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Abstract

The synthetic polymers that are used to prepare polymer therapeutics reaching clinical
use are predominantly non-biodegradable and this severely limits the molecular weight
range that will give certainty of safe elimination. The aim of this thesis was to
synthesize water-soluble, biocompatible, functionalised polyacetals that would display
pH-dependent degradation. Such degradable polymers would not be subject to the
same restrictions of molecular weight as non-degradable polymers and provide a
platform for the development of improved polymer therapeutics. Several approaches
were examined to produce amino-functionalised polyacetals. A terpolymerization,
using the hydrolytically stable diol 9-Fluorenylmethyloxycarbonyl (Fmoc)-serinol,
PEG3400 and tri(ethylene glycol) divinyl ether, produced functionalised polyacetals of
M,, = 20-77,000 g/mol and M,/M, = 1.8-2.0 which displayed pH-dependent
degradation. An enhanced rate of hydrolysis was seen at pH 5.5, (~40 % My, loss in 24
h), compared to pH 7.4 (10 % M,, loss in 72 h). The polymers and their degradation
products were non-toxic towards B16F10 cells in vitro (ICs¢o > 5 mg/ml) and non-
haemolytic. Varying the ratios of diol monomer gave a family of polymers containing

different amounts of pendent group.

Preliminary biodistribution studies using 1251 labelled polyacetal (APEG) after
intravenous (i.v.) administration to rats showed no preferential accumulation in the
major organs, (at 1 h; liver (4.2 % dose); lung (0.7 %) and kidney (1.1 %) and the log
blood clearance with time was linear over 24 h. These results prompted the synthesis
and characterisation of a high My polyacetal-DOX conjugates via a succinyl linker
using standard carbodiimide coupling reagents with a range of DOX loading (4-8.5
wt% DOX). In vivo pharmacokinetic studies in B16F10 tumour bearing mice indicated
that the polyacetal-DOX conjugate exhibited significantly (p < 0.05) prolonged blood
circulation times and enhanced tumour accumulation compared with the HPMA
copolymer-DOX conjugate (PK1) which is currently in clinical trials. These novel,
degradable, polyacetals have potential for further development as polymer-drug

conjugates and potentially in other areas of polymer therapeutics.
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General Infroduction

1.1 General Introduction

In the 1920s Harold Staudinger proposed the existence of polymeric macromolecules
yet it was many years later that his ideas were accepted and in 1953 he received the first
Nobel prize for polymer science. As the field of polymer science has progressed
polymers have become extensively used in biomedical materials such as sutures, hip
protheses, contact lenses (Polymers: Biomaterials and Medical Applications, 1989) and
most recently, scaffolds for tissue engineering (reviewed by Langer, 1999). Moreover,
in the pharmaceutical industry, synthetic and natural polymers are commonly used as
excipients in formulation design (Handbook of Pharmaceutical Excipients, 2000) and as

controlled release systems such as matrices and gels (reviewed by Uhrich et al, 1999).

The field of polymer science has expanded once again with the emergence of novel,
water-soluble ‘polymer therapeutics’ (as defined by Duncan et al, 1996) which provide
opportunities to improve existing chemotherapy and also facilitate the delivery of more
complex bioactive agents which are limited by pharmacokinetic and pharmacological
barriers (eg. proteins and DNA). Polymer therapeutics include biologically active
polymeric drugs, polymer-drug conjugates, block copolymer micelles, polymer-protein
conjugates, and polymer-based non-viral vectors for gene delivery (Figure 1.1). The
development of this novel class of therapeutics has perhaps been delayed by the
reluctance of the major pharmaceutical corporations to look beyond the high throughput
screening (HTS) of low molecular weight, new chemical entities (NCEs). This is
understandable when one considers the difficulties involved, not only in characterising
polydisperse and macromolecular systems but also in gaining regulatory approval.
However, it appears there may be light at the end of the tunnel with polymer-drug
conjugates progressing through clinical trials and, more significantly, market approval

for a number of polymer-protein conjugates (Duncan, 2002).

All classes of polymer therapeutics are now extensively studied and have been
comprehensively reviewed elsewhere (Greenwald et al, 2000, Brocchini and Duncan,
1999, Kataoka et al, 2001, Nucci et al, 1991, Roberts et al, 2002, Garnett, 1999). This
thesis will focus on the synthesis of novel, hydrolytically-labile polymers for the
development of polymer therapeutics. In particular, utilising the ‘degradable element’

to improve existing polymer-drug conjugates in the treatment of cancer.
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General Introduction

1.2 Polymer therapeutics: The biological rationale

For many, the pioneering work in the development of soluble polymers for the delivery
of therapeutics began in the 1970s when Ringsdorf proposed the first model (Figure 1.2)
for conjugation of a drug to a water-soluble polymer (Ringsdorf, 1975). However, as
early as 1954 Jatzkewitz described the synthesis of a mescaline-N-vinylpyrrolidine
conjugate attached via non-degradable or enzymatically degradable (glycyl-L-leucine)
linkers (Jatzkewitz, 1955). Great progress was also being made in the biological
understanding that macromolecular uptake by cells was limited to the pinocytic route
and could be exploited to achieve ‘lysosomotropic drug delivery’ (reviewed by DeDuve
et al, 1974). This was demonstrated in important studies using DNA as the carrier of
cytotoxic drugs such as daunorubicin (Trouet et al, 1972). What Ringsdorf did was to
acknowledge this previous work and highlight the need for a rational approach to design
that required a clear understanding of both the chemistry and biology involved in the

use of polymers as targetable drug carriers.

Whereas low molecular weight compounds undergo rapid systemic biodistribution via
passive diffusion across cell membranes, macromolecules are limited to uptake by the
process of endocytosis. Briefly, two mechanisms exist which describe this uptake by
cells of extracellular fluid. Phagocytosis involves the processing of large foreign
particles by specialised cells such as macrophages, which form part of the
reticuloendothelial system (RES). Pinocytosis is common to almost all cell types and
involves cell membrane invagination leading to the capture and vesicular internalisation
of small amounts of extracellular fluid and the macromolecules therein (fluid phase
pinocytosis) (reviewed by Mellman, 1996). If macromolecule capture occurs as a result
of binding to specific receptors on the cell membrane, eg. via a targeting moiety, uptake
is termed receptor-mediated pinocytosis. Following cellular internalisation the
vesicular contents are transferred via endosomes (pH 6.0-6.5) to lysosomal
compartments where they are subject to as many as 70 types of hydrolytic enzymes
(Dean, 1977) and a pH ranging between 5.0 and 5.5 (Okamoto, 1998). Conjugation of a
therapeutic ageht to a macromolecule via a linker which degrades only upon exposure to
these conditions would afford polymer-drug systems that are essentially non toxic in the
extracellular environment yet allow intracellular release of the drug which would
passively diffuse through the lysosomal membrane to reach its pharmacological target

in the cell (Figure 1.3). This process of lysosomotropic drug delivery provides the
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