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Chapter 1 Introduction.

1.1 The response to stress.

Major environmental changes cause stress, damage, or death. Even minor changes
can hamper the physiological capacities of cells. For example, changes in temperature of
the order of 10C can cause the rates of biological reactions to change by nearly 10%
(Cossins and Bowler, 1987). Not surprisingly, organisms have evolved a variety of
adjustments that help buffer the physiological impact of environmental change. These
adjustments have been studied from diverse perspectives ranging from the gross changes in
protein synthesis to the morphological and physiological alterations elicited by stress.
Studying stress-inducible phenomena has also yielded a great deal of information
concerning processes essential to the lifestyle of the normal unstressed cell.

Living organisms respond at the cellular level to unfavourable conditions such as
heat shock by a rapid repression in the synthesis of most proteins and the concomitant but
transient acceleration in the rate of expression of a small number of specific proteins (heat
shock proteins or hsps). This heat shock response is universal having been observed in
archaebacteria, eubacteria, yeasts, plants, invertebrates and vertebrates, including humans.
Although there are differences among the various organisms, for instance in the precise
molecular weights and number of the induced hsps, it is remarkable how similar the
response has remained throughout evolution. Comparison of the sequences of the
equivalent heat shock genes from organisms as far apart on the evolutionary scale as E.
coli and man indicate that hsps are among the most highly conserved proteins in nature (for
reviews see Lindquist, 1986; and Lindquist and Craig, 1988).

The temperature at which hsp induction occurs varies considerably with the
organism, but is usually a few degrees above the optimal growth temperature. For instance,
S. cerevisiae grows optimally at ca. 360C and induces hsp synthesis maximally over the 38-
420C range. However, it has become increasingly clear that many hsp genes are activated
in the apparent absence of stress, with some hsps appearing at specific stages of
development, in specific tissues and even during the normal cell-growth cycle (Morimoto et
al., 1990). This suggests that these proteins play a role in normal growth and development.
Figure 1.1 gives an overview of conditions other than stress that induce hsp gene
expression.

Besides heat shock the induction of hsps can be achieved by many other types of
environmental stress such as exposure to heavy metals, ethanol, amino acid analogs, and
release from anoxia (see Table 1.1 for a more comprehensive list). For this reason one
should refer to these proteins as stress proteins rather than hsps. Many reviews of the
response to stress (e.g Lindquist and Craig, 1988) give the mistaken impression that most

types of stress induce the same changes in gene expression and are regulated by a similar



Table 1.1 Inducers of the heat shock response. !

Inducing2

agent
or treatment

Proposed effect

Heat shock

Ethanol

. . Increasing levels of denatured protein by
Amino acid causing synthesis of aberrant protein or by
analogs binding to sulphydryl groups, for example.

Various heavy
metals

Iodoacetamide

Return from

anoxia
Hydrogen
peroxide Oxygen toxicity, free radical fragmentation
Superoxide of proteins.
ions
Other free
radicals
Antimycin
Rotenone
Disturbing the processes involved ir
Oligomycin energy metabolism by inhibiting oxidative
phosphorylation, or dissipating the ionic
Azide gradients that exist across membranes.
Dinitrophenol
Ionophores

1
Compiled from data reviewed in Ashburner and Bonner, 1979; Ananthan et al., 1986; Burdon, 1986 and Lindquist,

1986.

2

By definition, heat shock is the one universal stimulus that induces synthesis of hsps. Many other stimuli induce
the synthesis of all hsps or a subset of them and may even induce stress proteins not seen during heat shock.

Many of these inducers are effective across a broad range of species. Ethanol induces hsps in mammalian cells (Li,
1983), yeast (see Fig. 6.5.2), and E. coli (Neidhardt et al, 1984). However there are many species-specific
differences. For example, ethanol and cadmium do not induce hsps in Dictyostehium (Lindquist, 1986).
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