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Abstract

In this thesis estimators for “fixed-effects” panel data sample selection models are 

discussed, mostly from a theoretical point of view but also from an applied one. 

Besides the general introduction and conclusions (chapters 1 and 6 , respectively) the 

thesis consists of four main chapters. In chapter 2 we are concerned about the finite 

sample performance of Wooldridge (1995) and Kyriazidou’s (1997) estimators. 

Chapter 3 introduces a new estimator. The estimation procedure is an extension of the 

familiar two-steps sample selection technique to the case where one correlated 

selection rule in two time periods generates the sample. Some non-parametric 

components are introduced. We investigate the finite sample performance for the 

estimators in chapters 2 and 3 through Monte Carlo simulation experiments. In 

chapter 4 we apply the estimators in the previous chapters to estimate the return to 

actual labour market experience for females, using a panel of twelve years. All these 

estimators rely on the assumption of strict exogeneity of regressors in the equation of 

interest, conditional on individual specific effects and the selection mechanism. This 

assumption is likely to be violated in many applications. For instance, life history 

variables are often measured with error in survey data sets, because they contain a 

retrospective component. We show how non-strict exogeneity and measurement error 

can be taken into account within the methods. In chapter 5 we propose two 

semiparametric estimators under the assumption that the selection function depends 

on the conditional means of some observable variables. The first is a “weighted



double pairwise difference estimator” because it is based in the comparison of 

individuals in time differences. The second is a “single pairwise difference estimator” 

because only differences over time for a given individual are required. We investigate 

the finite sample properties of these estimators by Monte Carlo experiments.
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Chapter 1 

Introduction

1.1 Panel Data and Sample Selection Models

In this thesis estimators for panel data sample selection models are discussed, mostly 

from a theoretical point of view but also from an applied one. The utilisation of panel 

data is commonly confronted with two problems, sample selectivity and unobserved 

heterogeneity, both of which give rise to specification bias. Sample selectivity arises 

in nonrandomly drawn samples, as a result of either self-selection by the individuals 

under investigation, or selection decisions made by data-analysts. As a consequence, 

in many problems of applied econometrics, the equation of interest is only defined for 

a subset of individuals from the overall population, while the parameters of interest 

are the parameters that refer to the whole population. Examples are the estimation of 

wage equations, or hours of work equations, where the dependent variable can only be 

measured when the individual participates in the labour market. Failure to account for 

sample selection is well known to lead to inconsistent estimation of the parameters of 

interest, as these are confounded with parameters that determine the probability of 

entry into the sample.

In contrast to sample selectivity, unobserved heterogeneity is a problem 

specific to panel data. Economic theory often suggests estimation equations that
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contain an individual specific effect, which is unobserved, but correlated with the 

model regressors. Examples are unobserved ability components in wage equations, 

correlated with wages and education (see Card (1994) for details), or the estimation of 

Frisch demand functions in the consumption and labour supply literature (see, for 

instance. Browning, Deaton, and Irish (1985), Blundell and MaCurdy (1999) and 

MaCurdy (1981)). If unobserved individual specific (and time constant) effects affect 

the outcome variable, and are correlated with the model regressors, simple regression 

analysis does not identify the parameters of interest. In this thesis, if the individual 

effects are considered as nuisance parameters or if they are explicitly allowed to 

depend on the explanatory variables in a given or fully unrestricted way, then we call 

the panel data model a “fixed-effects” model.

In many applications with panel data, both sample selectivity and unobserved 

heterogeneity problems occur simultaneously. In this thesis we consider the problem 

of estimating panel data sample selection models with a binary selection equation. 

Both the sample selection rule and the regression equation of interest contain 

permanent unobservable individual effects possibly correlated with the explanatory 

variables.

The general model, which summarises the models along all the chapters in this 

thesis, can be written as follows,

y„ =x^,P + a ,+ s „ \  i = t = \,...,T ,  (1.1)

d', = /(z „  (1.2)
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where x„ and are vectors of explanatory variables (which may have components in 

common), is an unknown parameter (column) vector, and are

unobserved disturbances, and and 77, are individual-specific effects presumably 

correlated with the explanatory variables in the model. The index function /( • )  in

(1.2) is a scalar “aggregator” function which can accommodate different structures. In 

particular, we allow either for a linear parametric form of this function or an 

unrestricted one. Whether or not observations for are available is denoted by the 

dummy variable . By following an estimation procedure that just uses the available

observations one is implicitly conditioning upon the outcome of the selection process, 

i.e., upon d.̂  = 1. The problem of selectivity bias arises from the fact that this 

conditioning may affect the unobserved determinants of jP/, •

For the estimators considered in this thesis the individual effects cr, and 77, 

are treated as nuisance parameters or, alternatively, they are explicitly allowed to 

depend on the explanatory variables in a given or fully unrestricted way. Furthermore, 

each estimator imposes different stochastic restrictions for the error terms in the 

model. In this thesis we are interested in the estimation of the regression coefficients 

P  in the model ( l . l ) - ( l- 2 ) above.
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1.2 Contribution of This Thesis and Overview

The contribution of this thesis is to develop, apply, and learn about estimators for 

panel data sample selection models. Besides the theoretical approach to the 

estimators and the results from Monte Carlo simulations, applications can clarify the 

use of the estimators in practice.

This thesis consists of four main chapters. In the following, each of these 

chapters is discussed only briefly since each chapter is accompanied by its own 

introduction and conclusions. The emphasis is on the objectives and the interrelation 

between these chapters. The last chapter, chapter 6 , provides a brief summary of the 

main results and conclusions from the various chapters.

In chapter 2, we examine Wooldridge (1995) and Kyriazidou’s (1997) 

estimators for "fixed-effects” panel data sample selection models. The specification 

of the function /(• )  in ( 1 .2 ) is / (^ „ )  = z ^ j  , where /  e is an unknown parameter 

(column) vector. For Kyriazidou’s (1997) estimator both cr, and 77, are treated as 

nuisance parameters. In Wooldridge (1995) they are explicitly allowed to depend on 

the leads and lags of the explanatory variables through a linear projection operator. 

Each estimation method relies on different stochastic restrictions for the error terms in 

the model. Particularly, Wooldridge’s (1995) estimator relies on conditional mean 

independence assumptions while the one of Kyriazidou (1997) on a conditional 

exchangeability assumption. In this chapter we are concerned about the finite sample 

performance of both methods when estimating p  under different settings. Although
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Wooldridge (1995) is focused on the simplest consistent estimator of p  in (1.1), a 

pooled OLS, we work with a more efficient minimum distance estimator. 

Furthermore, we characterise the asymptotic distribution for the minimum distance 

version of Wooldridge’s (1995) estimator. The finite sample properties of the 

estimators are investigated by Monte Carlo experiments.

Chapter 3 is identical to Rochina-Barrachina (1999). In this chapter we 

introduce a new estimator for panel data sample selection models with "fixed-effects”. 

The estimator relaxes some of the assumptions in the methods in chapter 2. 

Specifically, the estimator treats a , as a nuisance parameter allowed to depend on the 

explanatory variables in an arbitrary fashion, in contrast to Wooldridge (1995), and it 

also avoids the conditional exchangeability assumption in Kyriazidou (1997). The 

new estimator can be seen as complementary to those previously suggested, in the 

sense that it uses an alternative set o f identifying restrictions to overcome the selection 

problem. In particular, the estimator imposes that the joint distribution of the time 

differenced regression equation error and the two selection equation errors, 

conditional upon the entire vector of (strictly) exogenous variables, is normal. The 

estimation procedure is an extension of Heckman’s (1976, 1979) sample selection 

technique to the case where one correlated selection rule in two different time periods 

generates the sample. The idea of the estimator is to eliminate the individual effects 

from the equation of interest by taking time differences, and then to condition upon 

the outcome of the selection process being “one” (observed) in the two periods. This 

leads to two correction terms, the form of which depends upon the assumptions made 

about the selection process and the joint distribution o f the unobservables. We base
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our analysis on two periods. Consequently, we get estimates based on each two waves 

we can form with the whole length of the panel, and then we combine them using a 

minimum distance estimator.

We present two versions of the estimator depending on the treatment of the 

individual effects rj^. If 7 , is explicitly allowed to depend on the explanatory 

variables in a linear way (as in Wooldridge (1995)) we have a version of the estimator 

referred to as the “more parametric new estimator”. In this case, f(z■^ ) -  7 , in (1.2) is

assumed to be equal to - c , , where z, = (z,,,...,z,y), y, \  and c, is a 

random effect uncorrelated to the model regressors. However, if 77, is explicitly 

allowed to depend on the explanatory variables in a fully unrestricted way we call the 

estimator “less parametric new estimator”. Under this alternative approach, to allow 

for semiparametric individual effects in the selection equation, the conditional mean 

of 77. is treated as an unknown function of the whole time span of the explanatory 

variables. The finite sample properties of both versions of the estimator are compared 

to those of Wooldridge (1995) and Kyriazidou’s (1997) estimators by Monte Carlo 

experiments. In the Appendices of the chapter we provide formulae for the 

asymptotic variance of the new estimators.

The objective of chapter 4 is to learn about the performance of the methods in 

practice. Not many applications of these estimators exist in the literature. The first 

part of the chapter compares the three estimators in the previous chapters, points out 

the conditions under which each of them produces consistent estimates of p ,  and 

discusses problems of implementation. All these estimators rely on the assumption of
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Strict exogeneity of regressors in the equation of interest, conditional on individual 

specific effects and the selection mechanism. This assumption is likely to be violated 

in many applications. We show how non-strict exogeneity and measurement error can 

be taken into account within the estimation methods discussed. In the second part of 

the chapter, to learn about its performance we apply the estimators and their 

extensions to a typical problem in labour economics: The estimation of wage 

equations for female workers. The parameter we seek to identify is the effect of actual 

labour market experience on wages. Results for the participation equation for a 

selection of estimators are presented. The data for our empirical application is drawn 

from the German Socio-Economic Panel (GSOEP). The dataset used for estimation is 

based on the first 12 waves of the panel. The problems that arise in this application 

are non-random selection, and unobserved individual specific heterogeneity which 

might be correlated with the regressors. In addition, actual experience is 

predetermined, and the experience measure is likely to suffer from measurement error.

In chapter 5, estimation of the coefficients in a “double-index” selectivity bias 

model is considered under the assumption that the selection correction function 

depends only on the conditional means of some observable selection variables. We 

present two alternative methods. The first is referred to as a “weighted double 

pairwise difference estimator” (WDPDE) because of being based in the comparison of 

individuals in time differences. On the resulting model we apply a weighted least 

squares regression with decreasing weights to pairs o f individuals with larger 

differences in their “double index” variables, and then larger differences in the 

selection correction terms. We extend Ahn and Powell’s (1993) semiparametric
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estimator of cross-section censored selection models to “fixed-effects” panel data 

models. We call the second method a “single pairwise difference estimator” (SPDE) 

because only differences over time for a given individual are required. On the model 

in time differences we take out its conditional expectation on the selection variables 

(the “double index”). This generalisation of Robinson’s (1988) “partially linear” 

model to the case of panel data sample selection models with “fixed-effects” is 

estimated by least squares regression.

The estimators in this chapter have similar desirable properties as the estimator 

in chapter 3 (specially as the version called “less parametric new estimator”). They 

treat a , as a nuisance parameter (as in Kyriazidou (1997) and our estimator in chapter 

3) and rj, is explicitly allowed to depend on the explanatory variables in a fully 

unrestricted way (as chapter’s 3 estimator under its less parametric version). 

However, they are distributionally free estimators compared with our earlier estimator 

in chapter 3 and Wooldridge’s (1995) estimator. Furthermore, no conditional 

exchangeability assumption or parametric sample selection index in ( 1 .2 ) is required 

compared with Kyriazidou (1997). In fact, by explicitly replacing in the model in 

chapter 5 /(z „  ) -  77, in (1.2) with / ,  (z, ) -  c- we do not only allow for semiparametric

individual effects, presumably correlated with the explanatory variables, and/or for a 

lagged endogenous variable in the selection equation, but also for a semiparametric 

/ (z „ )  in (1.2). Although not explicitly there, the same implications hold for the “less

parametric new estimator” in chapter 3. We extend the WDPDE and the SPDE to 

allow for endogeneity o f some components of the regressors in the main equation.
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The finite sample properties of the estimators are investigated by Monte Carlo 

experiments, and we provide in the Appendices formulae for its asymptotic variance- 

covariance matrices.
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Chapter 2 

Finite Sample Performance of Two Estimators 

for Panel Data Sample Selection Models 

with Correlated Heterogeneity*

2.1 Introduction

The utilisation of panel data is commonly confronted with two problems, sample 

selectivity and unobserved heterogeneity, both of which give rise to specification bias. 

Sample selectivity arises in nonrandomly drawn samples, as a result of either self­

selection by the individuals under investigation, or selection decisions made by data- 

analysts. Failure to account for sample selection is well known to lead to inconsistent 

estimation of the behavioural parameters of interest, as these are confounded with 

parameters that determine the probability of entry into the sample. In contrast to 

sample selectivity, unobserved heterogeneity is a problem specific to panel data. 

These permanent individual characteristics are commonly unobservable. Failure to 

account for such individual-specific effects may result in biased estimates of the 

behavioural parameters of interest. If the individual effect is related to some of the 

regressors, then we call the panel model “fixed-effects” type model; otherwise, we call

* Earlier versions o f  this chapter were presented at the X X  Simposio de Anâlisis Econôm ico, December 1995, 
Barcelona, Spain; and at the ENTER M eeting, January 1996, Toulouse, France.
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it “random-effects” model. We consider the problem of estimating panel data models 

where both the (binary) sample selection rule and the relationship of interest contain 

unobservable individual-specific effects allowed to be correlated with the observable 

variables.

There are some estimators for panel data sample selection models that treat the 

individual effects in the selection equation as “random effects” uncorrelated with the 

observable variables (see, for instance, Verbeek (1990)). The estimator proposed by 

Zabel (1992) offers an alternative estimator that alleviates this problem by specifying 

the individual effects in the selection equation as a function of the means of time 

varying variables. These estimators share the reliance on distributional assumptions, 

the inability to incorporate serial dependence and time heteroskedasticity due to the 

time-varying errors, and the estimation of the models by maximum likelihood. Given 

the computational demands of estimating by maximum likelihood, induced by the 

requirement to evaluate multiple integrals, it is important to consider available two- 

step procedures. In particular, we are interested in two-step methods, for a “fixed- 

effects” type panel data sample selection model, which are semiparametric, in the

sense that the model does not need to be fully specified, and relax some of the

assumptions in the previous work on this area.

Fully parametric approaches to correct for selectivity bias in panel data faces

the same problem that appears with cross-section data. One potential drawback to the 

application of these techniques is their sensitivity to the assumed parametric 

distribution of the unobservable error terms in the model. This chapter reviews 2 two- 

step “fixed effects” type estimators (with a varying degree of parametric assumptions)
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for the panel data sample selection model. We focus on the recently developed 

methods by Wooldridge (1995) and Kyriazidou (1997), which extend the work in 

Nijman and Verbeek (1992), and Zabel (1992). Kyriazidou’s (1997) estimator is less 

parametric as it does not restrict the functional form of the expectations of the 

individual effects conditional on the explanatory variables, but, on the other hand, 

Wooldridge’s (1995) estimator does not impose the conditional exchangeability 

assumption characteristic in the work of Kyriazidou (1997). As the estimator of 

Kyriazidou (1997) imposes as few assumptions as possible on the shape of the 

distributions it is therefore likely to be hampered by larger standard errors. 

Wooldridge (1995) estimator relies on conditional mean independence assumptions 

while the one of Kyriazidou (1997) relies on a joint conditional exchangeability 

assumption for the errors in the model.

In this chapter we are concerned about the finite sample performance of 

Wooldridge (1995) and Kyriazidou’s (1997) methods when estimating the parameters 

of interest under different settings. As the methods have not made assumptions about 

the distribution of some unobservables in the model, the finite sample distribution of 

the parameters is unknown. Therefore their properties are based on asymptotic 

behaviour. Each method relies on assumptions under which large sample properties 

o f estimators are derived. In practice, we are not just interested in the choice of the 

method which asymptotically yields the most efficient and unbiased estimator but in 

the small sample properties o f the estimators. Results from Monte Carlo simulation 

experiments are presented.
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The chapter is organised as follows. Section 2 describes the model, the 

estimators and their asymptotic properties. Section 3 reports results of a small Monte 

Carlo simulation study of finite sample performance. Section 4 gives concluding 

remarks.

2.2 The Model and the Estimators

In this section, we examine Wooldridge (1995) and Kyriazidou’s (1997) estimators 

for “fixed-effects” type panel data sample selection models.

The model can be written as follows,

=x.^P + a,+£^^\ i = / = 1,...,T , (2 .1)

; d,  = \]dl > o], (2.2)

where, /? and y  e W  are unknown parameter (column-) vectors, and x-^,

are vectors of strictly exogenous explanatory variables with possible common 

elements, a,  and rĵ  are unobservable time-invariant individual-specific effects,

which are presumably correlated with the regressors. and are idiosyncratic 

errors not necessarily independent of each other. Whether or not observations for 

are available is denoted by the dummy variable .
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2.2.1 Wooldridge’s Estimator

The method developed by Wooldridge (1995) does not impose any distributional 

assumption on the individual effects and the idiosyncratic errors in the equation of 

interest. In this sense the estimator is semiparametric given that the model does not 

need to be fully specified. However, it imposes a marginal normality on the random 

component o f the individual effects and the idiosyncratic error in the selection 

equation. Furthermore, it assumes a conditional mean independence on the equation 

of interest and it parameterizes some conditional means as linear projections. For 

instance, the individual effects in both equations are allowed to be correlated with the 

observable variables through these linear projections. Additionally, the conditional 

mean of the idiosyncratic error in the main equation on the random error term in the 

selection equation also follows a linear projection functional form.

Technically, Wooldridge’s (1995) estimator does not require exclusion 

restrictions. However, in this chapter, we consider the variables in the main equation 

to be a subset of the variables in the sample selection rule.

In what follows, we formally state the assumptions that guarantee consistency 

and asymptotic normality of the estimator:

ASSUMPTION 1: = 0 , r = 1,...,T , y) and

z, = (z,,,...,z^y-). This is an assumption of strict exogeneity o f the explanatory 

variables with respect to conditional on the individual effect.
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ASSUMPTION 2: For all t , (a) E{rj\z^^ is equal to a linear function of z. ; (b)

the random error term in the selection equation 77, -  E (r j \z^ -u ^ ,  = c, -u^^ =-Vn  

follows a normal (0 ,C7  ̂j and it is independent of z ,. Under conditions (a) and (b) we 

get the reduced form selection rule = l{/,Q + z ,,/,, +...+z.y,x,r ~ U/ -  •

ASSUMPTION 3: For the main equation, (a) „ |x, ,z ,, r , , ) = E[s , \ v ^̂ ) = v ,,.

The first equality represents the mean independence of g,, from the observable 

explanatory variables given v„, or the strict exogeneity of these variables for 

given v„ . The second equality is just a linearity assumption for the conditional mean; 

(b) E{a^ 1%,,z ,, V.,) = x , ^ y / j .  + , which means that the regression

function of a , on x. and is linear. Notice that v,, is included in the conditioning 

set and in the linear projection.

Under assumptions 1 to 3, we can write (2.1) as

T,7 = (2-3)

where and the new error term g,, has conditional expectation

E{e î 1%, ,z ,, = 0 . With a first step binary choice selection equation we cannot get

estimates of the residuals v„ and then we need the ,z ,, = l), which is

obtained by integrating
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^{y., \Xi,Zi, K, ) = + X , / ?  + i ,  F, , (2.4)

over v„ +z,iX „+...+z,r/,y .,toget

£(T,|x,.,z,,t/,, = l) = x,,^^^,+...+x,7.^j- +x,,/? + ^ ,A (//,/c7 ,), (2.5)

where ,^+...+z^jy,j = z^y, is the reduced form index in the selection

equation for period t and /cr,) = |x, ,z,,<i„ = l]. We assume

e {v\  ̂= a] = \.  To get estimates for , a probit is estimated for each t. For the

second step, Wooldridge (1995) pointed out that two procedures are feasible. Either a 

pooled OLS procedure or minimum distance estimation consistently estimate (5. 

Although Wooldridge (1995) is focused on the simplest consistent estimator, the 

pooled OLS, we will focus here on the more efficient minimum distance estimator. 

We will present the estimator that relies on OLS for each t and then it uses a 

minimum distance step to impose cross equation restrictions.

Rewrite (2.5) as

£ (t,Jx ,,z ,,^ /, =  l )  =  x,,(^,+...+x,_,^,_, +  X , ( ^  +  ^ ,  )  +  +...+x,^^^ +  J

= x,4F, +£,À(z,y,), (2 .6 )

where Y, = . By following the minimum distance

approach, for the subsample with = 1 , we do least squares regression of y,, on x,
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and ly, to get estimates of the reduced form parameters . Although

estimation of the reduced form parameters requires just one wave, estimating p  

requires at least two waves.

Wave t provides an estimator J  for the parameter vector ; r , .

Define k  = and tt = . The cross equation restrictions to be

exploited by the minimum distance estimator are

7T = RQst'6 , (2.7)

where tt is the stacked vector of reduced form parameters for all the waves,

6 = \ P , with y/ = [ y , is the vector of structural parameters

we want to recover in the minimum distance step, and Re 5 / is the matrix of 

restrictions that relates the reduced form parameters to the structural ones. 

Subtracting k  from both sides of (2.7) and multiplying by -1 we get

k - n  =  k - R Q S t ' 6  (2.8)

The minimum distance estimator is obtained by minimising

{k -R Q St- e )  W-' [k  -  Re 5 / • 6) (2.9)
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with respect to 0,  where PF is a positive definite matrix. The optimal choice of W 

corresponds to the variance F (^  -  R e5 / • ^ ) , equal to -  k ) according to (2.8). To

get a consistent estimate W for the matrix W we need to get the influence function 

for n^. Recall (2.6) and define and . The

sample moment condition for in the second step of the estimation

procedure is

j  Z  4  {y.. (2,10)

the first order condition of a two stage extremum estimator with finite dimensional 

first stage parameters. Observe that'

4 n { 9 .- / , ) = " 'I\ - >  (2.11)

where 1̂  is the probit information matrix for y , .  

The so called delta method yields^

' The notation denotes convergence in probability.
 ̂ Look at the section for two-stage extremum estimators with finite dimensional first-stage nuisance 

parameters in Lee (1996).
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4 N ( k , - K , ) = ^  . (2.12)

where

A, = - l ,E \ d , \ ~ [ z y ,)■ X{ z y , ) - À ^ [ z y ’ (2-13)

and the expression in [•] is the partial derivative of X (zy , ) with respect to (zy , ) . 

The term A, A,, is the effect of the first stage on the second. It is clear from (2.12)

that the influence function for is S„. Define S, and

S = -, then W = e {ô ô ^In . The T positive definite block-on-

diagonal matrices in W are equal to e [ ô j N , f o x  t  = \ , . . .T , respectively. These

matrices are the corresponding variance-covariance matrices of the reduced form 

parameters for each wave of the panel. The T (T -1 )/2  distinct block-off-diagonal

matrices in W are equal to e {ô ^ô \ ^ IN  , for the distinct combinations of panel waves

we can get with a panel of length T and being r ^  s . These matrices are the 

variance-covariance matrices between the reduced form parameter estimates in two 

different waves. Estimates for all these matrices are obtained by replacing the 

parameters with their estimates and the expectations involved by their sample 

analogous. For instance, the estimate of the inverse of the probit information matrix 

in (2.11) is given by
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= J - L y  ' )  z z (2.14)

With an estimate of W at hand we can provide the closed form solution to the 

minimisation problem in (2.9);

= (R e ^ / 'F - 'R e r f ) ' {RestW~'M), A \0 , (R e^ /'lR ''R e rf) J ,

(2.15)

where the last term is the asymptotic distribution for the minimum distance estimator 

of Wooldridge’s (1995) panel data sample selection model. The results for the 

alternative pooled OLS procedure are provided in Wooldridge’s (1995) paper.

2.2.2 Kyriazidou’s Estimator

The method developed by Kyriazidou (1997) does not impose any distributional 

assumption on the individual effects and the idiosyncratic errors in both equations in 

the model. The estimator is semiparametric. In contrast to Wooldridge’s (1995) it is 

a distributionally free method that allows for individual heteroskedasticity of 

unknown form and it avoids the need to parameterize the functional form of any 

conditional mean. The price is in terms of being computationally more demanding 

than Wooldridge’s (1995) estimator, with a convergence rate slower than VVV , and a
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ioint-conditional exchangeability assumption which involves all the idiosyncratic 

errors in the model.

Technically, Kyriazidou’s (1997) estimator requires an exclusion restriction, 

which implies that at least one of the variables in the selection equation, , is not 

contained in the main equation regressors, x ^̂ . As in Kyriazidous’s (1997) analysis, 

we present the estimator based on a panel with two time periods. The method can be 

generalised to cover the case of a longer panel.

In what follows, we state the main assumptions under which the estimator is 

derived:

ASSUMPTION 1: (^,,, f , w,,, )  and are identically distributed

conditional on the vector of (observed and unobserved) explanatory variables 

{x^ ,̂ , z , cr •, 77,^.

The joint conditional exchangeability assumption implies stationary marginal 

distributions for the time varying errors in the model.

ASSUMPTION 2: Each period sample selection effect is a sufficiently smooth

function of the indices z - j ,  and the joint conditional distribution of the errors. 

This smoothness condition ensures that once Assumption 1 holds, z„y = z, .̂/ implies 

that the selection terms are the same in the two time periods and they cancel each 

other by time differencing the main equation in the model. Differencing between
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periods s and t will entirely remove, at the same time, the time constant individual 

effect.

Under assumptions 1 and 2, an OLS estimator applied to

y I, -  y„ = {̂ 1, -  (2-16)

for individuals satisfying d■̂ = = \ ,s  ^  t and is consistent. The

resulting error = (é-„ -  J  -  2.^ ) ,  where and are the selection terms 

for periods t and s , respectively, has a conditional expectation that satisfies 

, rj, , = l) = 0. For each time period the selection terms

are

L  = £(«■„ . z„. , « ,, 7,, W/, ^ z„ 7 + n ,w„ ^ z,.,/ + % )

4, =E(£-,,|Ar„,x„,z,,,z,,,a,,7,,«i, Ẑ/,r + 'z) (2-17)

The estimation procedure has several steps. The estimator requires that there 

are individuals with z ^ j  = z ^ j  with probability one, which is rare in a given sample. 

To implement the estimator, Kyriazidou (1997) constructs kernel weights, which are a 

declining function of the distance |z„;^-z^^7 | ,  and estimates time differenced
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equations by weighted OLS^. For a fixed sample size, observations with less 

selectivity bias are given more weight, while asymptotically, only those observations 

with zero bias are used. Thus, in the first step, the unknown coefficients of the 

selection equation are estimated by the smoothed conditional maximum score 

estimator (SCMSE) considered in an earlier version of Kyriazidou s (1997) paper 

(Kyriazidou (1994)) and also in Charlier et al. (1995). This estimator is a mixture of 

the panel version of the maximum score estimator of Manski (1975, 1985), proposed 

by Manski (1987), and of the smoothed maximum score estimator of Horowitz (1992) 

for cross-section data.

The SCMSE is obtained by maximising the following expression conditional

on

•L (2.18)

where cr^ is a sequence of strictly positive real numbers satisfying = 0 ,

l{} is an indicator function and L is a continuous function, analogous to a cumulative 

distribution function but it also might take on values larger than one or lower than 

zero and it need not be increasing. Two examples of functions L{) satisfying the 

requirements for this smoothing function (see, for instance, Horowitz (1992) or

 ̂ The estimator is arbitrarily close to root n-consistency depending on the degree o f  smoothness one is 
willing to assume for the kernel function.
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Charlier et al. (1995)) are L ji )  = O(-), where 0  is the cumulative standard normal 

distribution function, and

L a ( v )  — 0.5 +
r io5 
I 64

z / v < - l  

i f  - 1  < V < 1 

z / v > l

(2.19)

is the integral of a fourth order kernel for nonparametric density estimation 

(Müller, 1984). In the Monte Carlo experiments we will restrict our attention to

4 ( ) .

The parameters y are identified up to scale, under the normalisation | / J  = 1, 

with being a nonzero coefficient of an absolute continuous element of the vector

The asymptotic distribution of the SCMSE is given by

/?, + !
(2.20)

where (7?, +1) is the order of the kernel associated to the function l (  ) We can see 

from (2.20) that the fastest possible rate of convergence in distribution for y  is

For an integer q , let K{u)du . Then, the order {R + l) o f  the kernel Â (-) is

defined as the first nonzero moment: = 0, q = ^  0. Positive kernels can be at

most o f  order 2 (R =l).
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R, + \

N  , slower than N  ^ . A sufficient condition to obtain this optimal rate of

1
convergence is or^ = with 0 < i9 < oo. Based on the asymptotic resultN)

of (2.20) the asymptotic optimal value for i9 , in the sense of minimising the Mean

♦ trace\C~^QC~^ d ]
Square Error (MSE)= E[{r -  x)' Q (r -  r ) ] . is ■9 = . + \ '\A 'C-'nC  U  ’

Q is any nonstochastic, positive semidefmite matrix such that A' C ”'Q C “'^  ^ 0 .  By 

choosing /?, large enough the rate of convergence can be made arbitrarily close to

-1 /f,+i
N  ^ . From (2.20) the bias corrected estimator is y = y + j • C~' A .

Finally, to make the results useful in applications, it is necessary to estimate 

consistently the matrices A, D and C . The structure of the asymptotic covariance 

matrix is similar to that of an extremum estimator. Let y be a consistent smoothed

conditional maximum score estimator based on cr^ = («9/ j[2(«,+i)+i] Yot |y J  = 1,
. Nj  

define

(y;(T) = [2 l { 4 - 4  = . (221)

where  ̂ excludes the A -element from the vector ^z„-z„  ) .  Let

"  f , where 0<<^, <1.  Then
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(2 .22)

where —  is the first order derivation of the objective function in (2.18) with

respect to evaluated at ^

^  = D-, (2.23)
 ̂  ̂ / =  !

(2.24)
4 7 '

where -----— —— is the second order derivation of the objective function in (2.18)
4 r '

with respect to evaluated at (y,<j^).

For a complete revision of the assumptions and regularity conditions that 

guarantee consistency and asymptotic normality of the SCMSE see Manski (1987), 

Horowitz (1992), Kyriazidou (1994) and Charlier et al. (1995).

For the second step, the weighted OLS estimator is given by

Note that —     ^  0 ,  even though  r  =  0  by the first order condition o f the
ây ày

optimisation problem in (2.18), because G g  converges to 0 more slowly than .
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1 ^
(̂ .v - % K 4 .N

A _ 1 f  . / y /  \ . . (2.25)

V

where AT(-) is a “kernel density” function and is a sequence of band widths which 

tends to zero as oo.

In order to derive the asymptotic properties of the estimator y&, Kyriazidou 

(1997) makes, among others, the following additional assumption:

ASSUMPTION 3: = c - N ~^ , where 0 < c < oo, and \ - 2 p  < ju < p j 2 , where p  is

the rate of convergence of the first step estimator y .

Under the whole set of assumptions and if c with 0 < c < oo

the asymptotic distribution of the estimator is^

- /? ) = "  (2.26)

For a complete revision including all the regularity conditions see Kyriazidou’s (1997) paper.



CHAPTER 2. FINITE SAMPLE PERFORMANCE OF TWO ESTIMATORS 3 6

It is shown by Kyriazidou (1997) that the asymptotic distribution of p  

coincides with the asymptotic distribution of the unfeasible estimator which uses the 

true Y in the kernel weights. Then, asymptotically, the first step estimator does not 

affect the asymptotic distribution of the second step estimator. The key for this result 

to hold is that from _ ^-V2^ - i /2+/y/2 rate of convergence of P  is

^ - i /2+///2  ̂ (t^an N ~^, since \ - 2 p  < ju by Assumption 3. The maximal rate of

convergence in distribution o f p  is achieved by setting ju as small as possible, that is 

fj. -  1/[2(T?2 + 1) + 1]. A bias-corrected estimator, with respect to the estimator in 

(2.26), is obtained by following Bierens (1987):

; B - N  Â
P -  ' (2-27)

1 _ jV

where 0 < ^ 2  <1 and the estimators P  and have the associated band widths 

Cyy = c • and respectively. The asymptotic

distribution of p  is

(2.28)
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The bias-corrected estimator preserves the maximal rate of convergence which 

can be arbitrarily close to depending on Rj and provided that y  is estimated

faster than p ,  that \s p >  [Rj + 1) /[2 ( /?2  + !) + !].

In Kyriazidou (1997) it is proposed to choose c so as to minimise the 

asymptotic MSE of the estimator based on the asymptotic result of (2.26):

MSE = E = trace YE ( p - p j p - p )
(2.29)

- I

for any nonstochastic positive semidefmite matrix Y that satisfies 

r  ^  0. Thus, the MSE is minimised by setting

c = c = (2.30)
XÀ )

Finally, to make the results useful in applications, it is necessary to estimate

consistently the matrices and E w . Define

a -  ) = (T/, -  y  is ) -  (̂ /v -  îs )P • Then

EXX ^XX ) (2.31)
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^  ;=1

= ^N,Ŝ  ’T7 S  ^  ^  (̂ /V (̂ ,7 -'^is)^il^is ^xZ • (2.33)
/ = 1 ^N,S2 \  y

An extension of the method to cover the case of a longer panel is briefly 

mentioned in Kyriazidou (1997). The estimator is of the form

/^ = T 7  X  ^ — 7  X  ^
i= \ i ,  1 s< t  

1 1 ^

T 7 X  T —7 X  (̂ ,7 -  )  ( t , 7  -  y,s Yit ̂ isA y_, 1: — 1

(2.34)

/ =  1 ^ s< t

for all 5 ,/ = 1,...,7^, where 7̂  denotes the number of waves for the individual i . 

However, an easier way to generalise the estimator to the case of more than two time 

periods is as follows: given some estimates for the selection equation^, the main 

equation can be estimated using (2.25) for each two waves in the panel, and then a 

minimum distance estimator can be used to combine all the estimates. The asymptotic 

distribution of the minimum distance estimator for the Kyriazidou’s (1997) panel data 

model with more than two time periods is derived by Charlier et al. (1997). A 

consistent estimate for the weighting matrix for the minimum distance is required. 

The r ( r - l ) / 2  positive definite block-on-diagonal matrices of this matrix are the

’ Obtained, for instance, as in Charlier et al. (1995), where it can be found an extension to a longer 
panel o f  the SCMSE in Kyriazidou (1994).
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corresponding variance-covariance matrices for each different pair of waves in the 

panel. The (t ( T -  l)/4)|^(r(r - 1)/2] -  ij distinct block-off-diagonal matrices are the

variance-covariance matrices between the Kyriazidou’s (1997) estimators based on 

two different pairs of panel waves. These block-off-diagonal matrices converge to 

zero due to the fact that the bandwidth tends to zero as N  . The proof can be 

found in Charlier et al. (1997). The minimum distance estimator is therefore a 

weighted average of the estimators for each pair (c^), t s , with weights given by 

the inverse of the corresponding variance-covariance matrix estimate.

2.3 Monte Carlo Experiments

In this section we report the results of a small simulation study to illustrate the finite- 

sample performance of the estimators under different settings. Each Monte Carlo 

experiment is concerned with estimating the scalar parameter p  in the model

y ,  =x^,p+a,  4-g,.,; / = 1,...,A^; t = \,2,
* r ♦ 1 (3.1)

d„ = Zi«r 1 + Z2«r 2 + n, -  ^ oj.

where is only observed if = 1. The true value of , and is 1. For the 

baseline Monte Carlo design z,,, and Z;,, follow a N(0,1); is equal to the variable 

Zji, (we have imposed one exclusion restriction); otherwise stated something different
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the individual effects are generated as = (z,,, + ) / 2 + (z^,, + Z2,2 ) / 2 + c, -  1 and

a, = (x,| + x,2 ) / 2 + V2  • A (̂0,1) +1, where c, -  0.6 • #(0,1) is a random effect^; the 

idiosyncratic errors are as follows: ~ 0.8 • #(0,1), = c, -  u■̂ , and

£̂  ̂ = 0.8 • #(0,1) + 0.6 • 1/,,. For all the experiments the errors in the main equation are 

generated as a linear function of the errors in the selection equation, which guarantees 

the existence of non-random selection into the sample. The generated data in the basic 

Monte Carlo design are compatible with the assumptions in both methods.

The results with 100 replications and sample sizes equal to 250, 500, 1000, 

2000, 4000, 8000 and 14000 are presented in Tables 1 to 5. All tables report the 

estimated mean bias for the estimators, the small sample standard errors (SE), and the 

standard errors predicted by the asymptotic theory (ASE). As not all the moments of 

the estimators may exist in finite samples some measures based on quantiles, as the 

median bias, and the median absolute deviation (MAD) are also reported.

Table 1 presents the finite sample properties of the two estimators under our 

basic Monte Carlo design. The estimates will be consistent since all of the 

assumptions in the methods hold. Going from top to bottom of Table 1, Table 1A 

reports the results for Kyriazidou’s (1997) bias corrected estimator (with 5-̂  -  0.9) 

using the true y  in the construction of the kernel weights. We use a second = 1 ),

® The individual effects design is driven by the fact that we want to keep both its linear correlation with respect to 
the explanatory variables, and a normality assumption for its random component. The reason is that W ooldridge’s 
(1995) estimator assumes normality for the random terms in the selection equation. This means that the difference 

between 7/, and its conditional mean is a random normal error. At the same time, W ooldridge’s (1995) estimator

is developed under the assumption o f  a linear correlation between the individual effects in the selection equation 
and the leads and lags o f  the explanatory variables. Furthermore, Wooldridge (1995) also imposes the linearity 
assumption for the individual effects in the main equation. It is also quite common to assume that there is a 
constant term in the individual effects.



TABLE 1: Basic Monte Carlo Design

Table lA
Kyriazidou’s Estimator: Real First Step Parameters

Rz=1 Ri=3 Rz=5
N Mean Median SE ASE MAD Mean Median SE ASE MAD Mean Median SE ASE MAD

Bias Bias Bias Bias Bias Bias
250 -0.0379 -0.0386 0.1270 0.1024 0.0842 -0.0511 -0.0475 0.1218 0.0997 0.0869 -0.0550 -0.0502 0.1211 0.1001 0.0876
500 -0.0293 -0.0295 0.0997 0.0770 0.0571 -0.0457 -0.0482 0.0883 0.0729 0.0568 -0.0501 -0.0505 0.0870 0.0725 0.0585
1000 -0.0368 -0.0391 0.0782 0.0590 0.0560 -0.0571 -0.0555 0.0798 0.0537 0.0572 -0.0629 -0.0613 0.0820 0.0527 0.0627
2000 -0.0228 -0.0247 0.0606 0.0437 0.0460 -0.0449 -0.0425 0.0634 0.0385 0.0453 -0.0514 -0.0538 0.0668 0.0374 0.0548
4000 -0.0195 -0.0212 0.0478 0.0328 0.0319 -0.0416 -0.0397 0.0531 0.0285 0.0408 -0.0499 -0.0492 0.0582 0.0273 0.0492
8000 -0.0079 -0.0083 0.0306 0.0251 0.0205 -0.0337 -0.0329 0.0403 0.0208 0.0329 -0.0452 -0.0454 0.0494 0.0195 0.0454
14000 -0.0133 -0.0139 0.0302 0.0198 0.0236 -0.0365 -0.0372 0.0412 0.0161 0.0372 -0.0476 -0.0470 0.0504 0.0149 0.0470

n
î

i
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Table IB
Kyriazidou’s Estimator: Estimated First Step Param eters 

R]—1, Ri~3
Wooldridge’s Estimator

N Mean Bias Median SE ASE MAD Mean Bias Median SE ASE MAD
Bias Bias

250 -0.0355 -0.0249 0.1431 0.1067 0.1032 -0.0104 -0.0165 0.1217 0.1275 0.0888
500 -0.0433 -0.0413 0.0945 0.0777 0.0653 0.0123 0.0022 0.0935 0.0897 0.0594
1000 -0.0168 -0.0138 0.0696 0.0583 0.0420 -0.0085 -0.0120 0.0619 0.0637 0.0405
2000 -0.0114 -0.0097 0.0638 0.0446 0.0494 0.0041 0.0007 0.0489 0.0451 0.0333
4000 -0.0127 -0.0098 0.0360 0.0331 0.0283 -0.0048 -0.0061 0.0289 0.0320 0.0210
8000 -0.0086 -0.0146 0.0390 0.0259 0.0297 -0.0007 -0.0004 0.0208 0.0225 0.0156
14000 -0.0034 -0.0083 0.0305 0.0205 0.0213 -0.0006 0.0004 0.0164 0.0170 0.0106
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a fourth {Rj = 3 )  and a sixth (R 2  = 5)  order bias-reducing kernel function^. The

bandwidth sequence is respectively. We

chose the initial c equal to 1. Then, we compute p  based on and construct

(Sj, defined in section 2 above. We use P  and (f,, to compute the

estimates of and as in (2.31), (2.32), and (2.33), respectively. Then we

estimate c* by c , using equation (2.30) with S ^ ,  and E^  ̂ replaced by their

consistent estimates. The asymptotic bias-corrected estimator is computed as in (2.27) 

using c as the constant in the definition of and . On the left-hand side of

Table IB we focus on the case of a second order bias-reducing kernel function and y

 ̂ We use high {Rj +1) order bias reducing kernels constructed following Bierens (1987). For 

z j  G 93 and [(./?2 +  l ) / 2 ]  >  1 let

p = \ (V2^)|a , |V M o )

where Q  is a positive definite matrix and the parameters 9^  and fJ.  ̂ are such that ^  =  1 and
p = \

(/?z + l)/2 _
= 0, for = l,2,...,[^(i?2 + 0 /^ ]  ~ We should specify Q = F, where V  is the

p=i

sample variance matrix; that is, V  =  ( \ l  |^(z „ -  z  -  Z j ^(z -, — z ] /  -  Z  with

-  'V
Z  =  ( 1/ R 2  +   ̂ =  2 ,4 ,6 , . . . ,  we get

2
p- r/ N , 1 q i/2 )[(z„ -z ,,)i> /c„ ]K -'[(z„ -z ,,)j> /c„ ]///

- z , J r A « J =  2 , ---------- -̂--------

For /?, = 1 we set ^, = //, = 1 ; for /?2 ~  ̂ we set 6  ̂ = 2, 6 2  = -1, //, = 1, and /J. 2  = V 2  ; 

for 7̂ 2 -  5 set 9^ = 3 ,  ^ 2  -  ~ 3 , 9 2  =  1, / / ,  = 1, JU2 = V 2 , and =  x/3 .
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is estimated by the SCMSE. The SCMSE is computed by maximising (2.18) with 

respect to given y, =1 by scale normalisation in all of the Monte Carlo 

replications^^. For L we use in (2.19), so i?, +1 = 4 and the optimal rate of

convergence for y  is , faster than the rate of convergence for p  The

results are those for 5  ̂ = 0.1. The bandwidth parameter for the SCMSE was

constructed as follows. Given i?,+1 = 4,  we chose cr^ = and

. We then compute the SCMSE y based on , and use y

and to compute À, D, and C by (2.22), (2.23), and (2.24), respectively. Then

we estimate i9* by 5 , where 3  is obtained from 3* in section 2 by replacing A, D, 

and C with A, D, and C . For Q the identity matrix was used. Table IB reports on 

the right-hand side the results for the minimum distance version of Wooldridge’s 

(1995) estimator.

From Table 1 we see that Wooldridge’s (1995) estimator is less biased than 

Kyriazidou’s (1997) estimator both with and without estimated first step parameters. 

Furthermore, Wooldridge’s (1995) estimator reaches its asymptotic behaviour faster

due to the fact that this estimator is V #  -consistent. Kyriazidou’s (1997) estimator is 

consistent at a rate slower than and for this reason behaves well for bigger

I thank Charles Manski and Scott Thompson for providing me with their computer program for 
maximum score estimation. Ekaterini Kyriazidou kindly provided a computer program o f Joel 
Horowitz for smoothed maximum score estimation. In this study we use an extension to panel data o f  
the latter program. Given that the smoothed conditional score function can have multiple extrema, the 
program uses a nonconvex optimisation technique. In particular, the simulated annealing algorithm o f  
Szu and Hartley (1987). The SCMSE is bias corrected.
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sample sizes. For this estimator the more satisfactory results are obtained with the 

normal kernel density function ( = 1 )•

In Table 2 we generate a misspecification problem for Wooldridge’s (1995) 

estimator. In Table 2A the linear projection functional form for the individual effects 

in the main equation has been violated. We have generated the true a , 's  by adding to 

our benchmark specification quadratic terms on the x 's  :

ccj = + Xj2) / 2 + + x̂ 2 j / 2 + -\/2 • A^O,l) +1 • (3.2)

Under this design Wooldridge’s (1995) estimator is clearly inconsistent and it suffers 

from a misspecification bias problem. The estimator behaves badly in terms of all the 

considered measures. In Table 2B we invalidate the linearity assumption for the 

individual effects in the selection equation by adding quadratic terms on the z's :

Vi ~ (^1/1 ^1/2 ) / 2 + (Zjij + ^2,2 ) / 2 + (z,y, + Z,,2 ) / 2 + (Z2,J + ^2/2 )  ̂2 + C- — 1. (3.3)

The inconsistency of the first step parameter estimates hardly influences the bias for 

the second step estimates. Experiments for Kyriazidou’s (1997) estimator are not 

included in Table 2 because this estimator is robust against any type of design for the 

individual effects in both equations. As the method is based in estimation with time 

differences its properties are independent of the particular shape of the individual 

effects.
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TABLE 2: Generating A Misspecification Problem For Wooldridge

Table 2 A

cĉ  = + Xj2 ) / 2 + + x̂ 2 j / 2 + V2 • A^O,l) + 1

N Mean Bias Median Bias SE ASE MAD

250 0.4336 0.4293 0.4662 0.1691 0.4293

500 0.4645 0.4637 0.4819 0.1212 0.4637

1000 0.4485 0.4426 0.4576 0.0865 0.4426

2000 0.4518 0.4550 0.4567 0.0610 0.4550

4000 0.4539 0.4528 0.4559 0.0434 0.4528

8000 0.4576 0.4610 0.4585 0.0307 0.4610

14000 0.4549 0.4572 0.4556 0.0231 0.4572

Table 2B

7, = (^1/1 + ^1/2 ) / 2 + (Z;,] + ^2/2 ) / 2 + (zf., + zf,2 ) / 2 + (Z;,, + Z2/2 ) / 2 + c,. -1

N Mean Bias Median Bias SE ASE MAD

250 0.0290 -0.0155 0.3151 0.3198 0.1647

500 0.0235 0.0431 0.2478 0.2257 0.1960

1000 0.0009 0.0101 0.1568 0.1584 0.II54

2000 -0.0060 -0.0122 0.1048 0.II39 0.0813

4000 -0.0015 -0.0027 0.0840 0.0799 0.0608

8000 0.0050 0.0093 0.0519 0.0564 0.0354

14000 0.0097 0.0081 0.0463 0.0426 0.0356
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In Table 3 we generate a predetermined variable which affects the set of 

explanatory variables in both equations in (3.1). We invalidate the strict exogeneity 

assumption underlying both methods. The predetermined variable = ^2/2 the 

new experiment has been generated as

= # (0 ,l )  + 0.5g„. (3.4)

We report the results for both estimators. Note that the results are very similar when 

Wooldridge’s (1995) estimator is used relative to the case where Kyriazidou’s (1997) 

estimator is applied. Both estimators show a strong negative bias, and huge SE and 

MAD very far from the ASE predicted by the asymptotic theory.

In Tables 4 and 5 we compare Wooldridge (1995) and Kyriazidou’s (1997) 

estimators when the conditional exchangeability assumption breaks down. 

Differently to the baseline design, for Table 4 we have:

~ 0.5 ' #(0,1); w,2 ~ 2 • #(0,1); 

c,=0.6-;V (0,l);

Kl — ~ ^i\ ’ K2 — “  /̂2 ’
f ,, = 0.8 • #(0,1) + 0.1 • v,i ; = 0.8 • #(0,1) + 0.9 •

For Table 5 we substitute g,, in (3.5) by = 0.8 • #(0,1) + 0.1 • f ,, -  5.

We allow for non-constant variances over time for the error terms and 

different degrees for the sample selection problem. The latter comes through different
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TABLE 3: Invalidating Strict Exogeneity 

Z2,2 = 77(0,1)+ 0.5^,,

Table 3A: Wooldridge’s Estimator

N Mean Bias Median Bias SE ASE MAD

250 -0.2287 -0.2323 0.2556 0.1138 0.2323

500 -0.2103 -0.2164 0.2289 0.0789 0.2164

1000 -0.2124 -0.2115 0.2197 0.0571 0.2115

2000 -0.2086 -0.2072 0.2129 0.0405 0.2072

4000 -0.2104 -0.2106 0.2130 0.0288 0.2106

8000 -0.2061 -0.2035 0.2071 0.0202 0.2035

14000 -0.2069 -0.2067 0.2076 0.0153 0.2067

Table 3B: Kyriazidou’s Estimator

N Mean Bias Median Bias SE ASE MAD

250 -0.2019 -0.2244 0.2450 0.0990 0.2285

500 -0.2168 -0.2191 0.2322 0.0723 0.2191

1000 -0.2050 -0.2197 0.2150 0.0542 0.2197

2000 -0.2026 -0.2012 0.2089 0.0411 0.2012

4000 -0.2087 -0.2095 0.2127 0.0309 0.2095

8000 -0.1992 -0.2012 0.2011 0.0232 0.2012

14000 -0.1900 -0.1928 0.1913 0.0192 0.1928



TABLE 4: Invalidating The Exchangeability Assumption In Kyriazidou

~ 0 .5 -A (0 ,l), ~2-A(0,1)
c, =0.6-A (0,l)

t'/, = -  «i,
= 0.8 ■ A(0,1) + 0.1 ■ V ,,, = 0.8 • A(0,1) + 0.9 •

Table 4 A
Kyriazidou’s Estimator: Real First Step Parameters

Rz=1 R2~3 Rz=5
N Mean Median SE ASE MAD Mean Median SE ASE MAD Mean Median SE ASE MAD

Bias Bias Bias Bias Bias Bias
250 -0.0540 -0.0819 0.2057 0.1587 0.1646 -0.0909 -0.0950 0.1984 0.1526 0.1489 -0.1010 -0.1004 0.1963 0.1526 0.1468
500 -0.0584 -0.0705 0.1621 0.1199 0.1158 -0.0979 -0.1047 0.1533 0.1118 0.1196 -0.1091 -0.1148 0.1569 0.1107 0.1231
1000 -0.0672 -0.0847 0.1450 0.0926 0.1078 -0.1133 -0.1188 0.1485 0.0839 0.1188 -0.1285 -0.1339 0.1549 0.0818 0.1339
2000 -0.0399 -0.0508 0.0983 0.0696 0.0781 -0.0917 -0.0949 0.1143 0.0598 0.0949 -0.1094 -0.1087 0.1261 0.0576 0.1087
4000 -0.0447 -0.0416 0.0875 0.0510 0.0574 -0.0888 -0.0906 0.1031 0.0436 0.0906 -0.1091 -0.1122 0.1180 0.0414 0.1122
8000 -0.0196 -0.0115 0.0530 0.0403 0.0378 -0.0727 -0.0713 0.0811 0.0322 0.0713 -0.0963 -0.0965 0.1009 0.0298 0.0965
14000 -0.0157 -0.0188 0.0461 0.0322 0.0325 -0.0661 -0.0640 0.0730 0.0253 0.0640 -0.0933 -0.0913 0.0971 0.0229 0.0913
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Table 4B
Kyriazidou’s Estimator: Estimated First Step Parameters

R^—1, Ri—3
Wooldridge’s Estimator

N Mean Bias Median
Bias

SE ASE MAD Mean Bias Median
Bias

SE ASE MAD

250 -0.0991 -0.1099 0.2636 0.1656 0.1553 -0.0113 -0.0160 0.1444 0.1575 0.0797
500 -0.0770 -0.0761 0.2179 0.1275 0.1180 0.0151 0.0026 0.1201 0.1108 0.0852
1000 -0.0387 -0.0657 0.1706 0.0926 0.0930 -0.0010 -0.0124 0.0802 0.0785 0.0598
2000 -0.0587 -0.0604 0.1076 0.0675 0.0788 0.0018 0.0033 0.0585 0.0557 0.0439
4000 -0.0227 -0.0205 0.0776 0.0537 0.0672 -0.0070 -0.0062 0.0348 0.0392 0.0219
8000 -0.0146 -0.0192 0.0566 0.0412 0.0454 -0.0023 -0.0055 0.0251 0.0276 0.0163
14000 -0.0156 -0.0135 0.0463 0.0328 0.0331 0.0026 -0.0013 0.0232 0.0209 0.0177

oo



TABLE 5: Invalidating The Exchangeability Assumption In Kyriazidou

~0.5-Af(0,I), ~2-A^(0,l)
c, =0.6A '(0,1)

K, =C/ - “y, 
= 0.8• AI(0,1) + 0.1 ■ v„ - 5 ,  e„ = 0.8• AI(0,1) + 0.9■

Table 5A
Kyriazidou’s Estimator: Real First Step Parameters

Rz=1 R]—3 Rz=5
N Mean Median SE ASE MAD Mean Median SE ASE MAD Mean Median SE ASE MAD

Bias Bias Bias Bias Bias Bias
250 -0.0503 -0.0482 0.1986 0.1610 0.1234 -0.0983 -0.0934 0.1857 0.1534 0.1192 -0.1113 -0.1083 0.1868 0.1528 0.1237
500 -0.0666 -0.0866 0.1713 0.1221 0.1393 -0.1109 -0.1217 0.1702 0.1133 0.1344 -0.1214 -0.1373 0.1730 0.1123 0.1460
1000 -0.0511 -0.0672 0.1198 0.0911 0.0824 -0.0995 -0.0976 0.1313 0.0822 0.0976 -0.1139 -0.1148 0.1398 0.0802 0.1148
2000 -0.0359 -0.0345 0.0948 0.0693 0.0679 -0.0874 -0.0880 0.1113 0.0600 0.0880 -0.1078 -0.1124 0.1251 0.0573 0.1124
4000 -0.0406 -0.0416 0.0775 0.0512 0.0639 -0.0873 -0.0890 0.0992 0.0436 0.0890 -0.1077 -0.1075 0.1158 0.0414 0.1075
8000 -0.0278 -0.0327 0.0613 0.0392 0.0382 -0.0768 -0.0774 0.0854 0.0320 0.0774 -0.1007 -0.1006 0.1062 0.0296 0.1006
14000 -0.0155 -0.0214 0.0453 0.0324 0.0319 -0.0665 -0.0711 0.0739 0.0253 0.0711 -0.0938 -0.0963 0.0979 0.0229 0.0963
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Kyriazidou’s Estimator: Estimated First Step Parameters 
R i"  1, Ri~3

Wooldridge’s Estimator

N Mean Bias Median
Bias

SE ASE MAD Mean Bias Median
Bias

SE ASE MAD

250 -0.0797 -0.0947 0.2749 0.1611 0.1670 -0.0089 -0.0281 0.1521 0.1812 0.1013
500 -0.0691 -0.0909 0.2614 0.1284 0.1329 0.0045 -0.0140 0.1424 0.1303 0.1025
1000 -0.0445 -0.0490 0.1629 0.0936 0.0875 -0.0005 -0.0077 0.1009 0.0937 0.0742
2000 -0.0513 -0.0603 0.1068 0.0678 0.0756 -0.0008 0.0057 0.0703 0.0642 0.0506
4000 -0.0180 -0.0313 0.0756 0.0539 0.0543 0.0011 -0.0021 0.0446 0.0454 0.0287
8000 -0.0072 -0.0161 0.0619 0.0412 0.0431 -0.0039 -0.0071 0.0318 0.0320 0.0227
14000 -0.0146 -0.0150 0.0443 0.0330 0.0272 0.0007 0.0012 0.0240 0.0240 0.0167 -fi-

VO
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correlation coefficients over time for the idiosyncratic errors in the main equation and 

the random terms in the selection equation. There exists a difference between the 

methods on the way the time-varying error in the main equation relates to the time- 

varying error in the selection equation. To satisfy the conditional exchangeability 

assumption in Kyriazidou (1997) constraints the correlation between and to be 

equal to the correlation between and . However, the conditional mean 

independence assumption in Wooldridge (1995) imposes no restriction on this 

correlation and, accordingly, it can be different over time. The difference between 

Tables 4 and 5 is that in the latter a varying mean of the idiosyncratic errors in the 

main equation from 0 (in period 2) to -5 (in period 1), is introduced. This does not 

affect, in principle, any of the estimators. For this to be true, in Kyriazidou's (1997) 

estimator we have included a constant term in the model in differences to treat 

properly the case of a change in means over time. For Wooldridge’s (1995) estimator, 

the minimum distance step allows for a time-varying intercept.

Tables 4A and 5A report the results for Kyriazidou’s (1997) bias corrected 

estimator using the true y  in the construction of the kernel weights. On the left-hand 

side of Tables 4B and 5B we focus on the case where y  is estimated by SCMSE. 

Tables 4B and 5B report on the right-hand side the results for Wooldridge’s (1995) 

estimator.

From Tables 4 and 5 we see that Kyriazidou’s (1997) estimator has larger 

finite-sample bias than Wooldridge’s (1995) estimator. Furthermore, the former 

estimator becomes quite imprecise if we look at the standard errors. The bias are all 

negative and increase as the kernel order increases. Standard errors are always worse
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than the asymptotic ones. The main effect of breaking down the exchangeability 

condition is in terms of precision in the estimates. As it can be seen in Tables 4B and 

5B, Wooldridge’s (1995) behaves well in terms of all the considered measures. 

Wooldridge’s (1995) is robust to violations of the conditional exchangeability 

assumption. We do not need large samples for Wooldridge’s (1995) estimator to 

achieve reasonable agreement between the finite-sample standard errors and the 

results of asymptotic theory.

2.4 Concluding Remarks and Extensions

This chapter reviews 2 two-step “fixed effects” type estimators for the panel data 

sample selection model. We focus on the recently developed methods by Wooldridge 

(1995) and Kyriazidou (1997). The chapter is concerned about the finite sample 

performance of both methods when estimating the parameters of interest under 

different settings.

The finite sample properties of the estimators are investigated by Monte Carlo 

experiments. The results of our small Monte Carlo simulation study show the 

following. First, and for the Monte Carlo design where all of the assumptions in the 

methods hold, Wooldridge’s (1995) estimator is less biased than Kyriazidou’s (1997) 

estimator and it reaches faster its asymptotic behaviour. Second, Wooldridge’s (1995) 

suffers from an important misspecification bias problem when the linear projection 

functional form for the individual effects in the main equation is invalidated.
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However, breaking down the linearity assumption for the individual effects in the 

selection equation hardly influences the bias for the second step estimates. In contrast 

to Wooldridge’s (1995) estimator, Kyriazidou’s (1997) method is free from 

misspecification problems affecting the individual effects in both equations. Third, 

the estimators are not robust to the violation of the underlying strict exogeneity 

assumption. Finally, Wooldridge’s (1995) estimator is robust to violations of the 

conditional exchangeability assumption. Under this scenario, the main effect on 

Kyriazidou’s (1997) estimator is in terms of precision in the estimates, with SE 

always worse than the ASE. Furthermore, we get larger finite-sample bias than in 

Wooldridge’s (1995) estimator.

It would be interesting to develop complementary estimators relaxing some of 

the assumptions in the above methods. In particular, the need to parameterize the 

conditional mean of the individual effects in the main equation, as it occurs in 

Wooldridge’s (1995) method, and the need of a conditional exchangeability 

assumption for the idiosyncratic errors in the model, as it is the case in Kyriazidou 

(1997). This is left for chapter 3.
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Chapter 3 

A New Estimator 

for Panel Data Sample Selection Models'

3.1 Introduction

In this chapter we are concerned with the estimation of a panel data sample selection 

model where both the binary selection indicator and the regression equation of interest 

contain unobserved individual-specific effects that may depend on the observable 

explanatory variables. For this case, not many estimators are available. The most 

recent ones are the estimators developed by Wooldridge (1995) and Kyriazidou 

(1997). Both of them are semiparametric in the sense that the model does not need to 

be fully specified. Wooldridge (1995) proposes a method under a parameterization of 

the sample selection mechanism, a conditional mean independence assumption for the 

time-varying errors in the main equation and some linear projections. A marginal 

normality assumption for both the individual effects and the idiosyncratic errors in the 

selection equation is imposed. Kyriazidou (1997) proposes an estimator under much

Thanks are owed to Manuel Arellano, Herman Bierens, Richard Blundell, Erwin Charlier, Bo Honoré, Joel 
Horowitz, Hidehiko Ichimura, Ekaterini Kyriazidou, Myoung-jae Lee, Daniel McFadden, Costas Meghir, Bertrand 
Me I en berg, Scott Thompson, Francis Vella, Frank Windmeijer, a co-editor and two anonymous referees for their 
very helpful comments on preliminary drafts o f  this chapter. Earlier versions o f  the chapter were presented at the 
“Lunch Seminars” at Tilburg University, June 1996, The Netherlands; at the 7th-M eeting o f  the European 
Conferences o f  the Econometrics Community (EC-Squared Conference) on Simulation M ethods in Econometrics, 
December 1996, Florence, Italy; at the XXI Simposio de Anâlisis Econômico, December 1996, Barcelona, Spain; 
at the 7th-International Conference on Panel Data, June 1997, Paris, France; and at the European M eeting o f  the 
Econometrics Society (ESEM ’97), August 1997, Toulouse, France.
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weaker conditions, in the sense that the distributions of all unobservables are left 

unspecified. The method allows for an arbitrary correlation between individual effects 

and regressors, but a joint conditional exchangeability assumption for the 

idiosyncratic errors in the model is needed.

The purpose of this chapter is to propose an estimator that relaxes some of the 

assumptions in the above methods. Specifically, the estimator allows for an unknown 

conditional mean of the individual effects in the main equation, in contrast to 

Wooldridge (1995), and it also avoids the conditional exchangeability assumption in 

Kyriazidou (1997). We can see the estimator as complementary to those previously 

suggested, in the sense that it uses an alternative set of identifying restrictions to 

overcome the selection problem. In particular, the estimator imposes that the joint 

distribution of the time differenced regression equation error and the two selection 

equation errors, conditional upon the entire vector of (strictly) exogenous variables, is 

normal.

We assume that a large number of observations in the cross-section are 

available and the asymptotic properties hold as the number of individuals goes to 

infinity. “Fixed - length“ panels are the most frequently encountered in practice. We 

base our analysis on two periods. Consequently, we get estimates based on each two 

waves we can form with the whole length of the panel, and then we combine them 

using a minimum distance estimator (see Chamberlain (1984)). This device allows us 

to focus on two-waves. In the chapter we will discuss the extension of our estimation 

method to cover the more general situation.
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The method follows the familiar two-step approach proposed by Heckman 

(1976,1979) for sample selection models. Heckman (1976,1979) proposed a two- 

stage estimator for the one selection rule case, and this has been extended to two 

selection rule problems with cross-section data by both Ham (1982) and Poirier 

(1980). In particular, our estimation procedure is an extension of Heckman’s (1976, 

1979) sample selection technique to the case where one correlated selection rule in 

two different time periods generates the sample. The idea of the estimator is to 

eliminate the individual effects from the equation of interest by taking time 

differences, and then to condition upon the outcome of the selection process being 

“one” (observed) in the two periods. This leads to two correction terms, the form of 

which depends upon the assumptions made about the selection process and the joint 

distribution of the unobservables. With consistent first step estimates of these terms, 

simple least squares can be used to obtain consistent estimates in the second step.

We present two versions of the estimator depending on a varying degree of 

parametric assumptions for the first step estimator. The more semiparametric 

estimator generalises Chamberlain’s (1980) approach to allow for correlation between 

the individual effects and the explanatory variables. This generalisation, as already 

pointed out by Newey (1994a) in the context of panel data probit models with 

semiparametric individual effects, allows for the conditional expectation of the 

individual effects in the selection equation to be unspecified. Given that the second 

step allows for temporal dependence and different variances for the errors in different 

time periods, we are interested in estimators for the first step that do not impose 

restrictions on the serial correlation and/or heteroskedasticity over time for the errors.
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The results of this chapter may be useful in a variety of situations that are 

analysed in practice. A classic example is female labour supply, where hours worked 

are observed only for those women who decide to participate in the labour force. 

Failure to account for sample selection is well known to lead to inconsistent 

estimation of the behavioural parameters of interest, as these are confounded with 

parameters that determine the probability of entry into the sample. The same problem 

appears when modelling company investment strategies and household consumption, 

where the analysis of these expenditures is conditioned to a prior investment or 

consumption decision, respectively.

The chapter is organised as follows. Section 2 describes the model, sets out 

the estimation problem and presents the estimator. In Section 3 we consider 

estimation of the selection equation. Section 4 discusses the way the estimators based 

in two periods of a longer panel can be combined to get consistent and unique 

estimates for the whole panel. Section 5 reports results o f a small Monte Carlo 

simulation study of finite sample performance. Section 6  gives concluding remarks. 

The Appendices provide formulae for the asymptotic variance of the estimator.

3.2 The Model and the Proposed Estimator

The model we consider is a panel data sample selection model with a binary selection 

equation. Both the sample selection rule and the regression equation of interest



CHAPTERS. A NEW ESTIMATOR 5 7

contain additive permanent unobservable individual effects possibly correlated with 

the explanatory variables.

The model can be written as follows,

i = t = (2 .1 )

-  7, -  u, ; d , = \\d l > O], (2.2)

where, eTl* and /  E  ̂ are unknown parameter (column-) vectors, and

are vectors of strictly exogenous explanatory variables with possible common 

elements, a , and 7 , are unobservable time-invariant individual-specific effects,

which are presumably correlated with the regressors. £•„ and û  ̂ are idiosyncratic 

errors not necessarily independent of each other. Whether or not observations for 

are available is denoted by the dummy variable .

Estimation of p  based on the observational equation (2.1) is confronted with 

two problems. First, the presence of the unobserved effect and second, the 

sample selection problem. By following an estimation procedure that just uses the 

available observations one is implicitly conditioning upon the outcome of the 

selection process, i.e., upon d̂ , = 1. The problem of selectivity bias arises from the

fact that this conditioning may affect the unobserved determinants of .

The first problem is easily solved by noting that for those observations that 

have d^i=d^^=\  ( s ^ t ) ,  time differencing will eliminate the effect a , from 

equation (2.1). This is analogous to the “fixed-effects” approach used in linear panel
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data models. Application of standard methods, e.g. OLS, on this time-differenced 

subsample will yield consistent estimates of p  if the following condition holds:

4  a = = l) "  ^ (2.3)

where x, = (x,,,...,x,^) and z, = (z,,,...,z ,y).

In general though, OLS estimation of model (2.1), using pairwise differences 

over time for individuals satisfying d̂  ̂ = = 1 would be inconsistent due to

sample selectivity, since the conditional expectation in (2.3) would be, in general, 

unequal to zero.

The basic idea of the estimator relies on a parameterization of the conditional 

expectation in (2.3). To do that, some assumptions have to be imposed. There are 

two assumptions on the unobservables in the selection equation (A1 and A2 below). 

A third assumption (A3) imposes restrictions on the joint conditional distribution of 

the error terms in the two equations. The method is non-parametric with respect to the 

individual effects in the main equation and allows selection to depend on «, in an 

arbitrary fashion. Under its less parametric version, the conditional mean of the 

individual effects in the selection equation is allowed to be an unknown function of 

the whole time span of the explanatory variables.
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• A l :

AI  A) With parametric individual effects: The regression function o f  77, on z, 

is linear. Following Chamberlain (1980), the method specifies the conditional mean 

of the individual effects in the selection equation as a linear projection on the leads 

and lags of the observable variables: 7 . = z,,< ,̂ +...+z,y(5^. + c, where c ,, is a random 

effect.

AIB) With semiparametric individual effects: The conditional mean o f  77, on

z, is left unrestricted: 77, = (̂̂ 77, |z, ) + c ,. This generalisation of Chamberlain (1980)

is already used in Newey (1994a) for a panel probit model with strictly exogenous 

variables, and Arellano and Carrasco (1996) for binary choice panel data models with 

predetermined variables.

• A2: The errors in the selection equation, v,, = û , + c ,, are normal 0̂ ,crf j.

This is a normality assumption for the underlying errors in the selection equation. 

Temporal dependence is allowed. This is important because, whether or not the 

are independent across t , the can never be counted on to be serially independent. 

Note also that the v,, are allowed to have different variances in different time periods.

• A3: The errors trivariate normally distributed

conditional on x, and z ,. Additionally to the assumptions in the selection equation.
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one assumption about the relationship between -£■„) and has to be

imposed to obtain the functional form of the sample selection correction terms that 

correspond to the conditional expectation in (2.3). In particular, a trivariate normal 

distribution is assumed for the joint conditional distribution of the error terms. 

However, the normality assumption is unessential and could be replaced by other 

parametric assumptions. Different distributional assumptions will lead to a 

corresponding modification of the selectivity bias terms” . In any case, in this chapter 

we derive the sample selection correction terms under normality. The multivariate 

normal distribution is the most commonly specified assumption on sample selection 

models’ .̂

The assumptions above highlight the crucial deviation from Kyriazidou’s 

(1997) work. There, the sample selection effects are considered as an unknown 

function of both the observed regressors and the unobservable individual effects in the 

selection equation. In her approach, the distributions of all unobservables are left 

unspecified, but an assumption on the underlying time-varying errors in the model is 

needed. That assumption is the conditional exchangeability condition and consists in 

the following. Given the model in (2.1) and (2.2), the joint distribution of the errors

” However, as pointed out in Lee (1982), it can happen that a particular binary choice model, for example, the 
arctan model, can be unsuitable to obtain selectivity bias terms for the regression equation. As the arctan 
probability model is based on the assumption that the distribution o f  the error term is Cauchy, the conditional 
mean for the dependent variable in the regression equation does not even exist.

Furthermore, to develop correction terms for selectivity bias based on the normal distribution does not 
necessarily imply lack o f  distributional flexibility. As pointed out in Lee (1982) even if  the assumed distribution 
function for the disturbance in the probability choice model is not normal, it is still possible to apply the correction 
terms for sample selection derived under multivariate normal disturbances. What is needed is to specify a strictly

increasing transformation function J  = ^   ̂F , where O  is the standard normal distribution function and F
is the assumed distribution for a disturbance U  , such that the transformed random variable U =  is

standard normal.
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and ^ ) is identical conditional on

=(z/,.z ,,,A r„,x„,a ,,7 ,). That is, = Under

this conditional exchangeability assumption, for an individual i with z ^ j = z ^ j ,  

sample selection would be constant over time. For this individual, applying time- 

differences in equation (2 .1), conditional on observability in the two periods, will 

eliminate both the unobservable effect a,  and the sample selection effects. The

conditional exchangeability assumption implies a conditional stationarity assumption 

for the idiosyncratic errors in the selection equation. That means that is stationary

conditional on that is = The quoted

assumption turns out to be restrictive since it also implies homoskedasticity over time 

of the idiosyncratic errors in the main equation. Under this assumption time effects, if 

any, are absorbed into the conditional mean, but they cannot affect the error structure 

of the model. Here we attempt to relax the assumption that the errors for a given 

individual are homoskedastic over time.

In our approach, we give a shape to the (generally unknown) sample selection 

effects. This requires explicitly allowing for statistical dependence of the individual 

effects in the selection equation on the observable variables. Assumption (AlA) 

specifies a functional form for that relation, although under our less parametric 

assumption (AIB) a particular specification is not needed. Furthermore, we also 

specify the full distribution of the differenced time varying errors in the main equation 

and the error terms in the selection equation.
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Under assumptions A1-A3, the form of the selection term, to be added as an 

additional regressor to the differenced equation in (2 .1), can be worked out (see, for 

instance, Tallis (1961)). Consequently, the conditional mean in (2.3) can be written 

as:

E {e„ - s „ \ x „ z „ v ,  < H„,v„ < //„ )  = <7 , ^  w > a , „  +cr, (2.4)
I s l \  t 11 \  I S l \  S Sj

where -  E{t] \z^  for r = t , s ,  are the reduced form indices in the selection

equation for period t and s . Our lambda terms are as follows:

(2.5)

where

O ’ ,  e x . . (2 .6)

M  i,s -  ( M, . ,  ^ i s ,  P , s  ^ i s ) / ( l  “  '•' )  •

and p. = p  is the correlation coefficient between the errors in the selection

equation. ^(-) is the standard normal density function, and 0 ( ) ,  0 2 0  the
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standardised univariate and bivariate normal cumulative distribution functions, 

respectively’ .̂

The estimation equation is given by

y, t  -  y  IS =  ’ ^ r s ’P l s )  +  ^st ■ ’P i s )  +  /̂/.v , (2 -7 )

where e,„ s  (s„ -  a ( M „ , M ,,,p„) + , p „ ) ]  is a new error

term, which by construction satisfies , v,, < -  ^ , . v ) -  0. Now, the

solution to the problem is immediate. Assuming that we can form consistent estimates 

of and , least squares estimation (with modified standard errors) applied to

(2.7) can be used to obtain consistent estimates of /?, and f  ,., A test of the

restrictions Hq\ f = 0 , for f = {^is’^stj ’ is easily carried out by constructing a Wald

statistic. This can be used as a test for selection bias. To be able to estimate and

The terms A f a p p e a r  because in the bivariate normal distribution with density function 

^ i s ’ P t s )  it  we fix, for instance, the value o f  we can write

=  - p „ M „ ) / ( l - p ^ , ) '  j .  The following also holds:

A corresponding expression will be obtained if is the fixed element. To calculate we have conditioned 

on M j i  being fixed and we integrate over M^^..  To calculate we do the reverse. The factor that appears in 

the denominator o f  both lambdas, O j  (  A / , , , M ^ ^ , P i ^ )  , is just a normalising factor.

However, notice that to be able to identify from £ t ime variation o f  M  is needed. M  may vary even 

when Z  is constant, if  ( 7 J ( 7  ̂ is not unity could be identified; see Chamberlain (1982, 1984),

N ew ey (1994a), and Arellano and Carrasco (1996)). But even if  and f  are not identified (only f f  

is), this does not matter for the identification o f the parameter o f  interest j S .
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, we need to get consistent estimates of and p , , . The way of getting

these values is what is going to make the distinction between a parametric first step 

estimator and a semiparametric one.

3.3 Estimation of the Selection Equation

To construct estimates of the ) terms in (2.7) we have two alternatives. In the 

more parametric approach we assume that the is specified as a linear

projection on the leads and lags of observable variables (as in Chamberlain (1980), 

Verbeek and Nijman (1992), and Wooldridge (1995))'^. With this parameterization of 

the individual effects we go from the structural equation in (2.2) to the following 

reduced form selection rule’ :̂

^it =^ { y IT ^  0} = l{/7,, -  i/„ >0}. (3.1)

Our main interest in introducing individual effects is motivated by the possibility o f  existence o f  missing  

variables that are correlated with Z , . If one mistakenly models r]^ as independent o f  Z , , then the omitted

variable bias is not eliminated. Then, we want to specify a conditional distribution for given Ẑ  that allows

for dependence. A convenient possibility is to assume that the dependence is only via a linear regression function.
In fact, as W ooldridge (1995) pointed out, the mechanism described by (3.1) can be the reduced form also for 

other structural selection equations. For example, consider the dynamic model

du = 0 + + z , j  -  u„ >  o } , (a)

where 11  ̂ is a mean zero normal random variable independent o f  Z^. Then, assuming that given Ẑ  is 

normally distributed with linear conditional expectation, (a) can be written as (3.1). The same conclusion holds if 
an unobserved individual effect o f  the form given in assumption (A lA ) on the main text is added to (a).
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We can form a likelihood function based in the fact that we observe four 

possible outcomes per each two time periods. Those individuals with d̂  ̂ = = 1 ;

those with d■̂ = d̂  ̂ = 0 ; those with J,, = 1 and d,  ̂ = 0 ; and those with

= 0 and d̂  ̂ = 1. The probabilities that enter the likelihood function are

Prob(D, =d„,D,  = d„) = where the new terms q„,q,^ and

p'„ are defined by q„ = 2d„ -  1, q„ = 2d,, -1  and p'„, = q„q,,p„, respectively. This 

notational shorthand accounts for all the necessary sign changes needed to compute

probabilities for d 's  equal to zero and one.

The reduced form coefficients ( / / , / , . )  will be jointly determined with p,̂ . 

through the maximisation of a bivariate probit for each combination of time periods. 

See Appendix I for the variance-covariance matrix of /?, and i  ,.,, when we follow 

this parametric first step approach.

In our alternative approach, to allow for semiparametric individual effects in

the selection equation, the conditional expectations for r = t,s

are replaced with nonparametric estimators , such as kernel

estimators’ .̂ The way to recover estimated values for the M /s  is given by the 

inversion = O"’ /i^(z,)j. In contrast to Manski’s (1987) or Kyriazidou's (1997) 

semiparametric individual effects models, w, is allowed to be heteroskedastic over

In fact, with this way to get estimated probabilities we do not longer need a parametric assumption about the 
form o f  the selection indicator index. The linearity assumption would be needed if we were interested not just in 

the index value, A f  , but also in recovering the parameters in the selection equation. As our concern is the

consistent estimation o f  the sample selection correction terms, the latter is not needed. This flexibility is 
convenient because although the form o f  this function may not be derived from some underlying behavioural 
model, the set o f  conditioning variables that govern the selection probability may be known in advance.
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time**. Even if the method leaves £ ( 77, |z,) unrestricted, it may implicitly restrict 

other features of the distribution of 77, |z, by assuming that the distribution of 

( 77/ +w^,)|z, is parametric*^. A likelihood function like the one above is now 

maximised just with respect to the parameter . See Appendix II for the variance- 

covariance matrix of , and i  , when we follow this semiparametric first step 

estimator.

In order to compute the /z^(z.) values in an application we will use the so-

called Nadaraya-Watson kernel regression function estimator, named after Nadaraya 

(1964) and Watson (1964). The Nadaraya-Watson estimator has an obvious

generalisation to multivariate and high order kernels. According to it, the 

corresponding nonparametric regression function estimator of (z, ) is

----------------  (3-2)

j = \

where e {0,l} and z g 7?^  ̂. The d 's  are the dependent variables and the z's  are 

T ■ f  - component vectors of regressors.

The advantage o f  the proposed estimator is that it allows the variance o f  the errors to vary over time. We relax 
the assumption that the errors for a given individual are homoskedastic over time. The price we pay is in terms o f

{?]■ +  ^|z- being parametrically distributed. Also the amount o f  heteroskedasticity across individuals is

restricted.
Potentially, a test for the linear correlation o f  the individual effects in the selection equation with respect to the 

explanatory variables could be performed.
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For practical issues one needs to choose the kernel function K  and a particular 

bandwidth parameter Related literature advises the use of high order bias-

reducing kernels that can be constructed following Bierens (1987). A simple way to 

construct kernels in for arbitrary T • f  > \ and even /? +1 > 2 (where 7? is an

odd integer > 1 ) is the following^^. For z and “  > 1 let>T- f R + \

K , J\R+\

R+ \  6  „ exp

f ^ ) = t  —

k ^  N  7  p = \

o - 1

(3 3)

where Q is a positive definite matrix and the parameters 6  and are such that

R + \

/7=1 (3.4)

For an integer q , let K { u ^ d u  . Then, the order (7? +  l )  o f  the kernel is defined as

the first nonzero moment: = 0, ^ = 1,...,7^; ^  0 . Positive kernels can be at most o f  order 2

(R = l).
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R + \
for u = 1,2,...,— ------1. We should specify Q = V, where V is the sample variance

matrix;
1 / \' / \ 1 ,

■ix; that is, V = — - z j  - z j  with z = — • Thus, for
^  7 = 1

R + 1 = 2,4,6,..., we get

K

iM Op exp
2

= E
p=\

f

1 ( z  - z ^ (  Z -  Z 1
; \

1 J
F " '

_(__  J

JV 2 V y

det̂ K j
(3.5)

We will now focus on the problem of bandwidth selection. We need the 

convergence rate of h to be faster enough. To build up such convergence rates we 

will use the uniform convergence rates of Bierens (1987). From the point of view of 

uniform consistency and under conditions satisfied by the high-order bias reducing 

kernels of Bierens,

(3.6)

is stochastically bounded. Clearly, the best uniform consistency rate is obtained for 

such that min^c^^ j is maximal. This is the case if

We then have m in(c/'-'VÏV,c„-(''*'>) oc 

Thus, the sequence of bandwidths , used in the estimation is of the form
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= c - a value of R that should satisfy the inequality

R + \ > T - f .

Now, the bandwidth selection problem is reduced to choose the constant c . A 

natural way to proceed (Hardie and Linton (1994), Hardie (1990) and Silverman 

(1986)) is to choose c so as to minimise some kind of measure o f the “distance” of 

the estimator from the true value (according to some performance criterion). If we 

are, for example, interested in the quadratic loss of the estimator at a single point z ,

which is measured by the mean squared error, MSe |^^(z) | , then we will minimise

the MSB over c in order to get an approximately optimal value for c .

By following this minimisation method the optimal bandwidth depends on 

elements that we do not know unless we know the optimal bandwidth. In practice, 

these quantities have to be estimated on the basis of some preliminary smoothing 

process which raises a second-order bandwidth selection problem. A first step 

bandwidth c should be chosen to estimate the quantities that determine the optimal 

bandwidth c*.

3.4 Single Estimates for the Whole Panel

In section 2 and 3 we have introduced the proposed second and first stage estimators. 

There, the analysis was based on two periods. In this section we will illustrate how to
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combine the estimators coming from each two waves of the panel to come up with a 

single estimate.

The estimators used in the first step are obtained by maximising the likelihood

function of ,
12V

bivariate probits separately, each of them based in a different

combination of two time periods. Once estimates of the correction terms are included, 

equation (2.7) can be estimated using least squares for each combination of panel

waves (/, 5 ,̂ / ^ 5 ^'; this gives a total of pairs for a panel of length T . A

minimum distance procedure, with the corresponding weighting matrix, can then be 

applied to combine these estimates. To estimate the weighting matrix an estimate for 

the covariance matrix of the estimators for the different time periods is required. The 

block diagonal matrices are simply the corresponding covariance matrices estimates 

for each pair. To get the block off-diagonal matrices of the weighting matrix we just 

need to combine the corresponding two influence functions for each combination of 

two pairs. These covariances among pairs do not converge to zero. In the minimum 

distance step we restrict the estimates for fl  to be the same for each combination

(
(t, 5 ) and we estimate x 2  coefficients for the correction terms in all the pairs

(two correction terms per pair)^^. The latter group of parameters is left unconstrained 

in the minimum distance step. The number of parameters associated to the correction

Notice that for sample selection models we gain in efficiency by considering all possible pairs in place o f  just 
first differences. Different combinations o f  individuals appear in different pairs because o f  the observability rule

driven by = 1 or = 0 .
In the minimum distance step we can recover a time trend coefficient or time dummies coefficients (reflecting 

changing econom y conditions common to all individuals).
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terms is a function of T  and it grows faster than T . This is so because the estimator 

allows the variance of the time varying errors in both equations to vary over time and 

it does not restrict the correlations between the time-differenced errors in the main 

equation and the errors in the selection rule to be time-invariant. As we focus on the 

case where the data consist of a large number of individuals observed through a small 

(fixed) number of time periods and look at asymptotics as the number of individuals 

approaches infinity the growth in parameters does not impose a problem, in principle.

Alternatively, for the more parametric first step, we can use a strategy that 

might asymptotically be more efficient. A minimum distance estimator can be

( Aobtained from the
V27

sets of bivariate probits estimates that we can form with a

panel of length T . Lambda terms based on the resulting estimates can be plugged 

into equation (2.7) that is again estimated by pairs. A second minimum distance step 

is computed in the same way it was applied for the estimator based on the results of 

bivariate probits estimated separately. However, although this strategy might 

asymptotically be more efficient, the other one is easier from a practical point o f view 

and it still provides consistent estimates.

z'
To test for the assumption of the x 2 correction terms being jointly

\2J

significant is easily carried out by constructing a Wald statistic. This can be used as a 

test for selection bias. A test of overidentifying restrictions in the minimum distance 

step can be also performed. The latter, in fact, implies testing whether the imposed 

restrictions (J3 being constant over time) cannot be rejected.
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A curse o f  dimensionality problem, well known in the nonparametric 

literature, can appear in the case of many continuous variables in the sample selection 

equation and/or a large number of time periods. This affects the quality of the 

nonparametric estimator h^(z^) = È(d,^\z-^ in section 3 obtained by using high­

dimensional smoothing techniques'^. To overcome this difficulty in nonparametric 

estimation some dimension reduction approaches have been proposed. A common 

restriction is additive separability among the variables in the selection equation that 

would allow to move from high-dimension multivariate kernels to lower-dimension or 

even univariate kemels^'^. Current literature in nonparametric methods is trying to 

find alternative definitions of separability to overcome this problem. Another 

alternative, that can also be applied to the more parametric first step, consists on 

assuming that the individual effect in the selection equation depends only on the time 

average of the time varying variables (see for example Mundlak (1978), Nijman and 

Verbeek (1992), and Zabel (1992)). This economises on parameters or dimension but 

also imposes restrictions on the relationship between 77, and z, that could be violated, 

especially if the are trending.

Estimation precision decreases as the dimension o f  Z, increases.

For some o f  these approaches see Hardie and Chen (1995) and Horowitz (1998).
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3.5 Monte Carlo Experiments

In this section we report the results of a small simulation study to illustrate the finite- 

sample performance of the proposed estimators. Each Monte Carlo experiment is 

concerned with estimating the scalar parameter p  in the model

=x,^p + a,  + ,7V; r = 1,2,

d'„ = Z|„r I + Z2„r 2 - n , -  ^  o],

where is only observed if <7,, = 1. The true value of p , , and y j is 1 ; 

z,„ and Z2„ follow a N(0,1); is equal to the variable z ,̂, (we have imposed one 

exclusion restriction); otherwise stated something different the individual effects are 

generated as^  ̂ 77, = -[(z,,, + z,,  ̂) / 2 + (z^,, + z^,2 ) / 2 + # (0 ,l) + 0.07] and

a , = (x,, + x ,2 ) / 2  +V 2  •7V(0,1) + 1; the different types of errors in each experiment

are shown at the top of the corresponding tables. For all the experiments the errors in 

the main equation are generated as a linear function of the errors in the selection 

equation, which guarantees the existence of non-random selection into the sample.

Their particular design is driven by the fact that at this stage we want to keep both a linear correlation with 
respect to the explanatory variables and a normality assumption for the remaining random terms. The reason is 
that methods like the one proposed by W ooldridge (1995) and our proposed estimator assume normality for the 

remaining random terms in the selection equation. This means that the difference between Tj  ̂ and its conditional 

mean is a random normal error. At the same time, both W ooldridge (1995) and our more parametric new estimator 
are developed under the assumption o f  a linear correlation between the individual effects in the selection equation 
and the leads and lags o f  the explanatory variables. In particular, we have assumed that this linear correlation 
follow s M undlak’s (1978) formulation. Furthermore, Wooldridge (1995) also imposes the linearity assumption 
(that is not needed for our estimator) for the individual effects in the main equation. It is also quite common to 
assume that there is a constant term in the individual effects.
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The results with 100 replications and different sample sizes are presented in 

Tables 1-5’. All tables report the estimated mean bias for the estimators, the small 

sample standard errors (SE), and the standard errors predicted by the asymptotic 

theory (ASE). As not all the moments of the estimators may exist in finite samples 

some measures based on quantiles, as the median bias, and the median absolute 

deviation (MAD) are also reported. In Panel A for all tables we report the finite 

sample properties of the estimator that ignores sample selection and is, therefore, 

inconsistent. The purpose in presenting these results is to make explicit the 

importance of the sample selection problem for each of our experiments. This 

estimator is obtained by applying least squares to the model in time differences for the 

sample of individuals who are observed in both time periods, i.e. those that have

/̂1 “  ^i2 ~  ̂•

As we pointed out earlier, with our estimator we aimed to relax some of the 

assumptions of the currently available methods. Specifically, we wanted to avoid the 

misspecification problems that could appear by breaking the linear projection 

assumption for the individual effects in the main equation on the explanatory variables 

in the case of Wooldridge’s (1995) estimator. Furthermore, we also wanted to avoid 

the conditional exchangeability assumption in Kyriazidou (1997) and to allow the 

time-varying errors to be heteroskedastic over time.

In Table 1 we compare the two versions of our estimator with Wooldridge’s 

(1995) and Kyriazidou’s (1997) estimators when the conditional exchangeability 

assumption breaks down. We allow for no-constant variances over time for the error 

terms and different degrees for the sample selection problem. The latter comes



TABLE 1: Invalidating The Exchangeability Assumption In Kyriazidou

U1 =0.8*N(0,1);
U2 = 2*N(0,1);

Si =0.1* U1 -5 + 0.6*N(0,1);
82 = 0.9* U2 + 0.6*N(0,1);

PANEL A
Ignoring Correction For Sample Selection

N Mean Bias Median Bias SE ASE MAD
250 0.1608 0.1589 0.2223 0.1437 0.1668
500 0.1908 0.2007 0.2147 0.1021 0.2007
750 0.1813 0.1867 0.1978 0.0831 0.1867
1000 0.1644 0.1709 0.1807 0.0718 0.1709

n
g13
s
w
>
Zm
tnc/3H

I
S

PANEL B
Wooldridge ’s Estimator M ore Parametric New Estimator Less Param etric New Estimator

N Mean Median SE ASE MAD Mean Median SE ASE MAD Mean Median SE ASE MAD
Bias Bias Bias Bias Bias Bias

250 -0.0203 0.0061 0.1491 0.1601 0.1000 -0.0179 -0.0155 0.1941 0.1689 0.1382 0.0636 0.0502 0.1958 0.1658 0.1282
500 0.0061 -0 .0029 0.1166 0.1110 0.0836 0.0250 0.0425 0.1391 0.1188 0.0936 0.0649 0.0795 0.1513 0.1218 0.1021
750 0.0033 -0.0051 0.0985 0.0915 0.0754 0.0123 0.0068 0.0868 0.0994 0.0582 0.0443 0.0527 0.1048 0.1028 0.0801
1000 -0 .0004 0.0109 0.0924 0.0785 0.0648 -0.0047 -0.0073 0.0996 0.0844 0.0717 0.0225 0.0197 0.1041 0.1262 0.0620

PANEL C
Kyriazidou’s Estimator

Estimated First Step Param eters True First Step Parameters
R =1 R=1 R=3 R=5

N Mean
Bias

M ed ian
Bias

SE ASE MAD Mean
Bias

M ed ian
B ias

SE ASE MAD Mean
Bias

M ed ian
B ias

SE ASE MAD Mean
Bias

M ed ian
Bias

SE ASE MAD

250 0.05 0.06 0.24 0.19 0.20 0.04 0.06 0.28 0.18 0.17 0.06 0.07 0.22 0.17 0.15 0.07 0.07 0.21 0.17 0.13
500 0.07 0.05 0.31 0.14 0.10 0.06 0.07 0.20 0.14 O il 0.09 0.10 0.18 0.13 0.12 0.11 0.11 0.18 0.13 0.12
750 0.05 0.04 0.14 0.12 0.10 0.03 0.04 0.14 0.12 0.08 0.07 0.08 0.12 O il 0.10 0.08 0.09 0.12 0.11 0.10
1000 0.03 0.03 0.12 0.10 0.09 0.04 0.05 0.16 0.10 0.10 0.07 0.08 0.13 0.09 0.09 0.08 0.09 0.13 0.09 0.10 '-jLA
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through different correlation coefficients over time, for the idiosyncratic errors in the 

selection equation and the idiosyncratic errors in the main equation. Varying the 

mean of the idiosyncratic errors in the main equation from 0 (in period 2) to -5 (in 

period 1), does not affect, in principle, any of the estimators. For this to be true, a 

constant term is included in the estimators in differences to pick up the change in 

means. For the estimator that does not rely on time-differences, Wooldridge’s (1995) 

estimator, the minimum distance step allows for a time-varying intercept^^. For 

Wooldridge’s (1995) estimator, although other procedures could be used -such as 

pooled least squares (the simplest consistent estimator)- we have applied minimum 

distance estimation. Panel C reports the results for Kyriazidou’s (1997) estimator. 

We report the results for the estimator using the true y  and the one estimated by 

smoothed conditional maximum score in the construction of the kernel weights^^. For 

the former we implement second (R=l), fourth (R=3), and sixth (R=5) higher order 

bias reducing kernels of Bierens (1987) according to section 3 above. They correspond 

to a normal, to a mixture of two normals and to a mixture of three normals, 

respectively. For the latter we just used a second order kernel (R=l). The bandwidth

sequence is^  ̂ where the optimal constant c is obtained by the

plug-in method described in Hardie and Linton (1994) with an initial c = \.  In both 

cases, we present the bias corrected estimator^^. For our less parametric new

The problem could have been solved by the inclusion o f  time dummies in the main equation.
For details on the latter, see Horowitz (1992), Kyriazidou (1994) and Charlier et al. (1995).
By follow ing the maximum rates o f  convergence in distribution for the univariate case according to Bierens 

(1987).
The bias correction removes only asymptotic bias, so the bias-corrected estimator needs not be unbiased in finite 

samples. According to the corollary in Kyriazidou’s (1997), to construct the bias corrected estimator we have to

compute another estimator with window width C  ̂ = C • N  ^  ̂  ̂ .̂ We select S = 0.5 .
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estimator (LPNE) we also used second order kemels^°. The first step probabilities 

/%, (z,) and /i2 (z,) are estimated by leave-one-out kernel estimators (this is theoretically 

convenient) constructed as in section 3 but without z, being used in estimating 

^^(z,). The summation in (3.2) should read j  . The bandwidth sequence for the

LPNE is^' constant part of the bandwidth was chosen

equal to 1. There was no serious attempt at optimal choice but we avoided values 

which entailed extreme bias or variability.

From Table 1 we see that all the estimators are less biased than the estimator 

ignoring correction for sample selection. Kyriazidou’s (1997) estimator shows a bias 

that does not generally go away with sample size. Furthermore, the estimator 

becomes quite imprecise if we look at the standard errors. The bias are all positive 

and increase a bit as the kernel order increases. Standard errors are always worse than 

the asymptotic ones. As can be seen in Panel B, both versions of our proposed 

estimator behave quite well in terms of all the considered measures. Both our 

estimator and Wooldridge’s (1995) are robust to violations of the conditional 

exchangeability assumption. The relative SE’s and MAD’s of Wooldridge and the

Even i f  for theoretical reasons it is sometimes useful to consider kernels that take on negative values (kernels o f  
order higher than 2), in most applications K  is a positive probability density function. In the Monte Carlo 
experiments we restrict our attention to second order kernel estimators. The reasons to support this decision are as 
follows. First, the results o f  Marron and Wand (1992) advise caution against the application o f  higher order 
kernels unless quite large sample sizes are available because the merits o f  bias reduction methods are based on

asymptotic approximations. Second, higher order kernels were generating some estimates for not in

-1
between zero and one for some T and i , so that the inverses O did not exist. Solutions like the

accumulation o f  these individuals in the corresponding extremes had severe consequences for the estimate o f  the

asymptotic variance covariance matrix, that relies on derivatives o f  the functions O  '

By follow ing the best uniform consistency rate in Bierens (1987) for multivariate kernels. If we were focused 

on convergence in distribution the optimal rate would have been obtained by setting Cyy = C - N   ̂ ^
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more parametric new estimator (MPNE) illustrate the efficiency gains or losses 

associated with the use of the semiparametric components employed in the LPNE. 

The LPNE has a larger finite-sample bias than Wooldridge’s (1995) estimator and the 

MPNE, but this bias decreases with sample size. We do not need extremely large 

samples for our estimators to achieve reasonable agreement between the finite-sample 

standard errors and the results of asymptotic theory. At this stage, it is important to 

notice that for the experiments in Tables 1, 2, and 5, we observe some anomalous 

results in the ASE for the LPNE. Specifically, the estimated ASE for sample size 

equal to 1000 seem to be too high both with respect to the SE and in relation to their 

own evolution as sample size grows. The complexity of the variance-covariance 

matrix for the LPNE (see Appendix II), which estimate involves derivatives of the 

kernel functions, advises a more careful treatment in a particular application. Without 

further research, our intuition points at the appearance of anomalous observations for 

the calculus of the ASE as sample size increases. Therefore, a trimming solution is 

called for.

In Table 2 we generate a misspecification problem for Wooldridge’s (1995) 

estimator. The linear projection assumption for the individual effects in the main 

equation has been violated. As can be seen in the top part of that table we have 

generated the true a^ ' s by adding to our benchmark specification quadratic terms on 

the x ' s . Under this design Wooldridge’s (1995) estimator is clearly inconsistent and 

it suffers from a misspecification bias problem. Both versions of our estimator are 

robust against any type of design for the individual effects in the main equation. As 

the estimation method is based on time-differences, its properties are independent of



TABLE 2: Keeping The Exchangeability Assumption In Kyriazidou And Generating A Misspecification Problem For Wooldridge

U = N(0,1); 
e = 0.8*U + 0.6*N(0,l); 

a  = (XI + X2)/2 + (Xl^ + X2^)/2 + V2 *N(0,1) + 1;

n
g
s
U)
>
g
«
m
00H

PANEL A
Ignoring Correction For Sample Selection

N Mean Bias Median Bias SE ASE MAD
250 0.1227 0.1016 0.1644 0.1070 0.1022
500 0.1108 0.1187 0.1363 0.0768 0.1187
750 0.1177 0.1215 0.1327 0.0636 0.1215
1000 0.1085 0.1159 0.1183 0.0542 0.1159

>

g

PANEL B
Wooldridge ’s Estimator More Parametric New Estimator Less Param etric New Estimator

N Mean Median SE ASE MAD Mean Median SE ASE MAD Mean Median SE ASE MAD
Bias Bias Bias Bias Bias Bias

2 5 0 0.3394 0.3664 0 .3744 0.1555 0.3664 0.0057 0.0024 0.1517 0.1223 0.0848 0.0335 0.0187 0.1237 0.1257 0.0909
5 0 0 0.3496 0.3587 0.3671 0.1126 0.3587 0.0158 0.0180 0.1111 0.0876 0.0820 0.0195 0.0290 0.1089 0.0910 0.0818
7 5 0 0.3456 0.3557 0.3584 0.0943 0.3557 0.0042 0.0028 0.0777 0.0713 0.0550 0.0062 0.0100 0.0742 0.0789 0.0464
10 0 0 0.3427 0.3477 0.3515 0.0821 0.3477 0.0010 0.0010 0.0660 0.0627 0.0422 -0.0029 -0.0027 0.0690 0.1017 0.0455
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the particular shape for the individual effects in that equation. The MPNE and the 

LPNE are well behaved in terms of all the considered measures. The results for 

Kyriazidou’s (1997) estimator have not been included because this method is also 

independent of the particular shape of or,.

Table 3 varies the standard sample sizes with respect to the other tables and 

incorporates a different design for the experiment. We have a new error structure for 

the errors in the main equation and dependent data over time has been introduced 

through the correlation of the variables in period 2  with the variables in period 1 . 

Both estimators perform well with the new type of explanatory variables.

Table 4 presents results under a different design for the individual effects in 

the selection equation. We expect the LPNE to perform better than the MPNE. The 

reason is that the former allows for an unrestricted conditional mean of 77,. The 

MPNE was developed under the assumption of a linear conditional mean. By 

invalidating this linearity assumption we are generating a misspecification problem for 

the first step of the MPNE. The results in Table 4 confirm our prior. This holds for 

all the considered measures.

Finally, in Tables 5 and 5’ we compare Wooldridge’s (1995) estimator, 

Kyriazidou’s (1997) estimator and the proposed MPNE and LPNE when the joint 

conditional normality assumption (assumption A3 in section 2) breaks down. Table 5 

reports the results when normalised and central distributions with 2  degrees of 

freedom are considered. In Table 5’ we adopt uniform distributions normalised to 

have mean 0 and unit variance. By looking at the estimates ignoring sample selection 

we see that the bias induced by sample selection is bigger in the case of uniformly
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TABLE 3: Dependent Data

U = N(0,1);
8 = 0.6*U + 0.8*N(0,1);
Z2 = 0.7*Z1 +N(0,I);

PANEL A
Ignoring Correction For Sample Selection

N Mean Bias Median Bias SE ASE MAD
250 0.0799 0.0628 0.1601 0.1340 0.0950
500 0.0728 0.0694 0.1189 0.0962 0.0874
1000 0.0816 0.0726 0.1026 0.0679 0.0749
2000 0.0812 0.0669 0.0952 0.0483 0.0669

PANEL B
More Parametric New Estimator Less Param etric New Estimator

N Mean Median SE ASE MAD Mean Median SE ASE MAD
Bias Bias Bias Bias

250 0.0071 0.0035 0.1593 0.1524 0.1047 0.0286 0.0024 0.1705 0.1586 0.1108

500 0.0105 0.0095 0.1248 0.1078 0.0969 0.0140 0.0039 0.1215 0.1137 0.0739

1000 0.0105 -0.0067 0.0833 0.0778 0.0478 0.0043 0.0049 0.0777 0.0847 0.0508
2000 -0 .0038 -0.0044 0.0494 0.0553 0.0347 -0.0073 -0.0056 0.0554 0.0586 0.0359

TABLE 4: A Misspecification Problem In The MPNE

U = N(0,1);
S = 0.8*U + 0.6*N(0,1);

77 = -(Z11^*Z12V (Z21^*Z22^)-N(0,1);

PANEL A
Ignoring Correction For Sample Selection

N Mean Bias Median Bias SE ASE MAD
250 0.1246 0.1120 0.1932 0.1271 0.1366
500 0.1193 0.1173 0.1630 0.0893 0.1208
750 0.1200 0.1179 0.1382 0.0750 0.1179
1000 0.1258 0.1241 0.1409 0.0644 0.1241

PANEL B
M ore Parametric New Estimator Less Parametric New Estimator

N Mean Median SE ASE MAD Mean Median SE ASE MAD
Bias Bias Bias Bias

250 0.0406 0.0372 0.1496 0.1445 0.1013 0.0426 0.0325 0.1667 0.1519 0.1216
500 0.0577 0.0504 0.1322 0.0998 0.0823 0.0242 0.0154 0.1240 0.1049 0.0776
750 0.0412 0.0545 0.0942 0.0834 0.0693 0.0108 0.0070 0.0859 0.1022 0.0644
1000 0.0419 0.0466 0.0801 0.0714 0.0525 0.0086 0.0132 0.0748 0.0756 0.0487



TABLE 5: Breaking The Normality Assumption With Distributions

U = %2'(0,1);
S  =  0.8*U + 0 . 6 * X 2 '  (0,1); 

a  =  ( X l  + X 2 ) / 2 +  a /2  *X2 '(0,1)+  1;

77 = - [ ( Z l l  + Z 1 2 ) / 2  +  ( Z 2 1  + Z 2 2 ) / 2  +  X 2" ( 0 , 1 ) +  0 . 0 7 ] ;

PANEL A
Ignoring Correction For Sample Selection

N Mean Bias Median Bias SE ASE MAD
250 0.0859 0.0747 0.1344 0.0920 0.0857
500 0.0788 0.0858 0.1083 0.0671 0.0872
750 0.0730 0.0739 0.0887 0.0546 0.0739
1000 0.0722 0.0782 0.0856 0.0474 0.0782

PANEL B
Wooldridge’s Estimator Kyriazidou Estimator

Estimated First Step True First Step Parameters
Parameters

R=1 R=1 R=3 R=5
N Mean

Bias
Median SE A SE MAD Mean

Bias
Median SE A SE MAD Mean

Bias
Median SE A SE MAD Mean

Bias
Median SE ASE MAD Mean

Bias
Median SE ASE MAD

250 0 . 0 2 0 . 0 2 0 . 1 2 0.12 0.09 0.04 0.05 0.19 0 . 1 2 0.11 0.02 0.01 0.17 0 . 1 2 0 . 1 1 0.04 0.03 0.14 0 . 1 1 0 . 1 0 0.04 0.03 0.14 0.11 0.09
500 0 . 0 2 0 . 0 2 0.10 0.08 0.08 0 . 0 2 0.04 0 . 1 1 0.09 0.08 0.04 0.05 0 . 1 2 0.09 0.09 0.05 0.06 0 . 1 0 0.08 0.08 0.05 0.05 0 . 1 0 0.08 0.08
750 0.01 0.004 0.07 0.07 0.04 0 . 0 1 0 . 0 1 0.09 0.07 0.06 0 . 0 2 0.03 0 . 1 0 0.08 0.06 0.04 0.04 0.08 0.07 0.05 0.04 0.04 0.07 0.07 0.05
1000 0 . 0 2 0 . 0 2 0.06 0.06 0.04 0.04 0.05 0.09 0.07 0.07 0 . 0 2 0.03 0.09 0.06 0.06 0.03 0.03 0.07 0.06 0.05 0.04 0.04 0.07 0.06 0.05

PANEL C
More Param etric New Estimator Less Parametric New Estimator

N Mean Bias Median Bias SE ASE MAD Mean Bias Median Bias SE ASE MAD
250 0.0205 0.0298 0.1122 0.1054 0.0795 0.0373 0.0355 0.1266 0.1147 0.0870
500 0.0304 0.0279 0.0947 0.0782 0.0600 0.0281 0.0259 0.0876 0.0810 0.0620
750 0.0152 0.0190 0.0618 0.0639 0.0428 0.0116 0.0161 0.0578 0.0657 0.0413
1000 0.0314 0.0360 0.0653 0.0543 0.0427 0.0168 0.0203 0.0615 0.1281 0.0428

00K)



TABLE 5’: Breaking The Normality Assumption With Uniform Distributions

U = Uniform(0,l);
S = 0.8*U + 0.6*Uniform(0,l);

a  = (XI + X2)/2 + V2  *Uniform(0,l) + 1;
77 = -[(Zl 1 + Z12)/2 + (Z21 + Z22)/2 + Uniform(0,l) + 0.07];

PANEL A
Ignoring Correction For Sample Selection

N Mean Bias Median Bias SE ASE MAD
250 0.1023 0.0914 0.1482 0.1082 0.0945
500 0.1278 0.1299 0.1461 0.0769 0.1299
750 0.1214 0.1294 0.1320 0.0612 0.1294
1000 0.1250 0.1273 0.1358 0.0538 0.1273

PANEL B
Wooldridge’s Estimator Kyriazidou Estimator

Estimated First Step True First Step Parameters
Parameters

R=1 R=1 R=3 R=5
N Mean

Bias
Median SE ASE MAD Mean

Bias
Median SE ASE MAD Mean

Bias
Median SE ASE MAD Mean

Bias
Median SE ASE MAD Mean

Bias
Median SE ASE MAD

250 0.001 -0.0001 0.15 0.13 0.10 0.05 0.07 0,19 0.14 0.13 0.05 0.06 0.18 0.14 0.10 0.07 0.05 0.16 0.13 0.09 0.07 0.05 0.15 0.13 0.10
500 0.01 0.01 0.10 0.09 0.07 0.02 0.02 0.14 0.10 0.08 0.01 0.01 0.13 0.11 0.09 0.05 0.05 0.11 0.10 0.08 0.06 0.06 0.11 0.10 0.08
750 0.003 0.005 0.08 0.08 0.05 0.02 0.03 0.12 0.09 0.07 0.03 0.03 0.11 0.09 0.07 0.06 0.06 0.10 0.08 0.07 0.07 0.07 0.10 0.08 0.07
1000 0.005 0.009 0.06 0.07 0.04 0.03 0.05 0.12 0.08 0.08 0.03 0.05 0.11 0.08 0.08 0.06 0.07 0.10 0.07 0.09 0.07 0.08 0.10 0.07 0.08

PANEL C
More Param etric New Estimator Less Parametric New Estimator

N Mean Bias Median Bias SE ASE MAD Mean Bias Median Bias SE ASE MAD
250 -0.0047 0.0023 0.1557 0.1253 0.1121 0.0076 0.0072 0.1510 0.1293 0.1061
500 0.0034 0.0003 0.0817 0.0897 0.0470 0.0184 0.0220 0.0890 0.0918 0.0488
750 0.0030 0.0043 0.0616 0.0719 0.0413 0.0123 0.0201 0.0684 0.0758 0.0469
1000 -0.0048 -0.0008 0.0615 0.0626 0.0421 0.0049 0.0083 0.0615 0.0659 0.0466

00U)
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distributed errors. Both uniform or distributions do not seem to affect too badly 

our proposed estimators in relation to Wooldridge’s (1995) and Kyriazidou’s (1997) 

estimators. Wooldridge’s (1995) estimator does not need joint normality for the errors 

in both equations. It is sufficient to have a marginal normality for the errors in the 

selection equation and a linear projection of the errors in the main equation on the 

errors in the selection equation. Usually, it is the case that for sample selection 

models, and in terms of robustness of the estimators against misspecification of the 

error distribution, it is more critical the normality assumption for the errors in the 

main equation than in the selection rules. For example, it is known that in Heckman’s 

(1976, 1979) two-stage estimator the first-stage probit seems to be rather robust to 

violations of the normality assumption. As the results in our experiments are 

conditional to a sample selection problem design that comes through a linear 

projection of the errors in the main equation on the errors in the selection equation, the 

MPNE and the LPNE do not need a trivariate normal distribution for the errors in both 

equations but just a bivariate normal distribution for the errors in the selection 

equation. As a result, it may be the case that invalidating joint normality (given 

linearity) does not have strong consequences for Wooldridge’s (1995) and our 

proposed estimators. We defer for future research to look at the effects of breaking 

down at the same time linearity and normality assumptions. Kyriazidou’s (1997) 

estimator is a distributionally free method and therefore it is robust to any 

distributional assumption that preserves the conditional exchangeability assumption. 

It is fair to say that we will probably need larger sample sizes than the ones included 

in our experiments to exploit the properties of this estimator. The sample size in
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Wooldridge’s (1995) estimator is given by the observability rule = 1 ; our proposed 

methods use individuals with d-, -d^^ = 1; and Kyriazidou’s (1997) estimator uses 

individuals with <7,, = <7,̂  = 1 and z ^ j = z ^ j  in equation (2.2). Thus, the latter 

method uses the smallest sample size of all the methods.

3.6 Concluding Remarks and Extensions

In this chapter we are concerned with the estimation of a panel data sample selection 

model where both the binary selection indicator and the regression equation o f interest 

contain unobserved individual-specific effects that may depend on the observable 

explanatory variables. For this case, not many estimators are available. The most 

recent ones are the estimators developed by Wooldridge (1995) and Kyriazidou 

(1997). We introduce an estimator that can be seen as complementary to those 

previously suggested, in the sense that it uses an alternative set o f identifying 

restrictions to overcome the selection problem. In particular, the estimator imposes 

that the joint distribution of the error terms, conditional upon the entire vector of 

(strictly) exogenous variables, is normal. The estimation procedure is an extension of 

Heckman’s (1976, 1979) sample selection technique to the case where one correlated 

selection rule in two different time periods generates the sample. We present two 

versions o f the estimator depending on a varying degree of parametric assumptions for 

the first step estimator.
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The finite sample properties of the estimator are investigated by Monte Carlo 

experiments. The results of our small Monte Carlo simulation study show the 

following. First, the estimator is robust to violations of the conditional 

exchangeability assumption in Kyriazidou’s (1997) method. Second, the estimator is 

free from misspecification problems affecting the individual effects in the main 

equation, in contrast to Wooldridge’s (1995) one. Furthermore, under its less 

parametric version, the estimator is also exempt from misspecification problems about 

the individual effects in the sample selection equation. Third, the estimator performs 

well with dependent data introduced through correlation over time for the variables in 

the model. Finally, violations of the normality assumption (given linearity) do not 

seem to affect too badly the proposed estimator.

Our analysis rests on the strict exogeneity of the explanatory variables in both 

equations, although it would be possible to relax this assumption in the main equation 

by maintaining only the strict exogeneity of the regressors in the selection equation 

and taking an instrumental variables approach. We also maintain a joint normality 

assumption^^. We defer for future research to look at the effects o f breaking down at 

the same time linearity and normality assumptions. More research is also needed in 

the search for trimming solutions to overcome the anomalous effect of particular 

observations in the estimates of the variance-covariance matrix for semiparametric 

two and three-stage estimators.

In chapter 5 we present new estimators with some similar properties as the estimator in this chapter but which 
relax normality or any other parametric assumption for the errors distribution.
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3.7 Appendix I: The Variance-Covariance Matrix 

for the More Parametric New Estimator

Recall (2.7): with {y ,̂ -  %,) = (x„ -  x,,)/? + {s , -  and > O} for

r  = E[{y, - y , ) \x ^ ,z . ,v ,  < z j , < z j  ̂ ] = {x, + 4 ,  ' ,

2 .,.. =

^,7, -P,.v '^ ,7 .

( > -7)
1 /2

® 2 ^ 7 ,7 ,7 .v,P^]

The two-stage estimation goes as follows. First, we estimate 

07,, = [ r ,.r , ,p ,s ) ' by C7„ = (y , ,y , ,Â ,) ' using a bivariate probit with observations

on . Second, for the subsample with =d-^ = 1, we do least squares

estimation of Ay„, = (y„ - y „ )  on Ax„, = (x„ - x „ )  and (I ,,,, 2 ,,,j to estimate the

parameter of interest, p ,  and the coefficients accompanying the sample selection

terms Define = (Ax„,,2„,,2,„) '. The sample moment condition for p

and {î,sÂ st)  in the second stage is

— ̂ I A y , „  -  Ax„,^ -  Î „ • 2,„ -  f „ • 2,„ j -  0 ; (I.l)
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this is the first order condition o f a two stage extremum estimator with finite 

dimensional first stage parameters.

Define

and observe^^

l A , . (1.2)

where is the bivariate probit information matrix for = ^[^„z ,y ,],

<i>,s =

0 , „  =  0

‘I>2,a = ® 2 {?»Z/X,.9 »z,X.. a ,,}  and p ’u ]

q , , , , and are defined in section 3 of the chapter.

The so called delta method yields "̂^

”  The notation denotes convergence in probability.
Look at the section for two-stage e x t r e m u m  e s t i m a t o r s  with finite dimensional first-stage nuisance parameters in 

Lee (1996).
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E - ' { d , d , R , R \ , ) ~ Y . { d , A A A  + A-A,} (1.3)

where

A = E< d.d. R...Z R...Z

Then

. a i. R..

(1.4)

i v ( n „ - n , , ) = ‘' iv (o ,r). (1.5)

r  = E-'{d,dAsR',s)-E{{d,d,e,A, + A-A){d,d,e,R„ + W A)'}■ E-'{d,d,R,,R\,) .

The term ^  A is the effect of the first stage on the second. An estimate for 

r  is obtained by replacing the parameters with their estimates and the expectations by 

their sample analogs. As the Fisher information matrix in (1.2) contains the negatives 

of the expected values of the second derivatives, the complexity o f the second 

derivatives in this case makes it an excellent candidate for the Bemdt et al. (1974) 

estimator of the inverse of the Fisher information matrix. This yields:
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r-|

2 , / K  / ^  2 , / ( .v

(1.6)
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3.8 Appendix II: The Variance-Covariance Matrix 

for the Less Parametric New Estimator

The three-stage semiparametric estimation goes as follows. First, we estimate the 

probabilities for r = t,s  by using kernel estimators with

observations on Second, we use the probability estimates to estimate p^  ̂ by

using a bivariate probit with observations on

Third, for the subsample with = 1, we do least squares estimation of on

and the estimated sample selection correction terms to estimate the parameter of 

interest, J3, and the coefficients accompanying the sample selection terms )'.

The sample moment condition for (5 and p , , , ? j' in the third stage is

—  '^d.,d^^. I At,,, -  Ax,„^ -  -  i,, • 1^,,, -  0 ; (II. 1)

where

/I.... -

0
2

• < D
0 - Â / ) "  J ( ' - A / ) "

$ 2
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Once the first and the second step estimators have been consistently estimated, 

the third step estimator can be seen as another two stage semiparametric extremum 

estimator where the first stage estimators are given by the vector of infinite

dimensional nuisance parameters'^ the finite

parameter . With this approach (II. 1) is the first order condition of a two

stage semiparametric extremum estimator with a combination of finite and infinite 

dimensional first stage parameters.

Observe that

o

where is the bivariate probit information matrix for p^

®2,« '[4(z/)] .îi,<I>''[Â,(z,)]. A n}. ?>2./» =«^2 I?»*■'[*, (Z/)] A,

and = K , , 4 ) ' -

A delta method for an estimator with first step kernel estimators yields

They are infinite-dimensional because as N  —> oo the number o f  terms also goes to oo, given that the terms 
are individual specific and that the first step are functions rather than a finite-dimensional parameter.
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-  n „ )  {d.d,R,,R',,) ■ ^ z  {d„ d„ e,A . + ^  • A, +

d{d,d,{Ay,, -  Ax,J -  e,^. ■ -  e „  ■ ,,^\d,^ -  E{d^]z^

(II.3)

where

(II.4)

Then "̂^

r = £ - ' ( r f , ■ El^{d,d,e„R,. + /( A + (Ay,. -  A x ,,^ - «„ ■ -  <„ /I . ) & |z , } /a ' . ]  ■ [rf„, -  £(rf,Jz,

(rf,rf,e„7(„ + /I ■ A + £[z?{rf,< {A;-,, -  A x,,/?- („  ■ X „  -  / .  ■ } / * '„ ]  ■ [</,„ -  £ (< ,|z ,)])'} •

The variance-covariance matrix should take into account the estimation errors 

coming directly by the effect of the kernel estimates on the sample selection correction 

terms and the effect of the p,, coefficient. For the latter, the influence function in 

(II.2) will already take into account the indirect effect o f the estimation errors in the 

kernels on the sample selection correction terms through the estimated correlation

The result in (II.5) holds when a high-order kernel is used in the first stage, and the bandwidth is chosen to be 
smaller than the optimal bandwidth minimising the asymptotic mean squared error; such a small bandwidth 
reduces the asymptotic bias faster than the optimal bandwidth. With a kernel estimator the result in (II.5) can be 
proved using high-order kernels, U-statistic theories, and the proper uniform consistency theorem.
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coefficient. An estimate for F is generally obtained by replacing the parameters with 

their estimates and the expectations by their sample analogs. In our case, both

■ [(/„,-£(rf„|z,)] in (II.3) and

o z,
^ 2 ,, y/ .

-  E (d ^\z,^  in (II.2) are complex and difficult to

calculate, making it hard to form their estimators. There is an alternative estimator, 

developed in Newey (1992), that does not have these problems^^. It uses only the 

form of the functions to derive and the kemels^^ to calculate the estimator. For a

scalar the estimator for E à z.
K ^ 2,a y/ .

[4 , is given by^^

9. =

\ /̂V /
1 r. , q.^-' _ _ _  . .

N

c.N

z .  -  Z.

(II.6)

See also N ew ey (1994b) and Newey and McFadden (1994c).

We have to make the decomposition o f  — S t I f   ̂ because N ew ey’s (1992) results are given for first step 

estimators o f  the form { \ j  ^ k { ^ Z j  — Z ^ j c f ^ ' ^ .  A kernel estimator o f  the density o f  Z  ̂  will

be a component o f  the expression before, where y  is identically equal to 1.

-
In practice, we include i9, — /  ---- .

' ^  N
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This estimator can be thought of as the influence of the ith observation through 

the kernel estimators. It can be calculated by either analytical or numerical 

differentiation with respect to the scalar Ç . We have combined both approaches. The 

derivative is then evaluated at = 0. Consistency is shown in Newey (1992).

Newey’s (1992) estimator for

is given by40

(II.7)
<•=()

-c.

0 "

0 “‘ -A.

■O
('

O- 0 “ _____ ____
5lT̂ -

Cn 
z ,  -  z.

-N

O"

X j
In practice, we include ^
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<t>- o

O’
g.vk) + ̂ " : iv 4

(’-Â.4

O- o '
,̂(̂ y) + 4'A -  ]

1  ̂̂  _ \ ,o-‘ 1 / ,  , \ ,A.

that is calculated by a mixture of analytical and numerical differentiation with respect 

to the scalar ^ . The derivative is then evaluated at ^  = 0.

As the Fisher information matrix in (II.2) contains the negatives of the 

expected values of the second derivatives, the complexity of the second derivatives in 

this case makes it an excellent candidate for the Berndt et al. (1974) estimator of the 

inverse of the Fisher information matrix. This yields:
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Chapter 4 

Selection Correction in Panel Data Models: 

An Application to Labonr Snpply and Wages'

4.1 Introduction

In many problems of applied econometrics, the equation of interest is only defined for 

a subset of individuals from the overall population, while the parameters of interest 

are the parameters that refer to the whole population. Examples are the estimation of 

wage equations, or hours of work equations, where the dependent variable can only be 

measured when the individual participates in the labour market. If the sub-population 

is non-randomly drawn from the overall population, straightforward regression 

analysis leads to inconsistent parameter estimates. This problem is well known as 

sample selection bias, and a number of estimators are available which correct for this 

(see Heckman (1979), or Powell (1994) for an overview).

Another problem is the presence of unobserved heterogeneity in the equation 

o f interest. Economic theory often suggests estimation equations that contain an

* Useful comments and suggestions from Richard Blundell, Christian Dustmann, Arthur van Soest and 
Frank Windmeijer are gratefully acknowledged. Thanks are also owed to participants at the Primer 
Encuentro de Economi'a Aplicada, June 1998, Barcelona, Spain; at the Sth-Intemational Conference on 
Panel Data, June 1998, Goteborg, Sweden; at the German Socio-Economic Panel Users (GSOEP) 
Conference, July 1998, Berlin, Germany; at the European Meeting o f  the Econometrics Society 
(ESEM), August 1998, Berlin, Germany; at the Royal Economic Society (RES) Annual Conference, 
March-April 1999, Nottingham, United Kingdom; and at the European Society for Population 
Economics (ESPE) Conference, June 1999, Torino, Italy.
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individual specific effect, which is unobserved, but correlated with the model 

regressors. Examples are unobserved ability components in wage equations, correlated 

with wages and education (see Card (1994) for details), or the estimation of Frisch 

demand functions in the consumption and labour supply literature (see, for instance. 

Browning, Deaton, and Irish (1985), Blundell and MaCurdy (1999) and MaCurdy 

(1981)). If unobserved individual specific (and time constant) effects affect the 

outcome variable, and are correlated with the model regressors, simple regression 

analysis does not identify the parameters of interest. For the estimation o f coefficients 

on variables which vary over time, panel data provide a solution to this latter problem, 

and a number o f straightforward estimators are available (see Chamberlain (1984), 

and Hsiao (1986) for overviews).

In many applications, both problems occur simultaneously. If the selection 

process is time constant, panel estimators solve both problems. But often this is not 

the case. Recently, some estimators have been proposed which deal with both sources 

o f estimation bias. These estimators require panel data, and produce consistent 

parameter estimates under various sets of assumptions. We consider three estimators 

which allow for additive individual specific effects in both the (binary) selection 

equation and the equation of interest, and, at the same time, allow for the equation of 

interest being defined for a non-random sub population. These estimators impose 

different consistency requirements, some of which may be restrictive in particular 

applications.

The first estimator we consider has been proposed by Wooldridge (1995). It 

relies on a full parameterisation of the sample selection mechanism, and requires
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Specifying the functional form of the conditional mean of the individual effects in the 

equation of interest. It does not impose distributional assumptions about the error 

terms and the fixed effects in the equation of interest. The second estimator we 

discuss has been proposed by Kyriazidou (1997). The basic idea of this estimator is to 

match observations within individuals, which have the same selection effect in two 

time periods, and to difference out both the individual heterogeneity term, and the 

selection term. The third estimator has been developed in chapter 3. This method adds 

a distributional assumption for the error term in the equation o f interest.

In the first part of the chapter, we describe the main features of the three 

estimators, and point out the conditions under which each of them produces consistent 

estimates of the parameters of interest. Not many applications of these estimators exist 

in the literature. In the second part of the chapter, we apply the three methods to a 

typical problem in labour economics. We estimate wage equations for female labour 

market participants, and try to identify the effect of actual labour market experience 

on wages. In this application, all the before mentioned problems arise. Female labour 

market participants are non-randomly drawn from the overall population. Their 

participation propensity depends on unobservables, which are likely to be correlated 

with the model regressors. And their productivity depends on unobservables, which 

are likely to be correlated with the regressors in the main equation.

All three estimators impose the assumption of strict exogeneity of the 

explanatory variables. In many typical applications, like the one we use as an 

illustration, this assumption is likely to be violated. We show how all three estimators 

can be extended to relax this assumption in the main equation, maintaining only the
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Strict exogeneity of the regressors in the selection equation. We apply the extensions 

of the estimators to our particular problem, and compare the emerging estimates.

Another problem which frequently occurs with panel data is measurement 

error in some of the explanatory variables. With most panel surveys, the construction 

of work history variables needs to be based on retrospective information, which is 

likely to suffer from measurement error. If the affected variables enter the equation of 

interest in a non-linear manner, IV estimation may not solve the problem. We show 

how to address this problem within the methods discussed.

The data for our empirical application is drawn from the German Socio- 

Economic Panel (GSOEP). The dataset used for estimation is based on the first 12 

waves o f the panel.

The chapter is organised as follows. In the next section we describe briefly the 

three estimators and their underlying assumptions. Section 3 compares the estimators. 

Section 4 discusses problems of implementation, and describes extensions to the case 

where strict exogeneity of some of the model regressors in the main equation is 

violated. Section 5 describes the data and the model we estimate. Section 6 presents 

the results, and section 7 concludes.
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4.2 The Model and Estimators

4.2.1 The Model

The model we consider in the following consists of a binary selection rule, which 

depends on a linear index, and an unobserved (time constant) additive individual 

effect, which may be correlated with the model regressors. The selection rule assigns 

individuals in the overall sample population to two different regimes. For one regime, 

a linear regression equation is defined, which again has an additive unobserved 

individual component, correlated with the model regressors. The slope parameters of 

this equation are the parameters of interest.

This model can be written as:

w = X p  ccj Eif \ / = 1,..., Â , / = 1,..., T, (2 .1  )

d'„ = 2 „ r - r i , -  u, ; d„ = > o], (2,2)

where 1 [.] is an indicator function, which is equal to one if its argument is true, and 

zero otherwise. Furthermore, p  and y  are unknown parameter vectors, and ,z„ are 

vectors of explanatory variables with possibly common elements^% including both 

time variant and time invariant variables, and time effects. The and 77, are

For some estimators exclusion restrictions are not required because distributional assumptions (like 
normality o f  the error terms) identify the model. We assume throughout that there are exclusion 
restrictions in (I).



CHAPTER 4. AN APPLICATION TO LABOUR SUPPLY AND WAGES 10 2

unobservable and time invariant individual specific effects, which are possibly 

correlated with and The £■, and u-, are unobserved disturbances. The 

variable w,, is only observable if = 1. The parameter vector we seek to estimate is

We assume that panel data is available. Equation (2.1) could be estimated in 

levels by pooled ordinary least squares (OLS). This will lead to consistent estimates of 

P  under the following condition:

E { a ,+ s , \ x , ,d ,  = \) = E [a \x ,,d „  = \ )+ E [ s ,\x , ,d ,  = l) = 0, Vr. (2.3)

Accordingly, OLS estimates on the selected subsample are inconsistent if 

selection is non-random, and/or if correlated individual heterogeneity is present. In 

both cases, the conditional expectation in (2.3) is unequal to zero.

One way to eliminate the fixed effects is to use some type of difference 

estimator. Given identification"^^, the consistency condition for an estimator using 

differences across time instead of level equations is given by the following 

expression:

^{pit ~ ~ ^is = l) — 0? s ^  t, (2.4)

For identification we require the matrix E to be finite

and non-singular.
If 5 =  r — 1, the data is transformed by applying first differencing over time. Other transformations 

include mean deviation operators.
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where 5 and t are time periods.

Since condition (2.4) puts no restrictions on how the selection mechanism or 

the regressors relate to , differencing equation (2.1) across time not only eliminates 

the problem of correlated individual heterogeneity but also any potential selection 

problem which operates through a , .

If conditions (2.3) or (2.4) are satisfied, the OLS estimator or the difference 

estimator respectively lead to consistent estimates. No specification of the selection 

process is necessary. If conditions (2.3) and (2.4) are violated, consistent estimation 

requires to model the selection process. The estimators we describe in the next section 

take these consistency requirements (2.3) or (2.4) as a starting point. The idea of the 

estimator by Wooldridge (1995) is to derive an expression for the expected value in

(2.3), and to add it as an additional regressor to the equation o f interest. The estimator 

in chapter 3 derives an expression for the expected value in (2.4), which is then added 

as an additional regressor to the differenced equation. The estimator by Kyriazidou 

(1997) matches pairs of observations for a given individual for whom the conditional 

expectation in (2.4) is equal to zero.

4.2.2 Estimation in Levels: Wooldridge’s Estimator

The estimation method developed by Wooldridge (1995) relies on level equations. 

The basic idea is to parameterise the conditional expectations in (2.3) and to add these 

expressions as additional regressors to the main equation. The method is 

semiparametric with respect to the main equation, in the sense that it does not require 

joint normality of the errors in both equations. Similar to Heckman’s (1979) two-stage
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estimator, only marginal normality of the errors in the selection equation and a linear 

conditional mean assumption of the errors in the main equation is required. The time 

dimension allows controlling for individual effects in addition, which requires further 

assumptions for the conditional means of the individual effects in both equations. 

Wooldridge (1995) imposes two assumptions on the selection equation (fVJ and fV2 

below), and two assumptions about the relationship between and the resulting

error term in the selection equation (fVS and PV4).

• W l: The regression function o f on z, is linear.

Following Chamberlain (1984), Wooldridge (1995) specifies the conditional mean of 

the individual effects in the selection equation as a linear projection on the leads and 

lags of the observable variables: 77, = +...+z,y<^^ + c ,, where c, is a random

component.

• W2: The errors in the selection equation, + c,, are independent o f  z] and

normal (o,crfj, where z. = (x ,,z ,) with x. = and z. = (z,,,...,z,y).'*'^

W3: The regression function o f  a, on x, and 1/,, is linear. 45

44 v„  is heteroskedastic over time whenever is.

An alternative assumption is (see Mundlack (1978), Nijman and Veerbeck (1992), and Zabel (1992)) 

that cr, depends only on the time average o f  x,, .
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Accordingly, E [ a \z ,̂ + (f), v,, The conditional distribution

of Of, on v„ is linear, but otherwise unrestricted. We do not observe 

however, but only the binary selection indicator d^,. Therefore, E(a^ \z-, ) has to be

replaced by the expectation of or, given = l) , which is obtained by integrating

= + over v,, < z „ y „ + . . . + Z j ^ y T h i s  yields

E(a\z,,d„  = l) = +...+i,yÿ/r + =l ] .

• W4: is mean independent o f  z] conditional on v„ and its conditional mean is

linear on v„.

Accordingly, E[s ,, \z, , ) = p, y„ . The first equality states that ^„ is

mean independent of ^  conditional on v„, and the second equality that is

linear. No restrictions are imposed on the temporal dependence of s „ , or on 

C o rr(g „ ,y ,J , for s ^ t . Again, as we do not observe but the binary selection

The key point for identifying the vector j3  is that, under v„ being independent o f  ^ , and the 

conditional expectation Æ ^ o r , , V,, j  being linear, the coefficients on the , r =  1, . . . , T ,  are the

same regardless o f  which V„ is in the conditioning set. This is crucial to the approach, and follows 

from the law o f  iterated expectations. For any t ,

E [a,\z,) = + <t>,E[v„\%]
~  ^ i \ M  +---+'X,7’^ ,7 ’

— X, j ^  j T .. .TX,y’ y/ -p.

The second equality follows because |ẑ  j =  0  under W2, and the third follows from the

coefficients in the linear projection o f  or, onto X, being necessarily time-invariant.

z , j ^ , i+ . . .+ z , j .y ,7. is the reduced form index for the selection equation in (2 .2 ), once the time- 

constant unobserved effect 77, is specified as in Wl.
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indicator , we must find the expectation of ŝ , given = l ) . This is obtained

by integrating £ (s„ |z ;, over i/„ <z„y„+...+z,,.y,^, resulting

E{eu\%^<i„ = \)  = p,E[v„\%,d„ = l ] .

in

Under assumptions W l-  W4, Wooldridge (1995) derives an explicit 

expression for

E[a,+s„\%  ,d„ = l)  = £ (a ,|z , ,d„ =\^ + e {£,\z, ,d„ = x,^y/^+...+x„y/-, +

(«>, + p ^-E ^v ,\%  ,d„ =1

(2.3’)

which results in the following model:

w . = + x,,/3 + I a , ) + 6,, (2.5)

where is the reduced form index in the

selection equation for period t , and /cr,) = E v,Jz; ,d■̂  = 1

Notice that, since d̂  ̂ =1 for r  ^   ̂ is not included in the conditioning sets of

E(a\z-,d^, = \^ and = l), the selection term E is not

strictly exogenous in (2.5). The condition, which holds for the new error term in
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(2.5), is =\^ = E ( e ^ \z ^ ,v < / / .^  = 0. We call this a “contemporaneous

exogeneity” of the selection term E ,d ,̂ = 1 with respect to in (2.5).

To obtain estimates for T ( ) , a probit on //,, = z-^y,^+...+z-j^y,j. is estimated

for each t in the first step. In the second step, equation (2.5) is estimated either by 

minimum distance or pooled OLS regression. Under the assumptions W1-W4, the 

estimator for J3 is consistent. Since dependence between the unobservables in the

selection equation, v.,, and the unobservables in the main equation, is

allowed for, selection may depend not only on the error , but also on the 

unobserved individual effect a  -. For time invariant variables or variables that vary 

systematically over time, p  is not separable from ^  . For time varying variables we 

can identify p  given that the coefficients ^ , , . . . , ^ 7̂ are constant for different time 

periods (assumption fVS).

4.2.3 Estimation in Differences I: Kyriazidou’s Estimator

The estimator developed by Kyriazidou (1997) relies on pairwise differences over 

time applied to model (2.1) for individuals satisfying = J,, = 1 , s ^  t . The idea of 

the estimator is as follows. Re-consider first the expression in (2.4):
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where zj, = (x,, ) ', z]̂  = )', and for each time period the selection terms are

= a(z„ r  -  ?7, , z„r -  n, ; f {su , %, n, ))

= E ( g „ | z ; , , z ; , , a , < Z , . 7 < z „ r - r i^

= -  7 , ,  Z , , /  -  7, ; F(£„. , [zj,, z",, a , , 7 , ))

where A(-) is an unknown function and F(-) is an unknown joint conditional

distribution function of the errors. The additional variables in the conditioning set in 

(2.4’), compared to the conditioning set in expression (2.4), follow from the fact that 

the sample selection mechanism has to be specified in this model. The individual 

effects in both equations are allowed to depend on the explanatory variables in an 

arbitrary way, and are not subject to any distributional assumption. Different to 

Wooldridge (1995), the individual effects are now included in the conditioning set.

Under the assumption that for individuals for whom z ^ j  = z ^ j  and 

d,i = -  1, the sample selection effect is equal in t and s (that is, in

(2.4’)), differencing between periods s and t will entirely remove the sample selection 

problem and, at the same time, the time constant individual heterogeneity component.

In general however there is no reason to expect that holds even for

individuals satisfying the conditions above. In particular, the selection terms depend 

not only on the conditioning vector (z],,z'^.,a,,77,), but also on the joint conditional



CHAPTER 4. AN APPLICATION TO LABOUR SUPPLY AND WAGES 10 9

distribution of the error terms for the two time periods, which may differ across 

individuals, as well as over time for the same individual. To ensure that 

holds, Kyriazidou (1997) imposes a “conditional exchangeability” assumption. The 

resulting estimator is semiparametric with respect to both the error distribution and the 

distribution of the fixed effects.

To implement this estimator, Kyriazidou (1997) imposes the following 

conditions:

• K I: , 6",̂ , u,,, ) and ) are identically distributed conditional on

?„,z„ ,a ,,7 j,.Thatis, |z;,, zj,. a , , , g , , |z;,. zj,, a , , .

This “conditional exchangeability” assumption implies that the idiosyncratic 

errors are homoscedastic over time for a given individual. Under this assumption, any 

time effects are absorbed into the conditional mean.

• K2: An appropriate smoothness condition^^ is imposed on the selection correction 

function  A(-).

This smoothness condition ensures that once K l  holds, = z ^ j  implies

^ i i s  ~  ^ i s t  •

Under assumptions K1-K2 and provided identification is met,^^ the OLS estimator 

applied to

48 Kyriazidou (1997) imposes a Lipschitz continuity property on the selection correction function A (-) .
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W/, -  = (^„ -  Xi, ) P  + e„,, (2.6)

for individuals satisfying = \ ,s  ^  t and z ^ j  = z ^ j ,  is consistent. The

resulting error = (s,^ -  J  has a conditional expectation that satisfies

E { e u , % , , % „ a , , r i , , d „  = 4  = l )  =  0 .

The estimator requires that there are individuals with z . j = z ^ j  with 

probability one, which is not the case if z•̂  contains a continuous variable. To 

implement the estimator, Kyriazidou (1997) constructs kernel weights, which are a 

declining function of the distance \ z ^ j - z ^ j \ ,  and estimates pairwise differenced

equations by weighted OLS^^.

The procedure requires estimates of y  , which can be obtained either by 

smoothed conditional maximum score estimation (see, for instance, Charlier, 

Melenberg and van Soest (1997) and Kyriazidou (1997))^’ or conditional logit 

(Chamberlain (1980)) estimation.

In this model identification o f  p  requires -  z , =  Oj to be

finite and non-singular. Given that we require support o f (z , — z ^ y  at zero, nonsingularity requires 

an exclusion restriction on the set o f  regressors, namely that at least one o f the variables ẑ  ̂ is not 

contained in x̂  ̂ .
The estimator is arbitrarily close to root n-consistency depending on the degree o f  smoothness one is 

willing to assume for the kernel function.
Estimating y  by the smoothed conditional maximum score estimator requires additional assumptions

(see Manski (1987), Horowitz (1992), Kyriazidou (1994) and Charlier, Melenberg and van Soest 
(1997) for details).
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4.2.4 Estimation in Differences II: Chapter’s 3 Estimator

This estimator is also based on pairwise differencing equation (2.1) for individuals 

satisfying d̂  ̂ -  = \ . Different from Kyriazidou’s (1997) estimator, chapter’s

3 estimator relies on a parameterisation of the conditional expectation in (2.4). On the 

other hand, it does not impose the “conditional exchangeability” assumption.

To implement the estimator, the following assumptions are made:

• CH31: The regression function o f  r/̂  on z, is linear^^.

• CH32: The errors in the selection equation, v,, = + c-, are normal (o,crf j.

• CH33: The errors [(£■„-£■„), K, ’ ;̂.v] trivariate normally distributed

conditional on z].

The first two assumptions refer to the selection equation and are equivalent to 

assumptions W l and W2 above. The third assumption imposes restrictions on the 

joint conditional distribution of the error terms in the two equations. The method is 

non-parametric with respect to the individual effects in the main equation and allows, 

under its semi-parametric version, for a non-parametric conditional mean of the 

individual effects in the selection equation on the leads and lags o f the explanatory 

variables in that equation.

Under assumptions CH31-CH33, the resulting estimation equation is given by

This assumption corresponds to the “more parametric new estimator” in chapter 3. There, a non- 

parametric specification o f  the conditional mean o f 77. is also proposed. In that case, |z,  ̂ is left

unrestricted.
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w H , H ,
V cr,  cr, y

+ g. (2.7)

where = ^,i/ri+---+^/T/rr’ T = are the resulting reduced form indices in the 

selection equation for periods / and 5, and Pts ~ P{v ia,){v ig ) the correlation 

coefficient between the errors in the selection equation. Furthermore,

Vcr, cr  ̂ y ’ Pisvcr. 0-,
is the conditional mean

= l) derived from the three-dimensional normal distribution 

assumption in C H 33P  The new error term =(s„ ~ ,̂.v) has a

conditional expectation < / / , , j  = 0.  To construct estimates of

the /l(-) terms the reduced form coefficients will be jointly determined with

(  H„ ( \

•I P  is
c r . y 1 e r , ’ O', J

In the case o f  the errors in the selection equation being uncorrelated ( p,̂ . = 0 ), then 

=  \ )  =  £ , À { H J a , )  +  i ^ À { H j c r ^ )  where

z l ( / /„  / ( 7 i )  =  E^Vii 1 ^ =  l]  and /c r^ ) =  E^v.^\z^,dj^ =  l ] . Given that we define both

as c, +  ’ T =  r, j", thus ^  0  and the conditional expectation is more complex:

= l) =

where

V O

V o
See chapter 3 for details on the more complex lambda functions. Expressions there are derived by 
following the work o f  Tallis (1961) for moments o f  a truncated multivariate normal distribution.

A ,p
IcT,

% .p
VO", ’ 0-,

and
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, using a bivariate probit for each combination of time periods. The second step is 

carried out by applying OLS to equation (2.7).

4.3 Comparison of Estimators

Table 1 summarises the main features of the three estimators, and the assumptions 

they impose on the data. Wooldridge’s (1995) method is the only one that relies on 

level equations. This makes it necessary to specify the functional form for the 

conditional mean of the individual effects in the main equation, a , , with respect to 

the explanatory variables (to allow for individual correlated heterogeneity) and with 

respect to the random error term (to allow for selection that depends on the 

unobserved effect ). In the other methods, a, is differenced out, and selection may 

therefore depend on a, in an arbitrary fashion.

With respect to the assumptions on the functional form of the sample selection 

effects, Kyriazidou (1997) treats them as unknown functions, which need not to be 

estimated. Wooldridge (1995) and the estimator in chapter 3 parameterise these 

effects, which imposes three assumptions. First, a normality assumption for the 

random component of the unobservables in the selection equation ( v,, = c, + ).

Secondly, to explicitly modelling the dependence of 77, on the explanatory variables. 

Thirdly, an assumption about the relationship between the errors in the main equation 

and the i/„ in the selection equation. In Wooldridge (1995) joint normality of



TABLE I: COMPARATION OF ESTIMATORS
Estimators Estimation Sample selection 

effects
Distributional assumptions Specification of conditional means

tti Tli e,t Uit ai Tli Eit

Wooldridge Levels Parameterized None Normal random 
component c,

None Normal LP® on X, & Vit=Ci+Uit LP® on Zi LP® on Vit

Kyriazidou Time diff. Unspecified None None None 
but CE^

None but 
CE*"

None None None

Chapter’s 3 Time diff. Parameterized None Normal random 
component

Normal Normal None LP® on Zi/non- 
parametric

Linearity from 
joint normality

î
I
>

c
g
d
i
0
>
CO

8po
C

1 
itnt/)

Estimators Time series properties Sample
Time dummies or time 

trend
Time

Heterosk.
Serial

correlation
Corr(eit,Uis) 

t  ^  S
requirements

Wooldridge Yes Yes Yes Unspecified d i i  =  1

Kyriazidou Yes No CE'’ CE^ d i ,  =  d^^ =  1,

Chapter’s 3 Yes Yes Yes subject to joint 
normality — ^ is

® LP denotes the linear projection operator.

*’ Subject to the “conditional exchangeability” (CE) assumption according to which the vectors of errors (^£u , ,  W,,^ and are identically distributed conditional on

^il ’ ^is  5 ^ 1 5 ^ ;  •
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unobservables in both equations is not needed once a marginal normality assumption 

for the and a linear projection specification for on are imposed. In 

chapter’s 3 estimator, joint normality is assumed, and linearity between and v,, 

results from the joint normality assumption.

Kyriazidou (1997) does not impose any parametric assumption about the 

distribution of the unobservables in the model. However, the conditional 

exchangeability assumption in Kyriazidou’s (1997) estimator imposes restrictions on 

the time series properties of the model. This assumption is more demanding than joint 

conditional stationarity for the time-varying errors (see Kyriazidou (1997) for details). 

While in Wooldridge (1995) and the estimator in chapter 3 not only the conditional 

means, but also the second moments of the error terms may incorporate time effects, 

Kyriazidou’s (1997) estimator allows only for time effects in the conditional mean.

All these methods do not impose explicitly restrictions on the pattern of serial- 

correlation in the error processes. However, in Kyriazidou (1997) serial correlation is 

allowed as far as this does not invalidate the “conditional exchangeability” 

assumption. Wooldridge’s (1995) method imposes no restriction on the way the time- 

varying error in the main equation ( ) relates to the time-varying error in the

selection equation (v„) ,  for s ^ t . Different to Wooldridge (1995), in chapter’s 3 

estimator the joint normality assumption (CH33 above) extends linearity to the 

correlation between and for s ^  t , since it includes in the conditioning set not

only d .,, but <7,,, .
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The estimators differ in terms of sample requirements. In Wooldridge (1995) 

the parameters of interest are estimated from those observations that have = 1. 

Chapter’s 3 estimator uses individuals with =d^^ = 1. Kyriazidou (1997) uses 

those observations that have <7,, = d,  ̂ = 1, and for which z,,y and z,̂ .y are “close”. 

Asymptotically, the effective sample size is smaller for the latter method.

At the stage of implementation, problems may arise with Kyriazidou’s (1997) 

method if there are strong time effects in the selection equation. In this case, it may 

be difficult to find observations for which z,,y and z,^/ are “close”. Furthermore, 

identification problems arise if for individuals for whom z,,y and z. j  are “close”, 

also Xj, is “close” to . In this case, a higher weight is given to observations with 

little time-variation in the explanatory variables in the main equation. A related 

problem arises if high matching weights are assigned to observations whose x  

variables change in a systematic manner. In this case it is not possible to separately 

identify the coefficients of these variables from coefficients on a time trend, or time 

dummies. These problems are likely to occur in many empirical applications, as we 

demonstrate below.
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4.4 Extensions

4.4.1 Estimation if Regressors are Non-Strictly Exogenous

All the estimators above assume strict exogeneity of the regressors. The variable x,, is 

strictly exogenous relative to if

) = 0, / = l , . . . , r .  (4.1)

A similar statement can be made about z„ with respect to . If 

|x „ ) = 0 , we call this contemporaneous exogeneity.

In many empirical applications, the strict exogeneity condition (after 

controlling for both individual heterogeneity and sample selection) is likely to be 

violated. In the following, we describe how the above three estimators can be 

extended in this direction. We maintain the strict exogeneity assumption of regressors 

in the selection equation.

In Wooldridge (1995), the selection correction proposed has been derived 

under the assumption of strict exogeneity of the regressors conditional on the 

unobserved effect, that is, = 0. The strict exogeneity assumption is, for

instance, needed for condition W3 to be valid. To see this, suppose that the variables 

in the equation of interest are predetermined, and possibly correlated with the 

individual effects a.. In this case, the set of valid conditioning variables for the linear
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projection of a, on the regressors differs for different time periods -  in period t the 

conditioning set is the vector = ( x , , . If however the conditioning set

changes over time, the coefficients for the leads and lags of the explanatory variables 

in the linear projection of a, will likewise vary over time, thus invalidating fVS. 

Hence, the condition for p  to be separately identified from ^  (implying that 

y/ = [j/ j ,  t = \ , . . . ,T )  does not hold.

With pre-determined variables, identification of p requires the assumption that 

the variables in the main equation are not correlated with the individual effects a.. 

Assumption W3 is then substituted by

E{a,\%,d.^ = \) = q^(!),E (v ,\% ,d , = l ) .  (4.2)

For many applications, this assumption is very restrictive.

One way to relax this assumption is to substitute the non-strictly exogenous 

time-varying correlated regressors by their predictions, and to apply Wooldridge’s 

(1995) estimator. The construction of these predictions is not straightforward, 

however. For all time periods and for each non-strictly exogenous variable, T unique 

predictions are required. To identify p ,  assumption W3 must hold. Accordingly, 

predictions for x, for period t can not be constructed by using the subsample of 

individuals who participate during that period, where the instruments are both the 

sample selection term for that period (A,,) and the leads and lags of the explanatory 

variables in the sample selection equation. This would produce multiple predictions
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for the same x. in different time periods, thus invalidating W3. Also, we do not 

obtain unique predictions for x, for all periods by including all the sample selection 

terms in the conditioning set, because the lambda terms are not strictly exogenous in 

the equation of interest (see discussion above). The way to obtain unique predictions 

is to predict each component of the vector x ,, using the entire sample of individuals in 

the participation equation, and all leads and lags of the explanatory variables in that 

equation as instruments.

The other two estimators rely on difference estimation. Hence pre-determined 

regressors in the level equation lead to endogenous regressors in the difference 

equation. In Kyriazidou’s (1997) method, a straightforward way to allow for 

endogenous regressors is an IV type procedure^'^. Let z, be the set o f instrumental

variables. Then the difference (x„ - x , J  fitted by z, is 

(x„ -  x,^) = z / < ^ZyZy T 'Yj ^j )t ~ ^js) ’ the IV estimator bjy has the form

-1
b,v = |Z ( ^ »  ~^,s)r]} 'Z{x„ -  X„)'(w„

(4.3)

where is the kernel weight for individual i in pair ( r , j ) . This

approach allows to maintain the same dimension of (x„ -  x .J  in the estimated

The IV version o f  Kyriazidou’s (1997) estimator has been proved to be consistent in Charlier, 
Melenberg and Van Soest (1997).
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instrument set , which is computationally convenient. The pre-estimation of

instruments does not affect the second-stage variance.

Given the non-parametric nature of the sample selection terms in this method, 

identification of the parameters o f interest requires some component o f z,, to be 

excluded from both the main equation and the instrument set. In practical applications, 

to find such variables can be hard.

The assumption of strictly exogenous regressors in the main equation for 

chapter’s 3 estimator can be relaxed by applying a generalised method o f moments 

estimator of the form

where and z„, = U , . The matrix Q. is given by

^  = where r,. + are the

estimated residuals. The z, are defined as above, but now the instrument vector for a 

given pair z,^,, also includes the corresponding sample selection terms

and/l .^.  By setting Q = ^z„^,z'.^. the GMM estimator becomes a simple IV
/

estimator, and estimates can be used as initial estimates for the GMM estimator.

To summarise, if regressors in the main equation are non-strictly exogenous, 

the methods of Kyriazidou (1997) and chapter 3 may easily be extended to using IV or
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GMM type estimators. For Wooldridge’s (1995) estimator, one solution of the 

problem is to use predicted regressors.

4.4.2 Measurement Error

In typical panel surveys, the construction of work history variables, like tenure and 

experience, is based on retrospective information, which is likely to suffer from 

measurement error. An example is labour market experience, which is updated quite 

precisely during the course of the panel, but where the pre-sample information stems 

from retrospective data. The measurement error in this case is constant within 

individuals. If this variable enters the equation of interest in a linear way, differencing 

eliminates the measurement error. If this variable enters in a non-linear way (for 

instance, by including squared terms), differencing over time does not eliminate the 

measurement error, but it eliminates the problem associated to it.

To illustrate this, suppose that the variable is measured with error, and we 

include its level and its square among the regressors in equation (2.1). Let the 

measured variable be equal to the true variable , plus an individual specific 

error term:

x l = x , + e . ,  (4.5)



CHAPTER 4. AN APPLICATION TO LABOUR SUPPLY AND WAGES 122

where g, is assumed to be uncorrelated with . For Wooldridge’s (1995) estimator, 

writing the true regression equation in (2.5) in terms of the observed variables leads to 

the following expression:

^  1 +• • ^ r  +  î\ ^1  +• • -+^,7 P\ +  P i  +  ^ t^(^it /<^/ ) +

+ / ^ i K  + ( ^ i + . . . + ^ 7 -  + P j)̂  ̂ -2(4^,x,,+...+4^7.x,y-

where the new error term is now given by the expression in brackets.

A common solution to solve the measurement error problem is to use 

instrumental variable estimation. However, this estimation strategy does not longer 

lead to consistent estimates in a non-linear error in variables problem, because the 

error of measurement is no longer additively separable from the regressors (see 

expression (4.6)). Hence, it is impossible to find instruments which are correlated 

with the observed regressors, but uncorrelated with the new error term in (4.6).

An alternative solution is to use predicted regressors. In contrast to standard 

instrumental variables techniques, the use of predicted regressors, once the 

disturbances of the equation of interest have been purged for correlated heterogeneity 

and sample selection, allows to estimate the model under some conditions.

Let the true variable x,, be determined by a vector of instruments Z ,,

s,i' (4 7)

Assume that is known since it is identified from
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X it = ZjSI + Sji + . (4.8)

For Wooldridge’s (1995) estimator, substitution of (4.7) into equation (2.5) 

yields the following expression

where the term in brackets is the new error term. The assumption that is

independent of Z, is crucial for consistent estimation, and necessary because of the

non-linear specification. Independence guaranties not only that the first conditional 

moment of 5,, is equal to zero, but also that the second conditional moment equals 

zero. Hence, we obtain an expression with linear and quadratic terms in 

Z, J , , for r = l , . . . , r ,  and a new error term that is a function of the original error term,

of linear and quadratic terms in s,,, and of cross products To obtain

consistent estimates, one needs to assume that E^new error term|Zj<^,) = 0 , implying 

that the Z. are uncorrelated with the original error term in the equation o f interest, and 

the are independent of Z^.

If estimating the model in differences (as in Kyriazidou (1997) or in chapter’s 

3 estimator), and writing the true regression equation in (2.6) and (2.7) in terms of the 

observed variables in (4.5) we obtain:
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^ ; 7  “  -  ( ^ ; 7  ~  U ~  ^ i s  ) P 2 +  il ~  +  [ ^ i t s  ~  ' ^ P l  “  ^ I s ) ^ !  ]  ^

=  ( ^ , Y  -  )P\ + ( ^ , 7 ^  -  )P l +  it ,s  I") +  [ ^ i t s  -  '^Pl ( ^ , 7  “  ) ^ i  ]

where E(^s ,̂ is equal to ~ £.^\z.,,z.^,a^,T].,d^, =d-^ = l) for Kyriazidou

(1997) and to E(^s ^̂ -  = d.̂  = l) for chapter’s 3 estimator. The new error is

given by the term in brackets. Now the measurement error in -  x*^ ) does not 

imply a measurement error problem for consistent estimation because e, is 

uncorrelated with (x,, -  x ,J  Therefore, differencing eliminates the endogeneity

problem due to measurement error, and the IV estimators in section 4.4.1 can be 

used^^ to address the problem of non-strict exogenous regressors.

Since the error term in (4.9) includes ^x„ -  x,̂ . j g , , and g, is un correlated with ^x„ — X,̂ , j ,

b „  = e {xi, -% ,7) = 0 .
Although differencing within individuals does not eliminate the non-linear errors in variables, it does 

eliminate the problem. The quadratic terms, measured with error, are not longer endogenous to the new 
error term in the equation. The crucial conditions for this to happen are that the measurement error is 
time-constant, and uncorrelated with the underlying true variables.
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4.5 Empirical Model and Data

4.5.1 Estimation Equation

We apply the estimators discussed in Section 4.2 to analyse wage equations of 

females, using data from a twelve-year panel. We define the wage equation and the 

participation equation as:^^

l = / = !,..., r ,  (5.1)

d'i, = = \[d], > o], (5.2)

where d,, is an indicator variable, being equal to one if the individual participates. 

The variable d̂  ̂ * is a latent index, measuring the propensity of the individual to

participate in the labour market. Our parameter of interest is the effect of actual labour 

market experience (Exp) on wages. The vector is a subset of z„ that contains 

education and time dummies. The vector z„ contains in addition age and its square, 

three variables measuring the number of children in three different age categories, an 

indicator variable for marital status, an indicator variable for the husband’s labour 

market state, and other household income. We consider the participation equation as 

a reduced form specification, where labour market experience is reflected by the 

children indicators, age, and the other regressors. We assume that all regressors in the

See Appendix I for a motivation o f  this specification.
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participation equation are strictly exogenous. The wage variable w,, in (5.1) is only 

observable if = 1 in (5.2).

Within this model, there are a number of potential sources of bias for the 

effects of the experience variable. First, unobserved heterogeneity. Unobserved 

worker characteristics such as motivation and ability or effort may be correlated with 

actual experience: if high ability workers have a stronger labour market attachment 

than low ability workers, OLS on equation (5.1) results in upward biased coefficients. 

Second, sample selection bias. Sample selection occurs if unobservable characteristics 

affecting the work decision are correlated with the unobservable characteristics 

affecting the process determining wages. If these unobservable characteristics are 

correlated with the observables, then failure to control for them will lead to incorrect 

inference regarding the impact of the observables on wages. Third, experience is 

likely to be non-strictly exogenous, even after controlling for heterogeneity and 

sample selection. Labour market experience in any period t is an accumulation of

weighted past participation decisions: Exp-  ̂ = , where is the proportion of
• V = l

time individual i allocates in period s to the labour m a r k e t ^ I n  turn, participation 

depends on wage offers received. Accordingly, any shock to wages in period t affects 

the level of labour market experience in the future, thus violating condition (4.1). 

Furthermore, given the above formulation, past shocks to wages affect current 

experience also by altering the weights . A final problem is measurement error.

The process generating experience can be expressed as: Exp^  ̂ =  Exp^_^ where by

direct substitution we get Exp^, =  ^  .
, v = l
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As typical in survey data, the experience variable is constructed as the sum of pre­

sample retrospective information, and experience accumulated in each year of the 

survey (see data section for details). Experience updates constructed within the 12 

years of the survey should only be marginally affected by miss-measurement, but the 

pre-sample experience information is likely to suffer quite considerably from 

measurement error. This results in measurement error in the experience variable, 

which is constant over time for a given individual.

4.5.2 Data and Sample Retained for Analysis

Our data is drawn from the first 12 waves of the German Socio-Economic Panel 

(GSOEP) for the years 1984-1995 (see Wagner et al. (1993) for details on the 

GSOEP). We extract a sample of females between 20 to 64 years old, who have 

finished their school education, and who have complete data during the sample period 

on the variables in table 2 (with the exception of wages for females who do not 

participate in a given period). We exclude individuals who are self-employed in any 

of the 12 years. We define an individual as participating in the labour market if  she 

reports to have worked for pay in the month preceding the interview. We compute 

wages by dividing reported gross earnings in the month before the interview by the 

number of hours worked for pay. We obtain a final sample of 1053 individuals, 

resulting in 12636 observations. We use both participants and non- participants for the 

estimation of the selection equation. For estimating the wage equations, we use all 

females that participate in at least two waves.
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Summary statistics and a more detailed description o f the variables are given 

in Table 2. The variable Exp, which reports the total labour market experience of the 

individual in the year before the interview, is computed in two stages: First, we use 

information from a biographical scheme, which collects information on various labour 

market states before entering the panel. This information is provided on a yearly basis, 

and participation is broken down into part-time and full-time participation. We sum 

these two labour market states up to generate our total experience variable at entry to 

the panel. In every succeeding year, this information is updated by using information 

from a calendar, which lists labour market activities in every month o f the year 

preceding the interview. Again, we sum up part-time and full-time work. Accordingly, 

after entering the panel, our experience variable is updated on a monthly basis. 

Furthermore, it relates to the year before the wage information is observed. If wage 

contracts are re-negotiated at the beginning of each calendar year, this experience 

information should be the information on which the current contract is based. 

Participation is defined as being in the state of part-time or full-time employment at 

the interview time. Non-participation is defined as being in the state of non­

employment or unemployment. On average, 54 percent of our sample population 

participates in the labour market. The average age in the whole sample is 42 years, 

with individuals in the working sample being slightly younger than in the non­

working sample.

We do not restrict our sample to married females. From the 12636 

observations, 10680 (84.52 percent) are married females, of whose 51 percent 

participate in the labour market. We observe a higher percentage of labour market



TABLE 2: DESCRIPTION OF VARIABLES AND SAMPLE STATISTICS (12,636 observations)*
Variable Description Total

Sample
Work=l (6802 
observations)

Work=l dropping individuals with participation in 
one year only and observations with missing 
wages (5861)

Work=0(5834
observations)

Work dummy variable indicating participation of the female (work=l) or no 0.538 1 1 0
participation (work=0) (0.498) (0) (0) (0)

Lnwage log gross hourly real wages (1984 West German Marks) 2.681 2.681 2.685
(0.435) (0.435) (0.432)

Exp years-equivalent worked for money after leaving education 14.373 17.661 17.931 10.541
(9.782) (9.407) (9.331) (8.765)

Exp2 experience squared and divided by 10 30.231 40.040 40.861 18.794
(36.606) (38.264) (38.122) (30.862)

Time time (year-1900), we also use time dummies for estimation 89.500 89.477 89.457 89.526
(3.452) (3.435) (3.437) (3.472)

Age age of the female in years 42.263 41.259 41.205 43.434
(9.953) (9.356) (9.381) (10.487)

Age2 age of the female squared and divided by 10 188.527 178.988 178.592 199.650
(84.624) (76.917) (76.952) (91.567)

Ed education of the female measured as years of schooling 10.847 11.057 11.103 10.602
(1.958) (2.129) (2.128) (1.705)

Hhinc additional real income per month (in thousands) 2.735 2.439 2.394 3.080
(1.778) (1.855) (1.897) (1.617)

M dummy variable with value 1 if female married and value 0 if not married 0.845 0.793 0.787 0.905
(0.361) (0.404) (0.409) (0.293)

hwork'* dummy variable with value 1 if husband works and value 0 if does not 0.862 0.877 0.875 0.846
work (0.345) (0.328) (0.331) (0.361)

ccl number of children up to 3 years old in the household 0.117 0.064 0.059 0.179
(0.399) (0.301) (0.287) (0.481)

cc2 number of children between 3 and 6 years old in the household 0.173 0.118 0.110 0.238
(0.442) (0.364) (0.351) (0.511)

cc3 number of children older than 6 years in the household 0.436 0.393 0.366 0.485
(0.739) (0.696) (0.675) (0.784)
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“Standard errors in parenthesis.
'’The reported sample statistics for this variable are conditional on the female being married.
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participants (72 percent) among the non-married. Of the 1053 females in our sample, 

780 are married in each of the 12 periods, 87 are not married in any period, and 186 

are married between 1 and 11 years of the sample periods.

Our children variables distinguish between the number of children aged 

between 1 to 3 years, the number of children aged between 3 and 6 years, and the 

number of children between 6 and 16 years old. As one should expect, for all three 

categories, numbers are higher among the non-participants.

To estimate our wage equation conditional on fixed effects, we need repeated 

wage observations for the same individual. Table 3 reports frequencies of observed 

wages, as well as the number of state changes between participation and non­

participation. 23 percent of our sample individuals participates in none of the 12 years, 

and about 25 percent in each of the 12 years. More than half of the sample has at least 

one state change within our observation window and there are no individuals who 

change state more than 7 times over the 12 years period. In the longitudinal 

dimension, 767 women (corresponding to 6757 observations) worked for a wage at 

least in two years during the sample period. Once we drop observations of individuals 

who do declare participation, but not wages, our number reduces to 5861 

observations. The data we use for estimating the wage equation uses all individuals 

who report wages in at least two periods.
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TABLE 3: STATE FREQUENCIES
Participating Individuals Number of State Changes

No. of Years Frequency Percent Changes Frequency Percent
0 241 22.89 0 502 47.67
1 45 4.27 1 273 25.93
2 29 2.75 2 131 12.44
3 40 3.80 3 84 7.98
4 53 5.03 4 47 4.46
5 47 4.46 5 10 0.95
6 37 3.51 6 3 0.28
7 49 4.65 7 3 0.28
8 49 4.65
9 59 5.60
10 61 5.79
11 82 7.79
12 261 24.79

1053 100 1053 100

TABLE 4: NUMBER OF OBSERVATIONS W0RK=1 VERSUS WORK=0

Years Ratios Work=l/0 in participation number ofWork=l dropping
sample individuals with participation in one

year only and observations with
missing wages

84 565/488 482
85 579/474 500
86 572/481 512
87 561/492 493
88 551/502 479
89 563/490 488
90 576/477 480
91 592/461 496
92 578/475 503
93 576/477 487
94 554/499 482
95 535/518 459
84-95 6802/5834 5861
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4.6 Estimation Results

We concentrate most of our discussion on the effect of labour market experience. We 

use experience and its square as regressors in the wage equation. To facilitate the 

comparison of results in the various model specifications, we compute the rate of 

return to work experience

= ^ + (6.1)

where we evaluate the expression in (6.1) at 14 years of work experience (the sample 

a v e r a ge ) .W e  report estimates in Table 5. The full set of results is given in Table II. 1 

in the appendix. Rates of return implied by the different methods and for increasing 

levels of work experience are presented in Table II.2.

Column (1) presents OLS estimates, where we allow for time effects, but no 

individual effects. The results suggest that, evaluated at 14 years of labour market 

experience, an additional year increases wages by 1.48 percent. If high ability 

individuals have a stronger labour market attachment than low ability individuals, 

then this estimate should be upward biased. Furthermore, sample selection should re­

enforce this upward bias if unobservables determining participation are positively 

correlated with unobservables in the wage equation (either through the a, or the s„ 

terms).

Standard errors o f  this term are easily derived from the variances and covariances o f  the parameter 
estimates for  ̂and Ç
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TABLE 5: Marginal Experience Effects, WAGE EQUATION®

(1)
OLS

(2)
FE

(3)
DE
(OLS)

(4)
DE
(IV)

(5)
DE
(GMM)

(6Ÿ
W
(MD)

(7)'
W
(MD)
( E x f )

âtvjdEXP 0.0148* 0.0223* 0.0200* 0.0340* 0.0305* 0.0148* 0.0182*
(14 years) (0.0007) (0.0056) (0.0039) (0.0054) (0.0014) (0.0077) (0.0038)
Wald Test

Xn  =
(Selection) 17.22 17.44

(0.1412) (0.1336)
Wald Test ^2 ..2

X l  -
(Fixed 6.03 5.66
Effects) (0.049) (0.062)

^2 ^ 2 _2
Hausman %I4 = %29 =

92.84 55.35 46.39
(Exo­ (0.000) (0.000) (0.021)
geneity)

{8)‘‘ (9)“ (10)' (11)-= (12)-=
K K CH3 CH3 CH3

(IV) (IV) (GMM)
âwjâEXP 0.0409* 0.0116 0.0129* 0.0122* 0.0097*
(14 years) (0.0105) (0.0637) (0.0054) (0.0062) (0.0017)
Hausman

X l  =
(Selection) 6.6332

(0.036)
Wald Test ..2 ^2 ,̂2

% I 3 2  - % I 3 2  - % I 3 2
(Selection) 29260 311.04 = 3859.11

ro.ooo; (0.000) (0.000)
Wald-test %I45
(Exo­ 433.15 1241.19

geneity) (0.000) (0.000)

“ The numbers in parentheses below the coefficient estimates are standard errors. The numbers in 
parentheses below the test statistics are p-values.

Standard errors corrected for the first stage maximum likelihood probit estimates.
Standard errors corrected for the first stage maximum likelihood probit estimates and the use of predicted regressors, 

‘’standard errors corrected for the prior in the time dummies coefficients.
® Standard errors corrected for the first stage maximum likelihood bivariate probit estimates.
* Statistically different from zero at the five-percent significance level.
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In columns (2) and (3), we present estimators that difference out the fixed 

effects. Column (2) displays standard fixed-effects (within) estimates (FE), and 

column (3) difference estimates (DE), where all pair differences within time periods 

per individual are used.^^ Both estimators allow for individual effects correlated with 

the explanatory variables. Thus, the upward bias induced by individual fixed effects 

and any sample selection bias acting through cr, should be eliminated. Interestingly, 

our estimates increase relative to the simple OLS estimations -  point estimates for the 

fixed effect estimator and the difference estimator are 0.022 and 0.020 respectively.

An explanation for these increases in coefficients is measurement error. As we 

have shown above, differencing in a quadratic specification eliminates the effect of a 

time constant measurement error. If the downward bias of the experience coefficient 

in a level equation, induced by measurement error, is larger than the upward bias due 

to individual fixed effects, then the coefficient estimates of difference estimators 

should increase, compared to level estimation.

If past wage shocks affect current experience levels, then experience is not 

strictly exogenous in the wage level equation. Furthermore, it is endogenous in the 

difference equation. A common solution to this problem in standard difference 

estimators is to use instrumental variable techniques. Column (4) and (5) present 

results when applying IV and GMM techniques to our particular problem. These 

estimators are obtained by pooled IV and GMM on 66 pairs of combinations of time 

periods which we can form with a panel of 12 years^V As instruments, we use all 

leads and lags of the variables in the sample selection equation. A Hausman-type test

We estimate pooled OLS on 66 pairs corresponding to 25021 observations.
The IV estimates are used as the first step estimates to obtain the GMM estimates.
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comparing the difference IV and GMM estimators with the differenced OLS estimator 

leads to rejecting exogeneity for the experience variables.

The estimates we obtain for the rate of return to work experience are slightly 

higher than those obtained with the difference estimators, with point estimates of 

0.034 and 0.030 in the IV and GMM estimators respectively. This is consistent with 

experience being predetermined. If past positive shocks to wages increase the 

probability of past participation, then the coefficient on the experience variable should 

be downward biased in a simple difference equation under OLS estimation.

The (IV) difference estimates are consistent under the assumption that 

selection only works through the fixed effects. If however there is sample selection 

acting through s, our instruments are invalid. In this case, the error term will 

incorporate the extra element:

— ^ i s  = l) 0. (6.2)

Clearly, a proper instrument set should be uncorrelated with the truncated conditional 

expectation in (6.2). In most applications, this is unlikely to be the case since the 

available instruments determine also the selection into the observed regime. For 

instance, in our case, every variable that affects the participation decision in previous 

periods should also affect the level of experience in the current period. In this case,

-  /̂.s ) + ~ /̂.v|^,7 = = l)] 1̂ , I ^  0. Accordingly, a time variant selection
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process may invalidate instruments in a difference equation, if these instruments are 

correlated with the selection process.

We now turn to estimation results which take account of a selection process 

that operates both through s and cr, and we demonstrate how the problems of 

measurement error and pre-determinedness can be solved within this framework,

4.6.1 Wooldridge’s Estimator

Estimation results for Wooldridge’s (1995) estimator are presented in columns (6) and 

(7). We have specified the conditional mean of the individual effects, following 

Mundlack (1978), as a linear projection on the within individual means of experience 

and its square. Results in column (6) are based on the assumption that experience is 

(strictly) exogenous. Results in column (7) allow for endogeneity by using predictions 

for the experience terms. This procedure takes care of both measurement error, and 

non-strict exogeneity.

Estimators in columns (6)-(7) are implemented as follows. After obtaining the 

selection terms by estimating probits for each wave, the wage equation in (2.5) is 

estimated for each time period. From these estimations, we obtain the unrestricted 

coefficients for the constant and education, 2 coefficients for the mean of experience 

and its square, the 2 coefficients of interest for experience and its square, and the 

coefficient for the selection correction term in a given period. In a second step, we 

use minimum distance to impose the cross-equation restrictions. To obtain the 

predictions for the experience variable (results in column (7)), we predict the vector
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(Æx/7,, , . . . ,Exp^^j, E x p ^ ^ E x p f ^ 2 ) using the 1053 individuals in the sample selection

equation, as well as all the leads and lags of the explanatory variables in that equation. 

The components of this vector of predictions are used to obtain the average predicted 

experience and its average predicted square.

The coefficient estimate for Wooldridge’s (1995) estimator is 0.0148 (column 

6), which is exactly equal to the OLS result. It is smaller than the fixed effects 

estimators in columns (2) and (3), which is to be expected if participation is selective 

and/or there is a measurement error problem in the level equation (which leads to a 

downward bias). To test for sample selection, we have performed a Wald test on the 

significance of the selection effects, where Ho\ i  = 0. This test can be interpreted as 

a test of selection bias. However, the assumptions under the null hypothesis are 

stronger than what is required for simple fixed effects estimators, since W3 is 

maintained under Ho^^. The value for the test statistic is Xn ~ 17.22 , with a p-value 

of 0.1412. Thus, the null hypothesis can not be rejected. We also performed a Wald 

test for the joint significance of the y/ coefficients, where Ho\ y/ = Q. The resulting 

value for the test statistic is larger than the critical value of the x \ , ut the five-percent 

significance level, rejecting the null hypothesis, and indicating the presence of 

correlated fixed effects.

In column (7) we use predictions for the experience variables. This leads to an 

increase of the experience coefficient (from 0.014 in column (6) to 0.018 in column 

(7)). The results indicate that there is endogeneity, induced by non-strict exogeneity of

62 See Wooldridge (1995) for details on this point.
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the experience variable, and/or measurement error. Hausman-type tests, comparing (6) 

and (7), lead to rejecting exogeneity both after controlling for correlated heterogeneity 

and sample selection. We perform a Wald tests for the estimates in column (7), testing 

the null hypotheses that Ho\ £ = 0 and No: f// = 0. Again, we cannot reject the null 

hypothesis No: £ = 0,  but we reject the null hypothesis No: i// = 0 at a 6.21 percent 

significance level.

4.6.2 Kyriazidou’s Estimator

To implement this estimator, we estimate in a first step a conditional logit fixed 

effects model (see Chamberlain, 1980). The results are displayed in column (4) of 

Table III.l in Appendix III. These first step estimates are then used to calculate 

weights for the pairs o f observations in the difference estimator. To construct the 

weights we use a normal density function for the kernel. We follow the plug-in 

procedure described by Horowitz (1992) to obtain the optimal kernel bandwidth. 

Finally, we perform minimum distance to obtain the parameter estimates. The 

minimum distance estimator is the weighted average of the estimators for each pair, 

with weights given by the inverse of the corresponding covariance matrix estimate^"^.

^^With this procedure, some initial value for the bandwidth is chosen. Then the parameter estimates, the 
estimate o f  the asymptotic bias and the estimate o f  the covariance matrix are computed. These 
estimates are used to compute the mean square error minimising bandwidths. We do a search among 
initial bandwidths, stopping the process when the chosen initial value o f  the bandwidth is close enough 
to the optimal one. As we estimate 66 panel wave pairs t ^  s , 6 6  optimal bandwidth are estimated.

In principle, to estimate the optimal weighting matrix for the minimum distance will require estimates 
for the covariance matrix o f  the estimators for the different pairs o f  time periods. However, Chariier, 
Melenberg and Van Soest (1997) proof that these covariances converge to zero due to the fact that the 
bandwidth tends to zero as the sample size increases. As a consequence the optimal weighting matrix 
simplifies to a block diagonal matrix where each block corresponds to the inverse o f  the covariance 
matrix for a given panel wave pair.
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As discussed above, the estimator relies on a conditional exchangeability 

assumption that restricts the error terms to be homoscedastic over time. This 

assumption seems quite restrictive, in particular when estimating wage equations. 

There is strong evidence that the variance of the wage distribution has increased 

considerably over the last two decades. The assumption that the error terms in the 

selection equation are stationary over time is testable. Table III.l displays results of 

the selection equation under the assumption of equal variances over time (column 

(2)), and estimates that relax this assumption (column (3)). A test can be used to 

test for the joint conditional exchangeability assumption. The increment in the 

distance statistic^^ is 146.8201 with a p-value of 0.0002, which clearly leads to 

rejecting the null hypothesis (the test statistic is X 9 2  distributed)^^. Therefore, the joint 

conditional exchangeability assumption is rejected for our application.

When applying this method to our data, we face a further problem: 

Asymptotically, the method uses only observations for which the index from the 

sample selection rule is the same in the two time periods. In our application, there are 

strong time effects in the selection equation. Furthermore, changes in the variable 

experience are strongly related to changes in our identifying instruments, like, for 

instance, the number of children. Any systematic increase in experience between two 

periods can not be distinguished from the time trend; any non-systematic change 

coincides with a change of variables in the selection equation. By the nature of the

Testing for additional restrictions in minimum distance estimators can be found in Chamberlain 
(1984).

The degree o f  freedom is 104 (the number o f  parameter estimates in the minimum distance for 
column (3)) minus 11 (the number o f additional restrictions imposed in the minimum distance estimator 
o f  column (2)).
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estimator, however, the latter pairs of observations obtain a small kernel weight, and 

they therefore contribute very little to identifying the experience effects. Hence, 

without further assumptions, we can not identify the experience effects. Similar 

identification problems are likely to occur in any application where unsystematic 

changes in the variable of interest coincide with differences in the index function used 

for constructing the weights. For our particular application, a possible solution to this 

problem is to use information on aggregate wage growth from other sources. To 

illustrate the estimator, we use here time effects obtained from simple difference 

estimators.

Estimation results are displayed in columns (8) and (9). In both specifications, 

we use time effects obtained from the difference estimator in column (3). Column (8) 

displays results of simple weighted OLS estimation of equation (6). The IV estimates 

presented in column (9) are obtained by following the procedure described for 

Kyriazidou's (1997) method in section 4.4.1 above.

As we already pointed out, given the non-parametric nature o f the sample 

selection terms in this method, identification of the IV estimator requires at least one 

time-varying variable in the selection equation, which is to be excluded not only from 

the main equation, but also from the instrument set for experience. Such exclusions 

are difficult to justify in most circumstances. In our particular case, the experience 

variable measures the total labour market experience of the individual in the year 

before the interview. Since it is the weighted sum of past participation decisions, it 

should be explained by variables that influence past participation, like lags of the 

husband’s income, and lagged children variables. Participation in the current period is
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affected by current variables (like children(t), hhinc(t), etc.). This should identify the 

model. We need one exclusion restriction, and we exclude current other household 

income hhinc(t) from the instrument set for experience.

The estimator in (8) does not correct for possible endogeneity of the 

experience variable. The coefficient for the experience effect indicates that a year of 

labour market experience increases wages by 4.1 percent. This estimate is very large. 

The estimator in (9) corrects for non-strict exogeneity of the experience variable in the 

level equation. Instrumenting reduces the experience effect to 1.2 percent, but the 

effect is not statistically significant (which may be due to the smaller effective sample 

size used for this estimator). Because of the problems discussed above, we do not 

wish to overemphasise these estimates. Also, the estimates are obviously sensitive to 

the choice of pre-estimated time effects.

A Hausman-type test comparing the parameter estimates in column (8) with 

the difference estimator in column (3) indicates that the null hypothesis of no 

selectivity bias is rejected.

4.6.3 Chapter’s 3 Estimator

Columns (10)-(12) present estimates, using the method in chapter 3. Column (10) 

displays results of simple OLS estimation of equation (2.7). IV-GMM estimates are 

presented in columns (11) and (12). For estimation, we use each combination of panel 

waves (t,s), resulting in a total of 66 pairs. To combine these estimates, we use 

minimum d is ta n c e .W e  obtain coefficients for 11 time dummies, the coefficients on

The optimal weighting matrix is obtained from an estimate for the covariance matrix o f  the



CHAPTER 4. AN APPLICATION TO LABOUR SUPPLY AND WAGES 14 2

experience and its square, and estimates of 66*2=132 coefficients for the correction 

terms for all the pairs.^^ The standard errors we present in table 5 are corrected for the 

first step bivariate probit estimates. The variables used as instruments are the leads 

and lags of the variables included in the sample selection equation, and the 

corresponding two sample selection terms of each pair of time periods.

The first step estimator of the parameters ; k , , which are used for 

constructing the correction terms, are obtained by estimating 66 bivariate probits. The 

parameters we estimate in each bivariate probit are the reduced form parameters of the 

corresponding indices of the selection rules for the two time periods. We also get an 

estimate of the correlation coefficient between the errors in the two time periods. The 

mean value for p̂  ̂ is 0.7862 (se=0.1299) with a minimum at 0.4845 and a maximum 

at 0.9658. Consequently, we reject on average Ho\ = 0. Correlation appears 

because of the c, component in the error term and/or because o f serially correlated 

idiosyncratic errors.

We test whether the 66*2 correction terms are jointly significant, using Wald 

tests. The resulting values for the test statistics for the estimators in Columns (10) to 

(12) are clearly larger than the critical values of the x\zi  any conventional 

significance level. Hausman-type tests comparing the IV and the GMM estimators 

with the OLS estimator in Column (10) lead to rejecting exogeneity both after 

controlling for correlated heterogeneity and sample selection.

estimators for the different time periods.
The estimates can be obtained upon request.
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The estimated parameters are slightly lower than the OLS estimates, and do 

not differ very much between specifications. They indicate that, evaluated at 14 years 

of labour market experience, an additional year increases wages by about 1 percentage 

point. Compared to Wooldridge’s (1995) estimator, estimates are slightly smaller, 

which may be due to different parametric assumptions imposed by the two estimators. 

Furthermore, estimates are remarkably similar across specifications. One reason for 

this similarity is that with chapter’s 3 estimator, instrumenting corrects only for the 

non-strict exogeneity problem. With Wooldridge’s (1995) estimator, the use of 

predicted regressors corrects also for the measurement error bias.

Interesting is also a comparison of wage growth due to aggregate time effects. 

In the last row of Table II. 1, we display average wage growth for the 12 years period 

due to common time effects. The numbers indicate that the different methods result in 

different numbers. For instance, chapter’s 3 estimator in column (10) assigns about 8 

percent more wage growth over the 12 years period to time effects than the simple 

OLS estimator (column 3). An explanation for these differences is that chapter’s 3 

method controls for time-varying sample selection (as does Wooldridge’s estimator). 

As pointed out by Moffitt (1984), wages may trend not only because of aggregate 

wage growth (proxied by the time dummies), but also because of changes in the 

sample selection over time. If sample selection decreases over time, and if we do not 

control for selection, the time dummies will pick up this trend, leading to decreasing 

time effects in standard fixed effects and difference estimators, like the ones displayed 

in columns (2) to (5). This leads to downward biased time dummies. With chapter’s 3
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estimator, the time dummies will presumably pick up just the secular productivity 

growth, since it controls for the decline in sample selection over time.

With this method, the sample selection term is given by a parameterisation of

the conditional mean s < t .  We obtain for most

individuals negative predictions for these expectations. To investigate whether 

sample selection does indeed decrease over time, we write the estimated values of 

these conditional means as a function of 11 time dummies in differences (after 

controlling for the increments in experience and its square). Using minimum distance 

estimation, we obtain negative and significant coefficients for the time dummies, 

which increase in absolute value over time. This indicates that sample selection does 

in fact decline over time.^^

4.7 Conclusions

In many empirical applications, the equation of interest is defined for a non-random 

sample of the overall population. Furthermore, at the same time the outcome equation 

contains an unobserved individual specific component which is correlated with the 

model regressors. In this chapter we discuss three estimators which may be applied if 

both problems occur simultaneously: The estimators of Wooldridge (1995),

Kyriazidou (1997), and the one in chapter 3. We investigate and compare the

This result Is in line with the estimates obtained for the participation equation in Appendix III. Here, 
the estimates for the time dummies show that female labour force participation increases over the length 
o f  the panel. Hence, as participation probabilities increase, sample selection may be reduced.
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conditions under which they produce consistent estimates. We show how these 

estimators can be extended to take account of non-strict exogeneity and/or time 

constant non-linear errors in variables. We illustrate that, if regressors in the main 

equation suffer from these problems, the methods of Kyriazidou (1997) and chapter’s 

3 can be straightforwardly extended to using IV or GMM type estimators. For 

Wooldridge’s (1995) estimator, one solution of the problem is to use predicted 

regressors.

Not many applications exist for sample selection estimators in panel data 

models. To learn about the performance of the methods in a practical application, we 

apply the estimators and their extensions to a typical problem in labour economics: 

The estimation of wage equations for female workers. The parameter we seek to 

identify is the effect of actual labour market experience on wages. The problems that 

arise in this application are non-random selection, and unobserved individual specific 

heterogeneity which is correlated with the regressors. In addition, actual experience is 

predetermined, and the experience measure is likely to suffer from measurement error.

A flexible and attractive estimator is that by Kyriazidou (1997). It turns out 

however that, for our particular application, this estimator is difficult to apply. The 

estimator is very flexible in that it avoids specifying the sample selection terms, and it 

requires no parametric assumptions about the unobservables in the model. But it 

imposes a conditional exchangeability assumption, which is rejected by the data in our 

particular application. Furthermore, in the case where any non-systematic variation in 

the variable of interest (experience in our case) coincides with changes in the selection 

index, this estimator runs into identification problems (between time effects and
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experience in our case), that can only be solved by using additional information. We 

use pre-estimated time dummies from simple difference estimators. To implement the 

IV estimator (which is producing consistent estimates if experience is pre-determined 

and/or contemporaneously endogenous), we need a further identification assumption. 

The estimate we obtain for the effect of labour market experience for the simple 

Kyriazidou estimator is quite large: Evaluated at 14 years of labour market experience, 

an additional year increases wages by about 4 percentage points. The estimates are 

sensitive to the pre-estimated time effects. The IV estimates are smaller, but not 

precisely estimated.

The results we obtain using Wooldridge’s and chapter’s 3 estimators indicate 

that there are correlated fixed effects, and non-random sample selection. With 

Wooldridge’s (1995) estimator, the null hypothesis of no correlated fixed effects is 

rejected for all specifications. Conditional on fixed effects, the null hypothesis of no 

sample selection can not be rejected with Wooldridge’s (1995) estimator, but it is 

clearly rejected with chapter’s 3 e s tim a to r .U s in g  Wooldgridge’s (1995) estimator, 

we reject specifications, which do not allow for predetermined regressors (and 

contemporaneous endogeneity). Chapter’s 3 method rejects strict exogeneity of the 

experience variable, conditional on taking care of the measurement error problem by 

first differencing. Accordingly, the use of sample selection models which take care of 

correlated fixed effects seems to be justified. Furthermore, the extensions we suggest 

in this chapter seem to be important for our particular application.

For W ooldridge’s estimator, however, the assumptions under the null hypothesis are stronger than 
what is required for simple fixed effects.
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The most general estimator using Wooldridge’s (1995) method implies an 

increase in wages by 1.8 percent for one year of labour market experience, evaluated 

at 14 years of experience. According to this estimator, the return to experience 

decreases from 3.1 percent for the first year to 2.2 percent after 10 years to 1.2 percent 

after 20 years (see Table II.2). Estimates of chapter’s 3 most general estimator (the 

GMM) are slightly lower. They range from 2.2 percent after the first year to 1.4 

percent after 10 years to 0.4 percent after 20 years. Simple OLS estimates are 

intermediate. They range from 3.0 percent after 1 year to 1.9 percent after 10 years to 

0.8 percent after 20 years of labour market experience.

Our results also indicate that estimates of aggregate wage growth are sensitive 

to the trend in sample selection. If sample selection decreases over time, simple 

difference estimators lead to downward biased time effects. In our case, wage growth 

over the 12 years period due to the aggregate time trend is 14 percent for 

Wooldridge’s most general estimator, and 16 percent for chapter’s 3 most general 

estimator. In contrast, a simple difference estimator assigns only 9 percent of wage 

growth to aggregate time effect over the 12 years period.
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4.8 Appendix I: Econometric Model of Wages

Our econometric model of wages may be motivated as follows. Consider a model 

where human capital is accumulated in a learning by doing way. The accumulation 

equation for human capital (measured in monetary units) is then given by:

{ t - \ 1-2

Ç (1 ,1 )

Here d̂ , is the participation-status variable and is the proportion of time 

individual i allocates in period s to the labour market. Thus, is equivalent

to the increase in human capital in a given period. Human capital depreciates while 

working, which is reflected by the term in brackets. There is no depreciation in 

periods out of work. The actual market wage is given by = w* + «, + g,,, where 

is an individual effect and is some idiosyncratic shock. By recursion, we 

obtain the following wage equation:

1-1 \ 1-1 \2
= w'l + E ''.4 ■? + E ’’«d,, 4" + a, + £/,. (1.2)

s= \ ,v=l

where the wage in period t depends on the initial wage, w*,, and cumulative work 

experience and its square.
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We assume that the entry wage, w*, is solely determined by the individual’s

unobserved ability, and the level of schooling:

w'l = %  (1.3)

where 6" is a measure for years of education, and a \  is an error term specific to the

individual (e.g. “ability”). Combining (1.2) and (1.3) gives:

+fÉ'^A]^ + fÉ '^A l + f , , .  (1-4)
^  ^=1 '  ^ 5=1 /

where + cr* j . The specification in (5.1) is obtained by using -Exp^^
. v = l

and by adding to (1.4) time dummies, which reflect aggregate wage growth.



TABLE II. 1: ESTIMATES FOR THE WAGE EQUATION"

Variable (1) (2) (3) (4) (5) (6)" (7)' (8)“ (9)" (10)" (II)" (12)"
OLS FE DE DE DE W W K K CH3 CH3 CH3

(OLS) (IV) (GMM) (MD) (MD)
{Exp)

(IV) (IV) (GMM)

CST 0.9990*
(0.0310)

1.1111*
(0.0724)

1.0162*
(0.0804)

D85 0.0047 0.0056 0.0052 -0.0062 -0.0041 0.0247 0.0482* 0.0052 0.0052 0.0275 0.0249 -0.0088
(0.0204) (0.0139) (0.0068) (0.0074) (0.0029) (0.0250) (0.0236) (0.0068) (0.0068) (0.0203) (0.0200) (0.0087)

D86 0.0450* 0.0308 0.0291* 0.0054 0.0168* 0.0466 0.0556* 0.0291* 0.0291* 0.0711* 0.0536* 0.0327*
(0.0206) (0.0163) (0.0095) (0.0115) (0.0038) (0.0295) (0.0264) (0.0095) (0.0095) (0.0223) (0.0226) (0.0080)

D87 0.0773* 0.0588* 0.0597* 0.0238 0.0332* 0.0876* 0.0920* 0.0597* 0.0597* 0.1001* 0.0960* 0.0835*
(0.0205) (0.0199) (0.0125) (0.0158) (0.0046) (0.0332) (0.0257) (0.0125) (0.0125) (0.0252) (0.0267) (0.0108)

D88 0.0826* 0.0492* 0.0602* 0.0131 0.0317* 0.1048* 0.1212* 0.0602* 0.0602* 0.1296* 0.1253* 0.0916*
(0.0213) (0.0240) (0.0159) (0.0205) (0.0056) (0.0409) (0.0350) (0.0159) (0.0159) (0.0303) (0.0326) (0.0121)

D89 0.1051* 0.0614* 0.0715* 0.0131 0.0341* 0.1128* 0.1142* 0.0715* 0.0715* 0.1635* 0.1437* 0.1165*
(0.0205) (0.0284) (0.0194) (0.0254) (0.0066) (0.0468) (0.0347) (0.0194) (0.0194) (0.0358) (0.0398) (0.0137)

D90 0.1399* 0.0941* 0.1048* 0.0355 0.0568* 0.1394* 0.1466* 0.1048* 0.1048* 0.2043* 0.1863* 0.1679*
(0.0209) (0.0330) (0.0230) (0.0302) (0.0077) (0.0543) (0.0402) (0.0230) (0.0230) (0.0393) (0.0447) (0.0149)

D91 0.1453* 0.1142* 0,1254* 0.0454 0.0622* 0.1452* 0.1421* 0.1254* 0.1254* 0.2126* 0.1872* 0.1843*
(0.0213) (0.0378) (0.0268) (0.0352) (0.0089) (0.0582) (0.0378) (0.0268) (0.0268) (0.0449) (0.0505) (0.0164)

D92 0.1684* 0.1274* 0.1434* 0.0523 0.0766* 0.1909* 0.1605* 0.1434* 0.1434* 0.2342* 0.2227* 0.1987*
(0.0213) (0.0426) (0.0304) (0.0403) (0.0104) (0.0660) (0.0403) (0.0304) (0.0304) (0.0508) (0.0568) (0.0174)

D93 0.1683* 0.1258* 0.1439* 0.0422 0.0706* 0.1919* 0.1991* 0.1439* 0.1439* 0.2495* 0.2308* 0.2688*
(0.0221) (0.0475) (0.0342) (0.0453) (0.0109) (0.0719) (0.0430) (0.0342) (0.0342) (0.0556) (0.0626) (0.0195)

D94 0.1724* 0.1276* 0.1461* 0.0335 0.0628* 0.2227* 0.2073* 0.1461* 0.1461* 0.2474* 0.2361* 0.2769*
(0.0215) (0.0525) (0.0380) (0.0502) (0.0112) (0.0790) (0.0455) (0.0380) (0.0380) (0.0602) (0.0670) (0.0218)

D95 0.2159* 0.1398* 0.1594* 0.0367 0.0668* 0.2591* 0.2519* 0.1594* 0.1594* 0.2736* 0.2795* 0.3556*
(0.0225) (0.0572) (0.0415) (0.0549) (0.0131) (0.0856) (0.0512) (0.0415) (0.0415) (0.0659) (0.0748) (0.0238)

ED 0.1133*
(0.0020)

0.1065*
(0.0042)

0.1086*
(0.0043)

EXP 0.0309* 0.0349* 0.0324* 0.0522* 0.0473* 0.0230* 0.0320* 0.0525* 0.0157 0.0244* 0.0248* 0.0229*
(0.0019) (0.0062) (0.0042) (0.0058) (0.0017) (0.0090) (0.0060) (0.0222) (0.1935) (0.0060) (0.0071) (0.0021)

EXP2 -0.0058* -0.0045* -0.0044* -0.0065* -0.0060* -0.0029* -0.0049* -0.0041 -0.0014 -0.0041* -0.0045* -0.0047*
(0.0005) (0.0005) (0.0002) (0.0003) (0.0001) (0.0009) (0.0012) (0.0050) (0.0470) (0.0005) (0.0006) (0.0002)

d v jâ E X P 0.0148* 0.0223* 0.0200* 0.0340* 0.0305* 0.0148* 0.0182* 0.0409* 0.0II6 0.0129* 0.0122* 0.0097*
(14 years) (0.0007) (0.0056) (0.0039) (0.0054) (0.0014) (0.0077) (0.0038) (0.0105) (0.0637) (0.0054) (0.0062) (0.0017)
Av. ret. T. 0.1204* 0.0850* 0.0953* 0.0268 0.0461* 0.1387* 0.1399* 0.0953* 0.0953* 0.1739* 0.1624* 0.1607*
dummies (0.0150) (0.0336) (0.0228) (0.0301) (0.0075) (0.0492) (0.0306) (0.0228) (0.0228) (0.0380) (0.0428) (0.0137)
" The numbers in parentheses are standard errors.

Standard errors corrected for the first stage maximum likelihood probit estimates.
Standard errors corrected for the first stage maximum likelihood probit estimates and the use of predicted regressors. 
Standard errors corrected for the prior in the time dummies coefficients.

® Standard errors corrected for the first stage maximum likelihood bivariate probit estimates.
♦Statistically different from zero at the five-percent significance level.
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TABLE II.2: ESTIMATED RATES OF RETURN FOR WORK EXPERIENCE ( â w j Æ X P  )*

Years of 
work
experience

(1)
OLS

(2)
FE

(3)
DE
(OLS)

(4)
DE
(IV)

(5)
DE
(GMM)

(6Ÿ
w
(MD)

{ I f
W
(MD)
(Exp)

(8)“
K

(9)“
K
(IV)

(10)“=
CH3

(11)'
CH3
(IV)

(12)'
CH3
(GMM)

1 0.0298* 0.0340* 0.0315* 0.0509* 0.0461* 0.0224* 0.0310* 0.0516* 0.0154 0.0236* 0.0239* 0.0220*
(0.0018) (0.0061) (0.0041) (0.0057) (0.0017) (0.0089) (0.0058) (0.0213) (0.1842) (0.0059) (0.0070) (0.0021)

5 0.0252* 0.0304* 0.0280* 0.0457* 0.0413* 0.0201* 0.0271* 0.0483* 0.0143 0.0203* 0.0203* 0.0182*
(0.0015) (0.0059) (0.0041) (0.0056) (0.0016) (0.0085) (0.0051) (0.0177) (0.1468) (0.0057) (0.0067) (0.0019)

10 0.0194* 0.0259* 0.0236* 0.0392* 0.0353* 0.0172* 0.0222* 0.0442* 0.0128 0.0162* 0.0158* 0.0135*
(0.0010) (0.0057) (0.0040) (0.0055) (0.0015) (0.0080) (0.0043) (0.0134) (0.1003) (0.0055) (0.0064) (0.0018)

15 0.0137* 0.0214* 0.0192* 0.0327* 0.0293* 0.0143* 0.0172* 0.0400* 0.0113 0.0121* 0.0113 0.0088*
(0.0006) (0.0056) (0.0039) (0.0054) (0.0014) (0.0076) (0.0038) (0.0099) (0.0547) (0.0053) (0.0062) (0.0017)

20 0.0079* 0.0170* 0.0148* 0.0262* 0.0233* 0.0114 0.0123* 0.0359* 0.0099 0.0080 0.0068 0.0041*
(0.0004) (0.0055) (0.0039) (0.0053) (0.0013) (0.0074) (0.0035) (0.0080) (0.0184) (0.0052) (0.0060) (0.0016)

® The numbers in parentheses are standard errors.
Standard errors corrected for the first stage maximum likelihood probit estimates.

 ̂Standard errors corrected for the first stage maximum likelihood probit estimates and the use of predicted regressors.
Standard errors corrected for the prior in the time dummies coefficients.

® Standard errors corrected for the first stage maximum likelihood bivariate probit estimates.
♦Statistically different from zero at the five-percent significance level.
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4.10 Appendix III: The Participation Equation

Results for the participation equation for a selection of estimators are given in Table 

III. 1. The first model is a pooled probit, not taking account of a possible correlation 

between the explanatory variables and the individual effects. Columns (2) and (3) 

report results from a specification where individual effects are written as a linear 

projection on leads and lags of time-varying regressors (see Chamberlain (1984)).^^ 

The estimation procedure consists of two steps. In the first step cross-equation 

restrictions are ignored, and the y, are estimated by probit for each time period 

separately. The second step is a minimum distance step. The results in column (2) 

impose the restriction that a, =(7 for t = 84,...,95. In column (3), cTĝ  has been 

normalised to 1, and the remaining variances are estimated.

Finally, in column (4) we present results from a fixed effect logit model, as 

proposed by Chamberlain (1980). This is the estimator used for the weights in 

Kyriazidou's (1997) method. Since the scaling is different, only the sign (and the 

ratios) of the coefficients can be compared with the other 3 models.

The estimates for the time dummies show that female labour force 

participation increases over the length of the panel. Participation probabilities increase

^'The individual effect is written as 7/, =  + ...+z,y(^^  +  C ,, with C, ~ 7 / ( o , )  and

independent o f  z ■. The w. ^  (w- | , . . . , ^ are assumed to be i.i.d. # ( 0 , Z ) . Define

(T, = { a f + ( J ^ y  , were a f  is the diagonal element o f E .  Then

F [ d , = \ \ z ]  = 0  

y I — O'f ^(7],..., (7^_|, y ~ ,...,<7^-j .

=  where
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TABLE III.l: SOME ESTIMATES FOR THE PARTICIPATION EQUATION ‘

Variables (1) (2) (3) (4)
Pooled probit Chamberlain(1984) Chamberlain Conditional logit

( 7 = \ (1984, 0-84 =  1) (1980)

CST -2.1644* -1.9921* -1.4615*
(0.2309) (0.2662) (0.2686)

D85 -0.1394* -0.0570 -0.1396* 0.1897
(0.0575) (0.0599) (0.0666) (0.1548)

D86 0.0633 0.0652 0.0558 1.1056*
(0.0579) (0.0592) (0.0638) (0.1722)

D87 0.0623 0.0573 0.0001 1.5592*
(0.0580) (0.0601) (0.0560) (0.1962)

D88 0.0679 0.0770 -0.0220 2.0835*
(0.0580) (0.0603) (0.0538) (0.2265)

D89 0.1329* 0.1779* 0.0878 2.7388*
(0.0581) (0.0605) (0.0586) (0.2614)

D90 0.2056* 0.2014* 0.1073* 3.5187*
(0.0584) (0.0609) (0.0595) (0.3010)

D91 0.6617* 0.6045* 0.9144* 5.4085*
(0.0623) (0.0644) (0.1262) (0.3570)

D92 0.2786* 0.2454* 0.0988* 4.7497*
(0.0589) (0.0621) (0.0541) (0.3867)

D93 0.3138* 0.3269* 0.1008* 5.3176*
(0.0593) (0.0634) (0.0537) (0.4318)

D94 0.2920* 0.2786* 0.1048* 5.6722*
(0.0595) (0.0644) (0.0570) (0.4770)

D95 0.2649* 0.2492* 0.0889 6.0183*
(0.0599) (0.0651) (0.0581) (0.5228)

AGE 0.1443* 0.1432* 0.1097*
(0.0111) (0.0124) (0.0146)

AGE2 -0.0021* -0.0022* -0.0017* -0.0069*
(0.0001) (0.0001) (0.0002) (0.0006)

ED 0.0806* 0.0902* 0.0878*
(0.0066) (0.0071) (0.0090)

CCI -0.7635* -0.5880* -1.1583* -1.9587*
(0.0368) (0.0419) (0.0941) (0.1079)

CC2 -0.5757* -0.4361* -0.5092* -1.3773*
(0.0298) (0.0369) (0.0501) (0.0907)

CC3 -0.2265* -0.1027* -0.2053* -0.3807*
(0.0174) (0.0260) (0.0302) (0.0717)

HWORK 0.1032* 0.0094 -0.0281 0.2923*
(0.0372) (0.0510) (0.0439) (0.1355)

HHINC -0.1383* -0.0430* -0.0506* -0.3334*
(0.0070) (0.0085) (0.0092) (0.0375)

M -0.3171* -0.5324* -0.2983* -1.5269*
(0.0433) (0.0766) (0.0680) (0.1980)

sigmags 1.1650*
(0.1425)

sigmage 1.1404*
(0.1140)

sigmag7 0.8926*
(0.0799)

sigmagg 0.7948*
(0.0699)

sigmagg 0.9103*
(0.0860)

sigmago 0.8675*
(0.0871)

sigmagi 1.9506*
(0.2130)

sigmagz 0.6530*
(0.0583)

sigmagg 0.6313*
(0.0551)

sigmag4 0.7508*
(0.0677)

sigmags 0.7940*
(0.0743)

‘ The numbers in parentheses are standard errors.
Statistically different from zero at the five-percent significance level.
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until the age of 30-35 (depending on the specification), and decrease thereafter. An 

increase in other family income (hhinc) has a negative effect on the participation 

probability, indicating that leisure is a normal good. The dummy for the husband 

working has a positive effect on the participation probability, but is insignificant in 

two out of the four specifications. The effect of education is positive, indicating that 

educational achievements increase participation. The number of children in different 

age groups has a negative effect, where the effect decreases with the age group of the 

children.

The specification in column 1 does not control for correlated individual 

specific effects, while specifications in the other columns do. When we compare the 

first two columns, we observe that the effect of the children variables, and other 

household income decreases quite substantially. This is consistent with the notion that 

unobserved ability components which increase the woman’s competitiveness in the 

labour market (and therefore her participation propensity) are negatively correlated 

with the number of children. They also seem to be negatively correlated with other 

household income.

The results in column (3) allow for different variances over time. The 

coefficient of the constant term is similar in columns (1) and (2) but much smaller (in 

absolute value) in column (3). To test for the 11 additional restrictions imposed on 

column (2), relative to column (3), we perform a test (see Chamberlain (1984) to 

test for additional restrictions in minimum distance estimators). The increment in the 

distance statistic is 146.8201 with a p-value = 0.0002, which clearly leads to rejecting
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the null hypothesis (the test statistic is ^ 9 3  distributed)^^. We conclude that there are 

different variances over time for the error term in the selection equation.

The degree o f  freedom is 104 (the number o f  parameter estimates in the minimum distance for 
column (3)) minus 11 (the number o f additional restrictions imposed in the minimum distance estimator 
o f column (2)).
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Chapter 5

New Semiparametric

Pairwise Difference Estimators

for Panel Data Sample Selection Models'

5.1 Introduction

In a panel data sample selection model, where both the selection and the regression 

equation may contain individual effects allowed to be correlated with the observable 

variables, Wooldridge (1995) proposed a method for correcting for selection bias. 

Kyriazidou (1997) proposes an estimator imposing weaker distributional assumptions. 

A more parametric approach, getting ride of some assumptions in the previous 

methods, has been developed in chapter 3.

The method by Wooldridge (1995), based on estimation of a model in levels, 

requires a linear projection for the individual effects in the equation of interest on the 

leads and lags of the explanatory variables. The other two methods overcome this 

problem by estimation of a model in differences over time for a given individual. 

Time differencing for the same individual will eliminate the individual effects from 

the regression equation. The work of Kyriazidou (1997) is the less parametric of the

I am grateful to Bo Honoré, Myoung-jae Lee and Frank Windmeijer for useful comments and 
suggestions. Thanks are also owed to participants at the Econometric Society European Meeting 
(ESEM), August/September 1999, Santiago de Compostela, Spain.
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three methods, in the sense that the distribution of all unobservables is left 

unspecified, and it allows for an arbitrary correlation between individual effects and 

regressors. The price paid is in terms of another assumption, that is, the called 

conditional exchangeability assumption for the errors in the model. This assumption 

allows for individual heteroskedasticity of unknown form but it imposes 

homoskedasticity over time. The advantage of the estimator proposed in chapter 3 is 

that it allows for the variance of the errors to vary over time. It is then relaxed the 

assumption that the errors for a given individual are homoskedastic. For this we pay 

the price of assuming a trivariate normal distribution for the errors in the model.

According to the results of the Monte Carlo investigation o f the finite-sample 

properties of Wooldridge (1995) and Kyriazidou’s (1997) estimators (chapter 2) we 

can conclude that important factors of bias or lack in precision in the estimates come 

from misspecification problems related to the individual effects in the main equation 

and violations of the conditional exchangeability assumption. The estimator in 

chapter 3 gets ride of both factors as it can be seen in the Monte Carlo experiments 

presented in that chapter. However, the need to assume a trivariate normal 

distribution for the errors may question the robustness of the estimator against 

misspecification of the error distribution. The work in this chapter has been 

developed with the aim of keeping the properties of the estimator in chapter 3 but 

allowing for a free joint trivariate distribution.

In this chapter, estimation of the coefficients in a “double-index” selectivity 

bias model is considered under the assumption that the selection correction function 

depends only on the conditional means of some observable selection variables. We
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will present two alternative methods. The first one follows the familiar two-step 

approach proposed by Heckman (1976,1979) for selection models. The procedure 

will first estimate consistently and nonparametrically the conditional means of the 

selection variables. In the second step we will not only take pair differences for the 

same individual over time (to eliminate the individual effects as in Kyriazidou (1997) 

and chapter 3) but also after this we will take pairwise differences across individuals 

to eliminate the sample selection correction term (the idea of pairwise differencing 

across individuals in a cross section setting appears in Powell (1987) and Ahn and 

Powell (1993)). On the resulting model after this double differencing we will apply a 

weighted least squares regression with decreasing weights to pairs of individuals with 

larger differences in their “double index” variables, and then larger differences in the 

selection correction terms. The alternative method will need just pairwise differences 

over time for the same individual but it will include three steps. The first one will be 

identical to the corresponding one in the other method, that is, nonparametrically we 

will estimate the conditional means of the selection variables. In the second step we 

will estimate by nonparametric regression the conditional means of pairwise 

differences in explanatory variables and pairwise differences in dependent variables 

on the selection variables (the “double index”) estimated in the first step. The third 

step will use these nonparametric regression estimators to write a model in the spirit 

of the semiparametric regression model of Robinson (1988), which will be estimated 

by OLS.

The chapter is organised as follows. Section 2 describes the model, discusses 

some related identification issues, and revises assumptions on the sample selection
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correction terms in the available difference estimators for panel data sample selection 

models. Section 3 presents the new estimators. In Section 4 we show the link 

between them. Section 5 reports results of a small Monte Carlo simulation study of its 

finite sample performance. Section 6 gives concluding remarks, and the Appendices 

provide formulae for the asymptotic variance-covariance matrices.

5.2 The Model and the Available Estimators

5.2.1 The Model

Our case of study is a panel data sample selection model. In this model we are 

interested in the estimation of the regression coefficients (3 in the equation

y  n ~ ^  i ^  ii'> i = I,..., N', t = (2.1)

= f,  (z, ) -  c, -  ; d„=  l[af■ > o], (2.2)

where z. = (z,, ,...,z,y). x,, and z, are vectors of explanatory variables (which may

have components in common), and û  ̂ are unobserved disturbances, are 

individual-specific effects allowed to be correlated to the explanatory variables x, .
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and are individual-specific effects uncorrelated to z ,. Whether or not observations

for are available is denoted by the dummy variable .

In (2.2) there is no need to impose any parametric assumption about the shape 

of the selection indicator index / j ( z j .  In fact, by assuming that depends on all the

leads and lags of an F-dimensional vector of conditioning variables z we allow for an 

individual effects structure with correlation with the explanatory variables and/or for 

sample selection indices with a lagged endogenous variable as explanatory variable. 

This flexibility is convenient because although the form of this function may not be 

derived from some underlying behavioural model, the set of conditioning variables 

which govern the selection probability may be known in advance. Like 

misspecification of the parametric form of the selection function, misspecification of 

the parametric form of the index function results in general in inconsistent estimators 

of the coefficients in the equation of interest, as pointed out by Ahn and Powell 

(1993).

Time differencing on the observational equation (2.1) for those individuals 

which have =1 (.y # r) we get

y  it ~ y  is = i îi -  îs )P  +  i îi ~  ̂is ) • ( 2 - 3 )

It might be the case that we do not want to specify any selection indicator function but 

we just want to assume that selection depends on a T x  F  - vector z .. In this case, by

assuming that - 6 ^ )  is mean independent of conditional on z, and
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= 1, the expectation of conditional on selection (i.e. d■̂ = = 1 )

is a function of only z, , so that the expectation of (ŷ  ̂ -  conditional on selection 

takes the form

^[y„ = 4  = !]  = (%«- x,.)P + E \ s „ -£„ \x , ,x ,„z , ,d„  =d„ = l]

(2.4)

and consequently, a selection corrected regression equation for -  y„) is given by

y  il -  y,s = + t̂s {̂ i ) +  (̂ tt ~~ ,̂s ) ,  ( 2  5 )

where we have taken out from the error term - 6 ^ )  in (2.3) its conditional mean

= l] = driven by sample selection. Thus,

= l] = 0 by construction and is an unknown

function of the T x  F  -  vector z ,.

5.2.2 Identification Issues and Available Estimators

Equation (2.5) provides insight concerning identification. Notice that if  some linear 

combination (x,, -x-^)ju of (x„ where equal to any function of z, , then there 

would be asymptotically perfect multicollinearity among the variables on the right-
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hand side of equation (2.5), and p  could not be estimated from a regression of 

observed (ŷ  ̂ -y ^ ,)  on (x,, and ^,,( ). The reason is that any approximation to 

the unknown function of z ., will also be able to approximate the linear

combination of ( x , , - x . J / / ,  resulting in asymptotic perfect multicollinearity. To 

guaranty that taking any nontrivial /u there is no measurable function r(z ,)  such that 

(x,, -  x ,J/z -  r (z ,)  we need to impose the following identification assumption;

Assumption 1: £'|rf,,rf„[(x„ -  x,,|z,)]-[(x„ -  |  is

non-singular, i.e. for any ju^O  there is no measurable function f(z ,)  such that

Accordingly, identification of p  requires the strong exclusion restriction that none of 

the components of (x,, -  x, J  can be an exact linear combination of components of z ,. 

This implies that (x„ ,x ,J  and z, cannot have any components in common.

As in sample selection models typically individual components of the vector 

ẑ  appear in the vector of regressors x,,, x^ in the main equation, we are interested in 

structures for the selection correction component which permit identification under 

this situation. If we do not want identification to relay on strong exclusion restrictions 

we should impose more structure on for the stochastic restriction

E^e^^ -  = ^ to identify p .  In the literature there are
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different ways to impose this structure for models with sample selection. The

restricted form of the selection correction in (2.5) is typically derived through 

imposition of restrictions on the behaviour of the indicator variables d^^(r = t,s)

given z. ; that is, the indicator variables are assumed to depend upon (z, )

through the binary response model in (2.2). In what remains of this section we make a

revision of this literature to understand the contribution of the methods proposed in 

section 3. The following classification obeys to different degrees of distributional 

assumptions for the unobservables in the model and to whether or not it is imposed a 

parametric form for the index function in the selection equation.

Case A.

One way of imposing more structure on the form of the selection correction is

as follows

= E[{e„ = d„ = l]

= E[{s „ -e„)\x„,x,^,z,,Ci+Ui, < f,{zi) ,c ,  +«,, < / ,(z ,) ]

= E[(s „ +u„ +w„ < / ( z , , y J ]

= +w„),(c, +w„)|;c„,x,,,z,]}

= A { / ( z , ,y , ) , / ( z , ,y J ) ,

(2 .6)
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where the function is unknown and / ( . , . )  are scalar single index functions of

known parametric form (which can be linear but not necessarily). The joint

conditional distribution function of the error terms

+w,,),(c,+w,^)|x„,x.^z, depends only upon the double index 

{/(z, ,y ,) , / ( z ,  . A consequence of ignorance concerning the form of this

distribution is that the functional form of A{-,-} is unknown.

The selection correction term can be written as in (2.6) when

and (c, + are independent of x„ , x,^, Zj, or alternatively,

when J  is mean independent of x„, x, ,̂ z- conditional on (c, + ,

and (c, + are independent o f x,,,x,^, Zj. The conditional mean

independence assumption always holds if [(^„ -  T is

independent of x„, x, ,̂ z-, but we do not require (£■„ -£■„.) to be independent of

x„ , x,^, Zj. Under any of the two alternative sets of assumptions the expectation of

conditional on selection (i.e. d n = d i^ = \)  is a function of only

| / ( z , ,y , ) , / ( z , ,y  , so that the expectation of (y„ conditional on selection

takes the form

^[y,, = 4  = i] = k  ,)}■ (2.7)

The selection corrected regression equation for (ŷ  ̂ -  is given by
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y ,  -  y »  =  6 »  -  Xis ) / ? + A  { / ( z ,  ,
r I , -, (2-o)

5̂ /7 -  ^is = Ij = 0.

We need the following identification assumption for p  to be identified in (2.8):

Assumption 2:

is non-singular, i.e. for any there is no measurable function

r ( / ( z , , r , ) , / ( z i , r , ) )  such that (x„ - x , , ) n  = r [ f { z , ,Y , ) , f { z , , r  ,))■

When /(•,•) are non-linear functions identification of p  is guaranteed without 

exclusion restrictions. Under the case of /(• , ) being linear we do not have to

explicitly impose exclusion restrictions (as in a cross-section model) because in the 

panel data case time-variant variables in the selection equation appear as natural 

exclusion restrictions. For instance, for a given pair (^t,s) time-varying variables in 

the remaining periods of the panel ( t  = r ^ t , s )  will act as exclusion

restrictions.

In (2.6) we incorporate more structure on by adding, as extra

identifying information, that the distribution of the indicators ( r  = t,s)  depends on 

the double index . The double index structure of the selection
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correction permits identification even when individual components of the 

conditioning vector z, appear in the regressors .

Case B.

A fully standard parametric approach applied to (2.6) leads to

= E\{s „ = l]

= e[ (£ ,  -  £i,)\x„,x,„z, ,c, + u„ < / , (z,),c, + % < /,,(z,)]

=  + w,, < / ( z , , x , ) , c , < / ( z , , x , ) ]

= E.[{Si, -  £,,)\x„,x„,z,,c, + u„ < z ,r ,,c ,  + ^  z,r,]

=  k \ z j , ,z ,Y , - , F ^ ^ £ „  - £ „ ) , { c , + m „ ) , ( c ,

(2.9)

where /(•)  are scalar aggregators in the selection equation of a linear parametric form 

and we have imposed strong stochastic restrictions by specifying the joint conditional 

distribution function of the error terms +w„),(c. + ,x,.^,z, as a

trivariate normal distribution function O 3 . Under these parametric assumptions, the 

form of the selection term, to be added as an additional regressor to the differenced 

equation in (2.3), can be worked out (see chapter 3). Under this fully parametric 

approach the estimation method developed in chapter 3 consists on a two steps 

estimator. The method eliminates the individual effects from the equation of interest 

by taking time differences conditioning to observability of the individual in two time 

periods. Two correction terms, which form depends upon the linear scalar aggregator
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function and the joint trivariate normal distribution function assumed for the 

unobservables in the model, are worked out. Given consistent first step estimates of 

these terms, simple least squares in the equation of interest can be used to obtain 

consistent estimates of p  in the second step. Because of the linearity assumption for

/( • ) ,  the estimator under Case B corresponds to the called “More parametric new

estimator” in chapter 3.

Case C.

Relaxing in Case B the parametric form for the index functions / ( . , . )  we get

= E[{s „ -  e,,)\x„,x,,,z,,d„ =rf„ = l]

= +u„ < /,(z ,) ,c , +w„ < / ,(z ,) ]

= -e„)\x„,x„,Zi,c,+u„ < F~'[h,{z,)\c,+u,, <

(2 .10)

where the selection indicator indices /r(-), t  = t , s  are unknown and of unrestricted 

form. We have still imposed as in Case B strong stochastic restrictions by specifying 

the joint conditional distribution of the errors + w„),(c + as

trivariate normal. The values of these semiparametric indices in the selection 

equation are recovered by applying the inversion rule / ( z . )  = 0 ~’[/z,(z.)] and
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, where the conditional expectations /z^(zj = for

T = t,s  are replaced with nonparametric estimators (z, ) = , such as kernel

estimators, and 0 “’ is the inverse of a standard normal cumulative distribution 

function. Given the unrestricted treatment of the functions /^(-) in (2.2) the estimator

under Case C corresponds to the three steps estimator called “Less parametric new 

estimator” in chapter 3.

Both for Case B and Case C, although chapter’s 3 estimators are based upon

an independence assumption where +w„.)] is independent of

Xy, ,x,y,z, with a joint normality of the error terms, for chapter’s 3 methods to work, it 

is sufficient to have a) marginal normality for (c, +w,,),(cy +w„.) and consequently 

joint normality of (c, + and (c, + ; b) independence of x,, ,x,^.,z, for

(c, + ) and (c, + J  ; c) a conditional mean independence assumption of J

from Xy, ,Xŷ ,Zy once conditioning to (c, + w,,) and (c, + ; d) a linear projection of

on [(c + “//M e + “«)] • Furthermore, the normality of 

(e  + w,/) (cy + WyJ could be relaxed under other distributional assumptions, but it

can be difficult to give a closed form for the sample selection correction term as in the 

normal case. Under a, b, c, and d

{s„ -  ) y,,, = {(c, + W„ ) ,(c, + %)} = v ; „ [ v,„ v;„ ]£[ v„,{s„ -  ff,,)] = v„^S,

(2 .11)
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where S  = (S,^,S^,) = - £ „ ) ] .

Then, the selection bias is

+«„ < /,(z ,),c , +«„ < /,(z ,)] = ^ ’ -£(r-,„|c, +«,, <f,{z,),c, +«,, < /,(z ,)) ,

(2 .12)

expression which can be worked out with the results for a truncated normal 

distribution in Tallis (1961) and which leads to the same sample selection correction 

terms than in chapter 3 under full joint normality.

Chapter’s 3 estimators (under Case B and Case C) do not require technically 

exclusion restrictions. However, in a panel data model they appear naturally with the 

presence of any time-varying variable in the selection equation.

Case D.

By following a different approach to Case A, B and C we find

E[{e„ -£„}x„,x„,z„,z ,„a, , r j i ,d„ =d„  = l]

= E[£„\x„,x,^,z„,z,^,a,,-n,,d„ =rf„ = \\-E[£,^\x„,x,^,z„,z^,a,,T],,d„ =d„  = l] =

= E{£„\x„,x„,z„,z„,a,,Tj,,u„ < z , j - j ] , , u „  < z , j - r ] , )

= a|z„ ;k -  7, > Z/,r -  n, ; 3̂ [ff «. |^„.

-A {z„r -  v , , h j  -  . »/.,. . z,,, z,,, a , . ?, ]} = 0,

(2.13)
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where the equality to zero holds if and

^4 V,i. .2 /, = Wj,, w,, \x„, x,^, z„ , z„ , a , , v, ] (joint

conditional exchangeability assumption). There are no prior distributional 

assumptions on the unobserved error components but they are subject to this joint 

conditional exchangeability assumption. The idea of imposing these conditions, 

under which first differencing for a given individual not only eliminates the individual 

effects in the main equation but also the sample selection effects, is exploited by the 

estimator developed by Kyriazidou (1997). Conditioning to a given individual the 

estimation method is developed independently of the individual effects in the 

selection equation. For this reason we do not need to explicitly consider, 

parametrically or non-parametrically, the correlation between the individual effects in 

that equation and the explanatory variables. Implicit in (2.13) there is an indicator 

variable d̂  ̂ = l[z„y -  rĵ  -  u-, > O], which implies that part of the flexibility in (2.2) is

suppressed by assuming that (z, ) -  c, = z ^ j  -  77,.

In Kyriazidou’s (1997) model identification of (5 requires

E^[x^, Y -  ~^is)T = 0 to be finite and non-singular. Given that

we need support of (z,, -  z .Jy  at zero, nonsingularity requires an exclusion restriction 

on the set of regressors, namely that at least one of the variables z„ is not contained in

X-j .

Concluding this section, chapter’s 3 approach imposes strong stochastic 

restrictions, by specifying the joint conditional distribution of the error terms
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f ( c ,  + w, ( c ,  + w,J as trivariate normal. Under this assumption “sample

selectivity regressors” that asymptotically purge the equation of interest of its 

selectivity bias can be computed and the corrected model can be estimated by OLS on 

the selected subsample of individuals observed the two time periods. However, if the 

joint distribution of the error terms is misspecifled, then the estimator of /? will be 

inconsistent in general. The semiparametric method developed by Kyriazidou (1997) 

relaxes the assumption of a known parametric form of the joint distribution but it 

imposes a parametric form for the index function ft(.) and the named joint conditional 

exchangeability assumption for the time varying errors in the model. The two 

semiparametric methods for panel data sample selection models proposed in this 

chapter will avoid the mentioned limitations in the available methods. In particular, 

no distributional assumptions for the error terms are needed compared with chapter’s 

3 estimators and no exchangeability is required compared with Kyriazidou (1997).

5.3 The Proposed Estimators

When the selection errors (c, + ,c. + J  are assumed independent of the regressors

, and continuously distributed with support on the entire real line, the

conditional distribution of c^ { t = t,s) given (z, ) -the function F ( )  in

(2.10)- is an invertible cumulative distribution function and the assumption of a 

known parametric form of the regression function in the selection equation can be
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relaxed. Furthermore, when F(-) is invertible we can allow for a free distribution

function for the error terms in the model. To see this, we define the probability to be 

selected into the sample as

E[d„\x„,x,^,z,'\ = E[d,^\z,] = h^{z) = fx[d,^ =l|z,] = Pr[c, +u„ < /,(z ,)|z ,] = f [ / ,(z ,) ] .

T =  t , S

(3.1)

Thus, the selection correction function can be determined by

=d,, = l]

= 4(^,7 -£is)\x.nX,,Z^,C^+U, </,(z,),C, + W,, < /,(^ ,)]

< F - '[ /z,(2,)],c, + w,, < F - '[ /z,(z,)]]

= A{F’-'[/z,(z,)],F-'[;z,.(z,)];F3[(f„ z,]}

= k  )]' [̂ .s k  )]; ̂  +uMc^+u^,)\F-\h,[z)],F-\hXz)'^

(3.2)

The expression in (2.10) differs from the one in (3.2) in that the former was assuming 

a known parametric distribution function for the errors, to be able to invert the 

probabilities of selection into the sample for recovering the values of the functions 

/^(•), T = t , s . Now, conditional to the function F(-) being invertible, we avoid the

need to invert by assuming that the sample selection correction term is an unknown 

function of the probabilities themselves in place of another unknown function of
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/^(•), T = t , s . Expression (3.2) can be summarised by the following mean “double­

index” restriction

(3.3)

where we need the sample selection correction term, to be included in (2.3), to be a 

continuous function of the probabilities in (3.1). The regressors x,, ,x,̂ . and z, should

not enter separately into the correction term.

Under the “double-index” restriction in (3.3) we consider estimation of the 

parameter vector of a “double-index, partially linear” model of the form^^

y„ -> '« =(x„ - x „ ) p  + X[h,{z,\hX2)]+{e„  (3.4)

where A(-,-) is an unknown, smooth function of two scalars, unobservable “indices” 

/z, (z, ), (z, ). By construction the error term in (3.4) has conditional mean zero.

Our estimation methods rely on a mean double index restriction. However, also the model implies 
the stronger double index restriction that the conditional distribution o f  the differenced errors in the

main equation given selection and ,X-^,z^ depends only on /z,(z.],/z^.(z.^  . Thus the conditional 

expectation o f  any function o f and not just - £ ’, ,)  itself, will depend only on

/z,(z,),/z^(z,). Consequently, the , x . ^ . , z . =  ij  is restricted to

Var^S-^ -  £:.^)|/z, (z,),/z^,(z.^,zi,^ =  =  i j . We are unable to allow for heteroskedasticity in a

general form. We allow for conditional heteroskedasticity o f  the errors as long as it is o f  double index 
form. The efficiency o f the estimators could be improved by using additional moment restrictions 
exploiting the stronger distributional indices restriction.



CHAPTER 5. NEW SEMIPARAMETRIC PAIRWISE DIFFERENCE ESTIMATORS 174

4 (^ „  = l]  = 4 (e „  = l] = 0 (3.5)

It is interesting, at this stage, to show what happens when we try to develop a 

semiparametric estimator of p  in (3.4) relying only on time differences for a given 

individual. As a result we get that, even conditioning to probabilities, we cannot 

avoid the exchangeability assumption in Kyriazidou’s (1997) estimator. For 

illustration we decompose the conditional mean of the differenced error in (3.3) in two 

terms

^{h, (z, ) ,h,(z,. ); F3[ e , ,c, + u , , c, + \x , , , z,. ]} -  A{/z,(z,. ),h, (z, ); F,[ f ,,,c, + ,c,. + u, \x , , x,,,z, ]}

= A/n -  A,„ ,

(3.6)

where for =^,s, we need /z,(z,) = (z,) and the conditional exchangeability 

assumption

+ uj\x , , ,x^ ,z , ' \s  Fy>,^,E„,c, +u,^,c, +u„\x„,x,^,z,'\. (3.7)

Notice that this conditional exchangeability assumption implies for any potential first 

step estimator the conditional stationarity assumption
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First step estimation methods compatible with this condition are the conditional 

maximum score estimator (Manski, (1987)), the conditional smoothed maximum 

score estimator (Kyriazidou, (1994); Charlier, Melenberg, and van Soest, (1995)), and 

the conditional maximum likelihood estimator (Chamberlain, (1980)). All these 

methods are developed independently of the individual fixed effects in a structural 

sample selection equation, and for this reason (3.8) can be rewritten as

I.  „ =^u \x. x c ^  „ = Fu \x,. x. z. z _ n:

Furthermore, the use of these methods implies a linearity assumption for the index in 

the selection rule, which means that (z . ) in (2 .2 ) is assumed to be equal to

z-tY -  77, + c ,. According to Ahn and Powell (1993) if the latent regression function is

linear, conditioning on probabilities is equivalent to conditioning on z^^y,r = t , s .

Thus, we will end up with the sample selection correction term of Case D in (2.13) in 

section 2 above, exploited by the estimation procedure in Kyriazidou (1997). There, it 

was necessary to assume that a root-n-consistent estimator y  of the true y was 

available. The two estimation methods we propose will avoid this requirement.

5.3.1 Weighted Double Pairwise Difference Estimator (WDPDE)

In sample selection models with cross section data pairwise-difference estimators are
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constructed with pairs of observations across individuals. Up to date, in panel data 

sample selection models they are constructed, not across individuals, but over time for 

the same individual (Kyriazidou (1997)). In our approach the pairs of observations 

will be constructed across individuals in differences over time. The motivation of the 

method is both to eliminate the individual effects and to get ride of sample selection 

problems. The drawback of Kyriazidou’s (1997) estimator was given by the fact that 

elimination of the sample selection effects needed the named joint conditional 

exchangeability assumption. In our method, given a pair of observations characterised

by the vector with

d„ = d,  ̂ = 1, dj, = dj^ = 1 and /z,, = (/z,, /z„. ) = (/ẑ ,, ) = /ẑ ,,,

{y.i -  y,s ) - { y j , ~  y > ) = [(^,7 -  +

[a {h, {z, ) ,/z,(z, ) ] - ^ [ K  (z, ) ,/z,(z  ̂)}] + [[e, -  g,,) -  (g,, -  g,, )]

= [(̂ /V -  ) -  (^7/ -  )]^ + [( /̂/ -  ) -  [^jt -  ĴS )],

(3.10)

because of

E  

= E

(^u -  j, -  £ = 4  = h^/7 = 1

= \h,[zj),h^[z^,d„ = ûf,, = \,dj, =d.^ = 1

(u )’^.v(u)}l = 0,

(3.11)
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where A denotes the increment of a variable from period 5 to / .  By construction, in 

(3.10)

E =  0 .

(3.12)

How close are the vectors of conditional means in the conditioning set will

be weighted by the bivariate kernel weighs

Ks -  Ĵts 

V S i n  j

iA  is •> (3.13)

with

l * i u\

(3.14)

where k and K  are the kernel functions and and are the bandwidths. Thus, 

we estimate the unobservable conditional expectations in (3.1) by nonparametric 

kernel regression.

The estimator will be of the form
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xy
- 1

2v -y  '-iy«+, • "  ■ (3.15)
and

‘̂-3̂  -  [  2 ]  ^  )] [()"„ ) [yj, -  yjs )]

Then the WDPDE has a closed form solution that comes from a weighted least 

squares regression of the distinct differences (t „ “ T/.v)“ (TyY ) iii dependent

variables on the distinct differences (%„ ~^y.v) regressors, using in

(3.13) as bivariate kernel weighs. We only have to include pairs of observations for 

individuals observed two time periods and we have to exclude pairs of individuals for 

which

The advantages of this estimator are as follows. No distributional assumptions 

for the error terms are needed compared with the estimators in chapter 3 or 

Wooldridge (1995), and no conditional exchangeability assumption is needed 

compared with Kyriazidou (1997). We do not require conditions for a given 

individual over time to eliminate the selection terms but conditions among individuals 

in time differences.

In general, in (3.2) the unknown joint conditional distribution of

-^ „ ) ,(c , +w„),(c, could differ across individuals as well as across time

pairs. In particular, since in (3.10) to eliminate the sample selection effects, 

differences are taken across individuals in time differences, it is not required that
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+w,,),(c, +w„.)] be i.i.d over time but i.i.d across individuals. In other 

words, we may allow the functional form of F3 and consequently of A in (3.2) to vary 

with the pair but not across individuals. We need

[ E « + W / , ) , ( c , + W j , ) , ( c j + M j i ) ]  to be identically 

distributed that ).(c, + + u„),{c, + u,^)

conditional on . That is,

C ,  - £ , ■ ) . ( « / ,  + « , , ) , ( c ,  + « , j ) , C  + « „ ) , C  + m , j ) | { A , ( z , ) , A , ( z , ) )  =  \ h , [ z j ) , h , { z j ) ]

i^ j '  + “ „ ) , { c ,  + u „ ) | { / i , ( z , ) , * , ( z , ) }  =  \ h , [ z j ) , h , ( z j ) ^

to be

(3.16)

This is crucial to our method for eliminating the sample selection effects.

In this model identification o f /? requires

{ ( ^ „ -^p )y„ d ,A j ,d ^ , \h „ ,-h j„ = Q

finite and non-singular. Then, if the extra identifying information in (3.1) is 

exploited, the stochastic restriction (3.5) is sufficient for identification provided the 

regressors (x,, have sufficient variability given the indices . This condition 

rules out any deterministic function of as a component of the regression vector 

(x,, -  x , J . Moreover, nonsingularity imposes some restrictions on the form of the 

selection equation. Given that we require support of at zero, if, for example.
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the latent regression function is linear then conditioning on is equivalent to 

conditioning on the linear indices, and nonsingularity requires an exclusion restriction 

on the set of regressors, namely that at least one of the variables in z, is not contained 

in . As we already discussed, with panel data these exclusion restrictions appear 

naturally with the presence of time-varying variables in the selection equation. 

However, if  the true latent regression function is non-linear in z we have 

identification even without exclusion restrictions because these non-linear terms are 

implicitly excluded from the regression function of interest.

5.3.2 Single Pairwise Difference Estimator (SPDE)

We also consider estimation of the parameter vector p  of the “double-index, partially 

linear” model of (3.4). However, under this alternative estimation procedure we 

generalise Robinson’s (1988) “partially linear” model to the case of panel data sample 

selection models. In the model in (3.4)

- y „  = + / ik  (z, % (z, )]+ (e« (3 -iv)

we have already eliminated the individual effects in the main regression equation by 

taking time differences for a given individual. If we take conditional expectations in

(3.17) we get
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£'(>'« = 0 = ,3  jgs
(z, ), (z,. ))/3 + x[h, (z, ), h, (z, )]

To get ride of the selection bias in (3.17) we take out from that expression its 

conditional expectation in (3.18), and then we get the “centred” equation

[ïu -  y , , ) -  E[{y„ -  y,s)\K (z,),/!,,(z,),rf„ = = 1) =
, , (3.19)

To proceed with our estimation strategy, first, we estimate the two indices 

h^{z^\hXz,), which correspond to the probabilities defined in (3.1), with the same 

nonparametric kernel estimators of (3.14). Second, we insert in (3.19) the 

nonparametric regression kernel estimators of =d.^. = 1

and = ij. By using the same kernel as in (3.14)

above, these estimated conditional means are of the form

N

' L ^ m [ y j - - y p )
E w [ { y , ,  - y i s p , { ^ i ) Â ( ^ i ) A i ,  = 4  =  1) = N  ’

N

- 4 ) (3.20)
J * i

S in

N  

j î
f

1

V  S in j
js •
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Finally, in a third step, we apply least squares regression of the differences 

(yi, -3 '/» )-£ '« ((;'/ , = l)  on the differences in regressors

- x , ^ ) \ h , { z i ) , h X z , ) , d i ,  =r/„ = l| to get

y , , -X „ )-E ^{{x ,-x ,^ ) \h ,{ z ,) ,h X z ,) ,d „  = 4  = l)j
(3.21)

and
N

-x„)-E„iy{x„  - x ,^ ' j f , ( z )X (^ ) ,d „  =d„ = ijj

(y,, -y,.)-EN{{y„-y„)\f‘,{^.)Â{ ,̂)A, = 4 ,  = i)|

Identification of p  requires that none of the components of (x„ J  can be exact 

linear combinations of components of [/z, Then, as for the WDPDE, we

have identification provided the regressors (x,, -  have sufficient variability given

the indices .

5.4 Relationship Between the WDPDE and the SPDE

We can extend the WDPDE and the SPDE to allow for endogeneity o f some
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components of the regressors in the main equation, using an instrumental variables 

version of both estimators. The exogenous variables can be used to construct a k-

dimensional vector (dimension of ) of “instrumental variables” for (x,, . In

particular, if  we let the instruments be suitable functions of the conditioning variables 

z. andZj, algebraically these instruments are defined as = Z,^.(z,) for some

function Ẑ \̂ ^  93^. The WDPDE in (3.15) rewritten as a weighted

instrumental variables estimator is given by the following expression:

r 1 — 1

^Zx =

and

/  ] \ f \  ’ N - \  N

X  ~^p)]2 , /=i /=/+i

' ]\f] ' A'-l V

(4.1)

For the SPDE in (3.21) we can also present an instrumental variables version. As in 

some other applications of kernel regression estimators,

- y i s p , { z . ) Â { ^ i \ d i ,  = 4  = 1) a n d  £ „ ( ( x „  - X i ^ ) \ h , ( z , ) , h , ( z , ) , d „  = 4  =  l |

cause technical difficulties associated with its random denominators, which can be 

small (which need not be bounded away from zero). To avoid this problem a 

convenient choice of instrumental variables is the product of the original instruments

Z.^ with the sum in the denominators of = ij and
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I ( x = li ; that is, the instruments are defined as

îts -  '̂ ils • (4.2)
j*i

Instrumental variables regression, using as instruments in (4.2), of 

(y,, -yisp,(^i),^s(^,)>d„  =rf„ = i) on

(^» = 4  = >) gives

p = [4]' 4
N r

N \

4 4
; =  1 V j * i

N ( N \

■È4s
/= 1 V j * i

N N \

4 = Z44 4
/ = 1  V

N / N \

4 Z4s
); = 1 V j ^ i

(̂ ,7 N

j * ‘

(f/7 - y i s ) -

/

N

j * i

(4.3)

The estimator in (4.3) can be shown to be algebraically equivalent to the p  defined in
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(4.1) above^^. In both cases identification o f j5 requires

to be finite and non-

singular. With instrumental variables we require the covariance matrix of the 

instruments with the explanatory variables to be of full rank. Although the difference 

in the indices is zero, the distribution of the corresponding differences

of instrumental variables and the regressors (x„ ~ ^ p ) can

still be of full dimension provided the Z^ and the (x, -  x j  have sufficient variability

given the indices . This condition rules out any deterministic function of as a

component of the regression vector (x, -  x j . If the latent regression function is

linear nonsingularity requires some component of z, to be excluded from both

( x „ - x ,J a n d  Z,.,̂ . With panel data exclusion restrictions appear naturally for

(x,; -  x,̂  ) ,  but for Z.  ̂ we need an exclusion restriction, which may be difficult to

justify. In general, though, if the true latent regression function is non-linear in z we 

have identification even without exclusion restrictions, because these non-linear terms 

are implicitly excluded from the regression function of interest.

To show that they are equivalent we use the symmetry property o f  the kernel function, that is,



CHAPTER 5. NEW SEMIPARAMETRIC PAIRWISE DIFFERENCE ESTIMATORS 18 6

5.5 Monte Carlo Results

In this section we report the results of a small simulation study to illustrate the finite- 

sample performance of the proposed estimators. Each Monte Carlo experiment is 

concerned with estimating the sealar parameter p  in the model

i = r = 1,2,
(5.1)

=2u,r,+h,,r2+i t̂,,-h,,)r,-r!i-«,i d,, = ik '  ^o]

where is observed if  = 1. The true value o f P ,  y ,, y  j  and y   ̂ is 1 ; the

regressors in both equations are exogenous variables where z,„ and Zj,, follow a 

N(0,1) and is equal to the variable z^,,. The individual effects are generated as

7 ,  =  “ [ ( ^ 1 / 1  + 4 , 2 ) / ^ +  ( ^ 2 / 1  +  ^ 2 / 2 ) / 2 +  ( Z i , . ,  '  Z 2, ]  + Z , ^ 2  ' ^ 2 i l )  I  X \ ( P S )  

a , = (x ,̂ + /  ̂+ V2  - %2 (0 ,1) + 1 . The function f^ (z.) in (2.2) corresponds to

0.07 + Z„,y, +Z2,r2 +(^l„ ' 2̂, , ) / 3  + K .  +^1/2)/2+(z2,i +Z2,2)/2 + (z„, -Z2,, + Z, ,2 -Z2,2)/2 

, and the random term ĉ  to x \ (04) • The particular design for f^ ( z j  is driven by the 

fact that we do not need to restrict the index function in the selection equation to be 

linear. The time varying errors in the model are û  ̂ =  x \ { ^ S )  and

ŝ  ̂ =  0.8 • + 0.6• x \ { p S )  • The errors in the main equation are generated as a linear

function o f a random component and the errors in the selection equation, what 

guarantees the existence o f non-random selection into the sample. We report results
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when normalised and central distributions with 2 degrees of freedom are 

considered. Our estimators are distributionally free methods and therefore they are 

robust to any distributional assumption.

The results with 100 replications and different sample sizes (N= 250, 500, 750 

and 1000) are presented in Table 1 (WDPDE) and Table 2 (SPDE). It is fair to say 

that we will probably need bigger sample sizes than the ones included in the 

experiments to exploit the properties of these estimators. The tables report the 

estimated mean bias for the estimators, the small sample standard errors (SE), and as 

not all the moments of the estimators may exist in finite samples some measures based 

on quantiles, as the median bias, and the median absolute deviation (MAD) are also 

reported. In Panel A we report the finite sample properties of the estimator that 

ignores sample selection. The purpose in presenting these results is to make explicit 

the importance of the sample selection problem in our experiment design. In Table 1, 

this estimator is obtained by applying least squares to the model in double differences 

where correction for sample selection has been ignored, and for the sample of 

individuals who are observed in both time periods, i.e. those for whom = d , 2  = 1 • 

In Table 2, it is obtained by applying least squares to the model in single differences 

over time for a given individual observed the two time periods.

In Panels B and C we implement second (R=l), fourth (R=3), and sixth (R=5) 

higher order bias reducing kernels of Bierens (1987). They correspond to a normal, to 

a mixture of two normals and to a mixture of three normals, respectively. The



TABLE 1: Weighted Double Pairwise Difference Estimator (WDPDE)

£ it -  08 • Hji + 0.6 - (0,l)

=  (^/ l  +  ^,2 )  /  2  +  V 2 • ^ 2  ( 0 ,1)  +  1 

=  - [ ( 4,1 + ^ 1 ; 2 ) / 2  +  (z2„  +  Z 2 , 2 ) / 2  +  ( z , „  • Z2,, +  Z„2 ■ Z I 2  +  S )  +  ^

PANEL A
Ignoring Correction For Sample Selection

N Mean Bias Median Bias SE MAD
250 0.1099 0.1186 0.1416 0.1194
500 0.0937 0.1005 0.1239 0.1024
750 0.0933 0.0911 0.1075 0.0911
1000 0.0912 0.0887 0.1015 0.0887

PANEL B
R=1 & g=l R=1 & g=0.5 R=1 & 2=3

N Mean Median SE MAD Mean Median SE MAD Mean Median SE MAD
Bias Bias Bias Bias Bias Bias

250 0.0650 0.0735 0.1444 0.1143 0.0969 0.0842 0.1811 0.1194 0.0917 0.0913 0.1365 0.0966
500 0.0426 0.0496 0.1139 0.0747 0.0679 0.0806 0.1419 0.1101 0.0762 0.0816 0.1137 0.0861
750 0.0258 0.0248 0.0827 0.0580 0.0499 0.0398 0.1025 0.0655 0.0707 0.0777 0.0935 0.0777
1000 0.0282 0.0244 0.0782 0.0580 0.0570 0.0629 0.0991 0.0744 0.0700 0.0654 0.0882 0.0654

PANEL C
R=3 & g=l R=5 & g=l

N Mean Bias Median Bias SE MAD Mean Bias Median Bias SE MAD
250 0.0713 0.0754 0.1465 0.1055 0.0852 0.0879 0.1439 0.1051
500 0.0576 0.0605 0.1112 0.0888 0.0669 0.0722 0.1099 0.0808
750 0.0464 0.0550 0.0864 0.0709 0.0700 0.0612 0.0949 0.0625
1000 0.0531 0.0589 0.0844 0.0662 0.0735 0.0749 0.0907 0.0751

00
00



V. =

TABLE 2: Single Pairwise Difference Estimator (SPDE)

= 08 - +0.6 (0,1)

= (^/l + %,2 ) / ^ ^  ' %2 (())̂ ) + 1

“ " [ ( ^ I z l  ^ 1/ 2 )   ̂  ̂ ( ^ 2 / 1  ^ 2/ 2 )  /  ̂+ ( ^ 1 / 1  ' ̂ 2 , 1  " * " ^ 1 / 2  ' ̂ 2 / 2  )  ̂  ̂ % 2  ( ^ ' 0  0.07 j
PANEL A

Ignoring Correction For Sample Selection
N Mean Bias Median Bias SE MAD

250 0.1090 0.1156 0.1412 0.1182
500 0.0940 0.1001 0.1242 0.1011
750 0.0930 0.0906 0.1074 0.0906
1000 0.0911 0.0889 0.1014 0.0889

PANEL B
R=1 & g=l R=1 & g=0.5 R=1 & g=3

N Mean Median SE MAD Mean Median SE MAD Mean Median SE MAD
Bias Bias Bias Bias Bias Bias

250 0.0448 0.0431 0.1373 0.1029 0.0910 0.1039 0.1497 0.1114 0.0705 0.0670 0.1255 0.0861
500 0.0165 0.0134 0.0942 0.0583 0.0494 0.0554 0.1028 0.0773 0.0616 0.0684 0.1037 0.0818
750 0.0074 0.0167 0.0704 0.0510 0.0441 0.0431 0.0792 0.0547 0.0443 0.0505 0.0753 0.0550
1000 0.0063 0.0053 0.0641 0.0431 0.0432 0.0470 0.0718 0.0597 0.0472 0.0409 0.0708 0.0495

PANEL C
R=3 & g=l R=5 & g=l

N Mean Bias Median Bias SE MAD Mean Bias Median Bias SE MAD
250 0.0749 0.0680 0.1550 0.1054 0.0764 0.0672 0.1354 0.0989
500 0.0459 0.0526 0.1277 0.0781 0.0552 0.0703 0.2379 0.0844
750 0.0471 0.0356 0.1277 0.0562 0.0704 0.0525 0.1934 0.0706
1000 0.0370 0.0379 0.0837 0.0578 0.0729 0.0690 0.1600 0.0746

00\o
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bandwidth sequence for the first step is^  ̂ = g, • where T=2 is the

number of time periods and F=2 is the dimension of z,^. The first step probabilities 

/i] (z . ) and (^/ ) are estimated by leave-one-out kernel estimators constructed as in

(3.14). The bandwidth sequence for the weights in the second step of the WDPDE 

and the SPDE is g^^ = gj • , where q=2 is the dimension of the vectors

h^̂ . The constant part of the bandwidths was chosen equal to 1, 0.5 or 3 in both steps. 

There was no serious attempt at optimal choice.

From both tables we see that in Panels B and C the estimators are less biased 

than the estimator ignoring correction for sample selection (Panel A). The bias are all 

positive, they increase as the kernel order increases and they diminish with sample 

size. The best behaviour is found with R=1 (a second order kernel) and a constant 

part of the bandwidth g, = g^ = g  = \ .  Some anomalous results for sample size 1000 

may be claiming the use of some trimming to ensure that all the kernel estimators are 

well behaved. The SPDE performs slightly better than the WDPDE, which can have 

its origin on the extra differencing present in the latter method.

By following the best uniform consistency rate in Bierens (1987) for multivariate kernels. If we were 
focused on convergence in distribution the optimal rate would have been obtained by setting
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5.6 Concluding Remarks

In this chapter, estimation of the coefficients in a “double-index” seleetivity bias 

model is eonsidered under the assumption that the seleetion correction function 

depends only on the conditional means of some observable seleetion variables. We 

present two alternative methods. The first is a “weighted double pairwise difference 

estimator” because it is based in the comparison of individuals in time differences. 

The seeond is a “single pairwise differenee estimator” because only differences over 

time for each individual are required. Their advantages are the following. They are 

distributionally free estimators compared with our earlier estimator in chapter 3 and 

Wooldridge’s (1995) estimator. Furthermore, no conditional exchangeability 

assumption or parametric sample selection index is required compared with 

Kyriazidou (1997). The methods do not require strict exogeneity for the variables in 

the main equation, and they are shown to be equivalent under the proper choice of 

instruments for each estimator.

The finite sample properties of the estimators are investigated by Monte Carlo 

experiments. The results of our small Monte Carlo simulation study show the 

following. Both estimators are less biased than the estimator ignoring correction for 

sample selection. The bias are all positive, they increase as the kernel order inereases 

and they diminish with sample size. The best behaviour is found with R=1 (a second 

order kernel) and a constant part of the bandwidth g=l. The SPDE performs slightly 

better than the WDPDE, which can have its origin on the extra differeneing present in 

the latter method.
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5.7 Appendix I: The Variance-Covariance Matrix 

for the WDPDE

One variation inside the termed “semiparametric M-estimators” by Horowitz (1988) 

defines the WDPDE of as a minimaser of a second-order (bivariate) U-statistic,

(1.1)

that will solve an approximate first order condition

'"^1 = 0 , (1.2)
, = 1 j = i  + \

where = t,, - T», ~^is’ ^ijts is defined by expression (3.13) in

the main text above. The empirical loss-function in (I.l) and the estimating equations 

in (1.2) also depend upon an estimator of the nonparametric components and 

defined in (3.1) and (3.14). To derive the influence function for an estimator 

satisfying (1.2), we first do an expansion around p  of (1.2) and subsequently a

functional mean-value expansion around -  hj,  ̂j to determine the effect on p  of

o f [ L  - h jestimation .
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Expanding (1.2) around p  we get

0 =
/  ] \ f \  '  N - \  N

Z  Z  -  Ay,») -  (ax„, - ijts
(  =  1 y = / + ]

(=1 j= i+ \

(1.3)

from where

4 n (P -I3]  =
' fp\ ' //-I N

ijts
;= 1  y = / + l  

^  N - \  N

^  9 S  X(^'V.v -  =
/=1  j= i  + \

(1.4)

being (i/,,, -  = [(<?;, -  -  [sji - £ j , )  = (Ay,,, -  A_y^,J- (A%„, -  A%^„)/?]

If we analyse the components of (1.4):

1) 4 - 2 . Z g ^ t ( A x , , - A x , „ )  '(Ax„„-Ax, . ) ® , „ - S „ = ' ’ 2 .X „  • (1.5)
4  ̂ ( = 1 4 ’ 1 J = i+ \

As = U^f^, that is a bivariate U-statistic, by using U-statistics asymptotic theory

1 ^
we know

V 4V /=i
(Ax,„ -  Ax ,̂,) '(Ax,,, -
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and then

2 - E l E
(1.6)

The matrix is easily handled, since ^  consistently estimates it.

2) expanded around

N

; = 1 7=;+l §2N
n̂.s -  ĵts

V  S 2 N J

I 2 ^
Vtv &  TV

f  1 * 1 * ^n its — h jts
d j t s d  Us K  it

N

E^. !& ]-* -) ̂ S i n  / _ / = i  J

(1.7)

where <7,,̂ . =d-id-^, k '[)  is the derivative of the second-stage kernel A:(.) and Kji is 

defined as in (3.14). The expression (1.7) includes derivatives of the weights with 

respect to {ĥ ^̂  (kernel derivatives).

For the first term on the right hand side of (1.7),
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g  N

(Ax„, '(v„, -
S i n

Ks -  Ĵts 
^ Sin ^

' K

\ S i n  ^
\

^iis^jis
(1.8)

^ i l s ^ j i s \ ^ i t s  ’ ^ i t s  ’ ^ i t s  ’ ^ i t s

and for the second.

Af-i n tt N

S i n  ^  S i n

N 

/ =  1

-  h . . .  =

S i n  \  ^ 2 y v

a,j -n :'i-A„
a . ..

Substituting (1.5), (1.8) and (1.9) in (1.4) we get

(1.9)

(Ax.̂ . -  Ax̂y,) '(v„̂  -  —~
S i n  ^  S i n

2](Ax̂ .„ -  Ax„J —--- — \dj,4i,̂ Kji
/ = !  S i n  ^  S i n

'  N -1
Ks

_ /=!

that is asymptotically normal,

(Ï.10)

->N\ 0 -1 I (111)
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1 -
where is estimated by —5"  ̂ by (1.5), and can be estimated by

\

vU,>/
- h .

U„
(1.12)

where

^ /  =  ! S 2 N

N

1 _  ^

■  ̂ 7 = 1

1 N  N

t /=1 /=1

h,. — hIts Jts
^ i t s ^ j t s  5

-  Ax„,) '(v ,̂, -  v „ ) - ^ k '
S in

V  S in y  

' ^ k s - h j , }

V  ^ 2 v v  y
^jts^lts^JI

■ vV 

/=1

- 1

(1.13)

The general theory derived for minimisers of m  ̂ -order U-statistics can be 

applied to show yfN  -  consistency and to obtain the large sample distribution of the 

WDPDE for panel data sample selection models. The variance-covariance matrix for 

this estimator depends upon the conditional variability o f the errors in the regression 

equation and the deviations of the selection indicators from their conditional means,

f d , k
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5.8 Appendix II: The Variance-Covariance Matrix 

for the SPDE

We can define the SPDE of as a minimaser of

^ _ a r g m i n

~Nh

^y,ts -  =  J , ,  =  i j  -  =  â f , ,  =  i j

(II. 1)

that will solve an approximate first order condition

T̂,.v -  ^N[^y, \K{zi )As{h\d„  -  â?,, = 1

(11.2)

Expanding (11.2) around p  we get

0  =  -  E ^ [ à x , \ h , [ z , ) , h X z ) , d ,  =  d,  ̂ =  i j

^ ^ y i , s - E N [ ^ y , \ K [ ^ i ) A X ^ i \ d ,  =  i j  -  E ^ { ^ à x , } f i , { z , ) , h X z i ) , d ,  =d- ^  =  i j

=  l)  ^ i< .s  -  E y ,(A % ,, |Â ,(z ,.) ,Â X z ,) ,6 / ,  =  Û?,, =  1

(11.3)
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from where

=  d,  ̂ =  i j  A x , „  -  E ^ [ à x , \ h , [ z , ) , h X z ) , d ,  =  o f , ,  =  1  

-  E ^ [ à x , } f i , { z , ) , h X ^ , ) , d ,  =  ûf,, =  l |  { s „  -  f , , )  -  E ^ [ e ,  -

'< ,4

(II.4)

where {s, -  = Ay,,, -  A%,„^, and

= J,, = ij = - E ^ { ^ ^ y , \ h X z ) , h X ^ > \ ^ n  = = l)  +

=d,^ = ^ p .

(II.5)

It can be shown that the inverted matrix in (IL4) is consistent for

A =

^ t s  -  E[Ex,\hXz\hXz\d ,  =<• =l)l [Ax,, -£(Ax„|/2,(z),/2,(z),^/, =^/, = i) d,d^ }.

(ÏI.6)

1 ^
We shall analyse now the term in (II.4). We have to work out the
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effect of estimating four infinite dimensional conditional means 

( ^ ( A  = £ ( « , -£,|/!,(z),ft.(z),rf, = l))  on

the asymptotic variance of our parameter of interest p . The moment condition for the

1 ^
summand in V  can be written as

E\m =d^ = l), e [s  ̂ -£\h,{z),hXz),d, =d^ = l) = 0

(IL7)

where

E[&x„\h,(z),h,(z),d,=d,=\), £ ( f ,  - £ ,|/j,(z ),/i,(z ),rf, = </, = l)

-  E[àx„\h,{z),h,{z),d, =d, = l)l [(e, -£ , |/ i ,(z ) ,/! ,(z ) ,r f ,  = r f ,  = l) d,d,.

(II.8)

The following four derivatives are of interest:

ân {s, - s , ) -E (^ e ,  -s^\h,{z),hXz),d, = l) d,d ,.

(II.9)
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ân

âE[s, -£ \h X z) ,h X z ) ,d t  = <  = l)

(11.10)

^ ^  =  - V , æ ( A x J / z , ( z ) , / 2 , ( z ) , û ? ,  - 6 / ,  = l )  - £ ^ ) - E ( e , - £ \ h X z ) , h X ^ \ d ,  = d ^  =  l ) ] ^ ^ / ,

-  E{^>s \K {^ )A{^ ) ’d, -  d̂ . = l)| V ,E (g , -  £^\h,{z)A{^),d, = d, -  \)d,d^,

(11.1 1 )

â n  

3i = -V ^E(^x,\h^{z),hXz)A, =d̂ . =0[( '̂ -^s\h,(z),K{z),d, = l)] /̂.,

-  ^{^>s\hXz),K{z),d, ^d^  = l)] V^e (£, -£^\h^{z),hXz),d, = d ,  = \)d,d^,

(11.12)

where V^E^\h,(z),hs{z),d, = d^ = and W^.E(^\h,[z),hs{z),d, = d^ ^  are the 

derivatives of E(^\hi[z),hs{^)At = d^ = with respect to /i,(z) and h^{z), 

respectively.

For the moment condition in (II.7) a functional expansion around A, (z ) , h^[z), 

= d , = \ )  and e (̂ £, -  £^\h^{z),h^(z),d, =d^ = l) gives
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= ” ^ Z ( / ^ [ 4 k ) ,  A ,k ) ,  £^(A x„|/2,(z ,) ,/2,(z,),i/„  = < ,  = l), E ^ ( e , - s \ h , ( z ) , h ^ ( z ) , d „  = t/,, = l)]

[k  - s) - E [ e, -  e \h, (z)A{^ )A = = l)]

+ \ E

+ E

+ E

d m
=  <  = 1

d E [ / S x , ) ^ h { z ) A { z ) , d ,  -  <  -  l)

d m
= d ^  =

d E ( s ,  -  e \ h , { z ) A { ^ ) A  =  d ,  =  f

d m

^(z)
[ d , - h , ( z ) \ + E

d m

A k) k - 4 k ) ]

(11.13)

For our estimator, the two means of ^/Æ (-|/2 ,(z),/z^(z),k  = k  = l) 

conditional on /z,(z),/z^(z), and d̂  =d^ =1 are zero (see (II.9) and (11.10), above). 

Furthermore, the corresponding two terms for (z)|/2,(z),/2̂ .(z),<i, = d ^ = \

and E^ân/ûh^[z)\hi[z),hs{^),di =d^ =1 , according to (11.11) and (11.12), are also 

zero because of

=  0

and

=  0

Hence, there is no effect of estimating the four infinite dimensional nuisance
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parameters on the asymptotic variance of p  given that the correction term in {•} in 

(11.13) is equal to zero. Therefore, we get

1 w
= l) {s„ - s,P-E[£,  -£ \h, { z ) ,hXz) ,d ,  =d,  ̂ = l)

1 ^

(11.14)

that is asymptotically normal,

where

-  E[Ex,\h,[z),K{^i\d, = of,, = l)l -  sP -E [e , -  6\h,{z),K{^),d^, = = l)

(11.16)

A can be estimated as in (II.4), while is estimated by replacing all the

conditional means involved, that is
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(^ ,(A  \ ( z ) .  E { ^ x , \ h , { z ) , h X 2 ) , d , = d ,  =  \) ,  e { e , -  s ) f i , { z ) , h X z ) , d ,  =  = \ ^ ,

with nonparametric estimates.
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Chapter 6 

Summary and Conclusions

This last chapter summarises the results of the Monte Carlo experiments in chapters 2, 

3 and 5, and the main empirical results in chapter 4.

Chapter 2 is concerned about the finite sample performance of Wooldridge 

(1995) and Kyriazidou’s (1997) estimators for “fixed-effects” panel data sample 

selection models. The results of a small Monte Carlo simulation study show the 

following. First, Wooldridge’s (1995) estimator is less biased than Kyriazidou’s 

(1997) estimator and it reaches faster its asymptotic behaviour. Second, Wooldridge’s 

(1995) suffers from an important misspecification bias problem when the linear 

projection functional form for the individual effects in the main equation is 

invalidated. However, breaking down the linearity assumption for the individual 

effects in the selection equation hardly influences the bias for the second step 

estimates. In contrast to Wooldridge’s (1995) estimator, Kyriazidou’s (1997) method 

is free from misspecification problems affecting the individual effects in both 

equations. Third, both estimators are not robust to the violation of the underlying 

strict exogeneity assumption. Finally, Wooldridge’s (1995) estimator is robust to 

violations of the conditional exchangeability assumption. When this condition breaks 

down the main effect on Kyriazidou’s (1997) estimator is in terms of precision in the 

estimates. Furthermore, we get larger finite-sample bias than in Wooldridge’s (1995) 

estimator.
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In chapter 3 we introduce a new estimator for panel data sample selection 

models with “fixed-effects”. The estimator relaxes some of the assumptions in the 

methods in chapter 2. We present two versions of the estimator depending on the 

treatment of the individual effects in the selection equation. If they are explicitly 

allowed to depend on the explanatory variables in a linear way (as in Wooldridge 

(1995)) we have a version of the estimator referred to as the “more parametric new 

estimator”. However, if they are explicitly allowed to depend on the explanatory

variables in a fully unrestricted way we call the estimator “less parametric new

estimator”. The results of our small Monte Carlo simulation study show the

following. First, the estimator is robust to violations o f the conditional

exchangeability assumption in Kyriazidou’s (1997) method. Second, the estimator is 

free from misspecification problems affecting the individual effects in the main 

equation, in contrast to Wooldridge’s (1995) estimator. Furthermore, under its less 

parametric version, the estimator is also exempt from misspecification problems about 

the individual effects in the sample selection equation. Third, the estimator performs 

well with dependent data, introduced through correlation over time for the variables in 

the model. Finally, violations of the normality assumption do not seem to affect too 

badly the proposed estimator.

In chapter 4 to learn about the performance of the methods in chapters 2 and 3 

in a practical application, we apply the estimators and their extensions (taking account 

of non-strict exogeneity and/or time constant non-linear errors in variables) to a 

typical problem in labour economics: The estimation of wage equations for female 

workers. The parameter we seek to identify is the effect of actual labour market
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experience on wages. The estimator by Kyriazidou (1997) turns out, for our particular 

application, difficult to apply. It imposes a conditional exchangeability assumption, 

which is rejected by the data. Furthermore, in the case where any non-systematic 

variation in the variable of interest (experience in our case) coincides with changes in 

the selection index, this estimator runs into identification problems (between time 

effects and experience in our case). The results we obtain using Wooldridge’s and 

chapter’s 3 estimators indicate that there are correlated fixed effects, and non-random 

sample selection. Using Wooldgridge’s (1995) estimator, we reject specifications, 

which do not allow for predetermined regressors (and contemporaneous endogeneity). 

Chapter’s 3 method rejects strict exogeneity of the experience variable, conditional on 

taking care of the measurement error problem by first differencing. The most general 

estimator using Wooldridge’s (1995) method implies an increase in wages by 1.8 

percent for one year of labour market experience, evaluated at 14 years of experience. 

Estimates o f chapter’s 3 most general estimator (the extension to GMM) are slightly 

lower. Our results also indicate that estimates of aggregate wage growth are sensitive 

to the trend in sample selection.

In chapter 5, estimation of the coefficients in a “double-index” selectivity bias 

model is considered under the assumption that the selection correction function 

depends only on the conditional means of some observable selection variables. We 

present two alternative methods. The first is referred to as a “weighted double 

pairwise difference estimator” (WDPDE) because of being based in the comparison of 

individuals in time differences. We call the second method a “single pairwise 

difference estimator” (SPDE) because only differences over time for a given
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individual are required. Their advantages are the following. They are distributionally 

free estimators compared with our earlier estimator in chapter 3 and Wooldridge’s 

(1995) estimator. Furthermore, no conditional exchangeability assumption or 

parametric sample selection index is required compared with Kyriazidou (1997). The 

methods do not require strict exogeneity for the variables in the main equation, and 

they are shown to be equivalent under the proper choice of instruments for each 

estimator. The results o f our small Monte Carlo simulation study show the following. 

Both estimators are less biased than the estimator ignoring correction for sample 

selection. The bias are all positive, they increase as the kernel order increases and 

they diminish with sample size. The SPDE performs slightly better than the WDPDE, 

which can have its origin on the extra differencing present in the latter method.
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