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Abstract 

Process plants for the manufacture of pharmaceutical products often need to be designed and built 

quickly to make the most of available patent life which necessitates using uncertain or unavailable 

data.  It is common that pilot plant equipment and data are available and new data can be generated 

if they are important.  We present a model based approach to risk analysis to aid design for 

pharmaceutical processes which combines systematic modelling procedures with Hammersley 

sampling based uncertainty analysis and sensitivity analysis used to quantify predicted 

performance uncertainty and to identify key uncertainty contributions.  The main contribution of the 

paper is the demonstration of the methodology on an industrial case study where the process 

flowsheet was fixed and some pilot data was available.  Expected performance was improved by 

considering the propagation of uncertainty over the whole process.  The case study results indicate 

the importance of considering uncertainty systematically and quantitatively.  The methodology 

showed the opportunity to improve process performance potential through considering uncertainty 

systematically.  
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1.  Introduction 

There is a very significant degree of uncertainty in biological and chemical pharmaceutical 

manufacturing processes which throws up many technical, financial and regulatory challenges (see 

for example Rogers and Ierapetritou, 2015).  These pressures mean that process design decisions 

often need to be made despite the scarcity of available process knowledge and with little 
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understanding of the physico-chemical phenomena characterising the process.  A more structured 

approach to process development has the potential to save development resources, improve the 

quality of the final process and help ensure safety and added value in the products.  In addition the 

efficiency of the process may be enhanced. 

The regulatory authorities have required formal Quality by Design processes to systematically 

incorporate risk-based methods (Yu et al.) sometimes using modelling and simulation (O’Connor 

et al., Escotet-Espinoza et al., Gomes et al., Montes).  A number of systematic methods for the 

generation and use of data from pilot and full scale plant have been published using design of 

experiments (Mandenius and Brundin) and Monte-Carlo sampling (Severson et al.). 

The PSE community have developed a range of tools for the systematic analysis of uncertainty: as 

a two-stage stochastic programming problem for continuous processes (Pistikopoulos and 

Ierapetritou), for batch processes (Ierapetritou and Pistikopoulos), dynamic programming (Tsay et 

al.), identification-based optimisation (Wang and Baldea), multi-objective optimization (Sun and 

Lou), using a polynomial chaos-based approach (Shen and Braatz), chance-constrained 

programming (Li et al.) and optimization with probabilistic constraints (Lapteva et al.). A substantive 

case study using an optimization based approach was presented by Steimel and Engell.  Bernardo 

et al. considered the role of different robustness criteria and Datskov et al. considered the problem 

at a later stage of the development cycle when there is operation data but it is not sufficient.  Hong 

et al. specifically consider the challenges for biopharmaceutical manufacturing control where batch 

processes dominate. 

Application of a systematic method for the robust optimisation of a ‘here and now’ operating policy 

under model parameter uncertainty was presented in a previous paper (Johnson and Bogle). It 

showed for two small examples that a more robust process can be obtained with respect to some 

criteria but not in others. In this paper, a much larger industrial case study is studied using a full 

methodology from first principles modelling through several cycles of data incorporation to produce 

a robust process.  The process studied here, a complete integrated manufacturing process 

sequence, is presented using both pilot plant and production plant data. First uncertainty and 

sensitivity analysis techniques are employed to manage the evolving uncertainty in developing 

models with incoming process modelling information. Then optimisation for desired levels of 

prediction uncertainty reduction is used to show the required levels of input parameter uncertainty 

reduction. The objectives of the case study are to provide: 

• a quantification of uncertainty, 



 

3 

 

• a priority list for required process knowledge  

• a quantification of the effect of increased process knowledge 

• analysis of optimal trade-off between the reduction in uncertainty performance criteria and 

that required in the uncertain parameters 

• an optimal robust operating policy in the available decision variables 

• the value of specific information for potentially measurable process inherent uncertainties 

• a measure of tolerance to error in the optimal robust operating policy variables 

The methodology is outlined in section 2.  The process operations which constitute the integrated 

sequence are described briefly in Section 3 with further information in the supplementary material. 

In Section 4, the risk analysis problem is defined for a first generation of models based on the initial 

data available and assumptions.  Iterative results of the effect of new data on the modelling effort 

in the risk analysis approach are summarised in Section 5.  The results of the uncertainty analysis 

and the sensitivity analysis are discussed in section 6.  Minimum reductions in input model 

parameter uncertainty required to achieve desired reductions in the uncertainty predicted in the 

important output criteria are determined in Section 7.  Some conclusions on the effectiveness of 

the methodology are presented in section 8.  All Appendices are in the Supplementary Materials. 

 

2. A methodology for risk assessment 

The methodology we proposed (Johnson and Bogle) introduces a process for the management of 

uncertainty associated with model representations of current knowledge.  It assumes the 

conceptual design is already chosen, that models have been developed, there is no specific 

consideration of natural variability or structural uncertainty, model parameter uncertainties may be 

characterised by uniform, normal or other types of stable probability distributions, and the 

uncertainty is static in time unless they are associated with an external action to the process.   Given 

the inevitably large amount of uncertainty the methodology aims to: 

1. Reduce uncertainty by improving the current models and parameters 

2. Manipulate the operating policy to improve robustness to model uncertainty by adjusting 

available process variables. 

3. Consider process alternatives 

In this paper we consider the first two stages for the pharmaceutical process case study. 
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The whole methodology is shown in Figure 1.  The key uncertainty analysis elements are in the 

lower dotted box.  Steps 1 to 7 are conventional process model development stages.  In step 8 

quantitative estimation of the uncertainties is determined by available data.  Step 9 defines the 

stochastic system and a sampling procedure is invoked in step 10 (for more details see Johnson).  

The stochastic system is solved in step 11 to obtain probability distributions and distribution 

parameters.  This is achieved by sequential simulations of the deterministic model of the complete 

flowsheet, steps 12 and 13.  In step 14 a convergence test is employed to terminate the stochastic 

model solution procedure when the sample estimates of the parameters characterising the 

distributions (mean and variance) of the stochastic model output criteria are deemed to remain 

sufficiently unchanged with increasing samples.  The convergence test used here is the tolerance 

limit on the average squared deviation measured in the distribution parameter from the estimate at 

the current iteration observation over a specified number of preceding iteration estimates.  The 

results from the uncertainty analysis are compared to independent data to validate the uncertain 

model in step 15.  In step 16 sensitivity analysis is used to estimate the ranking priority of the key 

stochastic inputs contributing to the uncertainty in the stochastic process output criteria. In step 17 

the optimal reduction in key parameter uncertainties is determined and this determines the 

decisions concerning what data to collect or what new experiments to plan to improve the model 

uncertainty. 

Figure 1. 

 

3. Process Description 

The Case Study is based on an operating process with data provided by a pharmaceutical 

company.  The components cannot be given in their chemical form for proprietary reasons.  The 

process objective is the production of a crystalline drug product of key component actB and of 

consistent purity with respect to the by-product impurities, actC and actE, from feed solids 

comprising the active pharmaceutical ingredient (API), actA, and a stereo-isomer impurity, actD.  

The considered sequence comprising of 15 stages is shown in Figure 2.  The key process 

conditions are summarised in Table 1. 

 

Figure 2. 
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Table 1. Summary of key process operating conditions for the Case Study 

(LOD is the level of dampness in solids) 

Stage Key process conditions 

1. Reaction 77 wt%  3 wt% actA purity API feed solids and catalyst. 
2 mol eq. (ratio to feed actA) reG solids. 
10.4 mol eq. (ratio to feed actA) 30% aq. reH solution, controlled 
addition rate to maintain a constant temperature, T1. 

Maintain a constant temperature, T1  1 Co, throughout entire 
reaction. 
Termination at ~90-95% conversion of actA (typically 2.5-3 hours). 

2. Dilution 1 volume eq. (ratio to Stage 1 reH) distilled water.  
15 min agitation period.  

3. Layer separation 30 min settling period.  
Drain heavy organic phase to parallel vessel. 

4. reH destruction 0.4 mol eq. (ratio to feed actA) 6% aq. baseI solution per shot, 
pending litmus paper test for residual reH presence. 
15 min agitation period. 

5. reG destruction 0.7 mol eq. (ratio to feed actA) 50% aq. baseJ solution. 
Agitate mixture for 120 min at a constant temperature, T5.  

6. Layer separation 30 min settling period. 
Drain heavy organic phase to original vessel. 

7. pH neutralisation 0.7 mol eq. (ratio to actA feed) baseK solids  
15 min agitation period. 

8. Layer separation 30 min settling period. 
Drain heavy organic phase to parallel vessel. 

9. solF distillation Distil solF until vessel minimum stir volume is reached.  
1 bar pressure and zero reflux.  

10. 1st solL distillation Add a fraction of the total solL volume:product ratio between 14 and 
15.  
Distil a fraction of the solL. 
1 bar pressure and zero reflux. 

11. 2nd solL distillation Add remaining fraction of the total solL volume:product ratio. 
Distil solL to achieve a final solL volume:product ratio between 7 and 
8. 
1 bar pressure and zero reflux. 

12. Crystallisation in 
solL  

Cool boiling mixture to 25 Co and hold for 60 min. 
1 bar pressure. 

13. Filtration Vacuum filter the slurry at a constant temperature, T13, until ~W13% 
LOD is achieved. 

14. Washing Rinse the damp solids with a 2 volume:product ratio of pure solL at a 
constant temperature, T14, and refilter to the prior LOD. 

15. Drying Dry with pure N2 at a high temperature to a low LOD value ~W15%. 
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An aqueous-organic liquid phase chemical reaction takes place in Stage 1.  The description for this 

process stage is based on the details obtained from private communication with the pharmaceutical 

company.  The stoichiometric reactions believed to be occurring are shown in equations 1 to 4.  

The reaction objective is to produce the drug product, actB, from the feed. Feed solids of actA, 

stereo-isomer actD and reagent reG dissolve in the organic solvent, solF.  Controlled addition of 

the aqueous reagent, reH, leads to the production of an oxidant, oxG, in a reaction between 

aqueous reH and dissolved reG, believed to occur at the aqueous-organic phase interface, see 

Figure 3.  This oxidant reacts with the dissolved drug components in the organic phase.  The key 

feed API (actA) is oxidised to the desired product (actB). Over-oxidation leads to the formation of 

actC from actB in a consecutive reaction. actC is the critical impurity believed to cause problems in 

the morphology during the crystallisation of the final product. In parallel, the feed impurity (actD) is 

oxidised to a secondary impurity (actE). 

reG   +   reH   →   oxG                     (1) 

actA   +   oxG   →   actB                        (2) 

actB   +   oxG   →   actC                    (3) 

actD  +  oxG   →   actE                    (4) 

The following seven operations, Stages 2 to 8, provide a termination of the reaction and treatment 

of the residual reagents.  The termination is precipitated by rapid dilution of the aqueous solution 

of reH with addition of distilled water followed by a period of stirring, Stage 2.  An aqueous-organic 

layer separation is conducted after a period of settling, Stage 3.  The heavy organic phase is 

drained to another vessel and the aqueous phase is sent to waste.  Residual reH and reG are 

destroyed using aqueous solutions of baseI and baseJ in Stage 4 and Stage 5, respectively.  The 

organic phase is drained back to the original vessel in another layer separation, Stage 6.  An 

aqueous solution of baseK is charged to effect a pH neutralisation, Stage 7, followed by a final 

layer separation, Stage 8. 

The next three operations effect a solvent exchange from solF for a crystallisation from an organic 

solvent, solL. solF is distilled from the vessel to a minimum concentrate, Stage 9.  A fraction of a 

predetermined total volume of solL is added in Stage 10. Some fraction of this is removed in the 

Stage 10 distillation, after which the second solL fraction is added and distilled (Stage 11).  This 
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aims to maintain a desired initial and final solL volume to product mass ratio, without violating the 

maximum boiling volume limit of the vessel.  

The final four operations involve the purification of the product.  A crystallisation from solL aims to 

remove actC and actE to acceptable levels in the product solids (Stage 12).  This also acts to 

remove unreacted actA and actD.  The solids are filtered and then washed in pure solL to remove 

residual solution containing dissolved impurities before drying (Stages 13, 14 and 15). 

 

Figure 3. 

 

Some important process issues concerning the product yield and final quality are indicated:  

• The controlled addition of reH to the reactor is necessary to prevent a potentially strong 

exothermic reH reaction and maintain a constant low temperature, T1.  

• Maintenance of a constant low temperature in the reaction helps prevent the possibility of 

increased impurity formation.  

• The molar charges for the chemical reagents are estimated based on the initial moles of actA 

feed in Stage 1, and not based on measurements of the species to be quenched.  The exception 

is Stage 4, where the complete destruction of residual reH is ensured with the utilisation of a 

litmus paper test, and additional baseI charges.  

• There is a potential for drug loss in Stage 5, up to 1-2 wt% of the product yield.  The presence 

of excess baseJ may lead to a product decomposition reaction, due to either an incorrect baseJ 

molar charge, or a prolonged stirring period.  

• The desired values for initial and final solL volume to product mass ratios are obtained from 

statistical design of experiments.  These ranges are believed to be important to the behaviour 

of the subsequent crystallisation process.  

• The addition and distillation split of the total solL make up is imposed due to the maximum 

volume limit allowed for boiling within the given vessel.  The split may be an important factor 

regarding the quantity of residual solF present in the Stage 12 crystallisation stream and the 

total process sequence time.  
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• A higher crystallisation temperature may lead to yield loss due to higher solubility of the product 

while a lower temperature may mean increased impurity content in the solids.   

• Low solubility of product in solL at the controlled wash temperature, T14, means that dissolution 

of solid product in the solL wash is assumed to be negligible. 

These observations provide limitations on the operating policy and the underlying issues should 

provide incentives for the use of a modelling-based approach.  It is important that such observations 

can be considered in such an approach though there may be little mechanistic understanding 

behind them. 

 

 

4. Risk Analysis  

In this section the effect of the large degree of uncertainty concerning the first generation of process 

models in the integrated sequence is quantified using the uncertainty and sensitivity analyses as 

shown in Figure 1.  The effect that additional process data may bring to the models and the 

assumed uncertainty within the sequence is also considered.  

In the hypothetical situation that data from complete process sequence runs at subsequent scale-

ups becomes available, it is proposed that the methodology is used to analyse the predicted 

uncertainty in the current level of models with respect to this data, to determine where the models 

need to be developed further.  This corresponds to the validation step in the systematic model 

development process, step 15 shown in Figure 1.  Since production plant data was not available 

for this case study, the PPR plant data (Table 3) was used as the benchmark with which to assess 

the effect of the uncertainty in the predicted criteria using models and parameter uncertainty 

estimated or assumed to correspond to the current levels of knowledge available.  The 

corresponding PPR plant conditions given in Table 2 were used in this assessment.  Estimation of 

the model parameters and quantification of the parameter uncertainty is based on actual data 

where available.  
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Table 2. PPR plant run conditions 

Stage PPR plant run conditions  
1 Operation time 300 min 
 Total drug feed mass 469.9 kg 
 Drug feed purity 74.1 wt% 

 solF 2880 kg 
 30% aq. reH 1042 kg  
 reH addition time 60 min 
 Agitation speed 78 rpm 

2 Distilled water addition 940 kg  
4 6% aq. baseI solution 790 kg  
5 50% aq. baseJ solution 46.9 kg  
7 35% aq. baseK solution 260.0 kg  
9 Minimum stir volume 500 dm3 

10/11 Total solL feed 4785 dm3 
 Total solL removed 2435 dm3 

12 Cooling rate (assumed) 1 oC min-1 
 

Table 3. PPR plant run measurements 

Stage PPR plant run measurements  

1 XactA 0.955 
 actB content 71.45 wt% 
 actC content 0.74 wt% 
 actE content 2.88 wt% 
 Post reactor crude product mass 345.8 kg 

10/11 Cumulative initial solL:product ratio 14.7 dm3 kg-1 

11 Final solL:product ratio 7.2 dm3 kg-1 

 Pre-crystallisation crude product 
mass 

325.8 kg 

14 Post filtration LOD 25 % 

15 Dry product mass 293.2 kg 
 Post drying LOD 6 % 
 actB dry content 89.4 wt% 
 actC dry content 0.24 wt% 
 actE dry content 1.4 wt% 
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4.1. Stochastic problem for the first generation model set 

The first generation stochastic system to which the uncertainty and sensitivity analyses are applied 

is defined in this section.  The main characteristics of the first generation set of deterministic models 

and the uncertainty inputs to the problem are summarised in Table 4.  

The uncertain inputs to the stochastic system comprise of those model parameters which generate 

a significant response in important output criteria when individually perturbed from their nominal 

values.  For the consecutive reaction rate constants, k1 and k2, estimated simultaneously using 

non-linear least squares, the degree of correlation and the parameter standard deviations are 

estimated using a first term Taylor series expansion for the covariance matrix.  For uncertain 

Table 4 Summary of first generation model characteristics and stochastic problem inputs.  

Stage  Operation Main deterministic model  
characteristics 

Uncertainty  
sources 

Reference  
(Appendix B) 

1 Reaction First order reaction kinetics.  Kinetic rate 
parameters 

Model B1 

2,4,5,7 Reagent 
addition 

Two-phase mass balance with 
fractional drug loss assumption 
due to aqueous phase solubility. 

Fractional drug 
loss parameter 

from organic phase 

Model B2 

3,6,8 Layer 
separation 

Two-phase mass balance with 
fractional organic phase loss due 

to imperfect phase cut. 

Fractional organic 
phase cut loss 

parameter  

Model B3 

9,10,11 Distillation Batch distillation assuming ideal 
VLE with specified reboiler duty  
for estimation of operation time.  

VLE coefficients Model B4 

12 Crystallisation Crystal growth kinetics based on 
solute saturation in a seeded 

batch  
cooling regime, with drug impurity  

solute concentration ‘loss’.  
  

Crystal growth rate 
and impurity ‘loss’ 
parameters and 
saturation data 

Model B5 

13 Filtration Two-phase mass balance 
attaining 

a desired moisture hold-up. 

Moisture hold-up 
and filtration rate 

Model B6 

14 Washing Two-phase mass balance with 
moisture displacement with wash. 

Moisture hold-up 
and displacement  

Model B7 

15 Drying Two-phase mass balance 
attaining 

a desired moisture hold-up. 

Moisture hold-up 
and drying rate 

Model B8 
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parameters not estimated simultaneously, standard deviations are estimated from the relevant data 

or assumed (based on the standard deviation being a percentage of the nominal value) or for 

uniformly distributed uncertainty, range limits are estimated or assumed.  

The failure to maintain initial (14-15) and final (7-8) desired volumes of solL solvent to expected 

mass of actB prior to crystallisation have been identified as an important observation with regard 

to the final crystal impurity content.  This is given some weight in the stochastic problem.  Violations 

of these desired operating ranges are assumed to give a greater uncertainty in parameters 

characterising downstream criteria believed to be related but for which there is no mechanistic 

understanding.  The effect of this uncertainty is shown in Figure 4(a) where violation of these 

desired solvent to product ranges leads to an increase in the uncertainty in the impurity 

concentration ‘loss’ parameter (from solution) and in Figure 4(b) a corresponding increase in the 

uncertainty in endpoint key impurity content of the crystals.  

 

Figure 4. 

 

4.2 First generation model sequence results 

A total of 431 scenarios were required to satisfy the multiple 1% mean and variance parameter 

error convergence criteria for both the total yield (YT) and endpoint key impurity content (wtactC).  

The results of the uncertainty analysis are summarised in Table 5.  5% and 95% fractiles are used 

to quantify the predicted uncertainty in the endpoint output and certain inter-stage criteria.  If the 

data does not fall within the 5-95% fractiles of the predictions then the proximity values (the final 

column in Table 4) show how close the data is to the nearest fractile (5 or 95%), relative to the 

fractile width.  
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For example, in this case study the cumulative frequency plot in Figure 4 (a) shows the predicted 

distribution in endpoint total yield under uncertainty in the first generation process model sequence 

relative to the independent PPR plant data (the solid vertical line in the Figure).  Since the plant 

data for this criterion does not fall within the predicted uncertainty as enclosed within the 5% and 

95% fractiles (the dashed lines in the Figure), clearly some process models of the first generation 

model set may not be suitable for prediction of the total yield at the PPR plant scale (as would be 

expected).  Since model parameter error has quantitatively been accounted for, an element of 

structural error may be suspected.  The extent of the error in the prediction distribution indicated 

by the proximity values, are particularly large for the Stage 1 conversion (307%) and secondary 

impurity composition (221%) (see Table 5).  It would appear that the large over prediction of the 

conversion in Stage 1, Figure 4 (b), contributes to the observed under prediction of the final solL to 

product ratio and over prediction of the Stage 1-15 total yield.  A similar assessment may be made 

concerning the over prediction of the secondary impurity content in the final product.  

Figure 5. 

 

Sensitivity analysis is used to estimate the key contributions to the predicted output uncertainty with 

regard to the propagation of uncertainty in certain inter-stage process properties and the individual 

    Table 5. Summary of first generation model results under uncertainty 

Stage Criteria PPR 
Plant data 

Predicted 
mean 

Predicted 
fractiles 

[5%, 95%] 

Data proximity  
to fractile 

interval, % 
1 XactA 0.955 0.993 [0.987, 0.997] 307 
 actB product composition, wt% 71.5 72.9 [72.1, 73.4] 49 
 actC impurity composition, 

wt% 
0.74  1.21 [0.89, 1.48] 25 

 actE impurity composition, 
wt% 

2.88  8.53 [7.45, 9.51] 221 

11 Final solL:product ratio, dm3 

kg-1 
7.2  6.94 [6.83, 7.04] 76 

15 actB product content, wt% 89.4  90.52 [88.0, 93.5] inside 
 actC impurity content, wt% 0.24  0.33 [0.19, 0.45] inside 
 actE impurity content, wt% 1.4 2.78 [1.72, 3.70] 21 

1-15 Total yield, % 84.2 90.2 [87.2, 92.4] 59 
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input uncertainties of the stochastic model.  These indicate the relative importance of the 

uncertainty in the model parameters characterising the current state of knowledge in the available 

process models and the associated phenomena. 

Contributory process sub-sequences are defined by potentially viable data measurements in this 

case study.  It is initially assumed that only the inter-stage criterion of reaction conversion is a 

measurement which can be used to define the sub-sequences for the endpoint total yield.  For the 

impurities, it is assumed that the post reaction stream is a potential inter-stage measurement.  The 

relative contributions of the sub-sequences associated to inter-stage criteria are shown in Table 6.  

These estimate the fraction of the total uncertainty (quantified as the width between the 5 and 95% 

fractiles) in the endpoint criterion which is attributed to each specified process sub-sequence.  The 

initial indication is that the Stage 2 to 15 sub-sequence contributes the most uncertainty to the 

predicted uncertainty in the total yield (82% of the final uncertainty), while the Stage 1 reaction 

contributes the least (18% of the final uncertainty).  The model parameter uncertainties in the 

models for Stages 2-15 provide a much larger contribution to the uncertainty in the endpoint total 

yield than the Stage 1 model parameter uncertainties.  To reduce the uncertainty in the total yield, 

the sub-sequence contributors immediately indicate that further work should be focused on the 

models and uncertainties assumed in Stages 2-15.  This is different to implying that the models for 

Stages 2-15 are the main cause for the deviation in total yield from the PPR plant data.  The 

prediction of the key impurity in Stage 1 introduces a greater uncertainty in the final product content 

than all the following operations.  The opposite is apparent for the secondary impurity.  

 

Table 6. First generation model sub-sequence contributions to predicted uncertainty. 

Sub-sequence Total yield Key impurity Secondary impurity 

Stage 1 0.18 0.62 0.34 

Stage 2 to 15 0.82 0.38 0.66 

Endpoint 1.00 1.00 1.00 

 

 

If a sample of the pre-crystallisation crude were to be available for analysis, then the Stage 2-15 

sub-sequence contribution of 0.82 for total yield uncertainty could be decomposed.  The new 

contributions to the total yield uncertainty and impurity contents, are shown in Table 7. Significant 
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contributions from both the Stage 2-11 (0.35) and Stage 12-15 (0.47) sub-sequences are apparent.  

However, Stages 2-11 do not appear to introduce any additional uncertainty to the impurity 

compositions predicted from Stage 1.  This is reasonable considering the realistic assumptions 

incorporated in the first generation reagent addition and layer separation models that any drug loss 

is independent of the concentrations of the other drug species and that there is no loss in the 

distillations.  

Estimated values of the coefficient of determination close to unity for total yield, key and secondary 

impurity contents for unranked data (0.97, 0.98 and 0.99 respectively) and ranked data (0.97, 0.96 

and 0.97 respectively) indicate that the linear input parameter contributors predicted by the 

Sensitivity Analysis should be reliable and rank transformation of the data is not required.  

 

Table 7. Effect of more inter-stage measurements to sub-sequence contributions. 

Sub-sequence Total yield Key impurity Secondary impurity 

Stage 1 0.18 0.62 0.34 

Stage 2 to 11 0.35 ~0.00 ~0.00 

Stages 12-15 0.47 0.38 0.66 

Endpoint 1.00 1.00 1.00 

 

 

The correlation coefficients (CC) and standardised regression coefficients (SRC) over all the 

uncertain parameters are shown in Figure 5 (a), where the parameter index numbers are specified 

in Table B2 (Appendix B9, Supplementary materials).  The key contributor parameters to the 

observed uncertainty in the endpoint yield as indicated by the CCs are kg (0.74, index 16) then k1 

(0.38, index 1) and k2 (-0.38, index 2), as shown in Figure 5 (a).  However, the induced correlation 

between the product formation reaction rate constant, k1, and the key impurity formation reaction 

rate constant, k2, in the sampling procedure results in a false estimation of the influence of k2 to 

total yield from the CCs.  This is because the CCs do not measure the standardised global 

influence.  The SRCs show that the influence of k2 (-0.05) is actually negligible compared to k1 

(0.32), as would be expected.  The parameters associated with product loss from the reagent 

addition and layer separation stages (indices 6 to 12) provide minor contributions (SRCs between 

-0.15 to -0.20).  The key SRC contributors to the final impurity content are estimated as the key 
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impurity ‘solute loss’ parameter, actC, (0.78, index 21) then k2 (0.77, index 2) and then the wash 

efficiency, wash, (-0.21, index 26), as shown in Figure 5 (b).  A similar ranking is predicted for the 

secondary impurity but with a stronger influence on the secondary impurity ‘solute loss’ parameter, 

actE, (SRC of 0.96 compared to 0.32 for k3) due to better fit of the reaction model for the parallel 

reaction to the bench scale data. The parameters identified as key contributors and priority do not 

provide any surprising results. 

As may be expected the estimated key uncertain parameter contributors coincide with stages 

contained within the key sub-sequences.  Whereas the sub-sequence contributors are useful in 

providing an initial idea to the key areas of the parts of the process sequence contributing 

uncertainty and provide a measure of the accumulation of uncertainty at specific points in the 

sequence based on certain (potentially measurable) inter-stage and endpoint outputs of the 

stochastic model, the CCs and SRCs provide a ranking of importance in the uncertain inputs which 

can differentiate between a large number of individual sources. 

The key process sub-sequences identified and the key parameter contributors of the predicted 

endpoint uncertainty in the whole process sequence can be used to provide a guide to the key 

phenomena which are not well characterised and introduce large amounts of uncertainty.  Given 

the identified quantitative indicators for the predicted uncertainty, indicated in Table 8, a 

Table 8. List of key parameters regarding first generation model uncertainty in ascending order of 

priority  

  Total yield 
Key Stage Key parameter Characterised 

phenomena  
Possible related phenomena 

12 kg Growth kinetics  Nucleation kinetics, mixing etc. 
various - complex 

1 k1 Intrinsic kinetics Intrinsic reagent kinetics,  
solids dissolution, mixing 

2, 4, 7   u1 Solubility loss Mass transfer rate,  
equilibrium solubility 

 3, 6, 8 u2 Imperfect phase cut  Phase dispersion band,  
drop entrainment 

  Key and secondary impurity content 
Key Stage Key parameter Characterised 

phenomena  
Possible related phenomena 

12 actC/actE Impurity ‘solute loss’ rate Various - very complex 
1 k2 Intrinsic kinetics Intrinsic reagent kinetics,  

solids dissolution, mixing 
14 wash Moisture displacement  Mass transfer rate 
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phenomenological knowledge priority list can be inferred, based on engineering intuition.  With this 

information the data required to progress the model development can be ascertained, either to 

reduce the uncertainty associated with the parameters of the current model structures if the 

uncertain prediction encompasses the current data, or to develop models incorporating different 

phenomena and/or equations.  The next step of the methodology is to determine how the effect of 

incoming data and knowledge can improve the current predictions and what parameter uncertainty 

reductions are required for desired performance levels (Step 17 in Figure 1). 

 

5. Effect of new data 

With an identified model it is useful to be able to determine the effect on the prediction of the key 

output criteria under uncertainty with developing models based on new incoming data and 

observations.  This aspect of the methodology can provide a driving force for the collection of 

certain data to progress the model-based approach, where identified to be needed.  The 

assumption made in this study is that new data is incorporated as and when it becomes available.  

The availability of new data is given in Table 9, in the assumed order of incorporation.  The revised 

models and parameter uncertainties associated with each level of incorporated knowledge are 

given in Appendix C (Supplementary materials).  The semi-empirical reactor model is developed to 

incorporate further limiting phenomena to account for the key responses.  The layer separation and 

reagent addition models are transformed from speculative assumptions towards more mechanistic 

type models. 

 

Figure 6. 

 

Figure 7 

 

Tracking of the uncertainty (depicted by the predicted 5-95% fractiles) with sequential incorporation 

of knowledge into the system models, as data becomes available, is shown in Figure 6 (a) and 

Figure 7 (a) for endpoint yield and key impurity content predictions, respectively.  The respective 

relevant inter-stage criteria of conversion and post reactor key impurity composition (dashed fractile 

lines) indicate how much how uncertainty has accumulated and propagated between the Stage 1 
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and the Stage 15 predictions. Comparing the relative fractile interval widths between the Stage 1 

and Stage 15 criteria it appears that while a large proportion of the uncertainty in the endpoint yield 

evolves after Stage 1, the uncertainty in the endpoint key impurity content is mainly due to that 

generated in Stage 1. 

The addition of new data either leads to revised uncertainty characteristics for parameters in the 

same model structures (knowledge levels 1 and 6) or to new models structures with different 

uncertain parameters (knowledge levels 2, 3, 4 and 5), as indicated in Table 9.  In the former 

circumstance, new sets of data are required to re-estimate the uncertainty in the existing model 

parameters.  This does not guarantee a reduction in the uncertainty of the predicted output if there 

is a wide spread in the new data sets or the model structure is inadequate.  Hence, there is an 

increase in the predicted uncertainty in endpoint yield for knowledge levels 1 and 6 in Figure 6 (a).  

In the latter circumstance, while the predicted endpoint uncertainty may not decrease with the 

addition of new data, it is hoped that the prediction of the new model is closer to the data.  This is 

indicated from the deviations in the mean prediction from the PPR plant data that are shown in 

Figure 6 (b) and Figure 7 (b) for total yield and key impurity content, respectively.  For knowledge 

levels 2, 3, 4 and 5 (see Table 8 for definitions), the total yield predictions become closer to the 

data as the model structures are changed, and similarly for level 3 for the key impurity content. 

 

Table 9. Levels of incorporated knowledge with incoming data. 

Knowledg
e level 

New data/information Model development action Reference 
 

0 Bench scale data, 
100 gram scale. 

First generation of process models. Model B1 
(Appendix B) 

1 Reactor data at 90 rpm,  
1000 US gallon scale. 

Revised parameter fit to first generation 
Stage 1 model. 

Model B1 
(Appendix B) 

2 As for knowledge  
level 1. 

Second generation Stage 1 model,  
incorporating an initial rate limiting period 

(reagent addition/solids dissolution). 

Model C1 
(Appendix C) 

3 Reactor data at 75, 60 
rpm, 1000 US gallon 

scale. 

Third generation Stage 1 model,  
incorporating an empirical mixing effect. 

Model C2 
(Appendix C) 

4 Observations of layer 
separation phase cuts,  
1000 US gallon scale. 

Second generation layer separation 
model  

(Stage 3, 6 and 8), incorporating a 
durable  

two phase dispersion band. 

Model C3 
(Appendix C) 

5 Drug solubility data in 
solF/aqueous system. 

Second generation reagent addition 
model (Stage 2, 4, 5 and 7), 

incorporating  
equilibrium tie-line solubility data. 

Model C4 
(Appendix C) 

6 Crystallisation yield data, 
1000 US gallon scale. 

Revised parameter fit to first  
generation Stage 12 model. 

Model B5 
(Appendix B) 
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Consideration of these deviations with the associated uncertainties provides an indication of the 

quality of the model system with respect to both the spread in the predicted distribution and 

accuracy relative to the data.  The history of the Stage 1 conversion predictions, Figure 6 (a) and 

(b) shows that both the proximity of the mean prediction to the data and the relative spread in the 

distribution are required to ascertain the quality of the model.  At knowledge level 1, the mean 

prediction is closer to the data and under uncertainty the fractiles encompass the data.  However, 

the large increase in the uncertainty of the prediction from level 0 to level 1 (an increase of over 

800% in the fractile width) indicates a problem with the model.  While the incorporation of more 

knowledge, in level 2, reduces the uncertainty, the prediction moves away from the data.  Only at 

level 3, when the mixing phenomena are modelled in Stage 1, does the prediction in the reaction 

conversion to the data improve without such a substantial increase in the uncertainty.  The 

uncertainty in the predicted post reactor key impurity composition and endpoint content, Figure 7 

(a), are also reduced at level 3, and the prediction accuracy to the data increases, Figure 7 (b). 

The change in the accumulation of the uncertainty through the sequence as knowledge is 

incorporated can be analysed by the comparison between the relative magnitude of the inter-stage 

criteria fractile widths, as illustrated in Figure 6 (a) for the conversion and total yield criteria. A 

clearer representation is provided with the sub-sequence contributions.  

The contributions to the total yield uncertainty for Stage 1 and Stage 2-15 sub-sequences are 

shown in Figure 8 (a).  It is no surprise that the contribution of Stage 1 to the final uncertainty 

becomes larger than that of Stage 2-15 at level 1, when the parameters of the bench scale Stage 

1 model are fitted to the larger scale data.  This is redressed with the revised model, level 2.  At 

level 3, the contribution of Stage 1 increases again due to the uncertainty in the mixing correlation 

employed.  With the addition of the pre-crystallisation solL to product ratio as a measured inter-

stage criterion,  Figure 8 (b), it is indicated that the Stage 2-11 sub-sequence becomes an 

increasingly minor contributor compared to the Stage 12-15 sub-sequence with the incorporation 

of extra layer separation and drug solubility knowledge.  

The importance of the deterministic model structure on the propagation of uncertainty in the 

stochastic model is demonstrated by the increase in Stage 2-15 sub-sequence contribution to the 

total yield at knowledge level 6, as shown in Figure 8 (b).  At high values of the crystal growth rate 

constant (kg) the Stage 12 crystalliser model predicts that the solute concentration approaches the 

saturation concentration.  This suppresses the effect of uncertainty in kg to the total yield.  At 
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knowledge level 6, the lower revised value of kg results in a reduction in the suppression effect the 

model structure has on its uncertainty, despite no change in the relative level of uncertainty in kg. 

The stages associated with the key contributing model parameters, identified using CCs and SRCs, 

do not necessarily coincide with the key contributing sub-sequences.  For knowledge levels 0, 1 

and 2, the unassociated variabilities in the Stage 12 key impurity ‘solute loss’ parameter (actC) and 

the reaction rate constant for key impurity formation (k2) appear to each explain a similar fraction  

 

Figure 8. 

 

Figure 9  

 

of the variability in the endpoint key impurity content (SRCs of 0.78, 0.61 and 0.72 for actC 

compared to 0.77, 0.58 and 0.66 for k2, Table D1, Appendix D).  A scatter plot for the knowledge 

level 0 case (Figure D3 Appendix D) does not indicate a greater relationship between either of 

these two inputs to the endpoint impurity composition.  However, the Stage 1 sub-sequence 

appears to contribute a significantly greater proportion of the endpoint uncertainty than the Stage 

2-15 sub-sequence as shown in Figure 9.  Cumulative frequency plots (Figure D4, Appendix D), 

show that the magnitude of the uncertainty in the endpoint composition relative to the uncertainty 

in the post reactor composition is not much greater.  The propagation of minor uncertain inputs in 

Stage 1 provide an accumulation of uncertainty which overrides the single effect of the uncertainty 

in actC in Stage 12.  In this case it is important to differentiate between the key contributing sub-

sequences and parameters.  Focus on all the uncertainties in the Stage 1 sub-sequence would be 

more beneficial than on the Stage 2-15 sub-sequence, with regard to the uncertainty in the endpoint 

key impurity composition. 

As the deterministic models are revised to accommodate different phenomena and different 

uncertain parameters are introduced the priority of the uncertainty contributors change.  The final 

list of knowledge priorities at knowledge level 6 is given in Table 10.  Compared to the priorities 

estimated at level 1 (Table 8) the main contributors to the prediction uncertainty in endpoint yield 

remain the crystallisation and reaction rate constants and drug-aqueous solubility parameters.  

Uncertainty in the layer separation parameters provide no significant contributions.  Uncertainty in 
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the Stage 1 reaction rate constants have become more important to the endpoint impurity than the 

Stage 12 impurity ‘solute loss’ parameters.  At the expense of a more accurate deterministic Stage 

1 model, the addition of the mixing effect (level 3) introduces minor contributions to the uncertainty 

in total yield and key impurity content. 

We were able to show how incorporating new data can improve the robustness of the model. 

 

6. Optimal uncertainty reduction 

The key uncertain parameter contributors to the uncertainty in total yield, key and secondary 

impurity content predictions for knowledge levels 6 have already been identified in Table 9.  The 

extent of the reduction in the uncertainty of these key contributors required to meet a specified 

reduction in the predicted output criteria can be quantified.  An optimisation problem is solved for 

Table 10. List of key parameters and knowledge priorities in the final generation of 

models (knowledge level 6), in ascending order of priority  

  Total yield 
Key Stage Key parameter Characterised phenomena  Possible related phenomena 

12 kg Growth kinetics  Nucleation kinetics, mixing etc. 
various - complex 

1 k1 Intrinsic pseudo first order 
drug reaction kinetics 

Intrinsic reagent-drug kinetics  
 

2, 4, 7   sl
* Organic-aqueous phase 

drug solubility 
Mass transfer rate 

1 1, 2  Rate limiting mixing case Eddy formation and imperfect 
energy dissipation  

  Key impurity content 
Key Stage Key parameter Characterised phenomena  Possible related phenomena 

1 k2 Intrinsic pseudo first order 
drug reaction kinetics 

Intrinsic reagent-drug kinetics  
 

12 actC Impurity solute ‘loss’ rate Various, very complex 
molecular scale phenomena 

14 wash Solution displacement  Mass transfer rate 
1 1, 2  Rate limiting mixing case Eddy formation and imperfect 

energy dissipation  
Secondary impurity content 
 1 k3 Intrinsic pseudo first order 

drug reaction kinetics 
Intrinsic reagent-drug kinetics  

 
12 actE Impurity solute ‘loss’ rate Various, very complex 

molecular scale phenomena 
14 wash Solution displacement  Mass transfer rate 
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the knowledge level 6 process model system in order to reduce the uncertainty as much as 

possible. 

For the optimisation problem we minimise the sum of the uncertainties subject to the deterministic 

process stage model equations, stochastic quality constraints, decision variable bounds, and 

uncertainty space characterisation).  The general formulation as follows: 

objective function 

max , , , , , ,
, , , , , ,

*

*     
      

  


      
     

k kg sl
k actC actE wash

k kg sl
k actC actE washd

d
1 3

1 3
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subject to 

deterministic process model equations models B1-9 in Appendix B (Supplementary Materials)  

stochastic quality constraints      

FW FWY Y YT T T5%,95%, 5%,95%,     

FW FWwt wt wtactC actC actC5%,95%, 5%,95%,   
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decision variable bounds 

 0 1
1

 k
, 0 1  kg

, 0 1 
 sl

*
, 0 1

3
 k

  

0 1 actC
, 0 1 actE

, 0 1   wash
      

uncertainty space  

 ( )           wash wash wash washU
wash wash wash wash

=  −  + ,    

     wash
UB LB

wash wash wash wash
=


−  =  −


        

( ) k k N k k k1 1 1 1 1
=    , ,   ( ) k k Ng g k k kg g g

=    ,  

( )    
  sl sl N

sl sl sl

* *
* * *,=  








,   ( ) k k N k k k3 3 3 3 3
=    ,  

( )       actC actC actC actC actC
N=  , , ( )       actE actE actE actE actE

N=  ,  



 

22 

 

Stochastic inequality constraints for % reduction in the width of the predicted 5-95% fractile 

intervals for total yield, YT, key and secondary impurity content, wtactC and wtactE, are maintained by 

the minimum reduction in the standard deviations of the normal distributions of: 

• the Stage 1 kinetic uncertain parameters (k1 and k3), 

• the Stage 12 crystal growth rate parameter (kg), 

• the equilibrium drug-aqueous phase solubility parameters (sl
* ), 

• the Stage 12 drug component impurity ‘solute loss’ parameters (actC and actE),  

and by the tightening of the lower and upper bounds about the mean of the uniformly distributed 

Stage 14 wash efficiency parameter (wash). An equivalent reduction in the uncertainty in the Stage 

1 consecutive reaction rate constant (k2) is assumed to the reduction determined in the uncertainty 

of k1. These inputs are the key contributing uncertainties to the output uncertainty, identified from 

the knowledge level 6 Sensitivity Analysis (Table D1, Appendix D). It is assumed that 

  YT wtactC wtactE
, ,  are equal to each other. 

The optimization problem was solved parametrically at different values of  to obtain a trade-off 

curve, Figure 10, between the required levels of total key input parameter uncertainty reduction 

required to meet the desired uncertainty reductions in the output criteria.  It appears that the 

required level of parameter reduction increases sharply (objective function decreases) after a 

desired combined output criteria uncertainty reduction of 50% (from the original levels).  For desired 

reductions of 70% and greater, the problem was infeasible suggesting that other non-key parameter 

sources of uncertainty (which were not included as reducing decision variables) have become 

significant. 

Individual relationships between key parameter uncertainty reductions and desired output criteria 

uncertainty reductions are shown in Figure 11 (a) for k1, k3, kg, sl
*, and Figure 11 (b) for actC, actE, 

wash.  These graphs show that the uncertainty in k1, k3 and kg consistently needs to be reduced for 

all desired reductions in output uncertainty while reductions in uncertainty in the other considered 

parameters sl
*, actC, actE and wash need only be obtained for desired output uncertainty 

reductions of greater than 30 or 40%.  Associating the key parameters to the process stages 

indicates where research effort should be directed for different levels of desired output criteria 

uncertainty reduction.  For the endpoint impurity contents, reduction in the uncertainty in the 

reaction kinetics (k3 and k2 via the correlation with k1) is more important than the crystallisation 
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parameter uncertainties (actC and actE) until approximately 50-60% uncertainty reduction in the 

impurity contents.  No such distinction between parameter uncertainties can be made regarding 

uncertainty reduction for the total yield.  

The change in the sensitivities of the key uncertain parameters to the output criteria are shown in 

Figure 12 regarding absolute SRC measures (R2 > RR2 > 0.90 for all cases).  Regarding the total 

yield, Figure 12 (a) indicates that as the uncertainty in the Stage 1 reaction rate constant for the 

product (k1), Stage 12 crystal growth rate constant (kg) and the drug-aqueous solubilities (sl
*) 

decrease as optimally determined (Figure 10 (a)), the SRC values measuring the contributions of 

the uncertainty in the Stage 1 time at which the initial rate limited period ends (t, defined in Model 

C1, Appendix C) and the reaction mixing coefficient (1, defined in Model C2, Appendix C) increase.  

A similar effect is shown in Figure 12 (b) regarding the endpoint key impurity content except that 

the Stage 1 reaction rate constant for the key impurity (k2) and the Stage 14 wash efficiency (wash) 

replace k1 and sl
*.   

 

Figure 10. 

 

Figure 11. 

 

Figure 12 

 

These plots indicate the desired levels of uncertainty reduction in the output criteria which may be 

achieved before the key contributor sensitivities change such that a change in the experimental 

and modelling effort would become necessary to provide further uncertainty reduction in the output 

criteria, due to the extent of the reductions in the original key parameter uncertainties.  For this 

case study, beyond approximately 50-60% reduction in uncertainty in the total yield and impurity 

content output criteria it becomes more beneficial to reduce uncertainty in different uncertain 

parameters (t and 1), which would require a redirection of the experimental effort since these 

parameters are associated with different phenomena, Stage 1 initial rate limiting period and mixing 

regime (and may sometimes be associated with different process stages, though not in this case). 
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For the case study it is shown that as more information was incorporated into the process models 

the predicted distributions in the output criteria do compare more favourably with the independent 

pilot plant data.  In general, the levels of uncertainty decrease with model development iterations 

but not in every instance.  Stream variable uncertainties may be amplified or dampened as they 

propagate through the sequence.  This is affected by the form of the model equations.  An 

amplifying effect in the uncertainties in the Stage 12 solute concentration and total product yield 

was observed for lower values of the uncertain crystallisation growth rate constant (kg) at 

knowledge level 6.  The incorporation of three sets of data can be identified as key to the 

improvement of the distribution characteristics of the total yield prediction.  The first and most critical 

is the 1000 US gallon Stage 1 reaction data at different agitation rates leading to the development 

of the mixing case model (knowledge level 3).  The second is the incorporation of drug aqueous-

organic phase solubility data in the development of the generic aqueous reagent addition model 

(knowledge level 5).  The third is the incorporation of larger scale crystallisation yield data 

(knowledge level 6).  The knowledge level 3 data is also critical in the improvement and reduction 

in the uncertainty of the prediction for the endpoint key impurity content (given the initial laboratory 

model, knowledge level 0). 

Sensitivity analysis showed that the relative contributions to uncertainty in the predicted process 

yield became approximately equivalent between the Stage 1 reaction and the downstream 

sequence.  In the latter the contribution due to the uncertainty in the Stage 12 crystallisation grew 

while that due to the Stage 2-11 layer separation and solvent exchange operations receded.  

Uncertainty in the endpoint impurity content predictions were estimated to be mainly due to the 

uncertainty in the reaction model for all the knowledge level Risk Analysis iterations.  In short and 

perhaps unsurprisingly, the key uncertain parameters (regarding the endpoint total yield and 

impurity contents) were associated with the intrinsic reaction kinetics and the crystallisation 

process, indicating the areas to which development efforts should be directed to increase the 

understanding and confidence in the process.  For the final generation of models presented 

(knowledge level 6 models), optimal reduction in the uncertainties of the key uncertain parameter 

contributors is determined for increasing levels of desired uncertainty reduction in the output 

criteria.  The indication is that uncertainty reduction in the reaction rate and crystal growth rate 

constants would be beneficial to obtain any degree of total yield and endpoint impurity content 

uncertainty reduction while additional reduction in the other less critical parameters only become 

necessary once a certain output uncertainty reduction threshold has been passed (Stage 12 
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crystallisation impurity ‘solute loss’ parameters and Stage 14 wash efficiency uncertainties become 

important at 50-60% output uncertainty reductions and Stage 1 transition time from initial rate 

limiting period and reaction mixing coefficient uncertainties become important beyond 60%).  

 

7. Flowsheet Optimisation Under Uncertainty 

Next the investigation was extended to process flowsheet optimisation under uncertainty in order 

to: 

• optimise the economic capacity of the Base Case flowsheet through manipulation of the 

operating policy variables under no uncertainty in comparison to stochastic optimisation 

accounting for model uncertainties, 

• determine the effect on optimal solutions of different characterisations of the input uncertainties 

with respect to an increase in the size and a change in the shape of the stochastic input 

distributions, 

• assess the value of perfect information with regard to the potential uncertainty in the purity of 

the feed API, 

• evaluate the maximum tolerance to error in the implementation of the Base Case optimum 

operating policy under uncertainty. 

7.1 Nominal flowsheet optimisation problem 

Optimisation of the Base Case process flowsheet is based on a profitability objective function.  The 

profitability, Pty, is defined as the revenue from the end product, less the cost of the main solvents 

on a basis of the total feed mass of active pharmaceutical ingredient (API) charged to the reactor 

(Stage 1), FactA,1, and the total batch processing time, tT.  The units for the profitability are dollars 

per kilogram of API feed per hour of processing time.  The values of the selling price, Cdrug and 

solvent costs, CsolF and CsolL, are assumed at 2000 $ kg-1 product, 5 $ kg-1 solF solvent and 10 $ 

kg-1 solL solvent, respectively. 

It is assumed that six operating policy variables are available for the optimisation of the base 

process flowsheet, as follows:  

• the Stage 1 agitation speed N1 (rpm),  

• the Stage 1 duration time, tf,1 (min),  
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• the fraction of the total solL solvent used for the crystallisation (added over Stages 10 and 11), 

AF10, added in Stage 10 with the remainder added in Stage 11,  

• the fraction of the solL added in Stage 10 removed in the subsequent distillation, RF10, 

• the Stage 12 linear crystallisation cooling rate, CR12 (oC min-1),  

• the Stage 12 crystallisation holding period, HP12 (min). 

The optimisation problem under no uncertainty for maximum profitability with constraint limits on 

the endpoint key and secondary impurity contents and the pre-crystallisation solF composition, is 

shown below.  A fixed reboiler duty is assumed in the Stage 9, 10 and 11 batch distillation models.   

objective function 
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40 12012 HP                      

where YT is the product component (actB) yield over the entire process sequence based on the 

quantity of API feed. 

 

7.2 Stochastic flowsheet optimisation problem 

The proposed optimisation problem under uncertainty aims to maximise the expected potential 

profitability of the Base Case process flowsheet.  However, certain realisations within the 

uncertainty space may result in poor process performances in the endpoint impurity contents.  A 

potential loss in profitability is modelled as the average profitability which is lost due to violation of 

desired upper limits on either the key or secondary endpoint impurity contents (0.3 and 2.0 wt%, 

respectively).  Some tolerance to these violations is allowed to reduce the tendency towards overly 

conservative solutions.  This tolerance is quantified by the incorporation of a one-sided stochastic 

constraint allowing an average profitability loss of up to 3.0 $ kgactA
-1 hr-1.  

The operating policy decisions are scenario independent, assuming the a priori ‘here and now’ 

mode of robust control where knowledge of particular realisations of the model parameter 

uncertainties is not assumed in the optimal operating policy solution.  This results in six decision 

variables, as in the nominal optimisation given in 7.1. 

To solve this problem the stochastic optimisation formulation for the base flowsheet given below is 

solved.  The first stochastic inequality constraint tries to maintain an expected pre-crystallisation 

solF stream composition below 0.5 wt%. In this constraint the general continuous deviation 

function, fdev, is replaced by the solF content at each scenario.  The second stochastic inequality 

constraint maintains an average potential profitability loss below 3.0 $ kgactA
-1 hr-1.  The impurity 

content binary variables, , are one if the constraint thresholds are passed and zero otherwise.  A 

profitability loss is returned if either the key or secondary content thresholds are violated.  However, 

the profitability loss is not incorporated into the profitability objective since it is assumed only to be 

a potential loss which may be rectified with further purification iterations at further expense (not 

included in this problem).  The associated general deviation functions in the general problem, d1 

and d2, become respectively zero and Pty in the problem below i.e. the profitability loss is not a 

function of the extent of the impurity content violation.  The resulting continuous deviation function, 

fdev, is defined as the potential profitability loss.  
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The size of the problem is reduced by limiting the uncertainty space to sensitive inputs to the output 

criteria, as defined in the uncertainty space characterisation in the optimisation problem below.  A 

reduced convergence criterion of  2% deviation in the output distribution parameters is permitted 

to reduce the number of scenarios per objective function evaluation.   
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process model equations B1-9 in Appendix B (Supplementary Materials) 
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( )    wash wash wash
LB

wash
UBU= ,  

The values for the constants of the hyperbolic smoothing functions for the endpoint key and 

secondary impurity contents, wtactC ,15 and wtactE ,15 , were selected to be 1000 and 150, respectively.  

With these values the binary approximation smoothing functions calculate zero and one for criteria 

values to within approximately 1% of the threshold value. 

 

7.3 Stochastic operating policy tolerance optimisation problem 

The optimisation problem aims to maximise the tolerances (uncertainty) around the previous ‘here 

and now’ optimal operating policy variables subject to a stochastic constraint forcing the expected 

value of the potential profitability, E{Pty}, to be at least 99% of the ‘here and now’ optimal solution, 

E{Pty*}.  The total uncertainty space is expanded to include the operating policy variables 

tolerances, the extents of which are the decisions, d
U  and d

L , determined in the optimisation.  

The formulation for this optimisation is given here: 

objective function 

( ) ( )
( )

max
,

* *

 

 

d
L

d
U D

z z z z

z z

d
L

d d
LB

d
U

d
UB

d

d
UB

d
LB

d

D
1

1

− + −

−=

    where d t N AF RF CR HPf= , , , , , ,1 1 10 10 12 12  

subject to: 

process model equations B1-9 in Appendix B (Supplementary Materials) 

binary variable approximations 

 ( )   wt m wt actC mactC actC
wt, , , , ,tanh .15 15 15

1

2
0 3 1= − +    =m M1...   

 ( )   wt m wt actE mactE actE
wt, , , , ,tanh .15 15 15

1

2
2 0 1= − +    =m M1...  

stochastic inequality constraints 

 E wt
M

wtsolF solF m

m

M

, , , .11 11

1

1
0 5= 

=

  

   ( ) E Ptyloss
M

Ptywt m wt m m

m

M

actC actE
= − 

=


1

1 3 015 15

1

 , , , , .  



 

30 

 

   E Pty
M

Y

t
C C

F

Z
C

F

Z
E Pty

T m

T m

drug solF

solF s

s

drug m

solL

solL s

s

drug mm

M

= − −







































= =

=

 


1

100

1
0 991

15

15

1

15

151

,

,

,

, ,

,

, ,

*.  

decision bounds   

0 1 d
U ,  0 1 d

L          where d t N AF RF CR HPf= , , , , , ,1 1 10 10 12 12  

uncertainty space 

( ) ( )( ) U z z d d
L

d d
LB

d d
U

d
UB

dd d
U z z z z z z,

* * * *,= − − + −    

where d t N AF RF CR HPf= , , , , , ,1 1 10 10 12 12  

k k k k
k

k

k

k

k

k

T

k k k

k k k

k

k

1 2 1 2

1

2

2

2

1

2

1

2

1 1 2

1 2 2

1

2

, ,=
−

−





























−

−



































  

  




 

( ) k t k FR DR Nsl g actA actB actC actD actE st st st3 1 1 2, , , , , , , , , , , , ,*
 =             

( )    wash wash wash
LB

wash
UBU= ,  

operating policy bounds   

 z zt
LB

t
UB

f f, ,
, ,

1 1
200 400= ,  z zN

LB
N
UB

1 1
60 90, ,= ,  z zAF

LB
AF
UB

10 10
0 4 0 7, . , .= ,  z zRF

LB
RF
UB

10 10
0 3 0 7, . , .= , 

 z zCR
LB

CR
UB

12 12
05 4 0, . , .= ,  z zHP

LB
HP
UB

12 12
40120, ,=  

E FLOWSHEET OPTIMISATION RESULTS 

The validated results of the optimisation with and without uncertainty are given in Table 11.  It is 

immediately clear that when the optimal decisions obtained with no consideration of the uncertainty 

are implemented in the uncertain process, the predicted potential profitability loss (15.08 $ kgactA
-1 

hr-1) far exceeds the desired limit of 3.0 $ kgactA
-1 hr-1.  This appears to be due to low probabilities 

of passing the thresholds on either the key or secondary impurity contents (0.67 and 0.75, 

respectively), resulting in a probability of passing the loss constraint (Prpass) of only 0.51.  At the 

expense of a reduction in the expected profitability (30.97 from 31.13 $ kgactA
-1 hr-1 due to a lower 

yield), the expected potential profitability loss limit is approximately maintained in the validated 

results of the robust optimisation.  
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The optimal decisions, shown in Table 12, explain these results.  The shorter Stage 1 reaction and 

Stage 12 crystallisation duration times determined in the uncertain optimisation, lead to a lower 

expected total yield (86.5%) but also restrict the formation of the impurities observed by the lower 

expected endpoint contents predicted (0.22 and 1.42 wt% for the key and secondary impurities, 

respectively).  These comparisons are reflected in the cumulative frequency plots for the total yield 

and key impurity content, Figures 13 (a) and (b), respectively.  The relative behaviours of the 

secondary impurity content predictions mirror those of the key impurity. 

 

Table 11. Validated Base Case process flowsheet optimisation results under uncertainty. 

Criteria Nominal optimal  
operation 

Uncertain optimal  
operation 

E{Pty} ($ kgactA
-1 hr-1) 31.13 30.97 

E{Ptyloss}($ kgactA
-1 hr-1) 15.08 3.02 

Prpass  0.514 0.894 
[E{wtactC}, E{wtactE}, E{wtsolF}] (%) [0.28, 1.71, 0.43] [0.22, 1.42, 0.43] 

[FW{wtactC}, FW{wtactE}, FW{wtsolF}] 
(%) 

[0.17, 1.42, 0.002] [0.14, 1.19, 0.002] 
E{YT} (%) 87.9 86.5 

FW{YT} (%) 4.7 5.4 
 

 

 

 

Table 12. Optimal decisions for the Base Case flowsheet  

Decisions Nominal 
optimisation 

Uncertainty 
optimisation 

tf,1 (min) 262 251 
N1 (rpm) 90.0 90.0 

AF10 0.40 0.40 
RF10 0.70 0.70 

CR12 (oC min-1) 0.57 0.50 
HP12 (min) 67 54 

 

 

The restricted formation of the key and secondary impurity are coupled with reductions in the 

uncertainties of the predicted endpoints (-16% and -17% in the respective 5-95% fractile widths).  
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However, the uncertainty in the total yield increases by 13%.  The shorter crystallisation holding 

period has the effect that the final Stage 12 product drug concentration is further away from the 

equilibrium saturation which in turn has the effect that the propagation of the uncertainties entering 

Stage 12 are not suppressed as much in the output variables.  The optimum Stage 1 agitation 

speed, N1, and the solL solvent exchange decisions, AF10 and RF10, are unaffected by the 

incorporation of uncertainties. 

The results of the Sensitivity Analysis for the optimised Base Case are given in Table 13 and Table 

14.  The drying time, DR15, is clearly the highest ranked contributor to the uncertainty predicted in 

the profitability, followed by the Stage 12 crystallisation growth rate constant (kg) and the Stage 1 

reaction rate constant (k1).  For the total yield, kg, k1, the aqueous-organic equilibrium drug 

solubilities (sl
*) and the delayed Stage 1 key impurity reaction start time, t1, exhibit the strongest 

relationships.  For the key and secondary impurity contents, the Stage 1 reaction rate constants 

are the clearly the strongest contributors followed by the uncertainty in the Stage 12 crystallisation 

impurity ‘solute loss’ parameters (actC and actE) and the Stage 14 wash efficiency (wash).  The 

overwhelming importance of the uncertainty contained in the Stage 1 model to the impurity contents 

is corroborated by the sub-sequence contributions shown in Table 14.  Implementation of the robust 

decisions compared to the nominal decisions did not qualitatively (nor significantly quantitatively) 

affect the outcomes of the Sensitivity Analysis.  

 

Figure 13. 
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From these results it can be inferred that with the importance of the time aspect incorporated in the 

profitability criterion, it would be most beneficial to try and reduce the uncertainty in the drying 

operation.  However, since drying appears to be an extremely difficult process to model with any 

degree of accuracy it may be more realistic to direct action towards improving the current models 

(and parameter estimations) of the crystalliser and reactor models, and in particular the kinetics. 

The fact that the nominal optimal decisions, which enable the process to maintain the deterministic 

impurity constraints, perform so poorly when extended to the uncertain process system.  This 

underlines the importance of the consideration of the main uncertainties in the optimisation 

determining these decisions.  This importance has been quantified through the stochastic criteria 

estimated in the optimisation under uncertainty.  The effect of the optimal decisions on the predicted 

output criteria distributions can be explained with respect to the propagation of uncertainty in the 

stream variables through the process sequence due to the deterministic structures of the process 

model Robustness Analysis of the input uncertainties 

The importance of the state of knowledge of the input source uncertainties to the results of the 

process flowsheet optimisation under uncertainty (section 7.2) is investigated and quantified in what 

Kleijnen (1997) terms a Robustness Analysis.  Since the problem is constrained by the potential 

profitability loss due to failure of some portion of the upper distribution tails of the endpoint impurity 

contents, the optimal solution and the corresponding decisions may be sensitive to the size and 

Table 13. SRC ranking of the key input uncertainty contributors to the Base Case flowsheet 

criteria. 

Criteria R2 Key uncertainty contributors (SRC value) 
Pty 0.99 DR15 (-0.768), kg (0.405), k1 (0.298), FR13 (-0.184), sl

* (-0.146), t1 (-

0.145) 
YT 0.96 kg (0.681), k1 (0.465), sl

* (-0.256), t1 (-0.231), X (0.108), hband,3,6,8 

(~0.09) 
wtactC 0.99 k2 (0.848), actC (0.447), wash (-0.320), t1 (-0.240) 
wtactE 0.99 k3 (0.915), actE (0.331), wash (-0.186) 

 

Table 14. Sub-sequence contributions to the uncertainty in the Base Case flowsheet. 

Sub-sequence Total yield Key impurity Secondary 
impurity 

Stage 1 0.47 0.80 0.93 

Stage 2 to 15 0.53 0.20 0.07 

Endpoint 1.00 1.00 1.00 
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form of the input uncertainties (the location of the means are not varied).  Two variations to the 

Base Case problem uncertainties are considered for the re-optimisation of the process flowsheet 

under uncertainty,  

• Case 1 considers the sensitivity to the size of the input uncertainties, where the uncertainties in 

the distributions of the original problem are increased by 50%, 

• Case 2 considers the sensitivity to the form of the input uncertainties, where uniform 

distributions replace the normal distributions assumed in the original problem.  The upper and 

lower bounds are fixed at two standard deviations (of the original normal distributions) from the 

mean value. 

The bar chart in Figure 14 shows percent deviations in the expected values and 5-95% fractile 

widths of the key criteria from the Base Case. The assumption of uniform input uncertainties (Case 

2) imposes very little effect compared with a 50% increase in the input uncertainties (Case 1), 

relative to the original normal input distributions of the Base Case is true. A deviation of only -0.3% 

in the expected profitability and virtually identical optimal decisions to those of the Base Case are 

predicted for Case 2.  A deviation of -1.2% in the profitability for Case 1 is predicted, resulting from 

reduced expected yield due to the shorter Stage 1 reaction time (246 minutes) and Stage 12 

crystallisation time (44 minutes).  As expected for Case 1, the significant increases in uncertainty 

in the impurity contents (+36.5% and +37.1% in the fractile width of the key and secondary impurity 

contents, respectively) results in the distributions being shifted to the left in order to satisfy the 

potential profitability loss constraint and a decrease in the expected values (see Figure 13). 

These observations are reflected in the cumulative frequency plots for total yield and key impurity 

content comparing the three input uncertainty cases, shown in Figure E1 (a) and (b) (Appendix E), 

respectively. The behaviour of the secondary impurity content predictions mirror those of the key 

impurity.  

This investigation underlines the importance that the state of knowledge of the input uncertainties 

can have in the Uncertainty Analysis approach to process flowsheet optimisation under uncertainty.  

Clearly this importance can depend on whether the optimisations are concerned with averages or 

the tails of distributions.  Within the confines of good assumptions for the input uncertainty bounds, 

the form of the distributions appears to be of negligible significance to the optimal solutions 

determined.  On the other hand, a good estimate of the magnitude of the input uncertainties is 
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essential to the results and decisions obtained using an Uncertainty Analysis approach to process 

flowsheet optimisation.  This is particularly true when the tails of output distributions are important.  

7.4 The importance of process input specification 

The concept of the value of perfect information (VPI) is applied to the Base Case flowsheet with 

regard to potential feed purity knowledge of the API, pf,1.  The VPI is defined below (and 

approximated with the second equation) as the expected gain in the potential profitability when 

using an informed ‘wait and see’ optimal approach as opposed to the uninformed ‘here and now’ 

approach, with penalisation of violations in an acceptable profitability loss constraint in the latter.  

A linear function in the extent of violation in the loss constraint penalises the value of information 

expected with the ‘here and now’ approach, VIhere. 

 VPI E VI VI
pc wait here= −                   

     ( )= −
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where m are the observations in pf,1 space. Under potential uncertainty in the feed purity of 74  

3 wt%, the VPI with knowledge of this uncertainty is a profitability of 11.46 $ kgactA
-1 hr-1.  It is clear 

from the increasing value of the VPI with increasing feed purity, Figure 15 (a), that at low values of 

pf,1 (below 72.5 wt%) the main contribution to the VPI is incurred.  As indicated in Figure 15 (b) the 

VIhere is greatly reduced for these values of feed purity.  The relatively large violation of the 

profitability loss constraint is shown by the dashed line representing the VIhere without any 

penalisation of the constraint violation.  A shallow optimum in the value of the feed purity (~74 wt%) 

is observed in the VIwait solutions, Figure 15 (b).  This could be useful knowledge if the feed purity 

can be more closely specified.  At lower feed purities optimal solutions are constrained by the 

increased propensity for formation of the secondary impurity in the Stage 1 reaction leading to high 

values in the endpoint secondary impurity content.  At higher feed purities the greater amount of 

product formed results in increasing proportions of the key impurity.  
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The importance of certain a priori knowledge to the process has been quantified in the form of the 

VPI.  The results show that this value can be very sensitive within certain ranges of the available 

information.  

 

Figure 14 

 

Figure 15 

 

7.5 Base case operating policy tolerance optimisation results 

The solution of the stochastic operating policy tolerance optimisation problem (section 7.3) gives 

an optimum value for the average tolerance of 0.088, shown in Table 15.  This is the maximum 

average fraction of the space of all the operating policy variables (defined by the upper and lower 

policy bounds) within which a feasible solution is permitted under error or uncertainty in the 

implementation of the ‘here and now’ optimal policy.  As shown in Table 15, the solution is tightly 

constrained by the stochastic constraints on the expected potential profitability (30.66 $ kgactA
-1 hr-

1, at 99% of the ‘here and now’ optimal solution), the expected potential profitability loss (3.00 $ 

kgactA
-1 hr-1) and the pre-crystallisation solF content (0.50 wt%).  

The resulting tolerance limits around the ‘here and now’ optimal operating policy variables (given 

previously in Table 11) on the operating policy are given in Table 1.  The tolerances permitted on 

Table 15. Results for tolerance optimisation of the Base Case flowsheet 

operating policy. 

Objective  Average tolerance 0.088 
Stochastic constraints E{Pty}($ kgactA

-1 hr-1) 30.66 
 E{Ptyloss}($ kgactA

-1 hr-1) 3.00 
 E{wtsolF} (%) 0.49 

 
Table 16. Tolerance limits for Base Case optimal operating policy. 

 tf,1 

(min) 
N1 

(rpm) 
AF10 

 
RF10 CR12 

(oC min-

1) 

HP12 
(min) 
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 235 89.5 0.40 0.68 0.50 43 
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the reaction time (tf,1) and the crystallisation time (HP12) indicate that the expected profitability 

criteria is relatively insensitive to the total yield due to a strong dependence on the overall process 

time to which the available optimisation operating policy variables provide a relatively small 

contribution.  Virtually no tolerance is acceptable in any of the other operating policy variables, 

hence the relatively low value for the average tolerance.  The values of the optimal decisions (a
U 

and a
L ) are given in Table E5 (Appendix E). 

7.6 Discussion 

The use of a multiscenario stochastic optimisation approach for the optimisation of integrated 

flowsheets under model parameter uncertainty is demonstrated with respect to the set of models 

comprising the Base Case process flowsheet of the Case Study.  Its application allowed the 

selection of ‘here and now’ operating policy decisions to optimise and manage certain aspects of 

the distributions of the uncertain output predictions.  An expected profitability objective function is 

optimised within a threshold on an expected profitability loss due to failure in endpoint impurity 

contents.  Under no uncertainty, the nominal optimal decisions result in poor behaviour of the 

endpoint impurity content distributions and a high potential profitability loss when the quantified 

model parameter uncertainty is considered in Uncertainty Analysis.  This highlights the importance 

of the consideration of uncertainty in the process optimisation.  

It is also shown that the state of knowledge of the model uncertainties is important with respect to 

the magnitude but not so much to the characteristic distribution.  The value of perfect information 

in potentially uncertain process stream inputs is considered with respect to the feed purity.  It was 

found that below a certain value in the feed purity (72.5%), perfect knowledge had a very significant 

impact and that a shallow optimum value existed (~74%).  

The key uncertainties under the optimal policy decisions are identified in the Sensitivity Analysis 

with the conclusion that realistic efforts to reduce the current levels of uncertainty in the profitability 

and yield should be primarily directed towards improving the confidence in the crystallisation 

kinetics followed by the intrinsic rate constant for the product reaction.  The ability to provide a 

better prediction for the time taken for the drying is the key factor in reducing the uncertainty in the 

profitability due to its dependency on the total batch process time.  However, the provision of a 

useful mechanistic model for drying may be unrealistic considering the complexity of the physical 

phenomena associated with drying.  To reduce the uncertainty predicted in the endpoint impurity 

contents the analysis (not unexpectedly) strongly indicates that efforts aimed at reducing the 
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uncertainty in the Stage 1 intrinsic reaction kinetics would be the most rewarding.  This information, 

based on systematic and quantitative procedures, provides focus to the actions which may be 

invested towards the development of more reliable models for the uncertainty management. 

A further stochastic optimisation determined the maximum uncertainty allowed around the optimal 

‘here and now’ operating policy values of the Base Case flowsheet.  The upper and lower tolerance 

limits are constrained to meet a small relaxation of the ‘here and now’ profitability together with the 

original stochastic constraints.  This quantifies the relaxation permitted to the optimal operating 

policy actions determined in association to the second management response. 

 

8. CONCLUSIONS 

The risk analysis methodology has been applied to a comprehensive case study comprising of an 

integrated sequence of 15 process operations.  The integration of the proposed Risk Analysis 

methods with model development iterations as more process information becomes available has 

been demonstrated. 

The Risk Analysis methods permit the quantification and tracking of the combined influence of 

parameter uncertainties contained in the entire sequence of process models as they are developed 

in the systematic model development procedures with the progression of process development.  

The sensitivity analysis methods allow the efficient estimation of the key uncertain parameters of 

the stochastic system and the internal sub-sequence contributions from the results of the 

uncertainty analysis.  The information obtained may be used to ascertain levels of uncertainty and 

help focus data collection and modelling effort towards those parts of the process sequence in 

which the uncertainty has the greatest influence on the output. 

The analysis allows us to apply a multiscenario stochastic optimisation approach for the 

optimisation of integrated flowsheets under model parameter uncertainty.  Its application allowed 

the selection of ‘here and now’ operating policy decisions to optimise and manage certain aspects 

of the distributions of the uncertain output predictions.  An expected profitability objective function 

is optimised within a threshold on an expected profitability loss due to failure in endpoint impurity 

contents.  Under no uncertainty, the nominal optimal decisions result in poor behaviour of the 

endpoint impurity content distributions and a high potential profitability loss when the quantified 
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model parameter uncertainty is considered in the uncertainty analysis.  This highlights the 

importance of the consideration of uncertainty in the process optimisation. 

Having determined the most robust set of conditions it would now be possible to compare 

alternative flowsheets to enable selection of the best flowsheet according to these different criteria 

under their respective model uncertainties.  This will be the topic of a future paper. 

The approach presented here gives a structured way to explore the uncertainty arising from 

inaccurate or unavailable process data during process development.  It produces guidance as to 

which measurements would best to reduce the uncertainty.  The approach was demonstrated on a 

process for which pilot scale data was available.  The approach is applicable to any process 

sequence such as those found in the pharmaceutical industry and would also be applicable for 

processes with recycle. 
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Figure 1. Schematic for the systematic model development incorporating the Risk Analysis 

approach under uncertainty 
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Figure.2. Process flow diagram for Case Study – 15 stages 
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Figure 3. Stage 1 Bisphasic chemical reaction 

 

 

 

 a) Stage 1-15 Total yield  (b) Stage 1 Conversion 

 

Figure 4. Cumulative frequency plots for the first generation model set predictions under 

uncertainty Key: • = predicted results,  ⎯ = PPR data, --- = 5%, 95% fractiles 
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 (a) Total yield  (b) Key impurity content 

Figure 5. Uncertain parameter contributor measures for endpoint criteria 

 

(a) Predicted 5-95% fractiles relative prediction to the plant data (b) Percent deviation of mean relative to the 

plant data 

 

Figure 6. Effect of knowledge incorporation to total yield and conversion predictions 
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Key: • = Total yield, o = Conversion 

 

 

(a) Predicted 5-95% fractiles relative prediction to the plant data (b) Percent deviation of mean relative to the 

plant data 

Figure 7. Effect of knowledge incorporation to key impurity composition predictions 

Key: • = Dry crystal key impurity content, o = Post reaction crude key impurity composition 

 

(a) Two sub-sequences       (b) Additional sub-sequence 

 Key: o = Stage 1 contribution, Key: • = Old Stage 2-15 contribution, 

  • = Stage 2-15 contribution  * = New Stage 2-11 contribution, 

   o = New Stage 12-15 contribution 

Figure 8. Effect of knowledge incorporation to the endpoint key impurity uncertainty 

Key: o = Stage 1 contribution, • = Stage 2-15 contribution  



 

47 

 

 

 

Figure 9. Effect of knowledge incorporation to the endpoint key impurity uncertainty 

Key: o = Stage 1 contribution, • = stage 2-15 contribution 

 

 

 

Figure 10. Objective function value, p, measuring total required levels of input parameter 

reduction against desired levels of output criteria uncertainty reduction. 
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(a) Key: −• = k1, ---o = kg, -•-• = k3, •••• = sl
* 

(b) Key: −• = actC, ---o = actE, •••• = 

wash 

 

Figure 11. Optimal degree of key input parameter uncertainty reduction (from original uncertain 

values) required to meet desired levels of output criteria uncertainty reduction. 
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(a) Total yield (b) Key impurity content  

 Key: ⎯• = k1, ---o = kg, Key: ⎯• = k2,  

  = sl
*, -- = t,  ⎯+ = 1. ---o = actC,  = wash, -- = t, ⎯+ = 

1. 

 

Figure 12. Change in absolute SRC sensitivities between output criteria and key uncertain 

parameters with optimal uncertainty reductions 
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    (a) Total yield (b) Key impurity content 

 

Figure 13. Cumulative frequency plots for validated results for optimisation with and without 

uncertainty consideration, Case Study II  

Key: • = nominal optimisation, o = optimisation under uncertainty, ⎯ = PPR data 

 

 

 

 

 (a) Expected value  (b) Fractile width 

 

Figure 14. Deviation in optimal results with input uncertainty variations, from the Base Case 

Key: unfilled = Case 1,  filled = Case 2 
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(a) Value of Perfect Information (b) Value of Information    Key: • 

= VIwait, o = VIhere,  

   ---- = unpenalised VIhere 

 

Figure 15. Value of feed purity information to potential profitability 

 

 


