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Abstract— This paper studies fast downlink beamforming1

algorithms using deep learning in multiuser multiple-input-2

single-output systems where each transmit antenna at the base3

station has its own power constraint. We focus on the signal-to-4

interference-plus-noise ratio (SINR) balancing problem which is5

quasi-convex but there is no efficient solution available. We first6

design a fast subgradient algorithm that can achieve near-7

optimal solution with reduced complexity. We then propose a8

deep neural network structure to learn the optimal beamforming9

based on convolutional networks and exploitation of the duality10

of the original problem. Two strategies of learning various dual11

variables are investigated with different accuracies, and the cor-12

responding recovery of the original solution is facilitated by the13

subgradient algorithm. We also develop a generalization method14

of the proposed algorithms so that they can adapt to the varying15

number of users and antennas without re-training. We carry out16

intensive numerical simulations and testbed experiments to eval-17

uate the performance of the proposed algorithms. Results show18

that the proposed algorithms achieve close to optimal solution in19

simulations with perfect channel information and outperform the20

alleged theoretically optimal solution in experiments, illustrating21

a better performance-complexity tradeoff than existing schemes.22

Index Terms— Deep learning, beamforming, multiple-input-23

single-output (MISO), signal-to-interference-plus-noise ratio24

(SINR) balancing, per-antenna power constraints.25

Manuscript received April 16, 2019; revised August 20, 2019 and January 7,
2020; accepted February 25, 2020. This work was supported in part by the
U.K. Engineering and Physical Sciences Research Council (EPSRC) under
Grant EP/N007840/1 and Grant EP/N008219/1, in part by the Leverhulme
Trust Research Project Grant under Grant RPG-2017-129, in part by the
NVIDIA Corporation with the donation of a Titan Xp GPU, and in part by
the National Natural Science Foundation of China under Grant 61701201.
The associate editor coordinating the review of this article and approving it
for publication was L. Liu. (Corresponding author: Gan Zheng.)

Juping Zhang, Gan Zheng, and Sangarapillai Lambotharan are with the
Wolfson School of Mechanical, Electrical and Manufacturing Engineer-
ing, Loughborough University, Leicestershire LE11 3TU, U.K. (e-mail:
j.zhang3@lboro.ac.uk; g.zheng@lboro.ac.uk; s.lambotharan@lboro.ac.uk).

Wenchao Xia is with the Information Systems Technology and Design Pillar,
Singapore University of Technology and Design, Singapore 487372 (e-mail:
wenchao_xia@sutd.edu.sg).

Minglei You is with the Department of Engineering, Durham University,
Durham DH1 3LE, U.K. (e-mail: minglei.you@durham.ac.uk).

Kai-Kit Wong is with the Department of Electronic and Electrical Engi-
neering, University College London, London WC1E 6BT, U.K. (e-mail:
kai-kit.wong@ucl.ac.uk).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2020.2977340

I. INTRODUCTION 26

MULTIUSER multi-antenna techniques (or multiple- 27

input multiple-output, MIMO) techniques can signifi- 28

cantly improve the spectral and energy efficiency of wireless 29

communications by exploiting the degree of freedom in the 30

spatial domain. They have been widely adopted in mod- 31

ern wireless communications systems such as the fourth 32

and the fifth-generation (4G and 5G) of cellular networks 33

[1], [2], the high efficiency wireless local area (WiFi) networks 34

standard 802.11ax [3], and the latest satellite digital video 35

broadcasting standard DVB-S2X [4]. Among the multiuser 36

MIMO techniques, beamforming is one of the most promising 37

and practical schemes to mitigate multiuser interference and 38

exploit the gain of MIMO antennas. 39

In the last two decades, the optimal beamforming strate- 40

gies have been intensively studied for the multiple-input 41

single-output (MISO) downlink where a base station with 42

multiple antennas serves multiple single-antenna users. For 43

instance, the problem of signal-to-interference-plus-noise ratio 44

(SINR) balancing or maximization of the minimum SINR 45

of all users, under a total power constraint was studied in 46

[5], [6], the total BS transmit power minimization problem 47

under quality of service (QoS) constraints was investigated in 48

[7]–[10], and the sum rate maximization problem under the 49

total power constraint was tackled in [6], [11]–[13]. The 50

existing approaches mainly make use of the advances of 51

convex optimization techniques such as second-order cone 52

programming (SOCP) [8], [9] and semidefinite program- 53

ming (SDP) [14], and the uplink-downlink duality which 54

indicates that under the sum power constraint, the achiev- 55

able SINR region and the normalized beamforming in 56

the downlink are the same as those in the dual uplink 57

channel. 58

Early works mostly focus on the optimal beamforming 59

design under the sum power constraint across all antennas of 60

a transmitter. This constraint does not take into account the 61

fact that each transmit antenna has its own power amplifier, 62

and therefore its power is individually limited. The per- 63

antenna power constraints were first systematically studied 64

in [15] where a dual framework was proposed to minimize the 65
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See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2924-6990
https://orcid.org/0000-0001-6245-0347
https://orcid.org/0000-0002-7445-1571
https://orcid.org/0000-0001-8457-6477
https://orcid.org/0000-0001-5255-7036
https://orcid.org/0000-0001-7521-0078


IEE
E P

ro
of

2 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

maximum transmit power of each antenna under users’ SINR66

constraints. This work has sparked much research interest in67

optimizing beamforming under per-antenna power constraints.68

The work in [16] studied the optimization of the nonlinear69

zero forcing (ZF) dirty paper coding based beamforming under70

per-antenna power constraints. Generic optimization of beam-71

forming for multibeam satellite systems was studied in [17]72

under general linear and nonlinear power constraints. The73

per-antenna constant envelope precoding for large multiuser74

MIMO systems was investigated in [18]. The transceiver75

designs for multi-antenna multi-hop cooperative communi-76

cations under per-antenna power constraints were proposed77

in [19] and both linear and nonlinear transceivers were78

investigated. The signal-to-leakage-plus-noise ratio (SLNR)79

maximized precoding for the downlink under per-antenna80

power constraints was considered in [20] where a semi-closed81

form optimal solution was proposed. A general framework82

for covariance matrix optimization of MIMO systems under83

different types of power constraints was proposed in [21].84

More recently, the optimal MIMO precoding under the con-85

straints of both the total consumed power constraint and the86

individual radiated power constraints was studied in [22] and87

numerical algorithms were developed to maximize the mutual88

information.89

The problem of interest in this paper is to efficiently90

maximize the minimum received SINR or to balance SINR,91

in the multiuser MISO downlink under per-antenna power con-92

straints at the BS. This problem, although being quasiconvex,93

is more challenging than the counterpart with the total power94

constraint and the problem of minimizing the per-antenna95

power in [15], and until now there does not exist efficient96

algorithms. Consequently, existing beamforming techniques97

are unable to support real-time applications because the small-98

scale fading channel varies considerably fast. For instance, in a99

WLAN 802.11n system operating at 2.4 GHz with a pedestrian100

speed of 1.4 m/s, the coherence time is 89 ms; and in a Long-101

Term Evolution (LTE) downlink operating at 2.6 GHz with102

a residential area vehicle velocity of 10 m/s, the coherence103

time is only 11.5 ms. Traditional time-consuming optimization104

routines will produce obsolete beamforming solution that is105

not timely for the current channel state and lead to significant106

performance degradation which will be demonstrated in our107

experiment. In [23], the dual problem was derived and the108

optimal solution at much reduced computational cost was109

developed. However, it was found out that the best solution110

is obtained by a commercial nonlinear solver [24], which111

does not explore the structure of the problem and is still not112

efficient. Although there are simple heuristic beamforming113

solutions which have closed-form solutions such as the ZF114

beamforming and the regularized ZF (RZF) beamforming,115

the reduced complexity often leads to performance loss. Even116

worse, the work in [25] showed that the conventional ZF117

beamforming under per-antenna power constraints no longer118

admits a simple pseudo-inverse form as the case under the total119

power constraint, and instead the optimal ZF beamforming120

requires solving an SOCP problem which has much higher121

complexity.122

In this paper, we take a different approach and develop deep 123

learning (DL) enabled beamforming solutions to dramatically 124

improve the computational efficiency. Recently DL has been 125

recognized as a promising solution for addressing various 126

problems in several areas of wireless networks. This is because 127

deep neural networks have the ability to model highly non- 128

linear functions at considerably low complexity. One of the 129

areas of interest is to deal with scenarios in which the channel 130

model does not exist, e.g., in underwater and molecular 131

communications [26] or is difficult to characterize analyti- 132

cally due to imperfections and nonlinearities [27]. In these 133

situations, DL based detection has been proposed to tackle 134

the underlying unknown nonlinearities [28]. Another area of 135

interest is to optimize the end-to-end system performance 136

[29], [30]. Conventional communication systems are based 137

on the modular design and each block (e.g., coding, modu- 138

lation) is optimized independently, which can not guarantee 139

the optimal overall performance. However, DL holds great 140

promises for further improvement by considering end-to-end 141

performance optimization. The third area of interest is to 142

overcome the complexity of wireless networks [27] which 143

is the focus of our paper. In this aspect, DL has found 144

many exciting applications in wireless communications such 145

as channel decoding [31], [32], MIMO detection [33], [34], 146

channel estimation [35], [36]. The current work belongs to 147

the framework of learning to optimize in wireless resource 148

allocation. The rationale is that the DL technique bypasses 149

the complex optimization procedures, and learns the optimal 150

mapping from the channel state to produce the beamforming 151

solution directly by training a neural network. The result is that 152

the trained neural network can be used as a function mapping 153

to obtain the real-time beamforming solution with channel 154

state as input. As a result, the computational complexity is 155

transferred to offline training phase,1 and hence the complexity 156

during the online transmission phase is greatly reduced. The 157

mostly successful applications of DL in this framework by 158

far is power allocation [37]–[41], in which the power vector 159

is treated as the training output, while the channel gains 160

are taken into the input of the DL network. In this case, 161

the power variables only take positive values and the number 162

of power variables is normally the number of users and 163

therefore relatively small and easy to handle. 164

However, there are few works that focus on the learning 165

approach to optimize the beamforming design in multi-antenna 166

communications, with the exception of [42]–[47]. The diffi- 167

culty is partly due to the large number of complex variables 168

contained in the beamforming matrix that need to be opti- 169

mized. An outage-based approach to transmit beamforming 170

was studied in [42] to deal with the channel uncertainty at the 171

BS, however, only a single user was considered. The work 172

1To the best of our knowledge, the computational complexity of the training
phase is not well understood, due to the complex implementation of the
backpropagation process and that it depends very much on the specific
application regarding the required number of training examples for satisfactory
generalization. That said, this is usually not a concern in most applications
because training takes place offline given sufficient computational capability
and retraining is only performed infrequently when the specific applications
depart considerably from those training examples.
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in [43] designed a decentralized robust precoding scheme173

based on a deep neural network (DNN). The projection over a174

finite dimensional subspace in [43] reduced the difficulty, but175

also limited the performance. A DL model was used in [44]176

to predict the beamforming matrix directly from the signals177

received at the distributed BSs in millimeter wave systems.178

However, both [43] and [44] predicted the beamforming matrix179

in the finite solution space at the cost of performance loss.180

The works in [42], [45] directly estimated the beamforming181

matrix without exploiting the problem structure in which the182

number of variables to predict increases significantly as the183

numbers of transmit antennas and users increase. This will184

lead to high training complexity and low learning accuracy185

of the neural networks when the numbers of transmit anten-186

nas and users are large. In our previous works [46], [47],187

we proposed a beamforming neural network to optimize the188

beamforming vectors, but it is restricted to the total power189

constraint. We notice that none of existing works addressed190

the SINR balancing problem under the practical per-antenna191

power constraints, for which DL solution becomes even more192

attractive.193

In this paper, we propose a DL enabled beamforming194

optimization approach for SINR balancing to provide an195

improved performance-complexity tradeoff under per-antenna196

power constraints. Inspired by the model driven learning phi-197

losophy [48], we propose to first learn the dual variables with198

reduced dimension rather than the original large beamforming199

matrix and then recover the beamforming solution from the200

learned dual solution, by exploiting the structure or model of201

the beamforming optimization problem. Our main contribu-202

tions are summarized as follows:203

• A subgradient algorithm is first proposed which not only204

demonstrates faster convergence than the best known205

algorithm in [23], but also facilitates the development of206

the DL solutions.207

• A general DL structure to learn the dual variables is208

proposed, and two learning strategies are proposed to209

achieve the performance-complexity tradeoff. A heuristic210

method is developed to facilitate the generalization of the211

proposed DL algorithms by augmenting the training set212

so that they can adapt to the varying number of active213

users and antennas without re-training.214

• Both software simulations and testbed experiments using215

software defined radio (SDR) are carried out to val-216

idate the performance of the proposed algorithms.217

To the best of our knowledge, this is the first test-218

bed demonstration of deep learning enabled multiuser219

beamforming.220

The remainder of this paper is organized as follows.221

Section II introduces the system model and formulates the222

SINR balancing problem and its dual formulation. Section III223

proposes the subgradient algorithm. Section IV provides224

the general structure framework for the beamforming opti-225

mization based on learning the dual variables and the226

recovery algorithms. Numerical and experimental results are227

presented in Section V. Finally, conclusion is drawn in228

Section VI.229

Notations: The notations are given as follows. Matrices and 230

vectors are denoted by bold capital and lowercase symbols, 231

respectively. (·)T , (·)∗, (·)† and (·)−1 stand for transpose, 232

conjugate, conjugate transpose and inverse/pseudo inverse 233

(when applicable) operations of a matrix, respectively. A � 0 234

indicates that the matrix A is positive definite. The operator 235

diag(a) denotes the operation to diagonalize the vector a 236

into a matrix whose main diagonal elements are from a. 237

Finally, a ∼ CN (0,Σ) represents a complex Gaussian vector 238

with zero-mean and covariance matrix Σ. Z denotes the non- 239

negative field. 240

II. SYSTEM MODEL AND PROBLEM FORMULATION 241

Consider an MISO downlink channel where an Nt-antenna 242

BS transmits signals to K single-antenna users. For the user k, 243

its channel vector, beamforming vector, and data symbol are 244

denoted as hT
k ,wk, sk, respectively, where E(|sk|2) = 1. 245

The additive white Gaussian noise (AWGN) at the received 246

is denoted as nk ∼ CN (0, N0). All wireless links exhibit 247

independent frequency non-selective Rayleigh block fading. 248

The received signal at user k is 249

yk = hT
k

K∑
i=1

wisi + nk. (1) 250

The SINR at the receiver of user k is given by 251

γk =
|hT

k wk|2
K∑

i=1,i�=k

|hT
k wi|2 + N0

. (2) 252

The beamforming matrix is collected in W = 253

[w1,w2, · · · ,wK ] ∈ CNt×K . Then the per-antenna power at 254

antenna n can be expressed as 255

pn = ‖W(n, :)‖2 = ‖eT
nW‖2, (3) 256

where en is a zero vector except its n−th element 257

being 1. 258

The problem of interest is to maximize the minimum 259

user SINR, i.e., SINR balancing, under per-antenna power 260

constraints {Pn}. Mathematically, it can be formulated as 261

follows: 262

P1: max
W,Γ

Γ 263

s.t.γk =
|hT

k wk|2
K∑

i=1,i�=k

|hT
k wi|2 + N0

≥ Γ, ∀k, (4) 264

pn = ‖eT
nW‖2 ≤ Pn, ∀n. (5) 265

The SINR balancing problem is in general quasi-convex, 266

so it can be solved via methods such as bisection search 267

and generalized eigenvalue programming [8], [23]. How- 268

ever, these methods suffer from high complexity and com- 269

putational delay, and are not practical for real-time data 270

transmissions. 271
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In [23], a useful dual formulation of P1 is derived as272

P2: max
β,λ,μ

β273

s.t.βλkhT
k G(λ,μ)−1h∗

k ≤ 1, ∀k, (6)274

K∑
k=1

λkN0 = 1,275

Nt∑
n=1

μnPn = 1,276

λ,μ, β ≥ 0. (7)277

where G(λ,μ) �
∑K

i=1 λih∗
i h

T
i + Diag(μ), λ ∈ ZK ,μ ∈278

ZNt are dual variables associated with the SINR constraint (4)279

and the per-antenna power constraint (5) in P1, and β is related280

to the minimum SINR Γ in P1 by the relation β = 1+ 1
Γ . For281

the solution of P2, it is assumed that G(λ,μ) � 0.282

Although the problem P2 is still a quasi-convex problem,283

compared to the original problem P1, it can be more efficiently284

solved because it only involves K + Nt + 1 non-negative285

variables while P1 needs to optimize 2KNt real variables. The286

problem P2 can be solved using standard nonlinear solvers287

such as Matlab’s built-in function ‘fmincon’. Currently the288

fastest optimal solution is known to be achieved by Ziena’s289

nonlinear solver Knitro [24], which is compared and shown290

in [23]. However, the general solvers do not exploit the291

special analytical properties of the problem P2, so they are292

not efficient. In addition, it is not known how to recover the293

optimal solution to the beamforming matrix W∗ once P2 is294

solved. These issues will be studied in the next section.295

III. A SUBGRADIENT ALGORITHM TO SOLVE P2296

In this section, we derive a fast subgradient algorithm to297

solve P2, based on the downlink-uplink duality results derived298

in [15]. According to [15, Theorem 1], the problem P2 can299

be equivalently written as the following max-max problem:300

P3: max
μ

max
Γ,λ

Γ301

s.t.max
wk

λk|w̄†
kh

∗
k|2∑K

i=1,i�=k λi|w̄†
kh

∗
i |2+w̄†

k(Diag(μ))w̄k

≥Γ, ∀k,302

K∑
k=1

λk =
1

N0
,303

Nt∑
n=1

μkPn = 1,304

λ,μ, Γ ≥ 0. (8)305

P3 can be interpreted as the maximization of the minimum306

user SINR in the virtual uplink in which K single-antenna307

users transmit signals to the BS with the total power con-308

straint 1
N0

. The uncertain covariance matrix of the received309

noise vector is characterized by Diag(μ). The normalized310

receive beamforming at the BS for user k is denoted by311

w̄k = wk

‖wk‖ which has the same direction as the downlink312

transmit beamforming, while λk denotes the uplink transmit313

power of user k. Because the covariance matrix of the received314

noise vector Diag(μ) is also a variable, P3 is still difficult315

to solve. To tackle this problem, we first keep the variable μ 316

fixed, and then reach the sub-problem below: 317

P4: f(μ) = max
Γ,λ

Γ 318

s.t.max
wk

λk|w̄†
kh

∗
k|2∑K

i=1,i�=kλi|w̄†
kh

∗
i |2+w̄†

k(Diag(μ))w̄k

≥Γ, ∀k, 319

(9) 320

K∑
k=1

λkN0 = 1, (10) 321

λ, Γ ≥ 0. (11) 322

P4 can be interpreted as the nonlinear SINR balancing problem 323

with a total power constraint and colored noise with covariance 324

matrix Diag(μ). In the following, we propose an efficient 325

fixed-point iteration in Algorithm 1 below to solve P4. 326

Algorithm 1 to Solve P4: 327

1) Initialize λ that satisfies
∑K

k=1 λkN0 = 1. Suppose j 328

is the iteration index, and the achievable SINR in the 329

uplink is γ(j). Repeat the following steps 2)-5) until 330

convergence. 331

2) For each k, define Gk(λ,μ) �
∑K

i=1,i�=k λih∗
i h

T
i + 332

Diag(μ). 333

3) Solve an auxiliary variable λ̄k as 334

λ̄k = Ik(λ(j−1)) � γ(j) 1
hT

k Gk(λ,μ)−1h∗
k

, ∀k. 335

(12) 336

4) Normalize {λ̄k} to obtain {λk} as: 337

λk = λ̄kη, where η =
1∑K

i=1 λ̄iN0

. (13) 338

5) Calculate βk = 1
λkhT

k G(λ,μ)−1h∗
k

. Then update the 339

achievable SINR in the uplink as 340

γ(j) = min
k

1
βk − 1

. (14) 341

It can be proved that Algorithm 1 converges to the optimal 342

solution of P4. The proof is similar to [53, Theorem 11.1] and 343

a refined version is provided in Appendix A for completeness. 344

The optimal uplink beamforming for a given μ can be 345

derived according to the minimum mean square error (MMSE) 346

criterion: 347

w̄k =
Gk(λ,μ)−1h∗

k

‖Gk(λ,μ)−1h∗
k‖

, ∀k. (15) 348

With the inner maximization problem P4 solved for given μ, 349

we can obtain the objective function value f(μ). Next we solve 350

the outer maximization of μ using a subgradient projection 351

algorithm, where the subgradient can be found using the 352

downlink beamforming obtained from the normalized uplink 353

beamforming. 354

As proved in Appendix B, f(μ) is a concave function 355

in μ. A subgradient of μn can be expressed as ‖eT
nW‖2

356

because μn is the dual variable associated with the n-th 357

antenna power constraint. The proof is omitted. Based on this 358

result, we propose the following subgradient based algorithm 359

[15], [49] to solve P3. 360
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Algorithm 2 to Solve P3:361

1) Initialize μ. Suppose j is the iteration index. Repeat the362

following steps 2)-7) until convergence.363

2) Given μ, call Algorithm 1 to find the optimal λ̄.364

3) Calculate βk = 1
λkhT

k G(λ̄,μ)−1h∗
k

. Then update the365

achievable SINR in the uplink as366

γ(j) = min
k

1
βk − 1

. (16)367

4) Find the optimal normalized uplink beamforming368

w̄k =
Gk(λ̄,μ)−1h∗

k

‖Gk(λ̄,μ)−1h∗
k‖

, ∀k. (17)369

5) Find the downlink power {pk} to achieve the SINR γ(j),370

i.e., to solve the following linear equation set:371

pk|hT
k w̄k|2

K∑
i=1,i�=k

pi|hT
k w̄i|2 + N0

= γ(j), k = 1, . . . , K. (18)372

6) Update the downlink beamforming vector as wk =373 √
pkw̄k and W = [w1, · · · ,wK ].374

7) Update μ using the subgradient Euclidean projection375

method with step size αj :376

μ(j+1) = PS{μ(j)
k + αjDiag{‖eT

nW‖2}}, (19)377

where S = {μ|∑Nt

n=1 μnPn = 1}.378

This projection PS can be solved efficiently using the379

bisection search. The detailed projection algorithm is380

provided in Algorithm 3 of Appendix C.381

8) Regulate the downlink beamforming. Update the beam-382

forming vector as follows to satisfy all per-antenna383

power constraints:384

W(n, :) = W(n, :)

√
min

n

Pn

‖eT
nW‖2

, ∀n. (20)385

Remarks: The subgradient algorithm exploits the structure386

of the original problem P1, so it is more efficient than a387

general nonlinear solver. However, the step size αj is a critical388

parameter. We find that αj = 0.01 × 2−j gives a satisfactory389

performance. We observe that in general Algorithm 2 can solve390

P3 faster than the available numerical solver such as Knitro391

and achieve close to optimal performance, which can be seen392

in Fig. 1(a) and will be verified using simulation results in393

Section V. However, there is no guarantee that a subgradient394

algorithm converges to the exact optimal solution. It may only395

converge to the neighbourhood of the optimal solution, and its396

convergence may be slow, as seen in Fig. 1(b). In addition,397

the subgradient algorithm may not guarantee that the per-398

antenna power constraints will be satisfied, and that is why399

Step 8) of Algorithm 2 is necessary to regulate the per-antenna400

power.401

Another important implication of the development of402

Algorithm 2 is that it provides an efficient way to recover403

the primal variable, i.e., the downlink beamforming vectors,404

given various dual variables either μ and λ, or only μ. The405

details will be given in the next section.406

Fig. 1. Comparison of convergence behaviours of the sub-gradient algorithm
(Algorithm 2) and the optimal solution using Knitro for two channel instances.
The per-antenna power constraint is 10 dB. (a)Nt = K = 2 and the sub-
gradient algorithm shows faster convergence; (b) Nt = K = 4 and the
sub-gradient algorithm experiences slower convergence and converges only
to the neighbourhood of the optimal solution.

IV. THE PROPOSED DEEP LEARNING STRUCTURE 407

AND STRATEGIES 408

In this section, we develop DL based solutions of P1 that 409

can achieve better performance-efficiency tradeoff than the 410

currently available solutions. Instead of learning to optimize 411

the original beamforming matrix W directly, we will learn the 412

optimization of the dual variables in P2. This will dramatically 413

reduce the number of variables that need to be learned. In the 414

sequel, we will first introduce a general DL structure that takes 415

the channel h = [hT
1 , · · · ,hT

k ]T as the input, and the output 416

is the dual variable(s) in P2. We will also devise a generalized 417

learning solution such that the proposed DL structure can 418

deal with varying number of users and antennas and transmit 419

power without re-training. We will then propose two learning 420

strategies, i.e., one is to learn the dual variables μ and λ 421

with fast recovery of the original beamforming solution, and 422

the other is to learn only the dual variable μ with improved 423

learning accuracy, to achieve various tradeoffs. 424

A. A General DL Structure 425

We first show the existence of a neural network that can 426

approximate the solution of the optimization problem P2. 427

To this end, we define μopt and λopt as two tensors with the 428
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optimized dual variables μ and λ, respectively. The neural429

network aims to learn the continuous mapping430

F(h,μ0) = {μopt,λopt}, (21)431

where μ0 is the initialization set of dual variables and F(·, ·)432

denotes the continuous mapping process in Algorithm 2 to433

achieve the stationary point from the input set of channel434

coefficients together with the initialization set of dual vari-435

ables. The following theorem will prove the existence of a436

feedforward network which imitates the continuous mapping437

in (21).438

Theorem 1: For any given accuracy ε > 0, there exists439

a positive constant L large enough such that a feedforward440

neural network with L layers can produce similar performance441

to the mapping process in (21), i.e.,442

suph,ψ||NETL(h,ψ) −F(h,μ0)||F ≤ ε, (22)443

where ψ is the set of the neural network parameters including444

weights and biases.445

Proof: The result in Theorem 1 can be obtained directly446

by applying the universal approximation theorem in [50] to447

the continuous mapping in Algorithm 2. �448

Based on results in Theorem 1, next we find solutions449

through designing the neural networks with the DL tech-450

nique. Similar to our previous work [47], we introduce a451

general DL structure to approximate the mapping function452

from the channel coefficients to the beamforming solutions,453

as shown in Fig. 2. In addition to the conventional neural454

network module, the adopted DL structure also introduces455

a signal processing module based on expert knowledge for456

beamforming recovery from the key features, such as the dual457

variables λ and μ in problem P2. Predicting the beamforming458

matrix directly may lead to high complexity since the number459

of the variables in the beamforming matrix depends on both460

the number of users K and the number of BS antennas Nt.461

Thus instead of predicting the beamforming matrix directly,462

we predict some key features (i.e., the dual variables μ and λ)463

whose variables are much less than those in the beamforming464

matrix. Then these key features are used to recover the465

beamforming matrix in the signal processing module.466

The adopted DL structure takes the convolutional neural467

network (CNN) architecture as the backbone because the468

parameter sharing adopted in the CNN can reduce the number469

of the learned parameters when compared to a fully-connected470

DNN. Moreover, CNN is well known to be effective for471

extracting features, which will benefit the generation of the472

beamforming solution using the channel features. The adopted473

DL structure includes two main modules: the neural network474

module and the signal processing module [51]. Here we give a475

short description about the two modules, and for more details476

readers are referred to [47].477

1) Neural Network Module: The neural network module is478

a data-driven approach to approximate the mapping function479

from the complex channels to the key features. In addition480

to the input and output layers, the neural network module481

also includes convolutional (CL) layers, batch normalization482

(BN) layers, activation (AC) layers, a flatten layer, and a483

fully-connected (FC) layer. The input of the neural network484

Fig. 2. A DL-based learning structure for the optimization of downlink
beamforming, which includes two main modules: the neural network module
and the signal processing module. The neural network module consists of
convolutional (CL) layers, batch normalization (BN) layers, activation (AC)
layers, a fully-connected (FC) layer, and so on. However, the functionalities
in the signal processing module, as well as the key features input, are abstract,
which are specified by the expert knowledge.

module is the complex channel coefficients, which are not 485

supported by the current neural network software. To address 486

this issue, we separate the complex channel vector h = 487

[hT
1 , · · · ,hT

K ]T ∈ CNK×1 into two components R(h) and 488

I(h) and form the new input [R(h), I(h)]T ∈ R2×NtK , 489

where R(h) and I(h) contain the real and imaginary parts 490

of each element in h, respectively. Each CL layer consists 491

of many filters which apply convolution operations to the 492

layer input, capture special patterns and pass the result to the 493

next layer. The parameters of the filters are shared among 494

different channel coefficients. The main function of the BN 495

layers is to normalize the output of the CL layers by two 496

trainable parameters, i.e., a “mean” parameter and a “standard 497

deviation” parameter. Besides, the BN layers can reduce the 498

probability of over-fitting and enable a higher learning rate. 499

AC layers help neural networks extract the useful informa- 500

tion and suppress the insignificant points of the input data. The 501

rectified linear unit (ReLU) and sigmoid functions are suitable 502

choices for the last AC layer, since the predicted variables are 503

continuous and positive numbers. The function of the flatten 504

layer is to change the shape of its input into a vector for the FC 505

layer to interpret. In addition to these functional layers, the loss 506

function, marked ‘MSE/MAE’ on the output layer in Fig. 2, 507

is also very important in the introduced DL structure. The 508

mean absolute error (MAE) or the mean square error (MSE) 509

is used in the loss function to update parameters. The loss 510

function together with the learning rate determines how to 511

update the parameters of the neural network module. 512

2) Signal Processing Module: The neural network module 513

offers universality in learning the key features from data, while 514

the signal processing module aims to recover the beamforming 515

matrix from the predicted key features at the output layer. 516

Different from the neural network module whose model is 517

unknown, the signal processing module utilizes the (par- 518

tially) known models of the data to recover the beamforming 519

matrix. The learned key features and the functionalities in 520

the signal processing module are designated according to the 521

expert knowledge. Note that the expert knowledge is problem- 522

dependent and has no unified form, but what is in common is 523

that the expert knowledge can significantly reduce the number 524

of variables to be predicted compared to the beamforming 525

matrix [47]. For example, the dual forms of the original 526

problems are the typical expert knowledge for beamforming 527
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optimization. The details of the signal processing module used528

to recover the beamforming matrix is provided in the next two529

subsections.530

B. To Learn λ and μ and the Recovery Algorithm531

With the above proposed general DL structure, we need532

to decide which features of dual optimization variables in533

P2 will be learned, and what signal processing function is534

needed to recover the beamforming matrix. The first option is535

to learn both λ and μ, so the output has K + Nt variables.536

Once they are learned, the following algorithm with steps537

taken from Algorithm 2 can be used to find a feasible538

beamforming solution that satisfies the per-antenna power539

constraints.540

Algorithm 4: To recover W from λ and μ541

1) Given the learned solution of λ and μ, Calculate βk =542

1
λkhT

k G(λ,μ)−1h∗
k

. Then update the achievable SINR in543

the uplink as544

γ = min
k

1
βk − 1

. (23)545

2) Find the optimal normalized uplink beamforming as546

w̄k =
Gk(λ,μ)−1h∗

k

‖Gk(λ,μ)−1h∗
k‖

, ∀k. (24)547

3) Find the downlink power {pk} to achieve the SINR γ,548

i.e., to solve the following linear equation set:549

pk|hT
k w̄k|2

K∑
i=1,i�=k

pi|hT
k w̄i|2 + N0

= γ∗, k = 1, . . . , K. (25)550

4) Update the downlink beamforming vector as wk =551 √
pkw̄k and W = [w1, · · · ,wK ].552

5) Regulate the downlink beamforming. Update the beam-553

forming vector as follows to satisfy all per-antenna554

power constraints:555

W(n, :) = W(n, :)

√
min

n

Pn

‖eT
nW‖2

, ∀n. (26)556

C. To Learn μ Only and the Recovery Algorithm557

The above learning strategy is straightforward and fast if the558

learning result is satisfactory, however, the learning accuracy559

can be much improved if the number of variables is reduced.560

This motivates us to use the proposed DL structure to learn561

only the dual variable μ with output size of Nt, which562

contains K less variables than the above approach that learns563

both λ and μ. The idea of this approach is that given μ,564

the optimal λ can be efficiently optimized using Algorithm 2,565

which is more accurate than the learning approach above.566

An additional advantage is that the output size does not depend567

on the number of users, so it can more easily adapt to the568

varying number of users. Once μ is learned, the following569

algorithm with steps taken from Algorithm 2 can be used570

to derive a feasible beamforming solution to the original571

problem P1.572

Algorithm 5: To recover W from μ 573

1) Given the learned solution μ, call Algorithm 1 to find 574

the optimal λ̄. 575

2) Calculate βk = 1
λkhT

k G(λ̄,μ)−1h∗
k

. Then update the 576

achievable SINR in the uplink as 577

γ = min
k

1
βk − 1

. (27) 578

3) Find the optimal normalized uplink beamforming as 579

w̄k =
Gk(λ̄,μ)−1h∗

k

‖Gk(λ̄,μ)−1h∗
k‖

, ∀k. (28) 580

4) Find the downlink power {pk} to achieve the SINR γ, 581

i.e., to solve the following linear equation set: 582

pk|hT
k w̄k|2

K∑
i=1,i�=k

pi|hT
k w̄i|2 + N0

= γ(i), k = 1, . . . , K. (29) 583

5) Update the downlink beamforming vector as wk = 584√
pkw̄k and W = [w1, · · · ,wK ]. 585

6) Regulate the downlink beamforming. Update the beam- 586

forming vector as follows to satisfy all per-antenna 587

power constraints: 588

W(n, :) = W(n, :)

√
min

n

Pn

‖eT
nW‖2

, ∀n. (30) 589

D. Generalization of the Proposed DL Structure 590

In this section, we will generalize the proposed universal 591

DL so that it can adapt to the change of the number of users 592

and antennas. Although the above DL approaches can achieve 593

satisfactory performance for beamforming design, applying the 594

DL approaches to practical applications faces the difficulties 595

caused by the dynamic wireless networks. In other words, 596

when the number of transmit antennas Nt or the number of 597

users K changes, a new model should be trained for prediction. 598

This fact suggests that the applicability of the DL approaches 599

is limited. Transfer learning and training set augmentation 600

are effective ways to improve the generalization. The former 601

transfers an existing model to a new scenario with some 602

additional training and labelling effort [52], whereas the latter 603

aims to train a large-scale model which adapts to different 604

Nt and K by adding more samples into the training set, 605

so that the training set can cover more possible scenarios. In 606

this work, we adopt the latter method for simplicity. Without 607

losing generality, we take the DL approach to learning μ only 608

as an example and give more details about the training set 609

augmentation method. 610

In the training set augmentation method, we aim to train a 611

large-scale model with 2N ′
tK

′-input and N ′
t-output. In order 612

to make the large-scale model adaptable to different Nt and 613

K values, we generate an augmented training set. Different 614

from the training set whose samples have the same Nt and K 615

values, the samples in the augmented training set are diverse, 616

i.e., the numbers of the transmit antennas and the numbers 617

of users in different samples could vary. However, the size of 618

each sample is fixed as 2N ′
tK

′-input and N ′
t-output. For the 619
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cases where Nt < N ′
t (or K < K ′), the redundant N ′

t − Nt620

rows (or K − K0 columns) of the channel matrix are filled621

with 0’s. Similarly, the redundant N ′
t −Nt elements of output622

are set as 0 when Nt < N ′
t . In each sample, we assume each623

K ∈ {1, 2, · · · , K ′} is generated with the equal probability of624

1
K′ and each Nt ∈ {1, 2, · · · , N ′

t} is generated with the equal625

probability of 1
N ′

t
. Therefore, the occurrence probabilities of626

different K values are statistically equal among all samples627

and so are different Nt values. It is suggested that the number628

of the samples in the augmented training set for the large-scale629

model should be 5-10 times as many as that in the training set630

with fixed Nt and K values. However, this approach works631

only if the number of users or antennas does not exceed the632

maximum values used in the training set, otherwise re-training633

will be needed.634

V. PERFORMANCE EVALUATION635

Both simulations and experiments are carried out to evaluate636

the performance of the proposed DL enabled beamforming637

optimization. We assume that all channel entries undergo638

independent and identically distributed Rayleigh flat-fading639

with zero mean and unit variance unless otherwise specified,640

and perfect CSI is available at the BS. All transmit power is641

normalized by the noise power.642

The training samples (dual variables) are generated by solv-643

ing the problem P2 using Knitro for its stability and efficiency,644

but can also be generated by solving the problem P1 using645

the bisection search method at the cost of more computational646

time during the offline training. In our simulation, we use647

20000 training samples and 5000 testing samples, respectively.648

All of proposed DL networks have one input layer, two CL649

layers, two BN layers, three AC layers, one flatten layer, one650

FC layer, and one output layer. Besides, each CL layer has651

8 kernels of size 3 × 3 and the first two AC layers adopt the652

ReLU function. Each CL applies stride 1 and zero padding653

1 such that the output width and height of all CLs remain654

the same as those of the input [56]. To be specific, the input655

size of the first CL is 2 × NtK × 1 and the output size656

is 2 × NtK × 8. Both the input size and output size of657

the second CL are 2 × NtK × 8. When parameter sharing is658

considered, the numbers of parameters in the first and second659

CL are 3 × 3 × 1 × 8 = 72(weights)+8(bias)= 80, and660

3×3×8×8+8 = 584, respectively, with a total of 664. When661

no parameter sharing is considered, the numbers of parameters662

in the two CLs are (2×NtK×8)×(3×3×1+1) = 160NtK663

and (2×NtK×8)×(3×3×8+1) = 1168NtK , respectively,664

with a total of 1328NtK . Adam optimizer [57] is used with665

the mean squared error based loss function. We adopt the666

sigmoid function in the last AC layer.667

We will compare the performance and running time of the668

following schemes when possible:669

1) The optimal solution to solve P2 using Knitro.670

2) The proposed subgradient algorithm (Algorithm 2) in671

Section III.672

3) The proposed solution based on learned λ and μ.673

4) The proposed solution based on learned μ only.674

5) ZF Solution [25].675

a) When Nt = K , pseudo inverse of the channel is 676

the optimal beamforming direction, i.e., 677

W̃ = H†(HT H†)−1, (31) 678

and the achievable SINR is ΓZF = minn
Pn

‖eT
nW̃‖2 . 679

The overall optimal beamforming matrix is given 680

by W =
√

ΓZF W̃. 681

b) However, when Nt > K , the optimal solution 682

relies on solving the following SOCP problem P7, 683

so the associated complexity is high: 684

P7: max
W,Γ

Γ 685

s.t.|hT
k wk|2 ≥ Γ, ∀k, 686

hT
k wj = 0, ∀k 
= j, 687

pn = ‖eT
nW‖2 ≤ Pn, ∀n. (32) 688

c) When Nt < K , there is no feasible ZF solution. 689

6) RZF Solution [58]. This is a low-complexity heuristic 690

solution that improves the performance of ZF especially 691

at the low SNR region. The beamforming direction is 692

given by: 693

W̃ = H†(HT H† + αIK×K)−1, (33) 694

where α = KN0�Nt
n=1 Pn

and the overall beamforming 695

matrix is given by W =
√

minn
Pn

‖eT
n W̃‖2 W̃. 696

For fair comparison, the convergence of all iterative algorithms 697

is achieved when the relative change of the objective function 698

values is below 10−8. All algorithms are implemented on an 699

Intel i7-7700U CPU with 32 GB RAM using Matlab R2017b. 700

One NVIDIA Titan Xp GPU is used to train the neural 701

network. 702

A. Simulation Results 703

We first compare the SINR and running time results for a 704

system with Nt = K = 4 in Fig. 3. In Fig. 3 (a), we can see 705

that both the proposed subgradient solution and the solution 706

based on learned μ can achieve close to optimal solution and 707

outperform the RZF solution and the ZF solution especially at 708

the low signal to noise (SNR) regime. As the SNR increases, 709

all solutions converge to the optimal solution. Fig. 3 (b) 710

shows that both of the proposed learning based solutions can 711

achieve more than an order of magnitude gain in terms of 712

computational time when compared to the optimal algorithm. 713

The proposed subgradient algorithm is more efficient than the 714

optimal solution using Knitro. ZF and RZF solutions have the 715

lowest possible complexity because there is no optimization 716

involved. In addition, we compare the robustness of various 717

schemes against channel errors in Fig. 4. The channel vectors 718

are modelled as hk = h̄k+σek, ∀k, where h̄k is the imperfect 719

channel estimate, ek ∼ CN (0, IN ) is the channel error vector 720

and σ2 is the variance of channel estimation error. As expected, 721

we can see that the channel estimation error causes degradation 722

of the SINR performance for all the solutions. However, 723

the results show that the proposed learning based solutions 724

and the optimal solution are very robust, but the performance 725

loss of the ZF and RZF beamforming is severe. 726
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Fig. 3. The performance and complexity of a system with Nt = K = 4
averaged over 5000 samples: (a) minimum SINR and (b) time consumption
per channel realization.

Next we demonstrate the scalability of the algorithms when727

Nt = K and the number of users varies from 2 to 10 when728

Pn = 10 dB in Fig. 5. As can be seen from Fig. 5 (a), as both729

the numbers of users and antennas increase, the achievable730

SINR first decreases and then increases. The performance of731

the ZF and RZF solutions drops quickly. As the number of732

users increases, both learning based solutions significantly out-733

perform the ZF solution and the performance gap is enlarged734

while their gap to the optimal solution remains constant.735

Fig. 5 (b) shows the complexity performance. The proposed736

algorithm that learns both λ and μ has a lower complexity.737

As the number of users increases, e.g., when K = 10,738

it can achieve nearly 50-fold gain in terms of computational739

time when compared to the optimal algorithm. The proposed740

algorithm that learns only μ achieves 0.5 dB higher SINR than741

that learns both λ and μ at the cost of slightly increased time742

complexity. Next we examine the SINR performance of the743

system using a more realistic 3GPP Spatial Channel Model744

(3GPP TR 25.996) [59] as shown in Fig. 6. We consider745

a scenario of urban micro cells and assume the distances746

between the BS and the users are between 50 m and 300 m and747

distributed uniformly. The total system bandwidth is 20 MHz.748

Similar trends of the algorithms are observed in Fig. 6 as749

those in Fig. 5 (a), and both learning based solutions still750

significantly outperform the RZF and the ZF solutions.751

We then consider the performance of a system with Nt = 10752

transmit antennas at the BS, and vary the number of users K753

Fig. 4. Effect of imperfect CSI on the performance of different schemes for
a system with Nt = K = 4 when Pn = 10 dB.

Fig. 5. The performance and complexity of an Nt = K system when
Pn = 10 dB, averaged over 5000 samples: (a) minimum SINR and (b) time
consumption per channel realization.

when Pn = 10 dB in Fig. 7 (a). It is noticed that there 754

is about 1 to 2 dB gap between the learned solutions and 755

the optimal solution, while the ZF solution is almost optimal 756

when Nt > K . However, from Fig. 7 (b), we can see that the 757

ZF solution has the highest complexity in this case because 758

its solution needs to be optimized via solving the SOCP 759

problem P7. The proposed algorithm that learns both λ and μ 760

achieves more than two orders of magnitude gain in terms of 761

computational complexity when compared to the ZF solution. 762

Next we demonstrate the generalization property of our 763

proposed algorithm that learns only μ. We train a model with 764

Nt = K = 10 only once, and then use it when Nt ≤ 10 765
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Fig. 6. The SINR performance an Nt = K system averaged over
5000 samples using the 3GPP Spatial Channel Model in an urban micro cell
environment when Pn = 30 dBm.

Fig. 7. The performance and complexity of a system with Nt = 10 and
varying K when Pn = 10 dB, over 5000 samples: (a) minimum SINR and
(b) time consumption per channel realization.

and K ≤ 10 vary. As shown in Fig. 8, it is observed the766

SINR performances of the optimal solution and the proposed767

generalization algorithm using the same model not only has768

the same trend with respect to the number of users, but also are769

close to each other. More specifically, the achieved SINRs of770

the two schemes decrease with the increase of the user number771

when the number of BS antennas is fixed. Such observation772

validates the feasibility of the training set augment method773

and motivates further research on improving the generalization774

of the proposed DL-based algorithms. Besides, we find that775

Fig. 8. The SINR performance with varying K and Nt using the same
trained system under Nt = K = 10.

Fig. 9. The implemented multiuser beamforming testbed system, where two
USRPs are combined to make a four-antenna transmitter and two USRPs are
used to emulate four single-antenna users.

adding more antennas can improve the SINR performance 776

because of the spatial gain. 777

B. Testbed Results 778

To evaluate the proposed learning-based algorithm in a real- 779

world scenario, we have implemented a multi-user beamform- 780

ing testbed system based on SDR in our lab environment. 781

1) Testbed Setup: The multi-user beamforming testbed sys- 782

tem is based on the SDR structure, which consists of one PC 783

hosting Matlab, a Gigabit Ethernet switch, four NI’s USRP 784

devices as transmitters or receivers and a CDA-2990 Clock 785

Distribution Device. The USRP devices and the Clock Distri- 786

bution Device for synchronization are illustrated in Fig. 9. 787

We adopt the SDR system since it provides a flexible 788

development environment as well as a practical prototype. 789

The USRP devices are exploited as the radio fronts in the 790

SDR system, which can support different interfacing methods 791

including PCIe and Gigabit Ethernet connections. Besides, 792

the USRP devices can support a wide range of baseband 793

signal processing platforms, including Matlab, Labview and 794

GNU Radio. The transmitters and receivers are implemented 795

using USRP-2950 devices, which support the Radio Frequency 796

(RF) range from 50MHz to 2.2GHz [60]. For the evaluation 797

purpose, the 900 MHz Industrial, Scientific and Medical (ISM) 798

frequency band is used. The key parameters of the multi-user 799

beamforming system are listed in Table I. 800

In the experiment, we consider the scenario consisting of 801

one BS with four transmit antennas and four single-antenna 802
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TABLE I

TESTBED SYSTEM CONFIGURATION

users, i.e., Nt = K = 4. We combine two USRP-2950 devices803

as a cooperative four-antenna transmitter and employ two804

USRP-2950 devices as four individual single-antenna users.805

All channels on the USRP devices are synchronized using the806

CDA-2990 Clock Distribution Device. The omnidirectional tri-807

band SMA-703 antennas are used for both the transmitters808

and the receivers, while the receiver antennas are extended809

using RF cables. Specifically, both static and dynamic channel810

conditions are examined to evaluate the proposed learning-811

based beamforming algorithms. For the static channel sce-812

nario, the transmitter antennas are placed next to each other813

with a space of 0.1 m, while the receiver antennas are placed814

1.5 m away from the transmitter antennas as well as from815

each other. For the dynamic scenario, a low-mobility scenario816

is simulated, where one of the receiving antennas is moving817

at the speed of 0.6 m/s. Besides, the experiment also exploit818

different transmitter powers to evaluate the algorithms’ perfor-819

mance in different SNR configurations, where 0 dB of transmit820

power gain corresponds to a transmit power of −70 dBm.821

Since the multi-user beamforming system coordinates several822

USRP devices as transmitters and receivers at the same time,823

a Gigabit Ethernet switch is used to enable multiple USRP824

interfacing.825

The baseband signal processing modules and the proposed826

learning-based beamforming algorithms are implemented as827

Matlab function scripts on a PC with 1 Intel i7-4790 CPU828

Core, and RAM of 32GB. In the experiment, all users are829

sharing the same channel and they all use the Quadrature830

Phase Shift Keying (QPSK) modulation. The payloads are831

prefixed with different Gold sequences for each user, which832

are exploited for both synchronization and channel estimation.833

Besides, all baseband signals are shaped using a Raised834

Cosine Filter. During the experiment, each user decodes its835

own payload and provides channel estimation as feedback to836

the transmitter. The transmitters and receivers are controlled837

using different Matlab sessions, while the channel estimation838

information is exchanged locally on the PC’s cache stor-839

age. The beamforming algorithms optimize the beam weight840

vectors using the aggregated channel estimation information.841

The transmitter applies the optimized beam weight vectors to842

generate the signals for each antenna before transmission.843

2) Experiment Results and Discussions: To demonstrate844

the performance of the proposed learning algorithm (based845

on learned λ and μ), three benchmark algorithms are846

Fig. 10. BER performance of the testbed experiments for 4 users, 4 BS
antennas scenario: (a) static channel condition, and (b) dynamic channel
condition.

implemented on the multi-user beamforming system, which 847

are the theoretically optimal solution, the ZF solution and 848

the RZF solution. Each algorithm is evaluated under both 849

static and dynamic conditions, and we choose bit error rate 850

(BER) as the performance metric. In order to generate the 851

BER performance of each solution, a real-time experiment is 852

conducted using the testbed illustrated in Fig. 9 with different 853

transmitter power. For each transmit power, the BS sends 104
854

packets each containing 256 QPSK symbols and the BER is 855

calculated based on the averaged bit error of all packets. 856

Fig. 10 depicts the BER results in the static and dynamic 857

channel conditions as the transmit power gain varies. Under 858

the static condition as shown in Fig. 10 (a), the proposed 859

learning-based algorithm outperforms the ZF solution and 860

RZF solution across the considered transmit power range. 861

Specifically, the BER performance gain of the learning based 862

algorithm is approximately 4 dB over the ZF solution and 863

3 dB over the RZF solution in the relatively low transmit 864

SNR regime, and this performance gain reduces as the transmit 865

SNR grows. Compared to the theoretically optimal solution, 866

the learning-based algorithm has a close performance in the 867

low transmit SNR regime but becomes inferior for high 868

transmit SNR conditions. This is expected because under 869
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TABLE II

TYPICAL TIME PERFORMANCE IN THE EXPERIMENT SCENARIO

static channel conditions, there is sufficient time to implement870

the theoretically optimal algorithm, therefore it achieves the871

best performance. However, the algorithms show difference872

BER performance under the dynamic channel conditions,873

as depicted in Fig. 10 (b). The learning-based algorithm out-874

performs all benchmark algorithms in the relatively medium to875

high SNR ranges, which corresponds to 0 to 12 dB in Fig. 10876

(b). It is worth noting that the learning-based algorithm is877

superior to the alleged theoretically optimal solution under878

dynamic channel conditions and in particular, the maximum879

achieved BER performance gain is approximately 1 dB over880

the theoretically optimal solution. This result is expected, and881

can be explained as follows. The beamforming algorithms882

require up to date CSI for optimization, but the computational883

delay of the theoretically optimal solution is considerably884

long, and by the time the solution is found, the channel885

would have changed. In other words, the theoretically optimal886

beamforming solution is optimized only based on the out-887

dated CSI, and therefore the mismatch leads to performance888

degradation, and the theoretically optimal performance can no889

longer be guaranteed. This can be verified by the typical time-890

consumption performance for the considered algorithms as891

illustrated in Table II. This performance degradation becomes892

worse when the channel conditions are dynamic than that893

in the static channel conditions as shown by Fig. 10(a) and894

Fig. 10(b). It is seen from Table II that the ZF and RZF895

solutions require much less computational time when optimiz-896

ing the beamforming weights, so the performance of the ZF897

solution is close to that of the theoretically optimal solution898

(degraded by operating on outdated CSI) in the experiment,899

and the RZF solution even outperforms the optimal solution.900

However, the BER performance of the ZF and RZF solutions is901

still inferior to that of the proposed learning-based algorithm.902

It is worth noticing that under both the static and dynamic903

channel conditions, the precise channel models are not known,904

so in the experiment, we resort to the trained neural network905

based on the small-scale fading for online learning of the906

beamforming solution. The results in Fig. 10 show that the907

trained network for one channel model generalizes well to908

cope with different channel conditions and this will greatly909

reduce the need to re-train the neural network.910

VI. CONCLUSION AND FUTURE DIRECTIONS911

In this paper, we have developed deep learning enabled912

solutions for fast optimization of downlink beamforming under913

the per-antenna power constraints. Our solutions are both914

model driven and data driven, and are achieved by exploiting915

the structure of the beamforming problem, learning the dual916

variables from labelled data and then recovering the original917

beamforming solutions. Our solutions can naturally adapt to918

the varying number of active users in dynamic environments919

without re-training thus making it more general. The simula- 920

tion results have shown the superior performance-complexity 921

tradeoff achieved by the proposed solutions, and the results 922

have been further verified by the testbed experiments using 923

software defined radio. 924

We would like to point out a few promising future direc- 925

tions. This paper assumes that perfect CSI is available; how- 926

ever in practice, CSI estimation is never perfect. One future 927

direction would be to investigate a more advanced robust learn- 928

ing framework to mitigate channel estimation errors or other 929

types of impairments. As a step further, another promising 930

future direction will be to study how to use deep learning to 931

map directly from the pilot signals to the beamformed signals, 932

bypassing the explicit channel estimation step. 933

In order to reduce computational complexity of the training 934

process when the channel conditions change, one possible 935

method is to use a wide range of channel realizations during 936

the off-line training phase, in order that the neural network can 937

learn to generalize from a wider range of channel variations. 938

Another approach is to employ transfer learning [52]. The 939

main idea is that knowledge learned from one training task 940

for a given channel condition may be transferred to a similar 941

training task for a different channel condition, and can help 942

train a new model with additional examples, which is worthy 943

of further study. 944

APPENDIX 945

A. Proof of the Convergence and Optimality of Algorithm 1 946

to Solve P4 947

The proof has two parts. The first part is devoted to the proof 948

of convergence and the second part addresses the uniqueness 949

and optimality of the fixed point after convergence. 950

Let us start with γ(j) (j ≥ 1) which is achievable for 951

the power vector λ(j). It is easily seen that given γ(j), 952

I(λ(j)) (user index k is omitted for convenience) is a standard 953

interference function, which satisfies the following properties 954

[54], [55]: 955

(P1) λ(j) is component-wise monotonically decreasing; 956

(P2) If λ ≥ λ′, then I(λ) ≥ I(λ′); 957

(P3) λ(j), for all j, are all feasible solutions given the SINR 958

constraint γ(j). 959

Assume that at the j-th iteration, the dual variable is λj
960

and the achievable SINR is γ(j). Then at the (j + 1)-th 961

iteration, according to (P1), λ̄
(j+1)
k ≤ λ

(j)
k ∀k, and as such 962

η ≥ 1 and λ̄
(j+1)
k ≤ λ

(j+1)
k ∀k in Step 4). According to P2, 963

in Step 5) we have the SINR result γk(λ(j+1)) > γk(λ̄(j+1)). 964

Then, according to (P3), γk(λ̄(j+1)) ≥ γ(j) ∀k, and therefore 965

γ(j+1) = mink γk(λ(j+1)) ≥ mink γk(λ̄(j+1)) ≥ γ(i), 966

i.e., the balanced SINR γ(j) is increasing as the iteration goes. 967

Since γ(j) is upper bounded, the algorithm converges to a 968
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fixed point λ(∞). Next, we prove that the fixed point is also969

optimal.970

We see that λ
(∞)
k satisfies the following fixed-point971

equation:972

λ
(∞)
k = γ(∞)Īk(λ(∞)) ∀k. (34)973

and it satisfies the total virtual uplink power is
∑

k λ
(∞)
k =974

1
N0

. Clearly, the total uplink transmit power is a monotonic975

non-decreasing function of the SINR constraint. This implies976

that there is no solution λ∗ which provides a strictly higher977

SINR γ∗ > γ(∞) but still maintains the power constraint978 ∑
k λ

(∞)
k = 1

N0
. �979

B. Proof that f(μ) of P4 is a Concave Function in μ980

Proof: First note that Algorithm 1 to solve P4 belongs981

to a fixed-point iteration, which means a solution {Γ, λ} that982

satisfies the first two constraints (9) and (10) with equality983

ensuring an optimal solution. This indicates there is no local984

optimum, and the gap between P4 and its dual problem is985

zero. Then it suffices to prove that the objective function of986

the dual problem of P4 is concave in μ.987

By using (11) of [23], we can rewrite P4 as988

P4’: f(μ) = max
Γ,λ

Γ989

s.t.
K∑

i=1

λih∗
i h

T
i +Diag(μ)−

(
1+

1
Γ

)
λkh∗

kh
T
k �0, ∀k,990

K∑
k=1

λkN0 = 1,991

λ ≥ 0. (35)992

Its Lagrangian is993

Lμ(Γ,λ, a,b, {Ck}) = Γ + a

(
K∑

k=1

λkN0 − 1

)
+ bTλ994

+
K∑

k=1

trace

((
K∑

i=1

λih∗
i h

T
i +Diag(μ)995

−
(

1+
1
Γ

)
λkh∗

kh
T
k

)
Ck)

)
, (36)996

where a,b, {Ck} are dual variables. Note that it is derived997

based on the maximization rather than the commonly used998

minimization of an objective function .999

The dual objective function is expressed as1000

Gμ(a,b, {Ck}) = minΓ,λ Lμ(Γ,λ, a,b, {Ck}) which1001

is to be minimized over (a,b, {Ck}) and only contains a1002

linear term of
∑K

k=1 trace (Diag(μ)Ck) about μ, and the1003

constraints of the dual problem (although not derived here)1004

do not involve μ. Therefore the dual objective function1005

min Gμ(a,b, {Ck}) is a point-wise minimum of a family1006

of affine functions about μ and as a result concave [61,1007

Sec.3.2.2], so is f(μ). This completes the proof. �1008

C. To Find the Subgradient Euclidean Projection 1009

in Algorithm 2 1010

The Euclidean projection is needed when the update of μ 1011

based on the subgradient in Algorithm 2 does not fall into 1012

the feasible set S. It needs to solve the following optimization 1013

problem: 1014

P5: min
ν

‖ν − μ‖2 s.t.
Nt∑

n=1

νnPn = 1, ν ≥ 0, (37) 1015

where μ = μ
(i)
k +αiDiag{‖eT

nW‖2}. Although P5 is a convex 1016

problem and can be solved by a standard numerical algorithm, 1017

below we derive its analytical property and propose a more 1018

efficient bisection algorithm to solve it. 1019

Its Lagrangian can be expressed as 1020

L = ‖ν − μ‖2 + x(
∑

νnPn − 1) −
∑

n

ynνn, (38) 1021

where x and yn ≥ 0 are dual variables. 1022

Setting its first-order derivative to be zero leads to 1023

νn =
2μn + yn − xPn

2
= max

(
2μn − xPn

2
, 0
)

. (39) 1024

Substitute it to
∑Nt

n=1

∑
νnPn = 1 and we get 1025

Nt∑
n=1

max
(

2μn − xPn

2
, 0
)

Pn = 1. (40) 1026

Therefore the remaining task is to find x that satisfies (40). 1027

Obviously the left hand side of (40) is monotonic in x, so we 1028

propose the following bisection method to find the optimal x. 1029

Algorithm 3 to Solve P5: 1030

1) Set the upper and lower bounds of x as xU and xL. 1031

Repeat the following steps until convergence. 1032

2) Calculate xt = xU+xL

2 . 1033

3) If
∑Nt

n=1 max
(

2μn−xtPn

2 , 0
)

Pn > 1, xL = xt; other- 1034

wise xU = xt. 1035
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Abstract— This paper studies fast downlink beamforming1

algorithms using deep learning in multiuser multiple-input-2

single-output systems where each transmit antenna at the base3

station has its own power constraint. We focus on the signal-to-4

interference-plus-noise ratio (SINR) balancing problem which is5

quasi-convex but there is no efficient solution available. We first6

design a fast subgradient algorithm that can achieve near-7

optimal solution with reduced complexity. We then propose a8

deep neural network structure to learn the optimal beamforming9

based on convolutional networks and exploitation of the duality10

of the original problem. Two strategies of learning various dual11

variables are investigated with different accuracies, and the cor-12

responding recovery of the original solution is facilitated by the13

subgradient algorithm. We also develop a generalization method14

of the proposed algorithms so that they can adapt to the varying15

number of users and antennas without re-training. We carry out16

intensive numerical simulations and testbed experiments to eval-17

uate the performance of the proposed algorithms. Results show18

that the proposed algorithms achieve close to optimal solution in19

simulations with perfect channel information and outperform the20

alleged theoretically optimal solution in experiments, illustrating21

a better performance-complexity tradeoff than existing schemes.22

Index Terms— Deep learning, beamforming, multiple-input-23

single-output (MISO), signal-to-interference-plus-noise ratio24

(SINR) balancing, per-antenna power constraints.25
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I. INTRODUCTION 26

MULTIUSER multi-antenna techniques (or multiple- 27

input multiple-output, MIMO) techniques can signifi- 28

cantly improve the spectral and energy efficiency of wireless 29

communications by exploiting the degree of freedom in the 30

spatial domain. They have been widely adopted in mod- 31

ern wireless communications systems such as the fourth 32

and the fifth-generation (4G and 5G) of cellular networks 33

[1], [2], the high efficiency wireless local area (WiFi) networks 34

standard 802.11ax [3], and the latest satellite digital video 35

broadcasting standard DVB-S2X [4]. Among the multiuser 36

MIMO techniques, beamforming is one of the most promising 37

and practical schemes to mitigate multiuser interference and 38

exploit the gain of MIMO antennas. 39

In the last two decades, the optimal beamforming strate- 40

gies have been intensively studied for the multiple-input 41

single-output (MISO) downlink where a base station with 42

multiple antennas serves multiple single-antenna users. For 43

instance, the problem of signal-to-interference-plus-noise ratio 44

(SINR) balancing or maximization of the minimum SINR 45

of all users, under a total power constraint was studied in 46

[5], [6], the total BS transmit power minimization problem 47

under quality of service (QoS) constraints was investigated in 48

[7]–[10], and the sum rate maximization problem under the 49

total power constraint was tackled in [6], [11]–[13]. The 50

existing approaches mainly make use of the advances of 51

convex optimization techniques such as second-order cone 52

programming (SOCP) [8], [9] and semidefinite program- 53

ming (SDP) [14], and the uplink-downlink duality which 54

indicates that under the sum power constraint, the achiev- 55

able SINR region and the normalized beamforming in 56

the downlink are the same as those in the dual uplink 57

channel. 58

Early works mostly focus on the optimal beamforming 59

design under the sum power constraint across all antennas of 60

a transmitter. This constraint does not take into account the 61

fact that each transmit antenna has its own power amplifier, 62

and therefore its power is individually limited. The per- 63

antenna power constraints were first systematically studied 64

in [15] where a dual framework was proposed to minimize the 65

1536-1276 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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maximum transmit power of each antenna under users’ SINR66

constraints. This work has sparked much research interest in67

optimizing beamforming under per-antenna power constraints.68

The work in [16] studied the optimization of the nonlinear69

zero forcing (ZF) dirty paper coding based beamforming under70

per-antenna power constraints. Generic optimization of beam-71

forming for multibeam satellite systems was studied in [17]72

under general linear and nonlinear power constraints. The73

per-antenna constant envelope precoding for large multiuser74

MIMO systems was investigated in [18]. The transceiver75

designs for multi-antenna multi-hop cooperative communi-76

cations under per-antenna power constraints were proposed77

in [19] and both linear and nonlinear transceivers were78

investigated. The signal-to-leakage-plus-noise ratio (SLNR)79

maximized precoding for the downlink under per-antenna80

power constraints was considered in [20] where a semi-closed81

form optimal solution was proposed. A general framework82

for covariance matrix optimization of MIMO systems under83

different types of power constraints was proposed in [21].84

More recently, the optimal MIMO precoding under the con-85

straints of both the total consumed power constraint and the86

individual radiated power constraints was studied in [22] and87

numerical algorithms were developed to maximize the mutual88

information.89

The problem of interest in this paper is to efficiently90

maximize the minimum received SINR or to balance SINR,91

in the multiuser MISO downlink under per-antenna power con-92

straints at the BS. This problem, although being quasiconvex,93

is more challenging than the counterpart with the total power94

constraint and the problem of minimizing the per-antenna95

power in [15], and until now there does not exist efficient96

algorithms. Consequently, existing beamforming techniques97

are unable to support real-time applications because the small-98

scale fading channel varies considerably fast. For instance, in a99

WLAN 802.11n system operating at 2.4 GHz with a pedestrian100

speed of 1.4 m/s, the coherence time is 89 ms; and in a Long-101

Term Evolution (LTE) downlink operating at 2.6 GHz with102

a residential area vehicle velocity of 10 m/s, the coherence103

time is only 11.5 ms. Traditional time-consuming optimization104

routines will produce obsolete beamforming solution that is105

not timely for the current channel state and lead to significant106

performance degradation which will be demonstrated in our107

experiment. In [23], the dual problem was derived and the108

optimal solution at much reduced computational cost was109

developed. However, it was found out that the best solution110

is obtained by a commercial nonlinear solver [24], which111

does not explore the structure of the problem and is still not112

efficient. Although there are simple heuristic beamforming113

solutions which have closed-form solutions such as the ZF114

beamforming and the regularized ZF (RZF) beamforming,115

the reduced complexity often leads to performance loss. Even116

worse, the work in [25] showed that the conventional ZF117

beamforming under per-antenna power constraints no longer118

admits a simple pseudo-inverse form as the case under the total119

power constraint, and instead the optimal ZF beamforming120

requires solving an SOCP problem which has much higher121

complexity.122

In this paper, we take a different approach and develop deep 123

learning (DL) enabled beamforming solutions to dramatically 124

improve the computational efficiency. Recently DL has been 125

recognized as a promising solution for addressing various 126

problems in several areas of wireless networks. This is because 127

deep neural networks have the ability to model highly non- 128

linear functions at considerably low complexity. One of the 129

areas of interest is to deal with scenarios in which the channel 130

model does not exist, e.g., in underwater and molecular 131

communications [26] or is difficult to characterize analyti- 132

cally due to imperfections and nonlinearities [27]. In these 133

situations, DL based detection has been proposed to tackle 134

the underlying unknown nonlinearities [28]. Another area of 135

interest is to optimize the end-to-end system performance 136

[29], [30]. Conventional communication systems are based 137

on the modular design and each block (e.g., coding, modu- 138

lation) is optimized independently, which can not guarantee 139

the optimal overall performance. However, DL holds great 140

promises for further improvement by considering end-to-end 141

performance optimization. The third area of interest is to 142

overcome the complexity of wireless networks [27] which 143

is the focus of our paper. In this aspect, DL has found 144

many exciting applications in wireless communications such 145

as channel decoding [31], [32], MIMO detection [33], [34], 146

channel estimation [35], [36]. The current work belongs to 147

the framework of learning to optimize in wireless resource 148

allocation. The rationale is that the DL technique bypasses 149

the complex optimization procedures, and learns the optimal 150

mapping from the channel state to produce the beamforming 151

solution directly by training a neural network. The result is that 152

the trained neural network can be used as a function mapping 153

to obtain the real-time beamforming solution with channel 154

state as input. As a result, the computational complexity is 155

transferred to offline training phase,1 and hence the complexity 156

during the online transmission phase is greatly reduced. The 157

mostly successful applications of DL in this framework by 158

far is power allocation [37]–[41], in which the power vector 159

is treated as the training output, while the channel gains 160

are taken into the input of the DL network. In this case, 161

the power variables only take positive values and the number 162

of power variables is normally the number of users and 163

therefore relatively small and easy to handle. 164

However, there are few works that focus on the learning 165

approach to optimize the beamforming design in multi-antenna 166

communications, with the exception of [42]–[47]. The diffi- 167

culty is partly due to the large number of complex variables 168

contained in the beamforming matrix that need to be opti- 169

mized. An outage-based approach to transmit beamforming 170

was studied in [42] to deal with the channel uncertainty at the 171

BS, however, only a single user was considered. The work 172

1To the best of our knowledge, the computational complexity of the training
phase is not well understood, due to the complex implementation of the
backpropagation process and that it depends very much on the specific
application regarding the required number of training examples for satisfactory
generalization. That said, this is usually not a concern in most applications
because training takes place offline given sufficient computational capability
and retraining is only performed infrequently when the specific applications
depart considerably from those training examples.
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in [43] designed a decentralized robust precoding scheme173

based on a deep neural network (DNN). The projection over a174

finite dimensional subspace in [43] reduced the difficulty, but175

also limited the performance. A DL model was used in [44]176

to predict the beamforming matrix directly from the signals177

received at the distributed BSs in millimeter wave systems.178

However, both [43] and [44] predicted the beamforming matrix179

in the finite solution space at the cost of performance loss.180

The works in [42], [45] directly estimated the beamforming181

matrix without exploiting the problem structure in which the182

number of variables to predict increases significantly as the183

numbers of transmit antennas and users increase. This will184

lead to high training complexity and low learning accuracy185

of the neural networks when the numbers of transmit anten-186

nas and users are large. In our previous works [46], [47],187

we proposed a beamforming neural network to optimize the188

beamforming vectors, but it is restricted to the total power189

constraint. We notice that none of existing works addressed190

the SINR balancing problem under the practical per-antenna191

power constraints, for which DL solution becomes even more192

attractive.193

In this paper, we propose a DL enabled beamforming194

optimization approach for SINR balancing to provide an195

improved performance-complexity tradeoff under per-antenna196

power constraints. Inspired by the model driven learning phi-197

losophy [48], we propose to first learn the dual variables with198

reduced dimension rather than the original large beamforming199

matrix and then recover the beamforming solution from the200

learned dual solution, by exploiting the structure or model of201

the beamforming optimization problem. Our main contribu-202

tions are summarized as follows:203

• A subgradient algorithm is first proposed which not only204

demonstrates faster convergence than the best known205

algorithm in [23], but also facilitates the development of206

the DL solutions.207

• A general DL structure to learn the dual variables is208

proposed, and two learning strategies are proposed to209

achieve the performance-complexity tradeoff. A heuristic210

method is developed to facilitate the generalization of the211

proposed DL algorithms by augmenting the training set212

so that they can adapt to the varying number of active213

users and antennas without re-training.214

• Both software simulations and testbed experiments using215

software defined radio (SDR) are carried out to val-216

idate the performance of the proposed algorithms.217

To the best of our knowledge, this is the first test-218

bed demonstration of deep learning enabled multiuser219

beamforming.220

The remainder of this paper is organized as follows.221

Section II introduces the system model and formulates the222

SINR balancing problem and its dual formulation. Section III223

proposes the subgradient algorithm. Section IV provides224

the general structure framework for the beamforming opti-225

mization based on learning the dual variables and the226

recovery algorithms. Numerical and experimental results are227

presented in Section V. Finally, conclusion is drawn in228

Section VI.229

Notations: The notations are given as follows. Matrices and 230

vectors are denoted by bold capital and lowercase symbols, 231

respectively. (·)T , (·)∗, (·)† and (·)−1 stand for transpose, 232

conjugate, conjugate transpose and inverse/pseudo inverse 233

(when applicable) operations of a matrix, respectively. A � 0 234

indicates that the matrix A is positive definite. The operator 235

diag(a) denotes the operation to diagonalize the vector a 236

into a matrix whose main diagonal elements are from a. 237

Finally, a ∼ CN (0,Σ) represents a complex Gaussian vector 238

with zero-mean and covariance matrix Σ. Z denotes the non- 239

negative field. 240

II. SYSTEM MODEL AND PROBLEM FORMULATION 241

Consider an MISO downlink channel where an Nt-antenna 242

BS transmits signals to K single-antenna users. For the user k, 243

its channel vector, beamforming vector, and data symbol are 244

denoted as hT
k ,wk, sk, respectively, where E(|sk|2) = 1. 245

The additive white Gaussian noise (AWGN) at the received 246

is denoted as nk ∼ CN (0, N0). All wireless links exhibit 247

independent frequency non-selective Rayleigh block fading. 248

The received signal at user k is 249

yk = hT
k

K∑
i=1

wisi + nk. (1) 250

The SINR at the receiver of user k is given by 251

γk =
|hT

k wk|2
K∑

i=1,i�=k

|hT
k wi|2 + N0

. (2) 252

The beamforming matrix is collected in W = 253

[w1,w2, · · · ,wK ] ∈ CNt×K . Then the per-antenna power at 254

antenna n can be expressed as 255

pn = ‖W(n, :)‖2 = ‖eT
nW‖2, (3) 256

where en is a zero vector except its n−th element 257

being 1. 258

The problem of interest is to maximize the minimum 259

user SINR, i.e., SINR balancing, under per-antenna power 260

constraints {Pn}. Mathematically, it can be formulated as 261

follows: 262

P1: max
W,Γ

Γ 263

s.t.γk =
|hT

k wk|2
K∑

i=1,i�=k

|hT
k wi|2 + N0

≥ Γ, ∀k, (4) 264

pn = ‖eT
nW‖2 ≤ Pn, ∀n. (5) 265

The SINR balancing problem is in general quasi-convex, 266

so it can be solved via methods such as bisection search 267

and generalized eigenvalue programming [8], [23]. How- 268

ever, these methods suffer from high complexity and com- 269

putational delay, and are not practical for real-time data 270

transmissions. 271
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In [23], a useful dual formulation of P1 is derived as272

P2: max
β,λ,μ

β273

s.t.βλkhT
k G(λ,μ)−1h∗

k ≤ 1, ∀k, (6)274

K∑
k=1

λkN0 = 1,275

Nt∑
n=1

μnPn = 1,276

λ,μ, β ≥ 0. (7)277

where G(λ,μ) �
∑K

i=1 λih∗
i h

T
i + Diag(μ), λ ∈ ZK ,μ ∈278

ZNt are dual variables associated with the SINR constraint (4)279

and the per-antenna power constraint (5) in P1, and β is related280

to the minimum SINR Γ in P1 by the relation β = 1+ 1
Γ . For281

the solution of P2, it is assumed that G(λ,μ) � 0.282

Although the problem P2 is still a quasi-convex problem,283

compared to the original problem P1, it can be more efficiently284

solved because it only involves K + Nt + 1 non-negative285

variables while P1 needs to optimize 2KNt real variables. The286

problem P2 can be solved using standard nonlinear solvers287

such as Matlab’s built-in function ‘fmincon’. Currently the288

fastest optimal solution is known to be achieved by Ziena’s289

nonlinear solver Knitro [24], which is compared and shown290

in [23]. However, the general solvers do not exploit the291

special analytical properties of the problem P2, so they are292

not efficient. In addition, it is not known how to recover the293

optimal solution to the beamforming matrix W∗ once P2 is294

solved. These issues will be studied in the next section.295

III. A SUBGRADIENT ALGORITHM TO SOLVE P2296

In this section, we derive a fast subgradient algorithm to297

solve P2, based on the downlink-uplink duality results derived298

in [15]. According to [15, Theorem 1], the problem P2 can299

be equivalently written as the following max-max problem:300

P3: max
μ

max
Γ,λ

Γ301

s.t.max
wk

λk|w̄†
kh

∗
k|2∑K

i=1,i�=k λi|w̄†
kh

∗
i |2+w̄†

k(Diag(μ))w̄k

≥Γ, ∀k,302

K∑
k=1

λk =
1

N0
,303

Nt∑
n=1

μkPn = 1,304

λ,μ, Γ ≥ 0. (8)305

P3 can be interpreted as the maximization of the minimum306

user SINR in the virtual uplink in which K single-antenna307

users transmit signals to the BS with the total power con-308

straint 1
N0

. The uncertain covariance matrix of the received309

noise vector is characterized by Diag(μ). The normalized310

receive beamforming at the BS for user k is denoted by311

w̄k = wk

‖wk‖ which has the same direction as the downlink312

transmit beamforming, while λk denotes the uplink transmit313

power of user k. Because the covariance matrix of the received314

noise vector Diag(μ) is also a variable, P3 is still difficult315

to solve. To tackle this problem, we first keep the variable μ 316

fixed, and then reach the sub-problem below: 317

P4: f(μ) = max
Γ,λ

Γ 318

s.t.max
wk

λk|w̄†
kh

∗
k|2∑K

i=1,i�=kλi|w̄†
kh

∗
i |2+w̄†

k(Diag(μ))w̄k

≥Γ, ∀k, 319

(9) 320

K∑
k=1

λkN0 = 1, (10) 321

λ, Γ ≥ 0. (11) 322

P4 can be interpreted as the nonlinear SINR balancing problem 323

with a total power constraint and colored noise with covariance 324

matrix Diag(μ). In the following, we propose an efficient 325

fixed-point iteration in Algorithm 1 below to solve P4. 326

Algorithm 1 to Solve P4: 327

1) Initialize λ that satisfies
∑K

k=1 λkN0 = 1. Suppose j 328

is the iteration index, and the achievable SINR in the 329

uplink is γ(j). Repeat the following steps 2)-5) until 330

convergence. 331

2) For each k, define Gk(λ,μ) �
∑K

i=1,i�=k λih∗
i h

T
i + 332

Diag(μ). 333

3) Solve an auxiliary variable λ̄k as 334

λ̄k = Ik(λ(j−1)) � γ(j) 1
hT

k Gk(λ,μ)−1h∗
k

, ∀k. 335

(12) 336

4) Normalize {λ̄k} to obtain {λk} as: 337

λk = λ̄kη, where η =
1∑K

i=1 λ̄iN0

. (13) 338

5) Calculate βk = 1
λkhT

k G(λ,μ)−1h∗
k

. Then update the 339

achievable SINR in the uplink as 340

γ(j) = min
k

1
βk − 1

. (14) 341

It can be proved that Algorithm 1 converges to the optimal 342

solution of P4. The proof is similar to [53, Theorem 11.1] and 343

a refined version is provided in Appendix A for completeness. 344

The optimal uplink beamforming for a given μ can be 345

derived according to the minimum mean square error (MMSE) 346

criterion: 347

w̄k =
Gk(λ,μ)−1h∗

k

‖Gk(λ,μ)−1h∗
k‖

, ∀k. (15) 348

With the inner maximization problem P4 solved for given μ, 349

we can obtain the objective function value f(μ). Next we solve 350

the outer maximization of μ using a subgradient projection 351

algorithm, where the subgradient can be found using the 352

downlink beamforming obtained from the normalized uplink 353

beamforming. 354

As proved in Appendix B, f(μ) is a concave function 355

in μ. A subgradient of μn can be expressed as ‖eT
nW‖2

356

because μn is the dual variable associated with the n-th 357

antenna power constraint. The proof is omitted. Based on this 358

result, we propose the following subgradient based algorithm 359

[15], [49] to solve P3. 360
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Algorithm 2 to Solve P3:361

1) Initialize μ. Suppose j is the iteration index. Repeat the362

following steps 2)-7) until convergence.363

2) Given μ, call Algorithm 1 to find the optimal λ̄.364

3) Calculate βk = 1
λkhT

k G(λ̄,μ)−1h∗
k

. Then update the365

achievable SINR in the uplink as366

γ(j) = min
k

1
βk − 1

. (16)367

4) Find the optimal normalized uplink beamforming368

w̄k =
Gk(λ̄,μ)−1h∗

k

‖Gk(λ̄,μ)−1h∗
k‖

, ∀k. (17)369

5) Find the downlink power {pk} to achieve the SINR γ(j),370

i.e., to solve the following linear equation set:371

pk|hT
k w̄k|2

K∑
i=1,i�=k

pi|hT
k w̄i|2 + N0

= γ(j), k = 1, . . . , K. (18)372

6) Update the downlink beamforming vector as wk =373 √
pkw̄k and W = [w1, · · · ,wK ].374

7) Update μ using the subgradient Euclidean projection375

method with step size αj :376

μ(j+1) = PS{μ(j)
k + αjDiag{‖eT

nW‖2}}, (19)377

where S = {μ|∑Nt

n=1 μnPn = 1}.378

This projection PS can be solved efficiently using the379

bisection search. The detailed projection algorithm is380

provided in Algorithm 3 of Appendix C.381

8) Regulate the downlink beamforming. Update the beam-382

forming vector as follows to satisfy all per-antenna383

power constraints:384

W(n, :) = W(n, :)

√
min

n

Pn

‖eT
nW‖2

, ∀n. (20)385

Remarks: The subgradient algorithm exploits the structure386

of the original problem P1, so it is more efficient than a387

general nonlinear solver. However, the step size αj is a critical388

parameter. We find that αj = 0.01 × 2−j gives a satisfactory389

performance. We observe that in general Algorithm 2 can solve390

P3 faster than the available numerical solver such as Knitro391

and achieve close to optimal performance, which can be seen392

in Fig. 1(a) and will be verified using simulation results in393

Section V. However, there is no guarantee that a subgradient394

algorithm converges to the exact optimal solution. It may only395

converge to the neighbourhood of the optimal solution, and its396

convergence may be slow, as seen in Fig. 1(b). In addition,397

the subgradient algorithm may not guarantee that the per-398

antenna power constraints will be satisfied, and that is why399

Step 8) of Algorithm 2 is necessary to regulate the per-antenna400

power.401

Another important implication of the development of402

Algorithm 2 is that it provides an efficient way to recover403

the primal variable, i.e., the downlink beamforming vectors,404

given various dual variables either μ and λ, or only μ. The405

details will be given in the next section.406

Fig. 1. Comparison of convergence behaviours of the sub-gradient algorithm
(Algorithm 2) and the optimal solution using Knitro for two channel instances.
The per-antenna power constraint is 10 dB. (a)Nt = K = 2 and the sub-
gradient algorithm shows faster convergence; (b) Nt = K = 4 and the
sub-gradient algorithm experiences slower convergence and converges only
to the neighbourhood of the optimal solution.

IV. THE PROPOSED DEEP LEARNING STRUCTURE 407

AND STRATEGIES 408

In this section, we develop DL based solutions of P1 that 409

can achieve better performance-efficiency tradeoff than the 410

currently available solutions. Instead of learning to optimize 411

the original beamforming matrix W directly, we will learn the 412

optimization of the dual variables in P2. This will dramatically 413

reduce the number of variables that need to be learned. In the 414

sequel, we will first introduce a general DL structure that takes 415

the channel h = [hT
1 , · · · ,hT

k ]T as the input, and the output 416

is the dual variable(s) in P2. We will also devise a generalized 417

learning solution such that the proposed DL structure can 418

deal with varying number of users and antennas and transmit 419

power without re-training. We will then propose two learning 420

strategies, i.e., one is to learn the dual variables μ and λ 421

with fast recovery of the original beamforming solution, and 422

the other is to learn only the dual variable μ with improved 423

learning accuracy, to achieve various tradeoffs. 424

A. A General DL Structure 425

We first show the existence of a neural network that can 426

approximate the solution of the optimization problem P2. 427

To this end, we define μopt and λopt as two tensors with the 428
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optimized dual variables μ and λ, respectively. The neural429

network aims to learn the continuous mapping430

F(h,μ0) = {μopt,λopt}, (21)431

where μ0 is the initialization set of dual variables and F(·, ·)432

denotes the continuous mapping process in Algorithm 2 to433

achieve the stationary point from the input set of channel434

coefficients together with the initialization set of dual vari-435

ables. The following theorem will prove the existence of a436

feedforward network which imitates the continuous mapping437

in (21).438

Theorem 1: For any given accuracy ε > 0, there exists439

a positive constant L large enough such that a feedforward440

neural network with L layers can produce similar performance441

to the mapping process in (21), i.e.,442

suph,ψ||NETL(h,ψ) −F(h,μ0)||F ≤ ε, (22)443

where ψ is the set of the neural network parameters including444

weights and biases.445

Proof: The result in Theorem 1 can be obtained directly446

by applying the universal approximation theorem in [50] to447

the continuous mapping in Algorithm 2. �448

Based on results in Theorem 1, next we find solutions449

through designing the neural networks with the DL tech-450

nique. Similar to our previous work [47], we introduce a451

general DL structure to approximate the mapping function452

from the channel coefficients to the beamforming solutions,453

as shown in Fig. 2. In addition to the conventional neural454

network module, the adopted DL structure also introduces455

a signal processing module based on expert knowledge for456

beamforming recovery from the key features, such as the dual457

variables λ and μ in problem P2. Predicting the beamforming458

matrix directly may lead to high complexity since the number459

of the variables in the beamforming matrix depends on both460

the number of users K and the number of BS antennas Nt.461

Thus instead of predicting the beamforming matrix directly,462

we predict some key features (i.e., the dual variables μ and λ)463

whose variables are much less than those in the beamforming464

matrix. Then these key features are used to recover the465

beamforming matrix in the signal processing module.466

The adopted DL structure takes the convolutional neural467

network (CNN) architecture as the backbone because the468

parameter sharing adopted in the CNN can reduce the number469

of the learned parameters when compared to a fully-connected470

DNN. Moreover, CNN is well known to be effective for471

extracting features, which will benefit the generation of the472

beamforming solution using the channel features. The adopted473

DL structure includes two main modules: the neural network474

module and the signal processing module [51]. Here we give a475

short description about the two modules, and for more details476

readers are referred to [47].477

1) Neural Network Module: The neural network module is478

a data-driven approach to approximate the mapping function479

from the complex channels to the key features. In addition480

to the input and output layers, the neural network module481

also includes convolutional (CL) layers, batch normalization482

(BN) layers, activation (AC) layers, a flatten layer, and a483

fully-connected (FC) layer. The input of the neural network484

Fig. 2. A DL-based learning structure for the optimization of downlink
beamforming, which includes two main modules: the neural network module
and the signal processing module. The neural network module consists of
convolutional (CL) layers, batch normalization (BN) layers, activation (AC)
layers, a fully-connected (FC) layer, and so on. However, the functionalities
in the signal processing module, as well as the key features input, are abstract,
which are specified by the expert knowledge.

module is the complex channel coefficients, which are not 485

supported by the current neural network software. To address 486

this issue, we separate the complex channel vector h = 487

[hT
1 , · · · ,hT

K ]T ∈ CNK×1 into two components R(h) and 488

I(h) and form the new input [R(h), I(h)]T ∈ R2×NtK , 489

where R(h) and I(h) contain the real and imaginary parts 490

of each element in h, respectively. Each CL layer consists 491

of many filters which apply convolution operations to the 492

layer input, capture special patterns and pass the result to the 493

next layer. The parameters of the filters are shared among 494

different channel coefficients. The main function of the BN 495

layers is to normalize the output of the CL layers by two 496

trainable parameters, i.e., a “mean” parameter and a “standard 497

deviation” parameter. Besides, the BN layers can reduce the 498

probability of over-fitting and enable a higher learning rate. 499

AC layers help neural networks extract the useful informa- 500

tion and suppress the insignificant points of the input data. The 501

rectified linear unit (ReLU) and sigmoid functions are suitable 502

choices for the last AC layer, since the predicted variables are 503

continuous and positive numbers. The function of the flatten 504

layer is to change the shape of its input into a vector for the FC 505

layer to interpret. In addition to these functional layers, the loss 506

function, marked ‘MSE/MAE’ on the output layer in Fig. 2, 507

is also very important in the introduced DL structure. The 508

mean absolute error (MAE) or the mean square error (MSE) 509

is used in the loss function to update parameters. The loss 510

function together with the learning rate determines how to 511

update the parameters of the neural network module. 512

2) Signal Processing Module: The neural network module 513

offers universality in learning the key features from data, while 514

the signal processing module aims to recover the beamforming 515

matrix from the predicted key features at the output layer. 516

Different from the neural network module whose model is 517

unknown, the signal processing module utilizes the (par- 518

tially) known models of the data to recover the beamforming 519

matrix. The learned key features and the functionalities in 520

the signal processing module are designated according to the 521

expert knowledge. Note that the expert knowledge is problem- 522

dependent and has no unified form, but what is in common is 523

that the expert knowledge can significantly reduce the number 524

of variables to be predicted compared to the beamforming 525

matrix [47]. For example, the dual forms of the original 526

problems are the typical expert knowledge for beamforming 527
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optimization. The details of the signal processing module used528

to recover the beamforming matrix is provided in the next two529

subsections.530

B. To Learn λ and μ and the Recovery Algorithm531

With the above proposed general DL structure, we need532

to decide which features of dual optimization variables in533

P2 will be learned, and what signal processing function is534

needed to recover the beamforming matrix. The first option is535

to learn both λ and μ, so the output has K + Nt variables.536

Once they are learned, the following algorithm with steps537

taken from Algorithm 2 can be used to find a feasible538

beamforming solution that satisfies the per-antenna power539

constraints.540

Algorithm 4: To recover W from λ and μ541

1) Given the learned solution of λ and μ, Calculate βk =542

1
λkhT

k G(λ,μ)−1h∗
k

. Then update the achievable SINR in543

the uplink as544

γ = min
k

1
βk − 1

. (23)545

2) Find the optimal normalized uplink beamforming as546

w̄k =
Gk(λ,μ)−1h∗

k

‖Gk(λ,μ)−1h∗
k‖

, ∀k. (24)547

3) Find the downlink power {pk} to achieve the SINR γ,548

i.e., to solve the following linear equation set:549

pk|hT
k w̄k|2

K∑
i=1,i�=k

pi|hT
k w̄i|2 + N0

= γ∗, k = 1, . . . , K. (25)550

4) Update the downlink beamforming vector as wk =551 √
pkw̄k and W = [w1, · · · ,wK ].552

5) Regulate the downlink beamforming. Update the beam-553

forming vector as follows to satisfy all per-antenna554

power constraints:555

W(n, :) = W(n, :)

√
min

n

Pn

‖eT
nW‖2

, ∀n. (26)556

C. To Learn μ Only and the Recovery Algorithm557

The above learning strategy is straightforward and fast if the558

learning result is satisfactory, however, the learning accuracy559

can be much improved if the number of variables is reduced.560

This motivates us to use the proposed DL structure to learn561

only the dual variable μ with output size of Nt, which562

contains K less variables than the above approach that learns563

both λ and μ. The idea of this approach is that given μ,564

the optimal λ can be efficiently optimized using Algorithm 2,565

which is more accurate than the learning approach above.566

An additional advantage is that the output size does not depend567

on the number of users, so it can more easily adapt to the568

varying number of users. Once μ is learned, the following569

algorithm with steps taken from Algorithm 2 can be used570

to derive a feasible beamforming solution to the original571

problem P1.572

Algorithm 5: To recover W from μ 573

1) Given the learned solution μ, call Algorithm 1 to find 574

the optimal λ̄. 575

2) Calculate βk = 1
λkhT

k G(λ̄,μ)−1h∗
k

. Then update the 576

achievable SINR in the uplink as 577

γ = min
k

1
βk − 1

. (27) 578

3) Find the optimal normalized uplink beamforming as 579

w̄k =
Gk(λ̄,μ)−1h∗

k

‖Gk(λ̄,μ)−1h∗
k‖

, ∀k. (28) 580

4) Find the downlink power {pk} to achieve the SINR γ, 581

i.e., to solve the following linear equation set: 582

pk|hT
k w̄k|2

K∑
i=1,i�=k

pi|hT
k w̄i|2 + N0

= γ(i), k = 1, . . . , K. (29) 583

5) Update the downlink beamforming vector as wk = 584√
pkw̄k and W = [w1, · · · ,wK ]. 585

6) Regulate the downlink beamforming. Update the beam- 586

forming vector as follows to satisfy all per-antenna 587

power constraints: 588

W(n, :) = W(n, :)

√
min

n

Pn

‖eT
nW‖2

, ∀n. (30) 589

D. Generalization of the Proposed DL Structure 590

In this section, we will generalize the proposed universal 591

DL so that it can adapt to the change of the number of users 592

and antennas. Although the above DL approaches can achieve 593

satisfactory performance for beamforming design, applying the 594

DL approaches to practical applications faces the difficulties 595

caused by the dynamic wireless networks. In other words, 596

when the number of transmit antennas Nt or the number of 597

users K changes, a new model should be trained for prediction. 598

This fact suggests that the applicability of the DL approaches 599

is limited. Transfer learning and training set augmentation 600

are effective ways to improve the generalization. The former 601

transfers an existing model to a new scenario with some 602

additional training and labelling effort [52], whereas the latter 603

aims to train a large-scale model which adapts to different 604

Nt and K by adding more samples into the training set, 605

so that the training set can cover more possible scenarios. In 606

this work, we adopt the latter method for simplicity. Without 607

losing generality, we take the DL approach to learning μ only 608

as an example and give more details about the training set 609

augmentation method. 610

In the training set augmentation method, we aim to train a 611

large-scale model with 2N ′
tK

′-input and N ′
t-output. In order 612

to make the large-scale model adaptable to different Nt and 613

K values, we generate an augmented training set. Different 614

from the training set whose samples have the same Nt and K 615

values, the samples in the augmented training set are diverse, 616

i.e., the numbers of the transmit antennas and the numbers 617

of users in different samples could vary. However, the size of 618

each sample is fixed as 2N ′
tK

′-input and N ′
t-output. For the 619
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cases where Nt < N ′
t (or K < K ′), the redundant N ′

t − Nt620

rows (or K − K0 columns) of the channel matrix are filled621

with 0’s. Similarly, the redundant N ′
t −Nt elements of output622

are set as 0 when Nt < N ′
t . In each sample, we assume each623

K ∈ {1, 2, · · · , K ′} is generated with the equal probability of624

1
K′ and each Nt ∈ {1, 2, · · · , N ′

t} is generated with the equal625

probability of 1
N ′

t
. Therefore, the occurrence probabilities of626

different K values are statistically equal among all samples627

and so are different Nt values. It is suggested that the number628

of the samples in the augmented training set for the large-scale629

model should be 5-10 times as many as that in the training set630

with fixed Nt and K values. However, this approach works631

only if the number of users or antennas does not exceed the632

maximum values used in the training set, otherwise re-training633

will be needed.634

V. PERFORMANCE EVALUATION635

Both simulations and experiments are carried out to evaluate636

the performance of the proposed DL enabled beamforming637

optimization. We assume that all channel entries undergo638

independent and identically distributed Rayleigh flat-fading639

with zero mean and unit variance unless otherwise specified,640

and perfect CSI is available at the BS. All transmit power is641

normalized by the noise power.642

The training samples (dual variables) are generated by solv-643

ing the problem P2 using Knitro for its stability and efficiency,644

but can also be generated by solving the problem P1 using645

the bisection search method at the cost of more computational646

time during the offline training. In our simulation, we use647

20000 training samples and 5000 testing samples, respectively.648

All of proposed DL networks have one input layer, two CL649

layers, two BN layers, three AC layers, one flatten layer, one650

FC layer, and one output layer. Besides, each CL layer has651

8 kernels of size 3 × 3 and the first two AC layers adopt the652

ReLU function. Each CL applies stride 1 and zero padding653

1 such that the output width and height of all CLs remain654

the same as those of the input [56]. To be specific, the input655

size of the first CL is 2 × NtK × 1 and the output size656

is 2 × NtK × 8. Both the input size and output size of657

the second CL are 2 × NtK × 8. When parameter sharing is658

considered, the numbers of parameters in the first and second659

CL are 3 × 3 × 1 × 8 = 72(weights)+8(bias)= 80, and660

3×3×8×8+8 = 584, respectively, with a total of 664. When661

no parameter sharing is considered, the numbers of parameters662

in the two CLs are (2×NtK×8)×(3×3×1+1) = 160NtK663

and (2×NtK×8)×(3×3×8+1) = 1168NtK , respectively,664

with a total of 1328NtK . Adam optimizer [57] is used with665

the mean squared error based loss function. We adopt the666

sigmoid function in the last AC layer.667

We will compare the performance and running time of the668

following schemes when possible:669

1) The optimal solution to solve P2 using Knitro.670

2) The proposed subgradient algorithm (Algorithm 2) in671

Section III.672

3) The proposed solution based on learned λ and μ.673

4) The proposed solution based on learned μ only.674

5) ZF Solution [25].675

a) When Nt = K , pseudo inverse of the channel is 676

the optimal beamforming direction, i.e., 677

W̃ = H†(HT H†)−1, (31) 678

and the achievable SINR is ΓZF = minn
Pn

‖eT
nW̃‖2 . 679

The overall optimal beamforming matrix is given 680

by W =
√

ΓZF W̃. 681

b) However, when Nt > K , the optimal solution 682

relies on solving the following SOCP problem P7, 683

so the associated complexity is high: 684

P7: max
W,Γ

Γ 685

s.t.|hT
k wk|2 ≥ Γ, ∀k, 686

hT
k wj = 0, ∀k 
= j, 687

pn = ‖eT
nW‖2 ≤ Pn, ∀n. (32) 688

c) When Nt < K , there is no feasible ZF solution. 689

6) RZF Solution [58]. This is a low-complexity heuristic 690

solution that improves the performance of ZF especially 691

at the low SNR region. The beamforming direction is 692

given by: 693

W̃ = H†(HT H† + αIK×K)−1, (33) 694

where α = KN0�Nt
n=1 Pn

and the overall beamforming 695

matrix is given by W =
√

minn
Pn

‖eT
n W̃‖2 W̃. 696

For fair comparison, the convergence of all iterative algorithms 697

is achieved when the relative change of the objective function 698

values is below 10−8. All algorithms are implemented on an 699

Intel i7-7700U CPU with 32 GB RAM using Matlab R2017b. 700

One NVIDIA Titan Xp GPU is used to train the neural 701

network. 702

A. Simulation Results 703

We first compare the SINR and running time results for a 704

system with Nt = K = 4 in Fig. 3. In Fig. 3 (a), we can see 705

that both the proposed subgradient solution and the solution 706

based on learned μ can achieve close to optimal solution and 707

outperform the RZF solution and the ZF solution especially at 708

the low signal to noise (SNR) regime. As the SNR increases, 709

all solutions converge to the optimal solution. Fig. 3 (b) 710

shows that both of the proposed learning based solutions can 711

achieve more than an order of magnitude gain in terms of 712

computational time when compared to the optimal algorithm. 713

The proposed subgradient algorithm is more efficient than the 714

optimal solution using Knitro. ZF and RZF solutions have the 715

lowest possible complexity because there is no optimization 716

involved. In addition, we compare the robustness of various 717

schemes against channel errors in Fig. 4. The channel vectors 718

are modelled as hk = h̄k+σek, ∀k, where h̄k is the imperfect 719

channel estimate, ek ∼ CN (0, IN ) is the channel error vector 720

and σ2 is the variance of channel estimation error. As expected, 721

we can see that the channel estimation error causes degradation 722

of the SINR performance for all the solutions. However, 723

the results show that the proposed learning based solutions 724

and the optimal solution are very robust, but the performance 725

loss of the ZF and RZF beamforming is severe. 726
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Fig. 3. The performance and complexity of a system with Nt = K = 4
averaged over 5000 samples: (a) minimum SINR and (b) time consumption
per channel realization.

Next we demonstrate the scalability of the algorithms when727

Nt = K and the number of users varies from 2 to 10 when728

Pn = 10 dB in Fig. 5. As can be seen from Fig. 5 (a), as both729

the numbers of users and antennas increase, the achievable730

SINR first decreases and then increases. The performance of731

the ZF and RZF solutions drops quickly. As the number of732

users increases, both learning based solutions significantly out-733

perform the ZF solution and the performance gap is enlarged734

while their gap to the optimal solution remains constant.735

Fig. 5 (b) shows the complexity performance. The proposed736

algorithm that learns both λ and μ has a lower complexity.737

As the number of users increases, e.g., when K = 10,738

it can achieve nearly 50-fold gain in terms of computational739

time when compared to the optimal algorithm. The proposed740

algorithm that learns only μ achieves 0.5 dB higher SINR than741

that learns both λ and μ at the cost of slightly increased time742

complexity. Next we examine the SINR performance of the743

system using a more realistic 3GPP Spatial Channel Model744

(3GPP TR 25.996) [59] as shown in Fig. 6. We consider745

a scenario of urban micro cells and assume the distances746

between the BS and the users are between 50 m and 300 m and747

distributed uniformly. The total system bandwidth is 20 MHz.748

Similar trends of the algorithms are observed in Fig. 6 as749

those in Fig. 5 (a), and both learning based solutions still750

significantly outperform the RZF and the ZF solutions.751

We then consider the performance of a system with Nt = 10752

transmit antennas at the BS, and vary the number of users K753

Fig. 4. Effect of imperfect CSI on the performance of different schemes for
a system with Nt = K = 4 when Pn = 10 dB.

Fig. 5. The performance and complexity of an Nt = K system when
Pn = 10 dB, averaged over 5000 samples: (a) minimum SINR and (b) time
consumption per channel realization.

when Pn = 10 dB in Fig. 7 (a). It is noticed that there 754

is about 1 to 2 dB gap between the learned solutions and 755

the optimal solution, while the ZF solution is almost optimal 756

when Nt > K . However, from Fig. 7 (b), we can see that the 757

ZF solution has the highest complexity in this case because 758

its solution needs to be optimized via solving the SOCP 759

problem P7. The proposed algorithm that learns both λ and μ 760

achieves more than two orders of magnitude gain in terms of 761

computational complexity when compared to the ZF solution. 762

Next we demonstrate the generalization property of our 763

proposed algorithm that learns only μ. We train a model with 764

Nt = K = 10 only once, and then use it when Nt ≤ 10 765



IEE
E P

ro
of

10 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

Fig. 6. The SINR performance an Nt = K system averaged over
5000 samples using the 3GPP Spatial Channel Model in an urban micro cell
environment when Pn = 30 dBm.

Fig. 7. The performance and complexity of a system with Nt = 10 and
varying K when Pn = 10 dB, over 5000 samples: (a) minimum SINR and
(b) time consumption per channel realization.

and K ≤ 10 vary. As shown in Fig. 8, it is observed the766

SINR performances of the optimal solution and the proposed767

generalization algorithm using the same model not only has768

the same trend with respect to the number of users, but also are769

close to each other. More specifically, the achieved SINRs of770

the two schemes decrease with the increase of the user number771

when the number of BS antennas is fixed. Such observation772

validates the feasibility of the training set augment method773

and motivates further research on improving the generalization774

of the proposed DL-based algorithms. Besides, we find that775

Fig. 8. The SINR performance with varying K and Nt using the same
trained system under Nt = K = 10.

Fig. 9. The implemented multiuser beamforming testbed system, where two
USRPs are combined to make a four-antenna transmitter and two USRPs are
used to emulate four single-antenna users.

adding more antennas can improve the SINR performance 776

because of the spatial gain. 777

B. Testbed Results 778

To evaluate the proposed learning-based algorithm in a real- 779

world scenario, we have implemented a multi-user beamform- 780

ing testbed system based on SDR in our lab environment. 781

1) Testbed Setup: The multi-user beamforming testbed sys- 782

tem is based on the SDR structure, which consists of one PC 783

hosting Matlab, a Gigabit Ethernet switch, four NI’s USRP 784

devices as transmitters or receivers and a CDA-2990 Clock 785

Distribution Device. The USRP devices and the Clock Distri- 786

bution Device for synchronization are illustrated in Fig. 9. 787

We adopt the SDR system since it provides a flexible 788

development environment as well as a practical prototype. 789

The USRP devices are exploited as the radio fronts in the 790

SDR system, which can support different interfacing methods 791

including PCIe and Gigabit Ethernet connections. Besides, 792

the USRP devices can support a wide range of baseband 793

signal processing platforms, including Matlab, Labview and 794

GNU Radio. The transmitters and receivers are implemented 795

using USRP-2950 devices, which support the Radio Frequency 796

(RF) range from 50MHz to 2.2GHz [60]. For the evaluation 797

purpose, the 900 MHz Industrial, Scientific and Medical (ISM) 798

frequency band is used. The key parameters of the multi-user 799

beamforming system are listed in Table I. 800

In the experiment, we consider the scenario consisting of 801

one BS with four transmit antennas and four single-antenna 802
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TABLE I

TESTBED SYSTEM CONFIGURATION

users, i.e., Nt = K = 4. We combine two USRP-2950 devices803

as a cooperative four-antenna transmitter and employ two804

USRP-2950 devices as four individual single-antenna users.805

All channels on the USRP devices are synchronized using the806

CDA-2990 Clock Distribution Device. The omnidirectional tri-807

band SMA-703 antennas are used for both the transmitters808

and the receivers, while the receiver antennas are extended809

using RF cables. Specifically, both static and dynamic channel810

conditions are examined to evaluate the proposed learning-811

based beamforming algorithms. For the static channel sce-812

nario, the transmitter antennas are placed next to each other813

with a space of 0.1 m, while the receiver antennas are placed814

1.5 m away from the transmitter antennas as well as from815

each other. For the dynamic scenario, a low-mobility scenario816

is simulated, where one of the receiving antennas is moving817

at the speed of 0.6 m/s. Besides, the experiment also exploit818

different transmitter powers to evaluate the algorithms’ perfor-819

mance in different SNR configurations, where 0 dB of transmit820

power gain corresponds to a transmit power of −70 dBm.821

Since the multi-user beamforming system coordinates several822

USRP devices as transmitters and receivers at the same time,823

a Gigabit Ethernet switch is used to enable multiple USRP824

interfacing.825

The baseband signal processing modules and the proposed826

learning-based beamforming algorithms are implemented as827

Matlab function scripts on a PC with 1 Intel i7-4790 CPU828

Core, and RAM of 32GB. In the experiment, all users are829

sharing the same channel and they all use the Quadrature830

Phase Shift Keying (QPSK) modulation. The payloads are831

prefixed with different Gold sequences for each user, which832

are exploited for both synchronization and channel estimation.833

Besides, all baseband signals are shaped using a Raised834

Cosine Filter. During the experiment, each user decodes its835

own payload and provides channel estimation as feedback to836

the transmitter. The transmitters and receivers are controlled837

using different Matlab sessions, while the channel estimation838

information is exchanged locally on the PC’s cache stor-839

age. The beamforming algorithms optimize the beam weight840

vectors using the aggregated channel estimation information.841

The transmitter applies the optimized beam weight vectors to842

generate the signals for each antenna before transmission.843

2) Experiment Results and Discussions: To demonstrate844

the performance of the proposed learning algorithm (based845

on learned λ and μ), three benchmark algorithms are846

Fig. 10. BER performance of the testbed experiments for 4 users, 4 BS
antennas scenario: (a) static channel condition, and (b) dynamic channel
condition.

implemented on the multi-user beamforming system, which 847

are the theoretically optimal solution, the ZF solution and 848

the RZF solution. Each algorithm is evaluated under both 849

static and dynamic conditions, and we choose bit error rate 850

(BER) as the performance metric. In order to generate the 851

BER performance of each solution, a real-time experiment is 852

conducted using the testbed illustrated in Fig. 9 with different 853

transmitter power. For each transmit power, the BS sends 104
854

packets each containing 256 QPSK symbols and the BER is 855

calculated based on the averaged bit error of all packets. 856

Fig. 10 depicts the BER results in the static and dynamic 857

channel conditions as the transmit power gain varies. Under 858

the static condition as shown in Fig. 10 (a), the proposed 859

learning-based algorithm outperforms the ZF solution and 860

RZF solution across the considered transmit power range. 861

Specifically, the BER performance gain of the learning based 862

algorithm is approximately 4 dB over the ZF solution and 863

3 dB over the RZF solution in the relatively low transmit 864

SNR regime, and this performance gain reduces as the transmit 865

SNR grows. Compared to the theoretically optimal solution, 866

the learning-based algorithm has a close performance in the 867

low transmit SNR regime but becomes inferior for high 868

transmit SNR conditions. This is expected because under 869
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TABLE II

TYPICAL TIME PERFORMANCE IN THE EXPERIMENT SCENARIO

static channel conditions, there is sufficient time to implement870

the theoretically optimal algorithm, therefore it achieves the871

best performance. However, the algorithms show difference872

BER performance under the dynamic channel conditions,873

as depicted in Fig. 10 (b). The learning-based algorithm out-874

performs all benchmark algorithms in the relatively medium to875

high SNR ranges, which corresponds to 0 to 12 dB in Fig. 10876

(b). It is worth noting that the learning-based algorithm is877

superior to the alleged theoretically optimal solution under878

dynamic channel conditions and in particular, the maximum879

achieved BER performance gain is approximately 1 dB over880

the theoretically optimal solution. This result is expected, and881

can be explained as follows. The beamforming algorithms882

require up to date CSI for optimization, but the computational883

delay of the theoretically optimal solution is considerably884

long, and by the time the solution is found, the channel885

would have changed. In other words, the theoretically optimal886

beamforming solution is optimized only based on the out-887

dated CSI, and therefore the mismatch leads to performance888

degradation, and the theoretically optimal performance can no889

longer be guaranteed. This can be verified by the typical time-890

consumption performance for the considered algorithms as891

illustrated in Table II. This performance degradation becomes892

worse when the channel conditions are dynamic than that893

in the static channel conditions as shown by Fig. 10(a) and894

Fig. 10(b). It is seen from Table II that the ZF and RZF895

solutions require much less computational time when optimiz-896

ing the beamforming weights, so the performance of the ZF897

solution is close to that of the theoretically optimal solution898

(degraded by operating on outdated CSI) in the experiment,899

and the RZF solution even outperforms the optimal solution.900

However, the BER performance of the ZF and RZF solutions is901

still inferior to that of the proposed learning-based algorithm.902

It is worth noticing that under both the static and dynamic903

channel conditions, the precise channel models are not known,904

so in the experiment, we resort to the trained neural network905

based on the small-scale fading for online learning of the906

beamforming solution. The results in Fig. 10 show that the907

trained network for one channel model generalizes well to908

cope with different channel conditions and this will greatly909

reduce the need to re-train the neural network.910

VI. CONCLUSION AND FUTURE DIRECTIONS911

In this paper, we have developed deep learning enabled912

solutions for fast optimization of downlink beamforming under913

the per-antenna power constraints. Our solutions are both914

model driven and data driven, and are achieved by exploiting915

the structure of the beamforming problem, learning the dual916

variables from labelled data and then recovering the original917

beamforming solutions. Our solutions can naturally adapt to918

the varying number of active users in dynamic environments919

without re-training thus making it more general. The simula- 920

tion results have shown the superior performance-complexity 921

tradeoff achieved by the proposed solutions, and the results 922

have been further verified by the testbed experiments using 923

software defined radio. 924

We would like to point out a few promising future direc- 925

tions. This paper assumes that perfect CSI is available; how- 926

ever in practice, CSI estimation is never perfect. One future 927

direction would be to investigate a more advanced robust learn- 928

ing framework to mitigate channel estimation errors or other 929

types of impairments. As a step further, another promising 930

future direction will be to study how to use deep learning to 931

map directly from the pilot signals to the beamformed signals, 932

bypassing the explicit channel estimation step. 933

In order to reduce computational complexity of the training 934

process when the channel conditions change, one possible 935

method is to use a wide range of channel realizations during 936

the off-line training phase, in order that the neural network can 937

learn to generalize from a wider range of channel variations. 938

Another approach is to employ transfer learning [52]. The 939

main idea is that knowledge learned from one training task 940

for a given channel condition may be transferred to a similar 941

training task for a different channel condition, and can help 942

train a new model with additional examples, which is worthy 943

of further study. 944

APPENDIX 945

A. Proof of the Convergence and Optimality of Algorithm 1 946

to Solve P4 947

The proof has two parts. The first part is devoted to the proof 948

of convergence and the second part addresses the uniqueness 949

and optimality of the fixed point after convergence. 950

Let us start with γ(j) (j ≥ 1) which is achievable for 951

the power vector λ(j). It is easily seen that given γ(j), 952

I(λ(j)) (user index k is omitted for convenience) is a standard 953

interference function, which satisfies the following properties 954

[54], [55]: 955

(P1) λ(j) is component-wise monotonically decreasing; 956

(P2) If λ ≥ λ′, then I(λ) ≥ I(λ′); 957

(P3) λ(j), for all j, are all feasible solutions given the SINR 958

constraint γ(j). 959

Assume that at the j-th iteration, the dual variable is λj
960

and the achievable SINR is γ(j). Then at the (j + 1)-th 961

iteration, according to (P1), λ̄
(j+1)
k ≤ λ

(j)
k ∀k, and as such 962

η ≥ 1 and λ̄
(j+1)
k ≤ λ

(j+1)
k ∀k in Step 4). According to P2, 963

in Step 5) we have the SINR result γk(λ(j+1)) > γk(λ̄(j+1)). 964

Then, according to (P3), γk(λ̄(j+1)) ≥ γ(j) ∀k, and therefore 965

γ(j+1) = mink γk(λ(j+1)) ≥ mink γk(λ̄(j+1)) ≥ γ(i), 966

i.e., the balanced SINR γ(j) is increasing as the iteration goes. 967

Since γ(j) is upper bounded, the algorithm converges to a 968
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fixed point λ(∞). Next, we prove that the fixed point is also969

optimal.970

We see that λ
(∞)
k satisfies the following fixed-point971

equation:972

λ
(∞)
k = γ(∞)Īk(λ(∞)) ∀k. (34)973

and it satisfies the total virtual uplink power is
∑

k λ
(∞)
k =974

1
N0

. Clearly, the total uplink transmit power is a monotonic975

non-decreasing function of the SINR constraint. This implies976

that there is no solution λ∗ which provides a strictly higher977

SINR γ∗ > γ(∞) but still maintains the power constraint978 ∑
k λ

(∞)
k = 1

N0
. �979

B. Proof that f(μ) of P4 is a Concave Function in μ980

Proof: First note that Algorithm 1 to solve P4 belongs981

to a fixed-point iteration, which means a solution {Γ, λ} that982

satisfies the first two constraints (9) and (10) with equality983

ensuring an optimal solution. This indicates there is no local984

optimum, and the gap between P4 and its dual problem is985

zero. Then it suffices to prove that the objective function of986

the dual problem of P4 is concave in μ.987

By using (11) of [23], we can rewrite P4 as988

P4’: f(μ) = max
Γ,λ

Γ989

s.t.
K∑

i=1

λih∗
i h

T
i +Diag(μ)−

(
1+

1
Γ

)
λkh∗

kh
T
k �0, ∀k,990

K∑
k=1

λkN0 = 1,991

λ ≥ 0. (35)992

Its Lagrangian is993

Lμ(Γ,λ, a,b, {Ck}) = Γ + a

(
K∑

k=1

λkN0 − 1

)
+ bTλ994

+
K∑

k=1

trace

((
K∑

i=1

λih∗
i h

T
i +Diag(μ)995

−
(

1+
1
Γ

)
λkh∗

kh
T
k

)
Ck)

)
, (36)996

where a,b, {Ck} are dual variables. Note that it is derived997

based on the maximization rather than the commonly used998

minimization of an objective function .999

The dual objective function is expressed as1000

Gμ(a,b, {Ck}) = minΓ,λ Lμ(Γ,λ, a,b, {Ck}) which1001

is to be minimized over (a,b, {Ck}) and only contains a1002

linear term of
∑K

k=1 trace (Diag(μ)Ck) about μ, and the1003

constraints of the dual problem (although not derived here)1004

do not involve μ. Therefore the dual objective function1005

min Gμ(a,b, {Ck}) is a point-wise minimum of a family1006

of affine functions about μ and as a result concave [61,1007

Sec.3.2.2], so is f(μ). This completes the proof. �1008

C. To Find the Subgradient Euclidean Projection 1009

in Algorithm 2 1010

The Euclidean projection is needed when the update of μ 1011

based on the subgradient in Algorithm 2 does not fall into 1012

the feasible set S. It needs to solve the following optimization 1013

problem: 1014

P5: min
ν

‖ν − μ‖2 s.t.
Nt∑

n=1

νnPn = 1, ν ≥ 0, (37) 1015

where μ = μ
(i)
k +αiDiag{‖eT

nW‖2}. Although P5 is a convex 1016

problem and can be solved by a standard numerical algorithm, 1017

below we derive its analytical property and propose a more 1018

efficient bisection algorithm to solve it. 1019

Its Lagrangian can be expressed as 1020

L = ‖ν − μ‖2 + x(
∑

νnPn − 1) −
∑

n

ynνn, (38) 1021

where x and yn ≥ 0 are dual variables. 1022

Setting its first-order derivative to be zero leads to 1023

νn =
2μn + yn − xPn

2
= max

(
2μn − xPn

2
, 0
)

. (39) 1024

Substitute it to
∑Nt

n=1

∑
νnPn = 1 and we get 1025

Nt∑
n=1

max
(

2μn − xPn

2
, 0
)

Pn = 1. (40) 1026

Therefore the remaining task is to find x that satisfies (40). 1027

Obviously the left hand side of (40) is monotonic in x, so we 1028

propose the following bisection method to find the optimal x. 1029

Algorithm 3 to Solve P5: 1030

1) Set the upper and lower bounds of x as xU and xL. 1031

Repeat the following steps until convergence. 1032

2) Calculate xt = xU+xL

2 . 1033

3) If
∑Nt

n=1 max
(

2μn−xtPn

2 , 0
)

Pn > 1, xL = xt; other- 1034

wise xU = xt. 1035
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