Studies on the genetics and molecular pathogenesis

of mitochondrial respiratory chain disorders

Teeratorn Pulkes MD

A thesis submitted to the University of London for the

degree of Doctor of Philosophy

April 2003



ProQuest Number: U642041

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest U642041
Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



Abstract

This work aimed to identify the molecular genetic basis of disease in thirty patients with
classical mitochondrial encephalomyopathy phenotypes without known mutations. The patients
exhibited a range of phenotypes including MELAS, MERRF, CPEO, exercise intolerance,
isolated myopathy and Kearns-Sayre syndrome. In addition the molecular mechanisms which
underlie the clinical diversity associated with the common A3243G and 7472C insertion-
mutations were investigated.

Systematic sequencing of the entire muscle mtDNA was undertaken in each of the thirty
patients. Seven pathogenic mtDNA mutations were identified in eleven of the patients. Five
mutations are previously unpublished. There are the AS874G mutation in tRNA™" gene, the
G12294A mutation in tRNA"CU™ gene, the G4810A mutation in ND2 gene, the T11232C
mutation in ND4 gene and the G15723A in cytochrome b gene. The A5874G and G4810A
mutations are the first mutations in the tRNA™" and ND2 gene, respectively, to be described in
association with human diseases. All but the G4810A mutation were associated with sporadic
myopathy without involvement of other tissues. For these sporadic cases, mutant mtDNA was
present in only skeletal muscle was not detected in other tissues or in the blood mtDNA of the
maternal relatives examined. These data suggested that these mutations might be somatic.

Four MELAS cases were found to harbour the G13513A mutation in the ND5 gene previously
reported in a single case. Our data indicate that the G13513A is probably the second commonest
cause of MELAS in the United Kingdom. Furthermore the phenotypic diversity associated with
the G13513A mutation has been extended to include MELAS overlap with Leber’s hereditary
optic neuropathy.

Despite complete sequencing of the entire muscle mtDNA in the nineteen remaining patients,
pathogenic mtDNA mutations were not identified in these patients. These data suggest that these
patients might harbour genetic defects in nuclear genes.

The role of mtDNA background in influencing the phenotypic expression of the common

A3243G MELAS mutation in forty-eight unrelated cases was studied. The results indicated that



a polymorphism, A12308G, in the tRNA"“"™ gene may increase risk of developing stroke in
the A3243G patients (relative risk = 2.17).

The role of mtDNA background on clinical expression of mtDNA mutations was further
observed in association with a 7472C-insertion mutation in tRNASW™ gene. The author
described two new unrelated families harbouring the 7472C-insertion which the first family had
myoclonic epilepsy and sensorineural hearing loss similar to previous reports. However, the
second case had isolated myopathy, in which she had markedly different muscle histochemical
findings from other reported cases. The intragenic polymorphism, T7472G, in the tRNASN
gene was observed in the second case and might be influence in the phenotypic expression of
the 7472C-insertion.

In conclusion, this study has defired the molecular genetic basis of mitochondrial diseases in
eleven patients. Five novel mtDNA mutations are described and characterised. Evidence is
presented that the G13513A mutation is an important cause of the MELAS phenotype. It is
suggested that nuclear gene defects probably account for the disease in the remaining nineteen

patients. Evidence is presented that the mtDNA haplotype may influence the expression of

primary mtDNA defects.
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Chapter 1 Introduction

The mitocShondrion is an important intracellular organelle located in the cytoplasm of most
eukaryotic cells. Its main function is to produce energy for the cell. Five mitochondrial
respiratory chain complexes lying in the inner mitochondrial membrane are responsible for
energy production by oxidative phosphorylation [Cooper and Clark 1994]. A primary defect of
respiratory chain function may result in multi-organ dysfunction affecting mainly the nervous
system and skeletal muscle. These disorders are known as mitochondrial encephalomyopathies.
Although the majority of mitochondrial respiratory chain proteins are coded by the nuclear
DNA, to date most mitochondrial encephalomyopathies are associated with mutations in the
mitochondrial DNA (mtDNA). Mitochondrial encephalomyopathies are clinically and
genetically widely heterogeneous. A single mtDNA mutation may associate with several clinical
syndromes and a clinical syndrome may associate with several mutations in different genes on
the mtDNA and probably nuclear DNA [Morgan-Hughes and Hanna 1999]. Furthermore,
mitochondrial respiratory chain dysfunction has been implicated in degenerative diseases, aging
and in some form of neoplasia. Such neoplasms include familial pheochromocytoma or
paraganglioma and autosomal dominant uterine fibroids, skin leiomyomata and renal cell

carcinoma [Astuti et al. 2001;Baysal et al. 2000;Tomlinson et al. 2002].

1.1 Mitochondria and the mitochondrial respiratory chain

The mitochondrion is believed to have originated from a-proteobacteria during the evolution of
nucleated cells. Eukaryotic cells lacking respiratory organelles imported bacteria which became
their energy-producing organelles. This endosymbiotic hypothesis is strongly supported by the
similarity of the gene sequences of mitochondria and a subgroup of the a-proteobacteria.
Members of the rikettsial subdivision, a group of obligate intracellular parasites including
genera such as Rikettsia, Anaplasma and Ehrlichia, are believed to be the closest known

eubacterial relatives of mitochondria [Andersson et al. 1998].
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In eukaryotic cells, anaerobic glycolysis in the cytosol generates two ATPs per glucose
molecule. In contrast, the mitochondrial ATP synthesis by oxidative phosphorylation is more
efficient in ATP production (over 30 mol ATP/mol glucose). The oxidation of fatty acids to CO,
also generates ATP in the mitochondrion. Therefore, the mitochondrion can be regarded as the

"power plant" of the cells [Lodish et al. 1995].

1.2 Structural organisation of the mitochondrial respiratory chain

The respiratory chain comprises four multiple polypeptide enzyme complexes: Complex I
(NADH-ubiquinone reductase); Complex II (succinate-ubiquinone reductase); Complex III
(ubiquinol-cytochrome c¢ reductase); and Complex IV (cytochrome ¢ oxidase); and two mobile
electron carriers: ubiquinone and cytochrome c. Together with ATP synthase (Complex V)
these complexes and mobile electron carriers comprise the oxidative phosphorylation system
(Fig. 1.2). The enzymes for the tricarboxylic acid (TCA) and B-oxidation of fatty acids are in
the mitochondrial matrix. Pyruvate and fatty acids are oxidized generating NADH and FADH2.
NADH and FADH2 are reoxidized by donating electron to the respiratory electron transport
chain. Energy is released and electrons are transported along the respiratory chain finally
combing with molecular oxegen to form H,O [Cooper and Clark 1994]. The released energy is
used by complexes I, III and IV to pump proton across the inner membrane into the
intermembrane space. An electrochemical proton gradient or broton motive force (PMF) is thus
generated across the inner membrane. The PMF is used for the generation of the ATP by ATP
synthase and transport of charged molecules i.e. proteins, carboxylic acids and ions [Mitchell

1976].
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