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In this paper we employ methods from statistical mechanics to model temporal correlations in time series.
We put forward a methodology based on the maximum entropy principle to generate ensembles of time series
constrained to preserve part of the temporal structure of an empirical time series of interest. We show that a
constraint on the lag-one autocorrelation can be fully handled analytically and corresponds to the well-known
spherical model of a ferromagnet. We then extend such a model to include constraints on more complex temporal
correlations by means of perturbation theory, showing that this leads to substantial improvements in capturing
the lag-one autocorrelation in the variance. We apply our approach on synthetic data and illustrate how it can be
used to formulate expectations on the future values of a data-generating process.
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I. INTRODUCTION

During last two decades, multidisciplinary applications of
physics—ranging from economics [1,2] and finance [3,4] to
sociology [5,6], biology [7,8], and linguistics [6,9]—have
witnessed an increasing attention from the physics community
[10–13]. Indeed, physicists have contributed to the devel-
opment of methodologies that are of crucial importance to
such disciplines, such as, e.g., network modeling and analysis
[14,15], game theory [16,17], and time series analysis [18,19].

Arguably, one of the main driving forces of such an interest
is statistical mechanics, which provides a unified and coherent
framework based on first principles to model large interacting
systems even outside the realm of physics. In particular, as
originally suggested by Jaynes [20,21], the maximum entropy
principle has been used as a flexible tool to build unbiased
statistical models in a vast range of different disciplines
[22–24].

However, in most of such applications, the maximum en-
tropy principle is used in the opposite way with respect to its
classical use in statistical mechanics, where the goal is usually
to compute observable macroscopic quantities (such as corre-
lations in an Ising model) from the unobservable microscopic
laws ruling the interactions between the components of a
system [25]. The opposite problem is that of inferring the pa-
rameters of an interacting system (e.g., the coupling constants
and fields in an Ising model) from snapshots of its microscopic
configurations. This is referred to as the “inverse problem.”
In physics it has received considerable attention, especially
when applied to fully connected Ising models [25,26]. Outside
physics, instead, it has provided a theoretical basis for some of
the aforementioned interdisciplinary applications, due to the
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increased accessibility of the “microscopic configurations”
of many nonphysical systems (e.g., financial markets, social
networks, neuron firing patterns, etc.).

Jaynes proposed an alternative principle when dealing
with models of time-evolving systems, typically nonstationary
or out-of-equilibrium ones. Known as the maximum caliber
principle [27], its goal is to determine an unbiased distribution
over all possible paths of a system by maximizing the system’s
path entropy while preserving some desired constraints on
its trajectories. Researchers have used the maximum caliber
principle in a wide rage of different applications [28,29], the
majority of which have been devoted to determining the tran-
sition rates of Markov models [30,31] for systems evolving in
continuous time between a fixed set of states.

In the case of systems evolving in discrete time, the max-
imum caliber principle can be shown to coincide with the
maximum entropy principle by mapping time as the spatial
dimension of a lattice whose sites are occupied by events
[32,33]. In practice, this mapping effectively corresponds to
time series, as even most systems evolving in continuous time
are sampled at discrete times.

In Ref. [33], we have shown how the entropy formulation
can be used to generate ensembles of multivariate time series
in discrete time constrained to preserve, on average, some
empirically observed distributional properties of a multivari-
ate system (such as higher order moments and seasonali-
ties). One of the main challenges of the multivariate case
presented in Ref. [33] is that of explicitly accounting for
correlations, which can be captured only indirectly via other
constraints.

In the present work, we partially overcome such limita-
tions by tackling the problem of explicitly accounting for
temporal correlations in the case of univariate systems. Mod-
eling the temporal correlations of statistical systems is a
notoriously challenging task. The most frequently used tools
are autoregressive models belonging to the ARCH-GARCH
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family [34,35] or stochastic processes such as the Ornstein-
Uhlenbeck model [36]. These models—and those inspired by
them—have enjoyed great success in a variety of applications
where modeling time correlations can be crucial, such as
in economics or finance [37,38]. Here, instead, we adopt a
data-driven perspective—grounded in the maximum entropy
principle—in order to capture the time correlations of a sys-
tem without the need to explicitly model its time evolution.

First, we will briefly introduce the general methodology
in its full mathematical form (Sec. II). Then we will apply
it to generate ensembles of time series designed to preserve
on average correlations between first moments as measured
in an empirical time series of interest. In order to do so,
we will leverage the spherical model [39,40], and we will
show that it naturally corresponds to autoregressive processes
[34] (Sec. III). After that, we will proceed to account for
higher order temporal correlations. We will do so by solving a
more complex model by expanding on the spherical model by
means of perturbation theory (Sec. IV). In the former case, the
analytical knowledge of the spherical model’s partition func-
tion makes the calibration of the proposed approach extremely
simple, whereas in the latter case we will show how the
Plefka expansion [41]—a technique commonly used for the
inverse Ising problem—can be applied to find an approximate
solution.

II. MAXIMUM ENTROPY FRAMEWORK FOR TIME
SERIES DATA

Let X be the set of all real-valued time series of length
T , and let X ∈ X be an empirical time series of interest,
i.e., xt stores the time t value sampled from a variable under
consideration. The goal of the methodology is to define an
ensemble able to preserve, as ensemble averages, L empirical
measurements on X . In other words, we want to find a proba-
bility density function P(X ) over X , such that the expectation
values 〈O�(X )〉 = ∑

X∈X O�(X )P(X ) of a set of observables
(� = 1, . . . , L) coincide with their values measured in the
given time series O� = O�(X ). In these terms, the problem is
ill-defined, as P(X ) may be defined in an arbitrary number
of ways. However, if we require P(X ) to also maximize
the entropy S(X ) = ∑

X∈X −P(X ) ln (X ), computing P(X )
becomes a constrained maximization problem which can be
uniquely solved by choosing

P(X ) = e−H (X )

Z
,

where H (X ) = ∑
� β� O�(X ) is the Hamiltonian of the en-

semble, β� (� = 1, . . . , L) are Lagrange multipliers intro-
duced to enforce the constraints, and Z = ∑

X e−H (X ) is the
partition function of the ensemble, which verifies 〈O�(X )〉 =
−∂ ln Z/∂β� ,∀ �. The existence and uniqueness of the La-
grange multipliers can be proved, and it can also be shown
that they are equivalent to those that maximize the likelihood
of drawing the time series X from the ensemble [42].

The problem of determining P(X ) has therefore been
solved. However, explicitly computing the Lagrange multipli-
ers β� that maximize the likelihood of drawing the data from
the ensemble without an analytical form for Z can be achieved
only by means of Boltzmann learning gradient-descent al-

gorithms [25]. These ultimately require an exhaustive phase
space exploration through sequential Monte Carlo simula-
tions, which quickly becomes computationally unfeasible for
T � 1. Therefore, finding a closed-form solution (even an
approximate one) for Z is the cardinal problem to be solved
in order to fully define a working methodology.

As a dummy example to illustrate how a specific ensemble
can be computed, let us consider an empirical time series X t of
length T and let us choose as constraints its sample mean m =∑T

t=1 xt/T and mean-square value V = ∑T
t=1 x2

t /T . In order
to compute the partition function Z , let us denote as xt the t th
element in X , and let us place each of such elements on a one
dimensional lattice of length T . The constraints on the mean
and mean-square value lead to the following Hamiltonian:

H =
T∑

t=1

[
λ1xt + λ2x2

t

]
.

After having specified the constraints, what is left to do is to
evaluate the partition function. In order to do that, we need to
properly define the sum over the phase space X appearing in
the definition of Z:

Z =
∑
X∈X

e−H (X ) =
∫ +∞

−∞

T∏
t=1

dxt e−H (X )

=
T∏

t=1

∫ +∞

−∞
dxt e−λ1xt −λ2x2

t =
(√

π

λ2
e

λ2
1

4λ2

)T

, λ2 > 0.

Once the partition function is known, the Lagrange multipliers
λ1 and λ2 can be found by solving the following system of
coupled equations:

m = − 1

T

∂ ln Z

∂λ1
= − λ1

2λ2

V = − 1

T

∂ ln Z

∂λ2
= λ2

1 + 2λ2

4λ2
2

,

which leads to the following probability density function for
the ensemble:

P(X ) =
[

1

2π (V − m2)

]T/2 T∏
t=1

e− (xt −m)2

2(V −m2 ) , V > m2,

which is the factorized probability density function of T
independent Gaussian random variables with mean m and
variance (V − m)2.

III. THE FIRST HAMILTONIAN

We shall now apply the framework introduced in the pre-
vious section to a more complex set of constraints, namely,
the sample mean (m), mean-square value (V ), and tempo-
ral correlation at lag one C1 = ∑T

t=1 xt xt+1 (notice that the
following steps generalize to a generic temporal correlation
Cτ = ∑T

t=1 xt xt+τ ).
Let us place the data points on a one-dimensional temporal

lattice, whose sites t = 1, . . . , T correspond to the events
of a time series of interest x1, . . . , xT . After doing that, the
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specified set of constraints leads to the following Hamiltonian:

H =
T∑

t=1

[
λ1xt + λ2x2

t + λ3xt xt+1
]
, (1)

where we are assuming spherical boundary conditions xT +1 =
x1. The Hamiltonian in Eq. (1) is that of the spherical model
[39], a well-known model in statistical mechanics.

Having specified the Hamiltonian, the task now becomes
finding the partition function Z , which reads

Z =
∫ +∞

−∞

T∏
t=1

dxt e−λ1xt −λ2x2
t −λ3xt xt+1

=
∫

dT x e−xTAx+BTx =
√

πT

det A
e

BTA−1B
4 , (2)

where we have introduced the following vector notation:

BT = −λ1

⎛
⎜⎝

1
...
1

⎞
⎟⎠,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ2 λ3 0 · · · · · · · · · · · · λ3

λ3 λ2 λ3 0 · · · · · · · · · 0

0 λ3 λ2 λ3
. . .

...
... 0

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
...

. . . λ3 λ2 λ3 0
... 0 λ3 λ2 λ3

λ3 0 · · · · · · · · · 0 λ3 λ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using the fact that A is a special case of a real symmet-
ric circulant matrix (whose spectral properties are generally
known [43]), one can show that its eigenvalues are �t =
λ2 + λ3 cos 2π

T (t − 1) (t = 1, . . . , T ). These can be used to
highlight, in the limit T � 1, the explicit dependency of Z
from the Lagrange multipliers. Expanding each term appear-
ing in Eq. (2), we have

det A =
T∏

t=1

�t = e
∑T

t=1 ln [λ2+λ3 cos 2π
T (t−1)]

≈ e
T
2π

∫ 2π

0 dω ln [λ2+λ3 cos ω] = eT ln
λ2+

√
λ2

2−λ2
3

2

=
(λ2 +

√
λ2

2 − λ2
3

2

)T

,

BTA−1B = λ2
1 bTA−1b = λ2

1 bT 1

�1
b = T

λ2
1

λ2 + λ2
, (3)

where we have used the fact that b = (1, . . . , 1) is the eigen-
vector of A (and therefore of A−1) associated to �1. Plugging
the above expressions into Eq. (2), we obtain the ensemble’s
partition function, which reads

Z =
(

2π

λ2 +
√

λ2
2 − λ2

3

) T
2

eT
λ2

1
4(λ2+λ2 ) . (4)

From Eq. (4) we can derive the system of equations for the
Lagrange multipliers:

m

T
= − λ1

2(λ2 + λ3)
,

V

T
= λ2

1

4(λ2 + λ3)2
+ 1

2
√

λ2
2 − λ2

3

,

C1

T
= λ2

1

4(λ2 + λ3)2
+ λ3

2
(
λ2

3 − λ2
2 + λ2

√
λ2

2 − λ2
3

) . (5)

The above equations can be easily solved analytically. Their
expressions are not particularly instructive, so we omit them
for easiness of exposition. Once the system in Eq. (5) has
been solved the ensemble is fully defined, and instances can
be drawn from it with standard Monte Carlo methods [44].

Figure 1 shows an application of the ensemble aimed at
reconstructing a known data-generating process. Black lines
correspond to data generated synthetically from an autore-
gressive model defined as follows: Yt+1 = ξ

(a1,a2 )
t Yt + ξ

(a3,a4 )
t ,

where ξ
(a,b)
t is a random number drawn at time t from a

uniform distribution in the interval [a, b]. The solid black line
corresponds to the final 30 points of an initial time series
of length T = 180, which we use to compute the Lagrange
multipliers appearing in Eq. (4). The black dashed line cor-
responds to the continuation of such time series beyond time
T , which we use both to update the Lagrange multipliers in
“real time,” and to test the agreement between the scenarios
generated by the ensemble with respect to new data points.
The blue (light gray) solid line and shaded region correspond
to “out of sample” next-step expectations for times t > T (i.e.,
obtained by recomputing the ensemble’s Lagrange multipliers
for all times t � T + 1), denoting, respectively, the average
value and 99% confidence interval computed from the ensem-
ble via Monte Carlo simulations. The purple (dark grzy) solid
line and shaded region instead capture the “true” next-step
evolution of the system. They correspond, respectively, to the
mean and 99% confidence interval computed over a sample of
106 trajectories of the aforementioned autoregressive model
generated as one-step increments starting, at all times, from
the values represented by the dashed black line. As can be
seen from a qualitative inspection of Fig. 1, the ensemble
reproduces rather faithfully the average time evolution of the
underlying data-generating process. There are, however, some
visible deviations between the two confidence intervals shown
in Fig. 1. These are due to the fact that the data-generating
process has non trivial time correlations in its higher order
moments, which are not captured by the ensemble. These will
be captured by the model introduced in the next section, where
we will also perform a more rigorous statistical assessment of
the model’s ability to reconstruct a data-generating process.

IV. A MORE COMPLEX HAMILTONIAN

We now proceed to investigate a more complex ensemble
encoding additional constraints. We consider the following
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FIG. 1. Reconstruction of a known data-generating process. Black lines correspond to data generated synthetically from the autoregressive
model Yt+1 = ξ

(0,1.5)
t Yt + ξ

(−0.3,0.7)
t . The solid black line corresponds to data up to time T = 180, which are used to compute the initial values

of the ensemble’s Lagrange multipliers appearing in Eq. (4), and the black dashed line corresponds to the evolution of the process beyond time
T . The blue (light gray) solid line and shaded region denote, respectively, “out of sample” next-step expectations for times t > T based on
the ensemble, with Lagrange multipliers updated in “real time” based on new data points. The purple (dark gray) solid line and shaded region
correspond, respectively, to the mean and 99% confidence interval computed over a sample of 106 trajectories of the process Xt generated as
one-step increments starting, at all times, from the values represented by the dashed black line.

Hamiltonian:

H =
T∑

t=1

[
λ1xt + λ2x2

t + λ3xixt+1 + λ4x2
t x2

t+1 + λ5x4
t

]
, (6)

which enforces the constraints already considered in the
Hamiltonian of Eq. (1), plus additional constraints on the
sample mean fourth power (

∑T
t=1 x4

t ) and on the time correla-
tions at lag one between squared values (

∑T
t=1 x2

t x2
t+1). Such

constraints—coupled with the ones mentioned previously—
effectively amount to constraining, respectively, the ensemble
average on the kurtosis and on the variance autocorrelation at
lag one.

Similarly to Eq. (2), the partition function resulting from
Eq. (6) reads

Z =
∫ +∞

−∞

T∏
t=1

dxi e−λ1xt −λ2x2
t −λ3xt xt+1+λ4x2

t x2
t+1+λ5x4

t . (7)

Integrals similar to the one above appear in λφ4 lattice field
theories and are known for not being solvable analytically.
However, such calculations are commonly tackled by using
resummation techniques or perturbation theory [45]. Follow-
ing this line of research, we will make use of the Plefka
expansion—a perturbation method widely used in the inverse
Ising problem—in order to find approximate estimates of the
true Lagrange multipliers.

In standard perturbation theory, the true Hamiltonian H
of a system is written as a sum of an unperturbed part H0

and a perturbation Hp: H = H0 + Hp. Using this notation, the
partition function of the system becomes

Z =
∑
X

e−(H0+Hp) = Z0

∑
X

e−H0

Z0
e−Hp

= Z0〈e−Hp〉0 = Z0

∑
k

(−1)k

k!
〈Hk

p 〉0, (8)

where Z0 is the partition function of the unperturbed system
(Z0 = ∑

X e−H0 ), and 〈· · · 〉0 is the average over the ensemble
defined by Z0. Equation (8) is exact. However, in order to
make it usable in practice, one needs to truncate the power
series expansion (which becomes a power series expansion in
the Lagrange multipliers appearing in the definition of Hp) to
a certain order k. Of course, if one is lucky enough to find a
recursion for 〈Hk

p 〉0 and to sum the resulting series, one can in
principle compute the true partition function Z .

The Plefka expansion follows a very similar procedure to
the one just described. It starts from the Hamiltonian of the
system written as H = H0 + λHp, where λ is a constant that
serves to distinguish different perturbation orders which will
be ultimately set to one. Instead of expanding the partition
function Z , the Plefka expansion considers the free energy of
the system:

F = − ln Z = − ln Z0 − ln
Z

Z0
= F0 + Fp, (9)

where F0 is the free energy of the unperturbed ensemble and
Fp = − ln Z

Z0
. We can now expand Fp as a power series in λ:

Fp = −λ f1 + λ2

2
f2 − λ3

3!
f3 + · · · , (10)

where we used the fact that if λ = 0 then F = F0. Substituting
into e−Fp = Z/Z0, we obtain

Z

Z0
= 1− λ f1+ λ2

2

(
f2+ f 2

1

) − λ3

3!

(
f3+ f 3

1 + 3 f2 f1
) + · · · .

(11)

Comparing Eq. (11) with the direct power series expansion
Z/Z0 = ∑

k (−λ)k〈Hk
p 〉0/k!, we obtain an explicit expression

for every term of the expansion in Eq. (10):

f1 = 〈Hp〉0,

f2 = 〈
H2

p

〉
0 − f 2

1 ,

f3 = 〈
H3

p

〉
0 − f 3

1 − 3 f1 f2. (12)
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As can seen from Eq. (12), the expansion of the free energy
F is effectively an expansion around the cumulants of the
unperturbed ensemble. A similar idea was developed (eight
years earlier than Plefka) by Bogolyubov et al. [46] for the
ferromagnetic Ising model.

Let us now perform a second-order Plefka expansion in
the case of the Hamiltonian in Eq. (6). We will consider the
spherical model (4) as the unperturbed ensemble Z0, with
the perturbation given by Hp = ∑

t [λ4x2
t x2

t+1 + λ5x2
t ]. As a

result, the second-order approximated free energy reads

F ≈ F0 −
∑

t

[
λ5

〈
x4

t

〉
0 + λ4

〈
x2

t x2
t+1

〉
0

]

+ 1

2

∑
t,t ′

[
λ2

5

〈
x4

t x4
t ′
〉
0 + λ2

4

〈
x2

t x2
t+1x2

t ′x2
t ′+1

〉
0

+ 2λ5λ4
〈
x4

t x2
t ′x2

t ′+1

〉
0

]
− 1

2

∑
t

[
λ5

〈
x4

t

〉
0 + λ4

〈
x2

t x2
t+1

〉
0

]2
, (13)

where the expansion above has introduced a second time index
t ′. In the following, we shall make use of this in order to
introduce distances between sites t − t ′, which correspond to
temporal distances between events in the original time series.

We now proceed to evaluate the expectation values in
Eq. (13) around the ensemble defined by Eq. (4). In order to do
that, we need to apply Isserlis’ theorem [47], a result which is
also largely employed in quantum field theory under the name
Wick’s theorem [48].

For easiness of exposition, let us redefine some quantities
appearing in Eq (5) as follows:

m = − λ1

2(λ2 + λ3)
= − ∂

∂λ1
ln Z0,

s0 = 1

2
√

λ2
2 − λ2

3

= − ∂

∂λ2
ln Z0

∣∣∣∣
λ1=0

,

s1 = λ3

2
(
λ2

3 − λ2
2 + λ2

√
λ2

2 − λ2
3

) = − ∂

∂λ3
ln Z0

∣∣∣∣
λ1=0

,

stt ′ = 〈xt xt ′ 〉0|λ1=0, (14)

where s0 = stt and s1 = st,t+1, ∀t .
We can now proceed to calculate the expectation values

appearing in Eq. (13). These read〈
x4

t

〉
0 = m4 + 6m2s0 + 3s2

0,〈
x2

t x2
t+1

〉
0 = (m2 + s0)2 + 4m2s1 + 2s2

1,〈
x4

t x4
t ′
〉
0 = (m4 + 6m2s0 + 3s2

0)2+16(m3 + 3ms0)2stt ′

+ 72(m2 + s0)2s2
tt ′ + 96m2s3

tt ′ + 24s4
tt ′ ,〈

x4
t x2

t ′x2
t ′+1

〉
0 = f (m, s0, s1, stt ′ , st,t ′+1),〈

x2
t x2

t+1x2
t ′x2

t ′+1

〉
0 = g(m, s0, s1, stt ′ , st,t ′+1, st+1,t ′ ), (15)

where f and g are polynomial functions of their variables and
are specified in the Appendix.

As one can see from Eqs. (13) and (15), the second-order
approximation contains the covariances of the unperturbed

Hamiltonian at all possible ranges, i.e., not just at lag one.
As a result, we need to find an explicit form for stt ′ in order to
move forward. Following the steps that lead to the solution of
the Gaussian integral in Eq. (2), we have

stt ′ = 〈xt xt ′ 〉0|λ1=0 =
〈∑

s

Vtsys

∑
k

Vt ′kyk

〉
0

∣∣∣∣
λ1=0

=
∑
s,k

VtsVt ′k〈ysyk〉0|λ1=0 =
∑

s

VtsVt ′s
〈
y2

s

〉
0

∣∣
λ1=0

=
∑

s

1

2T

cos
[

2π
T (s − 1)(t − t ′)

]
λ2 + λ3 cos

[
2π
T (s − 1)

] , (16)

where Vtk= 1√
T

(cos [2π
T (t −1)(k −1)]+ sin [ 2π

T (t −1)(k −1)])
is the t th element of the kth eigenvector of the matrix A in
Eq. (2), and yk = ∑

t Vtkxt . The above expression can be then
rewritten as

stt ′ =
∑

s

1

2T
cos

[
2π

T
(s − 1)R

]

×
∫ ∞

0
dz e−z{λ2+λ3 cos [ 2π

T (s−1)]}, (17)

where R = t − t ′ is the distance between the two lattice sites
being considered. We can now approximate the above expres-
sion for T � 1 as follows:

stt ′
T �1≈

∫ ∞

0

dz

2
e−zλ2

∫ 2π

0

dω

2π
e−zλ3 cos ω cos (ωR)

=
∫ ∞

0

dz

2
e−zλ2 IR(−λ3z)

=
( − λ3

|λ3|
)R

2

∫ ∞

0
dz e−zλ2 IR(|λ3|z)

λ2−|λ3|�1≈ [−sign(λ3)]R

2

∫ ∞

0
dz

e−zλ2+|λ3|z− R2

2|λ3 |z
√

2π |λ3|z

= [−sign(λ3)]R

2|λ3|
√

2 λ2
|λ3| − 2

e−|R|
√

2 λ2
|λ3 | −2

, (18)

where In(x) is the modified Bessel function of the first kind.
Let us briefly comment on the approximation made in the third
step of the above expression (i.e., for λ2 − |λ3| � 1). As it
can be seen from the expressions for s0 and s1 in Eq. (14),
such an approximation corresponds to a regime of strong
time correlations up to lag one. The approximation effectively
becomes useful only to compute time correlations at lag two
or higher, i.e., to compute stt ′ for t ′ > t + 1, given that those
at lower lags are known exactly. Therefore, λ2 − |λ3| ≈ 1
corresponds to a regime of low time correlations even at lags
one and zero (it should be noted here that correlations of the
type 〈xt xt ′ 〉 are not normalized to one when t = t ′, as is instead
the case with the standard definition of autocorrelation). This,
in turn, ensures that time correlations at higher lags will be
low enough to make the error due to the above approximation
negligible.

We can now plug the above result into Eq. (13) via Eq. (15)
in order to compute the approximate form of the free energy
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Ability of the different models to match specified constraints. Comparisons between empirical time correlations and the
corresponding quantities as measured in the ensembles defined by Eq. (4) [purple (dark gray)] and Eq. (7) [blue (light gray)]. Panels (a) and
(d) refer to 〈xt xt+τ 〉, panels (b) and (e) to 〈x2

t x2
t+τ 〉, and panels (c) and (f) to (〈x2

t x2
t+τ 〉 − 〈x2

t 〉〈x2
t+τ 〉)/〈x4

t 〉. In the three upper panels the empirical
correlations (black solid lines) are computed from one instance of the autoregressive model Yt+1 = ξ

(−1.5,1.5)
t Yt + ξ

(−0.2,0.8)
t , whereas in the three

lower panels correlations are computed from the model Yt+1 = ξ
(−0.375,1.125)
t Yt + ξ

(−0.2,0.8)
t . In panels (c) and (f) horizontal dashed lines denote

the 95% confidence level interval for the autocorrelation of white noise.

deriving from the partition function in Eq. (7). After having
computed such approximate form for F , we can calculate the
Lagrange multipliers as usual, i.e., by solving the system of
equations 〈O�(X )〉 = ∂F/∂β� ,∀ �. Alternatively, one could
truncate Eq. (11) to the second order of the couplings λ3 and
λ4, find an approximate form Zp of Z , and then maximize the
approximate likelihood e−H (X )/Zp.

In Fig. 2 we show the ability of the ensemble introduced in
this section to match the imposed constraints with respect to
its unperturbed counterpart. We do so using two autoregres-
sive models with markedly distinct correlation features. The
first model (Yt+1 = ξ

(−1.5,1.5)
t Yt + ξ

(−0.2,0.8)
t [Figs. 2(a) and

2(c)] is designed to produce time series that, on average, have
nonzero correlations only between second or higher order
moments. This represents an “adversarial” example, in the
sense that the only correlations present in the process cannot
be captured by the unperturbed model of Eq. (4). This would
suggest the need to use a “stronger” perturbation than the
second-order one in order to substantially improve the model’s
ability to capture the correlations of the process. However,
Figs. 2(b) and 2(c) show that even stopping the perturbation
expansion at the second order gives a sizable improvement.
The second model (Yt+1 = ξ

(−0.375,1.125)
t Yt + ξ

(−0.2,0.8)
t [2(d)–

2(f)] is instead designed to produce time series with time
correlations between first moments as well. This represents
a scenario where the unperturbed model captures by design
correlations between first moments, which translates into a
partial ability to capture higher order correlations. These are
then fully captured by the full model [see Figs. 2(e) and 2(f)].

In order to quantitatively assess the improvement of the
proposed perturbative solution with respect to the unperturbed
ensemble, we report the results from a few simple predic-

tion exercises in Table I. Namely, we seek to predict the
mean and the 10% and 90% quantiles of the data-generating
process one lag ahead. We compare such quantities against
those computed from both the unperturbed and full ensemble,
and we quantify the agreement with two widely adopted
metrics of accuracy: the root-mean-square error (RMSE)
and the R2. As can be seen, in all cases switching from
the unperturbed ensemble to the one in Eq. (7) system-
atically provides a measurable improvement, regardless of
the specific model considered. Notably, the biggest rela-
tive improvement occurs for the model that we identified
as an “adversarial” example. This is because, as mentioned

TABLE I. Accuracy of one lag ahead predictions of the mean
and 10% and 90% quantiles of the three data-generating pro-
cesses used so far. These are denoted, respectively, as M1 (Yt+1 =
ξ

(−0.375,1.125)
t Yt + ξ

(−0.2,0.8)
t ), M2 (Yt+1 = ξ

(−1.5,1.5)
t Yt + ξ

(−0.2,0.8)
t ), and

M3 (Yt+1 = ξ
(0,1.5)
t Yt + ξ

(−0.3,0.7)
t ). The means and quantiles are de-

noted as x and q. H1 and H2 denote, respectively, predictions obtained
by means of the unperturbed ensemble of Eq. (4) and the full
ensemble of Eq. (7).

M1 M2 M3

RMSE R2 RMSE R2 RMSE R2

xH1 0.0267 0.995 0.125 0.923 0.204 0.938
xH2 0.0155 0.998 0.0818 0.969 0.176 0.954

q0.9
H1

0.0900 0.943 0.236 0.847 0.277 0.866

q0.9
H2

0.0511 0.985 0.122 0.957 0.232 0.910

q0.1
H1

0.0825 0.960 0.206 0.887 0.170 0.970

q0.1
H2

0.0495 0.975 0.188 0.906 0.151 0.976
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above, in that case the unperturbed model cannot capture by
design the relevant time correlations in the data-generating
process.

V. CONCLUSIONS

In this paper we have shown how we can apply tools
from classical statistical mechanics to time series analysis by
simply mapping the time dimension of a time-evolving system
onto the spatial dimension of a lattice. This allows us to design
ensembles that preserve, on average, some desired constraints
on the temporal structure of the data under consideration by
imposing constraints on such a lattice.

In particular, we have shown how a constraint on the lag-
one autocorrelation corresponds to a well-known ensemble in
statistical mechanics, namely, the spherical model of a (anti-)
ferromagnet. Moreover, we have shown how the spherical
model can be used as a basis to handle higher order temporal
correlations by using a perturbation theory approach. We
have also shown how the inferred Lagrange multipliers of
the ensembles can be updated in “real time” as new data

from the system of interest are collected, which in turn allows
us to obtain information about the possible evolution of the
underlying data-generating process.

The framework presented here, coupled with tools com-
monly used to tackle inverse Ising problems such as pseu-
dolikelihood methods, can be adapted in order to handle
multiple time series and their correlations. Moreover, the
accuracy of the single time series case presented here can
be improved by considering higher perturbation orders or by
considering different Hamiltonians. In particular, it would be
interesting to extend the approach proposed here to Hamilto-
nians whose Lagrange multipliers are drawn from parametric
distributions (similarly to couplings in spin-glass systems),
which would provide an alternative—and possibly even more
flexible—method to fit ensembles to some desired constraints.
We hope to see some of these topics pursued in the near
future.
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APPENDIX: POLYNOMIAL FUNCTIONS USED IN EQ. (15)

In the following we report in full the expressions of the functions f and g introduced in Eq. (15)〈
x4

t x2
t ′x2

t ′+1

〉
0 = m8 + 12m2s3

0 + 2m4
[
4(m2 + 2s1)stt ′ + s1(2m2 + s1) + 6s2

tt ′
]

+ 8m2s(t+1)t ′
[
m4 + 6(m2 + s1)stt ′ + 2m2s1 + 6s2

tt ′
] + 12s2

(t+1)t ′ [m4 + 2stt ′ (2m2 + stt ′ )]

+ 4s0
{
2m2(m2 + stt ′ + s(t+1)t ′ )(m2 + 3stt ′ + 3s(t+1)t ′ ) + 3m2s2

1 + 6s1[m4 + 2m2stt ′ + 2s(t+1)t ′ (m2 + stt ′ )]
}

+ 2s2
0

[
8m4 + 6

(
2m2stt ′ + 2m2s(t+1)t ′ + s2

tt ′ + s2
(t+1)t ′

) + 6m2s1 + 3s2
1

] + 3s4
0〈

x2
t x2

t+1x2
t ′x2

t ′+1

〉
0 = m8 + 4s3

0m2 + 16s3
1m2 + 8s1[(m2 + 2s(t+1)t ′ )(m2 + 2st (t ′+1))

+ (2m2 + s(t+1)t ′ + st (t ′+1))s(t+1)(t ′+1) + stt ′ (2m2 + s(t+1)t ′ + st (t ′+1) + 4s(t+1)(t ′+1))]m
2

+ s4
0 + 4s4

1 + 2s2
0

[
3m4 + 4s1m2 + 2stt ′m2 + 2s(t+1)t ′m2 + 2st (t ′+1)m

2 + 2s(t+1)(t ′+1)m
2

+2s2
1 + s2

tt ′ + s2
(t+1)t ′ + s2

t (t ′+1) + s2
(t+1)(t ′+1)

] + 4s2
1[5m4 + 4(st (t ′+1) + s(t+1)(t ′+1))m

2

+ 4s(t+1)t ′ (m2 + st (t ′+1)) + 4stt ′ (m2 + s(t+1)(t ′+1))]

+ 2
{[

s2
(t+1)(t ′+1) + 2(m2 + 2st (t ′+1))s(t+1)(t ′+1) + st (t ′+1)(2m2 + st (t ′+1))

]
m4

+ 2s(t+1)t ′ [m4 + 2st (t ′+1)(2m2 + st (t ′+1)] + 2(m2 + 2st (t ′+1))s(t+1)(t ′+1)
}
m2

+ s2
(t+1)t ′ [m4 + 2st (t ′+1)(2m2 + st (t ′+1))] + 2stt ′ (2s2

(t+1)(t ′+1)m
2

+{m2 + 2s(t+1)t ′ )(m2 + 2st (t ′+1))m
2 + 4[m2 + s(t+1)t ′ )(m2 + st (t ′+1))s(t+1)(t ′+1)]

+ s2
tt ′ (m4 + 2s(t+1)(t ′+1)(2m2 + s(t+1)(t ′+1))]} + 4s0[2s2

1m2

+ [
s2

tt ′ + 2(m2 + s(t+1)t ′ + st (t ′+1))stt ′ + s2
(t+1)t ′

+(m2 + st (t ′+1) + s(t+1)(t ′+1))
2 + 2s(t+1)t ′ (m2 + s(t+1)(t ′+1))

]
m2 + 2s1{2(m2 + s(t+1)t ′ + st (t ′+1))m

2

+stt ′[2m2 + s(t+1)t ′ + st (t ′+1)) + (2m2 + s(t+1)t ′ + st (t ′+1))s(t+1)(t ′+1)]}.
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