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Solving discrete time heterogeneous agent models with
aggregate risk and many idiosyncratic states by perturbation
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This paper describes a method for solving heterogeneous agent models with ag-
gregate risk and many idiosyncratic states formulated in discrete time. It extends
the method proposed by Reiter (2009) and complements recent work by Ahn, Ka-
plan, Moll, Winberry, and Wolf (2017) on how to solve such models in continuous
time. We suggest first solving for the stationary equilibrium of the model with-
out aggregate risk. We then write the functionals that describe the dynamic equi-
librium as sparse expansions around their stationary equilibrium counterparts.
Finally, we use the perturbation method of Schmitt-Grohé and Uribe (2004) to ap-
proximate the aggregate dynamics of the model.
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1. Introduction

Models of heterogeneous agents have become widespread in macroeconomics, at least
since Krusell and Smith (1997, 1998) developed the first widely applicable algorithm to
solve them in an environment of aggregate risk. Yet, their use has been limited initially
by the computational resources needed to solve these models. Over the last decade, sub-
stantial progress has been made in developing algorithms that can solve these models
more efficiently.1 One of the most popular and powerful of these methods was origi-
nally developed by Reiter (2002, 2009). This method extends perturbation methods to
heterogeneous agent environments, that is, it builds on the methods often used to solve
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dynamic stochastic general equilibrium models with a representative agent (see, e.g.,
Schmitt-Grohé and Uribe (2004)). Our paper restates this procedure and additionally
shows how the necessary dimensionality reduction of the heterogeneous agent model
can be achieved in a new, intuitive way.

The extension of perturbation methods to heterogeneous agent models relies on
writing the model in the form of a nonlinear difference equation that is function-
valued instead of vector-valued (as in representative agent models). This equation is
then (linearly) approximated around the stationary equilibrium of the heterogeneous
agent model without aggregate risk. The (at least) two functionals that enter the differ-
ence equation are the distribution of agents over idiosyncratic states (e.g., the wealth
distribution) and the function (value or policy function) that describes the optimal in-
dividual behavior. These functionals can be seen as replacements for the aggregate
capital accumulation and consumption Euler equation in representative agent models.
These replacements allow us to maintain all nonlinearity with respect to microeconomic
shocks—yet obtaining a model that is linear in aggregate variables.

While all of this is straightforward in theory, the key practical issue is how to approx-
imate the functionals involved because they need to be replaced by finite-dimensional
objects for the actual computation of the model’s dynamics. In particular, when the
individual planning problem is rich insofar as it has many idiosyncratic states, this is-
sue is severe. The curse of dimensionality implies that it is hard to come up with a
small enough finite-dimensional representation of the distribution function and the
value/policy function without having any a priori knowledge of their shape.

However, the solution of the stationary equilibrium provides us with such knowl-
edge in most practical cases. Therefore, we propose a dimensionality reduction step af-
ter the stationary equilibrium of the economy (i.e., without aggregate risk) has been de-
termined, but before perturbing the system. This dimensionality reduction is adaptive
and takes into account the shape of the distribution and value function in the station-
ary equilibrium. As a result, the stationary equilibrium can be computed without taking
into account that the goal is to solve for aggregate dynamics in the end.

In detail, we suggest using sparse expansions of value and distribution functions
around their nonsparse stationary equilibrium counterparts. First, we write the value
function in the stationary equilibrium as a sum of a full set of basis functions and deter-
mine the coefficients on these. We then allow only those coefficients of the basis func-
tions to vary outside the stationary equilibrium that are large in the stationary equi-
librium while we keep all small coefficients at their stationary equilibrium values. This
is analogous to lossy video compression where the compressed video stream is coded
by strongly compressing the difference to a lightly compressed reference frame. In fact,
we borrow further from image compression by writing the value functions in the form
of their discrete cosine transform (i.e., as Chebyshev polynomials on the Chebyshev
nodes). Second, we split the high-dimensional distribution function into the histograms
of its marginals and their (joint) copula. As a baseline, we suggest keeping the copula
fixed at its stationary equilibrium value. This, as a second dimensionality reduction,
picks up the idea of Krusell and Smith (1997, 1998) that not all moments of the wealth-
income distribution are equally important for price formation and, therefore, relevant
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for the equilibrium dynamics. The assumption of a fixed copula implies that the rank
correlation among, say, wealth in various kinds of assets and income is time constant
without imposing any restriction on changes in the shape of the marginal distributions.
However, one can also treat the copula as time varying, applying the same dimension-
ality reduction for the copula as we do for the value/policy functions, that is, using the
discrete cosine transforms.

Concretely, we show, both for an incomplete markets model with one asset and for
a model with two assets, that the assumption of a fixed copula has little impact on the
model dynamics but substantially speeds up the computation. The largest share of the
computation time falls on the calculation of the stationary equilibrium followed by the
calculation of the derivatives of the nonlinear difference equation. However, both can
be sped up by parallelization. At any rate, the models we consider can all be solved on a
standard desktop computer in a matter of seconds or minutes using our algorithm.

By reducing the dimensionality after the solution of the stationary equilibrium but
before linearizing, our method differs from existing proposals. The original proposal
by Reiter (2002) was to represent distribution functions by histograms without any di-
mensionality reduction and to write value functions (or other functionals describing
the dynamic planning problem) as finite-dimensional parametric objects—for exam-
ple, by using splines. However, when the individual planning problem is rich insofar as
it has many idiosyncratic states, this procedure can become inaccurate and in many
cases even infeasible to solve numerically. The first idea to tackle this issue was to be
as sparse as possible in the parametric approximation of functions when solving for the
stationary equilibrium (see, e.g., Reiter (2009)), for example, through sparse grid meth-
ods in the dynamic planning problem (see, e.g., Bungartz and Griebel (2004), Krueger
and Kubler (2004)) and by using mixtures of parametric distributions as proposed by
Winberry (2018). In other words, these methods rely on achieving dimensionality re-
duction ex ante, before solving for the stationary equilibrium, and hence impose a nu-
merical constraint on this solution. The analogy of this is still in image compression, or
the compression of a sequence of images picture-by-picture, which is in general ineffi-
cient for video compression because of many nonmoving parts. For a dynamic equilib-
rium model, this analogy carries over: Many aspects of value and policy functions do not
change much with aggregate shocks, such that the stationary equilibrium functions are
good “reference frames.”

An alternative attack, also suggested by Reiter (2010a), is to use singular value de-
composition for dimensionality reduction of the Jacobian of the system after linearizing
the difference equation but before solving it. Ahn et al. (2017) developed this approach
further in that they write the planning problem in continuous time and suggest using
automatic differentiation in order to obtain a sparse Jacobian. This helps with both the
memory requirements, and with the computing time for both the singular value decom-
position and the solving of the difference equation itself. In addition, they suggest per-
turbing the deviations of value and distribution functions from their stationary equilib-
rium counterparts instead of perturbing the functions themselves. This allows for differ-
ent parametric classes for deviations and stationary equilibrium functionals. As a result,
it decouples the number of perturbed parameters from the number of parameters used
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in the approximation of the functions in the stationary equilibrium (which can poten-
tially be richer). Our approach shares the latter aspect with the approach of Ahn et al.
(2017). Compared to their method, ours has the advantage of avoiding the calculation of
a very large Jacobian because the dimensionality is reduced before this step. Thus, it can
be applied to models formulated in discrete time, where the Jacobian would otherwise
be too nonsparse to be efficiently stored in a PC’s memory. Another advantage is that
this allows us to calculate second-order (or higher) perturbations, because the number
of (higher-order) derivatives to be calculated does not increase too fast. Concretely, we
provide an example where it takes a few minutes to calculate a brute-force second-order
perturbation solution to the Krusell and Smith (1998) model—brute-force in the sense
that we do not exploit prior theoretical knowledge of some second-order derivatives be-
ing zero.

The remainder of the paper is organized as follows: Section 2 defines the generic
model we aim to solve with our method and lays out the solution method itself. Sec-
tion 3 provides the economic model of two application examples: first, a standard in-
complete markets model with just a single asset, capital, as in Krusell and Smith (1998);
second, an extension of that model, in which households have to choose between assets
of different liquidity. They can hold a liquid nominal asset or illiquid capital. We add a
nominal rigidity to this model, such that it is of the New-Keynesian flavor. For the first
model variant, we can compare our solution to the original Krusell and Smith (1998) al-
gorithm and to the standard Reiter (2009) approach. Our method is equally as precise as
Reiter’s standard approach but faster. It is faster and slightly less precise than the Krusell
and Smith algorithm in our example. The second model variant is too rich in terms of
aggregate states to be solved by Reiter’s standard approach. Here, we only show that
simulating the model along the lines of Den Haan’s (2010a) test proves the method to
be accurate, that business cycle properties of the model change little when perturbing
a larger set of DCT-coefficients, and that the model produces realistic asset return pre-
mia and a reasonably good approximation of asset market clearing. Section 5 concludes.
Example codes are provided in the Appendix (Bayer and Luetticke (2020)).

2. Method

We consider a generic economy with a continuum of heterogeneous agents and aggre-
gate risk. We first define the objects we need to work with. Thereafter, we define a sta-
tionary equilibrium and a sequential equilibrium (with recursive individual planning)
for this economy. Then we describe how the sequential equilibrium can be solved for lo-
cally and how a reduction of the state space can be achieved. Finally, we give an overview
of the suggested algorithm.

2.1 Prerequisites and notation

Let St ∈ R
n denote the aggregate states in this economy other than the distribution of

agents over their idiosyncratic states sit ∈ R
m for individual i at time t. In a representa-

tive agent model, these St would be the only state variables. With heterogeneous agents,
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the distribution function μt of agents over sit is also part of the aggregate states of the
economy but for notational purposes shall not be included in St .

Both St and sit shall be partitioned into an exogenous stochastic and an endogenous
deterministic component

St =
[
Xt

Dt

]
� sit =

[
xit
dit

]
� (1)

with length n= nx + nd and m=mx +md , respectively.
With stochastic elements in St and sit , agents in the economy face both aggregate

and idiosyncratic risk. We denote the stochastic elements of the aggregate and idiosyn-
cratic state space by Xt and xit , respectively. We assume that all stochastic variables fol-
low a stationary Markov chain, such that

Xt+1 =HX(Xt)+ εt+1� xit+1 = hx(xit)+ εit+1� (2)

and the innovations εt+1, εit+1 have variances ωΩ and σΣ for the aggregate and idiosyn-
cratic variables, respectively.

The remaining idiosyncratic state variables dit are chosen by households in order to
maximize their utility. This choice shall be described by the generic planning problem

ν(xit� dit� St�μt)= max
dit+1

u(xit� dit� dit+1;Pt)+βEν(xit+1� dit+1� St+1�μt+1)� (3)

subject to dit+1 ∈ Γ (xit� dit�Pt) where Γ is a budget set and Pt = P(Xt�Dt�μt) is a pric-
ing kernel.2 Prices may result from market clearing in the sense introduced below, but
may also be directly determined by the aggregate state or the distribution, such as, for
example, interest rates set by the central bank or the wage rate as a function of the ag-
gregate amount of capital. The further aggregate states move for simplicity according
to some given law of motion Dt+1 = HD(Xt�Dt�μt).3 Note that this does not preclude
prices from also depending on choices for state variables Dt+1 made at time t because
we can write these as functions of states in t.

It will come in handy later to simplify notation for the Bellman equation by observ-
ing that, from the individual’s point of view, aggregates and distributions only matter
through prices. These, in turn, we can summarize by adding a time index t to the value
functions. Dropping the indexes to the idiosyncratic states and using ′ to denote the next
period variables, we can write the individual planning problem recursively as

νt(x�d)= max
d′∈Γt(x�d)

ut
(
x�d�d′)+βEνt+1

(
x′� d′)� (4)

where the time index here stands for conditioning the individual planning problem and
the pricing kernel on all state variables of time t. Individual policy functions hdt can be
defined accordingly.

2Potentially, prices indirectly enter into the utility function because they may change the mapping of
states to consumption.

3The law of motion HD can be the outcome of some other aggregate planning problem as well. Impor-
tantly, it is neither stochastic nor influenced by a single individual decision.
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To close the model, we need a description of market clearing. We define an excess
demand function Φt(h

d
t �μt) that maps the idiosyncratic policies and the distribution,

as well as prices and aggregate states (captured by the time index), into a real vector.
Typically, we have as many prices as idiosyncratic endogenous states, given that we as-
sumed an exogenous law of motion for aggregate states, that is, Φt(h

d
t �μt) ∈R

md .
For example, in an economy as in Krusell and Smith (1998), that is, with capital and

aggregate productivity risk, Φ is given by the difference between the marginal product of
capital and the rate of return on capital. In a bond economy with only IOUs, in contrast,
we would haveΦ= ∫ hdt (s)dμt (a time constantΦ), and in an economy with government
bonds this would be Φt = ∫ hdt (s)dμt −Bt , where Bt is the amount of government bonds
issued and circulating in t (such that Φ changes in aggregates).

2.2 Stationary equilibrium and approximate solution

Since the method developed by Reiter (2009) approximates the aggregate dynamics
around the stationary equilibrium, we first consider an economy without aggregate risk,
that is, where ω = 0. For such an economy, prices, distributions, and hence value func-
tions do not change over time, and we can define a stationary equilibrium generically as
follows.

Definition 1. A stationary equilibrium is a value function ν, a distribution function μ,

a policy function h
d
(s), and prices P such that:

1. The individual policy h
d
(s) is the maximizer of the Bellman equation (3) given P ,

h
d
(x�d)= arg max

d′∈ΓP(x�d)
u
(
x�d�d′)+βEν

(
x′� d′)
 (5)

2. The value function solves the Bellman equation (3) given the individual policy

h
d
(s).

3. Markets clear, that is, Φ(h
d
�μ)= 0.

4. The distribution μ is the stationary distribution of the Markov chain induced by

h(s� ε) := [hx(s)+ε

h
d
(s)

]
.

To solve for the equilibrium, it is necessary to approximate the model. Typically, the
model is solved for a (full tensor) grid of points in R

m replacing the functionals by some
parametric approximation. A common approach is, for example, to replace the value
functions with splines with the nodes of the spline being equal to the grid points. When
first-order conditions are sufficient and the problem is differentiable, we can replace
the Bellman equation with an Euler equation to describe the planning problem. Since
the techniques to find the equilibrium value functions are standard, we refer only to the
literature here (see, e.g., Carroll (2006), Hintermaier and Koeniger (2010)).

Similarly, the distribution is often approximated by a step function (the density be-
ing replaced by a point mass) on the grid or by a piecewise linear function (the density
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function being a step function).4 Since policy functions map potentially into nongrid
points, a standard technique is to introduce some trembling to the policy function such
that policies fall on neighboring grid points with such probabilities that the off-grid pol-
icy equals the expected value of the tremble; see Young (2010).5

Under these assumptions, the dynamics of the wealth distribution can be described
by the point-mass, in short a histogram, dμ, replacing the density, and a transition ma-
trix Πh induced by the policy function h. In the stationary economy,

dμ= dμΠh (6)

needs to hold. This is the discrete time analogue to the Kolmogorov forward/Fokker–
Planck equation in continuous time systems. For a given transition probability matrix,
that is, for a given policy function, the stationary distribution can then be calculated effi-
ciently by determining the eigenvector of Πh to the eigenvalue 1. Similarly, if we assume
that the value function is replaced by a linear interpolant, we obtain the result that the
solution to the Bellman equation is given by a finite vector of values, with a slight abuse
of notation also denoted by ν, which needs to satisfy

ν = u
h
d +βΠhν� (7)

where u
h
d is the period payoff under the optimal policy.6

In the following, we assume that the stationary equilibrium is solved for in this way
on a full tensor grid, because these methods are readily available and easy to imple-
ment, and their application is, in most cases, not constrained by memory availability
even on desktop computers. However, the method laid out below extends readily to the
case where the stationary equilibrium is solved for by sparse grid methods; see Bungartz
and Griebel (2004) or Krueger and Kubler (2004).

2.3 Sequential equilibrium with recursive individual planning

If there is uncertainty regarding the aggregate states, value functions written as func-
tions of idiosyncratic states are no longer time constant in equilibrium. The same holds
true for the distribution functions. Instead, if the model is stationary, value functions
and distributions will converge to a sequence that fulfills the following equilibrium con-
ditions.7

4We follow Young (2010) in using the point-mass approach throughout and understand the word “his-
togram” as a synonym for point-mass distributions.

5If one wants to read this in a strict way, then we assume that the individual planner can choose only
mixed strategies over two neighboring grid points and that the current payoffs depend on the two grid
points and the relative probability weights chosen. Then the solution with linear interpolation is an exact
solution to the described surrogate planning problem.

6If first-order conditions are sufficient such that, say, a standard consumption Euler equation holds, we
can also work with

u′
h
d =β(1 + r)Πhu

′
h
d �

instead of (7), where u′
h

is the marginal utility of consumption under the optimal policy.
7Note that we write the problem still in recursive form from a household’s point of view.
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Definition 2. A sequential competitive equilibrium with recursive individual planning
is a sequence of value functions νt , a sequence of distribution functions μt , a sequence
of policy functions hdt (s), a sequence of aggregate states St , and a sequence of prices Pt
such that at each point in time t:

1. The individual policy is the maximizer of the Bellman equation (3) given the prices
Pt ,

hdt (x�d)= arg max
d′∈Γ (x�d;Pt)

u
(
x�d�d′;Pt

)+βEνt+1
(
x′� d′)
 (8)

2. The value function solves the Bellman equation (3) given the individual policy hdt
and the expected continuation value νt+1.

3. Markets clear, that is, Φt(h
d
t �μt�Pt� St)= 0.

4. The distribution μt+1 is induced by ht(s� ε) := [ hx(s)+εt
hdt (s)

]
and the distribution μt .

5. The sequence of aggregate states is induced by
[Xt+1
Dt+1

]= [HX(Xt�Dt)+εt+1

HD(Xt�Dt�μt)

]
Again, we need to approximate the functions involved in the model in a suitable way

to solve the model. For that purpose, we replace the distribution function by a histogram
and add trembles to the policy. Finally, we write the value function as a linear inter-
polant. This implies that the discrete time Fokker–Planck equation (6) takes the form

dμt+1 = dμtΠht � (9)

which makes clear its forward equation character. Further, note that due to the
continuum-of-agents assumption, there is no randomness in the transition other than
through aggregate states and, therefore, shocks changing ht . The Bellman equation (7)
now takes the form

νt = uhdt
+βΠht νt+1� (10)

where uhdt
is the period payoff under the optimal policy at time t.

Combining these equilibrium conditions, we can summarize the sequential equilib-
rium conditions by the nonlinear difference equation given by

F(dμt� St� dμt+1� St+1� νt�Pt� νt+1�Pt+1� εt+1)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

dμt+1 − dμtΠht

Xt+1 −HX(Xt�Dt)+ εt+1

Dt+1 −HD(Xt�Dt�dμt)

νt − (uhdt
+βΠht νt+1)

Φt
(
hdt �dμt

)
εt+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(11)

s.t.

hdt (s)= arg max
d′∈Γ (x�d;Pt)

u
(
x�d�d′;Pt

)+βEνt+1
(
x′� d′)
 (12)
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A sequential equilibrium now fulfills

EtF(dμt� St� dμt+1� St+1� νt�Pt� νt+1�Pt+1� εt+1)= 0
 (13)

For notational simplicity, it is useful to define, Ŝt := [dμt Xt Dt]′ as all the aggregate states
of this system, including the distribution, and Ĉt := [νt Pt]′ as all the controls of the sys-
tem, that is, prices and value functions; to be more precise, their function values at the
grid points (nodes). Again if we are working with first-order conditions, value functions
might be replaced with marginal utilities.

2.4 Approximating the sequential equilibrium around the stationary equilibrium

There are various ways to solve the nonlinear difference equation, EtF = 0, by pertur-
bation methods. Here, we follow Klein (2000) and Schmitt-Grohé and Uribe (2004), who
show how to solve the system (11) by first- and second-order perturbation. These meth-
ods can be readily applied here as well, choosing the stationary equilibrium solution as
the point around which to perturb the system, as in Reiter (2002).

For expositional purposes, we focus on first-order perturbation here. This means
that it is necessary to calculate the Jacobian matrix of the system (dropping εt+1), J =
[F

Ŝ
F
Ŝ′ FĈ F

Ĉ ′ ], and solve the linearized difference equation by relating its solution to
the generalized eigenvalue problem[

F
Ŝ′ F

Ĉ ′
]

︸ ︷︷ ︸
A:=

ZΛ= −
[
F
Ŝ

F
Ĉ

]
︸ ︷︷ ︸

B:=

Z� (14)

with Z being the matrix of eigenvectors and Λ the diagonal matrix of eigenvalues. Split-
ting the eigenvalues such thatΛ1 contains the eigenvalues in the unit circle, we can write
Λ= [Λ1 0

0 Λ2

]
and Z = [Z11 Z21

Z12 Z22

]
. If a local equilibrium exists and is unique, the number of

eigenvalues in the unit-circle is equal to the number of state variables and the linearized
law of motion for state variables is given by O :=Z11Λ1Z

−1
11 , while states map to controls

through G := Z12Z
−1
11 . For details, we refer to Schmitt-Grohé and Uribe (2004). The fact

that the distribution function over idiosyncratic states is part of the aggregate state vec-
tor and that the value functions (or marginal utilities) are part of the aggregate vector of
controls does not change the solution in principle.

In practice, however, solving the generalized eigenvalue problem (or equivalently
making a qz-decomposition of A, B) becomes easily numerically infeasible because the
number of state variables (and controls) becomes very large, and thus A and B are large
matrices. If the idiosyncratic state-space is high dimensional, both value functions and
distribution functions are objects hard to approximate. A simple tensor grid to describe
the value function or histogram has easily a large number points, even if it has a small
number of points in each dimension of heterogeneity among households. Consider, for
example, a household planning problem with two assets and idiosyncratic income. Even
if we use only 9 points for the income grid and 50 points for each of the two asset grids,
then both dμ and ν are vectors with a length of 22,500 entries, and with this resolution,
the precision is at the lower bound of what one would like to have. This creates various
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numerical problems. First, one needs to calculate many derivatives numerically. In our
example, both A and B would be more than 45,000 × 45,000 entries large. While this cal-
culating of the Jacobian is time consuming, the numerical complexity is only quadratic
in the number of grid points. On top, modern automatic differentiation can speed this
up. Still, the matrix to be stored remains large; each has more than 7 GB in our example
if stored as a full double precision matrix.8 Second, the qz-decomposition and the cal-
culation of generalized eigenvalues become very time-consuming (cubic in the number
of grid points).

The literature has suggested ways to deal with the issue. First, Reiter (2009) suggested
replacing the value function with splines in order to decrease the number of nodes
needed to describe the value function. Building on this suggestion, Winberry (2018) sug-
gested using parametric families for the distribution functions to reduce the number of
parameters that describe the distributions at each point in time. A downside of these
two approaches is that they might impose tight restrictions on the value function and
distribution in the stationary equilibrium.9 What is more, they no longer allow us to
represent the Bellman equation and the distribution dynamics by conveniently linear
systems. For this reason, Ahn et al. (2017) suggested working in continuous time, which
increases the sparsity of the Jacobians. Then they suggest, following the original paper
by Reiter (2009), using singular-value decomposition of the Jacobians to project the state
space of the model into a lower dimensional space without losing much of the dynamics
of the system. Similar to what we suggest next, Ahn et al. (2017) linearized around the
stationary equilibrium value and distribution functions without imposing any a priori
restrictions on the functional forms.

2.5 State-space reduction: Fixed copula, compressed value function

We suggest reducing the dimensionality of the dynamic system before calculating the
Jacobian, but after solving for the stationary equilibrium, which we then can use as a
“reference frame.” This allows us to solve the model in discrete time, where the Jacobian
of the full system is much less sparse than in continuous time.

We achieve dimensionality reduction of the control space by writing the node values
(on the tensor grid) of the value functions as some form of sparse expansions around
their stationary equilibrium values:

ν̂t (s)= gν(s;θt� ν)� (15)

where the length of the time-varying parameter vector θt is much smaller than the size
of the tensor grid for s. We keep the setup with the surrogate planning problem that uses

8Clearly, many of the derivatives are (close to) zero, and thus storing the matrices as sparse matrices
further helps. In fact, this is one of the main advantages of writing the model in continuous time, because
then Πh is very sparse and it is easy to see how this translates into a very sparse Jacobian; see Ahn et al.
(2017).

9Another approach in the literature is to assume a finite but potentially large number of agents; see for
example, Mertens and Judd (2018). Ragot (2018) provided an overview.
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a linear interpolant outside the tensor grid for s to calculate the value function for nonn-
ode values. This avoids oscillating behavior, which gν might show outside the nodes, and
is computationally convenient. However, it is not central to our algorithm.

Yet, we have not specified how to select gν . One particularly useful way to con-
struct gν is through (inverse) discrete cosine transformation of the stationary equilib-
rium value function. The discrete cosine transformation of a data array yields the coef-
ficients of the fitted (multidimensional) Chebyshev polynomial, where the polynomial
is constructed such that the tensor grid for s is mapped to the Chebyshev knots.10 Im-
portantly, the absolute value of the coefficients has an interpretation in terms of the
contribution of the corresponding polynomial to the R2 statistics in terms of fitting the
data. This allows us to order and select the polynomial terms based on their importance.

To discuss this procedure in detail, with a slight abuse of notation, let ν be the array
of the value function values at the nodes of the full tensor grid in the stationary equilib-
rium. Further, let Θ = dct(ν) be its discrete cosine transform. The inverse cosine trans-
formation of Θ again produces ν. What is key for our procedure later on is that the larger
(in absolute value) a coefficient Θ(i) is, the more important is its corresponding Cheby-
shev polynomial for fitting ν; see Hu and Yu (1998). Therefore, it is useful to define I as
the index set of some α% largest elements of Θ (or equivalently the set that explains γ%
of the total Euclidean norm of Θ) and define the sparse coefficient vector

Θ̃=
{
Θ(i) ∀i ∈ I�
0 else

as the vector that shrinks all coefficients outside this set to zero. Then the inverse dis-
crete cosine transformation of idct(Θ̃) is the closest one to ν in a least squares sense
among all potential inverse discrete cosine transforms of arrays of the same level of
sparseness. One can roughly read the suggested procedures by Reiter (2009) and Win-
berry (2018) as being sparse in this sense when calculating the stationary equilibrium,
and then perturb all the coefficients that are used in calculating the stationary equilib-
rium.

Our approach by contrast does not try to be particularly sparse in calculating the sta-
tionary equilibrium, but can reach a higher degree of sparseness when calculating the
dynamics. This is achieved by using all coefficients Θ as a “reference frame” for calcu-
lating gν(s), by defining

Θ̂(θt)=
{
Θ(i)+ θt(i) ∀i ∈ I�
Θ(i) else

and gν(s) as its inverse discrete cosine transform idct[Θ̂(θt)], for a sparse vector θt . Im-
portantly, for θt = 0 it follows that gν = ν and our method thus fully recovers the station-
ary equilibrium value function at the same precision as is used in the computation of the

10See Ahmed, Natarajan, and Rao (1974) for the seminal contribution.



1264 Bayer and Luetticke Quantitative Economics 11 (2020)

stationary equilibrium, that is, without creating any approximation error irrespective of
the degree of sparseness that is used in the calculation of the model dynamics.11

This leaves us with the need to reduce the dimensionality of the distribution func-
tion. For this purpose, we split the distribution into a copula Ξt and marginal distribu-
tions {μ1t (s)� 
 
 
 �μmt(s)}:

μt(s)=Ξt
{
μ1t (s)� 
 
 
 �μmt(s)

}

 (16)

Again, as with the value functions, we can treat the copula as an interpolant defined
on the grid of steady-state marginal distributions, and also approximate Ξt as a sparse
expansion around the steady-state copula Ξ, as we just did for the value function. The
most extreme variant of this is to treat the copula as time fixed. We show in later sections
that this works extremely well in practice, and hence we focus on this variant in what
follows. We provide an extension treating the copula as time-varying in Appendix A.1.

The finding that the assumption of a fixed copula may work well follows from the
insight by Krusell and Smith (1998) that not all moments of the cross-sectional distribu-
tion μt have a strong impact on the distribution of prices that economic agents need to
forecast. In fact, for this reason Reiter (2009) proposes reducing the dimensionality of the
state space by projecting the histogram of the joint distribution on a lower dimensional
object that is perturbed instead. The projection can be done in such a way that, for ex-
ample, a list of moments of the distribution is preserved. Yet, if one uses this approach,
the distribution function will in general not maintain the shape it has in the stationary
equilibrium. With our method by contrast, it maintains its shape. Perturbing only the
marginals can be expected to be locally exact if the rank-correlation structure has no
significant impact on equilibrium prices or is relatively constant; see Bayer, Luetticke,
Pham-Dao, and Tjaden (2019) or Luetticke (2018) for examples.

Under this approach, the dynamic system F replaces value functions and distribu-
tions by the parameters θt�dμ1t � 
 
 
 � dμmt , where the dμ-terms are the histograms of
the marginal distributions. Since the system has more equations than unknowns now,
we need to reduce the dimensionality of F , too. This can be done by projecting the dif-
ferences back to a lower dimensional space. For example, for the distribution functions
this can be done by comparing only the marginal distributions. For the value functions,
one can focus on the coefficients of the discrete cosine transformation of the error terms
on the value functions at all nodes νt − (uhdt

+βΠht νt+1) in the index set I .
One advantage of reducing the state space before calculating the Jacobian of the dif-

ference equation through fixing the copula and “compressing” the value function in-
stead of reducing it after calculating the Jacobian (as in Reiter (2009), Ahn et al. (2017))
is that it reduces substantially the time needed for calculating derivatives and avoids the
potentially large memory requirements to store them that arise in discrete time models.
In addition, it avoids the singular-value decomposition altogether.

11Since the degree of sparseness and the index set I are chosen heuristically, the researcher should check
the robustness of her findings to the choice of the degree of sparseness. Yet, for the state-space reduction
based on singular-value decompositions of the Jacobian as in Ahn et al. (2017), one also needs to decide on
the minimal singular value that is retained.
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Its disadvantage is that it is not guaranteed that the coefficients of the expansion
around the stationary equilibrium value function that are shrunk to zero are unimpor-
tant for the shape of the value function outside the stationary equilibrium. They are only
unimportant in the stationary equilibrium (and hence would have been left out in pro-
cedures that reduce the dimensionality entirely ex ante). Yet, whether the latter leads
to low-quality approximations can be checked through simulating the model along the
lines of the tests suggested by Den Haan (2010a).

2.6 The algorithm in a nutshell

To give a practical guide on the implementation, we finally provide a summary of the
proposed algorithm. Concrete implementations can differ in particular in how the dy-
namic programming problem is solved. In particular, we provide the algorithm here on
the basis of value function iteration, for simplicity and generality. In practice, another
recursive method such as an endogenous grid method might well be preferable.

For our algorithm, define grids sj = {dj1 
 
 
 djnj } for each j = 1 
 
 
md of the idiosyn-

cratic endogenous state variables dj , with nj being the number of grid points used for
variable j (note that different from the section before, here we explicitly split up the
endogenous state variables in their md-dimensions). In addition to the endogenous id-
iosyncratic states, there is the exogenous stochastic one, x, which evolves on the grid
s0 = {x1 
 
 
 xn0}, which together with the transition matrix Πx defines a discrete Markov
chain for this state variable (collapsing all idiosyncratic exogenous states mx into one).
Let S

⊗
j=0


md

sj be the tensor product (mesh) of these md + 1 grids, and let IS be the

corresponding tensor product (mesh) of the indexes. This mesh has in total J =∏md
j=0 nj

grid points.
We define V as themd+1-dimensional array that stores the values of a value function

at each point of the mesh S . We define ν̂[(x�d1 
 
 
 dmd)|ΠxV] as the linear interpolant
defined by the mesh S and node values ΠxV , where ΠxV is the matrix product of Πx

and V reshaped accordingly. With dμ ∈ R
n0×n1×


nmd , we denote the histogram of the

distribution of agents over all states s ∈ S in array form; dμ is the same, but vectorized
(stacked). Let X be the (exogenous) aggregate state of the economy with X its steady-
state value.

Prerequisites 1. 1. Define for a given price system P a mapping T(V|P) : RJ → R
J

such that

∀s = (x�d1 
 
 
 dmd
) ∈ S :

T(V|P)(s) := max
(d1 ′




dmd ′)∈Γ (s�P)
u
(
s�d1′


 
 
 dmd ′)+βν̂
[(
x�d1′


 
 
 dmd ′)|ΠxV
]



In words, this mapping is one iteration of the value function. Define hd(V|P) :RJ →
R
J/n0 as the corresponding policy function (the arg max).
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2. Define a mapping Π =Π(VP) :RJ →R
J×J such that

∀k= (k0 
 
 
 kmd
)
� l = (l0 
 
 
 lmd

) ∈ IS :Π(VP)(k� l)=Πx
(
k0� l0

) md∏
j=1

Πdj (k� l)�

where Πdj are the coefficients to represent the policy hdP(x)= (hd1(x) 
 
 
 h
d
md
(x)) as

convex combinations of the nearest neighbors on the index mesh IS , that is,

Πdj (k� l)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if hdj (k) /∈
[
d
j
l−1� d

j
l+1

]
�

1 − hdj (k)− d
j
l

d
j
l+1 − d

j
l

if djl+1 ≥ hdj > d
j
l �

hdj − d
j
l−1

d
j
l − d

j
l−1

if djl ≥ hdj ≥ d
j
l−1


(17)

3. The discrete cosine transformation of an array A along a dimension j is given by
pre-multiplying a transformation matrix Cj to array A along the j-dimension. This
is done by permuting the array such that dimension j becomes the first one and
reshaping the array to matrix form. The result of this matrix multiplication has to be
reshaped back to its array form, permuting the now first dimension back to the jth
position. The inverse is defined analogously through premultiplication ofC−1

j = C ′
j .

The matrix Cj is constructed as

Cj(k� l)=

⎧⎪⎪⎨
⎪⎪⎩

1√
nj

∀l = 1 
 
 
 nj�k= 1�√
2/nj cos

(
π
(l− 1/2)(k− 1)

nj

)
∀l = 1 
 
 
 nj�k= 2 
 
 
 nj


(18)

Algorithm 1. 1. Finding the stationary equilibrium

(a) For a given price system P , iterate T(n) = T(T(
 
 
 T (V(0)|P)|P)|P)︸ ︷︷ ︸
n times

until conver-

gence to obtain an equilibrium value function VP as the limit n→ ∞.

(b) Calculate the equilibrium distribution dμP by solving dμP = dμPΠ(VP).

(c) Calculate excess demand Φ as a function Φ(hdP�dμP).

(d) Search over prices, repeating (a) to (c) until Φ(hdP�dμP)= 0. The prices that set

excess demand to zero are in the following denoted asP with h
d

and V being the
corresponding policy and value functions and dμ the equilibrium histogram.

2. Dimensionality reduction

(a) Define the joint distribution function μ(s) =∑x≤s dμ(x). Define μj ∈ [0�1]nj ,
j = 0 
 
 
md as the md + 1 vectors of the marginal distributions corresponding
to the nj points on the sj-grids. Generate the fixed copula Ξ(μ0� 
 
 
 �μmd |μ) :
[0�1]md+1 → [0�1] as an interpolant of μ on the tensor product

⊗md
j=0 μ

j .
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(b) Calculate the discrete cosine transformation of V along all md + 1 dimensions.

This yields coefficients Θ. Find the minimal index set I , such that
∑

i∈I Θ(i)2∑
i Θ(i)

2 >

1 − ε (by sorting the coefficients and retaining only the largest ones).

(c) Define a sparse vector that has #I nonzero entries, and hence is effectively
much shorter than Θ ∈ R

J . In the following, when we speak of perturbing θt ,
we mean perturbing its nonzero entries. This vector is used to assign values to
those coefficients of the discrete cosine transformation of V that were found to
be different from zero, and hence important. In other words, it assigns a value
to each coefficient in the index set I , such that we obtain the full set of coeffi-
cients, Θ̂(θ|Θ�I) ∈R

J , which is given by

Θ̂=
{
Θ(i)+ θ(i) if i ∈ I�
Θ(i) if i /∈ I


The mapping of this array Θ̂ to the value function values V̂(θ) is obtained
through an inverse cosine transformation.

3. Linearization

(a) Define the following objects:

• the difference between the value function implied from one backward it-
eration based on its value at time t + 1 and the value function for time t

as implied by θt . We apply the discrete cosine transformation to the value
functions and evaluate on all points in S�

�ν(θt� θt+1�Pt) := θt − dct
{
T
[
V̂(θt+1)|Pt

]} ∈R
J
 (19)

The shorter vector�∗
ν selects out of�ν only those elements that correspond

to the index set I .

• for all variables j = 0 
 
 
md the difference between the marginal distribu-
tion for time t + 1 obtained from iterating forward once (using the optimal
policies) the distribution implied by (μj

t )j=0


md
and the copula Ξ,

�∗
μ

[{
μ
j
t

}
j=0


md

�
{
μ
j
t+1

}
j=0


md

�Pt� θt+1
] ∈R

∑
(md+1) nj 
 (20)

• the excess demand function

Φ
({
μ
j
t

}
j=0


md

� θt+1�Pt� St� St+1
) :=Φ

[
dΞ
({
μ
j
t

}
j=0


md

)
�hd

Pt�V̂(θt+1)
� St� St+1

]



(21)

(b) Use these differences (19)–(21) to define a function

F
({
μ
j
t

}
j=0


md

� St� St+1�
{
μ
j
t+1

}
j=0


md

� θt�Pt� θt+1�Pt+1|Ξ�V�I
)
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that describes the economy as a system of nonlinear difference equations

F =

⎡
⎢⎢⎢⎢⎣

�∗
ν(θt� θt+1�Pt)

�∗
μ

[{
μ
j
t

}
j=0


md

�
{
μ
j
t+1

}
j=0


md

�Pt� θt+1
]

St+1 −H(St)

Φ
({
μ
j
t

}
j=0


md

� θt+1�Pt� St� St+1
)

⎤
⎥⎥⎥⎥⎦ 
 (22)

(c) Calculate the Jacobian of F . Define A, B as defined in the text before and as in
Schmitt-Grohé and Uribe (2004).

(d) Calculate the qz decomposition and solve for the linearized dynamics using
the algorithm provided by Schmitt-Grohé and Uribe (2004).

3. Examples

In the following, we discuss two examples to illustrate our modification of Reiter’s
method to solve general equilibrium models with heterogeneous agents and aggregate
risk. Both examples share the same model of consumption-savings choice in which
households face uninsurable income risk and use assets to self-insure. We then spec-
ify two variants of the model: one without nominal frictions and only one asset, that is,
the setup of Krusell and Smith (1998); second, a setup with two assets of different liquid-
ity and a nominal rigidity. The first example can be solved using the original Krusell and
Smith algorithm and the Reiter algorithm without state-space reduction. For the second
example, state-space reduction is necessary to render the computation feasible. Details
on the numerical precision of the various algorithms are provided in Section 4.

3.1 Household sector

There is a continuum of ex ante identical households of measure one, indexed by i.
Households are infinitely lived, have time-separable preferences with time-discount fac-
tor β, and derive felicity from consumption cit and leisure. Households have
Greenwood–Hercowitz–Huffman (GHH) preferences, and maximize the discounted
sum of felicity:12

E0 max
{cit �nit ��kit }

∞∑
t=0

βtu
[
cit −G(hit� nit)

]



The maximization is subject to the budget constraints described further below. The fe-
licity function u exhibits a constant relative risk aversion (CRRA) with risk aversion pa-
rameter ξ > 0,

u(xit)= 1
1 − ξ

x
1−ξ
it �

12The assumption of GHH preferences simplifies the numerical analysis of the stationary equilibrium
substantially but is not necessary for our implementation of Reiter’s method.



Quantitative Economics 11 (2020) Solving discrete time heterogeneous agent models 1269

where xit = cit −G(hit� nit) is household i’s composite demand for goods consumption
cit and leisure and G measures the disutility from work. Goods consumption bundles
varieties j of differentiated goods according to a Dixit–Stiglitz aggregator:

cit =
(∫

c
η−1
η

ijt dj

) η
η−1




Each of these differentiated goods is offered at price pjt , so that for the aggregate price

level, Pt = (
∫
p

1−η
jt dj)

1
1−η , the demand for each of the varieties is given by

cijt =
(
pjt

Pt

)−η

cit 


The disutility of work, G(hit� nit), determines a household’s labor supply given the
aggregate wage rate, wt , and a labor income tax, τ, through the first-order condition:

∂G(hit� nit)

∂nit
= (1 − τ)wthit 


Assuming that G has a constant elasticity w.r.t. n, ∂G(hit �nit )
∂nit

= (1 + γ)G(hit �nit )
nit

with γ > 0,
we can simplify the expression for the composite consumption good xit making use of
the first-order condition (3.1):

xit = cit −G(hit� nit)= cit − (1 − τ)wthitnit
1 + γ




When the Frisch elasticity of labor supply is constant, the disutility of labor is always a
constant fraction of labor income. Therefore, in both the budget constraint of the house-
hold and its felicity function, only after-tax income enters, and neither hours worked nor
productivity appears separately.

This implies that we can assume G(hit� nit) = hit
n

1+γ
it

1+γ without further loss of gener-
ality as long as we treat the empirical distribution of income as a calibration target. This
functional form simplifies the household problem as hit drops out from the first-order
condition and all households supply the same number of hours nit =N(wt). Total effec-
tive labor input,

∫
nithit di, is hence also equal to N(wt) because

∫
hit di= 1.

A household’s labor income wthitnit is composed of the aggregate wage rate, wt , the
household’s hours worked, nit , and its idiosyncratic labor productivity, hit . Productivity
evolves according to a log-AR(1) process and a fixed probability of transition to a high
income state in which hit = 0 but households receive a share of pure rents, that is, they
become entrepreneurs:

hit =

⎧⎪⎪⎨
⎪⎪⎩

exp
(
ρh loghit−1 + εhit

)
with probability 1 − ζ if hit−1 
= 0�

1 with probability ι if hit−1 = 0�

0 otherwise�

with shocks to productivity εhit being normally distributed.
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With probability ζ households become entrepreneurs (h = 0). With probability ι an
entrepreneur returns to the labor force with median productivity. An entrepreneurial
household obtains a fixed share of the pure rents, Πt , in the economy (from monopo-
listic competition and creation of capital). We assume that the claim to the pure rent
cannot be traded as an asset. The idea here is that a household that becomes an en-
trepreneur develops a variety only it can produce out of intermediate goods and it loses
this capacity (because its variety is replaced by another household’s drastic innovation)
when returning to the labor force.

3.2 Price setting

These entrepreneur households, that is, the final-goods producers, differentiate the in-
termediate good and set prices. We assume price adjustment costs à la Rotemberg
(1982). For tractability, we assume that the actual price setting is delegated to a mass-
zero group of households (managers) that are risk neutral and compensated by a share
in profits. They do not participate in any asset market. Under this assumption, managers
maximize the present value of real profits given the demand for good j,

yjt = (pjt/Pt)
−ηYt�

and quadratic costs of price adjustment, that is, they maximize

E0

∞∑
t=0

βtYt

{(
pjt

Pt
− MCt

)(
pjt

Pt

)−η

− η

2κ

(
log

pjt

pjt−1

)2}
�

with a time-constant discount factor. From the corresponding first-order condition for
price setting, it is straightforward to derive the Phillips curve:

log(πt)= βEt

[
log(πt+1)

Yt+1

Yt

]
+ κ

(
MCt − η− 1

η

)
� (23)

where πt is the gross inflation rate, πt := Pt
Pt−1

, and MCt is the real marginal costs. The

price adjustment then creates real costs η
2κYt log(πt)

2.
Since managers are a mass-zero group in the economy, their consumption does not

show up in any resource constraint and all profits—net of price adjustment costs—go to
the entrepreneur households (whose h= 0). In the case of the two-asset economy, these
households also obtain profit income from adjusting the aggregate capital stock. They
can transform It consumption goods into �Kt+1 new capital goods (and back) according
to the transformation function:13

It = φ

2
(�Kt+1/Kt)

2Kt +�Kt+1


13We assume that capital goods producers are each small, and thus ignore their externality on the future
cost of capital goods production.
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Since they are facing perfect competition in this market, entrepreneurs will adjust the
stock of capital until the following first-order condition holds:

qt = 1 +φ�Kt+1/Kt�

where qt is the price of capital.14

3.3 Intermediate-goods producers

Intermediate goods are produced with a constant returns to scale production function:

Yt =AtN
α
t K

(1−α)
t �

where Kt =E(kit) is the aggregate capital supply, Nt =E(h)[(1 − τ)wt]
1
γ is the aggregate

labor supply, and At is total factor productivity.
Let MCt be the relative price at which the intermediate good is sold to entrepreneurs.

The intermediate-good producer maximizes profits,

MCtYt −wtNt − (rt + δ)Kt = MCtAtN
α
t K

(1−α)
t −wtNt − (rt + δ)Kt�

but it operates in perfectly competitive markets, such that the real wage and the user
costs of capital are given by the marginal products of labor and capital:

wt = αAtMCt (Kt/Nt)
1−α� rt + δ= (1 − α)AtMCt (Nt/Kt)

α


3.4 Model variants

To close the model, we still need to define which assets households can trade. As stated
before, we consider two model variants. First, we have a variant of the original Krusell
and Smith (1998) economy where only capital is traded, which is a perfectly liquid as-
set. This variant serves to benchmark our solution strategy against other discrete time
methods. Second, we use the economy as in Bayer et al. (2019) and Luetticke (2018)
with a liquid nominal asset and illiquid capital. This economy cannot be solved without
state-space reduction and serves as an application example for those cases.

3.4.1 A neoclassical economy with one asset: The Krusell–Smith setup Our model nests
the Krusell and Smith (1998) economy. In that economy, households save only in capi-
tal that is perfectly liquid. There are no entrepreneurs (ζ = 0), labor supply is constant,
competition is perfect, and price adjustment is costless (η�κ→ ∞, η

κ → 0). In addition,
there is no capital adjustment cost, φ= 0, such that qt = 1. Taxes τ are zero, too.

Therefore, households optimize subject to this budget constraint:

cit + kit+1 = kit(1 + rt)+wthitN�

kit+1 ≥ 0�

where rt is the real return on capital.

14We assume for simplicity that all depreciation is replaced immediately through maintenance invest-
ment that transforms consumption goods into replacement investment one-for-one.
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Substituting the expression cit = xit + wthitN
1+γ for consumption, we obtain

xit + kit+1 = kit(1 + rt)+
(

γ

1 + γ
wthitN

)
�

kit+1 ≥ 0


With this setup, one Bellman equation characterizes the dynamic planning problem
of a household:

V (k�h;μ�A)= max
k′ u

[
x
(
k�k′�h

)]+βV
(
k′�h′;μ′�A′)�

where μ is the wealth-income distribution and A is aggregate productivity as the only
other state variable. Capital and labor market clearing are the only equilibrium condi-
tions (there is classical dichotomy and the nominal side is not determined):

wt = αAt(Kt/N)1−α� rt + δ= (1 − α)At(N/Kt)
α


3.4.2 New-Keynesian variant with liquid and illiquid assets The second model variant
introduces a nominal rigidity, such that the Phillips curve (23) is not vertical, and a nom-
inal bond that pays Rt , and makes capital illiquid, such that the two assets are not close
substitutes. Illiquidity is modeled as follows: Only a randomly selected fraction of house-
holds, ν, participates in the market for capital each period and can thus actively sell or
buy capital. All other households obtain dividends, but may only adjust their holdings
of nominal bonds. Holdings of bonds have to be above an exogenous debt limit B, and
holdings of capital have to be nonnegative.

Therefore, households optimize subject to their budget constraint:

cit + bit+1 + qtkit+1 = bit
R
(
bit�R

b
t

)
πt

+ (qt + rt)kit + (1 − τ)(wthitNt + Ihit=0Πt)�

kit+1 ≥ 0� bit+1 ≥ B�

where bit is real bond holdings, B is an exogenous borrowing constraint, kit is the
amount of illiquid assets, qt is the price of these assets, rt is their dividend, πt = Pt−Pt−1

Pt−1
is realized inflation, and R is the nominal interest rate on bonds, which depends on
the portfolio position of the household and the central bank’s interest rate Rb

t , which
is set one period before. All households that do not participate in the capital market
(kit+1 = kit ) still obtain dividends and can adjust their bond holdings. Depreciated cap-
ital has to be replaced for maintenance, such that the dividend, rt , is the net return on
capital.

We assume that there is a wasted intermediation cost, R, when households resort to
unsecured borrowing and specify:

R
(
bit�R

b
t

)=
{
Rb
t if bit ≥ 0�

Rb
t +R if bit < 0
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This assumption creates a mass of households with zero unsecured credit but with the
possibility to borrow, though at a penalty rate.

Substituting the expression cit = xit + (1−τ)wthitNt
1+γ for consumption, we obtain

xit + bit+1 + qtkit+1 = bit
R
(
bit�R

b
t

)
πt

+ (qt + rt)kit + (1 − τ)

(
γ

1 + γ
wthitNt + Ihit=0Πt

)
�

kit+1 ≥ 0� bit+1 ≥ B


With this setup, two Bellman equations characterize the dynamic planning problem
of a household: Va in the case where the household can adjust its capital holdings and
Vn otherwise:

Va
(
b�k�h;μ�Rb�A

)= max
k′�b′

a

u
[
x
(
b�b′

a�k�k
′�h
)]+β

[
νEV a

(
b′
a�k

′�h′;μ′�Rb′
�A′)

+ (1 − ν)EV n
(
b′
a�k

′�h′;μ′�Rb′
�A′)]

Vn
(
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′;μ′�Rb′
�A′)]

Since we allow for a nominal rigidity, the equilibrium is only determined when a
monetary and a fiscal policy are specified. Monetary policy controls the nominal interest
rate on liquid assets, while fiscal policy determines the amount of government bonds by
controlling fiscal deficits through the adjustment of expenditures. We assume that the
monetary and fiscal authorities operate independently and their behavior is described
by simple rules.

We assume that monetary policy sets the nominal interest rate on bonds following a
Taylor-type 1993 rule with interest rate smoothing:

Rb
t+1

R
b

=
(
Rb
t

R
b

)ρR(πt

π

)(1−ρR)θπ




The coefficient R
b ≥ 0 determines the nominal interest rate in the steady state. The coef-

ficient θπ ≥ 0 governs the extent to which the central bank attempts to stabilize inflation
around its steady-state value: the larger θπ the stronger is the reaction of the central bank
to deviations from the inflation target. When θπ → ∞, inflation is perfectly stabilized at
its steady-state value. ρR ≥ 0 captures interest rate smoothing.

We assume that the government issues bonds according to the rule (cf. Woodford
(1995)):

Bt+1

Bt
=
(
Bt

B

)ρB(πt

π

)−γπ(Tt
T

)−γT
�

using tax revenues Tt = τ(wtNt +Πt) to finance government consumption, Gt , and in-
terest on debt. In other words, the government seeks to stabilize debt in the long run and
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output in the short run. The coefficient ρB captures whether and how fast the govern-
ment seeks to repay its outstanding obligations Bt . For ρB < 1, the government actively
stabilizes real government debt, and for ρB = 1 the government rolls over all outstand-
ing debt. The coefficients γπ , γT capture the cyclicality of debt issuance: for γπ = γT = 0,
new debt does not actively react to tax revenues and inflation, but only to the value of
outstanding debt. For γπ > 0 > γT , debt is countercyclical; for γπ < 0 < γT � it is procycli-
cal.

In equilibrium, we need both factor markets to clear, such that

wt = αMCtAt(Kt/Nt)
1−α� rt + δ= (1 − α)AtMCt (Nt/Kt)

α�

and we also need asset markets to clear. This requires first

Bt+1 = Bd
(
μt;Rb

t �At;qt�πt;Va�t+1� Vn�t+1
) := E

[
νb∗

a + (1 − ν)b∗
n

]
� (24)

where b∗
a, b∗

n are bond demand functions of adjusters and nonadjusters. They are func-
tions of the states (b�k�h;Rb

t �At), of current prices qt , πt , and of expectations of future
prices summarized in the marginal value functions Va�t+1� Vn�t+1. Expectations in the
right-hand side expression are taken w.r.t. the distribution μt(b�k�h). Equilibrium re-
quires the total net amount of bonds the household sector demands, Bd , to equal the
supply of government bonds. In gross terms, there are more liquid assets in circulation
as some households borrow up to B.

Second, the asset market for capital has to clear. This requires that

qt = 1 +φ
Kt+1 −Kt

Kt
�

Kt+1 =Kd
(
μt;Rb

t �At;qt�πt;Va�t+1� Vn�t+1
) :=E

[
νk∗ + (1 − ν)k

]



(25)

Again expectations are taken w.r.t. the distribution μt(b�k�h).

4. Numerical performance

In the following, we first demonstrate the performance and accuracy of our method by
comparing it to the Krusell and Smith (1998) algorithm for the standard Krusell and
Smith (K-S) model, as described in Section 3.4.1. We then show the scalability of our
method by solving heterogeneous agent New-Keynesian (HANK) models with higher
dimensional heterogeneity, providing accuracy measures for the variant described in
Section 3.4.2. Finally, we also show that our approach also practically renders second-
order approximatableions feasible. All codes are available on the authors’ websites and
as a replication file inside the Supplementary Material (Bayer and Luetticke (2020)).

4.1 Comparison to Krusell and Smith (1998)

To compare the performance and accuracy of our method, we solve Krusell and Smith’s
(1998) model with the standard parameterization of the JEDC comparison project (cf.
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Den Haan, Judd, and Juillard (2010)).15 A period in the model is a quarter, the discount
factor is β = 0
99, the coefficient of relative risk aversion is ξ = 1, and the rate of de-
preciation equals 2
5% per quarter.16 Idiosyncratic and aggregate productivity risk both
follow two-state Markov chains. We solve the household problem on 100 grid points for
idiosyncratic capital. The grid for the aggregate capital stock has 3 points for the Krusell–
Smith algorithm and covers the unconditional ±3 STD interval from the linearized solu-
tion.

4.1.1 Numerical quality Figure 1 shows simulations of the K-S model for three dif-
ferent solution methods: (1) perturbation with state-space reduction via the fixed cop-
ula assumption and policy function compression (25 coefficients of the discrete cosine
transformation conserve 99
99% of the energy), (2) perturbation with a full policy func-
tion and histogram on the tensor product of the income and capital grid as in Reiter
(2002), and (3) the original Krusell and Smith algorithm.17 The response of aggregate
capital to TFP shocks is virtually the same in all three simulations. Table 1 confirms this.
The mean absolute error between the time series from the two linearization methods
and the K-S algorithm is 0
03%. What is more, the linearization methods with and with-
out state and control space reduction yield basically the same simulation for the aggre-
gate stock of capital with a maximum absolute error of 0
001%.

To further evaluate the accuracy of our solution method, we use the error metric sug-
gested by Den Haan (2010a), comparing the simulation from the linearized solution of
the model to one in which we solve for the equilibrium interest rate every period and

Figure 1. Simulations of Krusell & Smith model. Notes: Both panels show simulations of the
Krusell and Smith (1998) model with TFP shocks solved with (1) the Reiter method with our pro-
posed state-space reduction, (2) the original Reiter method without state-space reduction, and
(3) the original Krusell and Smith algorithm; simulated for 1000 periods. The draws for the pro-
ductivity process are kept constant across solution methods.

15Setting η → ∞ and κ → ∞, that is, no markups and flexible prices, yields the standard neoclassical
incomplete markets model.

16See Appendix B, Table 11 for the calibration.
17The simulations start from the steady state without aggregate risk, which is the same for all three meth-

ods. For all statistics, we simulate the model for 1000 periods.
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Table 1. Simulation errors relative to Krusell and Smith algorithm.

Absolute difference (in %) of log capital stocks Kt between simulations

Reiter-Reduction vs. K-S Reiter-Full vs. K-S R.-Reduction vs. R.-Full

Mean 0
0324 0
0324 0
0003
Max 0
0670 0
0662 0
0012

Note: Differences in percent between simulations of aggregate capital for the Krusell and Smith (1998) model solved with
(1) the Reiter method with our proposed state-space reduction, (2) the original Reiter method without state-space reduction,
(3) the original Krusell and Smith algorithm. The first two columns show the performance of (1) and (2) relative to (3), and
the last column shows the performance of (1) relative to (2) for 1000 periods. The draws for the productivity process are kept
constant across solution methods.

Table 2. Den Haan errors.

Absolute error (in %) for log capital Kt

Reiter-Reduction Reiter-Full K-S

Mean 0
0100 0
0102 0
0051
Max 0
0191 0
0193 0
0131

Note: Differences in percent between the simulation of the linearized solutions of the model and simulations in which we
solve for the intratemporal equilibrium prices in every period and track the full histogram over time for t = {1� 
 
 
 �1000}; see
Den Haan (2010a).

Table 3. Run time for Krusell and Smith model.

Stationary equilibrium Krusell and Smith Reiter-Reduction Reiter-Full

in seconds 7
05 91
61 0
38 1
19

Note: Run time in seconds on a Dell laptop with an Intel i7-7500U CPU at 2
70 GHz at 4. Model calibration and number of
grid points as in Den Haan, Judd, and Juillard (2010). Code in Matlab.

track the full histogram over time. The mean absolute error is 0
01% and the maximum
error is 0
019%; see Table 2. The K-S algorithm, which is the most accurate algorithm in
Den Haan, Judd, and Juillard (2010), here is also most precise with a mean absolute error
of 0
005%. In Appendix A.2, we show that this result is not specific to the parameteriza-
tion (as can be expected for a first-order perturbation, solution quality deteriorates with
the variance of shocks).

Finally, Table 3 shows the run times of all three methods and the steady state sepa-
rately. The Reiter method with state and control space reduction only takes 0
4 seconds.
This makes it more than 240 times faster than the Krusell and Smith algorithm. With-
out reduction, the run time increases by a factor of 3. Even when the time to compute
the stationary equilibrium is taken into account, our linearization method is 13 times
faster than the Krusell–Smith algorithm. The main advantage of linearization with state
and control space reduction, however, lies in its capacity to solve models with many id-
iosyncratic states fast and precisely as the next section shows. Before going there, we will
provide a short illustration of our dimension reduction procedure in the Krusell–Smith
economy.
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Figure 2. Stationary equilibrium consumption policies by sparseness of θ.

4.1.2 Details on using the DCT for dimensionality reduction The small size of the
Krusell and Smith example allows us to discuss the advantages of our dimensionality re-
duction procedure by displaying the implied approximations and approximation errors
for different levels of state-space reductions for the policy functions (since we solve with
EGM). Here, we apply a much rougher approximation than in the previous subsection
to show where the potential of strong dimensionality reduction comes from and com-
pare this to the alternative of selecting the perturbed coefficients as those of a complete
polynomial of a given order (a nonadaptive “sparse” type of approximation).

We present in the following the solution of the model in terms of policy functions
and impulse responses based on retaining 10, 50, and all 200 coefficients of the discrete
cosine transform of the policy function. First, we compare the policy function in the
stationary equilibrium with the policy function that would have been obtained by solv-
ing the stationary equilibrium with the sparse Chebyshev polynomial, that is, actually
shrinking the remaining smaller coefficients to zero already in the stationary equilib-
rium solution. The comparison can be seen in Figure 2. The approximation with 10 co-
efficients is fairly rough and unsatisfactory in quality as a description of the stationary
equilibrium policy. It shows excessive fluctuation and oscillation. With 50 out of 200 co-
efficients, the approximation becomes much better, but small oscillations and approx-
imation errors remain. Applying the method of Reiter (2009) or Winberry (2018), one
might accept the sparse Chebyshev polynomial with 50 coefficients as an ex ante di-
mensionality reduction.

A low number of coefficients, however, has hardly any impact on the response of
individual policies to a TFP shock; see Figure 3. The figure shows how consumption
policies change (according to our solution) for different levels of sparseness of θ, that
is, for a different number of retained coefficients. The reason for this is that the shock
mostly produces a level shift for consumption together with a small change in the steep-
ness of the consumption policy in wealth and income. Using the stationary equilibrium
values of the small coefficients, changes in the large coefficients of the discrete cosine
transform of the consumption policy can capture these shifts well. In other words, the
stationary equilibrium policies provide a good “reference frame” that we can exploit for
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Figure 3. Change in consumption policies after a 20% TFP shock by sparseness of θ.

Figure 4. Aggregate response after a 20% TFP shock by sparseness of θ.

our solution. Not very surprisingly, with these small differences in individual policies,
the aggregate responses look also indistinguishable; see Figure 4.

As we argued before, finding which of the coefficients are perturbed of a Chebyshev
polynomial representation of the value/policy functions is in principle not an ex ante
well-defined problem. Retaining those coefficients that are large when representing the
stationary equilibrium value/policy functions is only a heuristic. An alternative (heuris-
tic) would be to retain those coefficients that correspond to the complete (instead of full)
polynomial. In practice, this means that we retain those coefficients that correspond to
polynomial terms (over the two dimensions) that have a sum of exponents of at most
some number N .

We compare this choice in Table 4 to our suggested choice of finding the coefficients
to retain, that is, by perturbing only those coefficients that are large in the stationary
equilibrium solution. Despite the fact that the complete polynomial choice has a some-
what stronger theoretical underpinning (being a Taylor expansion), in our practical ex-
ample it performs substantially worse—especially when the number of retained coeffi-
cients becomes small. For less than 35 retained coefficients, the selection based on form-
ing a complete polynomial of given order yields such a bad approximation that we get a
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Table 4. Comparison of DCT-based coefficient selection to a nonadaptive rule.

Degree of polynomial, N 50 40 30 20
Number of coefficients 101 81 61 41

Selection of coefficients Max absolute difference of log capital stocks (×1e−8)

(a) Complete polynomial 0
08 0
80 6
24 37
37
(b) DCT 0
10 0
43 0
07 0
46

Mean absolute difference of log capital stocks (×1e−8)

(a) Complete polynomial 0
02 0
25 1
95 11
59
(b) DCT 0
03 0
13 0
02 0
13

Note: Relative differences between the simulated capital stock for 1000 periods obtained from using all coefficients of the
policy function and either (a) the reduction Reiter method where coefficients are retained that form the complete polynomial
of at most order N or (b) the reduction Reiter method with our proposed DCT-based selection of coefficients that retains the
same number of coefficients as in (a).

violation of the Blanchard–Kahn condition and the model fails to solve. The DCT-based
selection allows us to still solve for much fewer retained coefficients with relatively high
precision.

The reason for the superior performance of the adaptive DCT-based method is that
across different income states, the policy functions are relatively similar in the station-
ary equilibrium (think: one is an affine transformation of the other); the DCT method
detects this, and this remains true even when prices change after a shock.

4.1.3 Details on using the copula for dimensionality reduction To understand how re-
strictive the assumption of a fixed copula is, we compare the model-implied distribu-
tions over time for the solution that does no reduction (Reiter–Full) and our method,
which fixes the copula. We further consider an in-between case where we treat the cop-
ula as a functional that we represent through its DCT, perturbing only its most important
coefficients. Details about the implementation can be found in Appendix A.1.

Figure 5 shows the result of this exercise. For the top row, we simulate the model us-
ing TFP shocks (as described before) as the driving force. As all households are similarly
affected by the TFP shocks, there is no strong a priori reason for the copula to vary much
over the cycle—of course, the marginals vary and so does the entire joint distribution.
Indeed, we find that the approximation error measured in terms of the Jensen–Shannon
distance (left column)18 between the joint distribution (of assets and income) in the Re-
iter solution with and without the fixed copula assumption is an order of magnitude

18The Jensen–Shannon distance (JSD) is a metric for distribution functions. It is the square root of a sym-
metricized Kullback–Leibler divergence, where for two distribution functions f1, f2 over discrete support X
the JSD is defined as

JSD(f1� f2)=
√√√√1

2

∑
x∈X

f1(x) log
[

2f1(x)

f1(x)+ f2(x)

]
+ f2(x)

[
log

2f2(x)

f1(x)+ f2(x)

]

 (26)

To put the Jensen–Shannon distance in perspective, it is useful to think of comparing two normal distribu-
tions with unit variance that differ in means. The distance in that case is half the absolute difference of the
means.
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Figure 5. Distance between the distribution with and without fixed copula assumption. Notes:
The top row compares simulated solutions of the Krusell and Smith model for a series of TFP
shocks; the bottom row does the same for a series of income uncertainty shocks. The left column
shows the Jensen–Shannon distance between the distribution of capital and income between
the one implied by the full-grid Reiter method and by our reduction method, which treats the
copula as fixed or perturbs only a few coefficients of the polynomial approximation for the cop-
ula obtained through a DCT. The right column compares the model solutions through the lens
of the aggregate capital stock.

smaller than the distance between either solution and the stationary equilibrium dis-
tribution. The distance between the distributions is, at 0
0005, negligibly small. There is
virtually no difference in the capital stock series (right column), as we know from the
results in the previous section.

To consider a case where the copula varies more, we simulate the model with shocks
to idiosyncratic income uncertainty as a driver of the cycle (see the next section as well).
These shocks affect the joint distribution of assets and income directly, so that the fixed-
copula assumption has more potential to introduce approximation errors. The bottom
row of Figure 5 shows the results of this exercise. Now, the distance of the simulated dis-
tributions to the steady-state one is much larger and the difference between the distri-
bution from the full Reiter solution and the one with a fixed copula attains a significant
order of magnitude. We also find some difference in the fluctuations of the capital stock
that the model implies—a model where the fluctuations in capital are small, as there is
little aggregate feedback. However, perturbing the most important 41 coefficients (out of
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possible 2100) of the DCT of the copula virtually eliminates the already small difference
to the full Reiter solution.

4.2 Second-order approximation

Given that our approach keeps the number of derivatives to be calculated relatively
low, it is possible to solve the model by second-order perturbation using the method
of Schmitt-Grohé and Uribe (2004). This requires first obtaining the first-order solu-
tion (using the described qz-decomposition technique), then calculating second-order
derivatives of F and finally solving a system of linear equations. For the Krusell and
Smith model, this requires to calculate roughly 88 times the number of derivatives as
for the first-order perturbation (in total 30,450). Of course, the calculation of derivatives
can be parallelized, which allows to speed up higher order approximations substantially
on computers with more cores.19

The left panel of Figure 6 presents the IRF of capital to a large TFP shock (10σS) for
both the first-order and the second-order approximation of the K-S model. The right
panel displays the ergodic distribution of capital for the same model in the first-order
approximation (stationary equilibrium) and second-order approximation (average cap-
ital distribution over simulations).

We view this primarily as a proof-of-concept. For practical applications, one will
need to further decrease the number of derivatives to be calculated by exploiting the
economic structure of the problem, where, for example, the law of motion for the dis-
tributions is linear in the distribution. In Appendix A.3, we provide further details along
this line.

Figure 6. Second-order perturbation of Krusell–Smith model. Notes: Comparison of Reiter-re-
duction solution with first-order and second-order perturbation (for tenfold standard devia-
tion of TFP shocks). Left panel shows the impulse response of capital. Right panel shows the
steady-state marginal distribution of capital (as a multiple of steady-state aggregate capital).

19Note that solving the higher-order system itself requires limited additional computations, because the
time consuming qz-decomposition does not change size when moving from first to higher order.
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Table 5. Run times for two-asset model.

Running times*

Stationary equilibrium Reiter-Reduction

In seconds 1311 326

*On a Dell laptop with an Intel i7-7500U CPU @ 2.70 GHz, 4 cores. Code in Julia.

4.3 Two-asset model

The true advantage of the state and control space reduction through separating
marginals and copula and compressing the latter alongside the value functions lies in
tackling the curse of dimensionality, and thus, making it possible to solve models with
high dimensional heterogeneity. In the following, we provide accuracy statistics and
computational time for our model with a portfolio choice between liquid and illiquid
assets as set out in Section 3, in particular Section 3.4.2. This model features heterogene-
ity with respect to three dimensions: (1) liquid asset holdings, (2) illiquid asset holdings,
and (3) idiosyncratic productivity. We solve the household problem on 100 grid points
for both asset choices and 12 grid points for productivity. With 120,000 states and 240,000
controls (for the two value functions), it is infeasible to solve for the aggregate dynamics
of the model on the full histogram. The fixed copula approximation reduces the num-
ber of states to 236. Maintaining only the coefficients of the discrete cosine transform of
the value functions with the cumulative highest 99
9999% energy reduces the number
of controls to 1427.20 This all together makes it possible to solve the model on a laptop
computer in, as the top panel of Table 5 shows, only 5 minutes (plus an additional 22
minutes for the stationary equilibrium).

4.3.1 Frictionless version We first solve the model for the same calibration as the
Krusell and Smith model in the previous section.21 Table 6 shows the error metric sug-
gested by Den Haan (2010a) for the capital stock implied by the two-asset model in re-
sponse to TFP shocks. The maximum absolute error is 0
12% and the mean absolute
error is 0
05%, which are comparable to the errors in Table 2 for the single-asset model.
The errors for equilibrium bonds are slightly larger when measured relative to bonds
themselves. Bonds are only 10% of the capital stock in the steady state so that, relative
to capital or output, the errors are comparable to the errors for capital.

To assess how sensitive this result is to our baseline numerical specification, we also
consider a specification that perturbs the copula, too, and a specification that retains
more coefficients of the DCT, allowing the energy to drop only by 10−7 instead of 10−6.
Retaining more DCT coefficients or perturbing the copula has little impact on the ap-
proximation in terms of the den Haan test; see again Table 6. The quality of the approxi-
mation for capital slightly increases with more DCT coefficients. Surprisingly, perturbing
also the copula worsens the approximation quality marginally.

20With the richer model, some of the histogram entries contain very little mass and numerical derivatives
become less precise. In particular, this issue is important when treating the copula as time varying. For this
reason, we solve the two-asset model in Julia where we can use a package for automatic differentiation.

21Appendix B, Table 12 provides the full calibration.
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Table 6. Accuracy for two-asset model.

Absolute error (in %)*

Mean, for 
 
 
 Max, for 
 
 


capital Kt bonds Bt capital Kt bonds Bt

Baseline 0
033 0
081 0
092 0
617
Retain more DCT coefficients 0
031 0
080 0
087 0
610
Baseline + perturb copula 0
043 0
080 0
151 0
777

*Differences in percent between the simulation of the linearized solution of the model and a simulation in which we solve
for the intratemporal equilibrium prices in every period and track the full histogram over time for t = {1� 
 
 
 �1000}; see Den
Haan (2010a).

Table 7. Business cycle statistics for the two-asset model.

σ(Yt) σ(Ct) σ(It)

Baseline 1
40 1
39 4
49
Retain more DCT coefficients 1
42 1
42 4
49
Baseline + perturb copula 1
31 1
28 4
56

Note: The table displays the standard deviations of output Yt , consumption Ct , and investment It , alongside the Sharpe-
ratio for the excess return of illiquid assets for the two-asset model with only a TFP shock as described in the main text. Baseline
refers to the numerical baseline specification, where we retain coefficients of the DCTs to maintain 99
9999% of the “energy” in
the policy functions. In the second row, we increase this to 99
99999%. The third row refers to a setup, where we perturb also 50
coefficients of the DCT representation of the copula.

4.3.2 Business cycles, asset prices The calibration of the model as in the previous sub-
section is meant to be as comparable as possible to the Krusell and Smith setup with one
asset—there are no further frictions besides market incompleteness. A practical appli-
cation of the method to a business cycle model, however, typically will feature nominal
and real frictions. Appendix B, Table 13 summarizes such a calibration that we use in the
following.

Table 7 shows that for this business cycle calibration with TFP, monetary, and uncer-
tainty shocks also the business cycle statistics do vary relatively little, when we change
the numerical specification. This resembles the results displayed in Figure 4 for the KS
model. Again, we consider a specification that perturbs the copula, too, and a specifica-
tion that retains more coefficients of the DCT, allowing the energy to drop only by 10−7

instead of 10−6. Perturbing the copula slightly lowers output volatility and increases the
volatility of investment somewhat.

In addition to the business cycle statistics, we also look at how the model performs in
terms of asset prices; see Table 8. We report the average and maximum absolute devia-
tion from asset market clearing that the linearized solution produces, that is, we evaluate
the difference in asset supply and demand for both B and K given prices and the wealth
distribution that we get from the simulation of the linearized solution. We find that de-
viations from exact market clearing for the two assets are small and of similar order of
magnitude as the Den Haan statistics in Table 6.

What is more, we calculate the Sharpe ratio for the model across the various numer-
ical variants. Since the model produces a steady state return difference, an illiquidity
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Table 8. Asset market clearing for the two-asset model.

Deviation from Market Clearing in %

Sharpe-Ratio

Mean-Absolute Max-Absolute

on Kt on Bt on Kt on Bt

Baseline 0
03% 0
05% 0
29% 0
65% 0
70
Retain more DCT coefficients 0
03% 0
05% 0
28% 0
64% 0
67
Baseline + perturb copula 0
01% 0
02% 0
22% 0
59% 0
68

Note: The table displays the deviation from market clearing in the asset markets obtained by comparing the model solution
for bonds B and capital K (the bond supply and capital demand by firms) to values implied by the solution for the wealth distri-
bution. Baseline refers to the numerical baseline specification, where we retain coefficients of the DCTs to maintain 99
9999%
of the “energy” in the policy functions. In the second row, we increase this to 99
99999%. The third row refers to a setup, where
we perturb also 50 coefficients of the DCT representation of the copula.

Figure 7. Aggregate response to idiosyncratic uncertainty shock. Notes: Response to a 54% in-
crease in uncertainty (measured by STD) of idiosyncratic income.

premium for capital, the model gets a long way in terms of being close to the observed
Sharpe-ratios of Jordà, Knoll, Kuvshinov, Schularick, and Taylor (2019) that range be-
tween 0
6 for housing and 0
25 for equities. The model has somewhat to stable asset
returns if anything.

This illiquidity premium is closely tied to the concept of “wealthy hand-to-mouth”
households (Kaplan and Violante (2014)) and the latter implies different investment be-
havior (see Bayer et al. (2019) and Luetticke (2018)). Figure 7 shows the effect of higher
uncertainty about idiosyncratic productivity in the Krusell and Smith model and the
two-asset HANK model. Consumption falls in both models as households increase their
precautionary savings in response to higher uncertainty. In the Krusell and Smith model,
higher savings translate one-for-one into capital, which leads to an economic expan-
sion. In the two-asset model, by contrast, households prefer to hold more liquid portfo-
lios. They sell illiquid capital to save more in liquid assets. Higher uncertainty therefore
causes a simultaneous fall in consumption, investment, and output. The recessionary
effect is further amplified through sticky prices, which makes the economy demand-
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driven in the short run. See Bayer et al. (2019) for a more detailed discussion of the port-
folio rebalancing channel of uncertainty.

5. Conclusion

In this paper, we propose an extension of Reiter’s method to solve heterogeneous agent
models with aggregate risk by perturbation. The proposed method relies on reducing the
state space after solving for the stationary equilibrium but before linearizing the non-
linear difference equation that characterizes the equilibrium dynamics. The state-space
reduction is achieved by “lossy compression” of the value functions, which are control
variables of the system, and by approximating the dynamics of the multidimensional
distribution of individual characteristics by a distribution with an (almost) fixed copula
and varying marginals. Both steps effectively reduce the problem that high-dimensional
idiosyncratic state spaces pose and allow us to efficiently and precisely solve for the
equilibrium dynamics of heterogeneous agent economies as we have shown in two ex-
amples.

Dealing with the curse of dimensionality is essential because it allows us to ana-
lyze business cycle models with rich heterogeneity. Examples that go beyond what we
show here are models where aging adds another dimension to the household problem
or where a richer household portfolio needs to be modeled, for example, when house-
holds own liquid assets, own houses, and write mortgages at the same time. To all these
setups, the proposed method lends itself well to solving for equilibrium dynamics.
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