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ABSTRACT

Highly active anti-retroviral therapy (HAART) has been very effective in
reducing viral loads in HIV" patients. However, current therapies carry detrimental side
effects, require complex drug regimes for administration and are threatened by the
emergence of resistant variants. The need for new effective therapies targeted to
different stages in the HIV life cycle is urgent. The 7-transmembrane G protein-coupled
chemokine receptors CCRS and CXCR4 are the major coreceptors for HIV and SIV.
The majority of transmitted viruses are R5-tropic, yet variants able to exploit CXCR4
(R5X4- or X4-tropic) emerge in the late stages of disease in up to 50% of individuals.
As RS strains remain present throughout disease, CCRS5 is an ideal target for novel
therapeutic intervention. At least a dozen other chemokine receptors or close relatives
also support infection by particular HIV/SIV strains on CD4" indicator cell lines in
vitro. Despite the expression of many of these different receptors on primary CD4"
cells, their role during in vivo infection is currently thought to be insignificant.
However, in the advent of CCRS inhibitors, minority populations of variants able to use
such coreceptors may become predominant and thus escape inhibition by CCRS5-specific

drugs.

Here I have analysed the sensitivity of RS and R5X4 strains of HIV and SIV to a
series of six novel small molecule inhibitors of CCRS on a diverse range of cell types,
including lymphocytes and macrophages, the main cell types targeted by HIV-1 in vivo.
In order to better evaluate the contribution of alternative coreceptors in vivo in the event
of CCRS5 being blocked, several primary untransformed cell cultures, including
peripheral blood mononuclear cells (PBMCs), brain microvascular endothelial cells
(BMVECs) and cells from immunoprivileged sites such as astrocytes and Leydig cells,
were tested for expression of functional coreceptors able to support infection by HIV
and SIV. A coreceptor of unknown identity has been discovered that is expressed on
these primary cells and that supports infection by a subset of HIV and SIV isolates,
including some from both subtypes B and C. The potential in vivo roles of CCRS

inhibitors and of alternative coreceptors will be discussed.
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CHAPTER 1

Introduction

1.1 Biology of HIV
1.1.1 Discovery of HIV

Acquired immunodeficiency syndrome (AIDS) was recognised as a disease in
1981 when groups of homosexual men in the USA, and later in Europe, presented with
symptoms of a depressed immune system despite no previous history of immune defects
(Masur et al., 1981; Mildvan et al., 1982; Siegal et al., 1981). Cases of the ‘gay
compromise syndrome’ (Brennan and Durack, 1981) were also reported in intravenous
drug users, individuals of Haitian origin, as well as blood transfusion patients and
haemophiliacs (Dozier et al., 1983; Elliott et al., 1983; Khan and Wollschlager, 1983;
Poon et al., 1983; Shannon et al., 1983). In 1983 it was discovered that some infants
and children bom into families at risk from AIDS were suffering from the same immune
disorders as those found in the gay community (Cowan et al., 1984; Elliott et al., 1983;
Scott et al., 1984).

The epidemiology of this acquired immune dysfunction, which was transmitted
sexually or via contaminated blood and blood products, as well as vertically from an
infected mother to her child, indicated that an infectious agent was responsible for AIDS
(Francis, Curran, and Essex, 1983). Indeed, three groups isolated and identified a novel
virus belonging to the Retroviridae family from PBMC cultures from AIDS patients
(Barre-Sinoussi et al., 1983; Gallo et al., 1984; Levy et al., 1984; Popovic et al., 1984).
The infectious agent, lymphadenopathy associated virus (LAV), human T-cell
leukaemia virus [II (HTLV-III), or AIDS-associated retrovirus (ARV), was originally
believed to belong to the family of human T-cell leukaemia viruses, as the target cell for
this virus was the CD4" T-cells. However, differences in virus ultrastructure and a lack
of reactivity to HTLV-specific antibodies led to the realisation that a new human
retrovirus had been found (Gallo, 2002; Montagnier, 2002; Montagnier et al., 1984).

This virus was later named human immunodeficiency virus (HIV)(Coffin et al., 1986).

Around the same time that HIV was discovered, colonies of captive rhesus

macaques were found to have AIDS-like symptoms, although this was later found to be
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caused by simian retroviruses 1 and 2 (Henrickson et al., 1983; Letvin et al., 1983;
Simon et al., 1998a). Subsequently, a T-cell tropic retrovirus, termed STLV-III was
isolated (Daniel ef al., 1985). When virus isolated from West African AIDS patients in
1986 was found to be closely related to STLV-I, yet distinct from LAV, the second
human immunodeficiency virus, HIV-2 (previously LAV-2), was discovered (Clavel et
al., 1986).

1.1.2 Taxonomy of HIV

HIV belongs to the lentivirus genus of the family Retroviridae. This class of
RNA viruses are characterised by their life cycle, whereby the viral genome is reverse
transcribed from single-stranded RNA to double-stranded DNA by the enzyme reverse
transcriptase (RT), and integrated into the host DNA upon entry into the host cell
(section 1.5)(Goff, 2001; Temin, 1992). All known retroviruses possess the same
structural polyproteins. Gag encodes the structural proteins matrix (MA), capsid (CA)
and nucleocapsid (NC), Pol encodes the three enzymes RT, integrase (IN) and protease
(PR), and Env encodes the envelope proteins gp120 and gp41. As such, retroviruses
share a common virus particle structure. The spherical shape of the outer lipid bilayer,
taken from the host cell upon budding, is maintained by a layer of viral protein which in
turn surrounds the central nucleocapsid core (Fig. 1.6). The morphology of the central
nucleocapsid core, as seen by electron microscopy, differs between viruses and was
originally used to classify retroviruses. For example, A-type retrovirus cores have a
thick shell and hollow centre, B-types have a round off-centre core, and D-types have a
cylindrical core. Retroviruses have also been classified by the varying pathogeneses
observed i.e. tumours (oncoretroviruses), slow, chronic disease (lentiviruses) and the
induction of vacuolation in culture (spumaviruses). Current classification systems split
the retrovirus family into seven genera, grouped into ‘simple’ viruses (alpha-, beta-, and
gammaretroviruses) and ‘complex’ viruses (delta- and epsilonretroviruses, lenti- and
spumaviruses), which contain ‘accessory’ and regulatory proteins in addition to the

common retroviral structural proteins (section 1.3.2, Fig. 1.1 and Table 1.1).

As well as such exogenous retroviruses, most species possess endogenous
retroviruses which integrate into the germline and represent a ‘fossil’ infection. These
endogenous retroviruses, such as human endogenous retrovirus K (HERV-K) and pig
endogenous retrovirus (PERV), possess the transcription-regulatory long terminal repeat

(LTR) sequences and RT activity, and cluster within the betaretrovirus and
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gammaretrovirus branches of the Retroviridae family tree, respectively (section 1.3 and
Fig. 1.1). As this thesis deals specifically with cellular tropism and inhibition of HIV

and SIV, only these immunodeficiency viruses will be discussed further.

Epsilonretroviruses
Deltaretroviruses

SnRV

HTLV-I Lentiviruses

Gammaretroviruses

BFV
FFV PFV HERV-K
ISRV MMTV Alpharetroviruses
Spumaviruses
Betaretroviruses

Figure 1.1. Phylogenetic relationship between retroviruses. A neighbour-joining tree based on the RT
protein sequences of retroviruses. All seven retrovirus genera are labelled. See Table 1.1 for full virus
names and descriptions. Phylogenetic tree courtesy of Dr. David Griffiths, Wohl Virion Centre,
Windeyer Institute of Medical Sciences, University College London.

1.1.3 Phylogeny of primate lentiviruses

There are three groups of HIV-1 based upon phylogenetic clustering, termed ‘M’
(main), ‘O’ (outlier) and ‘N’ (new)(Fig. 1.2)(Simon et al, 1998a). Group M is
responsible for the majority of global infections, and is further divided into 11
recognised subtypes, or ‘clades’, clustering into independent phylogenetic branches
based upon the genetic sequence of the gag and env genes (Fig. 1.2). These are
identified by the letters A-D, F-H, J and K, and are approximately 25-35% divergent.
Clades A and F possess further subtypes, Al and A2, and F1 and F2, which are more
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similar to each other than other clades (Gao et al., 2001; Triques et al., 2000). The most

common subtypes globally are, in descending order, subtypes C, A and then B (Peeters
and Sharp, 2000; Thomson, Perez-Alvarez, and Najera, 2002; UNAIDS/WHO, 2002a).

Subtype Examples Host species Morphology
Alpharetrovirus Rous sarcoma virus (RSV) Chicken C-type
Avian leukosis virus (ALV) Birds
Betaretrovirus Mason-Pfizer monkey virus (MPMYV) Primate D-type
Jaagsiekte sheep retrovirus (JSRV) Sheep D-type
Mouse mammary tumour virus (MMTYV) Mouse B-type
Gammaretrovirus Murine leukaemia virus (MuLV) Mouse C-type
Feline leukaemia virus (FeLV) Cat
Gibbon ape leukaemia virus (GaLV) Gibbon
Deltaretrovirus Bovine leukaemia virus (BLV) Cow C-type
Human T-lymphotropic virus (HTLV) -1, -2 Human
Epsilonretrovirus Walleye dermal sarcoma virus Fish -
Lentivirus Human immunodeficiency virus (HIV)-1, -2 Human Conical core
Simian immunodeficiency virus (SIV) Primate
Feline immunodeficiency virus (FIV) Cat
Equine infectious anaemia virus (EIAV) Horse
Visna/maedi virus (VMV) Goat/Sheep
Spumavirus Primate foamy virus (PFV) Primates Immature
Feline foamy virus (FFV) Cat
Bovine foamy virus (BFV) Cow
Endogenous Human endogenous retrovirus K (HERV-K) Human Defective particles
retroviruses Pig endogenous retrovirus (PERV) Pig C-type

Table 1.1. The retrovirus family. Summary of the genera within the Retroviridae family, including host

species, present classifications, examples and core morphology.

In addition to these 9 subtypes, there exist many variants formed upon
coinfection by, and recombination between, independent subtypes. Included in this
group of circulating recombinant forms (CRFs) is the previously designated subtype E,
predominant in Thailand (Thomson, Perez-Alvarez, and Najera, 2002). Although
divergent envelope sequences originally classified this as an independent subtype,
subsequent sequence analysis identified it as a recombinant between a parental isolate
(subtype E) and subtype A, from which a large part of the genome originates. In
addition to AE, 14 more CRFs have been identified and added to the subtype
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classification lists (http:/hiv-web.lanl.gov)(Thomson, Perez-Alvarez, and Najera,

2002).

SIVagm

VER(agm3)

GRK(agmé677)

TAN(agml7)

SAB(SABIC)
STVsyk
> Sm (SM)

Mac (251) HIV-2/SIVsm

SIVI’hoest
C
SIVmnd B
HIV-1
group O
HIV-1 YBF30
group N
SIVepz
BD F
10%
HIV-1 group M

Figure 1.2 Phylogenetic relationship between HIV/SIV subtypes. Phylogentic relationship between
HIV-1, -2, and SIV subtypes. Adapted from (Andersson ef al., 1999).

Like HIV-1, HIV-2 is divided into categories based upon gag and env genetic
sequences. There are currently 7 subgroups of HIV-2, termed A-G. Subtype A is the
most common subtype, and although only one member of each subtype C, E, F and G
has been identified thus far, their genetic divergence is sufficient to warrant
classification as a separate subtype (Reeves and Doms, 2002; Schim van der Loeff and
Aaby, 1999). The simian counterpart, SIV, is classified according to the species of
origin, for example SIVsm (sooty mangabeys) and SIVcpz (chimpanzees). HIV-2 is
more genetically similar to SIVsm than to HIV-1 (70-85% identity at the DNA level, in
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South and South-East Asia house the second-largest number of cases, with 14%
of the global distribution. Both awareness and prevention programmes have brought
positive effects in countries such as Uganda and South Africa, where HIV prevalence in
pregnant women under the age of 20 has decreased since 1998. However, cases in the
majority of this continent continue to rise, with over 30% of the population being HIV-
positive in areas such as Botswana, Swaziland and Zimbabwe (38.8, 33.4 and 33.7%,
respectively). Eastern Europe and Central Asia are undergoing an explosion of HIV
incidence, with the number of new infections in 2002 resulting in a 25% increase in the

total number of reported cases in this area (UNAIDS/WHO, 2002a).

Region HIV cases Mode of transmission * Main subtype
Sub-Saharan Africa 29.4 million Hetero A B,C,D,F,GH,],
K, plus groups O and N
South /South-East 6 million Hetero, IDU B,C,E
Asia
Latin America 1.5 million MSM, IDU, hetero B,F
East Asia/Pacific 1.2 million IDU, hetero, MSM BC,B
Eastern 1.2 million IDU AB,C
Europe/Central Asia
North America 980 000 MSM, IDU, hetero B
Western Europe 570 000 MSM, IDU B
North Africa/Middle 550 000 Hetero, IDU AG,AG
East
Carribean 440 000 Hetero, MSM B
Australia/New 15 000 MSM B
Zealand

Table 1.2. Global statistics of HIV infection. Total number of reported HIV/AIDS cases, main mode of
transmission, and the main HIV-1 subtypes present in regions around the world. The predominant genetic
subtype is highlighted in bold text. * Hetero (heterosexual transmission), IDU (intravenous drug use),
MSM (men who have sex with men). Adapted from the regional HIV/AIDS statistics from
UNAIDS/WHO (Thomson, Perez-Alvarez, and Najera, 2002; UNAIDS/WHO, 2002a).

Although all HIV-1 group M subtypes are found in Africa, most are found in
distinct geographical areas (Table 1.2 and Fig. 1.3)(Vidal et al., 2000). For example,
subtype C is dominant in Africa and Asia, subtype B isolates are predominant in the

Western world and Australia, subtype AE is dominant in South-East Asia, and subtype
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A is very common in Eastern Europe and Western Africa, accounting for 80% of all

cases in that area (Thomson, Perez-Alvarez, and Najera, 2002; UNAIDS/WHO, 2002a).

While HIV-1 is globally pandemic, HIV-2 is endemic with stable prevalence
rates. The global distribution of HIV-2 is much more restricted, limited to its origin in
West Africa, Portugal, and areas of the world with links to Portugal, such as Guinea-
Bissau, Angola, Mozambique, India and Brazil (Andersson et al., 1999; Reeves and
Doms, 2002; Schim van der Loeff and Aaby, 1999; Soriano et al., 2000). HIV-2
subtype A is the predominant subtype (Norrgren et al., 1997; Reeves and Doms, 2002;
Soriano et al., 2000). Subtype B, originating in Ghana and the Ivory Coast, accounts
for the majority of cases in this area, whereas the remaining subtypes are all found in

Western Africa (Reeves and Doms, 2002; Schim van der Loeff and Aaby, 1999).

1.1.4.2 Transmission of HIV

HIV is a blood-borne virus, transmitted via contact with infected blood, semen
and breast milk. The most efficient mode of HIV transmission is male-male, or male-
female anal sex, with male-female vaginal transmission being 2-3 times more efficient
than female-male transmission (Morison, 2001). The likelihood of infection upon
unprotected sex with an infected individual is dependent upon many factors, including
the presence of pre-existing sexually transmitted diseases (STDs), and the viral load of
the infected individual (Morison, 2001). Although AIDS was first identified in the
homosexual population, heterosexual sex is now the most common mode of HIV
transmission globally. In addition to sexual transmission, HIV spreads parenterally via
contaminated needles, a transmission route that is increasingly common in areas under
social and economic stress such as Eastern Europe and Central Asia (Table 1.1). In
areas where a high proportion of the HIV-positive population are women, such as Sub-
Saharan Africa (58%), North Africa (55%) and the Caribbean (50%), vertical
transmission from mother to child is common, occuring either in utero, intra-partum, or
post-natally via contaminated breast milk (Morison, 2001; Quinn, 1996; Schim van der
Loeff and Aaby, 1999; Toth et al., 2001; UNAIDS/WHO, 2002a).

Epidemiological evidence in Sub-Saharan Africa indicates that transmission of
HIV is reduced in circumcised males, as the presence of a foreskin correlates with the
acquisition of minor abrasions during intercourse, increased numbers of Langerhans

cells and a higher risk of harbouring inflammations and other STDs (Bailey, Plummer,
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and Moses, 2001; Morison, 2001; Quigley, Weiss, and Hayes, 2001). However, such
procedures and the benefits they may provide, particularly in light of the false sense of

protection it implies, render this prevention method controversial (Lagarde et al., 2003).

1.1.5 Origin of HIV

The high level of genetic relatedness between HIV and SIV, inferred that this
lentiviral infection arose in humans as the result of a zoonotic transfer from primates
(Figs. 1.1 and 1.2). Indeed, such zoonoses from monkeys to humans have occurred
before, with monkeypox and primate foamy virus (Korber et al., 2000). The sooty
mangabey Cercocebus torquatus atys, infected both in captivity and in the wild, is
acknowledged as the natural simian host of both HIV-2 and SIVmac in captive
macaques. The Asian macaques Macaca mulatta are not naturally infected in the wild,
yet infection of all captive macaques can be traced back to contact or exposure to a
sooty mangabey (Chen et al., 1996). Evidence for C. atys as the simian host of HIV-2
includes the overlapping geographic distributions and high level of prevalence of
SIVsm within the epicentre of the HIV-2 endemic in West Africa, particularly Sierra
Leone, Liberia and the Ivory Coast (approximately 40% of the sooty mangabey
population)(Gao et al., 1992; Hirsch et al., 1989). The phylogenetic closeness and
genomic sequence similarity between HIV-2 and SIVsm, and a plausible route of
transmission — sooty mangabeys are commonly kept as household pets and hunted for
food — further support this theory (Chakrabarti et al., 1987; Gao et al., 1994; Hahn et
al., 2000; Hirsch et al., 1989; Schim van der Loeff and Aaby, 1999; Sharp ef al., 2001).
The seven HIV-2 subtypes are equally as divergent from each other, and are thus
proposed to have developed from multiple sooty mangabey zoonoses, some of which
have been successful (the predominant HIV-2 subtype A) and others that have been less
so (for example, subtypes C and D, found in very few individuals)(Chen et al., 1996;
Gao et al., 1994; Sharp et al., 1994).

The origin of HIV-1 is less well-defined than HIV-2, and remains controversial
(Hillis, 2000; Hooper, 2000; Korber et al., 2000; Royal Society, 2001). The most
genetically related sequences to HIV-1 are found in the common chimpanzee, Pan
troglodytes (Corbet et al., 2000; Gao et al., 1999; Hahn et al., 2000; Peeters et al., 1992;
Peeters et al., 1989; Simon et al., 1998a). Of the seven SIVcpz genomes sequenced
from chimpanzees infected in the wild, five were isolated from the subspecies P. t.

troglodytes (SIVcpzUS, SIVepzGabl, SIVepzGab2, SIVcepzCam3 and SIVcpzCambS),
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and two from P. ¢. schweinfurthii (SIVcpzANT and SIVcpzTAN1)(Corbet et al., 2000;
Gilden et al., 1986; Peeters et al., 1992; Peeters et al., 1989). As observed with HIV-2,
there is a large degree of overlap between the natural habitat of P. t. troglodytes (central
Western Africa) and the origin of HIV-1 subgroup N (solely found in
Cameroon)(Charneau et al., 1994a; De Leys et al., 1990; Simon et al., 1998a). SIVcpz
sequences are most closely related to subgroup N, yet cluster within the HIV-1
subgroups M and N (Corbet et al., 2000; Simon et al., 1998a). In fact, subgroup N
appears to be a recombinant of an HIV-1 subgroup M strain and an SIVcpz strain,
thought to have originated from a co-infection and recombination event within a
chimpanzee prior to zoonosis (Corbet et al., 2000; Gao et al., 1999; Hahn et al., 2000).
The tight phylogenetic clustering of the P. t troglodytes sequences with HIV-1
subgroup N sequences provides evidence that chimpanzees harbour the source of HIV-1
(Gao et al., 1999; Hahn et al., 2000; Sharp et al., 2001; Simon et al., 1998a). In
addition, the diversity between HIV-1 subgroups M, N and O, suggests that three
independent zoonotic events occurred (Gao et al., 1999; Hahn et al., 2000; Sharp et al.,
2001).

Although it is generally believed that chimpanzees are the natural host of HIV-1,
the precise timing and mechanism of SIVcpz introduction into the human population
remains unclear and under some debate. The two main proposed mechanisms for
zoonosis include a natural transmission, from bites or exposure to blood of infected
chimpanzees, or introduction by the use of chimpanzee kidneys in the production of the
oral polio vaccine (OPV) in the late 1950s (Society, 2001). The presence of three
distinct HIV-1 subgroups suggests that if chimpanzee kidneys were used for OPV
production, they must have been contaminated with three individual SIVs from different
sources. This piece of evidence casts doubt on the OPV theory, and favours a natural
transmission of SIVcpz into the human population (Hahn ez al., 2000; Marx, Alcabes,
and Drucker, 2001; Rambaut et al., 2001; Sharp et al., 2001).

The earliest documented case of HIV-1 was in 1959 (Nahmias et al., 1986).
Phylogenetic analysis of HIV-1 and SIVcpz sequences strongly suggests that
diversification within subgroup M occurred after introduction into the human population
(Gao et al., 1999; Hahn et al., 2000; Santiago et al., 2002). The rate of mutation
required to allow evolution of nine HIV-1 subgroup M clades following introduction

into humans suggests that incidences of HIV-1 should have been observed before this
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first reported case in 1959. In addition, molecular evolutionary experiments using full
length sequences of a large number of subgroup M isolates and this earliest documented
isolate of HIV-1 estimate the common ancestor of subgroup M clades as the early

1930s, if not before (Korber et al., 2000; Salemi et al., 2001; Yusim et al., 2001).

1.2 Pathogenesis and tropism of HIV
1.2.1 HIV Cellular Tropism

After the discovery of HIV-1, it became clear that virus taken from different
stages of disease displayed two distinct phenotypes: virus from early stages of disease
replicated slowly in PBMCs and produced low numbers of progeny virions (slow/low),
and virus from later-stage individuals replicated rapidly and produced high numbers of
virions (rapid/high)(Asjo et al., 1986; Fenyo, Albert, and Asjo, 1989). Rapid/high
viruses are more cytopathic and induce the formation of large syncytia in PBMC
cultures in vitro. These rapid/high, or syncytium-inducing (SI), strains exhibit a
preferential tropism for T-cell lines and are termed T-tropic, whereas the less-cytopathic
slow/low, or non-syncytium-inducing (NSI), isolates demonstrate tropism for
monocyte-derived cells and are thus M-tropic. As disease progresses, the cellular
tropism of HIV shifts from M- to T-tropism, and this shift is associated with a poor
prognosis (section 1.6.2.5)(Collman et al., 1989; Connor and Ho, 1994; Fenyo et al.,
1988; Schuitemaker et al., 1992; Schwartz et al., 1989). When HIV coreceptors were
discovered it was found that the distinct cellular tropism of HIV correlated to the use of
the 7-transmembrane G-protein-coupled chemokine receptors (7TM GPCR) CCRS5 and
CXCR4 on CD4" cell types (section 1.6.2). The expression of CD4 and a coreceptor is
not sufficient to guarantee infection by HIV (Dittmar et al., 1997). Indeed, the relative
expression levels of both CD4 and coreceptor can determine the extent of ensuing
infection, with relative affinities of gpl120 for these receptors affecting subsequent
infection (Dejucq, Simmons, and Clapham, 1999; Kozak et al., 1997; Platt et al., 1998;
Wu et al., 19970).

1.2.1.1 CD4-positive T-cells

The major in vivo cellular target for HIV is CD4" T-helper cells (Ty), and these
cells are progressively destroyed throughout the course of disease (Dalgleish et al.,
1984; Klatzmann et al., 1984a; Levy et al., 1984). There are two types of Ty cells,
termed Tyl and Ty2, classified according to their chemokine receptor expression, and

cytokine secretion profiles, and the cell types they provide help to. The apparent switch
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in cytokine profiles of infected individuals, where Tyl cytokines decrease and Ty2
responses increase towards the later disease stages, suggest an early destruction of Tyl
cells (Romagnani, Maggi, and Del Prete, 1994). However, HIV shows a preferential
targeting of the Ty2 and TyO subsets of CD4" lymphocytes over Tyl cells (Maggi et al.,
1994; Romagnani et al., 1994). The reason behind this subset preference of HIV
remains unclear, due to the complex nature of cytokine production, and the fact that

other cell types also secrete these cytokines.

The cytokine profiles in infected individuals may also influence HIV tropism, as
both CCRS5 and CXCR4 are upregulated by type 1 cytokines (such as IL-2 and IFN-y),
whereas CXCR4 is upregulated and CCRS down-regulated by type 2 cytokines (IL-4
and IL-10)(Barcellini et al., 1994; Romagnani, Maggi, and Del Prete, 1994). In
addition to the T-helper cell subsets, memory T-cells (CD45 RO") are infected more
frequently than naive (CD45 RA™) T-cells, although infection of naive T-cells by
CXCRA4-using strains in the later stages of disease has been reported (Ostrowski et al.,
1999; Roederer et al., 1997; Schnittman et al., 1990; Spina, Prince, and Richman,
1997). The role of this preference for specific T-cell subsets in HIV pathogenesis

remains uncertain.

1.2.1.2 Macrophages, monocytes and microglia

Blood and tissue monocyte-derived macrophages express both CD4 and CCRS5,
are susceptible to infection with HIV, and represent one of the major in vivo cellular
targets and latent reservoirs (Gendelman and Meltzer, 1989; Meltzer and Gendelman,
1992). Unlike infected T-cells, which release budded virions extracellularly from the
cell surface, infected macrophages have a high number of virions retained within
intracellular vesicles, a mechanism which may contribute to virus dissemination
(Gendelman et al., 1988). Although all M-tropic isolates exploit CCRS, as do most
primary T-tropic strains, macrophages do express CXCR4 capable of supporting
infection by some CXCR4-using strains (Collman and Yi, 1999; Simmons et al., 1998;
Yi et al., 1998). However, not all CXCR4-using viruses can infect macrophages, and
although this can be overcome in some cases by increasing HIV receptor expression
levels, some virus strains are inherently restricted from replicating in macrophages
(Collman and Yi, 1999; Mondor et al., 1998; Platt et al., 1998; Schmidtmayerova et al.,
1998; Simmons et al., 1995; Tokunaga et al., 2001; Wu et al., 1997b). The precise

nature of this restriction remains unclear, as macrophages remain sensitive to cell-cell
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fusion upon cocultivation with T-cells infected with such restricted isolates (Simmons et
al., 1995; St Luce et al., 1993). It remains clear, however, that expression of a
coreceptor, and the ability of an isolate to exploit it, does not ensure successful infection

of macrophages (Dittmar et al., 1997).

Microglia and perivascular macrophages are the major targets for HIV and SIV
in the brain, becoming infected by HIV during the early stages of disease (Davis et al.,
1992; Kure et al., 1990; Price et al., 1988; Pumarola-Sune et al., 1987; Stoler et al.,
1986; Williams et al., 2001). Although infection of astrocytes can occur in the absence
of CD4, microglial infection is CD4-dependent and predominantly mediated via CCRS,
despite the presence of other coreceptors such as CXCR4 and CCR3 (Albright et al.,
1999; Cheng-Mayer et al., 1989; Ghorpade et al., 1998; Gorry et al., 2001; He et al.,
1997; Jordan et al., 1991; Lavi et al., 1997; Sharpless et al., 1992; Shieh et al., 1998;
Watkins et al., 1990). As seen with SIV, it is the capacity of HIV isolates to infect
macrophages that determines neurotropism, although other cellular and viral factors,
including Nef, may play a role (Flaherty et al., 1997; Gorry et al., 2001; Korber et al.,
1994; Mankowski et al., 1997, Strizki et al., 1996). An increased affinity for CCRS, as
well as a decreased dependency on both CD4 and CCR5 may also be predictive of
neurotropism (Gorry et al., 2002a).

1.2.1.3 Dendritic cells

There are several phenotypically-distinct antigen-presenting dendritic cells
(DCs) whose normal biological role is to present antigen to CD4" and CD8" T-cells.
Dendritic cell subtypes include the bone marrow-derived plasmacytoid DCs (pcDCs)
and myeloid DCs, as well as Langerhans cells in the skin and genital mucosae. These

subtypes display few phenotypic markers, and their chemokine receptor expression

profiles differ according to the maturation state (CCRShiCXCR4lo immature cells;

CCR5"°CXCR4™ mature cells). Analysis of dendritic cell infection in vivo is therefore
complex (Piguet and Blauvelt, 2002; Pope, 1999). Some DC subtypes express low
levels of CD4 as well as CCRS5 and/or CXCR4, and as such have been reported to
support HIV replication both ir vitro and in vivo (Bhoopat et al., 2001; Frankel et al.,
1997; Langhoff et al., 1991; MacDougall et al., 2002; O'Doherty et al., 1993; Patterson
et al., 1999; Pope, 1999; Simonitsch et al., 2000; Tchou et al., 2001; Walsh et al., 1987;
Zaitseva et al., 1997, Zambruno et al., 1991).
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