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Abstract.

The aim of the present thesis is to consider some aspects of the solution of problems in
dimensions greater than three. In conventional treatments of problems in chemistry
attention is focused on geometrical aspects i.e. the nuclear configurations of molecules
and crystals. The symmetry of a system may then be described in terms of the
corresponding three dimensional point and space groups. More recently, the geometry
of objects in dimensions greater than three has been required in order to understand
certain phenomena. This leads both to unfamiliar geometrical notions and to groups
which are not encountered in the more familiar problems. An attempt has been made to
lead to a treatment of these complicated higher dimensional groups in a relatively

simple way.

The treatment begins with the consideration of groups in the abstract starting with
those of low order and proceeding to more complicated cases. In this way both
familiar and unfamiliar groups are given equal emphasis. The groups are examined in
terms of operators acting on functions making a connection with the formalisms of
quantum mechanics. The treatment leads to the derivation of familiar irreducible

representations (and corresponding character tables) for the majority of groups.

It is possible to transform the representations to generate groups of orthogonal
matrices and this makes a direct comparison with higher dimensional geometries
possible. In this way examples of higher dimensional point groups are derived

algebraically and their geometrical significance may be examined at a later stage.



A common application of group theory is in the classification of quantum states in
terms of irreducible representations. In particular, it is customary to classify vibrational
states in terms of the underlying point or space group. A complication arises for
overtones of degenerate harmonic vibrations which are classifiable in terms of a much
higher order symmetry group. The symmetry adaptation of the corresponding
functions to the underlying point group symmetry which is restored by addition of

anharmonic terms is solved using the methods developed here.
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CHAPTER ONE: INTRODUCTION.

Symmetry [1] and group theory [2, 3] are tools which are often employed to simplify
the analysis in problems in chemistry. In quantum mechanics [4, 5] the symmetry of a
problem is equivalent to the symmetry of the Hamiltonian operator. Identification of a
group describing the symmetry leads in turn to a classification of the states of the
system in terms of the irreducible representations. A striking aspect of the treatment of
molecules and crystals is the importance of nuclear configuration and the symmetry
often appears in the guise of the resulting geometrical structures. The corresponding
point groups in molecules and space groups in crystals [6, 7] have become fafniliar
items in the study of chemistry with a corresponding emphasis on the three dimensional
nature of the objects involved. More recently, a number of phenomena have been
interpreted in terms of the geometry of objects in dimensions greater than three [8, 9].
This leads both to unfamiliar geometrical notions and to groups which are not
encountered in the more familiar problems. In this thesis some aspects of the solution

of problems in more than three dimensions are developed.

The strategy followed is first to consider groups in the abstract [10] beginning with
those of low order and proceeding to more complicated cases. In this way both
familiar and unfamiliar groups are given equal emphasis. The second step is to examine
these groups in terms of operators acting on functions. This makes a connection with
the formalisms of quantum mechanics [11]. Indeed the procedure can be modified so
that familiar irreducible representations (and corresponding character tables) can be

derived for the majority of groups. In addition the representations may be expressed in



terms of orthogonal matrices [12, 13] and this makes a direct comparison with higher
dimensional geometries possible. In this way examples of higher dimensional point
groups are derived algebraically and their geometrical significance may then be

examined.

A common application of group theory is in the classification of quantum states in
terms of irreducible representations. In particular, it is customary to classify vibrational
states [14, 15] in terms of the underlying point or space group. A complication arises
for overtones of degenerate harmonic vibrations which are classifiable in terms of a
much higher order symmetry group. The symmetry adaptation of the corresponding
functions to the underlying point group symmetry which is restored by addition of
anharmonic terms is solved using the methods developed here. The treatment is
particularly interesting becaﬁse it involves the harmonic oscillator [16, 17] and angular
momentum [18, 19, 20, 21], which are the two basic models of quantum mechanics, as
well as the geometrical symmetry aspects being emphasised in this thesis. In addition, it
may be noted that the angular momentum is also extended to the general n-dimensional

case.



CHAPTER TWO: THE SOLVABLE GROUP TREATMENT.

2.1 Introduction.

It is the purpose of the following chapter to present a method for the construction of
symmetry adapted functions for solvable groups. Solvable groups [10, 22, 23, 24] are a
class of groups very familiar to chemists. Most of the three dimensional point groups and
all of the three dimensional space groups are solvable [25]. A solvable group is one which
may be built up step by step from a cyclic subgroup. At each step a new element is added,
together with its associated generating relations. The properties of the resuiting
augmented group are derived, including sets of symmetry adapted functions [2] which act
as bases for irreducible representations. Starting from a cyclic group it is possible to

construct symmetry adapted basis functions for any solvable group.

The theory of groups is generally approached in an abstract way. In the present work a
connection is made between symmetry and quantum mechanics in order to introduce some
familiar concepts. Quantum mechanical wavefunctions can always be written in symmetry

adapted form.
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2.2 Symmetry and Quantum Mechanics.

A quantum mechanical problem is defined in terms of its Hamiltonian operator. Any
symmetry that the system possesses must be contained in the Hamiltonian. Symmetry itself
may be described in terms of symmetry operators. A simple example is the permutation of
the identifying labels of two indistinguishable particles P;, say. Another is the rotation or
reflection of the rigid (or near rigid) nuclear framework of a molecule. Algebraically the
Hamiltonian operator (H) commutes with any symmetry operator (S) associated with it i.e.
HS=SH (2.2.1)
Identification of a single symmetry operator (S) of a Hamiltonian implies the existence of
further operators in the sense that S may be repeated; S?, S, ... In the case of the
permutation operator already referred to, (P),)* can be recognised as equivalent to leaving
the Hamiltonian unchangéd:

(P12)*=E

where E is termed the identity operator.

In general if S is repeated N times say, it is equivalent to the identity. The set of operators
(S, S% ..., SN = E) is an example of a mathematical group: this particularly simple example
is called a cyclic group.

In this way it can be said that a particular Hamiltonian is associated with a symmetry
group: a collection of symmetry operators all of which commute with the Hamiltonian.
The group may be more complicated than the cyclic group already mentioned.

Recognition of a second symmetry operator T implies that not only powers of T itself are
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symmetry operators but also any combination of powers of S and T. The complete set of
such operators always constitutes a group. |

In a typical quantum mechanical problem characterised by a Hamiltonian operator H, the
objective is to solve the Schrodinger equation

HY =EY (2.2.2)
Mathematically, the eigenvalues E and the corresponding eigenfunctions ‘¥ of the operator
H are sought.

To determine the relationship of the symmetry operators S to the eigenvalues and
eigenfunctions we need to consider the wave equation (2) in some detail. Frequently it is
difficult if not impossible to solve the Schrédinger equation. The precise forms of the
wavefunctions and the exact values of the energy are not known. In attempting to find an
approximate solution, trial wave functions are often constructed. It is advantageous to
choose the trial wave functions so that they are eigenfunctions of S. As a preliminary, the
general properties of eigenfunctions and eigenvalues of the Hamiltonian are considered

[26].

Suppose that ¥;; is found to be an eigenfunction of H with eigenvalue E; i.e.

HY;; = E\¥;

It is easily shown that c'¥';; where c is any arbitrary number is also an eigenfunction of H
with eigenvalue E;. An infinite number of eigenfunctions have therefore been found but all
are a constant times a single function.

Only one function is needed as a representative of all. It is usually chosen so that
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¥, ¥ dr=1

Then '¥j; is said to be normalised.

A useful geometrical analogy [27] is to represent this result as a one-dimensional

space: i.e. a straight line. Then, every point on the line has a coordinate ¢ and represents
one of the functions c¢'¥;;. The function ‘¥, itself has ¢ = 1 and acts as a unit vector or
basis vector for the space.

Suppose that ¥}, is found to be an eigenfunction of H with eigenvalue E; and

Y # c¥ji

In such cases the eigenvalue E; is said to be degenerate and not only are the initial set of
eigenfunctions solutions of the wave equation, but any linear combination of them is also a
solution giving the same eigenvalue. Thus

(¥ +d¥))

in which ¢ and d are two arbitrary constants, are also eigenfunctions with eigenvalue E;.
The energy level E; is then said to be two-fold degenerate since two functions are required
to describe all the associated solutions.

In the geometrical analogy already introduced a two-dimensional space is required. ¢ and
d are coordinates and ¥;; and ‘¥, are basis vectors. Any two functions may be chosen
provided they are not linearly related. It is most convenient to choose them so that they
are both normalised and mutually orthogonal i.e.

[¥)"¥pdr=0

This corresponds to use of Cartesian coordinates and basis vectors in the function space.

Extension to higher degeneracies follows in a natural way.
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A general property of eigenfunctions of a Hamiltonian is that they are necessarily
orthogonal if they belong to different eigenvalues.

Now the complete set of eigenfunctions can be ch_oseq so that they are normalised and
functions within a degenerate set are orthogonal. Summarising

f q’jp"‘}’kq dt= Sjkqu : (2.2.3)

The effect of symmetry operators on eigenfunctions may now be considered. The key
consideration is that application of a symmetry operator to an eigenfunction cannot make
any observable difference to the system. In this way, the energy cannot be altered and the
resulting function must be an eigenfunction with the same energy value i.e. it can be

represented as a linear combination of the basis functions.
= =12
SY Zcqp(S)‘Pq p=12,.k (2.2.4)

(The energy level label j has been omitted for convenience but it is assumed that the
energy is k-fold degenerate).

It is seen that the effect of the symmetry operator on ‘¥, is to generate a matrix C(S) with
elements Cqy(S).

Consider now the effect of two symmetry operators S and T. The result must itself be
equivalent to a single symmetry operator U where

U=TS

then
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equating coefficients of ‘¥,

cmp(U) = glcmq (T)qu (S) (2'2'5)

which is equivalent to saying that the matrix C(U) is the matrix product of C(S) and C(T)
ie.

C(U)=C(T)C(S)

In the language of group theory, the set of matrices C(S), one for each member of the
group, forms a (matrix) representation of the group. The matrices are generated by
considering the effect of the symmetry operators on the eigenfunctions. The functions
themselves (‘¥) are said to form a basis for the representation. It may also be noted that if
the complete symmetry group of the Hamiltonian is considered, then the representation is
irreducible. The exact significance of irreducible representations will become apparent in

the following text.

It is recalled that the more usual situation is that the exact solution to a problem is not

known and that trial approximate functions are sought. Trial functions are consistent with
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the symmetry if they form bases for irreducible representations of the corresponding
group. 4 i
Such functions are frequently called symmetry adapted functions and in the following
sections a method for the construction of symmetry adapted functions for finite solvable
groups will be developed.
In order to introduce the effect of symmetry on a problem the effect of individual
symmetry operators is considered successively. If it is assumed that a given symmetry
operator A is equivalent to the identity after a finite number of steps then the first stage is

equivalent to considering a cyclic group.
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2.3 Symmetry reduction for a single finite order operator:

The cvclic group.

In this section, the treatment for a general finite order symmetry operator A is developed.

It is supposed that

AM=E (2.3.1)

The eigenvalues of A can be determined as follows. Suppose an eigenvalue E; and a
corresponding eigenfunction ‘¥; have been identified.

AY,;=EY;

Then '¥; remains an eigenfunction of all powers of A with eigenvalues the corresponding

powers of E;.

A= E,(A¥) = EY,

ANy =EMY,

But the last operator is the identity which leaves a function unchanged so that any
eigenvalue of A satisfies

EM=1 (2.3.2)

i.e. there are M distinct eigenvalues of A, these being the M™ roots of unity. These take

the form

(2.3.3)
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The functions are cyclical and the range of p which gives the M distinct roots can be
chosen as convenient. For example»

p=0,1,2,.., M-1

emphasises that integer arithmetic in p is to be taken modulo M whereas
p=0,+l,42, ...

emphasises the result that plus and minus values of an integer correspond to complex

conjugates i.e.

gy =¢&€f (2.3.4)

It is interesting to note that the eigenvalues of A have been found without knowledge of
the corresponding eigenfunctions. In order to determine the form of the eigenfunctions of
A we begin by considering an arbitrary function 8,. Then the effect of A is to generate a
second function 0;:

ABy =6,

Successive powers of A generate new functions, the set so generated being eventually

terminated by the finite power of A.

Aeo = 61
A%, = 6, (2.3.5)
AMeo = eo

In this way, the effect of a symmetry operator A on an arbitrary function is to generate a
set of M functions

90 91 92 GM-1
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The objective now is to take linear combinations of the above functions of the form
20,0,

in such a way as to generate eigenfunctions of A i.e.

A[Zcmem}g;{z%em] (2.3.6)

The coefficients ¢, are readily found (see appendix 2.1) and eigenfunctions of A may then

be written
87 —N%ex -2ripm ) , (2.3.7)
p =NLexp| — 1 0u 2.3,

The factor N is a normalisation constant and emphasises that multiplication by a constant
still leaves an eigenfunction and to act as a reminder that in practical applications the
function would usually be normalised.

Itis importaht to note here that the symmetry operator A has complex eigenvalues which
implies that the operator is not Hermitian. However, it can be shown (see appendix 2.2)

that the eigenfunctions of A are orthogonal i.e.
[¥ W dr =5, (2.3.8)
The procedure described in this section shows how eigenfunctions of A can be constructed

from any arbitrary function. The resulting functions are divided into sets each labeled by

one of the eigenvalues p of A.

It might be recognised that the treatment developed in this section exactly parallels a

description in terms of group theory. The terminology of symmetry operators has been
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used and attention confined to a very simple case. It is useful for the further development
of this work to recast the result; in the language of group theory.

The set of operators A and its powers is recognised as a group of order M. It is an Abelian
group since all its operators commute and a cyclic group because all operators are powers
of a single operator A. Equation (1)

AM=E

is the generating relation of the group.

The set of functions

60 61 62 ... Oma

generated from an arbitrary function by A and its powers (5) form a basis for a
representation of dimension M of the group. By transforming to the new functions ‘¥,
defined in (7), the set is decoupled with respect to the group. Each is an eigenfunction of
A and its powers and in general

A" =ef¥, : : (2.3.9)

The single function ‘¥ is then said to form a basis for a representation of order 1: an
irreducible representation.

The procedure has thus transformed the original reducible representation of dimension M
into M irreducible representations of order one. Since the original function 0y is arbitrary,
it is always possible to make the reduction in this way and all possible irreducible function
types (i.e. all possible irreducible representations) have been found.

The set ‘¥, are also called symmetry adapted functions. Combining (7) and (5)
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M-1 .
W, = Zexp('zﬁ’m)meo (2.3.10)
m=0

The symmetry adapted function can then be regarded as being derived by the action of a
projection operator [28] on the arbitrary function.

The characters of the irreducible representations may be recognised as the factors €
appearing in (2.3.9). In the case considered here where only one dimensional irreducible
representations are involved this factor can equivalently be interpreted as the eigenvalue,
the (single) matrix element or the character.

The character table [29] for the cyclic group Cy may thus be written in a very compact

form.

In the conventional treatment of applications to group theory in chemistry, three
properties of irreducible representations are quoted:

1. The number of irreducible representations is equal to the number of classes.

In a cyclic group each element is in a class by itself. It is seen that the number of
irreducible representations is equal to the order of the group and hence to the number of
classes.

2. The sum of the squares of the dimensions of the irreducible representations is equal to

the order of the group.



21

This result is clearly satisfied in this example.
3. Different irreducible representations A and p are orthogonal in the sense that their

characters y satisfy

21 (A)x"(A)=0,8 2.3.11)

where the sum runs over the elements A of the group of order g.

It can be proved that
M-1 .
;)s;‘“ ey =6 g (2.3.12)

this being the analogous expression for a cyclic group.

In conclusion it is reemphasised that the treatment does not use group theory but that in
effect derives the properties of a cyclic group from first principles. The latter remarks in
this section merely demonstrate that the results of the present development can be

translated into the terminology of group theory.
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2.4 Symmetry reduction for commuting finite operators:

Abelian groups.

The treatment of the previous section is readily extended to take account of a second finite

order operator which commutes with the first. To the expression

AM=E (2.4.1)
is added
B"=E (2.4.2)

with the cross relation

AB =BA (2.4.3)
Functions adapted to the symmetry described by A may be generated from an arbitrary
function by the methods of the previous section. Using the projection operator form

(2.3.10)

i
Y, = NZexp( “7;’4pm)9m0 (2.4.4)

The sequence of equations
A(BY,,)=BAY,, =5 (BY,,) (2.4.5)

shows that the functions generated from ¥, by B (and its powers) remain eigenfunctions
of A with the same eigenvalue. This key result arises because the operators commute. It is
then possible to construct functions symmetry adapted with respect to B without losing

the simplification already achieved with respect to A.
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Y =N @ BY,
- szaiz"s;’;‘_'@msne;w (2.4.6)
=N>. Zsﬁ’"s;’f.ema

The last form of the equation connects with (2.3.7) for a single operator and gives a
generalisation of (2.3.5):

A" B" 000 = 0Om (2.4.7)

In summary, the method of symmetry reduction applied to a single finite order operator
may be used for a second provided the two operators commute. This parallels the result in
quantum mechanics that it is always possible to construct simultaneous eigenfunctions of
two commuting operators. Clearly the procedure may be repeated indefinitely provided

each new operator commutes with all those that have gone before.

As was done in the previous section the results, which have been derived without using
the methods of group theory, may be recast in the language of group theory.

The operators A, B and their powers form a group of order MN. It is an Abelian group
since all group elements commute. Equations (1) to (3) are generating relations of the
group. The group is not itself cyclic but it is the direct product of two cyclic groups
indicated by the notation Cy x Cy.

The irreducible representations of the group are all one-dimensional and a condensed

character table analogous to table one can be constructed.



CuxCy |A™B" p,m=0,1,.., M-1

I'nq el q,n=0,1, .., N-1

The extension to further commuting operators is straightforward: each leads to a new
factor in the character which is a root of unity, a new index in the specification of the
irreducible representation and an extension of the direct product.

It is possible to show that all Abelian groups can be expressed in the form of direct
products of cyclic groups so that the treatment given in this section applies to all Abelian

groups.
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2.5 Symmetry reduction for non-commuting finite operators.

Dihedral groups.

If a problem has symmetry described by two or more non-commuting operators,
progress is still possible in certain cases. To make the considerations involved more
clear, attention is first directed towards one particular example.

A first symmetry operator satisfies

AS=F (2.5.1)
and a second
B’=E (2.5.2)

The two do not commute but are related by

AB =BA’ (2.5.3)
The equations are given in abstract form but may be recognised as equivalent to the
familiar point group Csy.

Functions which are symmetry adapted to A are readily constructed using the methods

of previous sections.

“Po = 90 + 91 + 92
L ‘ic.f‘
\Ij] =60 + 8;91 + 8; 92 (254)

¥,=0, + efe, +qe‘392.

It is noted that the simplification made here with respect to A can always be used
irrespective of whether it is possible to make a further simplification with respectAto B
or indeed any other symmetry operator involved in a problem.

Now the effect of the second operator on the functions (4) will be examined.

The sequence of equations



<#J = M # >J ?

#RB $
#J ? <N=,
1 " 3
# 3%
2 2
/
> /
) > 2 #49$
%
@ P.#B #a$ U#B#bS $
G2/?7 <J L O;P=7?<J 0 - =
E / . # / /S

R#B<H#e$HB H#Bc$
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B(Y1 - ¢2) =-1(Y1 - ¢2) (2.5.9)
The new pair of ﬁmptio_ns are eigenfunctions of B but not eigenfunctions of A. It is
thus impossible to cbns'truct functions which are simultaneously eigenfunctions of A
and B. As the problem has both symmetries, there must be a double degeneracy to
allow both possibilities.

It has therefore been shown that starting from an arbitrary function there are only three
types of symmetry adapted function possible. Two of the types are non-degenerate and
correspond to simultaneous eigenfunctions of A and B with pairs of eigenvalues
labelled by (0,0) and (0,1). The third type is doubly degenerate and may be labelled by
a pair of eigenvalues of A: 1 and 1. |

It may be noted that starting from an arbitrary function, there are two pairs of
degenerate functions, the second being ‘¥, and ¢,. This draws attention to two points.
The discussion so far has always been based on the general case where each symmetry
operator acfing on the arbitrary function generates a new function so that the number
of functions generated is equal to the order of the group i.e. six in the present example.
If the arbitrary function is already partially or wholly symmetry adapted, then the
number of functions is actually less than the order of the group. This does not have to
be allowed for explicitly in the projection operator formalism because null functions
are automatically generated for the missing members of the set.

The second point is that, in contrast to the case of commuting operators, the symmetry
reduction is not complete with respect to the set generatedr from an arbitrary function
which gives the maximum possible number of distinct functions. Whereas only one
function of each non-degenerate type is generated, there are two pairs of doubly

degenerate functions.
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As with the previous two analyses, all the symmetry properties of interest in the
present context have been developed in terms of symmetry operators and tﬁéir ‘éﬁ'ect
on representative functions. The methods of group theory have not been used directly.
The present results are now re-expressed in the language of group theory.

The basic operator relations (1) to (3) generate a group of order six and may be used
to form the multiplication table of all pair products. They may in turn be used to

evaluate the order of each group member and to identify the inverse of each.

Element (S): E A A* B AB A’B
Order of S: 1 3 3 2 2 2

Inverse (S7): E A A B AB A’B

It is recalled that elements S and T are conjugate if there is a third member of the
group U such that

UsSu' =T (2.5.10)
or equivalently

US=TU. (2.5.11)
Then sets of all conjugate elements within a group are called classes. For the group
under consideration here, there are three classes:

1.LE

2.A A’ (2.5.12)

3.B AB A’B
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Elements within one class always have the same order but the converse is not in
general true.

The non-degenerate symmetry adapted functions introduce no new concepts, but the
two-fold degenerate case is now discussed in some detail. Taking one of the pairs of

degenerate functions, operator equations may be written for all group members

EY: =¥, E¢2=¢2

AY, =¢! ¥, Adr=¢!" ¢,

AW, =gl Aldr=¢;b

BY: =¢, B¢, =¥,

ABY, =¢!" ¢, ABd, =£l ¥,
A'BY =¢ AB¢, = ¢! ¥, (2.5.13)

The characters of the associated irreducible representations may be found directly from
these equations by summing the diagonal coefficients. Then noticing that

1+el+el =0

the characters are

Element (S): E A A*> B AB A’B

Character of S: 2 -1 -1 0 0 0

These are consistent with the general result that all elements in the same class have the

same character. The full character table for all three irreducible representations may be

written in a familiar form.
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D; E 2A 3B

(Do) 11 1 A -
I'(®ar) 1 1 -1

T¥,d) [2 -1 0

In the familiar Schonflies notation, the representations would be denoted by A;, A, and
E respectively.

No direct reference has so far been made to matrices and the operator equations
actually contain all the necessary information and can be used without further
modification. However, matrices are more familiar in chemical applications and will be
useful for some aspects of this work.

A general connection may be made as follows. For a set of n functions which form a

basis for a representation of a group, the effect of a group element S may be written
S¥ = §ch (S)‘r’q (2.2.4)

Then if for example three elements of the group are related by

U=TS

it has been shown that

Cop(U) = 2 cg (T, (S) (2.2.5)
q=1

The matrices defined in this way form a (matrix) representation of the group. Applying

this to the doubly degenerate representation, the following matrices are:
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A A?
(0 l) (o &) (o &
* 3 3
1 0 g 0 e o0
3 3
B AB A2B

The representation can be more compactly written by specifying only the matrices
corresponding to the generators A and B and then using the generating relations when
more detail is needed.

It is also noted in this example that the matrices are different for each group member.
This is termed a faithful representation of the group. The set of matrices themselves
form a matrix group (under matrix multiplication).

The group developed in this section is sometimes called the dihedral group D;. The
treatment can be applied directly to all dihedral groups D, defined by the relations

AM=B=E AB =BAM!,
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2.6 Symmetry reduction for non-commuting finite operators:

Solvable groups. L

In the last section symmetry reduction was effected for a particular dihedral group. The
method consisted of solving the problem for a subgroup (in this case the cyclic group
based on powers of A) and then examining the effect of adding a second operator B which
augments the subgroup to give the full dihedral group.

The generalised procedure will consist in progressing to larger and larger groups at each
step adding one new operator.

The question can be asked: what is the relationship between the subgroup énd group
which makes it possible to solve the problem in this way? Before the question can be

answered, some more detailed concepts in group theory must be developed [10].

To classify groups in more detail, it is useful to introduce subgroups. A subgroup (S) of a
group (é) is a subset of elements which constitute a group. The order of the subgroup (s)
is always an integral factor of the order of the parent group (g) i.e. g/s =n where n is
called the index of S in &. The group G may be written as a series in terms of its subgroup
in two ways:

G =SE + SR, +... + SR,

G=ES+S,S+..+S,8 (2.6.1)
These are respectively referred to as the expansion of @ into right or left-handed cbsets

relative to S. The subsets SE, SR,, ..., SR, have no elements in common and each contain
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s distinct elemeﬁts. The choice of elements E, R, ... R, is not unique. They are called
coset representatives. Only the first member .SE is a group.

Since group multiplication is not in general commutative, it is not expected that the right
and left handed cosets will be the same. A subgroup for which they are the same is called
an invariant subgroup. The concept of an invariant subgroup is of central importance in
the present context and follows from the concept of invariant elements. Two group

elements A and B are said to be conjugate if there is a third element T such that

TAT'=B
or
TA=BT (2.6.2)

A group may be divided into sets of conjugate elements, each such set is said to form a
class.

An element which is conjugate with itself and no other element is called a self-conjugate or
invariant element of the group to which it belongs. In an Abelian group every element is
invariant and hence each element is in a class by itself.

Similarly, two subgroups S and R are said to be conjugate if there is a group element T
such that

TST' =R

or (2.6.3)

TS =RT

The second form implies that for two conjugate subgroups the right handed coseté of one

group are the same as the left handed cosets of the other.
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If a subgroup has no other conjugate subgroups, it is called a self-conjugate subgroup.
Then the left and right handed cosets are the same and the subgroup is also an invariant
subgroup.

If the element A belongs to an invariant subgroup, so does every element of the form
TAT" where T is any element of @ i.e. each element of the class of A is contained in the
subgroup. Hence, an invariant subgroup contains whole classes of the parent group.

The important propertieé of an invariant subgroup may be summarised.

1. It is a self conjugate subgroup.

2. Its right and left handed cosets are identical.

3. It contains whole classes of the parent group.

Based on the concept of the invariant subgroup, groups in general may be divided into two
kinds: simple groups which have no invariant subgroups and composite groups.

Cyclic groups of prime order are simple, other Abelian groups are composite. There are
non-Abelian simple groups. The smallest of them is of order 60 and corresponds to the
rotations of a feguiar icosahedron (point group I) or equivalently the even permutations of |
5 indistinguishable objects (the alternating group As). In fact, all higher alternating groups
are simple.

Returning to invariant subgroups, there is a complementary concept which is also
important. If a group is expanded as in (1) relative to an invariant subgroup S, then the set
of n distinct cosets SE, SR, ..., SR, form a group under coset multiplication. This is called

the factor (or quotient) group of S in G and is denoted by &/S. Its order is g/s. If &/S is of

prime order then S is called a maximum invariant subgroup.
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If a finite group G may be expressed as a series of groups:
§,S,S,,..,5=C
such tﬁat each group is a maximum invariant subgroup of the previous one, then the group
is said to be solvable. Such a series is called a composition series. The corresponding
factor groups &/S;, S1/S; ... are all of primé order and are therefore necessarily cyclic.
All three-dimensional point groups (except the icosahedral groups) are solvable. Thus, the
group D; has the following composition series
D;; G G
and the corresponding composition indices are
) 3)

As a second example, using point group notation
T;D:5C 3G

3) 2 @
In the context of abstract group theory, the solvable group is useful because it provides a

means of building up the structure of a group step by step.

It is now possible to show how symmetry adapted functions may be constructed for any
solvable group [25]. Since the composition indices are all prime, it is evident that the last
but one member of the composition series must be a cyclic group. The treatment in section
three shows how symmetry adapted functions of cyclic groups may be constructed and
classified. An induction argument may then be followed. It is supposed that a set of

symmetry adapted functions have been found for a particular (not necessarily cyclic)
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member of the composition series. Then it will be shown that those for the next higher
member can be formed.

The higher group (&) may be expanded in terms of cosets of the lower group (L), it being
supposed that the corresponding index is j.

G =LE+LP +LP>+ ... + LP! (2.6.4)
Since the factor group is cyclic, it will always be possible to find coset representatives
which are powers of a single element P. It is recalled that the right and left hand cosets are
the same for an invariant subgroup.

There are two possible ways in which an element of L. may behave with respect to the
augmenting element P.

(1) It commutes with P, P?, ...

(2) It generates a cycle of j different group elements;

B,P =PB, B,P =PB;

which implies

B,P’=P°B; B,P’=P’B,

B,P' = P'B,

Since j is prime, there are no intermediate possibilities.

The group may then be written in the order

L: E; A;...; B;,Ba, ...; C,Cy, ...

i.e. first the commuting elements and second the cycles of elements of type (2).

A right coset then has elements

LP: EP; AP;..; B,P,B:P,...,BP; C,P,C,P, ..., CP;
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and the left coset is identically ordered if it is written

PL“: PE; PA; ...; PBy, PBs, ..., PBy; PCy, PC;, ..., PCy;

It is assumed that the symmetry adapted functions of L have already been constructed.
They will be divisible into subsets, each belonging to an irreducible representation A; of L.
A typical function is denoted by W2 . Then the effect of D an element of L on the function
has the form

D¥M =3 ch (D) (2.6.5)

The coefficients ¢ forming the representation matrix. The higher group @ is obtained by
adding P and its powers up to (j-1). The effect of P on the symmetry adapted functions of

L can be deduced by considering a typical element of type (1) and of type (2).

APYH = PAwH = 3 ) ()Pt (2.6.6)

since A and P commute. For type (2), the situation is more complicated.

B P¥h =pB ¥h = Y M ypwh 2.6.7)

o

The effect is that the matrix which was allocated to B, is now allocated to B;. Thisis a

potentially different representation which will be labeled A,. In this way (7) becomes

B P¥H =pB ¥ = 3 )@ ypwh (2.6.8)

n
-

2
The net result is that under P, P, ..., P/, irreducible representation’Tof L labeled by A, A; ...

A; are generated. Since j is a prime number, there are only two distinct possibilities.

(1) The representations are all equivalent.





































































































































































































































































































































































































































































