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BTZ gems inside regular Born-Infeld black holes
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Av. Ezequiel Bustillo 9500, CP8400, S. C. de Bariloche, Rı́o Negro, Argentina.

The regular black hole solution arising as a spherically symmetric vacuum solution of Born-Infeld
gravity possesses an asymptotic interior structure which is very well described by a four dimensional
generalization of the non-rotating BTZ metric. According to this picture no singularity exists, and
instead, infalling observers experience a constant curvature manifold as they travel towards future
null infinity. This is characterized by the BTZ event horizon. The exterior structure of the black
hole is also studied, and it is shown that it corresponds to the Schwarzschild solution provided the
black hole mass is not too small. In this way, the regular black hole state can be seen as a spacetime
which connects two constant curvature asymptotic spaces, namely, the flat Minkowski spacetime in
the outside region, and the locally AdS constant negative curvature one characterizing the BTZ-like
asymptotic interior.

I. INTRODUCTION

A typical black hole solution in a gravitational theory
is characterized by an event horizon that surrounds a ge-
ometrical singularity. Near this singularity our physical
understanding breaks down and so does the mathematics
involved. Singularities are actually very common within
the context of metric theories of gravity and they are the
rule rather than the exception, not only in General Rela-
tivity (GR) [1, 2], but in other theories of gravity as well.
On the other hand, and by virtue of the increasing ob-
servational evidence concerning black hole physics [3–6],
singularities stopped being merely curiosities and started
to take part in current central discussions as in the case
of black hole entropy and the information loss paradox.

In the context of GR, one possible way to tackle the
study of gravity in the strong curvature regime near black
hole singularities, is either to postulate some sort of max-
imum curvature space replacing the innermost region of
the black hole [7–13], or by adding a matter content
which makes gravity respond in a repulsive way in that
regime [15]. However, it should be remarked that replac-
ing a singularity with a regular object is by no means
straightforward and generally a trade-off has to be ac-
cepted. Often, the sources required for the construction
of such solutions are difficult to motivate, or one has to
consider matching spacetimes in a rather ad-hoc, non dy-
namical manner.

Motivated by the generally accepted fact that GR must
be replaced by another theory when length scales become
very small, we have recently addressed this topic by con-
sidering a GR modification with a somewhat different
geometrical structure [16]. Our model is based on the
teleparallel formulation of GR and its f(T ) generaliza-
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tion, which proved to be very successful in dealing with
the Big Bang singularity featuring FLRW cosmological
models [17]. This generalization has the property that
it is, in general, no longer invariant under arbitrary lo-
cal Lorentz transformations in the strong field regime.
Our specific Born-Infeld (BI) model introduces a new
length scale ac which controls where the breakdown of
the Lorentz invariance occurs. In particular the black
hole singularity of ‘size’ zero is replaced by a space of
radius ac which is no longer singular. This constant cur-
vature assembly space, which is described by the interior
Gott metric [18], constitutes an asymptotic state lying at
ingoing future null infinity. The replacement obtained is
dynamically achieved, without the addition of any matter
content nor topological change.

The main objective of the present work is to gain an
in depth understanding of the structure of the spacetime
near the assembly space. We found, rather unexpect-
edly, that the line element near the assembly space is
equivalent to a four dimensional extension of the non-
rotating BTZ line element [19, 20] near its horizon. After
a brief introduction into f(T ) gravity and the BI model
in Section II, we explicitly show in Section III the coor-
dinate transformations required to establish our result.
The key idea is the use of null geodesics which leads to a
type of Eddington-Finkelstein coordinates. To complete
the geometrical picture, Section IV shows that the solu-
tion near the black hole horizon is very well described
by the Schwarzschild solution provided r2

s � a2
c , where

rs = 2GM is the Schwarzschild radius. We also show
how the structure of the dynamical field – the vierbein
or tetrad field ea – results. The final conclusions are
presented in Section V. Throughout the paper, we will
adopt the signature −2, and, as usual, Latin indexes
a : (0), (1), . . . refer to tangent-space objects while Greek
µ : 0, 1, . . . denote spacetime components.
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II. A GLIMPSE OF f(T )-BORN-INFELD
GRAVITY AND ITS REGULAR BLACK HOLE

Before discussing the Born-Infeld gravitational scheme,
it is convenient to briefly revisit f(T ) gravity, the general
framework in which BI gravity is formulated. The action
of f(T ) gravity can be considered a simple generaliza-
tion of GR in it’s teleparallel (or absolute parallelism)
formulation, and is written as

I =
1

16πG

∫
f(T ) e d4x+ Imatter , (1)

where e =
√
|det gµν |. There appears an arbitrary func-

tion f , at least twice differentiable, of the so called
Weitzenböck scalar or torsion scalar T = SaµνTa

µν which
is quadratic in torsion T aµν = ∂µe

a
ν − ∂νeaµ by means of

the 2-form Saµν given by

Saµν =
1

4
(T aµν − Tµνa + Tνµ

a) +
1

2
(δaµTσν

σ − δaνTσµσ) .

The dynamical field underlying (1) is the vierbein (tetrad
field or coframe field) ea(x) = eaν(x) dxν , whose compo-
nents in a local coordinate system are given by eaν(x) and
are functions of the coordinates. In the special case when
f is a linear function, we have the action

I =
1

16πG

∫
T e d4x+ Imatter , (2)

which is no other than the Hilbert-Einstein action in dis-
guise; actually, it is relatively well known by now that
the scalar curvature or Ricci scalar R = gµνRµν (here
Rµν is the Ricci tensor), can be written as [21]

R = −T + 2e−1∂ν(e Tσ
σν) , (3)

where Tσ
σν = gµρTµρ

ν . Then, action (2) leads to Ein-
stein’s field equations written in a somewhat unconven-
tional language, even though the equivalence is only valid
provided the manifold has no boundary; in this case we
can ignore the second term of the RHS of (3). It is worth
mentioning the fact that the Weitzenböck scalar actually
transforms as a scalar object only under general coor-
dinate and global Lorentz transformations. Under a lo-
cal Lorentz transformation of the tetrad ea = Λab (x)ea,
torsion T a in the teleparallel setting does not transform
covariantly; instead, the Weitzenböck scalar transforms
modulo a surface term which does not affect the dynam-
ics at the level of the GR field equations.

However, in the more general f(T ) action, the addi-
tional term emerging from T when a Lorentz transfor-
mation acts on a given tetrad, is no longer a boundary
term in the action. This means that f(T ) gravity is not
locally Lorentz invariant in general, even though a local
Lorentz transformation on shell subgroup remains as a
symmetry group. The additional degree of freedom ex-
isting due to the breaking of the Lorentz symmetry [22],
manifests itself as a particular arrangement of the tetrad

field in the cotangent space T ∗M. This special arrange-
ment conforms a parallelization of the manifold in consid-
eration, which is actually defined by an equivalence class
of tetrads connected by Lorentz transformations belong-
ing to the remnant group mentioned above. Details on
this subtle subject can be consulted in [23–25].

The equations of motion or field equations are obtained
from (1) by varying with respect to the tetrad compo-
nents eaµ, and they are(

e−1∂µ(e Sa
µν) + eλaT

ρ
µλSρ

µν
)
f ′+

+Sa
µν∂µTf

′′ − 1

4
eνaf = −4πGeλaTλν , (4)

where Tλν is the energy momentum tensor coming from
the matter action Imatter. Remarkably, though unsur-
prisingly because of the fact that T contains just first
derivatives of the tetrad field, equations (4) are of second
order in derivatives of the vierbein, see also [26].

It could be argued that there is a considerable arbi-
trariness in the selection of the function f(T ) in (1).
Nonetheless, at least the same level of arbitrariness ex-
ists if one insists in relying on GR in situations where
very strong curvatures arise, for instance ‘close’ to strong
curvature singularities such as the Big Bang or the ones
present in the interior of several black holes solutions.
Then, at least in these situations, there are good concep-
tual and theoretical reasons to consider other plausible
f(T ) candidates. In particular, we will focus on

f(T ) = λ[
√

1 + 2T/λ− 1] , (5)

where λ is the BI parameter, whose units are of inverse
length squared. This follow from the fact that the tor-
sion scalar and the curvature scalar both have units of
inverse length squared. Einstein’s gravity is recovered
in regions where T/|λ| � 1 which gives rise to the ex-
pansion f(T ) = T − T 2/λ + O(1/λ2). The length scale
|λ|−1/2 is a measure of the scale at which local Lorentz
invariance would no longer hold as a full symmetry. BI
structures of the type (5) were originally conceived in the
context of electrodynamics for dealing with the singular-
ity of the point-like electric charge at the origin [27] where
the charge was located. The main idea was actually bor-
rowed from special relativity; the relativistic lagrangian
λ0[
√

1 + 2Lp/λ0 − 1] with λ0 = mc2, assures an upper
bound for the particle speed ẋ through the particle ki-
netic energy Lp = mẋ2/2. New physics will appear up
when ẋ → c which is precisely the subject of study in
special relativity.

Action (5) was initially designed for treating the prob-
lem of the Big Bang singularity present in the stan-
dard FLRW cosmological model [17]. After that, vari-
ous extensions were studied in the same circumstances,
even though they involve a different Lagrangian struc-
ture [28, 29]. Within the (pseudo) Riemannian context,
a number of BI proposals were studied as well [30–38],
see also Ref. [39] for a thorough account on the matter.
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However, many of these models are unable to deform vac-
uum GR solutions, and others lead to fourth-order field
equations which are more difficult to study. These facts
make them less relevant concerning the singularity res-
olution of vacuum GR black holes. Instead, the action
coming from (5), i.e.

I = λ/(16πG)

∫
[
√

1 + 2T/λ− 1]e d4x ,

has proved to contain a regular, spherically symmetric
black hole interior solution, in pure vacuum when λ < 0.
In the following we summarize its main properties which
were reported in [16].

One of the key issues in f(T ) gravity is the obtention of
a proper frame representing a given metric tensor. This is
far from being obvious and can be considered the hardest
step towards the characterization of a given solution. For
instance, if we start from the closed Kantowski-Sachs [40]
line element

ds2 = dt2 − b2(t)dr2 − a2(t)dΩ2 , (6)

a proper tetrad field is given by

e(t) = dt , e(r) = b(t) cos θ dr + a(t) sin2 θ dφ , (7)

e(θ) = sinφ[b(t) sin θdr + a(t)dΩ−] ,

e(φ) = cosφ[b(t) sin θdr − a(t)dΩ+] .

For ease of notation we introduced dΩ+ = tanφdθ +
sin θ cos θ dφ and dΩ− = cotφdθ − sin θ cos θ dφ. As we
explained [41], this is the proper frame for f(T ) gravity,
adapted to the R2 × S2 topology underlying (6). Other
frames are suitable as well, and they are related to (7)
by means of Lorentz transformations belonging to the
remnant group. Of course, if f(T ) = T every frame lead-
ing to (6) is equally valid, because TEGR is a theory for
the metric tensor alone, and the local orientation of the
tetrad becomes irrelevant. The Schwarzschild interior so-
lution in KS form involves the scale factors a(t) = aKS(t)
and b(t) = bKS(t) which are (implicitly) written as

bKS(t) = b0 tan(η(t)) aKS(t) = 2M cos2(η(t)) . (8)

The time coordinate t is parameterized by η according to

t− t0 = 2M(η + sin η cos η) . (9)

The regular black hole interior is a high energy defor-
mation of the Schwarzschild solution in the KS form. If
we evaluate the vacuum f(T ) equations (4) in the frame
(7), they take the form

f + 4f ′(H2
a + 2HaHb) = 0 , (10)

f ′′HaṪ + f ′(HaHb + 2H2
a + Ḣa) + f/4 = 0 . (11)

The Weitzenböck scalar associated to the frame (7) is
T = −2(−a−2 + H2

a) − 4HaHb. For the KS case, using
(8) one obtains TKS = 4a−2

KS = M−2 cos−4(η(t)). This

clearly diverges as η(t) → π/2, which in view of (8),
represents the Schwarzschild singularity. In turn, we have
shown in [16] that for the the BI theory T results in

TBI =
4

a2(t)

(
1− 2

|λ|a2(t)

)
, (12)

where the function a(t) is a solution of the field equa-
tions (10) and (11). TBI now reaches a maximum

Tmax = |λ|/2 when a = ac = 2/
√
|λ|, which defines what

we called, the previously mentioned, assembly space. We
showed that the metric corresponding to this assembly
space is exactly the one corresponding to the interior of
an infinitely long (in the Z-direction) cosmic string

ds2 = dT 2 − dZ2 − a2
cdΩ2. (13)

This metric was first obtained in [18], and it has constant
curvature invariants

R = −2/a2
c , R(2) = 2/a4

c , K = 4/a4
c , (14)

where R(2) = RµνR
µν , K = RαµνρRα

µνρ. We found that
the assembly space (13) cannot be reached in a finite
proper time. It represents an asymptotic inner space-
time where the radius a(t) of the two-spheres in (6) goes
to ac as t → ∞. Then, the Schwarzschild singularity is
replaced by an asymptotic spacetime of constant curva-
ture. This regularization was obtained without invoking
any matter content nor topological change.

As we have shown in [16], we can combine the field
equations in such a way that the Hubble function Hb is
eliminated. Hence one arrives at a single, nonlinear ODE
for the scale factor a(t) in the BI case. This equation
reads[
1− 4

|λ|a2

][ 1

a2

(
1− 4

|λ|a2

)
+ 3H2

a + 2Ḣa

]
− 16H2

a

|λ|a2
= 0 .

(15)

One of the key results of [16] was to find an approximate
solution to the BI motion equations near the assembly
space. It ended up being

ds2 = dt2 − b20t2dz2 − a2
c [1 + 2A exp(−t2/2a2

c)]dΩ2 ,
(16)

where b0 and A � 1 are two non-vanishing integration
constants. It is worth mentioning that expression (16)
is valid for all times t because the Gaussian function is
bounded. It is the main purpose of this letter to study
(16) in detail.

III. ASYMPTOTIC INTERIOR STRUCTURE
OF THE BLACK HOLE: A BTZ-LIKE

DESCRIPTION

In the following we will show that the regular black hole
near the assembly space is described by the BTZ metric
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[42] in rather unusual coordinates, i.e., that metric (16)
can be written as

ds2
BTZ = (−M̃ + `−2R2)dT 2 − dR2

(−M̃ + `−2R2)
−R2dΩ2 ,

(17)

provided A � 1. Here M̃ is the mass parameter and
Λ = −`−2 is the (negative) cosmological constant. To
uncover this, we will introduce coordinates which are
constant along null geodesics, similar to the familiar
Eddington-Finkelstein coordinates. Let us consider ra-
dial null geodesics which means setting dΩ = 0 in (16),
hence radial null geodesics satisfy 0 = dt2 − b20t2dz2 =
t2(dt2/t2− b20dz2) = t2(dt/t− b0dz)(dt/t+ b0dz). Conse-
quently, we are led to introduce the coordinates

dU = dt/t− b0dz ⇒ U = log t− b0z ,
dV = dt/t+ b0dz ⇒ V = log t+ b0z . (18)

This allows us to write the (t, z)-part of the line ele-
ment (16) in the form

exp(U + V )dUdV = t2(dt2/t2 − b20dz2) = dt2 − b20t2dz2 .

Now we can write exp(U + V ) = exp(U) exp(V ) and in-

troduce dŨ = exp(U)dU which means Ũ = exp(U) and

likewise for Ṽ . Then t2 = Ũ Ṽ and

ds2 = dt2 − b20t2dz2 − a2
c [1 + 2A exp(−t2/2a2

c)]dΩ2

= dŨdṼ − a2
c [1 + 2A exp(−Ũ Ṽ /2a2

c)]dΩ2

Finally we rescale u = Ũ/ac and v = Ṽ /ac so that

ds2 = a2
c

[
dudv −

(
1 + 2A exp(−uv/2)

)
dΩ2

]
.

Since the t = 0 coordinate singularity occurring in (18)
corresponds to small values of the product uv, we can
expand the exponential in the usual way exp(−uv/2) =
1 − uv/2 + . . .. Therefore, by neglecting higher order
terms, we can write the interior solution near the assem-
bly space (16) as

ds2 = a2
c

[
dudv −

(
1 + 2A(1− uv/2)

)
dΩ2

]
. (19)

Let us emphasize that we are still free to re-scale either of
the coordinates {u, v} or {ũ, ṽ}; this will be important in
what follows in order to identify the constants ac and A
with ` and M , respectively. To do so we re-scale {u, v} →
{σu, σv} in (19). Hence we have the final form of the
metric near the assembly space

ds2 = a2
c

[
σ2dudv −

(
1 + 2A−Aσ2uv

)
dΩ2

]
. (20)

On the other hand, we look at radial null geodesics in
the BTZ line element (17); we introduce the coordinates

Ū =
`√
M̃

arctanh
(
R/`

√
M̃
)

+ T ,

V̄ =
`√
M̃

arctanh
(
R/`

√
M̃
)
− T , (21)

so that we have

dŪdV̄ = −dT 2 +
dR2

(−M̃ + `−2R2)2
,

(−M̃ + `−2R2) = − M̃

cosh2(
√
M̃(Ū + V̄ )/2/`)

.

In these coordinates the BTZ line element (17) becomes

ds2
BTZ =

M̃

cosh2
(√

M̃(Ū+V̄ )
2`

)[dŪdV̄
− `2

{
cosh2

(√M̃(Ū + V̄ )

2`

)
− 1
}
dΩ2

]
(22)

Now, similar to before, we set
√
M̃Ū/` = ū and

√
M̃V̄ /`,

this yields the result

ds2
BTZ = `2

[ dūdv̄

cosh2
(
ū+v̄

2

) − M̃(1− 1

cosh2
(
ū+v̄

2

))dΩ2
]
,

where the bars were introduced in order to distinguish
the coordinates from the previous case. The BTZ event

horizon is located at R = `
√
M̃ , which corresponds to

the argument of the function arctanh becoming 1 in (21).

Therefore we identify R→ `
√
M̃ with Ū →∞ and V̄ →

∞ which also holds for ū, v̄. Hence we can make the
standard approximation cosh−2((ū+v̄)/2) ≈ 4 exp(−(ū+
v̄)/2) = 4 exp(−ū/2) exp(−v̄/2) for large arguments of
the function. In turn, this allows us to write the BTZ
solution as

ds2
BTZ = `2

[
4 exp(−ū/2) exp(−v̄/2)dūdv̄

− M̃
(

1− 4 exp(−ū/2) exp(−v̄/2)
)
dΩ2

]
. (23)

Finally we introduce ũ = −4 exp(−ū/2) and ṽ =
−4 exp(−v̄/2) to arrive at

ds2
BTZ = `2

[
dũdṽ − M̃

(
1− ũṽ/4

)
dΩ2

]
. (24)

We now can finally compare the expressions (20) and
(24). The following conditions are implied for identifying
the two line elements:

a2
cσ

2 = `2 , a2
c(1 + 2A) = `2M̃ , a2

cAσ
2 = `2M̃/4 .

Clearly we have acσ = ` so that the remaining two con-
ditions become

(1 + 2A) = σ2M̃ , A = M̃/4 ,

then, σ2 = (1+2A)/4A. This completes the identification
as we can finally state

` = ac
√

(1 + 2A)/(4A) , M̃ = 4A . (25)
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Taking into account the previous relations we conclude

Rh = `
√
M̃ = ac

√
1 + M̃/2 ≈ ac(1 + M̃/4) ,

for small values of A = M̃/4, which we assumed through-
out. This means that the critical radius defining the as-
sembly space, approximately corresponds to the horizon
of the BTZ solution for small masses. Actually, the BTZ
horizon coincides with ac only when M̃ = 0. So, natu-
rally the question arises: are there two surfaces of inter-
est? Clearly Rh > ac for a positive A = M̃/4, so that
one may wrongly conclude that the horizon at Rh sur-
rounds the critical surface. This is not the case, because
the assembly space is not a solution of the field equations
in itself, it is not part of the spacetime at all; this can be
easily checked by inserting a = ac, Ha = 0 in (10) and
(11). In fact, they read f(Tmax) = f(|λ|/2) = 0 (we used
(12)), which is not consistent with

f(Tmax) = −|λ|
[√

1− 2Tmax/|λ| − 1
]

= |λ| ,

because λ is different from zero.
The constant A in line element (16) arose as a constant

of integration when solving the equation (15) to first or-
der using the expansion a(t) = ac(1 + εF1(t)). However,
when this procedure is extended to second order using the
expansion a(t) = ac(1 + εF1(t) + ε2F2(t)) one can also
solve explicitly the second order equations which con-
tain additional constants of integration. It is possible to
choose these constants such that a(t = 0) = ac so that
the location of the critical surface is unaffected by the
use of an expansion near ac. It is worth mentioning that
to expand near ac is well justified because the assembly
space is a constant curvature space, see (14).

The BTZ-like metric leads to non constant curvature
invariants, which tend to the ones corresponding to the
assembly space when evaluated at the BTZ horizon in
the small mass limit. For instance, by evaluating the
scalar curvature RBTZ of (17) at the horizon, using the
identifications (25), we get

RBTZ

∣∣∣
h

= − 2

ac

√
1 + M̃/2

(
1− 10M̃

ac

√
1 + M̃/2

)
,

which tends to R = −2/ac when the mass M̃ goes to zero,
in agreement with the value corresponding to the assem-
bly space, see. Eq. (14). In this way, we can interpret the
assembly space as being the metric at future null infinity,
the asymptotic state of any infalling observer entering the
black hole. This is a most remarkable result, because the
fearsome Schwarzschild singularity is no longer a threat.

IV. NEAR HORIZON AND ASYMPTOTIC
EXTERIOR STRUCTURE

Unlike the high curvature regime characterizing the en-
virons of the assembly space, the black hole near the

horizon behaves as a Schwarzschild black hole to a high
degree of accuracy. This can be shown easily by ana-
lyzing the contribution of the λ-terms in (15), near the
Schwarzschild horizon. Bearing this in mind, let us in-
troduce the Hubble function and its time derivative as-
sociated to aKS(t). They are

HaKS = − tan(η)

M(1 + cos(2η))
,

ḢaKS =
sec6(η)

2M2
(−2 + cos(2η)) , (26)

where we used η̇ = 1/(2M(1 + cos(2η))) which follows
from the implicit definition of η(t) given in (9). Inspec-

tion of the terms appearing in (15), aKS, HaKS and ḢaKS

as given by Eqs. (8) and (26), the terms involving λ are
proportional to

1

|λ|a2
KS

∝ sec4(η)

M2|λ|
,

H2
aKS

|λ|a2
KS

∝ sec8(η) tan2(η)

M4|λ|
,

ḢaKS

|λ|a2
KS

∝ sec10(η)(cos(2η)− 2)

M4|λ|
.

As η → 0, which represents the Schwarzschild horizon,
the terms behave as 1/M2|λ| and 1/M4|λ|. They are
negligible as long as M2 � 1/|λ|, or r2

s � a2
c , which

means that the spacetime in the vicinity of the horizon
is very well described by the Schwarzschild solution as
long as the black hole has not lost too much mass due
to evaporation. On the contrary, late evaporation stages
involve smaller masses and η → π/2, where tan(η) and
sec(η) diverge. This is the regime in which the BI black
hole strongly departs from the Schwarzschild one.

The standard KS coordinate change will bring the
metric (6) into the familiar Schwarzschild interior form.
Let us treat aKS(t) as a new coordinate and write
aKS(t) = a from now on. Then η(t) = η(a) and
dt/da = (∂t/∂η)/(∂η/∂a). According to (9), we have

∂t

∂η
= 2M(1 + cos(2η)) = 4M cos2(η) = 2a ,

in view of (8). Inverting Eq. (8) we have

η(a) = arccos(
√
a/2M) ,

∂η

∂a
=

−1

2a
√
−1 + 2M/a

,

from which is clear that the coordinate change is valid if
a < 2M . Finally we get

dt

da
=

−1√
−1 + 2M/a

, dt2 =
− da2

(1− 2M/a)
. (27)

It only remains to write b(t) as a function of the new
coordinate a. Using (8) we have

b(t) = b0 tan
(

arccos(
√
a/2M)

)
=

√
1− a/2M√
a/2M

,
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which then reads b2(t) = 2M/a− 1, where we have elim-
inated b0 with a trivial coordinate transformation. We
arrive at the KS metric (6) in the familiar form

ds2 =
(

1− 2M

a

)
dr2 −

(
1− 2M

a

)−1

da2 − a2dΩ2 , (28)

being valid for a < 2M . Of course, r is the temporal
coordinate, and a turns out to be the radius of the 2-
spheres. Once the interior metric is approximately es-
tablished, we can enlarge the manifold by considering
the region outside the event horizon. The result is the
well known Schwarzschild metric in standard (t, r, θ, φ)
coordinates

ds2 =
(

1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dΩ2 . (29)

Of course, neither (28) nor (29) are defined at the horizon
itself; the KS metric (28) describes the interior region
only. In turn, (29) is also unable to represent the horizon
itself.

It is even more important to establish the correct struc-
ture of the vierbein field, which describes the actual dy-
namical field of f(T ) gravity. In order to do so, we
need to perform the KS coordinate transformation on
the proper frame (7) taking into account the transforma-

tion law ebµ′ = ∂xµ/∂xµ
′
ebµ. Starting from (7) and using

the first of the equations (27) we obtain

e(a) =− da
/√

2M

a
− 1 , (30)

e(r) =

√
2M

a
− 1 cos θ dr + a sin2 θ dφ ,

e(θ) =

√
2M

a
− 1 sinφ sin θdr + a sinφdΩ− ,

e(φ) =

√
2M

a
− 1 cosφ sin θdr − a cosφdΩ+ ,

where the coordinates are (a, r, θ, φ). This tetrad gives
rise to the metric (28), and represents – approximately –
a parallelization of the interior black hole spacetime near
the horizon. This frame field leads to a Weitzenböck
scalar given by T = 4a−2, which is perfectly regular at
the horizon Thor = 1/M2, even though the frame is not
defined there.

In the same fashion as done before with the metric, we
proceed to enlarge the tetrad structure in order to obtain
a description of the asymptotically flat region lying far
from the black hole horizon. However, this procedure is
non trivial because we have to match tetrads C1 (at least
once differentiable), i.e., it is necessary to C1 match four
1-form fields on a given hypersurface. This requirement
is necessary because one has to guarantee a well posed
dynamical evolution of system (4), which is a second or-
der system of PDEs; the initial data will be constituted
by the tetrad field and its first derivatives. This auto-
matically will assure the continuity of the Weitzenböck
scalar, which contains first derivatives of the tetrad field.

Guided by the metric (29), we found

e(t) =

√
1− 2M

r
dt , e(r) =

cos θ dr√
1− 2M

r

+ r sin2 θ dφ ,

e(θ) = sinφ
[
sin θdr/

√
1− 2M

r
+ rdΩ−

]
,

e(φ) = cosφ
[
sin θdr/

√
1− 2M

r
− rdΩ+

]
. (31)

This frame leads to a scalar given by T = 4r−2 which,
again, takes the value Thor = 1/M2 at the horizon. In
this way the scalars associated to both frames (30) and
(31) have the structure T = 4/(radial coordinate)2; they
lead to a C1 scalar all over the spacetime, even though
at r = 2M (from the outside), or a = 2M (from the
inside), the frames are not defined, just as the metric is
undefined there. By changing to Eddington-Finkelstein
or Kruskal coordinates in (30) and (31), the C1 character
of the frame field can explicitly be shown.

The asymptotic flatness of the black hole reveals itself
from (31) taking the limit r →∞. In that limit the frame
(31) goes as

e
(t)
0 ≈ dt , e

(r)
0 ≈ cos θ dr + r sin2 θ dφ ,

e
(θ)
0 ≈ sinφ[ sin θdr + rdΩ−] ,

e
(φ)
0 ≈ cosφ[ sin θdr − rdΩ+] ,

which leads to the line element ds2 = dt2 − dr2 − r2dΩ2,
characterizing Minkowski spacetime in spherical coordi-
nates. More details about the nature of the proper frames
in f(T ) gravity can be consulted in Refs. [24, 25].

V. CONCLUSIONS

The vacuum regular black hole studied here contains
an interior region which is characterized asymptotically
by a four dimensional extension of the non-rotating BTZ
black hole. The BTZ horizon plays the role of future null
infinity, in the small mass limit M̃ � 1 where we recall
that the BTZ mass M̃ is dimensionless. Moreover, the
cosmological constant associated to the BTZ solution is
Λ = −`−2, i.e.,

Λ = − M̃

a2
c(1 + M̃/2)

= − M̃ |λ|
4(1 + M̃/2)

,

see expression (25). Consequently, the cosmological con-

stant is also very small provided M̃ � 1. The outer re-
gion, in turn, is indistinguishable from the Schwarzschild
spacetime provided the Schwarzschild mass satisfies
M2 � 1/|λ|, or r2

s � a2
c . A freely falling observer tres-

passing the Schwarzschild horizon will asymptotically ex-
perience a constant curvature spacetime whose invariants
are given by (14). This asymptotic inner space is what
we called a BTZ gem, a sort of storage region which
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gathers the information carried by every form of mat-
ter/energy. The spacetime is then geodesically complete
and free from the Schwarzschild singularity.

The thermodynamics when M2 � |λ|−1 (early stage)
is then the same as in the Schwarzschild case, even
though corrections of order |λ|−1 to the black hole en-
tropy will certainly appear; these are of no concern for
astrophysical and super-massive black holes and hence
were not considered in the present work. However, the
black hole temperature and entropy will differ radically
from the Schwarzschild case when the mass approaches
M2 ≈ |λ|−1, i.e., after a long evaporation time. The char-
acterization of the final stages of the black hole evolution
will involve a relation between the initial black hole mass
M , the BI constant λ, and the BTZ mass M̃ . These

delicate matters are the subject of ongoing research.
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