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Abstract

The w production amplitude in the #~p — wn reaction seems to be sharply sup-
pressed near threshold, despite remaining isotropic and consistent with S-wave
production. Furthermore, the ratio of the 77 *#° and 7% decay channels of the
w is constant. The threshold suppression is also seen in the pd — 3Hew process.
Theoretical models are studied which might lead to such abrupt behaviour.

The effect of final-state interactions between the w decay products and the
recoil neutron (nucleus) has been investigated in a simple semi-classical model and
a more realistic quantum mechanical one. The results of the former reproduced
well the near-threshold suppression, as well as the scale in energy of the effect.
On the other hand, the quantum model, where only the radiative decay channel
is considered, produced a 9% reduction, which is significantly smaller than the
70% observed experimentally.

An attractive 7n interaction, which leads to the formation of the N*(1535)
S-wave resonance, enhances the 7 production in #”p — nn near threshold. A
similar w — n resonance might also be possible if the w and the neutron inter-
acted via an attractive potential, but such a system may be destroyed due to the
short lifetime of the w. This is an alternative threshold suppression mechanism
which is independent of the w decay channel. This hypothesis was studied by
deriving a dynamical wn interaction amplitude which was fit using the scatter-
ing parameters of the elastic 7n channel, as the corresponding wn ones are not
known. The effect of a short lifetime was then investigated by assuming the ¢
to have a width equals to that of the w. Two different models, which could lead
to an S-wave resonance production, were adopted. A two-term S-wave separable

non-local potential was first considered. The Schrédinger equation was solved,
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and a dynamical wn interaction amplitude extracted, but this could not describe
the data. A plausible description is obtained when the resonance is trapped as
a virtual state in a multi-channel system. Three channels were considered, #n,
n~p and KA, and an nn interaction amplitude derived. Introducing an 7 lifetime
equal to that of the w does indeed greatly reduce the enhancement near threshold,
and the effect is most important at low energies.

As an alternative approach, the amplitude of the overall pd — 3He w reaction
has been expressed in terms of pp — wtd and 7*n — wp intermediate amplitudes
using a two-step quantum model. Such a model reproduces the rapid rise from
threshold, showing that the reduction effect can propagate from the 7~ p to the
pd case. Furthermore, it is shown that the multiple scattering of the w off the
nucleons in 3He, which might lead to a threshold enhancement, is suppressed

through the w decaying before it is multiply scattered.
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Chapter 1

Introduction

The near-threshold production of mesons and mesonic resonances in pion and
proton-induced reactions has been studied in many experiments. However, there
are severe complications when interpreting such data in cases where the meson
produced is unstable and has an energy width comparable to the available energy
in the final state. There are easily quantifiable effects, due to the final state
phase space ‘eating’ into the width of the resonance, and corrections for this are
normally carried out in the original experimental analysis when production cross
sections are extracted. Even after accounting for such effects, experimental results
show a striking energy dependence near threshold. It is the aim of this work to
study different mechanisms which might lead to such non-smooth behaviour.

The w resonance is a perfect candidate for such a study as it has a narrow
width (8.43 MeV [1]), which makes it relatively easy to identify the corresponding
peak in particle or nuclear production. Furthermore, there have been extensive
measurements of its production at low energies in 7~ p — wn [2, 3] and pd — *Hew
[4, 5]. In both reactions the experimental results show a sharp suppression in the
near-threshold region.

This thesis may be divided into four main parts. The first concentrates on



the properties of the w and its production near threshold. The former is done
in chapter 2, where we discuss the w features within the framework of the quark
model. We also derive the decay matrix element for the dominant decay mode
w — wtr~ 7% Although more emphasis is laid on the w resonance, the 5 particle
is also discussed, as its production amplitude in #~p — nn plays a vital role in
later chapters. Chapter 3 is entirely devoted to a review of the experimental
results concerning the near-threshold w production. Here, we reconstruct some
of the experimentalists’ discussions and briefly present some of the models they
applied to explain their results.

The second part (chapters 4-5) tries to explain the reduction effect in terms
of final-state interactions involving the w-decay products and the recoil neutron
(nucleus). This is first done in a simple semi-classical model using a Monte-Carlo
simulation of the decay followed by final state interactions. Here, the w mass is
assumed to be always on shell, and its basic production amplitude is taken to
be in an S-wave. On the other hand, the model takes account of the w’s finite
lifetime and its decay probability distribution. Furthermore, the scattering of the
decay products off the target nucleon (nucleus) is treated as that of macroscopic
hard spheres. In chapter 5 we study the same effect in a more realistic quantum
mechanical model which, unlike the semi-classical one, views the w as a virtual
particle, and all interaction amplitudes are calculated using quantum mechanical
formalism. Here, for simplicity, we only consider the 7~p — wn process, where
the w decays radiatively, w — 7%y. Although the pion-nucleon interaction is P-
wave dominated, we first derive the easier S-wave rescattering before moving on to
the more complex P-wave case. Working in the limit where the 7~ p interaction

at the initial production vertex is point-like, we make a rough estimate of the



suppression effect at the resonance energy.

The 5 production in #~p — 7n is enhanced due to an attractive (resonant)
nn interaction manifested in the formation of the N*(1535) S-wave resonance.
Experimental results [2, 6] show that the wn system from the #~p — wn reaction
to be in an S-wave. This leaves open the possibility that an S-wave w—n resonance
system could be formed if an attractive interaction between the w and the neutron
were possible. But such a system may then be destroyed due to the short lifetime
of the w. This is an alternative suppression mechanism which is independent
of the w decay channel. As a consequence it might explain the experimental
observation [3] that the branching ratio of the w — 7*7~7° and w — 7%y decay
channels seems to be constant. In chapter 6 we investigate this hypothesis by
developing an attractive (resonant) dynamical wn interaction amplitude, which
is then used to investigate the finite w width on the resonance formation.

The fact that the w particle can decay via strong interactions makes it difficult
to obtain an experimentally determined wn amplitude. Since our primary aim is
to investigate the effect of a finite lifetime on the formation of a resonance, we
might be justified in replacing the parameters of the wn elastic channel by the
corresponding nn ones. There is in fact little alternative to making this crude
ansatz. The effect of the finite width is then investigated by assuming a fictitious
n particle with a width equals to that of the w.

A one-term attractive S-wave potential does not support resonances. Con-
sequently, in chapter 6 we adopt two different mechanisms which might lead to
S-wave resonance production. In section 6.2 a two-term S-wave non-local poten-
tial, one attractive and the other repulsive, is considered. With such a potential we

derive the wn interaction amplitude by solving the Schrodinger equation. A more
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successful description is however obtained in section 6.3, where we suggest that
the resonance is trapped as a virtual state in a multi-channel scattering model.
Three channels are here considered, n, #7p and KA and, using multi-channel
scattering formalism, we derive an amplitude for the nn elastic scattering. This
is then used to investigate the finite lifetime effect on the production amplitude.

The pd — 3Hen reaction has previously been studied by considering double-
scattering graphs in a quantum mechanical model [7]. In this model, the reaction
is assumed to proceed in two stages. A pion beam created on one of the target nu-
cleons via pp — drxt is converted into an 7-meson on the second nucleon through
a mwtn — np reaction. After including strong final state interactions between the
produced 5 and ®He, an enhancement factor of 2.2 was obtained near threshold.
This is due to the  undergoing multiple scattering by the nucleons in the *He
nucleus.

Unlike the 7, the w will be scattered once or at the most twice before it decays,
especially at low energies. This is likely to kill the final-state related enhancement
observed in the 7 case. In chapter 7 we modify the above model to take account
of the finite w lifetime, and study quantitatively its effect on the enhancement
factor near threshold. In chapter 8, we apply the formalism of their two-step
quantum model to express the w production amplitude in the overall pd — 3Hew
reaction in terms of the amplitudes corresponding to pp — dnt and #*tn — wp
intermediate reactions. This might shed light on whether the suppression effect
can propagate from the 7~p to the pd case, or if a common cause is behind the
reduction in both reactions. The conclusions follow in chapter 9 where, as well as
arguing that no one mechanism is sufficient to explain the experimental results,

we discuss other possibilities that might engender a reduction effect.
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Chapter 2
The w Meson

2.1 The w properties

The quark model successfully predicted the existence of two low-lying S-wave
meson families which have been observed experimentally. One family is made
up of nine particles with spin-parity J* = 0~ and is known as the pseudoscalar
nonet, 7, K, n and n'. The other is the vector meson nonet whose members have
spin-parity J¥ = 1~. The particles of this group, p, K*, w and ¢, can all decay
vta strong interactions and are seen as resonances in e.g 7w scattering.

The w is a bound state of a linear combination of two quark-antiquark pairs.

In terms of these, it is given by,

w= \/g(uaerJ).

The masses of the u and d quarks are almost equal. Then, in analogy with the
proton and the neutron, they are viewed as different states of the same particle as
an isospin doublet. Thus both quarks are assigned an isospin quantum number
I = 1/2, while the value of the third component I3 is 1/2 for the u quark, and
—1/2 for the d. For antiquarks, the sign of I3 is reversed, so that the @ and
d antiquarks have I3 = —1/2 and a 1/2 respectively. Consequently, the w has

I =13 = 0 and so it is an antisymmetric isosinglet.
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The 5 has the same quark constituents as the w, and its wave function is,

n= \/%(uﬁ+dj).

Despite this, the two mesons have different masses; M,, = 782 MeV/c? and M,
= 549 MeV/c? This can be ascribed to the hyperfine interaction [8]. Consider
two charged point fermions with magnetic dipole moments j; and f; separated
by a distance r;;. The magnetic interaction energy is proportional to ; - ji;/r};
[8]. For two particles in a relative S-state, the averaged interaction energy over

all space is zero except at the origin. Now for a Dirac point-like fermion,

- € .

ﬂizz a;,

where e; and m; are the electric charge and mass of the particle, &; its spin vector.

The interaction energy due to this dipole-dipole interaction is then

§E = 2T &€
3 m;m;

| 9(0) | 7: - 5, (2.1.1)
with 9(0) being the wave function of the two particle system at r;; = 0. The
numerical factor arises from the angular integration for the S-state wave. This
leads to an energy difference of ~ 1 MeV in the quark case, which is significantly

smaller than the 233 MeV/c? observed mass difference between the w and the 7.

However, the colour magnetic interaction, which is of the same form as eq. (2.1.1)

except that electric charges are replaced by colour charges, gives rise to much
larger interaction energy. The numerical coefficient in the expression for §E de-
pends on whether the interaction is between a quark pair or a quark-antiquark

pair. These expressions are [8]

8ra,

S§E(qq) = | %(0) |* 6; - 75, (2.1.2)

9m,~mj
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ira,

02 &-d;, 2.1.3
s | SO [ 555 (2.1.3)

6E(qq) =

where a, is the strong coupling constant. The size and sign of § E depends on the
relative quark spin orientation. Denoting the spin vectors of the quarks by s; and
3; and the total spin by S=3+ 3;, we get
6",'-6"3‘ 243’,'-5} 22{ S(S+1)—3;(8.;+1)—8j(3j+1)}
=+41lfor S =1,
=—-3for S=0.
The w is a spin-triplet state (quark spins are parallel), while the 7 is a spin-

singlet one (quark spins antiparallel). So taking m = m, ~ mq =~ 310 MeV/c?

we get
5Ew = _52 )
m
and
K
Hence
M, =2m+ = (2.1.4)
and
_ K
M, =2m — 3;’_—7,-5 , (2.1.5)
where
8ra,
K== 40)

It should however be noted that the 7 is also thought to have an 83 component,
which also contributes to the mass difference between the two particles.
The w was one of the first meson resonances to be discovered, and was found

in an analysis of proton-antiproton annihilation into five pions,

pp — mrtw
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w—->7r_1r+7r°,

as a sharp peak in the 7~ 7+ 70 effective mass distribution. The absence of cor-
responding peaks in the 77 77 7~ and #* 7~ 7~ spectra confirms the zero isospin
of the w.

The three pion decay mode is dominant, with a branching ratio of 90%. The

average w width T, = 8.43 4 0.10 MeV/c? [1], corresponds to a mean lifetime of
T =k/T, = (7.81 £ 0.09) x 107% sec.

This is considerably shorter than the 7 lifetime of 2 x 107!° sec. The short
w lifetime indicates that it can decay via strong interactions. However, it is
found that there is a 9% probability for the w to decay via the electromagnetic
interactions, as

w— 7y,
Other less important decay channels include,

+

w—T T,

and

w—e et

In what follows, we shall concentrate only on the dominant three-pion decay
channel and the 9% radiative decay mode. The kinematics of the electromagnetic
decay are simple since the 7% and the v are produced back-to-back with equal and
opposite momenta in the w rest frame. However, the 90% decay mode is more

complicated and shall be studied in more detail below.
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2.2 Three Body Phase Space

The three body phase space integral may in general be written as [9],

/H ;; ) (15 - ZE) , (2.2.1)

where /s and P are the total energy and momentum. In the w rest frame P=0
and /s = M,,, where M,, is the w mass. In this frame, momentum conservation
implies that the final pion momenta are coplanar. Defining p_, p; and pp to be
the momenta of the 7—, 7%, % and E_, E,, E, the corresponding energies, we
get

P-+9+p=0, (2.2.2)
and

E_+E,+E=M,. (2.2.3)

In terms of the pion momenta and energies, the phase space integral can be

expressed as

&’p- &°py &po
- §EUB- + B + P —E,—E_—E).
? sz_ 2E, 2E, (P~ + P+ +90)8(vs—Ey — E 5)

Since the detection of a charged particle is easier than that of a neutral one, we

choose to integrate over py using the momentum §-function. This results in,

&’p- &°py
Q= /8E+E Eo5(‘/§_E+ —EB-—E),

where the m° energy is now fixed by,
E} =| Py +5- [P +mbo = pL +p +2p_py cos b + m3, (2:24)
and 6 is the angle between p_ and p;. We further write

d&*p_d’p, = p’ dp_dQ_pidp,dQ, , (2.2.5)
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where §1_ is the solid angle that describes the orientation of p_. with respect to
some fixed axis, while @, = (6, ¢) is that describing the orientation of g, relative

to p_. Substituting for d®p_d3p, into Q, and using eq. (2.2.5), results in

T 2 dp_dQ)_p? dp.d(cos b
Q:Z/p p-dQ_p} dp. d(cos 6)

) —-FE,—-E_ — 2.
E+E_E0 (\/‘; + Eo), (226)

where we have integrated over d¢ to get the last equation. To simplify further we

use,
E? = p} + m}, (2.2.7)
which gives
E dE_=p_dp_, (2.2.8)
and
E+dE+ = p+dp+ . (229)

Also, differentiating eq. (2.2.4) with respect to cos, we have

EodE,
P-P+

d(cos ) = (2.2.10)

The last equation is used to turn the integration over d(cosf) in eq. (2.2.6) to
one over dE,, enabling us to use the energy é-function. We finally arrive at an

expression for the phase space of the form,
Q= % / dE_dE,dQ_0(1 — cos?§) . (2.2.11)

The step function © defines the limits of the physically accessible regions in the

phase space. Using eq. (2.2.4), this requires

E}—p? —p2 —m?

1< < 41,
2p_py

17



A further limit on the phase space is found by considering the integration over

the energy é-function carried out in eq. (2.2.6). There we required that
Eo=(V/s—E;—E_).
Squaring both sides and using eq. (2.2.4) gives
Py + 92 +2p_pycosf+mi =(Vs—E, —E.).
Hence,

A(E? —m}_)(E} —mi:) = (2E_Ey —2/s(E_ 4+ Ey) + s +mp- +mpy —mh)* .

(2.2.12)
To get the last result we substituted cos§ = +1 and made use of eq. (2.2.7).
Eq. (2.2.12) represents a closed curve in the E_ — E plane and fixes the physical

region in phase space. Since we are working in the w rest frame, /s = M,,. In

terms of this variable the above equation reads

4E? —m2 ) (E}—-m2,)=(2E_E; —2M,(E- +E )+ M2 +m2_+m2, —mb)*.

(2.2.13)

2.3 The Decay Matrix Element

As strong interactions conserve isospin, the three pion final state must be anti-
symmetric under the exchange of any pair of pions, and must correspond to a
state with J = 1 as the total angular momentum is conserved. The matrix el-
ement describing the w decay into three pseudoscalar mesons must therefore be
totally antisymmetric and parity conserving. The Lorentz-invariant form of such

an element is [10]

T(s,, Py, Po, P_) = Goons €apys P2 P PY%(s,) (2.3.1)

18



where P, P,, P_ denote the 4-momenta of 7%, 7=, and 7°. The Levi-Civita

symbol, €,g4s, is totally antisymmetric in all four indices, each of which runs over
the values 0, 1, 2, 3.

In the w rest frame, eq. (2.3.1) reduces to

T(sz’p+:p—,p0) = qursé‘(sz) - "_i .

Here 7 is a vector that lies along the normal to the decay plane,
i = Ey(po X P-) + Eo(p- x p1) + E_(P+ X po) - (23.2)

G, .3 is the decay coupling constant, and the space components of the w polari-
sation vector é(s,) may be written as,
1
T
é(:t) = _ﬁ ’
0

and

0

e0)=101,
1

corresponding to s, = +1 and 0 respectively (s, is the spin projection in the w

rest frame). These vectors are orthonormal, z.e

£1(s:) - E(82) = Bur, (2:3.3)
and
ZS:-[(SZ)EJ'(SZ) = 5,',]' . (234)

When no information is recorded on the spin states of the incoming and out-

going particles, the resulting cross section is known as unpolarized. In order to
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allow for scattering in all possible spin configurations, we must average over the
spin states of the incoming particles and sum over the spin projections of the

particles in the final state. In our case,

1
2541

| T P~ 1T ] TP,

spins
where, for simplicity, we have written T'(s,, p;,po,p-) as T'. Since the w has s =

1, for the three pion decay we get,

2 2
T = e By oy macl(o) = 182 B s,

where summation over repeated indices is understood. This results in

[T ]2 =| Gums |7 . (2.3.5)

In the w rest frame, the momenta of the decay products are coplanar and their

total energy equals M,,. Hence
it = (B} + E_ + Eo)(p- X p4) = Mu(P- X P4),
The modulus squared of 7 is therefore given by,
| 7 |>= M2p2 p% sin® 6, (2.3.6)

where 6 is the angle between p_ and p,. Substituting for | 7 | in eq. (2.3.5), we

get a final expression for the matrix element, which is

| T |2 =| Gomo | M2p% P2 sin’ 4 . (2.3.7)

Now we are in a position to write down the decay rate of the w in terms of a

phase space element dQ, and | T' |2 namely,

r=[dQ[TP.

20



Using eq. (2.2.11) and eq. (2.3.7), T is given by,
= % | Gons |2 MZ‘/dE_dE+dQ_p3pi sin®§ (1 — cos®6) .

Here p? and pi are functions of E_ and E, and so we must write them in terms

of their corresponding energies using eq. (2.2.7). Our final expression reads,
T=7|Guw |* M2 /(EE —m2_)dE_(E% — m2,)dE, sin’? 0 ©(1 — cos*9) .
This is equivalent to,

_ 2 2 pr2 B, Ef ., .2 a2
P=n°|Gues |”" M. [ d 3 m.-E_| d 3 m,+ E; | sin®§ ©(1—cos®6) .

(2.3.8)
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Chapter 3

w Production Near Threshold

3.1 Experimental Data

The w-meson can decay via strong interactions. Therefore, it has a relatively
large width of 8.43 MeV/c? [1] compared to that of the 5, which has essentially
zero width. Therefore, when defining an w production amplitude, one has to state
clearly with respect to which mass, in the w spectrum, the amplitude is defined.
We shall briefly discuss the simpler 7 production amplitude before moving on to
the more difficult w case.

For the 7 production in the reaction #~p — nn, we can define an averaged

amplitude squared in terms of the c.m. differential cross section by,

2_?2 dO’
IFﬂI _p:’x(dﬂ*)’

where the phase space ratio of outgoing to incident centre-of-mass momenta has

been factored out. Experimentally, the # production seems to be enhanced in the
vicinity of its threshold, i.e. F), increases steadily as pj gets smaller.

Similarly, for the reaction 7~p — wn we can define an averaged square am-
plitude | F,, | which applies only to a narrow mass bin, AM say, in the w mass

spectrum. With this in mind, an experimental group [2] determined | F,, |? as
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a function of the incident beam energy. They implemented the ‘threshold cross-
ing technique’, which requires varying the pion beam momentum in very small
steps such that they scanned the whole of the w mass spectrum. Then, for each
value of the missing mass AM, the corresponding recoil neutron was detected as
the beam crossed a momentum value just above the threshold for its production.
The recoil neutrons were detected at a mean angle of 2.8° relative to the incident
pion beam. For each value of p this resulted in a peak profile, which had a
Breit-Wigner shape with a resonable width. With pj, fixed, the value of p; varied
slightly for the different mass bins.

%,

They defined an averaged amplitude squared, | £, |?, for the production of the

whole w state as the integral over the peak profile. i.e,

| fult= [ 1 Ful? dM .

For a narrow resonance, their definition implies that the cross section behaviour
with p} be the same for each mass interval within the resonance.

In contrast to the 5 case, the experimental results given in [3], which are
illustrated in fig. (3.1), show a rapid rise in o/p], from threshold to a maximum
value of about 8 mb/(GeV/c) at p}, =~ 160 MeV/c, decreasing thereafter. Despite
this, the data showed almost no forward/backward asymmetry up to p} =~ 140
MeV /¢, suggestive of S-wave production. It is crucial to note that the suppression
near threshold is in no way due to phase space cutting into the w width as this
was taken into account in the experimental analysis.

The experimental results [4, 5] illustrated in fig. (3.2) show the same type of

behaviour for the reaction pd — 3Hew.
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3.2 Experimentalists’ Analysis

In the dominant decay mode w — w7~ 7°, the pions have an average momentum
of 220 MeV/c in the w rest frame which, at threshold, coincides with that of
the neutron. This momentum is near the peak of the 7N cross section. For
P, = 20 MeV/c, the w and the neutron may have a total separation of =~ 1 fm
before the w decays. This is within the range of interaction with the neutron.
Thus, the probability of at least one of the decay pions interacting with the recoil
neutron is high. The rescattering of such a pion would almost certainly knock the
event out of the relatively narrow w peak and into the background continuum,
resulting in the determination of a lower cross section. Hence, the decay of an w
followed by Final State Interaction (F'SI) effects seems to be a possible cause of
the reduced production observed near threshold. To investigate this possibility

the experimental group adopted a simple model where they assumed;
1. The w production occurs in an S wave with respect to the neutron.

2. There is an effective distance R, such that all w’s decaying before
travelling this distance from the neutron are assumed to be associated
with scattered pions and hence be removed from the event rate. Those
decaying beyond R are not affected and therefore contribute to the

cross section.

Semiclassically, the probability of decay of the w as a function of the wn

separation ¢ can be written as,

P(2)  exp (=T, t) = exp (“1;“’ S (3.2.1)
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Here

-(2)
Myred
is the relative speed in the wn centre-of-mass frame, and

my, My
Myed = y
my +my,

is the reduced mass of the wn system. Therefore eq. (3.2.1) becomes

(3.2.2)

P(z) o exp (—F—QM) .

P
The factor I, m,q = 8.43 x 426.90 = 18.2 MeV/c fm~!. The experimental group
actually used a value of ~ 22 MeV/c fm™! corresponding to an w width of 10

MeV/c?, and found a good fit to their data with R = 1.5 fm. Thus, for I',, = 8.43

MeV/c? [1], R = 1.8 fm. The final expression for the decay probability is,

P(z) o exp (_ 18.2R) |

Po
where pJ, is measured in MeV/c.
The fit, shown in fig. (3.3), only reproduces the rapid rise from zero up to
P!, =~ 180 MeV/c, and does not try to explain the decrease in o/p] thereafter.
In their subsequent work [3], extra counters were introduced to differentiate
between the dominant w — w*7~7° and the 10% 7%y decay channels. Their new

results lead them to abandon the earlier decay hypothesis for two reasons;

1. The w width seemed to be independent of the value of p},. If decay +
FSI were important the width should perhaps be larger nearer thresh-

old where the decay is more likely to occur within the volume of radius

R.
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Figure 3.3: 7~ p — nw. o/p}, versus the centre-of-mass momentum p}. The solid
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R is 1.8 fm.
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2. The relative branching ratios of the above decay channels seemed to be
independent of p}, whereas one would expect the decay followed by the
FSI to be more important in the three-pion case than for the radiative
one due to the larger number of pions. A final-state interaction might
also distort the w mass spectrum, but no such effect was detected in

their experiment.

The group tried other models in the hope of explaining the do/dS2 behaviour,

which we shall outline below,

1. It was suggested that the effect could be caused by p exchange in
the t channel, due to the vanishing of the spin-flip term at threshold.
However, detailed study of the p-exchange model, conducted at the

time, showed that it could not explain the effect.

2. The group sought an alternative explanation in terms of the S-channel
partial-wave amplitudes. For a particular final-state orbital angular
momentum L, the contribution to the cross section as p}, — 0 behaves
as,

o o (pp)*

There was therefore an @ priori expectation that only S and P waves
would be important in their energy region. The rapid rise in o /p}, sug-
gests a significant contribution coming from the P waves. However, S
waves are also required as the data are inconsistent with a parabolic
rise from zero. However, they had to reconcile the inclusion of P
waves with their data which showed an almost isotropic cross section

normally associated with pure S-wave production. For the wn system,
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labeling the amplitudes by LL'(2S')(2J), where L and L' are the initial
and final orbital angular momenta, S’ is the final spin, and J is the to-
tal angular momentum, then the seven parity-conserving amplitudes
with L'=0or 1 and L = 0, 1, 2, or 3 are (SS11), (DS33), (PP11),
(PP31), (PP13), (PP33) and (FP35). Of the possible S- and P-wave
combinations, (SS11) + (PP31) and (DS33) + (PP11) can lead to the
observed isotropic angular distribution with suitable combinations of
coeflicients. They fit their data using a combination of S and P waves,
which resulted in good agreement with the data. Furthermore, their
fit corresponded to a surprisingly large P-wave contribution, domi-
nating over the S-wave even very close to threshold. As an example,
at p!, = 160 MeV/c, where | f, |* reaches it maximum, the S-wave
contribution to the cross section is 0.4 mb, while that of the P-wave is
0.85 mb. They speculated that the large P-wave contribution was due
to a w~p resonance coupling to the wn system near threshold. Now
considering the only two possible combinations (SS11) + (PP31) and
(DS33) + (PP11) that give an isotropic angular distribution, a possi-
ble candidate for the #~p resonance near threshold with J = % and L
= 1 is the P11(1720). They suggested that the resonance couples to
the P-wave parts of the allowed amplitude combinations above. This
hypothesis is not completely satisfactory as the resonance would be
expected to feed both (PP31) and (PP11) amplitudes, resulting in an
interference with a final-state S-wave amplitude. Hence, to maintain
an isotropic angular distribution one of the final-state P waves and

one of the final-state S waves would have to be suppressed.
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3. In their subsequent work [6], they suggested a mechanism whereby
the above desired suppression could be attained. They argued that
in an SU(6)w model the decay of P11(1720) into (PP31) is strongly
favoured over that into (PP11). If so, then the remaining S-wave part
of o/p! must be (SS11). The most likely way of producing an (SS11)

final state is the presence of S11(1650) resonance in the 7~ p system.

One problem with their mechanism is that the photoproduction of P11(1720)
shows only a small coupling to 4 - N and so, by vector meson dominance, this is
likely also to be the case for w - N. A second difficulty is that exactly the same
type of threshold reduction is seen in pd — %Hew data. Since their resonance
mechanism depends on the relative coupling to the P11(1720) and S11(1650)
being ‘just right’, it is unlikely that this would propagate through to the *Hew
system with sufficient precision.

On the other hand, the decay-FSI effect must exist at some level of importance.
Therefore, we estimated its size in a more realistic but still classical model in
the Monte-Carlo simulation of the decay followed by FSI, described in the next

chapter.
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Chapter 4
The Semi—Classical Model

4.1 The Monte-Carlo Simulation

We have written a Monte-Carlo simulation of the decay + FSI process based on

the following assumptions,

1. Near threshold the basic w-production amplitude is independent of p,

and corresponds to S-wave production.

2. At time t=0 an w and a neutron are produced at r=0 with equal and

opposite momenta pJ .

3. In the centre-of-mass frame of the decaying particle, the highest mo-
mentum of a decay product in a three body system occurs when two
particles are moving in an opposite direction to the third. Labelling
the three particles by a, b, and c, this momentum can be written in
terms of the centre-of-mass energy s and the masses of the particles

involved as

1
Prae = 724 (3= (ma +muc)’) (s = (ma —mac)?) }
where my, is the mass of the two particles moving in an opposite direc-

tion to third, whose mass is m,. Thus, in the w rest frame p,o. = 327
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MeV/c, corresponding to a central value of the w mass of 782 MeV.
On the other hand, for the radiative decay the the #° and ~ are pro-
duced back to back with equal and opposite momenta, which is =2 379

MeV/c in the w rest frame.

. The normal to the decay plane & is chosen randomly in space. In the

rest frame of the w a distribution of the form,

| - x Py [’= plp} sin®6,
is taken (see eq. (2.3.6)), which leads to an w decay rate given by

eq. (2.3.8).

. Random values are generated for the functions
3
f(B) = (f"—~m B ) ,
and
E?
f(Ey) = (— - m1r+E+) :
From the values of these two functions, the values of E_ and E, are
determined by linear interpolation between two points using a table
of f(E;) at equal intervals versus E;. Then E, and the pion mo-

menta are calculated by conserving energy and momentum according

to equations (2.2.2) and (2.2.3), namely
P-+P +p0 =0,

and

E_+E,+E=M,.
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10.

11.

12.

. A distribution in the w—n separation z is taken according to eq. (3.2.1),

namely

P(z) x exp (—I;w:c) ,

and events are drawn at random in z.
All momenta are then transformed to the neutron rest frame.

The total pion-neutron cross section, o,(w'n), is taken as a circular
disc which defines a solid angle €2 at the distance = away from the

recoil neutron where the w decays.

The angle each pion makes with the line joining the w and the neutron

is calculated.

The crucial dynamical assumption is that if the pion angle o; (¢ =
+, —,0) falls within the solid angle defined above, then we assume the
pion is rescattered and hence the w signal is destroyed. Otherwise,
the w’s escape freely and the corresponding signals contribute to the

cross section.

For the w — w7~ 7° decay channel, our semiclassical model implies
that at least one or a mazimum of two pions can be rescattered off the
recoil neutron since it is not possible to have all three pions pointing
towards the target as total momentum is conserved. For the radiative

case only the w° can interact with the neutron significantly.

In the w — 7~ 7t x? decay mode the pions have an average momentum
of about 220 MeV/c in the w rest frame, which at threshold coincides

with that of the neutron. This momentum corresponds to an incident
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13.

pion laboratory kinetic energy of =~ 122 MeV. The total pion-neutron
cross sections, oi(7t n), o;(7~n) , are taken to be constant at their
values corresponding to the above kinetic energy [11]. Then oy(7°n)

was obtained using the isospin ratio (see appendix A) according to
o(mtn):a(n®n)io(r"n)=3:2:1.

The same is done in the radiative decay case except that the #° is

produced at a momentum of 379 MeV/c.

An array of bins, each of width 1 MeV/c, is set up for values of p}
starting from 0 up to 350 MeV/c. Corresponding to each one, we
set up a further eight bins. They are SUM, three of the type P;
(: = 4+,—,0), and a further three P;; with j = +,—,0 but ¢ # j.
The last is Py for the 7° in the radiative decay case. As could be
seen from eq. (2.3.8), each event is weighted by the factor sin? . The
values of sin? corresponding to all physical events are stored in bin
SUM. However, this factor is stored in bin P; only when the angle
a; of pion 7' satisfies our dynamical assumption. When o; and aj,
corresponding to 7 and w7 respectively, fall within the solid angle Q

the weighting factor is stored in bin P;;.

All eight bins are initialized with the value 0. For each p} bin we
generated 5 x 10* random events. So each time a physical event was

obtained, the value of SUM was updated as

SUM = SUM + sin?4 .
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14.

Providing that one of the pion angles «; falls within the solid angle

subtended by o,: at a distance z away from the neutron then,
P, = P, 4+ sin%#6 ‘.

Similarly, when o; and a; satisfy our dynamical assumption then,
P;; = P; +sin’0 .

Only if an interaction is possible are the values of the correspond-
ing bins updated. Separate programmes were run for the three-pion
and radiative decay channels, since the kinematics of these modes are
different. We define the probability of only one pion scattering as,

r_ P;
T SUM

and that of two pions scattering as,

P..
| 1
Rj—SUM

In the limiting case p] — 0 the w — n separation £ — 0 also. This
corresponds to 27 solid angle subtended by o, at . As a result the
probability of one pion interacting is 0.5 depending on whether it is

moving towards or away from the neutron. So

Y. Pl=15.
i
On the other hand, in any physical event we must have two particles
moving towards the neutron and the third away from it, or vice versa.
Both cases are equally likely. As a consequence
> P;=05,
i#j
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15.

16.

which means that P/, ~ 0.16. Therefore, by standard probability
argument, the total probability of any final state interaction at all, is
Ptot :ZH—ZHQ = 1.0 . (4.1.1)

i i3]
Defining P, to be the probability of observing an w if it is produced,

we can write down an expression for P, in terms of P;,; of the form,

P,‘, = 1 — Ptot . (4.1.2)

Exactly the same procedure is carried out for the case pd — *Hew,
except that the pion-target cross section is evaluated for each event as
a function of the incident pion beam momentum. This produced very
similar results to those obtained when the cross section (for the same
reaction) was taken to be independent of the initial state energy at a

value corresponding to the average initial energy.
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4.2 Results and Discussion

The predictions of the Monte-Carlo simulation for the decay followed by FSI in

7~ p and pd are shown in fig. (4.1) and fig. (4.2) respectively with an arbitrary

normalization but no other free parameters.

a/p". (mb/(GeV/c))

| 1 | |
0 50 100 150 200 250
ps (MeV/c)

Figure 4.1: #"p — nw. o/p], versus the centre-of-mass momentum p;. The sohd
line represents the three pion case, while the broken line is for the radiative branch.
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Figure 4.2: pd — *Hew. The average amplitude square | f,
of-mass momentum p}. The solid line represents the three-pion case, while the
broken one relates to the radiative case.

2
|*, versus the centre-

The behaviour of the Monte-Carlo predictions can be explained in terms of
the solid angles subtended by o, at a distance z from the neutron. Large solid
angles imply a high probability of the pions being scattered, resulting in a reduced
observed w amplitude. Conversely, small subtended solid angles reduce the chance

of the decay pions interacting with the neutron, hence increasing the probability
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of observing an w. For example, consider the solid angle 2_ subtended by o,- at

a distance z away from the neutron target. Then,

Tp—
:132

Q= (4.2.1)

is inversely proportional to the square of the distance away from the target. Small
p; results in the w decaying in the near vicinity of the neutron leading to a
reduction in the w detection amplitude. On the other hand, for large p! the w
travels a longer distance on average before decaying, resulting in a large | f, |2.
For very large z, i.e p} > 400 MeV/c, the o,: correspond to a negligible ; and
the probability of detecting an w-meson tends to unity.

Clearly, the rapid fall-off for small p has been quantitatively reproduced, as
well as the scale of the effect in p},. As speculated earlier, in our Monte Carlo
simulation the reduction effect is more important in the dominant three pion decay
channel than the 7%y radiative case. It is worth mentioning that the difference is
not a naive factor of three, since momentum conservation in the earlier case implies

a maximum number of two pions scattering off the recoil neutron. However, our

semi-classical model is a crude one and has many limitations. These include

1. The model violates the uncertainty principle as it simultaneously de-

fines the position and momentum of the w at the production vertex.

2. The w-meson is always assumed to be on shell, and so off-shell effects

were totally ignored.

3. For the three-pion case our model prohibits more than two pions to
scatter off the neutron in any one event. This may not be the case in

the quantum mechanical model, which we shall now study.
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Chapter 5

Final-State Interaction Effects in
T D — Wwn

5.1 Introduction

In chapter 4 we developed a semi-classical model to estimate the effect of final-
state interactions, between the w decay products and the recoil neutron, on near-
threshold w production in the 7~p — wn process. The results reproduced well the
sharp suppression at low energies. Although the w lifetime, its decay probability
distribution, the w-nucleon amplitudes etc. were all taken into account, this is still
a simple model and has severe limitations. It viewed the w as a real particle, and
treated the scattering of its decay products as that of macroscopic hard spheres.
Further, it did not take account of the smearing of the initial w production vertex,
as required by the uncertainty principle. Therefore, we decided to investigate the
decay/FSI effects in a more realistic quantum model using Feynman diagrams.
In considering 7~ p — wn, where w — 7%, we shall treat the w as a virtual
particle, and calculate the strong final-state interaction amplitude between the 7°
and the recoil nucleon using quantum mechanical formalism. Although the pion-
nucleon interaction is P-wave dominated, we shall first derive the easier S-wave

amplitude and then move later to the more complex P-wave case. In both the
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S and P-wave calculations we have not accounted for spin effects. These were of
course also neglected in the classical approach.

In section 5.2.5 we present the quantum mechanical model results, which show
~~ 9% near-threshold reduction in the w production amplitude due to the de-
cay/FSI effects. The fact that a reduction is obtained is in line with experimental
results [2, 3]. However, the suppression size is too small to account for the 70%

effect observed experimentally.

5.2 The Quantum Mechanical Model

() [¢2)]

Figure 5.1: #~p — wn. Feynman diagram for w production followed by its sub-
sequent decay. No final state interactions are included. Characters in bold face
are vectors in the overall c.m. system.

The w production can be represented in terms of two Feynman graphs. The
first corresponds to the production and subsequent decay of the w, as shown in
fig. (5.1). The second is shown in fig. (5.2), which is essentially the same as the
first but extended to include final-state interactions between one of the w decay
products and the recoil neutron.

All momenta and energies are in the overall c.m. unless otherwise stated. To
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Figure 5.2: #~p — wn. Feynman diagram for w production followed by its sub-
sequent decay. Final-state interaction between 7° and the recoil neutron is also
included. Characters in bold face are vectors in the overall c.m. system.

simplify the presentation we have denoted p}, by p.

5.2.1 Production Amplitude

As both fig. (5.1) and fig. (5.2) contribute to the w production, it is their relative
normalization which is critical and must be determined. For this purpose, we

turn to the wave function of the final 7%, which is given by [12]

&K T TR K)
(27)3 E(K) — E(k') + ic ’

H(F) = exp(iK - 7) + / (5.2.1)

here

T(k' K) = —(4n/2M ) f (K, K) , (5.2.2)

where f (I}:’, K ) is the pion-nucleon amplitude, which in general depends on the
magnitude and direction of the momenta of the incident and scattered pions.
E(k') and E(K) are the energies of the incident and rescattered =° respectively.
Furthermore, the superscript plus indicates the outgoing wave boundary condition
of ¥(7), and the subscript K indicates the physical scattering configuration with

a beam of momentum K.
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In momentum space, eq. (5.2.1) transforms into

7 1 —ikF
PR = Gy f &r e 5D ()

1 s (s ? §O(k — k') T(K', K)d*K’
= (@nyn [(2“) §OF - K+ [ B(K) — E(K) 1 ic ]

Hence

1
(2m)3/2

T(k, K)
E(K) — E(k) + ie

v (k) = [(2#)3 5Ok — K)+ (5.2.3)

The first term on the right relates to fig. (5.1), while the second term is
associated with fig. (5.2) where final-state interactions take place. The above
equation fixes the relative contributions of the two graphs to the w production
cross section.

For an infinitely heavy nucleon, and treating the w production and pion-
nucleon interaction vertices as point interactions, the w production amplitude,

F, can be expressed as

_ g 3 1 3 o371 2m f(l:,ff)
F= (27r)3/2/dp [E,,_ —E, { (2m)° 69k~ K) ~ Mo E(K)—E(k)—i—ie}

where M0 is the 7° mass and g is the w decay coupling constant corresponding to

the w% channel. The first integral on the right corresponds to the non-scattering

—
—

case for which K = p'— ¢, while the second one is associated with the scattering

case where k = P — q. After carrying out the first integral, F is given by

g (27)3 2 f(l:, I_(')
F=Gor |5.2F5,  Ma / P B EE) —ER 19|
(5.2.4)
The terms
1 1

E.-—E, E, — (Vo? + M2 —iTu/2)
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and

1
E(K) — E(k) + i€’

are the w and 7° propagators respectively.
We can easily substitute for E,- — E, in the first term of eq. (5.2.4) but not
in the second (scattering) term as 4/p?> + M2 would complicate the integration

procedure. Instead, we write

1 Er + /P> + M2

Ep- —/p?+ M2 +iT,/2 B2 —p? — M2 + (iTy/2)(Ex- ++/p + M2 )
(5.2.5)

We expect the scattering term to be small at high p as an w would then escape
from the nucleon field before decaying. This is in line with the experimental data,
which show the suppression effect to be important only at low p. Consequently,

we take
sz‘i"M‘?,NMw, p<<M,,, .
Therefore

1 N E.- + M,
Ee- — P+ M2 +il,/2  (Bx- =P = M3 +ilu(Ba- + Mo)/2)

Defining p3 = (E2- — M?2) and a = T',(E,- + M,)/2, we finally get

1 E~+M,
Ear-"‘EwNptz)—‘p‘z—*'ia .

The E(K) — E(k) + ie term can be expressed non-relativistically as

1

B(K) = B(k) +ie = =57 ((F-9* — K* —ie) .

In terms of the above, the production amplitude becomes
7 g (2r)° 4 / (B + M) f(K, K) dp
(

= — 4T . Y .
(2r)32 | B~ — \/p* + M2 +T,,/2 P> — py — ia)((F — §)* — K? —ie)
(5.2.6)
45




At threshold the 7% and the v are produced back to back with equal and
opposite momenta of ~ 379 MeV/c. This implies that our non-relativistic ap-
proximation of E(K) — E(k) + te is not valid in this energy range. On the other -
hand, putting in the exact energy expressions makes it almost impossible to obtain
an analytical closed form for F'. Therefore, we decided to expand E(K)— E(k)-+ie
using the eikonal approximation [13], where we assume K — (5 — §) to be small

i.e. small angle scattering. Hence,

F-d? = [F-i-B)+EB) ,

= K*+2K-(5—-§-K)+(F—-§- K)?,

2K .7—2K -§— K?. (5.2.7)

Q

To get our last expression, we neglected the small (5 — §— K )? term. This should

be a better approximation at higher energies. Finally

—

F-q-K*=2K-5—-K-§-K?). (5.2.8)

Substituting for (g — ¢)? — K? in eq. (5.2.6) results in

{) &

4 (2m)? _or (B + M,,) £(
= (2m)*2 | Bpe — /2 + M2 + T, /2 ? /
(5.2.9)

The above integral is logarithmically divergent due to having taken point in-
teractions. This problem may be dealt with by introducing form factors describing
the size of the two-particle systems at the pion-nucleon and w production inter-

action vertices. The first may be taken as

_ (KZ +132)2

SRNCET O

(5.2.10)
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and, for simplicity, we shall take the second as

_ (P + &%)

G rEYOR

(5.2.11)

At threshold, po = p = 0, and hence f, reduces to unity. Furthermore, the

denominator of f; can be written as

K48 —ie = (9—9)°+8" —ie,

—

= [(F—q— K)+ K>+ 8% —ie,

~ K*+2K-(F—G—K)+8%—ie, (5.2.12)

so that

K2 2)2
fim e HHB) _ (5.2.13)
2K -p—2K -§— K%+ B2 — ic
The finite nucleon mass also modifies the kinematics, leading to
Eer = /M2 +p2+/M2_ +p}, (5.2.14)
and

Eine = \/M2 +p? + /M2 + p? — i, /2, (5.2.15)

where E.t (Ein) are the external (internal) total c.m. energies, and p, is the
proton momentum in the overall c.m. system.

This has the result of changing the w propagator according to

= . 5.2.16
Eezt_\/M3+P2—\/M3+p2+iI‘w/2 ( )

As before, the above expression is exact and can be used in the non-scattering

term. But once again we are going to make an approximation which applies in
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the low p limit where the suppression effect is most important. For p < M, we

can write
Eine = /M2+p*+\/M2+p*—il,/2,
~ M, + M, +p*/2M, —iT,/2, | (5.2.17)
where

is the reduced mass of the w-n system.

This redefines our earlier values of py and « as following

1 2M,
Ee:ct - Mw - Mn - P2/2Mr + ZPw/2 B 2Mr(Eezt - Mw - Mn) - P2 + iMer ’
2M,
-_— —m . (5-2-18)
Obviously, po and « are now given by
Pg = 2Mr(Eea:t - Mw - Mn) , = M. T, .
Our final expression for F' then reads
Po- 9 (2r)°
(27!')3/2 Eear — \/p2 + Mf% - \/172 + MQZ, + ZI‘w/z
2, 2
— 41rM,f(K,K)/d3p . q(p"t‘s* —
(P* + &) (2K - — 2K - §— K? + B —ie)?
2 2)2
(IS +h )_; - ] ) (5.2.19)
(P —ph —ia)(K-p— K -§— K? —ie)

where we have replaced the half off-shell f(l:, K ) by the on shell f(ff K ), and
taken it out of the integral. This manner of estimating f(I;, K) is in line with
the eikonal approximation where the quantity K — k was taken to be small; i.e

forward scattering.
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A Breit-Wigner fit for the total cross section for the #*p interaction in our

energy range is [11]

8 W2r?

slW) = G wr —wey T ware

(5.2.20)

where W is the 7—nucleon c.m. energy, and T' is an energy dependent width.
This is a P-wave dominated cross section. To determine the parameters for

the S-wave calculation, we took the cross section to be constant at its value in the

forward direction and used the optical theorem to obtain the #—nucleon scattering

amplitude viz.

k 2 W2r?
Im(f) = el E(Woz Wy Were (5.2.21)
which implies that
2 Wol
= - 5.2.22
f kE(WE—W?2) — Wl ( )
Defining
- (8 +57) (K + )"
(P2 +62)(p? —pt —ia)(K-7— K -§— K2 —ie) 2K - §— 2K - §— K? + 82 — ie)?’
(5.2.23)
then
g (2nm)? I
F= —4rM, f(K,K)I
(27)*72 | Beay — \fp? + M2 — \[p? + M2 + T, /2 (K, K)

(5.2.24)
As mentioned earlier, we shall start with the easier S-wave # N amplitude,
though the first term on the right (non-scattering term) is common to both the

S and P-wave calculations.
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5.2.2 S-Wave Amplitude

For the S-wave case we have

Foe 9 (2m)?
Eezt - \/p2 + Mz - \/pz + Muz, + er/2

= G —4nM, f(K,K) Is

(5.2.25)
where
(p5 + &%) (K + B?)*d%p

I = / = = = = .
Tl )R —ia)R-F-K-G— K? —ic)2R -5— 2K -§— K2 + 7 —ie)?
(5.2.26)

For simplicity, we start with

II — / d3p
’ (s +6") (p* — 3 —ia)(K - F— K -~ K?—ic) 2K - 2K - §— K? + B* — ie)

- 1 / d®p y
K? 4 32 (pz —p2 — ia)(p2 n 62)
fees 2
I?-ff—f{'-q’—Kz_ﬂ'e 2X'ﬁ_2k'i—K2+ﬂ2—ie
Therefore
1
L=t mllsn—Ial, (5.2.27)
with
43
I = / ' s — (5.2.28)
(p* — p2 —ia)(p? + 82)(K -F— K - §— K2 — ie)
and
3
=/ ' T — . (5.2.29)
p? — p} —ia)(p? + 82)(2K -5 — 2K - §— K% 4 % —ic
0
The relation between Ig and I§ is
1 OI
Is = “gﬁ@ﬁs : (5.2.30)
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Starting with Ig, and letting z = cos 6, where 8 is the angle between K and

P, we have

, +oo pidp +1 dz
S1 = 27"/. 2 2 : 2 2 / > - .
o (PP —pi—ia)(p®+6%)J-1 Kpz—K-§— K?—ie

2w ftee pdp 5, NG
= — In(Kpz— K -g— K* —

Kh G KK i)

2w [t

2m pdp
Ko (o= /o +ia)p+ it +ia)p — ib)p+i8)

1 Kp— KqH — K? —1¢
"\"Kp_KqH — K? —ic

(5.2.31)

Here, H is the cosine of the angle between K and q. To do the above integral, we

differentiate Iy, with respect to g to obtain

g ~o (p— /B8 +ia)(p + /0% + ia)(p — i6)(p + i8)

1 1
(Kp—KqH—Kz——ie + Kp+KqH+K2+ie) '
As the last expression is symmetric around p = 0, we extend the integration down

to —oo and compensate for this by multiplying by a factor of 1/2. Further, we

can write
0I%, 0I5, | 0lg,
—2= = —qH —===1. 5.2.32
0q " ( dq * 0q ( )
where
Olgyy _ _1_/+°° pdp
0 Kl-w (p— [0} +ic)(p+/r} +ic)(p—i8)(p +i8)(p— qH — K —ic)
and
0I5, _ l/+°° pdp
09 KJ-w (p—/pd+ia)(p+\/p} +ia)(p—i6)(p +i8)(p+ qH + K +e)
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Contour integration results in

015, 271 1
9q K |2(p} + i+ 62)(y/p} + ia — qH — K)

1
2(p2 + ia + 62)(i6 — qH — K)

K +qH
: : 5.2.33
VTP -R-wlKrey o] P
Similarly,
Ol _ y_[ 1
9q K |9(p3 + ia + 82)(\/p3 + ia + ¢H + K)
1
2pt +ia + 82)(i6 + qH + K)|
Substituting for 8I%,,/0q and 8I%,,/0q in eq. (5.2.32) results in
0ly, _  2n%H 1
dq K |2(02 +ia+ 8%)(K + qH — i6)
1 K +qH

— + .
2pE +ia + 62)(K + qH — Jpt +ia) [(K+qH)? —p; —ia]((K + qH)? + 6]

1 1
+ - , —
2pE +ia + 82)(K + qH + /pd +1a) 2P} +ia+ 6)(K + qH + if)

(5.2.34)

By taking
-
i +ia+ 82’

as a common factor and rearranging, we arrive at

ory, oni H 1 1
Oq K(pi+io+8) |k 4+ gH +/pd +ia K+aH+18 ’
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which yields

2 K +qH +/p§ +1
o 2l )ln( q Po Za)+0, (5.2.35)

I.. = —
S1 K(pE + ia + 82 K+ qH +16

Repeating the above procedure for the second integral, we find

, ok (K/2+qH—ﬂ2/2K+ VR +ia

Is» = "K@tiat ) " K/2 + qH — B2/2K + 16

) +C'. (5.2.36)

Here C and C' are infinite constants which cancel out when Ig; and Ig, are

substituted into eq. (5.2.27). This gives

272 9
K(pj + ia + 8§2)(K? + 2)

[h'( K+ qH +i8 )_ln( K + qH + /B +ia )]

K/2+qH - /2K +i6 K/2+ qH — B2/2K + \/p} + i

(5.2.37)
Differentiating I with respect to 8 and using eq. (5.2.30) we finally get
2n%  (pg + %)
Is > 5
K (ps+ia+é?)
(K2 + ) 1 1
2K K/2+qH — 32/2K + \/po +ta K[/2+qH — 82/2K + 16

K/2+ qH — 822K + /52 + i :
+ln(/+q B/ +‘/p°+m)+1n( K +qH+i6 )

K +qH + /g + i K/2 + qH — B2/2K + i6

(5.2.38)
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Using eq. (5.2.25), our final expression for the S-wave amplitude reads

1  f(E,K) (B+8)

1M,

Ee,t—\/p2+M£—\/p2+M3+iI‘w/2— T K (ph+ia+8?)

Fg = (271')3/29{

(K?+B?%) 1 1
2K K/2+qH — B2/2K + \/po +1a K/2+qH — 82/2K +i6

(K/2+qH—ﬂ’/2K+\/p5+ia)+l( K +qH +i6 )
n n

K + qH + \/p} + i K/2+qH — B%/2K +1é

(5.2.39)

5.2.3 P-Wave Amplitude

We now turn to the more realistic but complicated P-wave case. In analogy with

the S-wave case, the P-wave w production amplitude may be expressed as

(2m)®

f(&,K) |
— 1r9 1P

K2
(5.2.40)

Fp g

= (27|-)3/2 — 47I'M,.

where

= (p +8°) (K + p°)'K - k&p
(p* + 8%) (p* — 8 —ia)(2K - F— 2K -§— K* + B2 —ie)? (K - F— K - §— K? —ie)’
(5.2.41)

Substituting k=p—q gives

o= | (+ 6K +BV KE-G-D&p _
(0" +6)(p* — p} —ia)(2K -5 - 2K -¢- K* 4 p* —ie(K - f— K -§— K? o)

(5.2.42)
If we define
IL = /d3p K ¢
? (" +6) ("~ —ia)2R F—2K - K+ ' —ie) K F— R -G K*—ic)’
(5.2.43)
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where Ig is given by eq. (5.2.26). Then
Ip = (52 + 6% (K? + ) (-i %) _R.qls, (5.2.44)
28 0B
We introduced K? in the denominator of the second term in eq. (5.2.40) to com-
pensate for the K -k term in eq. (5.2.41). Using partial fractions, Ip may be
expressed as
Ip = 'K_leﬂ_z (b — Thy) (5.2.45)

where

—

K-p

I, = / d2p : S — ., (5.2.46)
(P2 —p%—ia)(p®P+82)(K-p— K-q7— K? — ie)
and
1 3 2—"13’
Iy = [ & : =P AN — . (52.47)
(p* — p§ —io)(p* + 82)(2K - p — 2K - § — K? + B? — i¢)

We shall start by evaluating Ip,, where we add and subtract the term
(K -3+ K? +ie), (5.2.48)

from the the numerator of eq. (5.2.46) to get

-

K-5— (K- -G+ K*+ie)+ (K -7+ K2+ ie)
(0 — pt —ia)(p* + 62)(K -F— K - §— K? —ie) ’

I;’I = fdsp

d*p S
~ (@ - —ia)(p? + &%) +(K -3+ K*) I, (5.2.49)

with I, given in eq. (5.2.28). By integrating the first term on the right and then

using eq. (5.2.35), we arrive at

% -G+ K?), (K+qH+ \ph+i
/ 272 [\/zm—i5—(K q+K)1n( q P za) D

PL™ (02 Y ia + 67) K K +qH +1i6

(5.2.50)
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Similarly
d®p
!
= [T

22 - . 1 o
= T e VA tie— i R 4 K- ) x

. (K/z +qH — B%/2K + /3 + ia)

K2+ qH — B?/2K + 16

/
+(2K-6+K’—ﬂ2)%,

+D'.

Eq. (5.2.36) was used to get the last result. Substituting for Ip, and Ip, into
eq. (5.2.45) eliminates the (infinite) D and D’ constants and results in

w23

K(K? + B7) (g% + i + %)

Lo K/2+qH — B%/2K + +/p} + ia
[(2K-q+K2_ﬂ2)1n( K2t af — B 2K + &8 )_

o K H \/2+'
2(Kq—'+ Kz)ll'l( +q + Po 'I«a)

K +qH 416

Differentiating Ip with respect to 8 and using eq. (5.2.38), eq. (5.2.44) becomes

(p§ + 6%)

Ip = n%
P T TR (g et 87)

K4—'ﬂ4 1 _ 1 +2K2
2K K/2+qH—,32/2K+\/p§+z’a K/2+ qH — B?/2K + 16

| K/2+ qH — B%/2K + \/p} + ia bl ( K + qH + 18 )
n n " .
K +qH + \/p} + i K/2+qH - B*/2K +1§
(5.2.51)

According to eq. (5.2.40), the total near-threshold P-wave production ampli-
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tude for the w meson may now be written as

(2m)3/%g

Fp = — (27
Eezt—\/P2+M3—\/p2+M3+sz/2 ( )

K4—ﬂ4 1 1
{ 2K (K/2 +qH — /2K + /i +ia K/2+qH —P?[2K +ib

[ln(K/2+qﬂ—ﬂ2/2K+\/P3+ia)+ln( K + qH +i6 )

K/2+qH — B?/2K + i6

K + qH + \/p} + ic

5.2.4 Phase Space Factors

In chapter 2 we developed the three particle phase space for the final state pions
7n~, #* and 7°, though we did not necessarily assume equal masses at that stage.

According to eq. (2.2.11), the phase space is given by
dQ = %dE_dE+dQ_®(1 — cos?f) .

In our present case, the final state particles are n, #° and 4. Therefore, by making

the correspondence 7~ — n, 7t — 7% and 7° — v, we get
dQ = %dE,, dE(K)dS,, . (5.2.53)

We have omitted the step function on the understanding that cos?6 < 1, where
6 is the angle between the recoil neutron momentum and K. E, and E(K) are
the neutron and 7° energies respectively, and df2, is the solid angle describing
the orientation of the neutron momentum with respect to some axis in space.

Using the relation E,dE, = P,dP,, where P, = p is the internal neutron
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3/2g’:Mr f(ﬁ, K) (Pg + 52)
2 K3 (p§+ia+8?)

)+2K2

} .

(5.2.52)



momentum in the overall c.m. system, we can rewrite d@ as

dQ = %Ei dE(K) dpdQ., . (5.2.54)

n

In terms of the phase space and the w production amplitude F, the cross section

for the threshold w production can be expressed as
T [P 2
o=7 / 2 | F[* dE(K) dStdp . (5.2.55)
Therefore

Po w [BE p
0p0Q, 4 Jeuymn E,

| F|? dE(K) . (5.2.56)

Apart from averaging over initial spin states and summing over the final ones,
eq. (5.2.56) is the theoretical prediction for the experimental results given in [3]
which we displayed in chapter 3. The curve in the E, — E(K) plane, which bounds
the physically accessible region in phase space is given by eq. (2.2.12) after making

the same final state particle correspondence as above. Hence it is given by
4(E:—m2)(E%—m2%) = (2E,E(K)~2/3(Ex+E(K))+s+m2+m2,)? . (5.2.57)

In line with the threshold crossing technique followed in the experiment, we

varied the pion beam energy such that we scanned the w mass for constant p.

5.2.5 Results of the Quantum Mechanical Model

The results of the our quantum mechanical model are shown below. Fig. (5.3) and
Fig. (5.4) correspond to the S-wave case. The solid line relates to the production
and subsequent decay only, whereas the broken line corresponds to the case where
final state interactions of the decaying pions are included. In Fig. (5.5) and

Fig. (5.6) we show the results corresponding to the more realistic P-wave # N
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interaction. All graphs correspond to a = 3599 (MeV/c?)~% and 8 = 1682 MeV /c

(see appendix B).
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Figure 5.3: #7p — wn. The S-wave theoretical prediction of eq. (5.2.56). The
solid line represents the production followed by subsequent decay only. The bro-
ken line corresponds to the case where final state interactions are included.
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Figure 5.4: m~p — wn. The S-wave theoretical prediction of eq. (5.2.56). The
solid line represents the production followed by subsequent decay only. The bro-
ken line corresponds to the case where final state interactions are included.
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