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Abstract

The world's population aging progression renders age‐
related neurodegenerative diseases to be one of the big-

gest unsolved problems of modern society. Despite the

progress in studying the development of pathology, finding

ways for modifying neurodegenerative disorders remains a

high priority. One common feature of neurodegenerative

diseases is mitochondrial dysfunction and overproduction

of reactive oxygen species, resulting in oxidative stress.

Although lipid peroxidation is one of the markers for oxi-

dative stress, it also plays an important role in cell phy-

siology, including activation of phospholipases and

stimulation of signaling cascades. Excessive lipid perox-

idation is a hallmark for most neurodegenerative disorders

including Alzheimer's disease, Parkinson's disease, amyo-

trophic lateral sclerosis, and many other neurological

conditions. The products of lipid peroxidation have been

shown to be the trigger for necrotic, apoptotic, and more

specifically for oxidative stress‐related, that is, ferroptosis
and neuronal cell death. Here we discuss the involvement

of lipid peroxidation in the mechanism of neuronal loss and

some novel therapeutic directions to oppose it.
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1 | INTRODUCTION

Although the brain is relatively small and isolated by the highly effective brain–blood barrier (BBB), this organ consumes

about 20% of total oxygen and glucose. Importantly, the rate of lipid metabolism in the brain is also highest in the body

and cells use part of the energy for membrane lipid replacement. The high metabolic rate in mitochondria and

the availability of oxygen, both prompt the production of free radicals and specifically of the reactive oxygen species

(ROS). One of the major producers of ROS in brain cells in resting conditions is mitochondria, predominantly due to the

leakage of electrons out of the electron transport chain.1 Contrary to mitochondria, in the cytosol, ROS are mostly

produced by the NADPH oxidase (NOX) and, depending on the conditions, by other enzymes including xanthine

F IGURE 1 Lipid peroxidation in neurodegeneration and major protective pathways. A, Lipid peroxidation can
occur in a nonspecific (via ROS) or (B) enzymatically assisted reaction (through COX, LOX, and CYPs) and affects
preferentially polyunsaturated fatty acids (PUFAs) in the cellular membranes. E, Fe and other transition metals are
also involved in the process, directly and indirectly. C, Lipid peroxidation induces the activation of phospholipases
and their products, which are involved in cell signaling but also in pathogenic processes such as ferroptosis or
neuroinflammation. D, Glutathione peroxidases (GPx) are able to terminate the reaction and reduce peroxides to
the corresponding alcohol, using glutathione (GSH) as a substrate. The main mechanisms of protection of
mitochondrial antioxidants (M), Nrf2 activation (N), antioxidants (A), transition metal chelators (T), plant‐based
bioactive compounds (PL), dietary PUFAs (P), and deuterated PUFAs (D) in lipid peroxidation are indicated in the
graph. CoQ, coenzyme Q; COX, cyclooxygenase; CYPs, cytochrome p450s; DMF, dimethyl fumarate; LOX,
lipoxygenase; NAC, N‐acetyl cysteine; Nrf2, nuclear factor erythroid 2‐related factor 2; Oma, omaveloxone; ROS,
reactive oxygen species; SFN, sulforaphane [Color figure can be viewed at wileyonlinelibrary.com]
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oxidase.2–4 There are a number of enzymatic sources of ROS in the brain, including the enzymes of the tricarboxylic acid

(TCA) cycle, monoamine oxidases, and others (Figure 1). The majority of the enzymatic producers initially generate

superoxide anion which, due to its short lifetime (∼1ns), oxidizes molecules in close proximity, and is neutralized by

antioxidant systems or is converted to other types of ROS including hydrogen peroxide (H2O2) in the superoxide

dismutase (SOD). H2O2 is more stable, therefore less reactive, and is a form of ROS that could be used as a signaling

molecule. On the other hand, in higher amounts, it is also more toxic and induces the oxidation of nearby located

biomolecules. Furthermore, it can be converted in Fenton reaction to hydroxyl anion OH*−, which is highly reactive and

damaging to the surrounding molecules; it oxidizes the lipid constituents of the membrane to generate lipid hydroper-

oxides (Figure 1A). The process of product formation of oxidized lipid membranes, called lipid peroxidation, occurs in a

nonspecific way, such as random effects of ROS (Figure 1A) or in an enzymatically assisted reactions by cyclooxygenases

(COXs), cytochrome p450s (CYPs), and lipoxygenases (LOXs; Figure 1B).5,6 Lipid peroxidation targets preferentially

polyunsaturated fatty acids (PUFAs), including linoleic acid, arachidonic acid (AA), and docosahexaenoic acid (DHA).

Interestingly, the brain, as in the case with oxygen and glucose, consumes 20% of all PUFAs of the body which suggests a

high level of lipid turnover in this organ. Products of lipid peroxidation are constantly generated and used for signaling and

housekeeping needs.7–9 The products of lipid peroxidation are utilized enzymatically to hydroxyl acids by glutathione

peroxidase, using glutathione (GSH) as a cosubstrate to reduce lipid peroxides to the corresponding alcohols10 or, to

aldehydes6,11 (Figure 1D). However, lipid peroxidation dramatically induces the activation of phospholipases PLA2, PLC,

PLD, and their products12,13 (Figure 1C), which suggests the involvement of LP in many signaling cascades, but also that

phospholipases—the housekeeping enzymes of our membranes—use as a substrate predominantly oxidized lipids.9 Any

signaling event that produces lipid radicals will then stimulate phospholipases and will have physiological response.1,7,12

AA which has been found to be present in the cell in an active radical form, has been shown to have multiple direct effects

as well, such as the effects on the nearby ion channels,14,15 and it has been appointed a role for the arachidonic

hydroperoxides in the initiation of the processes of ferroptosis and inflammation.16

2 | MITOCHONDRIA AND LIPID PEROXIDATION IN
NEURODEGENERATIVE DISORDERS

The involvement of oxidative stress in the development of many neurodegenerative diseases (Alzheimer's disease

[AD], Parkinson's disease [PD], Huntington's disease [HD], amyotrophic lateral sclerosis [ALS], frontotemporal

dementia [FTD], etc.) has been well‐documented.17,18 Neurodegeneration is a complex multifactorial type of dis-

order and as such it justifies a combined therapeutic approach. In both familial and sporadic forms of neurode-

generation, aggregation of misfolded proteins, mitochondrial dysfunction (affecting mitochondrial bioenergetics,

transmembrane potential, calcium handling, dynamics, and maintenance), and oxidative stress are accepted to be

the cause for neuronal loss in human and animal models.

2.1 | Alzheimer's disease

A high level of lipid peroxidation is shown in patients with AD. Interestingly, it can be detected in serum19 and it correlates

with the dramatic decrease of the major lipid‐soluble antioxidant α‐tocopherol.20 More importantly, elevated levels of the

products of lipid peroxidation were also found in the brain of AD patients.21,22 This renders lipid peroxidation metabolites

suitable for a potential novel biomarker for diagnosis, prognosis, and therapy.23 However, due to the involvement of lipid

peroxidation in the number of diseases and the controversy of some methods for the detection of lipid peroxidation

metabolites, using them as a biomarker is still far from clinics. Lipid peroxidation is mainly to be the result of excessive

ROS production in NOX upon its activation with oligomeric β‐amyloid in astrocytes and neurons23–27 or in microglia.28

There is more and more evidence that in addition to apoptosis and necrosis, neuronal death in AD involves ferroptosis, an

iron‐ and lipid peroxidation‐dependent form of regulated necrosis.29
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2.2 | Parkinson's disease

Production of ROS in familial and sporadic forms of PD has been shown to have multiple sources including

mitochondrial electron transport chain, monoamine oxidase, NOX, and even the oligomeric α‐synuclein itself.3,30–33

Considering this, lipid peroxidation in PD can be induced by a number of factors and may occur in the membrane of

various organelles, including mitochondria.18 We have recently shown that lipid peroxidation specifically, but not

ROS production in general, is the mechanism of α‐synuclein‐induced neurotoxicity in PD.17,18 Lipid peroxidation

has been shown to be involved in the triggering of the mitochondrial permeability transition pore,4,18 mitophagy,34

ferroptosis,35 and many others.

2.3 | Other neurodegenerative diseases

In almost all neurodegenerative diseases, ROS production and lipid peroxidation have been shown to be a hallmark

of pathology, for example, FTD36,37 or ALS, where excessive levels of metabolites of lipid peroxidation have been

found in the blood of patients.38 In tauopathy, activation of lipid peroxidation can be induced by mitochondrial ROS

production or by activation of NOX.39,40

In in vitro or in cellular model experiments, positive effects of various antioxidants have been described.4

However, none of the ND clinical trials with antioxidants has been yet successful, due to the low bioavailability of

synthetic antioxidants in the brain or “side effects,” probably developed by the direct inhibition of the ROS‐ and
LP‐mediated physiological signaling processes (Figure 1). Moreover, some antioxidants could act as pro‐oxidants,
depending on the redox status of the local environment.

In this article, we aim to point to the reader's attention to the multiple sources and types of free radicals and

ROS that all ultimately lead to lipid peroxidation that is causal for neurodegeneration. Furthermore, we will

accentuate the different stages where lipid peroxidation could be counteracted and the tailor‐made approaches

towards finding a solution for successful treatment.

3 | NOVEL APPROACHES FOR NEURODEGENERATIVE DISEASE
TREATMENT

3.1 | Mitochondria‐targeted antioxidants

After the discovery of triphenylphosphonium ability to shuttle any small molecules to the mitochondrial matrix, the

intracellular application of antioxidants, directly to their source in mitochondria became possible.41

Based on this, a variety of mitochondria‐targeted free radical scavenger have been developed over the last

40 years, for example, SKQ (plastoquinone), MitoQ (ubiquinone), MitoVitE (vitamin E), MitoTEMPO (SOD mimetic),

MCAT (catalase), MitoPBN (coenzyme Q [CoQ] and phenyl tertbutylnitrone conjugate), to name a few. As such these

are effective in preventing superoxide‐induced lipid peroxidation, scavenging all sorts of free radicals, specifically

produced in mitochondria,42 where the major source of oxidative stress is complex‐I‐related pathology,43 for

example, in PD.44,45

3.2 | Nuclear factor erythroid 2‐related factor 2 activators

Nuclear factor erythroid 2‐related factor 2 (Nrf2) is a transcription factor able to induce the expression of different

endogenous antioxidants and detoxifying enzymes. Moreover, some of its target genes include mediators of
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iron/heme, intermediate and GSH metabolism, NOX and fatty acid (FA) β‐oxidation, all of which contribute to the

specific defense against ROS generation and lipid peroxidation.46–48 Nrf2 levels are tightly controlled in a me-

chanism involving the adaptor molecule Keap1, which targets Nrf2 for continuous proteasomal degradation under

basal conditions. Keap1 contains highly reactive Cys residues that act as sensors that are modified by electrophilic

or oxidative signals under stress conditions. This prevents Nrf2 ubiquitination and degradation, thus allowing its

translocation to the nucleus and the transcription of its target cytoprotective genes.

Activation of Nrf2 represents an exceptional therapeutic strategy for neurodegenerative disorders, in which

oxidative stress and mitochondrial dysfunction are key features of the pathology.49 The most studied pharma-

cological tools aiming to activate Nrf2 are small electrophilic molecules that react with Cys residues in Keap1

(Figure 1). These include the naturally occurring sulforaphane, able to cross the BBB,50 the potent tricyclic com-

pound TBE‐31,51 the fumaric acid ester dimethyl fumarate (approved for the treatment of relapsing–remitting

multiple sclerosis),52 or omaveloxolone (RTA 408), also able to cross the BBB and currently in a clinical trial in

Friedreich ataxia (FRDA) patients.53 Work from our group has shown the cytoprotective activity of these com-

pounds in animal models of epilepsy54 and cellular models of neurodegenerative diseases such as ALS/FTD, PD, or

FRDA.55–57 Nrf2 activation in these studies has successfully improved mitochondrial function and bioenergetics

reduced ROS production and lipid peroxidation and/or prevented cell death and neurodegeneration.

Recent approaches to activate Nrf2 are focusing on the development of nonelectrophilic compounds aiming to

disrupt Nrf2–Keap1 interaction, which would reduce the off‐target effects of the nonspecific alkylation of Cys

residues caused by electrophilic compounds.58 Animal studies have shown the neuroprotective activity of this type

of compounds in cerebral ischemia and its effectiveness in preventing oxidative stress‐induced DNA damage and

lipid peroxidation.59 As recently reviewed by Cuadrado et al.,60 multiple Nrf2 activators are currently under

development and clinical trials, which will provide essential advances in the near future.

3.3 | Natural and synthetic antioxidants

Given the consequences of free radical overproduction—lipid peroxidation and oxidative stress, significant efforts

have been made in search of possibilities to control this reaction. Many natural and synthetic agents have been

discovered to have antioxidant properties: retinol (vitamin A), ascorbic acid (vitamin C), α‐tocopherol (vitamin E)

and its water‐soluble derivative trolox, calcipherol (vitamin D3), N‐acetyl cysteine, GSH, uric acid, ubiquinol (CoQ),

to name a few (Figure 1). Despite the initial hype following positive results in cellular models and in vitro,61–63

soon, it becomes recognizable that these antioxidants often have pro‐oxidant activities, depending on the meta-

bolic or redox status of the cell/organism.14,15 For example, ascorbic acid can reduce transition metal ions to

generate very potent radical hydroxyl radical (HO.−) in the so‐called Fenton reaction. Uric acid and homocysteine

can enter similar reactions in the presence of copper or iron ions and yield pro‐oxidant effects. These observations

have led to the recent description of the highly disputable concept of “reductive stress” as a counterpart of

oxidative stress and another type of redox dysbalance that ultimately leads to cytotoxicity.64,65

3.4 | Transition metal chelators

Metals with dynamic valence, that is, transition metals (iron, copper, zinc, manganese, etc.) have been shown to

play an initiating role in the induction of lipid peroxidation (Figure 1E). The transition metal‐catalyzed breakdown

of lipid hydroperoxides can end by yielding toxic products such as aldehydes or, alternatively, could give rise to the

generation of alkoxyl or peroxyl radicals that reinitiate lipid peroxidation by redox cycling of the latter metal

ions.66
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In relation to the development of neurodegenerative diseases, transition metals are involved in the formation

of cytotoxic protein aggregates from misfolded proteins as shown for PD, AD, HD, and ALS.67–72 Moreover,

transition metal accumulation and metal metabolism dysfunction have been shown for postmortem brain tissue of

PD and AD patients.73–75 Besides, a role for the accumulation of heavy metals like mercury or aluminum into the

etiopathology of neurodegeneration has been discussed.76,77 In this sense, metal chelating therapy has been

proven to be largely effective, especially in the prevention of lipid peroxidation in cellular ND models32,78,79 as well

as in hit doses in vivo or in ND patients.80,81 However, prolonged usage of metal chelating agents could be

detrimental to many physiological processes.82–84

3.5 | Plant‐based bioactive compounds

Plant mono‐ and polyphenols, alkaloids, and flavonoids are naturally occurring plant components present in foods

of plant origin such as fruits, vegetables, tea, cocoa, and wine, which have been used by humanity for ages.

Curcumin is a natural polyphenol, present in turmeric (Curcuma longa) used for centuries for its anti‐
inflammatory activity. Recently, it has been reported a wide range of antioxidant and neuroprotective actions.85

It has a direct inhibitory effect on lipid peroxidation.86 Its bioavailability and effect is further enhanced by the

addition of the alkaloid piperine from (Piper nigrum), and both exhibit a synergetic effect which results in neuro-

protection in an ND rat model.87 Curcumin has been shown to be neuroprotective and have great potential for the

prevention or treatment of neurological disorders like HD and PD.88 Further, curcumin protects against oxidative

stress, neurodegeneration and memory impairment via Nrf2/toll‐like receptor 4/receptor for advanced glycation

endproducts regulation.89

Resveratrol, the major antioxidant in grape (Vitis vinifera) skins, is a stilbenoid polyphenol found to inhibit the

nuclear factor kappa B (NF‐κB), activator protein‐1, and COX‐2 pathways and activates peroxisome proliferator‐
activated receptor, endothelial NOS, and sirtuin 1.90 Moreover, resveratrol directly inhibits the process of lipid

peroxidation mainly by scavenging lipid peroxyl radicals within the membrane.91

Capsaicin (Capsicum sp.), is an alkaloid that has been found to be a selective inhibitor of transient receptor

potential cation channel subfamily V member 1 (TRPV1) is a nonselective cation channel with high specificity for

Ca2+. It is activated by chemical and physical stimuli, such as heat, low pH, capsaicin, and certain inflammatory

mediators. In addition, capsaicin has been reported to inhibit COX‐2 activity, iNOS expression, and the NF‐κB
pathway in a TRPV1 independent way.92 For example, capsaicin is reported to reduce metal‐catalyzed lipid

peroxidation. Moreover, it has been shown to be neuroprotective in a PD model.93

Epigallocatechin‐3‐gallate (EGCG) is a polyphenol isolated from the green tea plant (Camellia sinensis) with

reported multiple anti‐inflammatory, antioxidant, anticancer, antiangiogenic, and chemopreventive effects.94,95

Furthermore, it inhibits the expression of COX‐2.96 It has been reported that EGCG can protect neurons in AD

models by reducing the activity of β‐ and γ‐secretases through inhibiting ERK and NF‐κB,97 reducing amyloid

plaques by stimulating α‐secretase activity which results in cleavage of APP.98 For PD, it has been found that

EGCG increases GSH and this, in turn, activates cAMP response element‐binding protein and B‐cell lymphoma 2,99

which in final leads to survival of tyrosine hydroxylase‐positive neurons in substantia nigra through phosphoino-

sitide 3‐kinase/protein kinase B100 and through Nrf2/antioxidant responsive element (ARE) pathways.101

Quercetin is a flavonoid found in many foods, including apples, grapevines, berries, onions, etc. It exerts a large

variety of biological actions: anti‐inflammatory, antioxidant,102 and neuroprotective.103 Quercetin is a scavenger of

reactive oxygen and nitrogen species and targets prominent proinflammatory pathways, such as signal transducer

and activator of transcription 1, NF‐κB, and mitogen‐activated protein kinase.104,105

Caffeine is an alkaloid that directly attenuates the lipid peroxidation in106 and modulates metal‐induced oxi-

dative stress and cognitive impairment through regulating Nrf2/heme oxygenase‐1.107
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Salicylate is a lipophilic monohydroxybenzoic acid, a plant‐based nonsteroid anti‐inflammatory drug historically

derived from Salix sp., which is an inhibitor of inflammatory cascades and in particular of the lipid oxidizing

enzymes LOX, COX, and P450. Recently, it has been reported that an aspirin derivative blocks neuronal cell death

associated with AD, PD, and HD.108

Naringenin is a flavanone derived mainly from grapefruit (Citrus paradisi) and other citrus fruits, possesses

strong antioxidant, and neuroprotective activity, and also anti‐inflammatory effects in mammals. It has been

proven efficient in hereditary spastic paraplegia type of neurodegeneration109 and has beneficial effects on

learning and memory in the AD model through the mitigation of lipid peroxidation and consequently of apoptosis/

ferroptosis.110 Similarly, regarding the role of naringenin in PD, it was described being effective,111 also through

the activation of Nrf2/ARE pathway112 and through the inhibition of c‐Jun N‐terminal kinase/p38/which leads to

the inhibition of caspase‐3 and the apoptosis, respectively.113

3.6 | Endogenous, dietary, and reinforced FAs

PUFAs are highly susceptible to oxidation due to the presence of a weaker C–H bond at the bis‐allylic position.

These hydrogen atoms are easily removed to form multiple types of lipid radical products that are responsible for

the development of various diseases, including neurodegenerative diseases.114,115 Oxygenated PUFAs may play

various signaling roles in physiological processes.1,7,116 Plant‐ and animal‐derived omega‐3‐FAs have shown a high

potential of reducing oxidative stress and inflammation (Figure 1).

3.6.1 | Dietary FAs

α‐Lipoic acid is a natural organosulfur derivative from octanoic acid, essential for the energy turnover in mammals,

serving as a cofactor of several TCA enzymes. It has been as well shown to be protective in reducing lipid

peroxidation damage in several animal models, as well as in postmortem brains with of ND pathology.34,117,118

3.6.2 | Dietary PUFAs

A source of natural PUFA with beneficial health effects is the cod (Gadidae) liver oil, containing the essential omega

3‐FAs DHA and eicosapentaenoic acid, as well as high doses of vitamin A and vitamin E. An alternative plant source

of omega‐3‐FAs is the flaxseed (Linum sativum) oil, containing α‐linolenic acid and linoleic acids, with proven

positive effects on the reduction of lipid peroxidation.17 Dietary sources of γ‐linoleic acids, which is able to inhibit

LOX, COX, and CYP450 are borage (Figure 1; Borago officinalis) and evening primrose (Oenothera biennis) oils.119

Long‐chain dietary PUFAs are shown to be beneficial as in the proper development as well as in the proper

functioning of the nervous system.120

3.6.3 | Deuterated PUFAs

Recently, site‐specific isotope‐reinforced PUFAs, termed D‐PUFAs, where bis‐allylic hydrogens of PUFAs have been

replaced with deuterium atoms, are very powerful in inhibiting PUFA peroxidation and confer solid cell protection

against oxidative stress121 (Figure 1). D‐PUFAs function like lipid‐radical traps, unlike antioxidants, and are able

to prevent redox cycling of lipid radicals and therefore successfully cease the lipid‐radical chain reaction.
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D‐PUFAs have been shown to be effective in multiple cell models of disease, involving lipid peroxidation,17,122–125

as well as clinically successful in several neurological disorders, like INAD or FRDA.126

3.7 | Gene therapy

Recently, the intervention in the ND patient genome has been proposed as a potent tool to directly correct

photogenic mechanisms (protein misfolding, enzyme dysfunction, etc.), milder and alleviate symptoms, restore

damaged neuronal circuits, prevent the neuronal cell death. Modified viral vectors (adeno‐associated viruses are

used to deliver the genes of interest), for example, glutamic acid decarboxylase (which opposes the hyperactivity

in STN) or aromatic L‐amino acid decarboxylase (the rate‐limiting enzyme of dopamine biosynthesis) for PD

patients.127,128 In addition, neurotrophic factors as a glial‐derived neurotrophic factor or neurturin could be

delivered intracerebrally for neurorestorative purposes to attempt to replace defect cellular functions.129,130

3.8 | Antisense oligonucleotides

Antisense oligonucleotides (ASO) are small fragments of messenger RNA (mRNA) that are complementary to and

target the “sense” mRNA of a DNA transcript.

When applied, ASOs can lead to complete inhibition of the target protein synthesis. This type of intervention is

a very promising gene therapy of neurodegeneration131 that allows for the massive reduction of the misfolded

protein levels that otherwise target plasma and mitochondrial membranes and lead to massive ROS production (in

the cytoplasm or in mitochondria) or high levels of lipid peroxidation.18,32,131 For example, ASOs‐based clinical

studies have shown very promising results in HD, ALS, spinocerebellar ataxia 2 and TDP‐43‐related FTD.132–135

3.9 | Genome editing

The novel CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) gene‐editing tool has been

very effective in the development of more exact disease models. However, due to its high efficacy, simplicity and

adaptability, it holds immense potential to correct almost any kind of disease, including neurodegeneration. To

achieve results in the ND field, the potentially important targets for CRISPR/Cas9‐based research should be

focused on aberrant protein aggregation and redox mechanisms and pathways. These relate to proteins and

enzymes from the redox metabolism, mitochondrial bioenergetics and transport, and the regulated cell death

programs, that have all been identified as strongly associated with the pathogenesis of neurodegeneration.136–138

4 | CONCLUSION

Lipid peroxidation plays an essential part in the mechanism of neurodegeneration. It can potentially be one of the

most promising targets for the development of novel therapeutic strategies for the treatment of major neuro-

degenerative disorders. One of the main challenges is to distinguish oxidative stress in general, from lipid per-

oxidation. Thus, the majority of research works are predominantly based on the establishment of ways to protect

cells from oxidative stress, based on the usage of antioxidants. To avoid this problem, a tailor‐made strategy should

be developed, which can target the specific source of oxidative stress, that is, certain enzymatic pathways or

specifically inhibit lipid peroxidation in brain cells.
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Oxidative stress and part of this process—lipid peroxidation is widely accepted to be one of the triggers for

neurodegeneration and is shown to be involved in most of the neurodegenerative disorders. However, there is

more and more evidence that lipid peroxidation can play an important role in the regulation of physiological

processes in different parts of the body, including the brain. The importance of lipid peroxidation in physiology and

pathology is confirmed by the fact that lipid peroxidation is a major factor in a recently described new form of cell

death—ferroptosis. The involvement of lipid peroxidation and its products in neurodegeneration has been shown in

various disease models but also in patient tissue and in postmortem brains. Lipid peroxidation in some of these

diseases is induced by the general production of ROS (AD and PD), some of them due to the accumulation of high

levels of transition metals (NBIA and FRDA) or inhibition of phospholipase activity (INAD–PLAG6). Considering

this, lipid peroxidation intermediates are actively studied as a pathological marker for various diseases including

most common neurodegenerative disorders, that is, AD and PD. This direction of research is potentially very

promising and important considering all the difficulties in the early diagnosis of neurodegenerative disorders.

There is a general skepticism about antioxidant therapy for the treatment of neurodegenerative disorders

because of a paradox: oxidative stress is shown to be involved in almost all pathologies and antioxidants are very

effectively protective in cellular models of these diseases, but none of the antioxidants have shown to be effective

in clinical trials. Lipid peroxidation is controlled by lipid‐soluble antioxidants but there are several other me-

chanisms, which we described in this review, which potentially could be developed in therapeutic strategies in the

treatment of neurodegenerative disorders and neurological diseases in general. Thus, nonantioxidant strategy with

excessive lipid peroxidation by using PUFAs in a special diet, transition metal chelators, and activation of general

antioxidant pathways via Nrf2 quench the excessive lipid peroxidation without issues typical to the application of

antioxidants. We also discuss here the role of polyphenols and some other natural compounds isolated from

various plants or animals, which can be effective in the reduction of lipid peroxidation and oxidative stress in

general.
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