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Abstract

This thesis attempts to provide general procedures for Bayesian regression and
discriminant analysis with many variables and explore potential problems in the
analysis. For regression analysis, a normal random regression model is assumed,
i.e. the joint distribution of the response variables and the regressors is multivariate
normal given their means and covariance matrix. For the discriminant analysis,
we consider the case that each observation is from one of several multivariate
normal populations. In classical statistics, the problem in fitting a multivariate
model with more variables than the number of observations is that the estimate of
the covariance matrix of the multivariate normal distribution is singular and the
distribution is degenerate. In Bayesian statistics, this problem can be avoided by
using proper prior assumptions for the covariance matrix. We assign an inverse-
Wishart distribution (which is a conjugate prior in the case of a non-hierarchical
analysis) for the covariance matrix and suppose the prior expected covariance
matrix has a simple structure so that the number of hyperparameters required in
the model is small. Hierarchical modelling of these hyperparameters is employed.

Although we have managed to keep the model relatively simple with our
strong assumptions, the posterior model is still complicated. We found ARMS
within Gibbs sampling with multiple chains to be an appropriate MCMC strategy
for fitting our models. Convergence checking for multiple chains MCMC is simple.
Due to the ill-condition of the sample covariance matrix and the large number of
variables, the computational problems are Signiﬁcant. Appropriate matrix manip-
ulating and rescaling techniques are required.

Two practical cases are considered as examples, one for regression and the
other for discrimination. Both cases involve NIR spectral data with many vari-
ables. The high correlation between variables makes the examples more challeng-
ing. We consider three correlation structures including the over-simplified identity

structure and two autoregressive correlation functions, which are believed to be



much closer to the real situation than the over-simplified one. However, we found
the autoregressive correlation functions do not guarantee better predictions in our

examples.
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Notation

0.1 DMatrices

I: Identity matrix.

I,: a p by p identity matrix.

Let X be an arbitrary matrix:
X*: the transpose of matrix X.

Xpxq: an alternative notation for X in which p x ¢ indicates the dimension of X.

Suppose X is a square matrix:
X > 0: X is positive definite.
X > 0: X is positive semi-definite.
trX: the trace of X.
| X|: the determinant of X.

X~ the inverse matrix of X.

0.2 Probability

| : conditional on or given.

1l : conditionally independent.

12



E(X): Expectation of X.
C(X): Covariance matrix of a column vector X, C(X) = E(XX*) — E(X)E(X)*.
P(D): probability measure of event D.

p(X): probability density or mass function of random variable X.

0.3 Matrix Distributions
N: matrix normal distribution.
W: Wishart distribution.

IW: inverse-Wishart distribution.
T matrix-t distribution.

JF: matrix-F distribution.

13



Chapter 1

Introduction

This thesis deals with regression and discriminant analysis with many variables
in a Bayesian framework. Regression and discriminant analysis are important
multivariate statistical techniques that have been widely applied in many fields.
In regression analysis, one attempts to relate two sets of variables with a model
so that one set of the variables can be predicted by the other set. In discriminant
analysis, one aims to predict which of two or more groups an object belongs to
using a model that has as its input a set of variables we observe for the object.
If we take the group membership of an object as a categorical variable, we can
link the discriminant model to the regression one. Problems arise in fitting models
and making predictions when there are many more variables than the number of
observations we use to fit the model. Two major problems are the singularity of
sample* covariance matrices and overfitting, which are also two general problems
in statistics.

The topic of the thesis is motivated by the analysis of near infrared (NIR)
transmission spectroscopy, where chemical analysts take the (possibly transformed)
NIR absorbances of a sample , e.g. a chemical compound, at certain wavelengths
as predictor variables and use these measurements to predict chemical composition

of the sample or to classify the sample to one of several groups. Often, the number

*The word ‘sample’ has two meanings throughout this thesis: the standard statistical one, as
in a sample from a population; and the chemical meaning, which is a quantity of some substance
presented for analysis. Which of these meanings is intended should be clear from the context.
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of wavelengths observed can be up to one thousand or even more. That is, for each
sample there can be more than one thousand predictor variables observed. The
linear model has been widely accepted in analysing data from NIR spectroscopy.
According to the Beer-Lambert law (see chapter 3), an NIR transmission spectrum
of a sample is, under ideal conditions, a linear combination of the NIR transmission
spectra of the constituents of the sample, and the weight of each linear component
would be proportional to the concentration of the corresponding constituent in a
sample. The ideal conditions rarely hold in practice, but linear models have been
found to work well in most applications. NIR transmission spectra arise from the
absorption of light by organic chemical bonds. A chemical bond has absorption
peaks at certain wavelengths, which depend on the atoms at the two ends of the
bond and on their relationship with other atoms in the molecule. An individual
absorption peak has a smooth bell shape. Unfortunately a typical NIR spectrum
will contain many thousands of overlapping peaks, and the chemical information
we wish to extract will occur in several (not precisely predictable) places and be
seriously mixed up with other information. Thus, the simple approach of select-
ing a small number of relevant wavelengths is not usually appropriate, and it is
common to use models where all the spectral variables are taken as predictors.
Standard statistical inferences for regression and discriminant analysis use
least squares estimation (LS) or maximum likelihood estimation (MLE) to esti-
mate the parameters in the models. However, in the cases when we are using more
variables than samples and the variables cannot be pre-selected in order to reduce
the number of variables so that they are less than the number of samples, LS esti-
mation and MLE of parameters are inappropriate because they require inversion of
the sample covariance matrix, which is a singular matrix. Many regularised meth-
ods aimed at keeping as much information from the predictor variables as possible
whilst avoiding the inversion of a singular matrix have been developed. Existing
methods for regression analysis include principal components regression (PCR),
partial least squares regression (PLSR), ridge regression (RR), and continuum re-

gression (CR). For discriminant analysis, one can also apply principal components

15



analysis (PCA) to overcome the problem of singularity of the sample covariance
matrix. One can refer to Brown [23], Martens and Nees [94] and Osborne, Fearn,
and Hindle [100] for further details of these methods as well as their application
in NIR analysis.

When using more variables than observations in a model, there is always
a risk of overfitting. In the regression case when we have more variables than
observations, we can always (unless collinearity means that the variables lie in a
subspace of dimension less than the number of observations) find a set of coef-
ficients which fits the data perfectly. In general, when the number of regressors
increases, the model always fits the data better. However, the variance of predic-
tion is not always reduced when the number of regressors goes up (Seber [113]).
Models that fit data too well usually predict future observations badly. One way
to check the models is to use the cross-validation method (Stone [118]), which has
been widely employed in many applications. The purpose of cross-validation is to
make sure a fitted model can reasonably predict or classify future observations by
fitting the model with a training data set and assessing the performance of the
fitted chosen model on validation data with an appropriate scoring rule. We use
it as a method to assess our models.

This thesis explores the properties of normal regression and discrimination
with many variables in a Bayesian framework. The Bayesian approach makes infer-
ence by combining prior knowledge of the model with observed data. The inference
on the unknown quantities of interest is summarised by a posterior distribution
derived using Bayes’ rule. Statistical methodology in a Bayesian framework has
developed considerably since the 1960’s, not only because it provides an easily
understood way of summarising results, but also due to progress in computer
technology and developments in Markov chain Monte Carlo simulation (see Gilks
et al. [73]). Because of these advantages, the Bayesian approach is able to deal
with very complex models, which may involve many parameters with complicated
relationships between them. It is also known that the Bayesian approach does

not have a constraint on the number of variables and the number of training sam-

16



ples. The insufficient rank of the data is made up by the use of prior information.
Therefore, it is natural to consider the Bayesian approach for modelling with many
variables.

It is well known that prior assumptions become important when there are
more variables than observations. A major focus in this thesis is the effect of prior
assumptions about the covariance matrix of the predictor variables. Since there are
many variables, the covariance matrix is huge. In order to reduce the number of
parameters and make the modelling process tractable, we assume there is a simple
structure in the covariance matrix, which requires only a few parameters to de-
scribe, chosen so that an analytical inverse matrix and determinant are available
for computational efficiency. At the same time we try to use realistic prior as-
sumptions, i.e. ones that would generate data resembling those we have observed.
The structure of the expected covariance matrix should satisfy the principle of
structural coherence defined by Brown [23], that the structure of the expected
covariance matrix of a refinement of a random vector should be generated by the
same structural consideration that generates the expected covariance matrix of the
random vector. A prior distribution is assigned to the parameters in the expected
covariance matrix so our models are hierarchical.

For regression analysis, we consider the non-conjugate multivariate normal
random regression model which has been conceptually suggested by Mékeldinen
and Brown [93]. The non-conjugate model was proposed in order to avoid the de-
terministic property of the natural conjugate regression model. Dawid [43] proved
that under the normal-inverse-Wishart prior assumption, the natural conjugate
regression model with an infinite number of predictor variables can predict the
future precisely when the parameters in prior distributions are known. The prop-
erty is called determinism by Dawid. Other applications of Bayesian regression
with many variables either consider information compression (e.g. West [126]) or
focus on variable selection with a computationally convenient prior assumption
(e.g. Brown et al. [25, 28]). We consider modelling with the entire set of regressor

variables with more realistic prior distributions, and investigate whether this leads
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to improvement in predictive performance.

For discriminant analysis, we assume a multivariate normal distribution
within groups and apply Bayes’ formula to obtain the posterior group membership
probability of an object. Our main focus is on the use of more realistic prior
distributions for the variance parameters of a full model with many variables.
Posterior predictive probabilities of a sample belonging to different groups are
calculated and taken as a criterion for allocating the sample. Recent applications
in discrimination for NIR data can be found in Brown et al. [24] and Fearn et
al. [56).

We use two examples of NIR spectroscopic data of wheat samples, one for
regression and one for discrimination. In both examples, measurements of the NIR
spectrum of each wheat sample are recorded digitally at a hundred equally spaced
wavelengths. In the regression example, there are 50 samples in total, while there
are in total 292 samples of 9 varieties (groups) for the discrimination problem.

Bayesian theory and stochastic simulation provide the possibility of han-
dling complicated situations and producing easily understandable summaries of
the inference results. Although in our examples the predictor variables are very
highly correlated, the model we investigate in this thesis would be applicable to
situations with less strongly correlated variables. Moreover, the MCMC simula-
tion scheme (ARMS within Gibbs sampling) we employed for fitting our models
is a very general method which is very useful in fitting models with many param-
eters. In practice, data analysts are facing ever more situations where there are
many variables in their models. Examples exist in the fields of molecular biology,
econometrics, geostatistics, chemometrics, etc. For instance, genetic data analysis

is currently a hot topic that involves models with huge number of variables.
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Chapter 2

Bayesian Inference for Linear

Regression and Discrimination

2.1 Bayesian Theory

The idea of Bayesian inference first appeared in Thomas Bayes’ paper in 1763 [6],
where he proposed a uniform distribution for the parameter in the binomial dis-
tribution. Later, Laplace independently discovered the general form of Bayes’
theorem. The idea of Bayes was then largely ignored for two hundred years. Dur-
ing the second half of the 20th century, scientists started to realise the potential
of Bayesian methodology and applied Bayes’ theory in many areas.

Bayesian inference for an unknown quantity yields a probability distribu-
tion, which is derived by combining the observed data with a probability model
for the quantities we observe and the unknown quantities about which we want to
learn. Bayesian theory is based on a simple and fundamental probability rule

P(D|M)P(M)

P(M|D) = —=grie,

(2.1)

where M and D are two random events, P(:) is the probability measure of events
and the symbol ‘|’ represents “conditional on”. In Bayesian theory, M represents
the hypothesis of interest, and D is the evidence, the data we observe. P(D|M) is
the probability measure of the events we observe under hypothesis M, and P(M)
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represents the prior probability of the hypothesis, while P(D) is the marginal prob-
ability of the data over all possible hypotheses. Therefore, in Bayesian modelling,
we need a sampling distribution which the data we observe are assumed to follow,
and a prior distribution of all possible hypotheses, which formalises our prior be-
lief about the hypotheses. Rule (2.1) provides the distribution of the hypothesis
conditional on the data we observe, which is called the posterior distribution of the
hypothesis. The subject of a hypothesis can be parameters, predictors, or even a
model.

For example, suppose X is a continuous random variable from sample space
X. Its density function is p(X|6), where § is from a continuous parameter space ©,
and p(6) is the prior density function of 8. We observe z;, s, ..., z, for X as train-
ing samples to fit (train) our model. The observations are sampled independently

with the same density function as X, hence,
p(z1, 22, . .., Zal6) = Hp(x,-|9).
i=1

We can then derive the posterior density function of 8, which is

P(l'l, T, ... am’nlo)p(e)
p(z1, T2y .. ., Tn)

(0|1, Z2,y .. ., ZTn) = , (2.2)

where

p(21, %2, .- ., Tn) = /p($1,r2,---,xnl9)p(9)d9= /Hp(xil9)29(9)d9-
- V8=

6

Now, if we want to predict future m observations of X, we use the predictive
density function of X based on the posterior distribution of 8. Suppose we want
to predict Tp41, Tnt2, - - -, Tnem, Which are conditionally independent given 6. The

posterior predictive density function is

P($n+1, Tn42y--0, In+m|x1, Z,. .. ,.’L‘,—,,)

= /p(xn+1) Tn4+2;y- .- ’xn+m|6)p(alxlv T2,..., mn)de
0

m

- / T 2(nsil0)p(6l21, 72, .-, ) 6.

6 =1
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Equation (2.1) is called Bayes’ formula or Bayes’ rule. With Bayes’ formula,
we update the prior model that is based on our prior knowledge to a posterior
model that is conditional on the evidence we observe.

For a more detailed introduction to Bayesian statistics readers may refer
to [12], [65], or other Bayesian textbooks. In this chapter, we introduce concepts
that are important in Bayesian regression and discriminant modelling with many

variables.

2.2 Prior distributions

The prior distribution plays an important role in Bayesian inference. It introduces
the expert’s knowledge of the unobservable parameters in a model by formalising
the expert’s opinion about the parameters as prior distributions. However, speci-
fying a prior distribution is not an easy step. The choice of prior distribution for

the parameters is probably the most controversial issue in Bayesian statistics.

2.2.1 Conjugate Prior Distributions

In Bayesian statistics, when the joint prior distribution and the joint posterior dis-
tribution of parameters in the sampling distribution belong to the same parametric
distribution family, the prior distribution is called a conjugate prior distribution
for the sampling distribution, and Bayesian analysis with a conjugate prior is called
conjugate analysis.

Consider again the example in the previous section. After the model has
been set up, the most complicated part of the inference is the integration required
to calculate the denominator in (2.2). Since the denominator in (2.2) is a constant,

we have
p(0|z1, 22, . .., Tn) X p(21, T2, - . -, T |0)p(6).

If a posterior distribution belongs to some known parametric distribution fam-
ily, the integration is actually unnecessary, and the distribution can be identified

simply from the product of the likelihood function and prior distribution.
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The advantage of using a conjugate prior distribution is not only that in-
tegration can be avoided. Since the prior distribution and posterior distribution
belong to the same parametric distribution family, the inferential process is just a
matter of updating the parameters in the prior distribution so the cost of comput-
ing is greatly reduced. The disadvantage is that the choice of prior distribution
for a given sampling distribution is very limited, and available conjugate prior
distributions may not be adequate to represent our prior opinion. Modelling with
non-conjugate prior distributions that are more realistic is in many cases unavoid-
able. Even so, conjugate analysis has been applied in many practical cases due to
the convenience in computing. Examples of conjugate analysis can be found in all

Bayesian textbooks.

2.2.2 Non-informative Prior Distributions

It is often the case that the prior information for a parameter in a model is very
limited or uncertain. In this case, one would naturally expect to assign a prior
distribution that makes little contribution to the posterior distribution of the pa-
rameter and ‘let the data speak for themselves’, i.e. let the data dominate the
posterior distribution of the parameter. Non-informative priors (also called vague
priors) have been frequently used in Bayesian applications in order to represent
prior ignorance.

The simplest type of prior that may represent prior ignorance is Laplace’s
rule, or the principle of insufficient reason (see Kass and Wasserman [86]). It

assumes every value for the parameter is equally possible, i.e.

p(8) x c.

Such a prior was first applied by Bayes and Laplace. When the parameter space is
bounded, p(6) is a uniform distribution. When the parameter space is not bounded,
p(0) is not a well-defined distribution because its integral over the parameter space
is infinite. One problem with using this flat prior is that it is inconsistent under

different parameterisations of the same problem. Suppose p(f) o c is the prior
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density function of 8. Let ¢ be a re-parameterisation of 8 with ¢ = exp(6). The
prior density function of ¢ is a multiple of 1/¢, which does not follow Laplace’s rule
of prior ignorance. Jeffreys [82] proposed a procedure for creating prior density
functions which are invariant to re-parameterisation in ways that will be described
below. The Jeffreys’ prior p(f) for the parameter § in a probability model is given
by

p(6) x V1(6),

where I(6) is the Fisher information matrix of §. The Jeffreys’ prior has been
widely used in one dimensional cases. However, its performance in higher dimen-
sional cases is not always satisfactory.

Invariance has been considered to be important in creating non-informative
prior density functions. Dawid [42] concludes that there are three types of invari-

ance:

e Parameter invariance: The prior distributions of two models derived under
this principle should be equivalent when one model is a re-parameterised

version of the other.

e Data invariance: Suppose Y is a transformation of X and that ¥ and X
have a common parameter 8. The prior distributions of # derived from the

distributions of Y and X under this principle should be the same.

e Context invariance: No features of the structure, meaning, or context of
a model other than its distribution model should be taken into account in

forming an invariant prior.

Jeffreys’ prior is an example that satisfies these three principles. Other variations
of these principles exist. Dawid [42] and Kass and Wasserman [86] give further
coverage of invariance theory.

Alternatives to Jeffreys’ prior are available. Some of them are based on min-
imising the information in the prior distribution. Berger and Bernardo (see [9, 10,

11]) initiated a method which looks for priors that minimise the Kullback-Leibler
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distance between the posterior density and the prior density. This produces in-
variant non-informative priors. Many authors have investigated maximum entropy
priors. Jaynes proposed a maximum entropy method that also produces invariant
priors. There are many other methods in the literature that can be used to pro-
duce non-informative priors. Kass and Wasserman [86] provide a review of formal
rules for selecting non-informative prior distributions.

Although there are many methods for creating non-informative priors, most
of these priors have improper density functions. There are many problems in
using improper priors, especially in modelling with many variables. The major
problem is that improper prior density functions are very likely to yield improper
posteriors. The use of improper priors is widely accepted if the resulting posterior
density functions are proper. Whether a posterior is proper or not can usually be
easily examined if the model is simple. However, it is no longer easy when the
model is more complicated. Kass and Wasserman [86] also summarised four other
problems: incoherence and strong inconsistencies (see the examples in Stone [119)),
the dominating effect of the prior, inadmissibility, and marginalisation paradoxes

(see Dawid, Stone and Zidek [46]).

2.3 Hierarchical Modelling

In many applications, there may be more than one parameter in the sampling
distributions. Frequently, these parameters are related to each other by some
hierarchical structure according to the nature of the application. Suppose we have
random quantities X, 6; and 8, whose joint density function is p(X, 6;,6,). The
hierarchical structure of these random quantities is based on a prior relationship

that X is independent of #; given 6,, which is denoted by
X 116,16,

by Dawid {40]. The relationship of X, 6,, and 6, can also be illustrated in a simple
directed graph

X<—01<—02,
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Figure 2.1: One-way normal random effects model when o2 is given.

which shows the hierarchy. The conditional distribution of X depends only on the
parameter connected to it in the graph, which is 6; in this case, and hence, the
joint distribution can be expressed as p(X|6;)p(61|62)p(62). A parameter which
does not connect to X is called a hyperparameter, whose prior distribution is
called a hyper prior distribution.

Consider the one-way normal random effects model as a simple example.
Suppose there are J independent experiments. In the j*® experiment, there are
n; data points, with unknown mean 6; and common known variance o? for each

observation. Denote the i*" observation in the j*" experiment as y;;. Therefore,
2
yij|0; ~ N(0;,0°)

independently for i =1,...,n; and j = 1,...,J. The conjugate prior distribution
of 8; is N(u,7?) for every j, and 6; are independent of each other given hyper-
parameters u and 72. The hyperparameters are given prior distributions. The
hierarchical structure of the model is presented in the figure 2.1.

Consider a general case of hierarchical model with some parameters 6,
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..., 8. If the joint distribution of these parameters is invariant to permutations
of the indices (1,...,J), we say 6,,...,0; are exchangeable. In practice, such
an assumption is frequently made because there is not enough information to
distinguish one parameter from the others. The most simple assumption is that
the parameters 6y,...,0; are mutually independent with identical prior density
functions conditional on some hyperparameters (de Finetti [47]). The one-way
normal random effects model is one example. The parameters 8;’s are exchangeable
given u and 72, and the observations (y1;,¥sj, . - - Yn,;) are exchangeable given 6;.
The observations y;; are referred as partially exchangeable because they are only
exchangeable in the subset to which they belong. Exchangeable observations are
often referred to as iid samples given a set of parameters.

In many applications, the graph for the random variables and parameters in
a model is quite complicated. Models with a hierarchical configuration can usually
be displayed systematically even though the number of parameters is large. The
joint distribution of random variables and parameters can always be factorised
as the product of some conditional prior density functions with some parameters.
Statistical inference with the resulting factorised joint distribution is often more
computationally efficient (see examples in the next paragraph). However, the
hierarchical structure of a model should follow the structure of the application
itself.

Hierarchical structure has been exploited in many statistical models, e.g. in
the linear model of Lindley and Smith [91], for discrimination in Brown et al. [24],
in the spatio-temporal model in Zhu and Carlin [132], for experimental design
in Tiao and Box [123], longitudinal analysis in Kass and Steffey [85], categorical
data in Albert and Chib [1], and many other examples. Due to the progress
in computing ability, hierarchical modelling has been applied in more and more
practical cases. For example, Johnson [83] proposed a hierarchical specification for
image analysis; Cohen et al. [34] considered criminal cases relating to drugs and
robbery with a hierarchical model; a DNA profile modelling application can be

seen in Dawid and Pueschel [45]; Brown et al. [24] applied it to spectroscopic data,
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Besag and Higdon [15] used it in agricultural experiments. There are also many
applications in medical statistics, such as Congdon and Best [35]. Most of the
applications have to employ MCMC techniques because of their high-dimensional

parameter space and complicated posterior structure.

2.4 Model Assessment

A fundamental problem in modelling is that we can rarely claim we know the true
model for the events we observe. Ideally, we would like to explore all possible
models in the universe in order to find the best one. However, it is impossible
to fit universal models. Instead, we choose the best model among a collection of
models, or we gradually modify our original model until we accept one.

Research in model assessment has an extensive literature. Relevant topics
include model comparison, outlier detection, sensitivity analysis and others. In
this section we briefly review some of these topics. We divide the topics into three
categories: model checking, model selection and sensitivity analysis. Model check-
ing concerns whether our model describes or fails to describe the data. Examples
are outlier detection, influential observation detection, checking of model assump-
tions and overall fitting. Model selection means to select the best model from a
collection of models or to select the best subset of variables in a model. Sensitivity
analysis focuses on the stability of the models we choose. Many of these methods
for model assessment are simulation-based. In this section, we briefly introduce

some topics in model checking and sensitivity analysis.

2.4.1 Model Checking

In classical analysis, residuals have been an important source of information for
model diagnostics. One can simply plot the residuals to check whether there
are outliers or whether the model assumption is right. A similar idea has been
brought into Bayesian analysis. In classical statistics, the residual is defined as the

difference between the observation and the fitted value of the observation using
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the fitted model, and each residual is a fixed value because the fitted value is
a fixed value. However, the residuals in Bayesian statistics are not fixed values
but have a distribution, since the prediction of a future value is summarised by
a posterior predictive distribution. Box [16] and Rubin [111] considered more
general residual functions for examining model adequacy in a Bayesian context.
The development of model checking is generally based on the posterior predictive
distribution of samples. Simulation is frequently required because the posterior
predictive distributions are usually non-standard.

One method of checking the appropriatness of a model is proposed by Gel-
man et al. [66]. This method is based on the method developed by Rubin [111].
A proper discrepancy variable T (a function of data) is defined for a model. Let
y™P (notation of Gelman et al.) represent the data generated by the posterior pre-
dictive distribution and y°" represent the observed data. The posterior predictive
p-value p(T (y™P) > T'(y°%)|y°®®) is calculated to evaluate the model. Many exam-
ples are shown in Gelman et al. [65]. Also see Gelman and Meng in Gilks et al.[73].
Gelman et al. [66] also emphasise the importance of using a graphical comparison
of the histogram of y°* and the histogram of y™P. The graphical display of these
histograms usually provides more information than a p-value can provide. One
problem with Gelman et al. [66]’s method is that y°* have been used to fit the
model which produces y™P. As a result, their method is less critical of the model
than it might be (see Dey et al. [50]). It cannot prevent overfitting.

Some authors focus on the model diagnostic methods for hierarchical mod-
elling. Albert and Chib [1] consider outliers, exchangeability and other properties
for conditionally independent hierarchical models. Their approach is in fact a
model comparison approach. Dey et al. [50] propose a stage-wise checking method
to examine the failure in each stage of the structural assumption for the hierar-
chical models. Their method is also based on the discrepancy measurement as
in Gelman et al.[66]. Hodges [80] considers the general hierarchical linear mod-
els and suggests tools for examining candidate added variables, transformations,

collinearity, case influence, and residuals.

28



Outlier detection is also a topic considered. One example was given by
Chaloner and Brant [31], who propose an outlier detection method for Bayesian
linear regression when the variance of the random errors is known. The probability
of an observation being an outlier is calculated. A graphical diagnostic tool is also
proposed. A similar idea is to check whether there is any observation that is
very influential to the model. For a review see Pettit [101]). -Hodges [80] also
considered using some graphical tools in his paper. Some authors suggest the
use of cross-validation so that the replicated data generated from the posterior
predictive distribution are compared with observations that have not been used to
fit the model. Examples of model checking using cross-validation are Pettit and
Young {102] and Gelfand et al. [62]. Dey et al. [50] and Gelman et al. [65] provide

reviews of many methods for model checking.

2.4.2 Sensitivity Analysis

A good model does not only fit the data well. We also expect the model to be
robust. In a robust Bayesian analysis, small changes in a prior model (the sam-
pling distribution and the prior density functions for the parameters in the model)
should not cause significant changes in the posterior model (posterior distributions
for parameters and the posterior predictive distribution) . The main purpose of
sensitivity analysis is to evaluate the stability of the models.

Bayesian sensitivity analysis examines the mapping from prior to posterior
across a class of sampling models or prior distributions (see Draper [52]). To test
priors only, one fixes the sampling distribution and varies the prior distribution.
Usually, the prior distribution is varied by changing the values of the parameters
of the prior distribution. In such a case, one selects several parameter settings
in the same distribution family as priors and obtains the corresponding posterior
distributions or predictive distributions, then compares the posterior means of
parameters of models or compares the predictive performance using a suitable
scoring rule, for example by cross-validation in Draper [53]. Berger [8] suggests

the use of the e-contamination class as a collection of prior distributions. The
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e-contamination class is defined as
L={r:7(0) = (1 —e)m(0) +€q(8),q € £},

where m,(6) is a chosen prior of 8, 0 < € < 1 is the weight of ¢(8) and £ is a
class of possible “contaminations.” A different approach is to consider the Bayes
risk of candidate models with different prior settings (see Berger [8]). Kass and
Raftery [84] suggested using sensitivity to examine whether the Bayes factor is
sensitive to the prior or not. A theoretical introduction to Bayesian posterior
and risk sensitivity analys.is is available in Berger [8]. Alternative approaches are
suggested in Weiss [125].

When the posterior model can be obtained analytically, sensitivity analy-
sis can be easily achieved since the posterior means of parameters or the scores
of predictive performance are simply functions of given parameters and observed
quantities. When the analytical posterior model is not available, sensitivity analy-
sis is time-consuming. The same process of numerical approximation or stochastic
simulation of parameters has to be done for each prior setting. There seems to
be no short cut for doing sensitivity analysis when a model is complicated. When
there are many parameters, the amount of computing for sensitivity analysis con-

sidering variation for every parameter is tremendous.

2.5 Bayesian Multivariate Analysis for Normal

Variables

2.5.1 Matrix-variate Distributions

In this subsection we briefly introduce matrix-variate distributions, including ma-
trix normal, Wishart, inverse-Wishart, matrix-T, and matrix-F distributions, which
are involved in the models in this thesis. We follow the notation for these distri-
butions developed by Dawid [41]. The notation is not necessarily the same as
the notation for these distributions which has been considered by the other au-

thors. The notation system is designed so that symbolic Bayesian manipulations
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for matrix-variate conjugate analysis can easily be carried out. The density func-

tions of these distributions are provided in appendix A.

Matrix Normal

The distribution of an n by p random matrix X with independent standard normal
elements is denoted by X ~ N (I, I,). For constant matrices A'with n columns,
B with p rows, and M with the same dimension as AX B, the distribution of
M + AXB is denoted by M + N'(A,X), where AA* = A and B'B=X.

‘Wishart Distribution

Let Xnxp ~ N(In,Zpxp), and Z = X*X. The distribution of Z is a Wishart
distribution with shape parameter n and scale matrix £, ,, denoted as W(n; Z,x,).
For a general Wishart distribution, the shape parameter can be any positive real
number, and the scale matrix needs to be non-negative definite. Suppose ¥ ~

W(v; A), the expectation of 9 is vA."

Inverse-Wishart Distribution

Let a p by p matrix @ be inverse-Wishart distributed with shape parameter § > 0
and scale matrix ¥ > 0, we denote it as & ~ IW(J;X). The expectation of P
is X/(6 —2)if 6 > 2 and ¥ > 0. The distribution of ! is a W(v; 1), where
v=6+p-1.

Matrix-t Distribution

Suppose Trnxp ~ N (A, ®), given ® and ®,x, ~ ZW(§;Z). Then the marginal
distribution for T;, 4, is 2 matrix-t distribution, denoted by T, x, ~ T(d; A, Z). The

distribution 7(4; I, I,) is called a standard matrix-t distribution with parameter
d.

31



Matrix-F distribution

The p X p random matrix U having a matrix-variate F distribution with parameters
v, §, and K is denoted as U ~ F(v, d; K), with mean vK /(6 — 2). Suppose U|® ~
W(v; ®) with & ~ IW(6; K), then marginally U ~ F(v,6; K). If U ~ F(v, 6; I),
then Ul ~F(d+p—1,v—p+1;1,). f T ~ T(6; I, 1) then T*T ~ F(p, d; I,).

2.5.2 Bayesian Models for a Covariance Matrix

In multivariate analysis, we often assume variables are normally distributed. For
a multivariate normal distribution, there are two parameters: the mean and the
covariance matrix. A covariance matrix is also called a variance matrix, a disper-
sion matrix, or a variance-covariance matrix. Often, the mean and the covariance
matrix are unknown, and we have to assign prior distributions for them. Sup-
pose we assume the mean is again from a multivariate normal distribution, then
there is another covariance matrix to be specified. Therefore, the assumption for
covariance is inevitably an important issue.

Sometimes, we may have reliable information about the covariance matrix,
but frequently we do not have much information about it, and diffuse distributions
such as inverse-Wishart with small shape parameter or a flat prior to represent
our prior ignorance are frequently in use. Suppose p is the number of variables in
our model. For small p with many data, the assumption for the covariance matrix
is usually not important because data speak for themselves and the estimation
is usually very close to the maximum likelihood solution. However, the prior
distribution is increasingly informative when the number of variables increases.
Therefore, more consideration has to be given to the prior assumptions. In this
section, we introduce some of the frequently used prior assumptions for covariance
matrices.

Jeffreys’ prior where p(Z) o |Z|®*+1)/2 and a flat prior p(X) o 1 are both
commonly used as non-informative prior for the covariance matrix ¥£. However,
care must be taken when applying them because both of them may lead to improper

posterior distributions, and the flat prior can be very informative in the use of
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a small data set. There are also other alternatives. For example, Daniels [37)
derived a non-informative prior for the covariance matrix as a hyper parameter in
a hierarchical model.

A conjugate prior is always an attractive assumption because of the con-
venience in manipulation. The natural conjugate prior for covariance matrices of
normal variables is the inverse-Wishart distribution. Chen [32] for example as-
sumed the natural conjugate prior, which is inverse-Wishart for the covariance
matrix and assumed the parameters in the inverse-Wishart known. However, it
is known that the inverse-Wishart prior lacks flexibility. Once its mean has been
decided, we can only use the scalar shape parameter to determine the distribution
of the p x (p + 1)/2 parameters in the covariance matrix.

Suppose a p by p matrix £ ~ ZW(J; ®),where & > 0. Let o;; be the ij th
element of £ and ¢;; be the ij th element of ®. According to Theorem 5.2.2 in
Press [103],

RO = 226 - 9)

for & > 4,
iiPii + o 12
var(oy;) = Pisbss + 55

(6-1)(6-2)(6-4)
for 6 > 4 and 7 # 7, and

525 Bii Pkt + Pidj + budr;
(6-1)(6-2)(6-4)

COV(O’ij, O‘k[) =

for 6 > 4 (for all 1,4,k,l). When the shape parameter is small, the variance is
large. When § < 4, the variance does not even exist. Therefore, an inverse-Wishart
distribution with a small shape parameter is usually considered as a diffuse prior,
while for one with large d, the prior is more informative.

Consider the conjugate model for a 1 by p random vector X

X ~ N(1,5),
Z ~ IW(;9),
Suppose we observe n independent samples for X, represented as z, which is an

n by p matrix (each row represents one observation). The posterior distribution
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for £ is IW(S + n; ztz + &), with expectation (z'z + ®)/(§ + n — 2). When the
number of samples n is very large, E(X|z) is almost z'z/(6 +n — 2) given the same
®. When n is small, ® is more influential for the posterior X.

In a non-hierarchical model, § and & are considered as known constants
although one may not be so certain about how well the inverse-Wishart distribution
represents our prior belief. Further assuming a hyper prior distribution for the
hyperparameters extends the flexibility of the prior configuration. Moreover, the
marginal distribution of & can be more diffusive in a hierarchical model. Therefore,
the hierarchical model can be less sensitive than a non-hierarchical one.

An inverse-Wishart distribution with a structured scale matrix has been
considered as the prior for ¥ by many authors. Such an assumption reduces the
number of parameters from p(p+1)/2 to a small number so that the computational
aspect of model inference is simpler. Ideally, the structure should be consistent
with our belief in the data. However, the real structure of a covariance matrix is
usually too complicated or simply unknown, especially in a high dimensional case.
The most common and simple form is the diagonal matrix with equal diagonal
elements. Dickey, Lindley and Press [51] consider an intraclass covariance structure
for the scale matrix. Brown [23] considered the structural coherence (see chapter 5)
of data and suggested the use of ARMA-type correlation structure. In hierarchical
modelling of the covariance matrix, hyper prior distributions are assigned to the
parameters in the structured scale matrix.

There are also methods which consider the spectral decomposition of the
covariance matrix. Suppose the covariance matrix is ¥. Yang and Berger [129]
and Daniels and Kass [38] consider an orthogonal decomposition of ¥ to OTDO
where D is a diagonal matrix and O is some orthogonal matrix which is further
decomposed into p x (p—2)/2 matrices. Barnard, McCulloch and Meng [5] decom-
pose the covariance ¥ as ¥ = diag(S) Rdiag(S), where R is the correlation matrix
of the normal variables, S is the vector of standard deviations, and diag(S) is a
diagonal matrix with diagonal elements S. Prior distributions are then assigned to

S and R. Structures can be considered for the correlation matrix. Leonard and
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Hsu [89] also consider the orthogonal decomposition. They do not assign separate
priors to the individual components. They consider A = log(¥) and arrange the
elements of the upper triangle of A as a vector ¢, then they use an approximation
for the likelihood function of & from the likelihood function of A and assume a has
a multivariate normal prior distribution. They also consider using a hyper prior
to express belief about the parameters for the distribution of o, with a structured

covariance matrix for o.

2.5.3 Bayesian Regression

In regression analysis, we create a model to predict response variables ¥3,Y5,...,Y,
using explanatory variables X1, X5,...,X,. Let Y = (¥1,Y,,...,Y,) and X =
(X1,Xs,...,X,), which are 1 by ¢ and 1 by p, respectively. In alregression model,
Y is predicted by X3, where [ is a p by ¢ regression coeflicient matrix. According
to the way we treat the training samples of X, there are generally two types of
Bayesian regression model. The most widely applied one considers the training
data z for X to be fixed. These z can be designed or observed. When z are
designed, the training data for both Y and X cannot represent the population.
The model is
Y=XB+E,

where E (1 x g) is a vector of random errors and the only source of uncertainty.
The sampling distribution of this model is the distribution of ¥ given X. We
call this a controlled regression model. The other type of regression is called the
random regression model, which considers the random property of X in the model.
In this case, training data for (Y, X) are sampled randomly from the population.
The sampling distribution of the model is the joint distribution of Y and X. The
regression coefficient matrix can be derived from the joint distribution of them:.
The central interest in regression analysis is the estimation of § and the
prediction of future responses. In this thesis, we apply regression analysis in a
Bayesian framework. Bayesian regression has been studied since the mid 20"

century. Tiao and Zellner [124] and Geisser [59] independently worked out the
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posterior results for a multivariate regression model with the same vague prior
assumption for the parameters under a non-hierarchical structure. Early Bayesian
books by Box and Tiao [18] and Zellner [131] give a comprehensive introduction to
various regression models. The book by Broemeling [20] specialises in the Bayesian
linear model.

The development of Bayesian regression is associated with progress in gen-
eral Bayesian theory. Lindley and Smith [91] first applied de Finetti’s idea of
exchangeability to the regression coefficients of multiple regression and expanded
the model to a three-stage model, with proper priors for parameters, e.g. regres-
sion coefficients and the covariance matrix of regression coefficients. In Chen’s [32]
paper about estimating the covariance matrix he considered a random regression
application. Dickey, Lindley and Press [51] also applied their intraclass covariance
structure to the joint distribution of the explanatory and response variables in a
random regression model.

An interesting problem in regression occurs when the number of variables
exceeds the number of samples. This is the main problem we consider in this thesis.
More recently, some research has focused on this topic, mainly taking advantage
of the fact that the Bayesian approach does not have constraints on the number of
variables. Dawid [43] first developed the theory for conjugate Bayesian random re-
gression with an infinite number of regressors. Fang and Dawid [54] continued the
study for non-conjugate infinite random regression. Makeldinen and Brown [93]
considered coherent priors for a partially exchangeable model. They developed a
class of inverse-Wishart priors for a finite or countably infinite dimensional normal
model with unknown covariance matrix. Later, Brown and Mékeldinen [27] used a
structural coherent prior for the covariance matrix in the model. They assumed the
correlation of predictor variables had the structure of the autocorrelation function
for an ARMA process. Brown [23] defined a generalised inverse-Wishart distribu-
tion for the covariance matrix in the multivariate regression model in an attempt
to overcome the natural limitations of the standard inverse-Wishart distribution

but still retain the analytic tractability of modelling. Brown et. al. 28] considered
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variable selection procedures for the natural conjugate random regression model
with many variables using simulating annealing, while Brown et al. [25] considered
Bayesian variable selection based on the model in Fang and Dawid [54]. West [126]
proposed a methodology of Bayesian regression analysis which is different from
Brown’s approach. West’s approach is based on latent factor regression models,
which are essentially controlled regression models. In his approach, responses are
regressed on new explanatory variables that are linear combinations of original
regressors. These new regressors are produced through singular-value decomposi-
tions. The same approach has been applied in analysing a binary regression model

with many variables in West et al. [127).

2.5.4 Bayesian Discrimination

Discriminant analysis handles the problem of allocating an observation to one of
several groups or populations on the basis of a multivariate observation. The
number of populations can be known or unknown. The parameters in the density
functions of the populations usually need to be estimated. Frequently it is known
which groups the training data come from. However, due to the cost of collecting
membership information, we may not be able to distinguish the population iden-
tity of some training data. Anderson [2] reviewed classical normal discriminant
analysis, indicating that Bayes’ procedure is admissible. McLachlan [95] provides
a comprehensive introduction to discriminant analysis.

Suppose an item must come from one of g groups, labelled as group 1 to
group g. The Bayes’ procedure minimises the risk of misclassifying an object. It
is based on a loss function U(m) and the group membership distribution p(r|z),
where z is the multivariate observation on the object and 7 represents the identity
of the group we allocate the object to, i.e. 7 € {1,2,...,g}. According to Bayes’
formula, the predictive probability of the item being from the i th group is

gip(z| m=1)
i=1 0ip(z| m =4)’
where g¢; is our prior probability that this item should come from the ¢ th group.

p(r =1|z) = 5 (2.3)

In order to find the predictive probability, we need to know individual p(z| 7 = 7).
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An alternative approach is logistic discrimination, which models p(7|z) directly
using a logistic regression model using z as regressors [95].

The Bayesian approach to discriminant analysis for multivariate normal
variables has been discussed by Geisser [58] [60] and [61]. He obtains the Bayesian
estimation for {p(z|r = i)|i = 1,...g}, then calculates the predictive probability
using equation (2.3). Rigby [107] further investigated the posterior density and the
credibility interval of the predictive probability of a new observation in one of the
two possible populations. Rigby [108] compared classical and Bayesian results and
concluded that the Bayesian method can produce a less extreme result when there
are many variables. However, the number of variables in his example can only be
regarded as small in our context. Bayesian logistic discrimination has also been
developed, see for example Fearn et al. [56], which is essentially a logistic regression
analysis. Bayesian logistic regression has been applied by many authors.

Research in exploring discriminant analysis with training data without know-
ing their group identity is also considered by some authors. It involves inference
for mixture models. Special techniques for handling such problems are being devel-
oped because of their natural complexity. Lavine and West [88] applied iterative
resampling techniques by Gelfand and Smith [63] for a known number of popula-
tions. Sometimes even the number of populations is unknown. Richardson and
Green [106] analyse such problems with reverse jump MCMC.

When the number of variables exceeds the number of samples, the sample
covariance matrices are not invertible and most classical approaches to discrim-
inant analysis become impossible. As in regression, the Bayesian approach still
works, if we have proper prior distributions. Similar to Bayesian regression anal-
ysis, Dawid and Fang [44] proved that under conjugate prior assumptions for the
parameters of the density functions of two normal populations, the model produces
perfect discrimination, something we should not wish to happen in many applica-
tions. Brown et al. [24] considered a practical case in NIR calibration where there
are many variables using the predictive probability approach. A brief review for

Bayesian discrimination with many variables can be found in Brown [23].
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Chapter 3

Near Infrared Spectroscopical

Analysis

3.1 Introduction

In recent years near infrared (NIR) spectroscopy has become a very important tool
in analytical chemistry. Traditional laboratory-based methods for analytical chem-
istry are often time consuming, hazardous and the cost of the space, equipment
and personnel for a laboratory is expensive. However, a modern NIR instrument is
rapid, low cost and safe, and is able to produce many measurements with similar
accuracy to that obtained using laboratory methods. The process of taking NIR
spectral measurements and analysing data is usually completed in one small box,
and the instrument is easy to operate so that less training is required for staff.
Sample preparation is easier for NIR measurements, and sometimes it can even be
omitted.

The NIR light band consists of light from wavelength 700nm to 2700nm
(nm = nanometres, which is 10~ meter), which is a sub-band of infrared radia-
tion (700-10° nm) with longer wavelength than any visible light. The NIR. spectra
are the measurements of samples’ absorption of radiation at wavelengths within
the NIR light band. NIR absorbance spectra principally involve the interaction
between NIR radiation and C-H, O-H, and N-H chemical bonds. Each kind of
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bond only absorbs radiation at particular wavelengths (several for each bond, be-
cause it has several modes of vibration) and each absorption corresponds to a
peak in the spectrum. For a complex sample such as foodstuff, there are very
many absorption peaks so that many peaks overlap. Moreover, the instrumen-
tal NIR spectra will have been smoothed both by the hardware, since what is
usually measured is the absorption averaged over a narrow band of wavelengths,
and often by software as well. The result is typically a smooth looking spectrum
that is actually made of up hundreds or even thousands of overlapping peaks. By
contrast, the absorption peaks of a chemical bond in the mid infrared band (2700-
25000nm) do not overlap so seriously and are generally much more distinguishable.
Mid infrared spectroscopy can be used to fingerprint simple chemicals by identify-
ing their absorption peaks, which cannot be achieved by using NIR spectroscopy.
However, NIR spectroscopy has been widely used for quantitative analysis and cer-
tain qualitative analysis (i.e. discrimination) on complex materials because NIR
spectroscopy is cheaper and easier to implement.

The main usage of NIR spectra is to predict the concentration of a con-
stituent in samples or to discriminate between samples. Different instruments
have been developed according to the requirements of users. They can be de-
signed for specialised on-site process control, or for flexible laboratory use. Some
instruments focus on the spectral measurements at certain important wavelengths,
while others are designed to generate spectra at wavelengths spread over the NIR
band. Samples can be in liquid or solid state for analysing. Solid samples may
need to be ground although some instruments will handle, for example, samples
of whole grain.

The recent advances in NIR spectroscopic analysis are not only due to the
improvement in the mechanical and optical aspects of the instruments, but also
to improvement in the techniques for calibration. Very often measurements at
more wavelengths than the number of samples are taken. Entire spectra are often
included in a calibration model in order to gather more complete information. It

is known that classical regression methods cannot handle problems with a larger
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number of variables than the number of samples. Methods for compressing data
and dimension reduction (e.g. PCR, PLS) have been developed. These methods

are reviewed in section 5.

3.2 Theory of NIR Absorption

Near infrared spectra are the result of light absorption by molecules, especially
organic chemicals, mainly consisting of carbon (C), hydrogen (H), and nitrogen
(N). The absorption of light by molecules corresponds to a change in the status
of the atomic rotation and the vibration between two atoms at the two ends of a
chemical bond. The absorption of radiation at NIR bands is the consequence of
vibration only, and it is the result of overtones or the combinations of overtones
rather than the fundamental changes of vibrating status that appear in the mid-IR
region.

The vibration of two atoms at both ends of a chemical bond is an oscillation
system. According to classical physics, the total mechanical energy of an oscillation
should be a continuous function of the frequency and the maximum amplitude of
the oscillation. However, the oscillation of atoms in fact obeys quantum theory and
has discrete energy levels, labelled as ground state, the second state, the third state,
etc. The transition of energy state can only occur by the absorption or emission of
quanta, which are countable energy packages. The frequency of radiation absorbed
or emitted is decided by the energy difference of the two states involved in the
activity. The energy level system is different for different combinations of atoms in
a chemical bond. The structure of the molecules also affects the required energy
for transition. Therefore, an absorption band of a particular chemical bond is
slightly different in different molecules and indeed may differ from the same bond
at different locations in the same molecules. This is the reason why we see so many
peaks.

When a transition happens between ground state and the first state, the
transition is described as fundamental. When a transition happens between the

ground state and a state higher than the second state, it is called an overtone. Ac-
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cording to the selection rules for a harmonic oscillating activity in a chemical bond,
transition can only occur for one step. Overtones are due to non-harmonic oscil-
lation between two atoms, where the selection rules allow changes between more
energy levels. In polyatomic molecules, many chemical bonds interact at the same
time and the transition of the energy state is a consequence of the combination of

the changes at individual bonds.

3.3 Linear Relationship between NIR Spectrum
and Concentration of Constituents

When monochromatic radiation interacts with a sample, it may be absorbed, trans-
mitted, or reflected. According to the law of conservation of energy, the incident
radiant power (Pp) is equal to the sum of the radiant power absorbed (P,), the

radiant power transmitted (Pr) and the radiant power reflected (Pg), i.e.
Pop = P4y + Pr + Prp.

When the experiment is arranged properly, one of Pr and Pg can be zero, and Py
can be deduced by measuring the non-zero power of transmittance or reflection.
The energy absorption of radiation within NIR bands is normally described
by the Beer-Lambert law, which states that the fraction dP/P of radiant energy
P absorbed by an infinitesimal thickness of sample is proportional to the number

of molecules dn which actually absorb the radiant energy in that thickness
—dP/P « dn,
which implies
lOg(Po/PT) = abC

where the constant a is called the absorptivity of the molecule, b is thickness
through which the radiation passes, and C is the concentration of molecules in the
sample. In transmission spectroscopy, the fraction of radiation (Pr/Pp) transmit-

ted by the sample is measured and called transmittance (7"). The transmittance is
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converted to absorbance (A), which is defined by A = log(1/T). Consequently, the

Beer-Lambert law suggests a linear relation for the absorbance and concentration
A=¢eC (3.1)

or equivalently

C=pA . (3.2)

where 8 = 7! = b~la~!. However, the relationship between A and C is rarely
found to be perfectly linear in practice. Several reasons (see Osborne et al. [100])
cause the deviation from linearity. In addition, the graph of A against C does not
always pass through the origin. Background absorbance is one of the reasons for
this. This problem can be removed by applying methods of background correction.
However, despite the nonlinearity, it is often possible to describe the concentration-
absorption relationship as locally linear.

An absorbing peak is rarely caused by a single constituent of a sample but by
several of them because the type of chemical bond that causes the absorption may
exist in several of the constituents. Define ¢; = a;b, where a; is the absorptivity
of the 7 th constituent and b is the thickness through which the radiation passes,
which is equal for every constituent. If the law of additivity holds, the absorbance
is .

A=) (&Cy),
i
where C; is the concentration of the ith constituent and g is the number of con-
stituents. Suppose we observe absorbance at p wavelengths. Define €;; = a;;b,
where a;; is the absorptivity of the i th constituent at the j th wavelength. We

then have p simultaneous equations
P
Aj = 2(8,‘,]'0,;), for J = 1, ey Dy (33)
i

which is the foundation of the use of linear calibration for NIR absorbance spectra.
NIR diffuse reflectance is also widely used when samples are opaque and non-
absorbing. Although there is no definitive theory for diffuse reflectance (Shenk,

Workman, and Westerhaus [114]), many rules have been developed to describe the
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relation between diffuse reflectance spectra and concentration. Linear dependence
appears in practice to yield the most successful results (Olinger and Griffiths [99]),
and the linear rule is

log(1/R) o< &

where a is the absorptivity, R is the intensity of the reflected radiation of samples,
and s is called the scatter constant. This is affected by a number of sample
properties such as particle size, refractive index, moisture content, etc. If the law
of additivity holds, then equations analogous to (3.3) can be written for diffuse
reflectance.

The NIR spectra are greatly affected by some physical properties of samples,
such as particle size, packing density, moisture status, and temperature (Osborne et
al. [100]). The spectral measurements at different wavelengths can be very highly
correlated due to these properties. These factors produce error in estimating the
features that are independent of them. Techniques for background correction are
therefore required. Practical experience has shown that using derivative spectra
provides a better model in some cases. It yields new variables with lower corre-
lations. The most frequently used derivative spectrum is the second derivative.
Higher order derivative spectra are rarely used in practice. The price of taking
the derivative of spectra is that it reduces the signal to noise ratio. Moreover,
this approach will not be appropriate if the features in which we are interested
are related to those physical properties whose effects are removed by taking the

derivative.

3.4 Applications of NIR Spectroscopy

NIR spectroscopy has been successfully applied to predict protein, moisture, fat
and carbohydrate content, which are the main ingredients of food and bever-
ages [100]. Since the technique is rapid, requires less sample preparation, and
can be non-destructive, NIR spectroscopy is especially useful for on-line qual-

ity control. Applications to monitoring other quality attributes such as sensory
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tenderness, texture, and flavour have also been reported (e.g. Byrne et al. [30],
Serensen et. al. [115]). Fungi or parasites can also be detected by NIR spec-
troscopy (Baker et al. [4], Kiské et al. [87]). In addition to the food and beverage
industry, applications of NIR spectroscopy extend to areas which are related to
organic material, such as tobacco, textiles, petrochemical and pharmaceutical in-
dustries, agricultural research and the life sciences (See Handbook of Near-Infrared

Analysis [29]).

3.5 Examples

Two examples involving spectra of wheat samples that have been used in this thesis
for Bayesian regression and discriminant analysis are introduced in this section.
The principle of the instrument that produced the spectra in the examples is
explained in the first subsection. The second and the third subsections describe

the examples for regression and discriminant analysis respectively.

3.5.1 Generating Spectra

The spectra were measured on samples of unground wheat using a Tecator Infratec
Grain Analyzer which measures transmission of NIR radiation through wheat sam-
ples. The size of the instrument is about 60 x 45 x 45 cm (see figure 3.1). Wheat
samples are collected from a hopper on the top and then go through the transmit-
ting cell, where the absorption and transmission occur, and are taken away from a
drawer after they are detected. The transmitting cell is thin (typically 20 mm) so
that the NIR path through the sample is quite short (see figure 3.2). The instru-
ment is connected to a computer where the data are analysed. The instrument is
specialised for measuring the NIR absorbance spectra of whole grains and offers
predictions for the percentage of protein, oil, starch and moisture of the grain
samples.

The amount of wheat for each sample is a few hundred grams. The light

from a source passes through a wavelength selector, and only selected radiation
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Figure 3.3: Mixed effect of reflection and absorption.
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at certain wavelength goes through the sample. There is a gate between the
transmitting cell and the drawer. One sample is put into the transmitting cell.
The sample is gradually released from the transmitting cell to the drawer through
a gate between the cell and the drawer. When the gate is closed, the wheat
sample stops in the cell, and a certain amount of wheat is at the area in the cell
where the light passes through and interaction between light and wheat happens.
The detector measures the transmitted radiation energy when the sub-sample is
stationary in the cell so that the measurement is more accurate. Then, the gate
opens to release a certain amount of wheat to the drawer and then closes again.
Another sub-sample of wheat is then measured. This procedure is repeated. As a
result, there will be several spectra for the entire wheat sample. The final spectral
output of the sample is the average of the spectra of the several sub-samples.
The transmission spectra produced by the Tecator Infratec Grain Analyzer

is in fact a mixed effect of reflection and absorption (see figure 3.3). Empirically,
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Variety 1 2 3 4 5 6 7 8 9 Total
Training |42 11 29 23 54 10 13 30 22 234
Validation |10 3 7 6 14 3 3 7 5 58

Table 3.1: Wheat data: numbers of samples of each variety

the linear model has provided good calibration for this type of spectra. In our
examples, the transmission spectra of wheat are measured at 100 wavelengths

from 850 nm to 1048 nm, with 2 nm increments at each step.

3.5.2 Two Examples

In the first example, there are 50 samples of wheat. NIR spectra and the protein
percentage of each sample have been measured. The protein percentage is mea-
sured by the standard laboratory method, Kjeldahl nitrogen analysis on ground
wheat. The original spectra of the 50 samples are shown in figure 3.4. The spectra
are very smooth and the spectra of the 50 samples are shifted almost parallel to
each other mainly due to the packing density and the particle size effect. The cor-
relation between any pair of the 100 measurements in a spectrum is consequently
very large (close to one). Second derivative spectra of the original ones are shown
in figure 3.5. The correlations between the measurements at different wavelengths
due to packing density and particle size effect are greatly reduced by taking the
derivative. It also allows some of the other spectral variation to be seen. As we can
see figure 3.5, one of the 50 (the 7th in our entire data set) 2nd derivative spectra
is very different from the other spectra between 850 and 900 nm. The percentage
protein of each sample is shown in figure 3.6. The corresponding point of the 7th
observation is the point with largest percentage protein, but this is not the cause
of the deviations.

In the second example, the data set consists of NIR transmission spectra on
292 samples of wheat from nine varieties. The identity of each sample is known.
The spectra have the same shape properties as the spectra in the first example.

The 292 samples were split randomly within groups into training and validation
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Figure 3.8: Transmission spectra of nine wheat varieties in the validation set.
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sets, which contain 80% and 20% of the samples respectively. Table 3.1 shows the
number of samples of each variety and in the training and validation sets. Figure
3.7 gives the spectra of the 234 samples in the training set, while figure 3.8 displays
the spectra of the samples in the validation set.

In this thesis, a Bayesian regression model is applied to the data in the
first example for predicting the percentage of protein using the NIR transmission
spectra. The data in the second example are used to evaluate our Bayesian dis-

criminant model, which aims to allocate new samples to one of the nine varieties.

3.6 NIR Calibration

The purpose of NIR calibration is to predict the concentration of a constituent
in an unknown sample by the spectral measurements. If the concentration of a
constituent in a sample has a linear relationship with the absorbance/reflectance,
a simple statistical approach is to create a regression model for the concentration
of a constituent and the absorbance/reflectance and fit the model using observed

data.

3.6.1 Linear Regression

Suppose we collect n samples of calibration data (Y7, X1), (Y2, X2), ..., (Ya, X5),
where X; = (Xi1,...,Xip) and Y; = (Y;,,...,Y;,) are the vectors of the ab-
sorbance at p wavelengths and the vector of the concentrations of g constituents of
the i th sample, respectively. Let Y = (Y, Y#,..., Y ) and X = (X?, X%,..., X¢E)!
so that Y is an n by ¢ matrix and X is an n by p matrix. We will follow the common
practice of subtracting sample means from both X and Y and using models with
mean zero to simplify results. As a result, we assume Y and X are mean-corrected
variables.

There are two ways of thinking about the calibration modelling: do we

regress concentration on absorbance or do we regress absorbance on concentration?

In considering a causal model, one should regress absorbance on concentration
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since the difference in absorbance is due to the difference in the concentration of

a constituent. The model is written as
X=Yn+F, (3.4)

where 7 is a ¢ by p regression coefficient matrix and F' is a matrix of random errors.
In an ideal calibration case when the spectrum of every constituent in the sample
is known, say 71,7, ..., M, With each one a 1 x p vector, let n = (nf, 7}, ..., 7t)",
and the covariance of each spectrum X; be © (> 0). Then, if X! is invertible,
Y}, the concentrations of g constituents of a future sample can be predicted using

a weighted least square estimator
X2z ")

where Xy is the spectrum of the future sample. In practice, one may need to

estimate 1 by its LS estimator
7= (YY) 'YX

if (Y*Y)~! exists.
Alternately, since one would like to predict the concentrations using spectra,

one might regress Y on X using the model
Y=XB+E, (3.5)

where 3 is the regression coefficient matrix and E is the error. If X*X is invertible
(which will not usually be the case), the LS predictor for Y; would be simply
Y = X;B where § = (XX)™'X*Y. A detailed discussion of whether one should
use the causal model (3.4) or a direct one (model 3.5) is given in Martens and
Nees [94]. Practically, the latter model is usually preferred in NIR calibration.
The reasons are explained in Osborne et al. [100]. In this thesis, we consider the
latter model as an application for our Bayesian multiple linear regression.
Normally, the number of calibration samples is larger then the number of
concentrations we would like to predict. That is, Y'Y is usually invertible. Hence,

the existence of the prediction of Y in both approaches is subject to the invertibility
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of nZn* and X*X. When the number of calibration samples is larger than the
number of wavelengths, XX is unfortunately singular. When the number of
constituents is larger then the number of wavelengths, nZn® is singular. For the
direct model, methods for reducing the number of variables are required in order
to apply the least-squares approach. Prior knowledge about the spectra becomes
important for pre-selection or refinement from the large variable group. However,
it is inevitable that deleting variables loses information. In order to keep most of
the information in full spectra, many ‘regularised methods’ have been developed
in order to compress information in all the variables into few new variables. These

methods will be introduced in the next section.

3.6.2 Regularised Regression

In order to use the information in the full spectra more efficiently, some meth-
ods have been developed to compress most of the information in a spectrum
(Auy, Ay, + -+, Au,) at wavelengths (wy,ws, -+ ,wp) into fewer variables. The two
most popular methods are principal components regression (PCR) and partial
least squares regression (PLSR). These two methods use linear combinations of
(A, Auyy -+, Au,) as new variables, denoted as (S;, S, -+, S,), which contain
most of the information in the original spectrum. The number of new variables r
can be controlled so that it does not exceed the number of samples n. Continuum
regression (CR) is another method using linear combinations of the original spec-
trum that links together MLR, PCR and PLSR. PCR, PLSR and CR include two
steps: compressing information into fewer new variables and regressing explana-
tory variables on new variables. An alternative approach is ridge regression (RR),
which does not have a compressing step. It uses the data in the original form.
Principal components regression regresses the response variables on the prin-
cipal components (PC’s) of the original explanatory variables, using a number of
PC’s less and often very much less than the original number of regressors. Suppose
X contains the observations of n spectra at p wavelengths as in section 2.5.1. The

first PC S is associated with the first loading vector p;, such that p; is a unit
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vector (pip; = 1) and is chosen to maximise the variance of the score S; = Xp;.
The second loading vector p, is also normalised and is chosen to maximise the
sample variance of S, = Xp, under the constraint that p; and p, are orthogo-
nal. The procedure continues in this way under the constraint that each new PC
is orthogonal to the previous PCs. It can be shown that p; is an eigenvector of
XX corresponding to the i th largest eigenvalue, and the vector of eigenvalues
(A1, A2, -+ - A;) is proportional to the sample variance of (Sy,Ss,---,S;). Thus, a
PC with smaller index number contains more of the variation in X. Usually, the
first few PCs include most of the information in X. The maximum number of
principal components included in a full model is n — 1 so that the LS or MLE
estimates of regression coefficients always exist. The best sub-model can then be
chosen by variable selection procedures.

The step of creating new regressors in PCR is principal components analysis
(PCA). The criterion for creating a new regressor is based on the ability of the
new regressor to explain the variation in the spectral data, and does not take into
account its ability to predict the dependent variables at all. PLSR follows the
different philosophy that a new regressor should be able to explain the dependent
variables well. Therefore, the regressors created at an early stage are never less
important (for prediction) than the regressors created later in a regression model,
while this is not necessary true in PCR. Therefore, PLSR usually ends up with
fewer explanatory variables than a PCR model requires (Martens and Nees [94]).

PLSR is developed from Herman Wold’s iterative fitting methods. Different
algorithms developed later by different authors may create a different set of regres-
sors. For examples, the algorithm developed by Svante Wold creates models with
orthogonal scores, while Martens’ algorithm creates models with orthogonal load-
ings. These two algorithms are provided in Martins and Nas [94]. Mathematical
interpretation of PLSR was given several years later. The following explanation is
based on Stone and Brooks’ [120] paper, also described in Brown [23].

Suppose the data matrix of explanatory variables is X with n samples and

p explanatory variables, and Y is a column vector containing n observed values for
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response variables. The first new factor is S; = Xp; where the loading weight p;
is normalised and is chosen to maximise STY. The second new factor Sy = Xp, is
orthogonal to S; and p; is chosen to maximise S¢Y". Following the same procedure,
we can obtain r new factors S;,S,,---,S, for the regression model, where r is
usually chosen by cross-validation. PLSR can be used for multivariate regression
as well.

Stone and Brooks [120] proposed continuum regression, which creates a link
between MLR, PCR and PLSR with a continuous parameter v. The method is
also based on using linear combinations of the original variables as new variables.

The new variables are constructed by choosing a loading vector p which maximises
(P'X'Y)*(p' X" Xp)"",

and the new variable is Xp. When v = 0, continuum regression gives MLR
by considering only the first linear combination, which maximises the correlation
between the new variable and Y. When v = o0, it corresponds to PCR since the
procedure is to maximise the variance of the new variables; when v = 1, the process
maximises the covariance between new variables and Y giving PLSR. Stone and
Brooks suggested the use of cross-validation to choose the most appropriate . It
is not hard to see that continuum regression is computationally intensive.

Ridge regression provides a way to regress Y on the full spectra. Consider
regressing Y on X. The LS and ML solution for the regression coefficient 3 is
B = (XtX)"1X'Y. The estimate B does not exist when X‘X is singular, i.e. is
not invertible. The principle of RR is to adjust the singular XX by adding a
matrix kI, where k is a scalar constant small in comparison with the diagonal
of X*X, and I is the identity matrix. The estimator of S is therefore ERR(k) =
(X*X +EkI)"1X*Y. The value of k is chosen to stabilise the ridge trace (the curves
of regression coefficients as functions of k) whilst not penalising the residual sum
of squares (which is also a function of k) too much. One may also apply cross-
validation as a method to choose k. A detailed discussion of ridge regression can

be found in Brown [23].
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3.7 NIR Discriminant Analysis

Another important application of NIR spectroscopy is classification of a sample as
belonging to one of several classes. The number of classes is usually known, but
the distribution of the measurement of samples within each class needs to be learnt
from training data. There are various ways to discriminate between samples. The
problem in discriminant analysis with many variables is the same as the problem
in regression analysis with many variables, i.e. (X*X) is not invertible. Similar
strategies to those in regression have been considered in discriminant analysis.
One may use PC’s of X as new variables to reduce the number of variables. One
may also use a strategy similar to RR to improve the condition of the matrix that

needs to be inverted.

3.7.1 Probability Approach

A standard statistical approach is to allocate a sample according to a criterion
decided by the stochastic properties of the groups. Each group has a distribution
for the measurements of the samples from the group, and the parameters in the
distributions often have to be estimated using the training data. A discrimination
procedure is chosen as a decision criterion that should minimise the loss due to
misclassification. This procedure is called a Bayes’ procedure [2], and has been
introduced in section 2.5.4. Suppose a sample X must be from one of several groups,
labelled as group 1, group 2, ..., group g. The sample is measured quantitatively
as X. According to equation (2.3), the probability of X being in group ¢ is

g pi(X)

121 3 Pi(X)’

where ¢; is the prior probability of X being in group 4, p;(X) is the probability of

p(X being in group i) = (3.6)

observing X for a sample from group ¢ and g is the total number of groups. The
risk of misclassification can be derived using equation (3.6) and a loss function of
missclassification. Suppose the loss is a constant, then Bayes’ procedure allocates

a sample to the group with the maximum posterior probability.
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3.7.2 Linear and Quadratic Discriminant Functions

Consider the case where there are only two groups and X is normally distributed
in both groups. The ratio of the posterior probability of X being in group 1 and
group 2 is used to allocate X to one of the two groups. Following the Bayes’

procedure, if p;(X)/p2(X) > k then X is assigned to group 1, where

72C(1]2)

~ CCN)
and C(i]j) is the loss of assigning X to the ¢ th group when X is actually from the
j th group. When the two groups have the same covariance matrix, the Bayes’
procedure leads to linear discriminant analysis, which allocates X according to a

linear discriminant function

X' ( — pa), (3.7)

where ¥ is the common covariance matrix and p; and u; are the means of group

1 and 2 respectively. Observing X =z, if

1
287 — pg) 2 5(#1 + w)'E 7 (pg — p2) + logk,

X is classified to group 1, otherwise to group 2. When the covariance matrices
of the two groups are different, the same Bayes’ procedure leads to quadratic
discriminant analysis, where X is classified according to the value of the quadratic

discriminant function
(X — p2)*Ba(X — pig) — (X — )" T1(X — ),

where ¥; and ¥, are the covariance matrices of groups 1 and 2 respectively.

3.7.3 Distance Based Methods

Distance based methods discriminate between samples by comparing the distance
of the sample from the centre of each group and picking the nearest group. In
order to measure the distance between two points in the space, a distance metric

needs to be defined. The Euclidean distance between two points (1, Zs, ..., Zm)
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and (y1,%2, - -, Ym) in R™ is simply [(z1 — 1)® + (22 = 92)* + ... + (Tm — ym)?]"%.
The most frequently used distance in discriminant analysis with many variables
is the Mahalanobis distance. The Mahalanobis distance from X to group i is

di = /(X — w)'E7 (X — ;). For other definitions of distance, refer to [95).

Comparison of the Mahalanobis distance of X to different populations is closely

related to the methods of linear and quadratic discriminant analysis.

3.7.4 Estimation of Mean and Covariance Matrix

The means and covariance matrices of the groups are usually unknown and have to
be estimated. Sample means and sample covariance matrices are the most straight-
forward estimators of the means and covariance matrices. When the number of
variables is larger than the number of samples, the sample covariance matrix is
singular and the above methods do not work. Therefore, one might like to com-
press the data into PCA scores with a small number of PCs’, then apply the above
discriminant methods. This is the discrimination equivalent of PCR.

Friedman [57] proposed regularised discriminant analysis (RDA) as a com-
promise between linear and quadratic discrimination. The estimator for a covari-
ance matrix he used is a combination of individual and pooled sample covariance
matrices and a specified matrix, such as an identity matrix. The identity matrix
has the same effect as in ridge regression in that it improves the condition of the

estimated covariance matrix.

3.8 Remark

In section 2.5.2 we introduced continuum regression which integrates MLR, PCR,
and PLSR. Other researchers also have linked different methods. Principal covari-
ates regression, proposed by de Jong et al. [48] links MLR, PCR, and PLSR via a
continuous path which is different from that of Stone and Brooks. Héskuldsson [81]
showed that PCR and PLSR are related by the Heisenberg principle of mathemat-
ical modelling. Sundberg [121] demonstrated the relation between first-factor CR
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and RR and argued that first-factor CR is preferable in principle.

NIR calibration is mainly based on the linear relationship between de-
pendent variables and spectra. However, nonlinearities are sometimes observed.
Weighted regression, nonlinear regression and non-parametric regression [94] are
possible methods for handling it. The artificial neural network is a framework
which provides more solutions for nonlinear problems [100]. We -will not consider

or explain these alternatives here.
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Chapter 4

Markov Chain Monte Carlo

4.1 Introduction

Monte Carlo integration using Markov chains, also called Markov chain Monte
Carlo (MCMC), is a very important computing tool in high-dimensional mod-
elling, where we need to integrate over high-dimensional probability distributions
to make inference on unknown random quantities, for example to calculate the
marginal probability distributions of unknown quantities. Frequently, analytical
integration in practical modelling is not possible. Traditional numerical methods
such as trapezoidal or Simpson’s rule may work well for very low dimensional
cases but become very inefficient when the dimension of the model is large. In-
stead, MCMC is a more efficient method of integration when the dimension of the
parameter space is high. The history of the development of MCMC is not long, but
MCMC has already been widely applied in many practical Bayesian data analyses.
Applications can also be found in non-Bayesian cases.

MCMC consists of a sampling step and an integration step. Suppose we
would like to calculate the expectation of s(X) where X is a random quantity
with probability density function (pdf) f. In the sampling step, MCMC draws a
sequence of samples Xi, Xo, ..., X, from f. In the integration step, it estimates
E(s(X)) using n=' 3" s(X;). Direct generation of independent samples from f

can be difficult or even impossible. MCMC draws samples from a cleverly designed
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ergodic Markov chain such that it is easier to generate samples from the Markov
chain than from the true distribution of the samples. The Markov chain is iterated
for a long time so that the chain is eventually in the equilibrium stage. The samples
generated at the equilibrium stage are generated from the equilibrium distribution,
which is equal to the true density function of the samples. These samples are then
used in the Monte Carlo integration step.

Theoretically, a Markov chain reaches the equilibrium stage after an infinite
number of iterations. It is not possible to wait for a infinitely long time to collect
the samples. Fortunately, adequate convergence may be reached with finite itera-
tions in many cases. Practically, we need to decide a sufficiently long burn-in, say
the first m iterations, which is the early stage of the Markov chain when the chain
has not yet converged to the stationary distribution. The Markov chain approxi-
mately converges after the burn-in period. Suppose the total length of the chain is
n, and (X1, Xa, -+ Xmy Xm+1, - - - Xn) is the entire sequence of samples generated
by the Markov chain. The burn-in samples Xj, ..., X;, are discarded and E(s(X))
is estimated by (n—m)~! 3 ., s(X;), which is called the ergodic average. Many
rules have been developed to detect a non-convergent chain, but there is no way
to guarantee that the chain has definitely converged. With proper checking, one
can still make a reasonable estimation using the samples generated after the burn-

in section even though we may not be able to guarantee the chain has definitely

‘converged. There are many techniques for checking convergence. Cowles and Car-

lin [36], Brooks and Roberts [22], and Mengersen et al. [96] provide summaries of
the techniques for monitoring convergence of Markov chain simulations.

There are many ways of constructing a Markov chain. According to the
properties of the models, different models require different methods in order to
achieve efficient and reliable estimation. Most of these methods are based on the
algorithms developed by Metropolis and Hastings [79]. These methods generate
samples from a fixed dimensional space. The Gibbs sampler named by Geman and
Geman [68] is an example of a Metropolis-Hastings algorithm. Green [76] proposed

the reversible-jump MCMC algorithm, which is a generalisation of MCMC using
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a Metropolis-Hastings algorithm. It allows proposal and target density functions
having different dimensions, i.e. samples from reversible-jump MCMC sampler
may have different dimensions. It is especially useful for modelling mixture distri-
butions with an unknown number of components and Bayesian variable selection.

It is known that the convergence assessment of MCMC can never guarantee
whether a chain has actually converged or not. However, MCMC strategies that
guarantee samples can be generated from their exact target density function within
a finite number of iterations have been discovered. Propp and Wilson [105] first
proposed an exact sampling algorithm using backward coupled Markov chains.
Exact sampling, sometimes called perfect sampling, is still a very new development
in MCMC, in comparison with the ‘traditional’ MCMC approaches. Variations and
generalisation of exact sampling are already available. However, they have so far
only been successfully applied to low dimensional cases and some high dimensional
models with very particular structure (Green and Murdoch [77]).

The development of MCMC strategies is a very active area since models
with different properties and difficulties require different special techniques in or-
der to sample from them correctly and efficiently. Gilks et al. [73] provide a broad
review of MCMC related topics. Gelman et al. [65] cover both simulation-based
and non simulation-based posterior inference techniques. Besag’s [13] paper re-
views the most general and up-to-date developments in the research of MCMC.
We shall not attempt to review all techniques in this chapter, but only focus on the
strategies we apply to the examples in this thesis. In this chapter we first introduce
some basic non-iterative samplers and describe the general framework of MCMC
for generating from continuous distributions. Then we introduce the method we
apply in our examples: the adaptive rejection Metropolis sampling (ARMS) within
Gibbs sampling for MCMC introduced by Gilks et al. [72]. In our examples we use
multiple-chain MCMC as suggested by Gelman and Rubin [67], which uses vari-
ance ratio methods for convergence assessment. In hierarchical Bayesian models,
some parameters are so highly correlated that it is almost impossible to observe

convergence with a short single chain MCMC. Proofs of methods are not given in
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this thesis.

4.2 Direct Sampling

Many random generators have been developed for sampling independent random
numbers. Many of these random generators are reviewed in Ripley [109]. Al-
most all of them generate scalar random quantities. When the inverse cdf of a
distribution exists, one can sample from this distribution directly. Many random
samplers are specialised for particular distributions. General methods also exist.
Some MCMC schemes for multivariate cases, for example, the Gibbs sampler, re-
quire the use of these random samplers. In this section, we introduce some general

methods for generating scalar random numbers.

Inverse CDF': Continuous Cases

Suppose we want to sample a random number X from a continuous pdf f, whose
cdf is F, and the inverse function F~! or a good approximation to F~! exists
analytically. Let z = F~'(u), where u is sampled from U(0,1). Then z is a

sample for X.

Inverse CDF': Discrete Cases

There are two cases in which one would like to generate random numbers from
a discrete distribution P, = P(X < k), kK = 1,2,...: firstly, when the random
quantity is on a discrete space; secondly, when we would like to use a discrete
distribution to approximate a continuous distribution.

Suppose X is a discrete scalar random quantity with cdf F. The inverse
cdf of X is then F~!(z) = min{z|F(z) > u} = ¢ where P,_; < u < P;. In order
to generate a number for X, one first generates u from U(0,1). Then, a proper
searching algorithm is applied to search a value r so that P, < u < P, + 1. Then

T is the sample for X.
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Rejection Sampling

Suppose we want to sample X from a pdf f whose inverse cdf is not available
analytically. Rejection sampling is a simple way to sample from f. In Bayesian
modelling, it is very often the case that the distribution of X is known up to an
unnormalised density function, say & such that k oc f. Instead of sampling X from
f, we sample a candidate Y from a pdf g for which there exists a constant M such
that k < Mg for every X in the sample space. The candidate Y is accepted as a

sample of X with probability
k(Y)
Mxg(Y)

The unnormalised density function Mg is called an envelope function of k. The

algorithm for generating from f is

Algorithm 4.1 Rejection Sampling
Repeat
Generate Y from g;
Generate U from U(0,1);
If MU < k(Y)/g9(Y) accept Y;
Until a Y is accepted.
Return X =Y.

It can be proved that X is drawn from the pdf f (see Ripley [109]).

An ideal envelope function should be a function which is nearly proportional
to f. If g is equal to f, every draw will be accepted with probability 1. If M is
very large, most of the draws will be rejected. Computing time can be saved by
using squeezing functions a(Y’) and b(Y’), where a(Y) > g(Y) > b(Y) for all Y
such that the squeezing functions are easier to calculate than g. The if-statement
in Algorithm 4.1 is modified to

If MU > a(Y)/g(Y) reject Y
else if MU < b(Y)/g(Y) accept Y;
else if MU < f(Y)/g(Y') accept Y.
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4.3 Basic Markov Chain Simulation

4.3.1 General methods

MCMC has been shown to be a reliable and convenient tool in many applications.
In MCMC, the pdf needs only to be known up to a constant of proportionality,
just as in rejection sampling. Since very often the joint posterior distribution
of the parameters in a Bayesian model is very complicated, and these posterior
distributions are known only up to unnormalised density functions. MCMC is an
important tool in Bayesian modelling.

Suppose we would like to generate samples of X whose probability density
function is f(X). In Markov chain simulation, we generate a sequence of random
quantities Xg, X1, Xo,---. At each time ¢, X; is generated from density function
P(X;|X:_1), which should converge to a unique stationary density function #(X)
as t goes to infinity, and the chain has been set up so that 7(X) is equal to f(X).
The transition kernel P(X;|X;—,) is constructed from a proposal density function

¢ and a candidate-acceptance probability a(X,Y) so that
P(X3| X-1) = g(Xel Xi-1) (X1, X3),
and they have to satisfy the detailed balance equation
7(Xe—1) P(X3| Xe—1) = 7(Xe) P(Xe-1] X2).

The methodology was first developed by Metropolis in 1953 [97], and was gener-
alised by Hastings in 1970 [79)].

Metropolis-Hastings Method

The Metropolis-Hastings method was proposed by Hastings. The original method

of Metropolis can be seen as a special case of Hastings’ method. Let

L, m)g(x]y)
X, ¥)= (l’w(X)g(YIX)> 1)

where 7 is the target density and g(-|-) has to be carefully chosen so that MCMC
is efficient, although theoretically it can have any form. To generate X;, we sam-

ple a candidate Y from g(-|X;-1). The candidate is accepted with probability
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a(X;_1,Y). Once Y is accepted, set X; =Y, otherwise, X; = X;_;. This assump-
tion satisfies the detailed balance equation (see Gilks, Richardson and Spielhal-

ter [73]). The algorithm is

Algorithm 4.2 Metropolis-Hastings Algorithm
Initialise Xg; set t = 0.
Repeat
Generate Y from g(-|X:),
Generate U from U(0,1),
IfU < a(X.,Y) set X4 =Y
otherwise set X1 = X;.

Increment t.

The Metropolis method was proposed by Metropolis before Hastings gener-
alised it as the Metropolis-Hastings algorithm. It imposes the condition g(X|Y) =
g9(Y]X). As a result, the candidate-acceptance probability (4.1) is simplified as

atty) = min (120,

and the algorithm 4.2 becomes the Metropolis algorithm.

4.3.2 Full Conditional Distribution and Gibbs Sampling

In the previous section we sampled X as a whole. When X is a long vec-
tor, it is rarely possible to sample efficiently or reliably in this way. Some-
times, it is more computationally efficient to divide X into several smaller com-
ponents or sub-vectors and update X component by component because it is
much easier to generate one small component given all the other components
than to generate the entire X. Suppose we divide X into A smaller compo-
nents X, Xs,..., X, so that X = (X;,Xs,...,Xp). There will be h steps in
each iteration. Denote the i*" component of X at the ¢! iteration as X;; and let
X = (Xerrn Xevr2, -y Xewtiot, Xejer, Xevz - -, Xen). At the ¢ step in the
(t + 1) iteration, Xi, Xo, ..., X;_; have been updated, while X;,1,..., X} have

not yet. Therefore, X;; and X i form the current set of X at this stage. A sample
’ ®)
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for X, is then generated with a distribution conditional on current values of all the
other components, which is X ([:]) Such a procedure is called the single-component
Metropolis Hastings algorithm in Gilks et al. [73].

To generate X; at the i*® step of the ¢*® iteration, a candidate Y; is sampled
from a proposal density function gi(Xt+1'i|Xt,i,X([§])), then Y; is accepted as new

X; with probability

W(K|X([:]))gi(Xt+1,z‘m, X([:]))
) )]

T(Xernal X0 0: Vil X, X[}

a(X([:]),Xt,i, Y) = min (1,
where 7(X;) is the target density function of X;. Let X0 = (X1,.. . Xiz1, Xiv1, Xp)-
The conditional density function 7(X;|X!) is called the full conditional density
function of X;.

Gibbs sampling is a special case of the single-component Metropolis-Hastings
method, whose proposal density function g;(¥;|X;, X1) is equal to 7(¥;|X), the
full conditional density function of X;. The acceptance probability « is always
1. A direct sampling method is then applied in order to sample from 7(¥;|X).

Gibbs sampling is efficient if it is easy to sample from the full conditional density

functions.

4.4 ARS and ARMS

The adaptive rejection sampling (ARS) scheme, proposed by Gilks and Wild [75],
and the adaptive rejection Metropolis sampling (ARMS) scheme, developed by
Gilks, Best and Tan [72] are designed to improve the speed of Gibbs sampling.
In Gibbs sampling, the full conditional density function for each component is
derived and samples are drawn from the full conditional density functions one
by one in each iteration. Frequently, it is necessary to use a rejection sampling
scheme to sample from a full conditional density function. The acceptance rate of
rejection sampling depends on the envelope function we choose. ARS is proposed
only for sampling from log-concave target density functions, while ARMS works

for general target densities. They have better acceptance rates for the candidate in

69



each iteration within Gibbs sampling than a standard rejection sampling scheme.
As a result, Gibbs sampling using ARS and ARMS may be more efficient than
Gibbs sampling using standard rejection sampling.

The ARS and ARMS schemes try to improve the efficiency of MCMC by
combining extra information from the target density function and the envelope or
proposal density function to create a new envelope or proposal-density function
each time a candidate sample is rejected. The updated envelope or proposal density
function provides a higher acceptance rate for the next candidate sample. The
envelope functions and proposal density functions are carefully designed so that
they are close to the target density function and can be updated systematically
after each rejection. Gilks and Wild [75] and Gilks, Best and Tan [72] choose
the envelope and proposal density functions so that the log envelope and the log
proposal density functions are piecewise linear and continuous, so a sample can be
easily drawn from them.

The ARS scheme is based on a rejection sampling scheme. In the ARS
scheme, an envelope function is generated automatically at the beginning. The
envelope function is updated after each time a candidate is rejected. A new can-
didate is then generated with the updated envelope function. The procedure is
repeated until one candidate is accepted. The ARMS scheme consists of two
stages: the first stage is the ARS algorithm, and the second stage is a one-step
Metropolis-Hastings algorithm. The ARS procedure is applied to generate and
update the proposal density function. A candidate is generated from the current
proposal density function at each iteration. If the candidate is rejected, then the
proposal density function is updated. Then a new candidate is generated from the
updated proposal density function. The procedure is repeated until one candidate
is accepted. Since the proposal density function is not an envelope function, the
accepted candidate is not simply the final sample we accept. The candidate ac-
cepted in the ARS stage is then judged by a one-step Metropolis-Hastings. The
candidate is accepted as an ARMS sample if it is accepted by the Metropolis-

Hastings step. Otherwise, the sample generated at the previous iteration is kept.
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Figure 4.1: Adaptive rejection function hs(z) of f(z) with Ss = {wo, ..., ws}

— hs(z)
—  logf(z)

Wy W1 W W3 Wy Ws We

The ARS scheme is design to sample from log-concave target density function,
while the ARMS scheme works for general cases. The ARMS algorithm proposed
by Gilks , Best and Tan [72] can automatically reduce to an ARS algorithm when
the target density function is log-concave.

Define the adaptive rejection function hy of f(z) as follows [72]:

1. Let Sk = {wo,wy, -, wk+1} denote the current set of abscissae in ascending
order, where wp and wg, are the possibly infinite lower and upper limits of

the sample space X.

2. For1 < i <j < klet L;j(z;Sk) denote the straight line through points
[wi,In f(w;)] and [w;,In f(w;)]. For other (¢, j), L; ; is not defined.

3. Define a piecewise linear function hi(z):

hi(z) = max(L; ;41(z; Sk), min{L;_1 :(z; Sk), Lit1,i+2(x; Se) }, (42)

w; < T < Wigl,

where min(a,b) = min(b,a) = max(a,b) = max(b,a) = a if b is undefined,

and hy depends on Sk.
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Figure 4.2: Adaptive rejection function he(z) of f(z) in figure 4.1, where wj is the
rejected value in step 3 of ARMS.
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4. If the sample space X is not bounded on the left, the abscissae have to be
chosen so that the gradient of L; o(z; Sk) is positive. If X is not bounded on

the right, the gradient of Li_1 x(z; Sk) is negative.

The adaptive rejection function hg(z) defined above is an envelope function
when f(z) is log-concave. When f(z) is not log-concave, it is considered as a pro-
posal density function. According to the definition, the function hi is much closer
to log f when k is larger, and if f is log-concave, exp hy is an envelope function of
f everywhere in X. An example is given in figure 4.1. The graph shows the hs(z)
of a non-log-concave function f(z) and log f(z) when S5 = {wq,w1,...,ws}. In
this case, exp hs(z) is a proposal density function instead of an envelope function
of f(z).

Consider an iteration of Gibbs sampling. Let (X, X>, ..., X,) be the com-
plete set of variables generated by the Gibbs sampler, and X; be the current
variable to be sampled from its full conditional density function f(z;) (simplified
notation of f(z;|z!)). Let X,., denote the current value of z at a given iteration

of the Gibbs sampler. The aim is to substitute for X.,, a new value X, from f.
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It is important that the starting abscissae is independent of X,,,.. Let

_exp hg(x)
9¢(z) = [ exp h:(z)dz'

The algorithm of ARMS is

Algorithm 4.3 ARMS
step 0, initialise k and Sg;
step 1, sample X from gi;
step 2, sample U from U(0,1);
step 8, if U > f(X)/ exp he(X) then {
ARS rejection step:
set Sg+1 = Sp U {X};
relabel points in Sy in ascending order;

increment k and go back to step 1;}

else {
ARS acceptance step:
set X4 = X;};

step 4, sample U from U(0,1);

f(XA) min{f(Xcur)v exp hk(Xcur)}
f(Xcur) min{f(XA), exp hk (XA)}

step &, if U > min |1, then {

Metropolis-Hastings rejection step:

set Xy = Xcu'r;}

else {
Metropolis-Hastings acceptance step:
set Xy = Xa;};

step 6, return X .

Continue the example in figure 4.1. Now a candidate X is generated in step
1 and is then rejected in step 3, X is then added into Ss to create Ss (w3 in figure
4.2 is the rejected X). The new adaptive rejection function is the hg(z) in figure

4.2. As one can see, hg(z) is closer to log f(z) than hs(z) to log f(z). ARMS is
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in fact not a pure Gibbs sampling scheme but a more complicated Markov chain.
ARMS is an application of the auxiliary variable method [14]. The proof that
ARMS within Gibbs sampling yields a stationary Markov chain with the desired

target distribution is given in [72].

4.5 Multiple Sequences MCMC and Convergence

Assessment

4.5.1 Multiple Sequences MCMC

In some cases, a single chain that has not been turned down by a convergence
evaluation has not in fact converged to its target distribution. An example where
this may happen is Gibbs sampling of a bivariate target distribution which has two
well-separated and high density peaks along the diagonal of the plane. Suppose
the two local maxima of the density function are at (Zmaez1, Ymaz1) for peak II; in
the 3™ quadrant and (Zmez2, Ymaz2) for the peak II, in the 1% quadrant, and the
initial point (zo, o) is located near (Zmaz1,Ymaz1). The 1% and the 3 quadrants
are areas with higher density and while the 2" and the 4" quadrants are areas
with lower density (see figure 4.3).

Before the sequence can travel to Il,, it has to travel towards either the
27 quadrant along the y-axis or the 4** quadrant along the x-axis. However, it is
less likely to generate samples along the x-axis or y-axis away from a position near
a local maximum. Figure 4.3 illustrates a possible sampling path from the initial
point (Zg, Yo) near (Tmaz1, Ymazr1) towards peak Il,. In order to get close to II;, the
Gibbs sampler needs to generate a lot of samples in the lower density area given its
previous sample in a comparatively higher density area. Thus, it is very difficult
for the sequence to travel from the initial point at II; to I, and vice versa. On
the other hand, it is possible for a Gibbs sampling sequence to travel only in peak
I1;. Consequently, the distribution estimated by these samples would often not be

the true bimodal target distribution, but a uni-modal distribution.
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Figure 4.3: The contour and a sampling path of Gibbs sampling for a bimodal
bivariate distribution with well-separated peaks.

low density area (Zmaz2\Ymas2)

low density area

In two dimensional cases, we may be able to judge whether the estimation is
right or not since we may already know the shape of the target density functions.
However, it is very difficult to judge whether the estimation is right in high di-
mensional cases, because it is very difficult to know the shape of the target density
function. In order to try to prevent this problem, Gelman and Rubin [67] suggested
running several chains with overdispersed starting points and detect whether all
chains converge to the sample target density function.

For multiple chain simulation, Gelman and Rubin [67] evaluated the conver-
gence by comparing the within-sequence variance and the overall variance. When
the ratio of these variances is far from one, the multiple sequences have not yet con-
verged to the same distribution. If the sequences do not converge to the same dis-
tribution further strategies have to be considered [73]. The method using the ratio

of the two variances is called the variance ratio method by Brooks and Roberts [11].
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When some of the parameters that we want to learn about are highly cor-
related, a single sequence may wander around the sample space with high auto-
correlation. Samples from such chains with finite iterations may approximate the
target distribution well but the convergence assessment for the finite single chain
fails. With multiple chains, one is able to detect whether the samples approximate

the target distribution well.

4.5.2 Convergence Assessment: Variance Ratio Methods

The original variance ratio method was introduced by Gelman and Rubin [67], and
later generalised by Brooks and Gelman [21]. For any scalar summary statistic 1,
which might be a function of several parameters, let 9;; denote the j** value of
1 in the i** chain. To implement these methods, a variance ratio is defined and
m > 2 (typically four or more) independent sequences of MCMC are run for 2n
iterations with n chosen so that the samples in the second half of the chains have
a variance ratio less than 1.2 (a criterion suggested by Gelman [64]). The first n

iterations are considered to be the burn-in period. Define

m 2n m
_ _n 2 _ 1 _ 1
B = — Z(wi_ —1.)°, where ;= -~ Z Vi, Y. = EZW
i=1 j=n+l i=1
1 m 1 2n
W = — 2 2= i — i)’
sti, where s; —1 (Pij — i)
=1 _7=n+1

where B/n is the variance between m sequences with means ;, and W is the
mean of the m within-sequence variances s2, which generally underestimates the
variance of o2 because the individual sequences have not had time to explore all

possible 1. 'Then, define
52 n—1

1
W+ —B,
n n
which overestimates o2, assuming the starting distribution of 1 is appropriately

overdispersed. Gelman and Rubin [67] define

= V d
VE = s



where V = 52 + B/(mn), d = 2V?/7ar(V) and

2 2
~ n-—1 1 m+1 2
@r(V) = —ar(s?) + B?

]

n m mn m—1

(m+1)(n—1)n

————(60v(s}, ¥i.%) — 20.60%(s5, i),

and where the estimated variance and covariances are obtained from the m sample
values of ; and s?. When n — oo, the variance ratio R should converge to 1 if
the sequence converges.

Variations of the original variance ratio by Gelman and Rubin have also

been suggested. Gelman [64] used the ‘estimated potential scale reduction’,

VR = \/7?—; (43)

where 1/2?; = 02/W is the variance ratio. Brooks and Gelman [21] suggested using

the potential scale reduction factor (PSRF)

5 (d+3)V

They also consider assessing more than one parameter simultaneously. Let
1 denote a vector of parameters. The estimate of the posterior variance-covariance

matrix of ¢ is

‘7=n—1W+(1+m) g’

n m
where
B 1 m 2n o Y
W = '————m(n — 1) ;tgl(wzt ¢z.)(¢zt wz)
and
B 1 —
Z = 3 - e - )

Let \; be the largest eigenvalue of the symmetric and positive definite matrix
W=1B/n. Then define the the multivariate PSRF or MPSRF as

-~ -1 1
szn +m+ AL
n m
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The above methods rely on the assumption of normality for ¢. Brooks and Gel-
man [21] suggested two empirical methods to avoid the assumption. Firstly, an
interval-based index ﬁimmal is introduced. From each individual chain, take the
empirical 100(1 — )% interval, i.e. the 1005% and the 100(1 — $)% points of the
n simulation draws as the within-sequence interval length estimates. Then calcu-
late the empirical 100(1 — )% interval of total samples, to gain.a total-sequence

interval length estimate. The interval-based index is defined as

length of total-sequence interval

Rinterval = mean length of the within-sequence intervals’

(4.5)

The other empirical method suggested by Brooks and Gelman [21] makes
use of the empirical estimate of the central s** ordered moments. The index is

defined as

2
ﬁ _ m7:—1 Z;n=1 t:n+1 |¢jt - 'wls

s 2 ’
m(nl—l) ZT:I t:'n,+1 |"/)jt - ¢'j.|"

for any s.

4.6 Sampling Plan

Due to the dimension and the complexity of the posterior distribution, our sam-
pling scheme is based on the Gibbs sampler. In section 4.4, we introduced the
ARMS algorithm, which is more efficient for generating a sample from a distribu-
tion with an arbitrary shape than generating a sample using the ordinary rejection
sampler. There is no need to choose proper proposal distributions or envelope
functions because the ARMS automatically builds them after assigning the initial
abscissae set. Hybridisation of ARMS and Gibbs sampler can be easily applied
to any model. The other methods (see section 4.7.1 for improving sampling effi-
ciency) are much more difficult to set up and there is even a doubt whether they
can really increase the efficiency for high dimensional cases.

The ARMS has in fact been implemented in the latest version of BUGS
(MRC Biostatistics Unit, Cambridge, version 0.6) and WinBUGS package (MRC
Biostatistics Unit, Cambridge ,version 1.3) [117] [116] as a strategy to improve the
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sampling efficiency. ‘BUGS’ stands for Bayesian Inference Using Gibbs Sampling,
which is a computer software for the Bayesian analysis of complex statistical models
using MCMC methods. The classical BUGS is a command-line language, while
WinBUGS uses a graphical interface. One of the restrictions of the latest BUGS
and WinBUGs package is that it is still not possible to place any structure on
a covariance matrix given an inverse Wishart distribution in the packages. As
a result, we cannot use these packages for our hierarchical model. Our MCMC
sampler is implemented in MATLAB (The MathWorks, Inc. Version 5.3, 1999),
which is a high-performance language for technical computing, especially matrix
manipulation.

Multiple-chain MCMC sampling is also suggested for use here because it
provides an easy way to assess convergence. It also provides a more reliable detec-
tion of whether the joint distribution of several parameters is multimodal, while
a diagnostic method using single-chain MCMC may only converge to a unimodal
distribution when there are several modes. Besides, when the correlation between
parameters is high, it is possible for a single-chain MCMC to have a time series
plot which looks like a multimodal one because the sequence may circle around a
small area then move away. The multiple-chain MCMC approach can also help to
judge whether this is a multimodal case or not. If it is only due to correlation,
different chains are less likely to circle around at the same area.

All parameters are divided into several components. The full conditional
density function of each component is required for generating samples. Generally
each component is univariate, but not necessarily. For example, when several
parameters’ joint conditional distribution is a standard multivariate or matrix-
variate distribution, they can be generated as a whole. The uniform and normal
random generators which are required in our examples are built-in functions in
MATLAB [122]. Random numbers from the inverse-gamma distribution can be
obtained by transforming random numbers generated from a gamma distribution
(see section 2.5.1). For the random gamma generator we use Best’s rejection

algorithm (see Devroye [49]). Random numbers from all the other distributions
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are generated using the ARMS sampler.

Due to the complexity of the joint posterior models, some investigation
of the posterior distribution needs to be done before running the main MCMC
simulation, in order to locate the high density area and select the appropriate
initial abscissae set for a model. When the dimension for the model is very low,
one can plot the joint distribution or the conditional distributions in order to get
an idea of the shape and the location of the high density area in the parameter
space. When there are a lot of parameters, it is simply impossible to get any idea
of the joint distribution by plotting the conditional distributions. In order to make
efficient simulation, the initial abscissae should span the high density area of the
distribution of the parameter that we want to generate from so that the initial
rejection function has a shape that captures that general shape of the density
function. If the initial rejection function is too flat, more rejections will happen in
each iteration.

To select good initial abscissae sets for all parameters, we start a short run
of MCMC simulation with wider spread abscissae sets. From the histograms of
generated samples we find a rough location for the high-density area. Then we
narrow down the range of our abscissae sets and start another run of MCMC. If
the abscissae sets are still too widely spread, we narrow the range of the abscissae
sets again, until the abscissae sets only spread over the high density area. The

main simulation can then start.

4.7 Other Approaches

4.7.1 Improving efficiency

In this chapter we have focused on ARMS as a method for improving sampling
efficiency. The sampling strategy we employ in this thesis for analysing our ex-
amples is to use multiple chains of ARMS within Gibbs sampling. The dimension
of the problems in our examples, especially the hierarchical regression analysis is

very high so that it is very difficult to construct an efficient MCMC sampler with
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other strategies.

There are many strategies in the literature for improving the convergence
speed. Choosing a good proposal density is just the first step. When the correla-
tion between parameters of interest is high, the sampling procedure takes a long
time to converge. Two ways of improving this situation are reparameterisation and
the blocking of parameters. By proper reparameterisation, one may obtain new
parameters with lower correlation. The best-known example is the reparameteri-
sation of the regression coefficient of the linear regression model. More examples
are given in Gilks et al. [73]. Sampling highly correlated parameters in a block
may also remove the effect of correlation (see Gilks et al. [73]). However, there is
a serious danger of expending a large amount of computing time in each iteration,
since it is generally more difficult to sample a vector than to sample a scalar [110].
Random direction methods, such as the hit-and-run algorithm by Schmeiser and
Chen [112] or the adaptive direction sampling by Gilks et al. [74] are also strate-
gies for sampling highly correlated parameters. In Gibbs sampling, samples always
move along the tracks parallel to the coordinate axes. This property causes slow
convergence when Gibbs sampling is used for highly correlated parameters. Ran-
dom direction methods allow each move to happen in any possible direction. For
multimodal target density functions, the random direction methods may also work
well.

Methods for improving sampling efficiency based on importance sampling [65]
have been designed. Samples are drawn from a new target density function, which
is a modification of the original target density function, then the importance sam-
pling is applied to estimate the expectation of the random quantities we want to
learn about. One useful modification for Gibbs sampling is to create another peak
in the original target density function as a stepping stone so that the sample can
jump to another peak more easily via the new peak[73]. See figure 4.4. Another
frequently used modification is to flatten the original target density function f in
order to allow a chain to travel from one peak to another peak more easily. The

most common method is to take f* = fY7 as the new (un-normalised) target
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density function in MCMC, where T is called temperature.

Geyer [70] proposed running m parallel MCMC chains with different tar-
get density functions {f}, f3,---}, where f = f. For example, the f’’s may be
modified f’s with different temperatures. Sampling starts from the chain of f;. A
sample is taken from the current chain at the current iteration, then an attempt
is made to move to another chain using a Metropolis-Hastings -step to generate
the next sample. At the end, only samples from the chain of f; are kept as the
final samples. The method is called Metropolis-Coupled MCMC. A similar idea
is simulated tempering or simulated annealing [71], which runs only one chain
instead of m chains, but within the chain, the target density function switches,
according to a Metropolis-Hastings step for the index of f*. One problem in sim-
ulated tempering is that it requires the normalised constant of each target density
function, which is rarely known analytically in Bayesian modelling. Therefore, the
normalised constants have to be estimated.

Besag and Green [14] suggested that using auxiliary variables may increase
the sampling efficiency in some cases. One example of using auxiliary variables
is ARMS. This method adds extra variables into the model without affecting the
target density function but the simulation is easier and more efficient with aux-
iliary variables than without them. More examples of using auxiliary variables
are described in [73]. There are many more techniques for improving sampling

efficiency, but it is impossible to describe every method in limited space.

4.7.2 Convergence Assessment

One important practical issue in the area of MCMC is how many iterations we
need to get a good approximation for our posterior model. The MCMC estimation
is based on the assumption that the samples generated after some burn-in period
converge to the target distribution and can approximate the stationary distribution
of the Markov chains well. If the convergence rate of an Markov sequence can be
calculated analytically or approximately, one may know how many iterations are

sufficient to reach the stationary distribution. However, convergence rates are
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extremely difficult to calculate or estimate in practice, and it is even impossible
to prove such rates exist [22]. Therefore, methods for convergence diagnostics
that do not require knowing the convergence rate are very important in MCMC
applications. Many techniques have been developed in order to assess whether
MCMC chains have converged after a given number of iterations. However, these
methods cannot guarantee the convergence of the Markov chains.

The variance-ratio approach introduced in section 4.5.2 is one example,
which requires running several independent chains. Yu and Mykland’s cusum
method [130] is another method but is entirely different from the variance-ratio
approach. The cusum method is a graphical based method that requires only a sin-
gle Markov sequence. One judges a sequence by monitoring the cusum plot of the
sequence. A “hairy” cusum plot indicates that the sequence converges well. Such
judgement is subjective. Geweke {69] proposed another single sequence method
which yields rather more objective judgement. It compares two sub-sequences in a
MCMC sequence with a test statistic. If the testing is rejected, we conclude that
the sequence has not converged yet.

Those methods introduced in the previous paragraph require only the out-
put of the simulation to make convergence diagnostics. There are some methods
that require more information from the Markov chains. For example, Liu, Liu
and Rubin’s L? [92] convergence diagnostic method further requires the transition
kernel of the sampler. These methods are much more computationally expensive.
Another property of Liu, Liu and Rubin’s method is that it is only designed for
the Gibbs sampler. Another example for the methods designed only for certain
sampler is Mykland’s et al. [98] approach, which needs the regenerative simula-
tion. The methods introduced in the previous paragraph are some examples of the
methods that apply to general MCMC samplers.

There have been so many methods in the literature that we do not intend to
introduce them in details. Comprehensive reviews of many methods can be found
in Brooks and Roberts [22], Cowles and Carlin [36] and Mengersen et al. [96].
MCMC sequences approved by these methods are not guaranteed that they ac-
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tually converge to the right target distribution after the burn in period. Several
methods can be used together in order to make the decision more correctly. Green
and Murdoch [77] suggests that exact sampling should be the ultimate objective
of Bayesian computation. However, using non-exact simulation is still a more real-
istic approach currently. As a result, convergence diagnostics is still an important

topic in MCMC simulation.
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Chapter 5

Modelling a High Dimensional

Covariance Matrix

5.1 Introduction

Suppose the random vector X = (X1, Xs,...,X,) follows a multivariate normal
distribution with mean zero and unknown covariance matrix X. A prior distri-
bution is assigned to £ under a Bayesian framework. When p is large and the
number of observations is small, the prior distribution for the covariance matrix
has a great effect on the posterior model. Since there is not much information
in the data, correct prior information is desired. Very often, prior knowledge for
¥ is either limited or difficult to formalise. In a conjugate analysis, we suppose
Y~ IW(4;®), where § > 0 and ® > 0 are given. However, we may not know what
are the proper values for the hyperparameters 6 and ®, or these hyperparameters
should not be fixed constants at all. As a result, we assign diffuse priors to the hy-
perparameters to indicate our prior ignorance. When p is small, one may consider
every entry in the upper triangle of ® as an individual hyperparameter and assign
to each hyperparameter a prior distribution. However, when p is large, the number
of hyperparameters is then so large that Bayesian modelling is very complicated.
Instead, we consider the case when ® has a structure with few hyperparameters.

Since (6 — 2)E(X) = ®, the structure of ® should be consistent with our belief of
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the structure of ¥. Structuring ® instead of ¥ implies the belief that the structure
for ¥ is not deterministic and the posterior covariance structure will be adjusted
by the data.

Properties such as homoscedasticity, independence and exchangeability for
variables can be assumed so that the number of parameters can be greatly re-
duced. These assumptions sometimes cohere with our belief in a model, while in
some cases they are made to reduce the computational complexity. Homoscedas-
ticity, independence and exchangeability represent different structural properties
of ¥. When variables are homoscedastic, the variances of all the variables are the
same; when variables are independent, ¥ is a diagonal matrix; when variables are
exchangeable, variances of all variables are the same and all the entries off the
diagonal in ¥ are the same. Under these properties, a model may be specified
using the least possible number of parameters. We consider cases with slightly
more complicated structures for the covariance matrix of the variables. We follow
Brown’s [23] suggestion of using a coherent structural covariance matrix.

Consider the model for the NIR applications in our examples. The NIR
spectra of wheat samples are smooth random functions. The real process that
generates NIR spectra of wheat samples is unknown, but empirically the measure-
ments at different wavelengths are highly correlated, and the covariance function
of the process should be continuous. Practically, setting ¥ = kI in a prior model
leads to a posterior model which predicts reasonable well. Although ARMA-type
correlation structures have been suggested, only an AR(1)-type structure has been
used in practice [24]. We further apply an AR(2)-type correlation structure for
which the correlation decays more slowly than an AR(1) process.

In this chapter, we first introduce the definition of a random function that
we use to describe the NIR spectra. Then we build up the model step by step.
Structural coherence will be briefly introduced. Some algebraic properties of the
AR(1) and the AR(2) autocorrelation functions are presented. This model frame-
work will be used for the NIR spectra throughout this thesis. By assigning strong

hyper priors to the hyperparameters, we simulate some spectra from the models
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with different covariance structures. We then compare the graphs of the spectra
generated by the models, their sample covariance matrices and sample correlation

matrices with those of the natural NIR spectra.

5.2 Random Function

Since the NIR absorption or reflection of samples can be detected at any wavelength
within the NIR band, it would be appropriate to describe an NIR. spectrum as a
continuous-time random function. However, an instrument can only record NIR
absorption or reflection on a discrete set of wavelengths. A discrete NIR spectrum
recorded by an instrument may be thought of as a sub-sequence of a continuous-
time random function.

For any arbitrary set T C R, £ is called a random function on T if £ =
{&(t)|Vt € T, £(t) is a random variable}. Suppose S is a countable subspace of T,
where S = {t1,t,,...,t,}, and n can be infinity, then &g = {£(t1),£(t2), ..., &(tn)}
is a random function on S, and is a subset of £&. Define the distribution function

for the random function as

th,tz,,__,tu(xl,ZL'Q, ceey CL‘n) = P(é'(tl) < .’El,f(tz) < Toy.nny f(tn) < CL‘n), (51)

which is the joint distribution function of £(¢;),£€(t2), - - .,€(ts). The distribution
function of the random function satisfies two conditions (Yaglom [128]): firstly,
the distribution function is the same under any permutation for the indices of ¢,

and secondly,
El,tz,---,tm,tm+1,---,tn (.’131, L2y o3 Tm; 00, ..y OO) = Ftl,tz,---,tm,(zh L2y .- ’xm)

for any t,41,...,t, if m < n.

The random function &5 on S is equally spaced if
S= {tjltj = tO +.7h).7 € Z)n 2 .7 2 1}

In our examples, NIR spectra are recorded at equally spaced wavelengths. There-

fore, we can consider these spectra as equally spaced random functions.
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Let X(g = (X1, Xa,...,X,) be a random vector from a sample space X C
R? with a distribution function F(Xi, X,,...,X,). We can re-define X, as a
random function on Ty, where T(yy = {t1,t2,...,t;}. That is, there exists a

one-to-one mapping between T{4) and the indices of X .

5.3 Normal Model

We consider a three-level hierarchical model. Let X = (X1, Xs,...,X,) be a
Gaussian random function. For the first stage, suppose X(4) follows a multivariate
normal distribution with covariance matrix ¥ (¢ x ¢) and we assume the mean
is zero since we would like to focus on the inference for . We require ¥ to be
strictly positive-definite (denoted as ¥ > 0) so that X4 always exists on the g-
dimensional sample space. A conventional choice for the proper prior distribution
for ¥ is an inverse-Wishart distribution with a shape parameter § > 0 (1 x 1) and
scale matrix ® > 0 (¢ x ¢). This is a conjugate prior distribution for the normally
distributed X(4). For the third level, we denote the prior density function for ¢ as
7(®). We denote the model for X4 as

X ~ N(1,%),
L~ IW(6; ),

(5.2)

with prior density function 7 (®) for ®.

Suppose we observe independent 1 by g samples z;(q), Ta(q), - - - » Tn(q) for X(g)
and let z = (xi(q),xg(q),...,:z::z(q))‘, which is an n by ¢ matrix. Denote the 7j
entry of = as z;;. The likelihood function for the model is L(X) = p(z|Z), where
p(X|X) is the density function of X given ¥, and the prior density function of X
is 7(2|®). The posterior density of ¥ conditional on & is then

_ L(®)x(Z|®)
p(Zlz, @) = s L(Z, 2)r(Z]®)ds

o L(Z)r(Z]®),
thus, it can be easily shown that ¥|z,® ~ IW(é + n;zz + @). This density

function only exists on the g-dimensional space when z‘z + ® is positive definite.
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The joint posterior density of ¥ and @ is

L) (Z|2)7(2)

p(Z,®lz) =

J5.6 L(E)T (S| @) (@)dTd®
o L(Z)m(Z[®)7(®)
N i exp[—%trZ_l(xtz+<I>)]7r(<I>), (5.3)

and the marginal posterior densities of ¥ and ® are

p(Sl) = L p(E, Blz)dd

< / |<I>|Hg_1 IZI_H%}M exp[—-;—trZ'l(a:tx + ®)|r(®)d®, (5.4)
®

pels) = [ o= Blo)i

. f |(I)]6+q
T
|9 ()
d+q+n-1 +n— (5-5)
ux+®|

§+2g+n
2

= |5)- exp[—%trE‘l(xtrL‘ + 3)jr(@)ds

respectively.

The posterior distributions of ¥ and ® and the predictive distribution of the
future observation will usually be very complicated under the above model assump-
tion given arbitrary 7(®). When ® has an improper prior density 7(®) o |®|~*/2,
the marginal distribution of ¥ is ZW(n + k — 2g; z*z), the marginal posterior den-
sity of ® is a matrix-F distribution F(6+2q—k,n—2g+k; z*z), and the predictive
distribution for a future value X; is T(k +n — 2¢;1,2%z). These distribtions are
well-defined only if 2¢ — n < k < § + 2¢q and z'z > 0 is non-singular. When z'z is
singular, the marginal posterior density of ® does not exist on the ¢-dimensional
space but on a hyperplane in the ¢-dimensional space. Therefore, other forms of
prior for ® have to be used when z‘z is singular. A simpler case is when there
is a simple structure in ® (when @ is a matrix function of a small number of

parameters).
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5.4 Coherence

We consider two principles of coherence in Brown [23]. Firstly, suppose we have
g variables in our model. The number of variables ¢ can be altered by either
adding some variables or taking away some variables. The prior distribution in
the model with fewer variables should be the marginalised prior distribution of the
prior distribution of the model with more variables. The assumption of multivari-
ate normal sampling distribution and inverse-Wishart prior distribution for the
covariance matrix automatically satisfies this requirement (see also Lindley [90]).
For example, suppose Y5 ~ N(0,X(,) and Zg) ~ IW(4; ®(y), and Yy is a re-
finement (sub-vector) of Y{;). Then, the covariance matrix X, of Y{; would be
the sub-matrix of ¥(4) which corresponds to Y(,), and the prior distribution of ¥,
would be ZW(J; ®(5)), where the indices of ®,) in ®(,) are the same as the indices
of L) in Ly).

Secondly, the prior distribution for the smaller random vector should be
structurally generated by the same prior consideration that leads to the generation
of the prior of the parental vector of the smaller random vector. This principle
is called structural coherence. Suppose ¢ is odd and Y{g) = (¥1,Y3,...,Y,) is an
AR(1) process, which is an equally spaced random function. Then, the refinement
Y= (Y1,Y;,...,Y,) of Yy is also an AR(1) process, which is also equally spaced.
Any equally spaced refinement of Y, is an AR(1) process. However, suppose Y{,
is a MA(1) process, then Y[ will not be an MA(1) process. Any equally spaced
refinement of Y5 will not be an MA(1) process. Therefore, an AR(1) process is
structurally coherent while an MA(1) process is not.

In our examples, the NIR spectrum of a sample consists of 100 absorptions
measured at 100 equally spaced wavelengths. One may also obtain an NIR spec-
trum for the sample with another set of wavelengths. Since these spectra are in
fact sub-sequences of the same continuous-time random function with a continuous
covariance function, in assuming the prior model of the NIR spectra, we should

consider a structurally coherent prior belief for the model.
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5.5 Structural Covariance

Consider the model in section 5.3. Let ® = APA, where P > 0, A is a diagonal
matrix, every entry on the diagonal is greater than zero, and the diagonal of AA

is the same as the diagonal of ®. Thus, the diagonal of P is a vector with all

elements one. If & ~ TW(§; @),

A p 2
G—2F (-2}

so that P describes our belief about the correlation matrix, and the diagonal of

E(E) =

A/(6—2)%9 represents our belief about the standard deviation of X(,. To structure
®, let ® be a matrix function of vector x, whose number of elements is much smaller
than q(q + 1)/2. Assume ® = ®(k), P = P(x) and A = A(x), although P and A
may not have common parameters. We focus on the assumption for P and assume
a simple structure for A.

The simplest assumption for the expected covariance of X, is to assume
® = o21,, where P is a ¢ by ¢ identity matrix, and A is a diagonal matrix with all
elements on its diagonal equal to o. It uses only one parameter ¢. The implication
of the assumption is that X;, X, ... X, are expected to be mutually independent

and homoscedastic. An intraclass form is also a simple structure, having
® = o*(1 — 7)1, + o*vJ,,

where J, is a ¢ by ¢ matrix with all entries one, and 0 < v < 1 so that A = o],
and P is a matrix with all diagonal elements equal to 1 and other entries +.
This structure corresponds to the assumption that the explanatory variables are -
expected to be exchangeable. Another class of structures for Q. is suggested
in Brown [23]. It considers that (X, Xs,...X,) are equally spaced sub-sampled
from a weak stationary continuous parameter Gaussian process. One member of

the sub-class in Brown’s suggestion involves the correlation function

p(h) = exp(—alh|®),

where 0 < k < 2. When k& = 1, this implies a continuous AR(1) process. An-

other structure we will use is the autocorrelation function of an AR(2) process.
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These autoregressive-type structures satisfy the structural coherence principle. For
continuous-time ARMA (s,t)-type structure, we require s > t in order that the pro-
cess is stationary. More types of well-defined correlation functions are available
in the literature of spatial statistics. Several frequently used correlation func-
tions are introduced in Chilés and Delfiner(1999) {33]. For example, the triangle
model, where p(h) = 1 — h/a if h < a and 0 if A > a; the Gaussian model,
where p(h) = exp(—h?/a?) for a > 0; and the general Cauchy model, where
p(h) = (1 + h?*/a®)=@ for a, a > 0.

5.6 AR(1) and AR(2) Correlation Functions

The correlation function of the p*® order autoregressive process has a general form:

P
p(h) = bl
=1

The advantage of the AR-type correlation functions is that the analytical inverse
matrices and determinant of their corresponding correlation matrices can be pre-
sented as simple functions. These help improve the accuracy and speed of numeri-
cal calculation. In this section, we focus on the correlation functions of AR(1) and
AR(2) processes due to their simplicity. Consider the normal model (5.2) with
® = APA as in section 5.5 .

The correlation function of the first order autoregressive model is
p(h) =7"1>7>0. (5.6)

Therefore, the P matrix in section 5.5 with an AR(1) correlation structure is

[ T
1 T T2 791
T 1 T 792
P= ,
791 o2 o1
- -

when 7 is zero, P is an identity matrix, which means the X;’s are independent.
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The inverse of P is

- .
1 -7 0 0
-7 1+7%2 -7 0 0
P 1 0 -7 147 —1 0
1—172
0 0 -7 1472 -7
i 0 0 0 -7 1 |
The determinant of P is
IPl= (1 -7

The correlation function of the 2™ order autoregressive process is

p(h) = by + boys3,

where
by (1 - pd)m
(1 — p) (1 + papia)’
by = -~ (1~ pdpe

(1 — p2) (1 + paag)’

P with AR(2) autocorrelation structure is

_ _ ~ L
1 bypy + bopio blpl,% + bglu.% ee blﬂg ! + bgug !
by + bapig 1 b + oy ... bipdT +bppd (5.7)
i bll,bg—l + bz,ug_l bl/l(]],—2 -+ bg,u,g—2 ces cee 1 ]

For the convenience of manipulation, we reparameterize y; and u, as
$1 = 1+ 2,
2 = —pipa.

Under the asymptotic stationarity condition for an AR(2) process (see Box et

al. [17]), we must have

“1<¢a<l, ¢ot+¢d1<1, $2—¢ <1, (5.8)
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and then (5.7) is non-singular for arbitrary ¢. In order for y; and p, to be real,
we need ¢? +4¢, > 0 (see Box et al. [17]). For complex solution for y; and p,, we
require ¢? + 4¢, < 0.

The two parameters y; and p» are

_ ¢1 + /92 + 462
2 b

1

_ ¢1-\/¢%+4¢2.

B 2
We may rewrite y; and p, in the complex form

pr = Dexp(i2nfy), w2 = Dexp(—i2nfy), (5.9)

where D = y/—¢,. In the case with complex u; and u,, the AR(2) autocorrection
function is a damped sine wave with frequency f, and dampling factor D. (Box
et al. [17]). When D is smaller, the autocorrelation function decays to zero faster.
When D is greater, the autocorrelation function decays to zero slower.

When p > 5, P~! = UtU, with U an upper triangular matrix

(1 -4 —¢2 0 0 |
0 1 —¢1 —¢ O 0
. 0 0
U= 2= ,
0 1 —¢1 —¢2
0 0 0 k J
_0 0 0 ) |

where k% = 1 — @3, kj = —¢16s — 1, I’ =1~ ¢3 — j°, and m = 1 - ¢1p1 — dop2,

where py = by + bopiz and p = byp? + bopid.
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The inverse of P can be expressed as

B ¢, 0 0]
-1 14061  dida— ) 0 e 0
—¢2 12— 1+¢1+¢3 ¢i1d2— ¢ —¢2 0
110 —¢2 b2 — 1 1+ ¢7+¢3
m : e . : :
0 —¢2 rd2— 1 1+ P2+ 05 drda— b —oo
0 e 0 —¢2 b2 -1 1+67 —¢
Lo 0 — s ¢ 1
and
1P| = i

(1 + 62)2[(1 — 42)2 — &3]

In practice, NIR spectra are considered to be differentiable. First and sec-
ond derivatives of the NIR spectra are frequently used. Since the first derivative
of p(0) for a continuous AR(1) does not exist, it can be shown that a continuous
AR(1) process is not stochastically differentiable. For a continuous AR(2) pro-
cess, the first derivative of the spectra exists, but is nowhere continuous, i.e. the
274 derivative of a continuous AR(2) process does not exist (see Priestley [104]).
However, we do not attempt to pursue a much more appropriate theoretical model

for the NIR spectra in this thesis.

5.7 Example

In this section, we display spectra generated from several prior models for our
second example in chapter 3. We consider models for original spectra and the
2" derivative spectra (figure 3.4 and 3.5). We regard the mean of the spectra
as known and denote a 1 by ¢ mean-corrected spectrum as X = (Xi, Xo,...Xy),
which we model as an equally spaced Gaussian random function on wavelengths
T = (t1,ta,...,t5). Therefore, X ~ N(1,%), the ¢ by g covariance matrix ¥ ~
IW(4; ®) and P45, = APA, where A is a ¢ by ¢ diagonal matrix and the diagonal
of the g by ¢ matrix P is the same as the diagonal of ®. The five models in table
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Model Data type Structure of P
M.a original spectra identity matrix
M.b original spectra AR(1) correlation matrix
M.c original spectra AR(2) correlation matrix
M.d | 2nd derivative spectra identity matrix
M.e | 2nd derivative spectra | AR(2) correlation matrix

Table 5.1: Five combinations of data and structural correlation matrix

5.1 are based on whether data are original spectra or the 274 derivative spectra and
on different structures for P. The AR(1) structure has not been considered for the
27 derivative spectra because the sample correlation matrix of the 27 derivative
spectra in our example (see figure 5.4 (a.3)) is very different from any AR(1)
correlation matrix with an autocorrelation function (5.6).

Let (A, Az, ..., Ag) be the diagonal of A, then A\2/(6§ — 2) is the prior mean
of the variance of X, in X. Figure 5.1(a) shows the sample standard deviation of

X, at wavelength ¢,, and figure 5.1(b) indicates that

log [(sample standard deviation of X,)/+/|sample mean of XL|]
is approximately a linear function of the index of variables ¢. Therefore, we assume
A= V|| exp(ag + bot), (5.10)

where p, is estimated by the sample mean of X,. In order to reduce the correlation

between parameters, (5.10) is reparameterised as

A = V/lw] expla + b(e — 1)), (5.11)

where 7 = ¢7' 5" «. The parameter a controls the average level of standard devi-
ation and b controls the average slope of the standard deviation as a function of
wavelengths. When b is fixed, the variance increases when a goes up.

Figure 5.2 shows that the curve of the sample standard deviation of the

27 derivative spectrum has similar pattern as the curve of \/ |sample mean spectral.

Although these two curves are not exactly the same, their peaks and valleys of the
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Figure 5.1: Sample standard deviation (S.D.) the NIR spectra in the first example
in chapter 3.4.2

curves are almost at the same positions. Therefore, we assume

X = |w|expa, (5.12)

for the 274 derivative spectra. That is, we assume that b is a constant 0 in equation
(5.10).

We sample some spectra from the five models in table 5.1 in order to see how
similar they are to the real NIR spectra. Due to the hierarchical structure of the
models, we can generate them in a simple way. Firstly, a set of hyperparameters is
drawn from the hyper prior distributions of the hyperparameters to form a scalar
matrix ® for the prior distribution of £. Given § = 3, a covariance matrix S is
generated from ZTW(3; 5) A spectrum is then drawn from N (1, f]) The hyper
priors we use will be specified later. According to our preliminary investigation,
the models are not sensitive to the shape of hyper priors, but very sensitivity to
the domains of the hyperparameters. Therefore, we use uniform distributions as
hyper priors for all the hyperparameters. We use MATLAB as a computing tool,
which provides random generators for the uniform[0,1] and the standard matrix
normal distribution. Random matrices from an inverse-Wishart distribution can

be generated easily when ¢ is an integer and is greater than 2 using the following
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Figure 5.2: Sample standard deviation and a multiple of [sample mean|®® of the
27d derivative spectra in the first example in chapter 3.5.2

distribution properties (see section 2.5)

X~ N, L) (v x p),
Vo= X'X ~ W(v; 1) (p x p),
V ~IW(5; 1), v=0+p—1,
= = AVA ~ TW(6; ®) (p x p),

where ® = AA! and A (p X p) can be a Cholesky factor of .

Since eqn (5.11) and eqn (5.12) are always non-negative, a can possibly
be any real number. According to figure 5.1 (b), log(A.,/ /) has an obvious
downward trend as ¢ increases. Therefore, b may possibly be any negative real
value. For AR(1) structure, 7 only need to be a value in [0, 1). For AR(2) structure,
#1 and ¢, have to satisfy the stationarily condition (5.8). For 7, ¢; and ¢, we use
uniform priors. We could assign a very diffuse normal prior for a and perhaps a very

diffuse gamma prior for —b. If we assign the above parameter spaces to our hyper
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Model | Hyperparameter | Parameter space and Constraint

M.a a,b a € [—2.2,-2.6]
b € [—0.00215, —0.00225]
M.b @b G €[-22, -2.6]

b € [-0.00215, —0.00225]
T € [0.99965,0.99975]
M.c a,b,¢, a € [-2.2,-2.6]

b € [-0.00215, —0.00225)
¢1 € [1.983,1.984]

¢2 = —¢1 + 0.999985
Md a a€l-7,-5
M.e a,b,¢1 a€|-7,-5
¢, € [1.96,1.98]

¢z = —¢3[4 cos(2m/50)%] 1

Table 5.2: Prior settings for the example in section 5.7

priors, the spectra generated from these models are widely spread. Therefore,
we restrict the ranges of these parameters to smaller parameter spaces so that
the generated spectra are close (subjéctively) to the real NIR spectra, and use flat
priors for them over these ranges. Table 5.2 shows the prior settings for the models
we draw spectral samples from. For M.c, a constraint between ¢, and ¢, has been
used in order to reduce the number of parameters. In order to get a spectrum
with high and slow-decaying autocorrelation, ¢, and ¢, have to be very close to the
stationarily condition boundary ¢; = —¢;+1. We found that the generated spectra
are acceptably close to the natural spectra (figure 5.3) when ¢, is around 1.984
and ¢, is around —0.984015, hence we choose the constraint ¢, = —¢; +0.999985.
For M.e, we again set up a constraint to eliminate a parameter. According to
the sample correlation matrix shown in figure 5.4 (a.3), an AR(2) autocorrelation
function with the pattern of a damped sine wave should be able to describe the
process, and there should be two periods between wavelength 850nm and 1048nm.
Therefore, we assign the frequency fp in the complex form of y; and uy to be 50,
i.e. we use 100nm (50 variables) as a period. Since the relationship between ¢y, ¢,
and fo is ¢ = —¢*[4 cos(27/f3)?] 7! (Box et al. [17]), we then have a constraint for
¢, and ¢, by fixing fo. Since the damping factor is v/—d@3, with different values
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for ¢, the autocorrelation function of the AR(2) process decays at different rates.

Figure 5.3 (a.1) shows 50 centred NIR spectra from wheat samples. Their
smoothness indicates the high correlation between variables. Figure 5.3 (a.3)
presents the 3-dimensional visualisation of the sample correlation matrix of the
spectra, which looks like a saddle. Figure 5.3 (a.2) and (a.3) show that the co-
variance and correlation matrix are smooth functions of wavelength as well. The
spectra generated by model M.a are shown in figure 5.3 (b.1). The identity struc-
ture of P causes each spectrum to be a white noise process. Figure 5.3 (b.2)
and(b.3) visualise the sample covariance and correlation matrix for the model.

In comparison with M.a, the shape of sample covariance and correlation
matrix of spectra generated by model M.b shown in figure 5.3 (c.2) and (c.3) are
closer to the covariance and correlation matrix of the real NIR spectra, although
they are not smooth enough. The samples are shown in figure 5.3 (c.1), and they
fluctuate a great deal. The spectra generated by the prior model M.c with the
AR(2) correlation structure for P are much smoother (see figure 5.3 (d.1)). The
smooth correlation matrix of M.c (figure 5.3 (d.3) does not have the shape of a
saddle, but its short term autocorrelation is much closer to that of the real NIR
spectra than M.a and M.b.

Figure 5.4 (a.1) shows the centred 2" derivative NIR spectra of the wheat
samples. Their sample covariance matrix and sample correlation matrix are shown
in figure 5.4 (a.2) and figure 5.4 (a.3). Since the structure of P in model M.d has
the same structure as P (identity matrix) in model M.a, we can expect that a
spectrum generated from M.d will be a white noise process as well. Graphs for
M.d are not shown. Curves generated from M.e are shown in figure 5.4(b.1). The
graph shows that the spectra have larger variation in several common sections,
which are connected to their neighbour sections with areas with much smaller
spectral variation. This special pattern of the variation of the spectra is in fact
associated with the function of standard deviation (5.12). The sample covariance
matrix and the sample correlation of M.e are shown in figure 5.4(b.2) and (b.3),

respectively.
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5.8 Remark

In this chapter, we consider AR(1) and AR(2) correlation functions as the matrix
functions for ® in the NIR example. We suppose natural NIR spectra are smooth.
The spectra are NIR absorptions at 100 equally spaced wavelengths and the dis-
tance between two successive wavelengths is 2nm. Under an g,ppropriate prior
belief for the hyperparameters, the prior models with AR(1) and AR(2) assump-
tions generate smooth spectra. For the AR(1) structure, the spectra are smoother
when 7 is close to 1. For the AR(2) structure, smooth spectra are produced when
the ¢; and ¢, are very close to a boundary (¢2 = —¢; + 1) of the parameter
space for a stationary AR(2) process. Justification for using AR(1) and AR(2)
correlation function is based on the macro pattern of the correlation matrix and
computational simplicity.

In section 5.7, we assume hyperparameters of the models are from proper
uniform distributions. According to our experience, the model is more sensitive to
the chosen ranges of the parameters rather than the shape of the prior distribu-
tions of hyperparameters over these ranges. This is because when the number of
variables is vary large, the marginal prior density function of the hyperparameters
is strongly denominated by the prior distribution of ¥ and the effect caused by
the hyper prior density functions is ignorable unless hyper prior density functions
we choose are highly concentrated.

Suppose we observe n samples of X, say z, which is an n by ¢ matrix, each
row representing an independent sample. If the rank of z‘z is less than g, then

z'z is not full rank. Suppose ®(k) is a ¢ by ¢ positive definite matrix,
Rank(z'z + ®(k)) < Rank(z'z) + Rank(®(k)).

The posterior density function for « is

|9(x)| 7 (x)

|ztz + <I>(fc)]6'+‘q'ﬁ;_n_1 '

In our models, x are different combinations of a, b, 7, ¢; and ¢, for different

models. For model M.b, Mc, and M.e, our prior settings for the values of 7 and ¢,
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that generate the smooth spectra are very close to the boundaries of the parameter
spaces (which for 7 is 1 and for ¢; and ¢, is ¢ = —¢; +1). When « reaches these
boundaries, the rank of ®(x) is dramatically reduced to one so that ztz + ®(k) is
no longer non-singular. The determinants of z*z + ®(«) and ®(k) converge to zero
as K goes toward these boundaries. By L’Hospital’s rule,

|(x)|*+ (k)

lim -
Ko |gtg 4 B(k)| T

= 00,

where w represents the boundary points, because the order of |<I>(/c)|5‘“;‘17r(m) is less

+q+n—1
2

than the order of |zfz + <I>(n)]6 . Therefore, the maximum of the posterior
density of k always happens at the boundary. The information from the data is not
enough to form a local maximum value near the boundary. Hence, we have to limit
our parameter spaces away from these boundaries or all our MCMC simulations
will be absorbed into them. The posterior inference may be sensitive to the chosen

space.
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Figure 5.3: Spectra, their covariance matrices and correlation matrices.
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Chapter 6

Bayesian Regression with Many

Variables

6.1 Introduction

When considering multiple regression modelling using a Bayesian approach, the
relative numbers of samples and variables does not present quite the same problem
as it does in the classical approach. In classical regression, the number of train-
ing samples has to be greater than the number of explanatory variables in order
that the sample covariance matrix of the explanatory variables is invertible and
consequently the maximum likelihood estimates and the least squares estimates
of the regression coefficients exist. Therefore, techniques for variable-selection or
regularised regression methods have to be considered for the classical approach in
order to reduce the number of variables. In a Bayesian framework, this constraint
does not exist. When the number of observations is much larger than the num-
ber of variables, improper non-informative prior distributions for the regression
coefficients in the controlled regression analysis or for the covariance matrix of
regressors in random regression are often chosen. Then the posterior means of the
regression coefficients are effectively the same as the classical solution. However,
when the number of variables is large, the use of improper priors frequently leads

to degenerate posterior distributions for the parameters of the regression model.
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The problem can be avoided by using proper prior density functions instead of
improper prior density functions. It is known that when the number of obser-
vations is small, the prior density functions are very informative and hence very
influential for the posterior results. Therefore, care has to be taken when selecting
prior density functions.

The approach to choosing prior density functions in this thesis follows the
idea in Brown [23] considering the problem of Bayesian regression with many vari-
ables (see chapter 5). He uses a natural conjugate prior for the normal regression
model and supposes there is a simple pattern in the covariance matrix of regression
coefficients or in the expected covariance matrix of the regressors. The structure
assumption for the covariance matrix or expected covariance matrix aims to limit
the number of parameters and keep the computational simplicity. Structural co-
herence is another principle Brown [23] suggested when considering refinements of
regressors (see section 5.5). Implementation of similar idea can be found in Brown
et al. [28] [25], where the focus is on a methodology for variable selection. The
correlation structure used there is an identity matrix, which keeps the number of
parameters to a minimum and keeps the posterior density function relatively sim-
ple. In this thesis, we also consider covariance structures that provide better prior
information whilst still not making the posterior density function too complicated.

We consider random regression models where the number of regressors can
in principle be increased to infinity. We use an NIR calibration problem (the first
example in chapter 5) as an example. We regress the protein content of wheat
samples on the NIR spectra of wheat samples in our example. NIR absorption of
wheat samples has been measured at 100 wavelengths from 850nm to 1048nm with
2nm increments at each step, denoted as X0, Xagszs - - - » Xa10as» Where X, (1x1)
represents the absorption measured at wavelength w nm. These measurements are
used as regressors to predict the protein content. Absorption measurements can be
taken at any number of wavelengths within the NIR band. Hence, the NIR spectra
can be considered as continuous-time (continuous-wavelength) random function,

and {Xygso> Xeszs - - - » Xhoss | 1S then a discrete subset of the random function. A
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