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Abstract

Agglomeration can have a crucial impact on the yield of crystallisation processes and
the product quality. In this thesis molecular scale modelling is used to gain insights into
the mechanism of crystal agglomeration and factors that determine its progress.

The first study analyses the use of the attachment energy model to predict which
surfaces of a crystal would be observed and hence the crystal morphology. It is shown that
comparatively simple model potentials suffice to provide reasonably accurate morphology
predictions within the limitations of the neglect of solvent.

A classical empirical force field for potash alum (KAl(SO4),-12H50) is developed.
After having established its capability to reproduce experimentally determined properties
of the crystal bulk and the solution, different potash alum crystal faces in contact with
aqueous solution are modelled via Molecular Dynamics simulations. A range of different
methods of modelling polar crystal surfaces, including a novel one, are investigated. The
results are used to rationalise experimental results quantifying the agglomerative strength
of PA crystallites as a function of super-saturation and the structure of the crystal faces.

Common models for the theoretical prediction of crystal agglomeration include an
efficiency parameter which is essentially a material property and a functional of the aver-
age force between two particles in solution. A set of Molecular Dynamics simulations of
potassium chloride nano-crystallites in aqueous KCI solution is performed in order to es-
tablish whether it is possible to obtain reproduceable forces using an explicit water model
and an extended system geometry to maintain constant chemical potential of the solution
in between two crystal surfaces and a bulk phase. Although the results highlight some
interesting aspects, and can give qualitative explanations of agglomeration tendencies,

quantitative predictions of agglomeration will require further research.
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Chapter 1

Introduction

Crystallisation of materials from solution is a technique used in a large number of appli-
cations, ranging from precipitation and purification of fine chemicals and pharmaceuticals
to large scale industrial crystallisation of bulk chemicals.[1] The optimisation of this tech-
nique in terms of product quality, purity and yield, power-input and speed is therefore of
considerable interest.

One phenomenon that can have a major influence on the outcome [1] of a crystallisa-
tion process is crystal agglomeration, i.e., the aggregation of smaller crystals followed by
further crystal growth to form a composite larger crystal. The present thesis is part of a
PhD program supported by an EPSRC* grant for a project entitled micro-mechanics of
agglomerative crystallisation processes. It is aimed to contribute to an understanding of
the fundamental mechanisms of crystal agglomeration on a molecular level.

To predict crystal aggregation and ultimately agglomeration we need a method for a
sufficiently accurate estimation of the forces between crystalline particles in solution. So

far theoretical approaches to predict the magnitude of forces between macro and meso

*The Engineering and Physical Sciences Research Council (EPSRC) is the UK Governments leading

funding agency for research and training in engineering and the physical sciences.
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scopic particles in solution have been confined to semi-empirical models with a limited
predictive power. The most widely used of these models, the so called DLVO-theory,[2]
is a mean field approximation that does not take into account specific intermolecular
interactions and the detailed structure of surfaces and liquids. Nonetheless it remained
the most accurate theory until not so long ago.

In the early eighties new experimental methods [3] were developed allowing for the
measurement of inter-particle forces in unprecedented detail and accuracy. New results
obtained with these methods shed some doubt on the applicability of DLVO-theory and
extended versions thereof in a number of cases. [4] The inter particle force as a function of
the particle particle distance was found to have a structure more complex than predicted
by mean field theories. Triggered by these experimental results a substantial amount of
theoretical work, aimed at revealing the origin and the nature of the involved inter particle
forces, was done and published in the last decade. For a recent review see Ref. [5]. It was
shown that these hitherto unpredicted forces are due to specific interactions between sur-
faces and particular solvent molecules, additives or impurities, the microscopic structure
of the interstitial solution and spatial correlations between solvated ions. Predicting the
influence of these factors quantitatively and from first principles in silico could contribute
to an efficient control and optimisation of crystallisation processes and thereby reduce the
amount of the required and usually costly experiments.

However, most of the theoretical work done so far is concerned with highly idealised
model systems and not with realistic models of real materials. This is so because firstly
such idealised systems can serve as good models to explain the essential physics that gov-
erns inter particle forces. The second, more profane, reason is the fact that most of the
theoretical methods used are simply unable to give a realistic and reliable description of
anything but the most simple materials because of fundamental shortcomings of the used
methods. Science has comparatively reliable and accurate theories for the description
of events on both ends of the length and time-scales in our universe. We can predict
the motion of planets and calculate the structure of a hydrogen molecule. Events that

fall in between these extremes are generally harder to describe theoretically. A particu-
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lar challenge are events taking place in disordered systems on the so-called meso-scale,
with length and time scales of 1079 - 10~2 meters and 1076 - 10° seconds respectively.
This corresponds to the characteristic time and length scales found in the description of
crystallisation and particle agglomeration.

The theoretical approach I concentrate on here, classical molecular simulation, i.e.,
Molecular Mechanics/Dynamics or Monte Carlo simulations, can normally only tackle
smaller length and, in particular, time scales than those mentioned above. It is, how-
ever, a more accurate approach than mean field approximations. The main objective of
the present work is to assess the usefulness and the limitations of molecular simulation
for understanding and describing the aggregation of crystalline particles in solution. I
concentrate thereby on some methodological issues which, while being undoubtedly of
importance, have rarely been discussed in the literature so far. Before giving a short
outlook on the following chapters two more notes appear to be indicated: Agglomeration
and aggregation are, in principal, two different issues. However, as explained in some
detail in Chapter 2, we can view aggregation as a necessary first step in the course of an
agglomeration event and in the following only this first step will be considered. Therefore
the two terms may be used interchangeably on some occasions in this work. Two other
concepts that are also different in principle are the aggregation of particles in general
and crystals in particular. Here I concentrate on the forces between crystals on close ap-
proach and on the structure of the interfaces and the interstitial solution on a microscopic
scale. The surfaces of even perfectly spherical particles with a diameter exceeding a few
nanometers, can be seen as flat to a good approximation if viewed at a molecular scale
and at close distance. Therefore the terms particle and crystal aggregation are also used
interchangeably on some occasions and some theoretical results from the literature actu-
ally obtained for spherical particles are used to help with the interpretatidn of features of
crystal aggregation.

In Chapter 2 traditional and established theoretical and semi-empirical models for
the description of crystallisation and aggregation are reviewed and confronted with more

accurate approaches that have been proposed in recent years. A general overview over
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A

background of and common methodologies used in classical molecular simulation, and
more details about some specific topics required in the following chapters is given in
Chapter 3. One ingredient of classical molecular simulation that is of utmost importance
for obtaining reliable results is the form and the parameterisation of the energy expression
used to calculate intermolecular potentials and forces. As a consequence of the symmetry
and the internal structure of the unit cell crystalline particles of a given material always
can, and in most cases will, have more than one type of surfaces with a given, and
often nearly constant, relative size of these surfaces. This results in a typical shape
or morphology (habit). A specific type of molecular simulation is the well established
attachment energy method for the prediction of those faces that are observed on grown
crystals. In Chapter 4 this method is applied to the crystalline solid state of different
organic materials and combined with a variety of different types of intermolecular model
potentials. The results are compared to experimental data thereby scrutinising at the
same time both our ability to predict crystal morphologies and the usefulness of various
types of classical model potentials for the description of intermolecular interactions in the
anisotropic interfacial environment.

Due to the large amount of experimental data available, a common theme drawing
through the remainder of this thesis is the consideration of inorganic materials. In Chap-
ter 5 a classical model potential for potash alum, a rather complex inorganic material,
is devised and tested. Here a model potential of a comparatively simple form is used in
order to retain sufficient computational efficiency, so that it can be used in large scale
Molecular Dynamics simulations. Another important aspect of classical molecular simu-
lation is the consistent calculation of electrostatic long range interactions. In Chapter 6
various methods to achieve this goal for quasi-two-dimensional systems, such as crystal
solution interfaces, are compared in terms of accuracy and computational efficiency. The
models devised and the methods described in Chapters 3, 5 and 6 are used in Chapter 7
where an attempt is made to predict the structure of the various surfaces found on potash

alum crystals in contact with aqueous solution. This is a particular challenge since the

|
- largest of the potash alum faces is a polar surface, this fact rendering traditional methods
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for the prediction of its structure useless. The proposed structures are discussed in the
light of the implications for crystal agglomeration. In Chapter 8 an attempt is made
to directly calculate the forces between potassium chloride particles in aqueous solution.
In contrast to previous attempts to calculate such forces here the solution including the
water molecules is simulated explicitly on an atomic scale. The merits and limitations
of proceeding thus are discussed. Finally in Chapter 9 a summary is given of all the
work and the results presented in this thesis and promising directions for future work are

suggested.
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Chapter 2

Modelling Crystallisation and

Agglomeration

Crystallisation is a complex process governed by a large number of different parameters,
and including events on a broad range of different length and time scales. The latter point
renders the theoretical modelling of crystallisation a particular challenge. For modelling
the entire process over the whole time-scale one has to coarse grain the system considerably
because modelling its microscopic details is computationally not feasible. Thereby we run
the risk of over-looking the influence of micro-scale events such as, for example, the
influence of specific impurities on crystal morphologies. On the other hand side, if we
try to model these micro-scale events explicitly we can only consider a tiny section of
the whole system and thereby overlook time- and spatial correlations between this tiny
sample and the rest of the system. Notwithstanding these limitations useful theoretical
models for crystallisation have been devised and applied. Most of the models used there
are based on coarse grained macro-scale descriptions of the system. In Section 2.1 a short
overview over these models will be given.

The current work is primarily concerned with one particular aspect of crystallisation,
namely with agglomeration. Prediction of the extent of agglomeration via the above men-

tioned coarse grained models is not possible. Normally agglomeration is either neglected,
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which is justifiable in some cases, or it is included by fitting (semi-)empirical models to ex-
perimental data.[1] In Section 2.2 ways to include information about particle interactions
on a microscopic scale into models for agglomeration are discussed, and in Section 2.3
we review both established and recently developed ways to estimate these interactions
via molecular simulation. Finally in Section 2.4 we will draw some conclusions from the

literature review to provide a justification for the present work.

2.1 Population Balance Equations

The following account on the theoretical description of crystallisation is essentially a
short summary of a chapter in the collection Crystallization Technology [1] edited by
A. Mersmann which provides comprehensive treatise on theoretical as well as practical
aspects of crystallisation.

In the realm of chemical engineering the theoretical description of crystallisation is
achieved via a population balance equation (PBE), an integro-differential equation that
gives the variation in time of (L), the number density of crystals as a function of a their
respective size L

on  9(Gn)

)

+ D(L) —B(L)+ZY{$ =0 (2.1)
k

where L can be the diameter of an approximately spherical particle or the side length of
a cuboid crystal. The first term in Eqn. 2.1, the change in the number density with time,
equals zero in a continuously driven steady state crystalliser. The second term 0Gn/0L
describes the change of n in the size interval dL due to crystal growth rate, G = dL/dt,
of particles growing into and out of dL. D(L) and B(L) are the death and birth-rate,
respectively, arising from the agglomeration, breakage and attrition of crystals. The
last term is the sum of all flows entering an leaving the crystalliser. Eqn. 2.1 is only one
possible form of a population balance equation. Others, including more terms accounting,
for example, for nucleation have been proposed.[1]

In laboratory scale experiments and for theoretical modelling frequently a continuous
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reactor is used since a steady state equilibrium is mathematically easier to describe. It
is possible to set up such a system so that barely any agglomeration or breakage occur.
If, in addition, the solution in such a small scale crystalliser is well mixed so that no
dissolution of crystals occurs and the growth rate is the same for all crystals Eqn. 2.1 can

be simplified considerably to give

=0 (2.2)

il
%

0(Gn)
oL +%:

If the solution fed into the crystalliser is free of crystals and only one volume flow V is

removed we can simplify further

n
St =0 (2.3)

T=V/ V; is the mean residence time of the suspension in the crystalliser; here we assume
that the solution and the crystals have the same residence time. We can simplify even
further by taking the average growth rate G to be independent of the particle size, an

assumption which is justified under certain conditions. Now we can write

o(n) n
G+ =0 (2.4)

which is a simple ordinary differential equation with the solution

n = ng exp (—é;—_) : (2.5)

If we draw a semi-logarithmic plot of the number density against the particle size a
straight line results with the negative slope —1/Gr. For a number of materials and
conditions crystallisation can be described by Eqn. 2.5. In the majority of cases, however,
the assumptions leading to (2.5) are not applicable and size dependent growth rates,
agglomeration and attrition play a non-negligible role, leading to deviations from linearity
in the experimentally determined log(n) —1/GT plot. In these cases we have to reconsider
Eqn. 2.1. Solution of this general equation is an arduous task, the main difficulty arising

because both the birth and death-rates are functionals of the number density distribution
B=Fu}~ [ fa@)aL,  D=Fa@}~ [fnEia  (26)
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and so the very quantity we actually want to calculate is needed as input for the equation.
Thus Eqn. 2.1 can only be solved numerically, in most cases with an iterative algorithm.
Although this can be done in a reasonable amount of time with state of the art com-
puters [6] it is questionable in how far Eqn. 2.1 can be used for quantitative predictions
because kinetic coefficients for nucleation, growth, attrition and agglomeration need to
be specified as input. A considerable number of more or less heavily parameterised,
semi-empirical relations have been devised to calculate these coefficients from material
properties and process parameters [7]. In most practical work some of these parameters
are determined by fitting them to reproduce experimental results,[1] leading to relations
and parameters that are only applicable to specific materials and/or conditions.

Smoluchowski investigated agglomeration [8] and published 1917 the simple relation-
ship

dn

i —B-n? (2.7)

assuming agglomeration to be a second order process, with the speed of agglomeration
being proportional to the square of the number concentration of the particles times a
coefficient 3, the agglomeration rate or kernel. In most of the theoretical work on ag-
glomeration published since then Smoluchowski’s relation is assumed to hold and attention
is turned to . If we allow for size dependent agglomeration and discretise L Eqn. 2.7
turns into a set of differential equations with § = B(L). Although solving this set of equa-
tions is computationally demanding it poses no principal restrictions on the application
of Eqn. 2.7. According to Braun et al. [1] more than hundred different kernels, both size
dependent and size-independent versions, have been published so far. In the present work

we will concentrate on the microscopic factors which determine this coefficient 3.

2.2 Agglomeration Kernel and Efficiency

The agglomeration kernel depends on a number of different factors. Estimating the abso-

lute and also the relative contributions of these factors — crystal size, energy dissipation
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in the reactor, surface properties of the crystal, etc. — has been a notoriously difficult

task. Following Mersmann (page 261 in [1]) we divide 8 into three components

:8 = Weffﬂcollﬁz (28)

where . is a function of the collision frequency determined by hydrodynamic conditions,
B; is a function of the crystal size L. Bcon will primarily depend on the type of solvent
and on the energy dissipation, i.e., the geometry of the reactor and the agitation rate.
In practice B; is frequently taken to be unity. This assumption, being theoretically
not justified, still holds surprisingly often, presumably due to an extensive cancellation of
errors. For the determination of B.,; and B several more or less rigorous recipes have been
proposed.[1] Weg is an efficiency factor, the ratio of attempted to successful (in terms of
aggregation) collisions. This factor is found in most common models for the agglomeration
kernel, and represents the effect of inter-particle forces on agglomeration. Two equally
charged particles, for example, can be expected to repel each other on approach, and
thereby avoid aggregation, even if their trajectories would lead to a direct collision in the
absence the Coulombic repulsion. These forces result in a low or zero value of Weg.

We can view agglomeration, the factors that influence it, and so ways to describe
it, from a slightly different perspective if we divide the process into several stages as
sketched in Figure 2.1: The first stage (A) is the approach of two particles caused either
by Brownian motion (perikinetic agglomeration) or by a velocity gradient in an agitated
or stirred solution (orthokinetic agglomeration). If we neglect long range interactions
between the particles, the description of this stage reduces to the problem of calculating
collision frequencies between particles of a given size L at a given temperate 7" in a medium
in a given viscosity 7.[1] Stage B is to a large extent determined by inter-particle forces.
Once two particles are closer than a few nanometers two effects come into play: Firstly, the
direct electrostatic U, and van der Waals interactions Uy 4y between the particles become
noticeable (i.e. U = Ug + Uyqw > ksT'). Secondly the structure of the fluid between the
particles is influenced and altered by the immediate vicinity of two surfaces. Specific

interactions between the structured surface of the particles and solvent as well as solute
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In many cases stage B will have a pronounced effect on the agglomeration rate. If we
can determine the forces in stage B with reasonable accuracy as a function of, e.g., the
concentration and identity of additives we have a powerful tool for finding new means
to control agglomeration “in silico”, without having to to rely on lengthy and expensive
experiments.

Both stage A and C will not be considered in this work where we want to concentrate
on the efficiency parameter Weg and its determination from first principles. The state
of the art of determining Weg is either fitting it to experimental data [9] or calculating
it as a function of the interactions and forces between two particles. [10] For the latter
strategy we need: 1) the average forces F'(r) between or the interaction energy U(r) of
two particles in the solution as a function of their distance 7, 2) a relation to calculate
Weg from F(r) or U(r). Here we want stress that if the agglomerating particles are in
any medium other than vacuum, the energy U(r) must actually be a free energy or more
precisely the potential of mean force between the two particles.

The first prototype of such a function, relating F(r) to Weg, was proposed by Fuchs
in 1934 in the context of the coagulation of charged aerosols.[11] The author starts from
a generalised version of Smoluchowskis equation (Eqn. 2.7) and considers the influence of
the repulsive force between equally charged particles on their collision frequency. With
X being the probability of a collision between two charged particles, and this probability

for un-charged particles being one, Fuchs arrives at

% =W = 2a/ %exp (%) dr (2.9)

2a
In (2.9) a is the radius of the particles, T' the temperature and ¢(r) is the potential of the
electrostatic force fF(r)dr. Later, in 1970, Spielman proposed a modification of Eqn. 2.9
by including the drependence of the relative diffusivity D;, of two particles 1 and 2 on
their separation. With D5 = lim,_,o, Do = lim, ,oo(D; + D;) he arrives at

Ly oo [DBL_(80)
s Weg = 2a Dyy 72 exp (kBT dr (2.10)

2a

24



Both equations 2.9 and 2.10 have been applied to various systems such as polystyrene
Latex suspensions [12], protein adsorption onto silica surfaces [13] and zeolite growth [14].
Common to all this work is that the inter particle forces (see point 2 above) were calculated
by some, possibly extended, version of the so-called DLVO-theory which is in fact a very
crude way of assessing these forces. Both the DLVO-theory and other more accurate
methods for calculating F'(r) are discussed in the next section.

A quite different ansatz for solving the same problem was made by Kallay et al.[15].
They assume that, at least for particles in the nanometer size range, the transition state
theory can be applied to estimate the aggregation rate 3. We write for the aggregation

between two particles A and B
A+ B= AB' > AB (2.11)

ABt is the activated complez, i.e., the structure of the agglomerate on top of the activation
energy barrier A*G®°, which in this case is the height of the free energy barrier between the
separated and the attached (or agglomerated) particles. Using the formulation of Eyring
as given, e.g., in Ref. [16] we obtain an expression for the reaction rate or, in this case,

the rate of agglomeration
ksT

B
hee°

If we calculate the force F'(r) between two particles AG(r) is, again, nothing else but the

8= exp (—-AIG°/RT) (2.12)

potential of mean force, i.e., TF(r)dr. This formalism is appealing because, in contrast
to Eqns. 2.9 and 2.10, we d;rectly arrive at an aggregation rate. However, to which
extent this equation can be applied to crystal agglomeration in general is unclear. Kallay
et al.,[15] in proposing this model used rather rough estimates for AG(r) in two highly
idealised model systems. From their results it is not possible to draw a clear conclusion
concerning the usefulness of the model. In any case, in both Equations 2.9 and 2.10, we
need the average force or the potential of mean force between the particles as a function

of their distance. This quantity will be the major issue of the present work.
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2.3 Forces between Dispersed Particles

In the last 20 years a large amount of work, experimental as well as theoretical, has been
devoted to the estimation of forces between meso-scopic particles in solution. To our
knowledge none of the publications in this field deals explicitly with crystal agglomera-
tion. There is, however, a large body of literature on the interactions between idealised
surfaces, between colloidal particles in solution and on the general features of what is
called electrostatic double layer (ESD) interactions. The bulk of this work is concerned
with the interactions between charged particles or macro-ions in aqueous solution. We
expect these results to be of particular relevance for the problem at hand because here
we are concerned with the interactions between ionic nano-crystallites in ionic aqueous
solutions. Most, if not all, crystals in an aqueous solution will be charged to some extent.
Even surfaces as simple as, for example, the (100) faces of alkali halides have been shown
to carry a net charge in solution.[17] For ionic crystals the anions and cations in the
solution will in most cases have a different affinity to a given surface [18] For polar sur-
faces, i.e., surfaces with a non-vanishing dipole moment perpendicular to that surface, we
can expect this phenomenon to be even more pronounced. Many molecular crystals have
surface groups that can undergo ionisation or dissociation. Both effects, the preferred at-
tachment of specific ions from solution and surface group ionisation will depend strongly
on parameters such as the pH, the concentration of various ionic species, additives and
impurities in the solution, etc. Rationalising the influence of each of these parameters
can provide a means for effectively controlling agglomeration and ultimately the yield and

quality of the crystalline product.

2.3.1 DLVO-Theory

The DLVO-theory,[19, 20] named so after the initials of its authors (Derjaguin, Landau,
Verwey, Overbeek) is a theory of the stability of colloidal dispersions. Only recently the
journal Advances in Colloid and Interface Science published a comprehensive discussion

of the DLVO theory.[2] In spite of its simplicity this model for the forces between dispersed
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nano and micro-particles can be used to describe at least qualitatively a wide range of
systems. The effective force is calculated as a sum of two contributions: attractive van
der Waals and repulsive electrostatic interactions.

For intermolecular forces, the van der Waals contribution will be discussed in some
detail in Section 3.3. In the DLVO-theory the interactions between all the atoms in two
macroscopic bodies are integrated over the volumes of the two bodies. For example, for
two spheres with radii r; and r, at a separation D the van der Waals potential is given

by

A T1T2
E = —— 2.13
van =~ () (2.13)

Expressions similar to (2.13) result for different pairs of ideal shapes (cylinders, semi-
infinite surfaces, etc.; see Ref. [1], p. 252). The parameter A is the so-called Hamaker-
constant.[21] If only dispersion is allowed for, A can be approximated by the London
theory.[22] A more accurate calculation was proposed by Lifshitz [23]. The Hamaker
constant can also be determined empirically by directly measuring the force between two
particles and in addition there are a few alternative theoretical approaches.[24] In a recent
article Thennadil et al.[25] find a comparatively simple theoretical approach to give good
agreement with another high level theoretical approach for polystyrene spheres in water.
In a rather sobering article Ackler et al.[24] compare values of the Hamaker constant for
a range of materials. They find that, depending on the material, these values can differ
wildly (10-700%) between theoretical and experimental, as well as in between different
theoretical, methods. However, the VAW forces are basically determined by material
properties and therefore not easy to manipulate (which is what we want to do here). In
addition for charged particles at small separations, the more important contribution is
the electrostatic interaction.

The term electrostatic interactions in the context of the DLVO-theory refers solely to
the forces caused by the overlap of two charge distributions of equal sign above charged
surfaces or spheres in solution. These distributions and their interaction is calculated

within the framework of the Poisson-Boltzmann equation for point charges in a dielectric
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continuum

V2(r) = ——p(r) (2.14)

€o€
where ¢(r) is the electrostatic potential and p(r) is the average charge density at a distance
r from a central ion. There is a number of ways for solving this equation for various
boundary conditions.[26] A consequence of employing this mean field approximation for
calculating the forces due to the electrostatic interactions is that these forces between
two equally charged particles can only be repulsive over the whole range of possible
separations. This appears to be plausible but is wrong in some cases. This and other

short-comings of the DLVO-theory will be discussed in the next section.

2.3.2 The State of the Art

In addition to the electrostatic and the VAW contributions of the classic DLVO-theory
some authors have included other forces due to hydration of the surfaces [27] or to Lewis
acid-base interactions between the surfaces.[28] It is unclear, however, to which extent
shortcomings of the theory can be corrected for by simply adding additional terms. Many
of the papers published in the last two decades that mention the DLVO-theory do so
in a negative way, i.e., they present results that can not be explained with DLVO. Two
specific kinds of experiment have contributed to discrediting the DLVO theory: Firstly it
became possible in the early eighties to measure forces between curved surfaces with an
un-precedented accuracy and resolution.[4] The results obtained with the so-called surface
force apparatus disagree with the DLVO predictions in many cases.[3] Secondly the advent
of more powerful computer hardware and algorithms made it possible to scrutinise the
DLVO force predictions on a microscopic scale. The experimental results were confirmed
and the molecular resolution of computer simulation studies made it possible to propose
explanations for the disagreement with DLVO. These findings, however, were not un-
disputed. A number of different mechanisms were proposed to explain the non-DLVO
forces as they are now called. In a recent article on this matter Ninham complains about

a “plethora of force”.[29] For a recent and comprehensive review of publications in this
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field see Ref. [5]. Here we will only look at the findings published in a few selected and
recently published papers that are interesting in the context of the present work. In
particular we will try to establish which simplifications included in the DLVO-theory and
other methods must be dismissed for getting a sufficiently realistic model and reliable
results for the forces between particles in solution.

One phenomenon not predicted by DLVO-theory that seems to be well established by
now is the fact that like-charged particles in ionic solution can have attractive interac-
tions in the presence of counter ions with a valency v > 2. This effect is caused by both
entropic and energetic factors originating from ion-ion correlations in the vicinity of the
charged surfaces. An example for this effect can be found in a paper by Wu et al.[30] who
perform Monte Carlo simulations of macro-ions in a primitive model electrolyte (hard
sphere micro-ions in solvent modelled as continuum with dielectric permittivity of water).
They compare their results with results obtained with DLVO and the Sogami-Ise theory
(SI), another mean field theory, developed to overcome some of the limitations of DLVO.
The authors find that with divalent counter-ions charged particles attract each other at a
separation of roughly 1.2 micro-ion diameters while both SI and DLVO predict repulsion
for all particle separations. In another paper [31] the same authors compare interaction
forces between like-charged and oppositely charged macro-ions in a primitive model elec-
trolyte. They find the repulsive and attractive forces obtained for like and oppositely
charged macro-ions to be not symmetric which is also in qualitative disagreement with
DLVO predictions.

Rouzina and Bloomfield [32] define a dimensionless constant I'

ZZZB
['=— 2.1
- (2.15)

where a is the average separation of counter-ions in the solution layer next to the
charged surface, z is the counter-ion valence and lp is the Bjerrum length defined as
lg = €®/(4meeoksT), which is the separation between two unit charges (e) in a solvent of
dielectric constant €, where the electrostatic energy equals the thermal energy k;T. The

authors find that this parameter can be used to predict whether the interactions between
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like charged particles in a solution is purely repulsive or whether they attract each other
at a distance of about one ionic diameter. Later Wu and Prausnitz found [33] that, once
properly renormalised, the results of a number of other studies confirm the findings of
Rouzina and Bloomfield. This result is appealing because it shows a relatively simple way
to estimate the boundaries of the regime in parameter space where aggregation of like
charged particles can be expected. The values of parameters needed to calculate I' can
be determined in a comparatively simple simulation of a single particle-solution interface.
However, this result cannot be used for quantitative predictions.

Greberg and Kjellander [34] investigated a similar system using a solution of the
reference hyper-netted chain equation [35] (RHNC) as simulation method. This method
can in principle yield results equivalent to Monte Carlo simulations of simple anisotropic
systems such as a primitive model electrolyte in a slit-pore with planar charged walls.
In contrast to the model of Wu et al., as discussed above, they used counter and co-ions
with different sizes. They find that under these conditions and with a particular size ratio
between co- and counter-ions the charge distribution above a charged surface can undergo
fluctuations (charge-inversion) with the consequence that equally charged macro-particles
can also attract each other in the presence of mono-valent counter-ions.

Nearly all of the paper published so far in this field use the primitive model electrolyte
to simulate the solution. Hence specific correlations between the solvent molecules (water
in most cases) and the ions and surfaces are not accounted for because the solvent is
modelled as a continuum solely characterised by its dielectric constant ¢. Burak and An-
delman [36] proposed an extension of the Poisson Boltzmann equation (PBE, Eqn. 2.14)
that includes the effect of ion-solvent correlations. They compare results for a primitive
model electrolyte between two equally charged surfaces obtained with their method with
results obtained with the the unmodified PBE. The authors conclude that solvent me-
diated forces, related to ion-solvent correlations are another mechanism that can induce
inter-surface attraction. For some cases (mono-valent ions, small separation, large surface
charge) these forces are the leading mechanism for surface attraction.

A more rigorous attempt to include ion-solvent correlations was proposed by

30



Marcelja.[37] He extended the primitive model by using an effective potential for the
ion-ion interactions. This effective potential is a sum of the bare Coulomb interactions,
scaled by the dielectric constant as in the primitive model, and a short range oscillat-
ing contribution. The latter is obtained by separate MC or MD simulations of the bulk
solution in which the potential of mean force between two ions is calculated. The short
range contribution is this potential of mean force minus the Coulomb force. Marcelja finds
that the implicit inclusion of the ion-solvent interactions via effective potentials reveals
new insights. The charge density profile above the surface is altered compared to the
PBE description of the system and for 1:1 electrolytes the repulsion at short separations
is noticeably increased. In a subsequent publication by Otto and Patey [38] Marcelja’s
findings were qualitatively confirmed but here the authors find that the measured inter-
surface forces are very sensitive to the precise form of the effective potentials used and
marked differences in the forces can be observed with effective potentials that differ by not
more than their respective error-bars. Moreover both Maréelja and Otto and Patey state
that reliable results can only be obtained by including effective surface-ion potentials in
addition to the ion-ion potentials.

A more direct attempt to include the effect of ion-solvent correlations was made by Lee
et al.[39]. They perform Monte Carlo simulations of a solution between planar charged
surfaces where the solution consists of ions, hard spheres interacting via a Coulomb term
and uncharged hard spheres representing the solvent. They find increased repulsion be-
tween the surfaces independent of the valency of the ions. Apart from showing that
inclusion of explicit ion-solvent interactions has some influence on the measured inter
surface forces, this result is not very helpful because an uncharged hard sphere is a very
poor model for water, the solvent present in most interesting “real world” systems.

Inclusion of both solvent-ion and ion-ion correlations in the solution between two
isolated structure-less spherical macro-particles, both charged and un-charged was con-
sidered by Kinoshita et al.[40] using the reference hyper-netted chain-theory.[35] Both
the ions and the solvent were modelled as hard spheres. However, the solvent particles

were given a dipole as well as a quadrupole-moment thereby comprising a more realistic
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