Qualitative comparisons of our approach with baselines
for multi-modality translation are illustrated in Figure 11 on
the edges → shoes and edges → handbags datasets.

4.6. Quantitative evaluation
We conduct the quantitative evaluation of the methods in

terms of the realism and diversity of season cross-domain

Table 3
Performance in terms of the fooling rate and the season classi-
fication accuracy on the Season dataset. We conduct the user
study to select results that are more realistic through pairwise
comparisons and distinguish which season of an image is. The
best and second best results are highlighted. For details refer
to Section 4.6.

Method Fooling Rate Accuracy

Real photos - 48.9%

Choi et al. (2018) 5.3% 41.3%
Lin et al. (2019) 27.2% 54.2%

Anoosheh et al. (2018) 47.33% 55.6%
Ours 37.8% 65.8%

Figure 12: Realism preference results. We conduct a user
study to ask people to select a more realistic one between our
output and those of DosGAN (Lin et al., 2019), StarGAN (Choi
et al., 2018) and ComboGAN (Anoosheh et al., 2018), as well
as between ours and real image. The number indicates the
percentage of preference on a pairwise comparison. We use
the season translation for this experiment.

translation (Anoosheh et al., 2018).
For realism, we conduct a user study using pairwise com-

parisons. Given a pair of images sampled from real images
and translation outputs, users need to answer two questions:
“Which image in this pair is more realistic?” and “Which
season is this image?” They are given unlimited time to se-
lect their preferences. For each comparison, we randomly
generate 100 questions and each question is answered by 30
different persons. Table 3 show the results of fooling rate
and season classification accuracy. ComboGAN (Anoosheh
et al., 2018) gets the highest fooling rate of 47.33% and ours
rank the second highest. Notice that ComboGAN use sev-
eral encoders and decoders to achieve this and our method
only use one model. For the season classification accuracy,
sincemany images in the Season dataset are too ambiguity to
classify it into a certain season, the classification accuracy of
the real images is like random guess, 48.9%. But the image-
to-image translation methods tend to learn the general prop-
erties, the generated images are endowed with more distin-
guishable properties of certain season. DosGAN (Lin et al.,
2019) and ComboGAN (Anoosheh et al., 2018) get higher
classification accuracy than using real images, i.e., 54.2%
and 55.6%; and ours achieve the highest accuracy of 65.8%,
which means the domain-specific styles are better captured
by our proposed method.
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Table 4
Performance as the LPIPS and FID scores on the Season
dataset. The best and second best results are highlighted.
For details refer to Section 4.6.

Method LPIPS FID

Choi et al. (2018) 0.4273 221.7
Lin et al. (2019) 0.2503 145.3

Anoosheh et al. (2018) 0.4349 109.99
Ours 0.4810 73.47

Table 5
Diversity. We use the LPIPS and FID metrics to measure the
diversity of generated images on the edges → shoes and edges
→ handbags translations. The best and second best results
are highlighted.

Method edges → shoes edges → handbags
LPIPS FID LPIPS FID

Zhu et al. (2017b) 0.2443 115.87 0.3180 184.56
Lee et al. (2018) 0.2631 62.67 0.3760 90.89

Huang et al. (2018) 0.2652 65.87 0.3820 91.43
Ours 0.2639 64.46 0.3759 89.19

We conduct another user study to ask people to select a
more realistic one between our output images and those gen-
erated by StarGAN (Choi et al., 2018), DosGAN (Lin et al.,
2019), ComboGAN (Anoosheh et al., 2018) or real images.
Figure 12 plots the results of this pairwise realism preference
study. It shows that ours are significantly more preferred
as being realistic than DosGAN and StarGAN, as well as
slightly more preferred than ComboGAN.

For diversity, similarly to BicycleGAN (Zhu et al.,
2017b), we use the LPIPS metric to measure the similar-
ity among images. Additionally, we implement the FID to
acquire perceptual scores. We compute the distance be-
tween 1000 pairs of randomly sampled images translated
from 100 real images. As shown in Table 4, our method
achieves the lowest FID scores, which implies the best re-
sults in both high-level similarity and perceptual judgement,
and the highest LPIPS scores, which means the most diverse
results.

As BicycleGAN (Zhu et al., 2017b) need paired data for
training, we evaluate the multi-modality performance on
edges → shoes and edges → handbags translations. We use
the LPIPS and FID metrics to compare our method with
the existing state-of-the-art methods, i.e., BicycleGAN (Zhu
et al., 2017b), DRIT (Lee et al., 2018), and MUNIT (Huang
et al., 2018). As shown in Table 5, our method outperforms
the supervised method BicycleGAN (Zhu et al., 2017b) and
produce comparable results with other unsupervised meth-
ods DRIT andMUNIT (Lee et al., 2018; Huang et al., 2018).

4.7. Ablation study
The effect of domain supervision. As illustrated in Fig-
ure 3, the de-blurred images of DRIT (Lee et al., 2018) have
different face contours from the original ones, which means

Figure 13: Results of intra-domain translation on Season
dataset: (a) spring; (b) summer; (c) autumn; and (d) winter.
The two columns in each panel represent the original input and
the intra-domain translation result, respectively. Better look
by zooming in.

Figure 14: Results of adapting our method for image de-
blurring. The images in the first row are blurred image gen-
erated by using the same method as in (Yu et al., 2018c) on
the CUFS dataset (Wang and Tang, 2009); the second row is
for de-blurred results of our method; The third row is ground
truth. Better look by zooming in.

Figure 15: Comparing the prior Gaussian distribution p(z)
(left), the distribution q�(z) estimated by using MMD (mid-
dle), and that by KL (right). The red dots represent (0, 0). It
clearly demonstrates that with the q�(z) from KL matches the
prior Gaussian distribution p(z) poorly, while q�(z) from MMD
matches p(z) significantly better.

that their attribute extractor has not only learned blur distor-
tion pattern but also misrecognized some content represen-
tations such as face contour as attribute. This can be caused
by the ambiguous and implicit disentanglement of content
and style. Thus we introduce explicit domain constraint for
disentanglement of content and style aiming to better utilize
domain information by explicitly constraining the disentan-
glement learning.

Figure 13 shows the style-swapped reconstruction results
Xia et al.: Preprint submitted to Elsevier Page 13 of 16
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of intra-domain translation. It shows that the pre-trained
model could reconstruct style-swapped images from the
same domain. To further validate that the domain supervi-
sion can help the explicit disentanglement learning of con-
tent and style, and thus the effectiveness of domain supervi-
sion, we adapt our method for image de-blurring tasks, and
we can compare the results with those of DRIT (Lee et al.,
2018) in Figure 3. The blurred images are generated using
the same method as in Yu et al. (2018c) on the CUFS dataset
(Wang and Tang, 2009). The results of image de-blurring
after adding the proposed disentanglement constrained loss
are shown in Figure 14. Compared with the results of DRIT
in Figure 3, our generated images are more consistent with
the original images, and the blur distortion are removed.

Furthermore, we also found that the perceptual loss (John-
son et al., 2016) can achieve similar disentangled constraint.
The perceptual loss is based on perceptual similarity, which
is often computed as the distance of two activated features
in a pre-trained deep neural network between the output and
the reference image:

percep = E

[

∑

i

1
Ni

‖

‖

‖

�i
(

Igt
)

− �i(Ipred)
‖

‖

‖1

]

, (18)

where �i donates the feature maps of the pre-trained VGG-
19 network. However, the perceptual loss and disentangle-
ment restrained loss constrain the learning of disentangled
representations in different aspects. The former, which is at
image level, forces the generated images sharing the same
content with the input ones. The latter, which is at the col-
lection level, restrains the style encoder from learning any
content of images.
The measure of distribution distance. In the training
phase, the style representations are constrained to match the
prior Gaussian distribution, so that later we can generate sev-
eral possible outputs by random sampling from this prior.
Manymeasures can be used to estimate the distance between
probability distributions. DRIT (Lee et al., 2018) and MU-
NIT (Huang et al., 2018) adopt theKullback-Leibler (KL) di-
vergence as the measure of distribution distance, which can
be expressed in the distribution matching loss as

Ldm = E
[

DKL (p(z)|N(0, 1))
]

, (19)

where DKL(p|q) = − ∫ p(z) log p(z)q(z)dz.Since the style representations are randomly sampled
from the prior Gaussian distribution for multimodal outputs
in the test phase, it is important to match the distribution of
the style latent codes with the prior Gaussian distribution.
However, researchers have noticed that the KL divergence
can be too restrictive (Bowman et al., 2015; Sønderby et al.,
2016; Chen et al., 2016b; Bińkowski et al., 2018). Some-
times it failed to learn any meaningful latent representa-
tion. Several methods (Bowman et al., 2015; Sønderby et al.,
2016; Chen et al., 2016b) try to alleviate this problem, but
do not completely solve the issue. Borgwardt et al. (2006)

Table 6
MMD versus KL on the MNIST dataset. MMD provides better
reconstruction than KL.

Method Reconstruction error

KL 0.04367
MMD 0.03605

propose the MMD as a relevant criterion for comparing dis-
tributions based on the Reproducing Kernel Hilbert Space
(RKHS). It is a framework to quantify the distance of two
distributions by calculating all of their moments. It can be
efficiently implemented by using the kernel trick:

DMMD(q|p) = Ep(z),p(z′)
[

k
(

z, z′
)]

− 2Eq(z),p(z′)
[

k
(

z, z′
)]

+ Eq(z),q(z′)
[

k
(

z, z′
)]

,
(20)

where k(⋅, ⋅) can be any positive definite kernel, such as
Gaussian kernel k (z, z′) = e−

‖
z−z′

‖

2

2�2 . Therefore, the dis-
tance between distributions of two samples can be well-
estimated by the distance between the means of the two sam-
ples mapped into an RKHS.

In this ablation study, we do not compare KL andMMD in
the distributionmatching lossdm (Eq.10), as it is not so rea-
sonable to use the FID and LPIPS scores to measure the dis-
tribution from the perspective of diversity. Instead, to illus-
trate the advantage of using MMD over KL in a simple and
intuitive way, we conduct experiments on theMNIST dataset
(LeCun et al., 1998) and make the latent code have two di-
mensions for convenient visualization. It can be seen from
Figure 15 that withKL, the obtained distributionmatches the
prior Gaussian distribution p(z) poorly, while with MMD, it
matches the prior significantly better. The results in Table 6
also demonstrate that MMD provides better reconstruction
than KL.

For quantitative evaluation, Table 6 shows the reconstruc-
tion error and log likelihood of adoptingKL andMMD in ex-
periments, respectively. The reconstruction error indicates
the quality of style encoding and the log likelihood repre-
sents.

5. Conclusion and future work
In this paper, we propose a unified framework for learn-

ing to generate diverse outputs with unpaired training data
and allow simultaneous multi-domain translation through a
single network. Furthermore, we also investigate how to ex-
tract domain information so as to utilize domain supervision
and explicitly constrain the disentanglement of content and
style. Qualitative and quantitative experiments on different
datasets show that the proposed method outperforms or is
comparable to the state-of-the-art methods. We also show
the potential of our method for image de-blurring and im-
age de-hazing. In the future, we will explore the feasibility
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of extending our method to a more challenging task, multi-
degradation image restoration.
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Appendix
In this appendix, we show some additional multi-domain

translation results of Art in Figure 16, Season in Figure 17
and Weather in Figure 18.

Figure 16: Art result. Better look by zooming in.

Figure 17: Season result. Better look by zooming in.

Figure 18: Weather result. Better look by zooming in.
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