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ABSTRACT.

The purpose of this study was to evaluate and improve some of the
available methods of assessing the surface properties of powders.

The value of an automated Wilhelmy plate contact angle measurement
technique was investigated. This technique has not previously been used
extensively for powders. It was found to be a valuable and simple
approach which is suitable for a wide range of materials. The resolution
of this technique is not sufficient to allow discrimination between the
surface properties of powders, which are similar in nature.
Reproducibility of data could not be improved by controlling the
experimental procedure extensively. Surface energies were calculated
from contact angle data using four of the available theories. The harmonic
and geometric mean equations provided the most suitable approaches for
pharmaceutical systems.

A microcalorimetry method, using a novel cell was evaluated for the
investigation of powder/water interactions. Data obtained was highly
reproducible and therefore, it was possible to detect differences in the
wetting behaviour of three commercial brands of o - lactose monohydrate,
which was not possible using contact angle data. A new microbalance
technique was tested, however, no reliable data were obtained using this
method.

A study was also carried out to investigate the relationship between
surface properties (contact angles against water and/or surface energies)
of pharmaceutical powders and several molecular orbital indices. A
relationship between the contact angle against water and the surface
energy and the superdelocalisability index was elucidated. Two empirical
equations were proposed which would enable workers to determine the
surface properties of pharmaceutical powders from molecular structure.
The limitations of this approach were discussed.

Calculated molecular orbital parameters provide an extremely good first
indication of material surface properties, but should be substantiated by
experimental methods. Contact angle measurement offers a relatively
fast and simple indication of surface properties. However, where it is
necessary to discriminate between the wettability of powders of a similar
nature, flow microcalorimetry is the method of choice.
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1. INTRODUCTION.

The physical characterisation of pharmaceutical powders is important,
when considering the formulation of dosage forms (e.g. York, 1983 and
Brittain et al., 1991). This work involves investigation of the surface
properties of pharmaceutical powders, which will provide information
about powder/liquid and powder/powder interactions. Such information
has proved useful in the past for the prediction of the performance of
solid dosage forms and suspensions e.g. Rowe (1989), Zajic and Buckton
(1990), Young and Buckton (1990), Parsons et al., (1992b) and Pinto,
(1993). Therefore, it was decided to evaluate and improve some of the
available methods of assessing the surface properties of powders with

the aim of making information gained from such studies more valuable.

1.1. Interfacial phenomena.

Consideration of the interaction between two phases is fundamental to
the understanding of the nature and behaviour of surfaces. The
following interfaces are relevant when considering pharmaceutical

systems,

vapour/liquid,

vapour/solid (moisture sorption by solid dosage forms),
liquid/liquid (emulsions and creams),

liquid/solid (suspensions),

solid/solid (film coating of tablets).

Since this work is concerned with the surface properties of powders, it
will involve assessment of the solid/vapour and the solid/liquid

interfaces.



Chapter 1 Introduction 30

1.1.1. Surface tension of a liquid (Yiy).

In a liquid, the molecules at the surface are not completely surrounded
by other like molecules, unlike those in the bulk of the liquid. The
molecules at the surface are in contact with vapour in the upward
direction. The intermolecular forces between the liquid and vapour
moleculesare comparatively very small. Therefore, molecules at the
surface are primarily subject to intermolecular interactions from either
side, resulting in a net inward pull. This results in an excess of energy

per unit area, at the surface, and is known as the surface tension.

1.1.2. Surface free energy of a solid (Ysy).

The surface free energy of a solid is similar to the surface tension of a
liquid, since it results from the same phenomena. The solid surface,
however, differs from the liquid surface as the intermolecular forces are

far greater and therefore, the molecules are unable to move freely.

The surface free energy may vary depending on the nature of the vapour
at the interface. For example, the surface energy of a solid will be
greater in vacuum, than in air. This is due to adsorption of the vapour
onto the solid surface, which acts to reduce the intermolecular forces

between molecules at the surface of the solid.

The difference between the surface free energy of a solid in vacuo, Y5 and

in vapour gy, is known as the equilibrium spreading pressure, 7.

Te =Y - Ysv (1.1.1)
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1.1.3. Solid/liquid interfacial energy (Ys1) .
This also occurs due to an imbalance of forces at the interface. It will
depend on the surface free energy and surface tension of the solid and

liquid involved.

1.1.4. Wettability of powders.

The wettability of a powder represents the extent of its interaction with a
liquid. Wettability cannot be measured directly, therefore alternative,
indirect methods are used. If a drop of liquid is placed on a flat, solid
surface, such as a compressed powder plate, an angle is produced
between the powder and the liquid. This angle is referred to as the
contact angle, 6 and represents an equilibrium of three energies, Vs, -
surface energy of the solid, ¥, - surface tension of the liquid and 7y -

solid/liquid interfacial energy (see figure 1.1.1.).

Vapour

Liquid
Ysl

T

Figure 1.1.1. Diagram to illustrate the equilibrium of forces acting on a

drop of liquid on a solid.

These forces are described by Young's equation (Young, 1805),

Ysv =Ysl + Vv (Cos 0) + Te (1.1.2.)
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The spreading coefficient, T, is generally assumed to be negligible for

non-volatile liquids, therefore the equation 1.1.2. can be shortened,

Ysv = Ysl + Vv (Cos 8) (1.1.3)

The smaller the value of 6, the greater the wettability. Thus, 6 provides
a means of evaluating the wettability of powders in terms of a

measurable quantity.

1.14.1. The thermodynamics of wetting.
It is well recognised that wetting occurs in three stages (e.g. Parfitt,

1973). as shown in figure 1.1.2.

a). b). c).

Figure 1.1.2. The three stages involved in the complete wetting of a solid
cube, a). Adhesional wetting, b). Immersional wetting, ¢). Spreading

wetting.

1.1.4.2. Adhesional wetting.
This involves the replacement of vapour at a plane surface of the solid by
the wetting liquid. The driving force for this process is known as the

work of adhesion, W,.
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Wa=Ys1 - (Ysv + Niv) (1.1.4)

Combined with Young's equation (1.1.3.), this gives the Young-Dupré

equation,

Wa=-"%y (Cos 6 +1) (1.1.5.)

1.1.4.3. Immersional wetting.

The total immersion of the solid into the liquid involves total
replacement of vapour at the solid surface by the liquid, with no change
in the liquid/gas interface. The energy required for this process is called

the energy of immersion W;.

W;=47-4 Y (1.1.6.)

or, combined with Young's equation (1.1.3.),

W;=-4%Y, (Cos0) (1.1.7)

1.1.44. Spreading wetting.

The spreading of a drop of liquid, already in contact with the solid
results in an increase in the solid/liquid and liquid/vapour interfacial
areas, and a decrease in the solid/vapour interfacial area. The energy

required for this process is the work of spreading, Wy .

Ws =Yy - Yol + Yiv (1.1.8.)
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1.1.4.5. The conditions for spontaneous wetting.
For spontaneous wetting to occur, the energies of adhesion, immersion
and spreading must be positive. The conditions (Harkins and

Dahlstrom, 1930) for this are shown below,

a). adhesion - Yiv 1+ Cos6)>0
b). immersion - Yiv Cos6>0
c). spreading - Yiv (Cos6-1)>0

Since the surface tension, 7}, is always positive, the value of Cos 6

determines whether spontaneous wetting occurs, as shown below,

a). Cos 6 >~1 1.e. 6 < 180°
b). Cos 6> 0 i.e. 6 <90°
c).CosO6> 1 ie. 6 <00
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1.2. SURFACE TENSION MEASUREMENT.

There are many methods available for measuring the surface tension of
liquids. The Wilhelmy plate technique is cited most frequently (e.g.
Padday and Russel, 1960; Boucher et al., 1967 and Parsons et al., 1992b).
Several of the most popular methods of surface tension measurement

will be discussed here.

1.2.1. Capillary rise method.

Here a circular, uniform capillary tube of radius, r is placed vertically
in the test liquid of density, p. Depending on its surface tension, the
liquid will travel a distance, h up the capillary tube as shown in figure

1.2.1.

Figure 1.2.1. Diagram to illustrate the capillary rise method.

rhp
= 1.2.1.
Tiv 2Cos0 ( )

Assuming that the liquid perfectly wets the glass, i.e. Cos 0 = 1,

h
Vi = % 1.2.2)
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1.2.2. Drop volume and drop weight methods.
If a drop of liquid is allowed to detach itself from the tip of a capillary
tube, which is held vertically, the drop volume or weight will vary

depending on the surface tension of the liquid.

Therefore, Y}, can be determined using one of the following equations,

depending whether the drop volume, V or weight is measured, m,

oVpg
. A - 1.2.3.
¢mg
=15 1.2.4.
Vv onr ( )
where,

¢ = the correction factor,
p = density of the liquid,
g = acceleration due to gravity,

r = radius of the tube.

The correction factor, ¢ is required as not all of the drop will leave the
tip. The value of, ¢ depends on the dimensions of the tip and tables of its

values have been compiled by Harkins and Brown, (1919).

1.2.3. Du Noiiy ring tensiometer method.
Here, the force, F required to detach a clean platinum ring from the
surface of the liquid is measured using a tensiometer. As shown in

figure 1.2.2. The surface tension is calculated using equation 1.2.5.

I 4nr ( )
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where,
B = the correction factor,

r = radius of the ring.

Figure 1.2.2. Use of a du Noiiy ring to measure surface tension.

The correction factor, 3 allows for the complex shape of the liquid
supported by the ring. Values have been tabulated by Harkins and
Jordan (1930).

1.2.4. The Wilhelmy plate method.
There are three versions of this method: equilibrium, detachment and

dynamic.

A thin rectangular plate of glass, platinum or filter paper is suspended
vertically from a torsion balance above a clean beaker containing the test
liquid. The beaker is placed on a mechanical stage. For the equilibrium

method the stage is raised slowly until the plate makes contact with the
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liquid (see figure 1.2.3.), the force, F, is noted and the surface tension

may be calculated using equation 1.2.6.

Torsion Balance

Figure 1.2.3. Diagram illustrating the Wilhelmy plate method, showing

the plate at equilibrium.

v =7p (1.2.6.)

where,
p = the perimeter of the plate,

g = acceleration due to gravity.

For the detachment method, the stage is raised until the plate just dips
into the liquid. The stage is then lowered slowly until the plate is just is

at the point of detachment. The force Fy, is read from the torsion
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balance and the surface tension may be calculated using equation

(1.2.6.) replacing F, with Fy.

The dynamic method is used more often with the advent of an automated
piece of equipment (e.g. C.A.H.N. Dynamic Contact Angle analyser or
Kruss Digital Tensiometer) which allows surface tension to be

measured more accurately and easily.

Here, the test liquid is placed on a motorised platform and the glass slide
or filter paper is attached, via a balance loop, to one arm of a
microbalance. Both the microbalance and the motorised platform are
interfaced with a personal computer. The platform is then raised, at a
constant pre-set speed, until the plate is immersed 5-10 mm into the
liquid. The platform is then lowered to its initial position. The force and
relative position of the platform are collected by the computer at one

second intervals.

A graph of the force as a function of the stage position is plotted. By
extrapolating the buoyancy slope back to the stage position
corresponding to the point where the plate initially makes contact with
the liquid, the force at the zero depth of immersion, F, 4,; can be

determined as shown in figure 1.2.4.

The surface tension may then be calculated using equation 1.2.6.,
replacing F, with F, 4 ,; Extrapolation of the buoyancy slope to
determine F is much more accurate than the single point determination
used for the equilibrium and detachment methods. Therefore, the

dynamic Wilhelmy plate technique is used more widely.
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F 2doil----

Buoyancy slope

Force
(mg)

Stage Position (mm)

Figure 1.2.4. Determination of F, 4,
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1.3. CONTACT ANGLE MEASUREMENT.

There have been several articles, reviewing methods of measuring
contact angles and highlighting their advantages and disadvantages
(e.g. Neumann and Good, 1979 and Buckton, 1990). Some of the more

widely used methods are discussed here.

Methods of measuring contact angles for pharmaceutical powders can

be split into two broad groups,

a). Liquid penetration techniques,

b). Methods using compressed powder plates.

1.3.1. Liquid penetration methods of measuring contact angles.
This generally involves the passage of the wetting liquid through a
packed bed of powder.

One of the first methods was developed by Bartell and Osterhoff (1927).
This involves the measurement of the minimum pressure, p, required to
prevent the wetting liquid from displacing another liquid from the
powder which has been packed into a cylinder. The contact angle is

related to the displacement pressure (equation 1.3.1).

_ 27Cosb
P="7 (1.3.1)

The capillary radius of the powder bed, r is unknown. Therefore the
displacement pressure for a perfectly wetting liquid, p' is determined, in

a similar manner for the same powder.
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[ R _21'
P="7 (1.3.2.)

By dividing equation 1.3.1. by 1.3.2., r disappears and Cos 0 can be
calculated. This method, however, is practically difficult (Davies and

Curtis, 1932) and therefore, it is rarely used.

Studebaker and Snow (1955) developed a method which involved
measuring the rate of flow of a liquid through a loosely packed bed of the
test powder in a tube. They adapted the Washburn equation (Washburn,

1921) shown below to calculate contact angles more easily.

122 r¥),Cosot
2n (1.3.3.)

where,

1 = the length of flow,

t = time to travel length 1,

M = viscosity of the wetting liquid,
r = capillary radius of the bed.

For a perfectly wetting liquid Cos 6 = 1 and equation 1.3.3. becomes,

12 = r 'YIV t
2n (1.3.4.)

Dividing (1.3.3.) by (1.3.4.), gives equation 1.3.5., which can be used to

calculate Cos 9.
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Yy " 2grad1e nt 5

ylvzn ) gradlent1

Cos6 =
(1.3.5.)

Where 1 refers to the perfectly wetting liquid and 2 to the test liquid and
the gradient is that of the graphs of 12 against time, for each liquid.

The thin layer wicking method, which is similar to the liquid
penetration method, has recently been described by van Oss et al.,
(1992a). A thin, uniform layer of particles is deposited onto a clean
microscope slide, by sedimentation, from a liquid suspension. The
plates are then dried and equilibrated for one hour in the vapour of the
wicking liquid. The plate is then immersed, in the vertical position, 5
mm into a suitable probe liquid. The rate of wicking of the liquid up the
glass slide is then determined. This is repeated, using a perfectly

wetting liquid and 6 is then calculated using equation 1.3.5.

1.3.1.1. Problems associated with liquid penetration methods.

The main problems with this method are listed below,

1. Frequently the powder under investigation will be hydrophobic and
polar liquids such as water will not penetrate into the powder bed
(Buckton and Newton, 1986a). Many workers have used alcohol/water
mixtures and extrapolated 6 back to 0% alcohol, to obtain the contact
angle of the powder against water. However, this has been criticised
(Fell and Efentakis, 1978 and Buckton and Newton, 1986a) as on
penetration into the powder, the vapour will precede the liquid. This
vapour will contain a higher percentage of the alcohol vapour and

therefore, the extrapolation may be invalid.
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2. The powder may be soluble in the probe liquid.

3. High viscosity liquids, such as glycerol, may be unsuitable due to the
large time required for each observation.

4. These methods are unsuitable for surfactant solutions. This is
because the surfactant adsorbs onto the surface of the powder, as it
passes through the powder bed, and is depleted from the solution.
Therefore, curves of 12 against t are not straight and a gradient cannot
be obtained (e.g. Ayala et al., 1987).

5. For the Studebaker and Snow method, the rate of flow of the liquid
may be affected by gravity.

6. As indicated by equation 1.3.5., it is necessary to have a perfectly
wetting liquid with which to compare penetration rate through the test
powder. Choice of this perfectly wetting liquid can be a problem
(Buckton and Newton, 1985).

7. Liquid penetration methods have been criticised theoretically. Levine
and Neale (1975) have questioned the model (i.e. a bundle of parallel
capillaries used by Washburn to develop his equation) and Carli and
Simioni (1978) have shown that 1, the penetration length should not
always be raised to the power of two, depending on the pore size of the
capillary bed.

8. It is not possible to obtain receding data using liquid penetration

methods.

The extent of errors using this method has been discussed by Parsons et

al. (1992a). The main conclusions are listed below,

1. The major source of error was measurement of penetration rates

through the powder bed.


































































































































































































































































































































































































































































































































































































































































































































































