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Abstract

We propose a theory of security design in financing entrepreneurial production, positing

that the investor can acquire costly information on the entrepreneur’s project before making

the financing decision. When the entrepreneur has enough bargaining power in security

design, the optimal security helps incentivize both efficient information acquisition and efficient

financing. Debt is optimal when information is not very valuable for production, whereas the

combination of debt and equity is optimal when information is valuable. If, instead, the

investor has sufficiently strong bargaining power in security design or can acquire information

only after financing, equity is optimal. (JEL D82, D86, G24, G32, L26)
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What is the optimal security design when the investor can acquire costly information about

the entrepreneur’s project before making the financing decision? In reality, many professional

investors are better able than the entrepreneur to acquire information and thus to assess a project’s

uncertain market prospects, drawing upon their industry experience. For instance, start-ups seek

venture capital (VC), and most venture capitalists are themselves former founders of successful

start-ups, so they may be better able to determine whether new technologies match the market.1

However, it is less known how the entrepreneur should optimally design the security when the

investor’s (1) information acquisition and (2) subsequent financing decision are both endogenous,

which circumstance is empirically relevant for the finance of small private businesses that account

for the majority of corporates. Our paper offers a tractable framework to address this question.

It provides a theory of the use of debt and nondebt securities. In particular, we show under

what conditions debt or nondebt securities will be optimal. These results are consistent with the

empirical evidence regarding the finance of different types of entrepreneurial businesses.

In our model, an entrepreneur (she) has the potential to produce a project that requires a

fixed investment. She has no initial resource, but she can design and offer a security to a potential

investor (he) in exchange for financing. Facing the security offer, the investor can acquire costly

information about the project’s uncertain cash flow before making the financing decision.

Although production, that is, the creation of social surplus, depends on potential information

acquisition and the subsequent financing, two sources of friction come from the separation of

security design (by the entrepreneur) and information acquisition and financing (by the investor).

First, the investor may not acquire information efficiently. Second, the investor may not make

the financing decision efficiently after his endogenous information acquisition. Therefore, the

objective of security design is to appropriately incentivize efficient information acquisition and

then an efficient financing decision by the investor.

Our model predicts standard debt and the combination of debt and equity2 as optimal securi-

1More generally, research of investors’ potential information advantages dates back to Knight (1921) and
Schumpeter (1942). Apart from extensive anecdotal evidence, recent empirical literature (Chemmanur, Krishnan,
and Nandy 2011; Kerr, Lerner, and Schoar 2014) has also identified information advantage by various types of
institutional investors.

2The formal mathematical definitions of debt and equity and the combination of debt and equity in our framework
are given in Sections 2.1 and 2.2. In defining debt and equity, we focus on the qualitative aspects of their cash flow
rights but ignore the aspects of control rights. Specifically, debt means the security pays all the cash flow in low
states but has a constant face value in high states, whereas equity means the security and its residual both strictly
increase in the fundamental. Consistent with reality, debt is also more senior than is equity in our framework.
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ties in different circumstances. When the project’s ex ante market prospects are good and not very

uncertain, the optimal security is debt, which does not induce information acquisition. Notably,

the expected overall payment of the debt strictly exceeds the initial investment requirement. The

prediction of debt is consistent with the evidence that conventional start-ups and mature private

businesses heavily rely on plain vanilla” debt finance from investors, such as relatives, friends, and

traditional banks (see Berger and Udell 1998; Kerr and Nanda 2009; Robb and Robinson 2014).

The intuition of the optimality of debt is reflected in the design of the debt’s shape and

level.3 On the one hand, in this case, as the benefit of information does not justify its cost, the

entrepreneur finds it optimal to deter costly information acquisition, and debt fulfills this role

because its flat shape minimizes the investor’s incentive to acquire information. Hence, the flat

shape of the debt is designed to help incentivize efficient information acquisition, which in this

case happens to be not to acquire any information. On the other hand, because the investor has

the option to acquire information and thus obtain an information rent, the entrepreneur must

grant a high enough overall payment so that the offer (and thus the project) will not be rejected.

In other words, the face value of the debt needs to be high enough so that the offer (and thus

the project) will not be rejected. Hence, the face value, which determines the level of the debt

contract, is designed to incentivize the efficient financing decision.

In contrast, when the project’s ex ante market prospects are obscure, the optimal security is

the combination of debt and equity that induces the investor to acquire information. Regarding

cash flow rights only, this is equivalent to participating convertible preferred stock. This prediction

is consistent with empirical evidence that the combination of debt and equity has been frequently

used in financing more innovative and less transparent projects conducted by young firms (Brewer,

Genay, Jackson, and Worthington 1996; Berger and Udell 1998). Participating convertible

preferred stock also accounts for half of the contracts between entrepreneurs and venture capitalists

3Throughout the paper, we use the concepts shape and level literally, but, to be more specific, shape means how
the payment of the optimal security varies across different states when the limited liability constraint is not binding;
intuitively, it reflects whether the optimal security is “flat” or “steep” (when the limited liability constraint is not
binding) and in what sense it is steep (whether it is increasing or decreasing and how quickly it is increasing or
decreasing). And level means at what underlying cash flow θ the optimal security deviates from the 45◦ line (i.e.,
the limited liability constraint); intuitively, it captures how generous the overall payment of the security is given
any fixed shape, and it also captures the face value of the debt component of the optimal security. It is worth
noting that, the 45◦ line part of the optimal security mechanically follows the limited liability constraint, so that
it is natural not to consider that exogenous constraint as a part of the security’s shape (for instance, the shape of
any debt is flat despite it follows the 45◦ line in bad states).

2



(Kaplan and Stromberg 2003).

The intuition of the optimality of the combination of debt and equity is also reflected in its

shape and level. On the one hand, in this case, the entrepreneur wants to induce the investor

to acquire information only if the investor screens in (out) a potentially good (bad) project.4

That is, any project with a strictly higher ex post cash flow should have a strictly better chance

to be financed ex ante. Only when the investor’s payment is strictly higher (lower) in good

(bad) states does the investor have the right incentive to distinguish between these different

states, because he is more willing to finance the project when his payment is higher. Therefore,

an equity component with payments that are strictly increasing in the underlying cash flow is

offered, encouraging the investor to acquire adequate information to distinguish between any

different states.5 In this sense, the steep and strictly increasing shape of the equity component

is designed to help incentivize efficient information acquisition. On the other hand, because the

endogenous information advantage gives the investor an information rent, the entrepreneur must

also make the overall payment of the security high enough to ensure that the investor will not

directly reject the offer without information acquisition. Given the optimal shape of the equity

component, this high enough overall payment is guaranteed by the debt component with a high

enough face value. Hence, the level of the debt component incentivizes the efficient financing

decision.

The approach of flexible information acquisition, following Yang (2015),6 helps (1) charac-

terize the detailed properties of the optimal securities under general conditions7 and (2) capture

endogenous information acquisition and financing decision simultaneously. Flexible information

acquisition means that the investor can choose any possible information structure. Intuitively,

it captures not only how much but also what kind of information the investor acquires through

state-contingent attention allocation.8 Information is costly, so the investor will only acquire

4Our model features a continuous state, but we use the notions of good and bad projects to help develop our
intuition.

5However, notice that it is not optimal for the entrepreneur to offer all the cash flows, that is, the entire 45◦

line, to the investor in our baseline model, because doing so would leave the entreprenuer with nothing. In other
words, the optimal security must deviate from the 45◦ at some point, which is consistent with the endogenously
determined level of the security. This point will be illustrated later in greater detail.

6It is based on the literature of rational inattention (Sims 2003) but has a different focus.
7Our model is built over continuous states and does not have any distributional assumptions or usual technical

restrictions on the feasible security space.
8The traditional approach of exogenous information asymmetry does not capture these incentives. Recent models

of endogenous information acquisition do not capture such flexibility of incentives adequately, because they only
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payment-relevant information for guiding financing decisions, given the security offered. For

instance, debt, with its flat shape, is less likely than equity to prompt information acquisition as

the payments are constant over states (when the limited liability constraint is not binding) so that

there is no point in differentiating them. In contrast, equity holders are willing to differentiate

good states from bad ones, as they benefit from the upside payments. Overall, security design

determines how the investor acquires information in equilibrium, which directly reflects how he

wants to finance the project. This mechanism, in turn, helps pin down the optimal securities for

the entrepreneur in different scenarios.

The friction in our model comes from the separation between security design (by the en-

trepreneur) and information acquisition as well as the subsequent financing (by the investor).

Thus, the investor may not internalize all the benefits from information acquisition and financing.

This in turn relies on two assumptions that (1) the entrepreneur has enough bargaining power

in the process of designing the security and (2) the investor acquires information before making

the financing decision. If any assumption is violated, using equity to sell all the cash flows of

the potential project to the investor is optimal.9 We view these two assumptions reasonable in

entrepreneurial productions and will discuss the plausibility and limitation of them in detail.

This paper contributes to the security design literature by modeling both (1) endogenous

information acquisition and (2) endogenous financing by investors in a production economy.10,11

In the security design literature, the closest papers to us are those that feature investors’ (buyers’)

information advantage in a production setting.12 But endogenous information acquisition and

financing decision are generally modeled separately so far.

On the one hand, existing models that consider investors’ endogenous information acquisition

consider the amount or the precision of information (see Veldkamp 2011, for a review).
9Depending on which of the two assumptions is violated, the resultant equity transaction in equilibrium is subtly

different in terms of which party obtains the surplus. We elaborate on the two cases in Sections 2.3 and 2.4.
10For other theoretical work that features the effects of investors’ information advantage, but not security design,

see Bond, Edmans, and Goldstein (2012).
11A small, but burgeoning, security design literature considers individual investors’ endogenous information

acquisition and financing decisions in an exchange economy (Dang, Gorton, and Holmstrom 2015; Yang 2017).
These models feature a seller selling an asset in place and show that debt is the only optimal security because it
deters endogenous adverse selection. They do not fit our setting of financing entrepreneurial production.

12More research in the security design literature features information advantage by the seller (entrepreneur), but
not by the buyer (investor). Some predict debt as optimal to deter adverse selection (Myers and Majluf 1984;
Gorton and Pennacchi 1990; DeMarzo and Duffie 1999). Others predict nondebt securities (including equity and
convertibles) as optimal in various circumstances (see Nachman and Noe 1994; Chemmanur and Fulghieri 1997;
Chakraborty and Yilmaz 2011; Chakraborty, Gervais, and Yilmaz 2011; Fulghieri, Garcia, and Hackbarth 2016).
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typically feature binary states, and the financing decision is exogenous in the sense that a

good (bad) project, known to the investor after information acquisition, will always be financed

(rejected) for sure. Notably, Boot and Thakor (1993) and Fulghieri and Lukin (2001) consider

a competitive public equity market in which investors endogenously acquire information, which

can be then aggregated in a price. They show that the entrepreneur optimally designs a high

payment in the good state because it encourages information aggregation, which in turn helps the

entrepreneur signal its own type.13 Our model has a different focus on an entrepreneurial private

firm that does not have access to a public equity market but may still face an informationally

sophisticated investor. Additionally, our model can handle continuous states of cash flows and

state-contingent information acquisition, and, in doing so, helps deliver more detailed predictions

of both the shape and the level of the optimal securities.

On the other hand, Inderst and Mueller (2006) consider how optimal security design promotes

efficient financing decisions by an investor, but the investor is endowed with private information

so that there is no endogenous information acquisition.14 There, debt is optimal because its 45◦

line part mitigates the investor’s underinvestment problem, whereas levered equity is optimal

because its flat part mitigates the investor’s overinvestment. In our model, levered equity is

never optimal. Instead, debt is optimal, because its flat shape helps deter costly information

acquisition (when unnecessary), whereas the combination of debt and equity is optimal, because

its strictly increasing shape helps incentivize information acquisition (when valuable). Our optimal

security also incentivizes information acquisition and financing simultaneously; the level of the

debt component is designed to be sufficiently high to incentivize an efficient financing decision.

Thus, our model can provides an explanation for the popularity of the combination of debt and

equity in financing entrepreneurial production, where the investor actively acquires information

about a proposed project rather than just relies on endowed information from his past experience.

Our model also contributes to the venture contract design literature by focusing on one

specific role of venture capitalists, pre-investment screening, which is captured by our modeling

of endogenous information acquisition followed by endogenous financing. The existing venture

13Hennessy (2013) considers uninformed sellers in a framework similar to ours but with additional specifications
on uninformed buyers; he shows that the optimality of equity remains.

14A related literature considers how security design interacts with the aggregation of investors’ private information
endowment in an auction setting; see DeMarzo, Kremer, and Skrzypacz (2005); Axelson (2007) and Garmaise (2007).
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contract design literature covers aspects such as control right allocation (Hellmann 1998; Kir-

ilenko 2001), staging (Admati and Pfleiderer 1994; Cornelli and Yosha 2003; Repullo and Suarez

2004), and exiting (Hellmann 2006). One popular explanation for venture contracts focuses on

entrepreneur moral hazard and investor monitoring (Ravid and Spiegel 1997; Bergemann and

Hege 1998; Schmidt 2003; Casamatta 2003), which follows the insight of Innes (1990) that the

entrepreneur should have enough skin in the game to curb its own moral hazard problem. So far,

this literature has not yet focused on deal screening by the investors, which is shown by recent

survey evidence as the most important factor contributing to value creation in venture financing

(Gompers, Gornall, Kaplan and Strebulaev 2016).15,16 In addition, existing models in the venture

contract design literature typically focus on one class of optimal security, but not on explaining

why different types of securities may be optimal in different scenarios.

A new strand of literature on the real effects of rating agencies (see Opp, Opp, and Harris

2013; Kashyap and Kovrijnykh 2016) is also relevant. On behalf of investors, the rating agency

screens an uninformed firm. Information acquisition may improve social surplus through ratings

and the resultant investment decisions. They do not consider security design as we do.

1 The Model

1.1 Financing entrepreneurial production

Consider a production economy with two dates, t = 0, 1, and a single consumption good. There are

two agentsan entrepreneur lacking financial resources and a deep-pocket investorboth of whom

are risk neutral. Their utility function is the sum of consumptions over the two dates: u =

c0 + c1, where ct denotes an agent’s consumption at date t. The subscripts E and I indicate the

entrepreneur and the investor, respectively.

The financing process of the entrepreneur’s risky project is as follows. To initiate the project

15Gompers, Gornall, Kaplan and Strebulaev (2016) have explicitly documented in their abstract that “[W]hile
deal sourcing, deal selection, and post-investment value-added all contribute to value creation, the VCs rate deal
selection as the most important of the three.” In their definition, “deal selection” corresponds to investor information
acquisition and screening in our model, whereas “post-investment value-added” corresponds to investor monitoring,
that is, solving the standard entrepreneur moral hazard problem.

16An reinterpretation of our model is that the entrepreneur needs to design a security to monitor the investor
and solve the investor’s moral hazard problem because the investor’s information acquisition is his hidden effort
and the sole contributor to surplus in our model. Thus, this reinterpretation provides an alternative perspective to
see the difference between our channel and the standard entrepreneur moral hazard channel.
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at date 0, the underlying technology requires an investment of k > 0. If financed, the project

generates a nonnegative verifiable random cash flow θ at date 1. The project cannot be initiated

partially. Hence, the entrepreneur must raise k, by selling a security to the investor at date 0.

The payment of a security at date 1 is a mapping s(·) : R+ → R+ such that s(θ) ∈ [0, θ] for any

θ. We focus only on the cash flow of projects and securities rather than the control rights.

Security design, information acquisition and financing happen sequentially, but both at date

0. The agents have a common prior Π on the potential project’s future cash flow θ, and neither

party has any private information ex ante.17 The entrepreneur designs the security, and then

proposes a take-it-or-leave-it offer to the investor, asking for a fixed investment k. Facing the

offer, the investor acquires information about θ in the manner of rational inattention (Sims 2003;

Woodford 2008; Yang 2015 2017), updates beliefs on θ, and then decides whether to accept the

offer to finance the project. The information acquired is measured by reduction of entropy. The

information cost per unit reduction of entropy is µ. We elaborate this information acquisition

process in more detail in subsection 1.2.

Three implicit assumptions are important in the setting. First, the entrepreneur owns the

project but cannot undertake it without external finance. This is a common assumption in the

corporate finance literature,18 and is consistent with the empirical evidence that entrepreneurs and

private firms are often financially constrained (Evans and Jovanovic 1989; Holtz-Eakin, Joulfaian,

and Rosen 1994). It implies that the investor’s endogenous financing is crucial, and thus the

entrepreneur needs to incentivize it through security design.

Second, the entrepreneur has bargaining power in the process of designing the security. This

assumption is also common in the security design literature, including papers focusing on venture

capital financing (Admati and Pfleiderer 1994; Hellmann 1998). It is consistent with the evidence

in Gompers, Gornall, Kaplan and Strebulaev (2016) that even when an entrepreneur contracts

with sophisticated investors such as venture capitalists, most contractual terms are subject to

bargaining, and the entrepreneur has strong bargaining power over many of them. It is also

17We can interpret this setting as the entrepreneur may still have some private information about the future cash
flow, but does not have effective ways to signal this to the investor. Signaling has been extensively discussed in the
literature and is already well understood, so we leave it aside.

18See Tirole 2006 for an overview. Alternatively, the entrepreneur may have capital but cannot acquire informa-
tion, so she may hire an information expert to improve the investment decision. This alternative situation boils
down to a consulting problem. A large literature on the delegation of experimentation (e.g., Manso 2011) considers
consulting problems in corporate finance, but this is beyond the scope of this paper.
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consistent with more recent evidence in Evans and Farre-Mensa (2017) that documents a time-

series increase in entrepreneur’s bargaining power in the last two decades. We acknowledge other

evidence suggesting that entrepreneurs in reality may not have strong bargaining power relative to

the investors, for example, Hall and Woodward (2010) find that entrepreneurs on average obtain

a very small surplus in excess of their labor market outside options, and Kaplan and Stromberg

(2003) suggest that venture capitalists structure the securities. Thus, in Section 2.3, we consider

a model extension with a general allocation of bargaining power between the entrepreneur and

the investor, and we also clarify in what sense our assumption may be viewed as consistent with

various evidence.

Third, underlying the time line is the assumption that the investor can acquire information

before his financing decision. If the investor believes that the project is good enough, then he

willing to finance the project. We view this time line plausible because nothing can prevent

sophisticated investors from acquiring information or screening projects before providing finance,

and they indeed do so (Chemmanur, Krishnan, and Nandy 2011; Kerr, Lerner, and Schoar 2014;

Opp 2016). It implies that the investor’s endogenous information acquisition before financing is

also crucial, and thus the optimal security design needs to incentivize it as well. It also implies

that the investor benefits from his endogenous information rent, which effectively contribute to

his overall bargaining power in terms of sharing the social surplus. Also, to clarify the role of

this assumption, Section 2.4 considers a reversed time line in which the investor can only acquire

information after making a financing decision.

Together, the three above assumptions set forth the key friction in our production economy.

They imply that information acquisition and financing are important for efficient production, and

thus the entrepreneur designs the security to incentivize both, but she also wants to retain as

much cash flow as possible and can indeed do so because of her bargaining power. This friction

implies that although the optimal security helps promote efficient information acquisition and

financing, it may not necessarily achieve the first best. As Sections 2.3 and 2.4 will show, when

this friction is effectively removed, the socially efficient outcome can be achieved.

To further set the scope of this paper, it is worth noting which other aspects of finance in the

production economy are abstracted away. First, to focus on pre-investment screening, we set aside
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moral hazard and the allocation of control rights. To set them aside is not unusual when hidden

information is important in security design (see DeMarzo and Duffie 1999, for a justification).

Second, consistent with the security design literature, we do not allow for partial financing or

endogenous investment scale choice. Because our theory can admit any prior distribution, a

fixed investment requirement in fact enables us to capture projects with differing natures in an

exhaustive sense. Third, we do not model the staging of finance. We interpret the cash flow θ as

already incorporating the consequences of investors’ exiting, and each round of investment may

be mapped to our model separately with a different prior. Last, we do not model competition

or strategic interaction among multiple investors. The last two points pertain to the structure of

the financial markets, which is interesting but would significantly change the focus of the current

paper, so we leave it for future research.

1.2 Flexible Information Acquisition

We elaborate the approach of flexible information acquisition, following Woodford (2008) and

Yang (2015), which means that the investor who acquires information can choose any information

structure, and the information cost is proportional to the expected entropy reduction.

We first characterize the information structure. Consider an investor who chooses a binary

action, a ∈ {0, 1}, where a = 1 denotes financing, whereas a = 0 no financing. The investor

receives a payment u (a, θ), where θ ∈ R+ is the fundamental, distributed according to a continuous

probability measure Π over R+. Before making the financing decision, the investor can acquire

information flexibly. In particular, the nature of the binary decision problem implies that the

investor always chooses a binary-signal information structure where each signal corresponds to an

action recommendation.19 Specifically, any such information structure can be represented by a

measurable function of θ, m(·) : R+ → [0, 1], the probability of observing signal 1 if the true state

is θ, so that the investor’s decision problem amounts to choosing a function m (·). As elaborated

later, the investor will always choose an m(·) such that it is optimal for him to follow the action

recommendation, that is, his optimal action is 1 (or 0) when the signal is 1 (or 0). By choosing

19In general, the investor can choose any information structure. But he always prefers binary-signal information
structures in binary decision problems; otherwise, he must incur a waste of information cost without contributing
to the information content. This is standard observation in the rational inattention literature; it is formally stated
in the binary action context in Woodford (2008) and Yang (2015).
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different functional forms of m (·), the investor can make the signal correlate with the fundamental

in any arbitrary way.20 Intuitively, for instance, if his payment is sensitive to fluctuations of the

state within some range A ⊂ R+, he would pay more attention to this range by making m (θ)

covary more with θ in A.

The new approach of modeling information structure fits the economic forces underlying our

research question and offers two unique advantages compared to traditional ways of modeling

information acquisition. First, the function m(·) allows us to simultaneously capture both

endogenous information acquisition and endogenous financing decision, which is our key de-

parture from the existing security design literature and is hard to achieve parsimoniously by

more traditional modeling approaches. On the one hand, conditional on a cash flow θ, m(θ) is

the conditional probability of the project being financed, which captures endogenous financing

decision. On the other hand, the absolute value of the first-order derivative |dm(θ)/dθ| captures

the investor’s state-dependent intensity of information acquisition, which captures the intensity of

endogenous information acquisition. Intuitively, when |dm(θ)/dθ| is larger, the investor acquires

more information around θ and thus better differentiates the nearby states. Becausem(·) embodies

a natural interpretation of screening, which accounts for both acquiring information and financing,

we call m(·) a screening rule in what follows.

Second, this approach also allows us to generate more detailed predictions regarding the

shape of the securities and to work with arbitrarily feasible securities over continuous states and

without parametric distributional assumptions. The essence of flexible information acquisition

is that it captures not only how much but also what kind of information an investor acquires.

This is important because in reality the entrepreneur can design the security’s payment structure

arbitrarily, and thus the investor will pay different attention to different aspects of the project in

screening it. This therefore calls for an equally flexible modeling account of screening to capture

the interaction between the shape of the securities and the incentives to allocate attention.

We then specify the cost of information acquisition. Like in Woodford (2008) and Yang

(2015), the amount of information conveyed by a screening rule m (·) is defined as the expected

reduction of uncertainty through observation of the signal, where the uncertainty associated with

20Technically, this allows the investor to obtain signals drawn from any conditional distribution of the fundamen-
tal.
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a distribution is measured by Shannon’s entropy H(·). This reduction from the investor’ prior

entropy to expected posterior entropy can be calculated as:

I (m(·)) = E [g (m (θ))]− g (E [m(θ)]) ,

where g (x) = x · lnx + (1− x) · ln (1− x), and the expectation operator E(·) is θ under the

probability measure Π.21 Denote by M = {m(·) ∈ L (R+,Π) : θ ∈ R+,m (θ) ∈ [0, 1]} the set of

binary-signal information structures, and c(·) : M → R+ the cost of information. The cost

associated with a screening rule m(·) is assumed to be proportional to the expected reduction in

entropy:

c (m(·)) = µ · I (m(·)) ,

where µ > 0 is the cost of information acquisition per unit of reduction of entropy.22

An implicit assumption underlying the information cost is that all expected entropy reductions

of the same magnitude have the same cost. In other words, it is equally costly for the agent to

acquire information around any state. This represents a theoretical benchmark that no state is

more special than others. In reality, some investors may find it less costly to acquire information

about some certain states perhaps due to their state-dependent expertise. In Section 2.2, we

briefly discuss to what extent such state-dependent expertise may affect our results.

Built on flexible information acquisition, the investor’s problem is to choose a functional form

of m(·) to maximize the expected payment less the information cost. We characterize the optimal

screening rule m(·) in the following proposition. We denote ∆u(θ) = u(1, θ) − u(0, θ), which

is the payoff gain of taking action 1 over action 0 when the state is θ. We also assume that

Pr [∆u (θ) 6= 0] > 0 to exclude the trivial case where the investor is always indifferent between the

two actions. The proof is in Yang (2017) (see also Woodford 2008, for an earlier treatment).

21Formally, we have

I(m(·)) = H(Π)−
∫
x

H(Π(·|x))Πxdx ,

where Π denotes the prior, x the signal received, Π(·|x) the posterior distribution, and Πx the marginal probability
of signal x. Under a binary-signal structure, a standard calculation yields the result above.

22Following the literature of rational inattention, the functional form of the information cost is not a crucial
driver of our qualitative results. See Yang (2015) for discussions on related properties of this cost function. In
particular, although the cost c(m(·)) is linear in the expected entropy reduction I(m(·)), it does not mean it is
linear in information acquisition. Essentially, the expected reduction in entropy I(m(·)) is a nonlinear functional of
the screening rule m(·) and the prior Π, microfounded by the information theory.
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Proposition 1. Given u, Π, and µ > 0, let m∗(·) ∈M be an optimal screening rule and

π̄∗ = E [m∗(θ)]

be the corresponding unconditional probability of taking action 1. Then

a. The optimal screening rule is unique

b. There are three cases for the optimal screening rule:

a) π̄∗ = 1, that is, Prob[m∗ (θ) = 1] = 1 if and only if

E
[
exp

(
−µ−1 ·∆u (θ)

)]
6 1 ; (1.1)

b) π̄∗ = 0, i.e., Prob[m∗ (θ) = 0] = 1 if and only if

E
[
exp

(
µ−1 ·∆u (θ)

)]
6 1 ;

c) 0 < π̄∗ < 1 and Prob[0 < m∗(θ) < 1] = 1 if and only if

E
[
exp

(
µ−1 ·∆u (θ)

)]
> 1 and E

[
exp

(
−µ−1 ·∆u (θ)

)]
> 1 ; (1.2)

in this case, the optimal screening rule m∗(·) is determined by the equation

∆u (θ) = µ ·
(
g′ (m∗ (θ))− g′ (π̄∗)

)
(1.3)

for all θ ∈ R+, where

g′ (x) = ln

(
x

1− x

)
.

Proposition 1 fully characterizes the investor’s possible optimal decisions of information

acquisition. Cases a and b correspond to the scenarios of optimal action 1 or 0. These two

cases do not involve information acquisition. They correspond to the scenarios in which the

prior is extreme or the cost of information acquisition is sufficiently high. But Case c, the more

interesting one, involves information acquisition. In particular, the optimal screening rule m∗(·)

is not constant in this case, and neither action 1 nor 0 is optimal ex ante. This case corresponds
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to the scenario where the prior is not extreme, or the cost of information acquisition is sufficiently

low. In Case c, where information acquisition is involved, the investor equates the marginal benefit

of information with its marginal cost, as indicated by condition (1.3). In doing so, he chooses the

shape of m∗(·) according to the shape of payoff gain ∆u(·) and the prior Π.23

2 Security Design

We consider the entrepreneur’s security design problem. Denote the optimal security of the

entrepreneur by s∗(·). The entrepreneur and the investor play a sequential Bayesian game.

Concretely, the entrepreneur designs the security, and then the investor screens the project given

the security designed. Hence, we apply Proposition 1 to the investor’s information acquisition

problem, given the security, and then solve backward for the entrepreneur’s optimal security. To

distinguish this from the general decision problem in Section 1.2, we denote the investor’s optimal

screening rule as ms(·), given the security s(·); hence the investor’s optimal screening rule is now

denoted by m∗s(·).

We formally define the equilibrium as follows.

Definition 1. Given u, Π, k and µ > 0, the sequential equilibrium is defined as a combination of

the entrepreneur’s optimal security s∗(·) and the investor’s optimal screening rule ms(·) for any

generic security s(·), such that

a. the investor optimally acquires information given any generic security s(·): ms(·) is

prescribed by Proposition 1,24 and

b. the entrepreneur designs the optimal security s∗(·) that maximizes the expected payment:

E[ms(θ) · (θ − s(θ))] .

According to Proposition 1, there are three possible investor behaviors, given the en-

trepreneur’s optimal security. First, the investor may optimally choose not to acquire information

and simply accept the security as proposed. This implies that the project is certainly financed.

23See Woodford (2008) and Yang (2015 2017) for more examples on this decision problem.
24The specification of belief for the investor at any generic information set after information acquisition is implied

by Proposition 1, provided the definition of ms(·).
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Second, the investor may optimally acquire some information, induced by the proposed security,

and then accept the entrepreneur’s optimal security with a positive probability. In this case, the

project is financed with a probability that is positive but less than one. Third, the investor may

simply reject the security without acquiring information, implying that the project is certainly not

financed. All of the three cases can be accommodated by the equilibrium definition. This third

case, however, represents the outside option of the entrepreneur, who can always offer nothing to

the investor and drop the project. Accordingly, we focus on the first two cases. The following

lemma helps distinguish the first two cases of equilibrium from the third. All proofs are relegated

to Appendix A.

Lemma 1. The project can be financed with a positive probability if and only if

E
[
exp(µ−1 · (θ − k))

]
> 1 . (2.1)

Lemma 1 is an intuitive investment criterion. It implies that the project is more likely to be

financed if the prior of the cash flow is better, if the initial investment k is smaller, or if the cost

of screening µ is lower. When condition (2.1) is violated, the investor will reject the proposed

security, whatever it is.

The following Corollary 1 implies that, in the baseline model, the entrepreneur will never

propose to concede all the cash flows to the investor if the project is financed. This corollary is

straightforward but worth emphasizing, in that it helps illustrate the key friction by showing that

the interests of the entrepreneur and the investor are not aligned.

Corollary 1. When the project can be financed with a positive probability, s∗(·) = θ is not an

optimal security.

In what follows, we assume that condition (2.1) is satisfied, and characterize the entrepreneur’s

optimal security, focusing on the first two types of equilibria with a positive screening cost µ > 0.

2.1 Optimal security without inducing information aquisition

In this subsection, we consider the case in which the entrepreneur’s optimal security is accepted by

the investor without information acquisition. In other words, the entrepreneur finds that the cost
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of screening does not justify its benefit and thus wants to design a security to deter it. Concretely,

this means Pr [m∗s(θ) = 1] = 1. We first consider the investor’s problem of screening, given the

entrepreneur’s security, then characterize the optimal security.

Given a security s(·), the investor’s payoff gain from accepting rather than rejecting it is

∆uI(θ) = uI(1, θ)− uI(0, θ) = s (θ)− k , for any θ . (2.2)

According to Proposition 1 and conditions (1.1) and (2.2), any security s(·) that is accepted

by the investor without information acquisition must satisfy

E
[
exp

(
−µ−1 · (s (θ)− k)

)]
6 1 . (2.3)

If the left-hand side of inequality (2.3) is strictly less than one, the entrepreneur could lower s(θ)

for some θ to increase the expected payoff gain without affecting the investor’s incentives. Hence,

condition (2.3) always holds as an equality in equilibrium.

By backward induction, the entrepreneur’s problem is to choose a security s(·) to maximize

the expected payoff

uE(s(·)) = E [θ − s(θ)]

subject to the investor’s information acquisition constraint

E
[
exp

(
−µ−1 · (s (θ)− k)

)]
= 1 ,

and the feasibility condition 0 6 s(θ) 6 θ.

In this case, the entrepreneur’s optimal security is a debt. We characterize this optimal security

by the following proposition, along with its graphical illustration in Figure 1.

Proposition 2. If the entrepreneur’s optimal security s∗(·) induces the investor to accept the

security without acquiring information, then it takes the form of a debt:

s∗(·) = min (θ,D∗)
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where the unique face value D∗ is determined in equilibrium. In particular, we have

E[s∗(θ)] > k .

0

s
∗(θ)

θ

“shape”

“level”: D
∗

s(θ)

Figure 1: The unique optimal security without information acquisition

It is intuitive that debt with a high enough face value is the optimal means of finance when

the entrepreneur does not want to induce information acquisition. First, it is the flat shape of

debt that incentivizes efficient information acquisition, which in this case is to not acquire any

information. Specifically, the optimal security must minimize the investor’s incentive to acquire

information to the extent at which he does not want to acquire information. This implies that the

optimal security should be as flat as possible when the limited liability constraint is not binding,

which leads to debt.

Second, the expected overall payment E[s∗(θ)], which also captures the face value and level of

the debt, must exceed the investment requirement k. This difference E[s∗(θ)] − k exists because

the investor has the option to acquire information and thus enjoys an information rent, which

forces the entrepreneur to grant a sufficiently high overall payment and thus a sufficiently high

face value. Otherwise, the investor will reject the offer and not finance the project. Therefore,

the level of debt helps incentivize the efficient financing decision.

The optimality of debt here accounts for the real-world scenarios in which new projects

are financed by fixed-income securities. When a project’s market prospects are clear and thus

extra information is less useful, it is optimal to deter or mitigate investor’s costly information

acquisition by resorting to debt. Empirical evidence suggests that many conventional businesses
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and less revolutionary start-ups relying heavily on plain vanilla debt finance from investors such

as relatives, friends, and traditional banks (e.g., Berger and Udell 1998; Kerr and Nanda 2009;

Robb and Robinson 2014), as opposed to more sophisticated financial contracts.

The optimality of debt described here resembles that in Yang (2017), but the underlying

channel has subtle differences. Yang (2017) considers security design with flexible information

acquisition in a comparable exchange economy. In that model, a seller has an asset in place and

proposes a security to a more patient buyer to raise liquidity. The buyer can acquire information

about the asset’s cash flow before purchasing. There, information is always bad: it does not guide

any production but always induces adverse selection. Thus, debt is always optimal because it

offers the greatest mitigation of the buyer’s adverse selection. In the present production economy,

however, information is socially beneficial because it helps screen in (out) good (bad) projects and

thus guides efficient investment decisions, while it is still costly to the entrepreneur because of

the information rent that emerges from the investor’s endogenous information advantage. When

its benefit does not justify the cost, the entrepreneur optimally designs debt to deter information

acquisition. Rather, when its benefit exceeds the cost, debt is no longer optimal, as we will show

below. Overall, in both papers, debt is optimal when the entrepreneur wants to deter information

acquisition, but the reason she wants to do so is not exactly the same.

2.2 Optimal security inducing information acquisition

Here, we characterize the entrepreneur’s optimal security that induces the investor to acquire

information. In this case, the entrepreneur finds screening desirable and designs a security to

incentivize it. According to Proposition 1, this means Prob [0 < ms(θ) < 1] = 1, that is, the

investor will finance the project with positive probability, but not certainty.

Again, according to Proposition 1 and conditions (1.2) and (2.2), any generic security s(·) that

induces the investor to acquire information must satisfy

E
[
exp

(
µ−1 (s (θ)− k)

)]
> 1 (2.4)

and

E
[
exp

(
−µ−1 (s (θ)− k)

)]
> 1 , (2.5)
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Given such a security s(·), Proposition 1 and condition (1.3) also prescribe that the investor’s

optimal screening rule ms(·) is uniquely pinned down by the functional equation:

s (·)− k = µ ·
(
g′ (ms (·))− g′ (πs)

)
, (2.6)

where

πs = E [ms (θ)]

is the investor’s unconditional probability of accepting the security. In what follows, we denote

by π∗s the unconditional probability induced by the entrepreneur’s optimal security s∗(·).

We derive the entrepreneur’s optimal security backwards. Taking into account the investor’s

response ms(·), the entrepreneur chooses a security s (·) to maximize

uE (s(·)) = E [ms (θ) · (θ − s (θ))] (2.7)

subject to (2.4), (2.5), (2.6), and the feasibility condition 0 6 s (θ) 6 θ. 25

We use a variational approach to solve this problem. Intuitively, we impose the condition that

the entrepreneur should not benefit from any deviation from the optimal security. Let

s(·) = s∗(·) + α · ε(·) (2.8)

be a perturbation of the optimal security, where ε(·) can be any arbitrary measurable function of

θ over R+.

Lemma 2. The entrepreneur’s marginal expected payoff from adding arbitrage cash flows ε(·) to

the optimal security s∗(·) is given by

duE(s(·))
dα

∣∣∣∣
α=0

= E[r(θ) · ε(θ)],

where

r (·) = −m∗s (θ) + µ−1 ·
(
g′′ (m∗s (θ))

)−1 · (θ − s∗ (θ) + w∗) (2.9)

25Again, the entrepreneur’s individual rationality constraint E [ms (θ) · (θ − s (θ))] > 0 is automatically satisfied.
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is the Frechet derivative (a function of θ) that measures the entrepreneur’s marginal benefit from

varying s∗(·),26 and w∗ is a constant determined in equilibrium.

The two terms in r(·), shown on the right-hand side of (2.9), reflect the key trade-off that the

entrepreneur faces when designing the security. The first term captures the direct effect of raising

s∗(θ) for any θ disregarding the induced change in m∗s (θ). This term is always negative, because

increasing s∗(θ) reduces the entrepreneur’s residual claim. The second term captures the indirect

effect of raising s∗(θ) for any θ through the induced change in m∗s (θ). Intuitively, this term should

be positive, because increasing s∗(θ) helps incentivize the investor’s information acquisition and

financing decision, the effect of which is summarized by the change in m∗s (θ). The two effects

compete with each other and help pin down the shape of the optimal security.

Based on the trade-off above, the Frechet derivative naturally leads to the entrepreneur’s

first-order condition. We have

r∗ (θ)


6 0 if s∗(θ) = 0

= 0 if 0 < s∗(θ) < θ

> 0 if s∗(θ) = θ

.

By the definition of r(·) (2.9) and the fact that g′′(x) = x−1(1− x)−1, the first-order condition is

equivalent to

(1−m∗s(θ)) · (θ − s∗(θ) + w∗)


6 µ if s∗(θ) = 0

= µ if 0 < s∗(θ) < θ

> µ if s∗(θ) = θ

. (2.10)

Based on the first-order condition, we first characterize the shape of the optimal security.

Notably, we argue that it helps incentivize efficient information acquisition, and we illustrate to

what extent it does so. To do this, we first solve for the “unconstrained” part of the optimal

security, which essentially determines the shape of the optimal security where the feasibility

condition 0 6 s(θ) 6 θ is not binding. We denote the solution by ŝ(·). We also denote

the corresponding screening rule by m̂s(·). The unconstrained part will represent the equity

component of the eventually optimal security.

26In more mathematical terms, r (·) is the functional derivative used in calculus of variations, which is itself a
function. It is analogous to the derivative of a real-valued function of a single real variable but generalized to
accommodate functions on Banach spaces.
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Lemma 3. In an equilibrium with information acquisition, the unconstrained part of the optimal

security ŝ(·) and its corresponding screening rule m̂s(·) are determined by the following two

functional equations

ŝ (·)− k = µ ·
(
g′ (m̂s (·))− g′ (π∗s)

)
, (2.11)

and

(1− m̂s(·)) · (θ − ŝ(·) + w∗) = µ , (2.12)

where π∗s and w∗ are two constants determined in equilibrium.

Lemma 3 exhibits the relationship between the unconstrained part ŝ(·) and the corresponding

screening rule m̂s(·). Condition (2.11) directly follows condition (2.6), which specifies how the

investor responses to the unconstrained part by adjusting his screening rule. On the other hand,

condition (2.12) follows the entrepreneur’s first-order condition (2.10) in the case of 0 < s∗(θ) < θ.

It indicates the entrepreneur’s optimal choices of payments across states, given the investor’s

screening rule. In equilibrium, ŝ(·) and m̂s(·) are jointly determined. We can characterize their

monotonicity in the following lemma.

Lemma 4. In an equilibrium with information acquisition, the unconstrained part of the optimal

security ŝ(·) and the corresponding screening rule m̂s(·) satisfy

∂m̂s (θ)

∂θ
= µ−1 · m̂s (θ) · (1− m̂s (θ))2 > 0 , for any θ (2.13)

and

∂ŝ (θ)

∂θ
= 1− m̂s (θ) ∈ (0, 1) , for any θ . (2.14)

Lemma 4 prescribes three predictions about the shape of the unconstrained part of the optimal

security and its associated screening rule. First, condition (2.13) implies that the corresponding

optimal screening rule m̂s (·) is strictly increasing. Second, condition (2.14) implies that the

unconstrained part ŝ (·) is also strictly increasing. These are because, per Proposition 1, we have

Prob[0 < m̂s (θ) < 1] = 1 in this case, and thus the right-hand sides of (2.13) and (2.14) are

positive. Third, it follows immediately that the residual of the unconstrained part, θ − ŝ (·), as a

function of θ, is also strictly increasing.
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The three predictions reveal the intuition underlying the investor’s information acquisition

and the entrepreneur’s motive in incentivizing it. First, when the entrepreneur finds it optimal

to induce information acquisition, it should benefit the entrepreneur, which is true only if the

investor screens in a potentially good project and screens out bad ones. In other words, a better

project must have a strictly higher probability to be screened in. This implies that the screening

rule m̂s (·) should be more likely to generate a good signal and to result in a successful finance

when the cash flow θ is higher, while more likely to generate a bad signal and a rejection when θ

is lower. Therefore, m̂s (·) should be strictly increasing in θ.

Second, to induce a strictly increasing screening rule m̂s (·), the optimal unconstrained part

ŝ (·) must be strictly increasing in θ as well, according to condition (2.11). Intuitively, this

monotonicity reflects the dependence of production on information acquisition: the entrepreneur

is willing to better compensate the investor in the event of higher cash flows to encourage efficient

information acquisition. This monotonicity also gives the unconstrained part of the optimal

security a natural equity interpretation. In particular, this equity component is designed to help

incentivize efficient information acquisition, and thus the investor acquires adequate information

to distinguish between any different states. Note that this monotonicity result relies on the

assumption underlying the entropy-based information cost that it is equally costly to acquire

information about any state. If the investor finds it less costly to acquire information about some

certain states, it is natural to expect the resultant optimal security to become flatter on those

states.27

Third, the residual of the optimal unconstrained part, θ − ŝ (·), also strictly increases in θ in

states with high cash flows. In other words, ŝ (·) is dual monotone when it deviates from the 45◦

line in states with high cash flows. Intuitively, the dependence of production on information

acquisition implies that the investor would obtain all underlying cash flows. However, the

entrepreneur’s bargaining power allows her to retain some surplus, and thus she will not propose

all the cash flows to the investor, because doing so would leave her with nothing. This conflict

is mitigated in a mutually compromised, but most efficient, way: the entrepreneur rewarding the

investor more but also retaining more in better states. As a result, ŝ (·) deviates further from the

27Formally showing this point requires adding more parametric and distributional assumptions, which would
make the model less tractable and is beyond the scope of this present paper.
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45◦ line in better states. This deviation literally captures the entrepreneur’s retained benefit. And

economically, it reflects the degree to which the allocation of cash flow is not perfectly efficient,

which in turn comes from the separation of the entrepreneur’s bargaining power in security design

and the investor’s information acquisition.

Overall, Lemma 4 suggests that the eventually optimal security consists of an unconstrained

equity component, the dual monotonic shape of which is designed to help incentivize efficient

information acquisition. Next, Proposition 3 fully characterizes the optimal security s∗(·) and

suggests that it further consists of a debt component, the level of which is design to help incentivize

the efficient financing decision. Figure 2 shows the payment structure.

Proposition 3. If the entrepreneur’s optimal security s∗(·) induces the investor to acquire

information, then it takes the following form of a combination of debt and equity:

s∗ (·) =

 θ if 0 6 θ 6 θ̂

ŝ (θ) if θ > θ̂
,

where θ̂ > k and the unconstrained part ŝ(·) satisfies:

i) θ̂ < ŝ(θ) < θ for any θ;

ii) 0 < dŝ(θ)/dθ < 1 for any θ.

Finally, the corresponding optimal screening rule satisfies dm∗s(θ)/dθ > 0 for any θ.

 

 

0
θ

k

s
∗(θ)

“shape”“level”: θ̂

s(θ)

Figure 2: The unique optimal security with information acquisition

In Proposition 3, the characterization of the unconstrained equity component ŝ(·) directly

follows Lemma 4; what is new is the characterization of a constrained part when the cash flow
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is low. Because this constrained part follows the 45◦ line until a strictly positive threshold θ̂, it

admits a natural debt interpretation with a face value θ̂. Notably, Proposition 3 further shows

that the face value θ̂ must be strictly greater than the investment requirement k.

The debt component, in particular, the associated level, of the optimal security is designed to

help incentivize the efficient financing decision. When information is desirable, the endogenous

information advantage gives the investor an information rent. Thus, the overall payment of the

optimal security should be high enough (given its shape) in order to avoid the offer being rejected.

To achieve this, the entrepreneur must give the investor a debt component with a sufficiently high

face value. It is worth noting that the debt component here plays a subtly different role than the

optimal debt in Proposition 2: there the flat shape of debt is designed to deter costly information

acquisition, while here the level of the debt makes sure that the overall payment of the optimal

security is high enough and thus the investor will not reject the offer.

Proposition 3 is consistent with empirical evidence regarding the popularity of the combination

of debt and equity when information acquisition is likely to be desirable. Brewer, Genay,

Jackson, and Worthington (1996) examine young firms in the U.S. government-sponsored Small

Business Investment Companies program (commonly known as SBIC) and find that firms with less

transparent projects are likely to issue the combination of debt and equity to the same investor,

which case accounts for 26% of their whole sample. Looking at a more representative sample of

private firms, Berger and Udell (1998) also suggest that younger and more innovative firms are

more likely to be financed by both external debt and equity at the same time.

The combination of debt and equity as proscribed in Proposition 3 also resembles participating

convertible preferred stock, with dŝ(θ)/dθ defined as the conversion rate. In reality, such a security

grants holders the right to receive both the face value and their equity participation as if it

was converted, in the event of a public offering or sale.28 This prediction is consistent with

the empirical evidence of venture contracts documented in Kaplan and Stromberg (2003), who

find that 94% of all financing contracts are convertible preferred stock,29 among which 40% are

participating. Participating preferred stocks are more popular than straight convertible preferred

stocks in earlier investment rounds when the project faces more uncertainty and thus investor

28Compared to equity (common stock), debt and preferred stock are identical in our model, because the model
only features two tranches and no dividends.

29If we include convertible debt and the combination of debt and equity, this number increases to 98%.
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screening is more necessary, consistent with our model predictions. For brevity, in what follows

we refer to the optimal security in this case as convertible preferred stock or the combination of

debt and equity, and use the two terms interchangeably.

Finally, comparison of the production with an exchange economy helps show why our model

can predict both debt and nondebt securities. In a production economy, costly information

contributes to the output, whereas in an exchange economy it only affects the reallocation of

existing resources. As discussed earlier, in an exchange economy as modeled in Dang, Gorton,

and Holmstrom (2015) and Yang (2017), information is always socially wasteful, and it is always

optimal to discourage information acquisition. In the present paper, however, the entrepreneur

and the investor jointly tap the project’s cash flow if the investor accepts the proposed security.

Thus, the present model features a production economy in which the social surplus may depend

positively on costly information. As a result, the entrepreneur may want to design a security that

encourages the investor to acquire information favorable to the entrepreneur and then finance the

project, which justifies the combination of debt and equity.

2.3 Allocation of bargaining power in designing the security

As illustrated in Proposition 3, the equity component deviates from the 45◦ line as the cash

flow increases, which makes the resultant optimal security not fully efficient in incentivizing the

investor’s information acquisition when it is desirable. The feature stems from the entrepreneur’s

bargaining power in security design. To better understand this point, we extend the baseline

model to consider more general allocation of bargaining power between the entrepreneur and the

investor.

We consider a bargaining parameter 1 − α capturing the entrepreneur’s bargaining power

(and α capturing that of the investor) in the process of security design. Suppose a third party

in the economy knows α, designs the security and proposes it to the investor. Facing the offer,

the investor acquires information according to the security and then decides whether or not to

accept this offer. The third party’s objective function is an average of the entrepreneur’s and the

investor’s utilities, weighted by the bargaining parameter of each. When α = 0, this extension

reduces to our baseline model.
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To clarify this bargaining parameter α, we highlight that it captures the allocation of bargain-

ing power in the process of designing the security, but not necessarily the overall bargaining power

in terms of the ultimate ability to share the social surplus. In other words, α = 0, like in the

baseline model, does not suggest that the investor obtains a zero surplus in equilibrium. Similarly,

1−α > α does not suggest that the entrepreneur obtains a higher surplus than does the investor.

This is because only the investor can acquire information and finance the project, the resultant

endogenous information rent contributes to the investor’s overall bargaining power in terms of

sharing the total social surplus even if α = 0. In this sense, we view both our baseline model

and this extension consistent with the evidence in Opp (2016) that informationally sophisticated

investors such as venture capitalists can capture a great share of surplus, and their information

advantage indeed contributes to their share of surplus. Therefore, we focus on changes in α and

interpret that the entrepreneur’s bargaining power becomes weaker as α increases and stronger

as α decreases in this extension.

We also note that this bargaining parameter α does not capture which party is more likely

to literally draft the contractual terms of a security in reality. Instead, both our baseline model

and the extension offer an equilibrium view of security design based on the strategic interaction

between the entrepreneur and the investor.

The derivations for the results are the same as those used in the baseline model. In this

setting, the third-party’s objective function, that is, the payoff gain, is

uT (s(·)) = α · (E[(s(θ)− k) ·m(θ)]− µ · I(m)) + (1− α) · E[(θ − s(θ)) ·m(θ)] .

We can show that, with information acquisition, the equation that governs information

acquisition is still the same as condition (2.6):

s (·)− k = µ ·
(
g′ (ms (·))− g′ (πs)

)
,

while the Frechet derivate that characterizes the optimality of the unconstrained part of the
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optimal security becomes

r(·) = (2α− 1) ·m(θ) + (1− α) · µ−1 ·m(θ) · (1−m(θ)) · (θ − ŝ(θ) + w) .

The following two propositions characterize the optimal security in the general setting.30

Proposition 4. Consider the bargaining power parameter α:

i). when 0 6 α < 1/2 and if information acquisition happens in equilibrium, the unconstrained

part ŝ(·) and the corresponding screening rule m̂s(·) satisfy

dŝ (θ)

dθ
=

1− m̂s (θ)

1− α
1−αm̂s(θ)

∈ (0, 1), for any θ

and

dm̂s (θ)

dθ
=
µ−1 · m̂s (θ) · (1− m̂s (θ))2

1− α
1−αm̂s(θ)

> 0, for any θ ,

and all the results from Proposition 1 to Proposition 3 still hold;

ii). when 1/2 6 α 6 1, the optimal security is s∗(·) = θ, that is, an equity that is backed by

all the cash flows of the potential project.

The first part of Proposition 4 suggests that as the entrepreneur’s bargaining power becomes

weaker than in the baseline model, but not sufficiently weak, the qualitative results remain.

However, a comparison to Lemma 4 suggests that the slope of both the equity component and

the corresponding screening rule becomes steeper when the entrepreneur’s bargaining power

becomes weaker. This is intuitive: the entrepreneur becomes less able to retain a benefit in

designing the security, leading to a more generous payment schedule to the investor and thus more

efficient information acquisition. As documented by Gompers, Gornall, Kaplan and Strebulaev

(2016), entrepreneurs usually have bargaining power in the process of security design even facing

sophisticated investors like venture capitalists, but the level of bargaining power may vary. Our

model thus generates new testable predictions regarding how the allocation of cash flow rights

changes if the allocation of bargaining power changes between the entrepreneur and the investor.

On the contrary, when the entrepreneur’s bargaining power becomes sufficiently weak, the

second part of Proposition 4 suggests the entrepreneur sell an equity that represents all the cash

30The proofs for the extended model follow those for the baseline model closely, so we omit them for brevity.
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flows of the potential project. In this case, the investor as the information producer does internalize

all the benefits from information acquisition. In other words, as the investor’s bargaining power in

security design becomes sufficiently strong, he can effectively lift the friction in our economy and

make socially efficient information acquisition and production decisions. As suggested by Aghion

and Tirole (1994) and Rajan (2012), when the entrepreneur’s bargaining power becomes weaker

in a firm’s life cycle, selling a company as a whole to an outside investor becomes more common

and desirable, consistent with the predictions in this model extension.

A special case is that the investor can both design the security and acquire information.

In this sense, our result in this extension nests the result of equity as the optimal security in

Manove, Padilla, and Pagano (2001). They consider a two-state security design model in which

an entrepreneur needs to raise capital from a monopolistic bank to finance a project, and the

bank can both design the security and acquire information through costly state verification. They

show that a sufficiently high payment in the good state, representing an equity, can incentivize

fully efficient information acquisition.

2.4 Alternative time line of information acquisition and finance

The time line that the investor can acquire information before his financing decision is also crucial

in driving our security design results. Consider an alternative time line in which the investor can

acquire information only after the financing decision. It can be easily shown that:

Proposition 5. Under the alternative time line, the optimal security is s∗(·) = θ − p∗, in which

p∗ > 0 is set so that the investor obtains zero profit.

Proposition 5 suggests that the optimal security is still an equity backed by all the cash flows

of the potential project, but the entrepreneur should sell it at a positive lump-sum price such that

the investor obtains zero surplus. By doing this, the entrepreneur ensures that the investor will

choose the efficient information acquisition strategy and make an efficient investment decision,

thus maximizing social surplus. Then, by setting an upfront lump-sum price, p∗, the entrepreneur

retains the maximal surplus. In this case, the detailed information structure does not matter

anymore, and, likewise, the security design becomes less relevant.
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The key to understand Proposition 5 is the entrepreneur’s overall bargaining power becomes

too strong in the sense that she can prevent the investor from acquiring any information before

the financing decision, essentially removing the friction in the security design process. Thus, the

socially efficient outcome is achieved and entrepreneur also captures all the social surplus.

In practice, however, it is common and reasonable for investors to have the option of acquiring

information about the project before the financing decision, and investors indeed do so (Chem-

manur, Krishnan, and Nandy 2011; Kerr, Lerner, and Schoar 2014; Opp 2016). This option gives

rise to the investor’s endogenous information rent, which effectively contributes to the investor’s

overall bargaining power in terms of sharing the social surplus even if the entrepreneur designs

the security in the first place.31 In reality, this option also justifies the time line and the security

design results in the baseline model.

3 Optimal Securities in Different Circumstances

Two natural questions emerge: given the characteristics of the production economy, when is debt

optimal? And when is the combination of debt and equity optimal? We focus on the baseline

model and the cases in which the project can be financed with a positive probability, that is,

when condition (2.1) is satisfied.

3.1 Net present value dimension

We first investigate how the optimal security varies when the ex ante net present value (NPV)

is different, which is one of the most natural dimensions to measure the market prospects of a

project.

Proposition 6. Consider the ex ante NPV (i.e., E[θ]− k) of the project:

i). if E[θ]− k 6 0, the optimal security s∗(·) is convertible preferred stock; and

ii). if E[θ]− k > 0, s∗(·) may be either convertible preferred stock or debt.

When the project has a zero or negative NPV, convertible preferred stock is the only type

of optimal security. In this case, the investor will never finance the project without acquiring

31Again, this argument helps justify the fact that the entrepreneur’s overall bargaining power is not too strong
in the baseline model, even if the entrepreneur designs the security.
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information, because doing this incurs an expected loss even if the entrepreneur promises the

entire cash flow. However, when the investor acquires information, the probability of financing

the project becomes positive because a potentially good project can be screened in. Hence, the

entrepreneur is better off by proposing convertible preferred stock to encourage screening in.

On the other hand, when the project has a positive NPV, convertible preferred stock may still

be optimal, but the aim is to encourage the investor to screen out a potentially bad project. In

this case, the entrepreneur can finance the project with probability one by proposing debt with a

sufficiently high face value (as information rent) to deter information acquisition. However, such

certain financing may be too costly because it leaves too little for the entrepreneur. Instead, the

entrepreneur may retain more by offering a less generous convertible preferred stock and inviting

the investor to acquire information. Doing so results in financing with a probability less than one,

but the entrepreneur’s total expected profit could be higher because a potentially bad project

may be screened out. This ultimately justifies convertible preferred stock as the optimal choice.

If reaching a certain financing is not too costly, and the benefit from information acquisition and

the resultant screening out is not high enough, the entrepreneur may find it optimal to propose

debt to simply deter costly information acquisition.

Although intuitive, one limitation of this NPV dimension is that we cannot fully determine

whether debt or convertible preferred stock is optimal when the ex ante NPV is positive.32 The

next subsection investigates how the optimal security changes when the severity of the friction in

the economy varies, which helps reveal the model mechanism at a more fundamental level.

3.2 The friction dimension

In our baseline model, production and security design is performed by the entrepreneur while

information acquisition and financing by the investor. This physical separation is always present

and unchanged regardless of any exogenous characteristics of the economy. Hence, the severity

of the friction is naturally reflected in the extent to which production depends on information

acquisition and the subsequent financing; the friction is more (less) severe in the sense that

32Although we view it as a limitation of the NPV dimension, we emphasize that it does not necessarily suggest a
shortcoming of our model, which is designed to be free from parametric or distributional assumptions. We can fully
determine the optimal security under a given positive ex ante NPV if we impose mild parametric and distributional
assumptions, as numerically shown in Section 4.
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production depends more (less) on information acquisition and financing, given the separation.

However, our model does not feature any parametric or distributional assumptions, so one

challenge we face is to find a measure for the friction. To overcome this challenge, we rely

on the standard definition of social efficiency, which is naturally linked to the notion of friction.

Definition 2. An optimal security in the baseline economy achieves social efficiency if and only

if the induced optimal screening rule m∗s(·) maximizes the expected social surplus:

E[m(θ) · (θ − k)]− µ · I(m(·)) , (3.15)

which is the difference between the expected profit of the project and the cost of information, both

of which are functions of the screening rule m(·).

Intuitively, if the optimal security can help the underlying economy achieve social efficiency, we

view the friction to be not severe because it can be effectively eliminated by the optimal security

design. In contrast, if even the optimal security design cannot achieve social efficiency, we view

the friction of the underlying economy to be severe. Along this friction dimension measured by

the achievability of social efficiency, we have the following result.

Proposition 7. In the baseline production economy:

i) the optimal security s∗(·) is debt if and only if friction in the economy is not severe, i.e.,

the optimal security achieves efficiency; and

ii) s∗(·) is convertible preferred stock if and only if the friction is severe, i.e., even the optimal

security cannot achieve efficiency.

This result offers a clear dichotomy between the two types of optimal securities depending

on how severe the friction in the economy is. If the friction is severe (i.e., the dependence

of production on information acquisition and financing is strong), information acquisition is

worthwhile and thus convertible preferred stock is optimal. In contrast, if the friction is not

severe (i.e., the dependence of production on information acquisition and financing is weak),

information acquisition does not justify its cost and thus debt is optimal.

Our predictions help unify the empirical evidence of the financing of entrepreneurial businesses.

Debt financing is popular for conventional projects, when information is not very useful and thus
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the friction is not severe. Instead, financing with convertible preferred stock (or the combination

of debt and equity) is common for innovative projects, especially in the early rounds, when

information is crucial and thus the friction is severe.

4 Comparative Statics of the Optimal Security

To provide further intuition, we impose mild parametric and distributional assumptions and

look at numerical comparative statics on the optimal securities for two empirical dimensions:

the profitability of the project and its uncertainty.33 When the environment varies, the role of

screening changes, and the way in which the entrepreneur incentivizes information acquisition

and financing changes accordingly, producing different optimal securities. We still focus on the

baseline model and the cases in which the project can be financed with a positive probability,

that is, when condition (2.1) is satisfied.

4.1 Project profitability

First, we consider the effects of variations in the project’s profitability on the optimal security

s∗(·), holding constant the project’s market prospects (i.e., the prior distribution of the cash flow

θ), and the cost of screening, µ. Thus, a decrease in the investment requirement k implies that

the project is more profitable ex ante.

Figure 3 shows the results. The investment k takes three increasing values: 0.4, 0.475, and

0.525. When k = 0.4, the optimal security is debt; for the two other projects with larger k,

one with positive and one with negative ex ante NPV, it is convertible preferred stock. Notably,

the face value θ̂ and the conversion ratios dŝ(θ)/dθ of the convertible preferred stock are both

increasing in k. For the prior of the cash flow θ, we take a normal distribution with mean 0.5 and

standard deviation 0.125, and then truncate and normalize this distribution to the interval [0, 1].

The screening cost µ is fixed at 0.2.

The comparative statics for the profitability of the project serve as a detailed illustration of

33We are not aware of any analytical comparative statics pertaining to functionals. An analytical comparative
statics requires a complete order, which is not applicable for our security space. Even for some ordered characteristics
of the optimal security, for instance, the face value, analytical comparative statics are not achievable. Thus, we rely
on numerical results to deliver intuitions and leave analytical work to future research. Numerical analysis in our
framework is tractable but already technically intensive because we need to solve a system of functional equations.
The algorithm and codes are available on request.
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Figure 3: Change in investment with E[θ] = 0.5, µ = 0.2

Propositions 6 and 7. When the project is sufficiently profitable ex ante (k = 0.4), the friction

is not severe and the project will be financed by debt without inducing screening. When the

project looks mediocre in terms of its profitability but still has a positive ex ante NPV (k =

0.475), the friction becomes severe, and information acquisition becomes worthwhile to screen

bad projects out, so that convertible preferred stock becomes optimal. When the project is not ex

ante profitable in the sense that its NPV is negative (k = 0.525), the friction is more severe, and

the only way for the entrepreneur to obtain financing is to propose convertible preferred stock

and expect a potentially good project to be screened in. For this type of project screening is more

valuable, and hence the entrepreneur is willing to compensate the investor more generously to

induce more effective screening, as seen in Figure 3.

0.4 0.42 0.44 0.46 0.48 0.5 0.52

0

0.05

0.1

0.15
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0.25

Figure 4: Efficiency loss with E[θ] = 0.5, µ = 0.2

To further illustrate the friction in the economy, in Figure 4, we further plot the relative
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efficiency loss Γ(k), defined as the percentage difference between the first-best social surplus in a

hypothetical centralized economy and the equilibrium social surplus in the baseline model, against

the investment requirement k. When k is small, the friction is accordingly not severe. Consistent

with Propositions 6 and 7, in this case it is optimal not to acquire information and the optimal

debt contract achieves first-best allocation, that is, there is no efficiency loss. In contrast, when k

becomes larger, the friction accordingly becomes larger. As shown in Proposition 7, the optimal

convertible preferred stock in this case cannot help achieve the first best, and the relative efficiency

loss becomes larger as k becomes larger.

4.2 Project uncertainty

We then consider how varying the degree of the project’s uncertainty affects the optimal security

s∗(·). Concretely, we consider different prior distributions of the cash flow θ with the same mean,

ranked by second-order stochastic dominance.34 We also hold constant the investment requirement

k and the cost of screening µ. Note that the effect of varying uncertainty cannot be accounted for

by any argument involving risks, because both the entrepreneur and the investor are risk neutral.

Instead, we still focus on friction and the role of screening to explain these effects.

Interestingly, the comparative statics for uncertainty depend on the sign of the project’s ex

ante NPV. As implied by Proposition 6, the role of screening differs when these signs differ. This

further leads to different patterns of comparative statics when the degree of uncertainty varies.

First, we consider projects with positive ex ante NPV and increasing uncertainty. The results

are shown in Figure 5, where the upper-left panel illustrates the priors of the cash flow θ, and

the right panel illustrates the evolution of the optimal security. When the project is the least

uncertain, the optimal security is debt. For more uncertain projects convertible preferred stock

becomes optimal, while the face value θ̂ and the conversion ratios dŝ(θ)/dθ are both increasing in

uncertainty. For the priors, we take normal distributions with mean 0.5 and standard deviations

0.125 and 0.25, and then truncate and normalize them to the interval [0, 1]. We also construct a

third distribution, in which the project is so uncertain that the cash flow has a greater probability

of taking extreme values in [0, 1]. The investment is k = 0.4, and the cost of screening is µ = 0.2.

34The project’s uncertainty can be measured other ways. For comparative statics, we find a partial order of
uncertainty over the space of distributions, while keeping the project’s ex ante NPV constant. Second-order
stochastic dominance seems like a natural choice for this purpose.
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Figure 5: Change in uncertainty: k = 0.4 < E[θ] = 0.5, µ = 0.2

The comparative statics in the upper right panel of Figure 5 demonstrate how varying

uncertainty affects screening out bad projects, given positive ex ante NPV. Similarly, in the

lower panel of Figure 5, we plot the relative efficiency loss against project uncertainty. When

the project is least uncertain, it is least likely to be bad, which implies that screening out is

least relevant and debt financing is accordingly optimal. In this case there is no efficiency loss,

consistent with a friction being not severe. When uncertainty increases, the project is more likely

to be bad, and screening out becomes more valuable. Hence, the entrepreneur finds it optimal

to propose a more generous convertible preferred stock to induce screening out. In this case, the

relative efficiency loss becomes larger as the project becomes more uncertain, reflecting a more

severe friction despite the optimal convertible preferred stock.

Next, we consider projects with negative ex ante NPV, focusing on those that may be financed

with a positive probability due to screening in through convertible preferred stock. Figure 6 shows

the results, where both the face value θ̂ and the conversion ratio dŝ(θ)/dθ of the convertible
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preferred stock are decreasing in uncertainty. The priors are generated in the same way as in

Figure 5. The investment is k = 0.525, and the cost of screening is µ = 0.2.
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Figure 6: Change in uncertainty: k = 0.525 > E[θ] = 0.5, µ = 0.2

The comparative statics in this case are also intuitive, according to the role of screening in.

Given negative ex ante NPV, the investor screens in potentially good projects. In contrast to

the positive-NPV case, here the increase in uncertainty means that the ex ante negative-NPV

project is more likely to be good. Thus, acquiring costly information to screen in a potentially

good project becomes less necessary, and, thus, the friction becomes less severe. Therefore, the

entrepreneur wants to propose a less generous convertible preferred stock for less costly screening.

Not surprisingly, the resultant convertible preferred stock moves away from the 45◦ line when the

project is more uncertain. In this case, the relative efficiency loss becomes smaller as the project

becomes more uncertain, reflecting the less severe friction.
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5 Conclusion

Why are some projects financed by debt while other by nondebt securities? We propose a theory

of security design in financing entrepreneurial production that posits that the investor can acquire

costly information on the entrepreneur’s project before making the financing decision. The

key friction is that real production depends on information acquisition but the entrepreneur’s

bargaining power in the process of security design prevents the investor from internalizing all the

benefits from information acquisition and financing. When the entrepreneur has some bargaining

power, debt is optimal when information is not valuable for production, while the combination

of debt and equity is optimal when information is valuable. However, when the investor has

sufficiently strong bargaining power or can only acquire information after the financing decision, an

equity that is backed by all the cash flows of the potential project is optimal, which effectively lifts

the friction in this economy. These predictions are consistent with the empirical facts regarding

the finance of entrepreneurial businesses.

This paper contributes to the security design literature in several respects, as well as to

the broader corporate finance and contract design literature. By using the modeling approach

of flexible information acquisition, we can (1) model endogenous information acquisition and

endogenous finance decisions simultaneously and (2) work with arbitrary securities over continuous

states while dispensing with usual distributional assumptions. Consequently, our results are

general and can better explain which aspects of the optimal security design help encourage efficient

information acquisition and which aspects help encourage efficient financing decisions.
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Appendices

Appendix A Deviation and Proofs

Proof of Lemma 1. We first prove the “only if” part. Suppose that

E
[
exp(µ−1(θ − k))

]
6 1 .

According to Proposition 1, even if the entrepreneur proposes all the future cash flow to the

investor, the investor will still reject the offer without acquiring information. Because s(θ) 6 θ,

the project cannot be initiated in this case.

Then we prove the “if” part. Let t ∈ (0, 1). Because E
[
exp(µ−1(t · θ − k))

]
is continuous in

t, there exists t < 1 such that

E
[
exp(µ−1(t · θ − k))

]
> 1 .

Hence, according to Proposition 1, the security st(·) = t · θ would be accepted by the investor

with a positive probability. Moreover, let mt(·) be the corresponding screening rule. Because

st(·) would be accepted with a positive probability, mt(·) cannot be always zero. Hence, the

entrepreneur’s expected payment is E[(1− t) · θ ·mt(θ)], which is strictly positive.
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The security st(·) is a feasible security. Hence, the optimal security s∗(·) also will be accepted

with a positive probability and deliver a positive expected payment to the entrepreneur. This

concludes the proof.

Proof of Corollary 1. The proof is straightforward following the above proof of Lemma 1. Propos-

ing s∗(·) = θ gives the entrepreneur a zero payment, while proposing st(·) = t · θ constructed in

the proof of Lemma 1 gives a strictly positive expected payment. This suggests that s∗(·) = θ is

not optimal.

Proof of Proposition 2. The Lagrangian of the entrepreneur’s problem is

L = E
[
θ − s(θ) + λ ·

(
1− exp

(
µ−1 · (k − s(θ))

))
+ η1(θ) · s(θ) + η2(θ) · (θ − s(θ))

]
,

where λ, η1(·) and η2(·) are multipliers.

The first-order condition is

dL

ds(θ)
= −1 + λ · µ−1 · exp

(
µ−1 · (q − s(θ))

)
+ η1(θ)− η2(θ) = 0 . (A.1)

First, we consider a special case that allows us to solve the optimal security. If 0 < s(θ) < θ,

the two feasibility conditions are not binding. Thus, η1(θ) = η2(θ) = 0 for any θ, and the

first-order condition is simplified as

−1 + λ · µ−1 · exp
(
µ−1 · (k − s(θ))

)
= 0 for any θ .

By rearrangement, we obtain

s(θ) = k − µ · ln(λ−1 · µ) for any θ . (A.2)

We denote by D∗ the right-hand side of (A.2), which is irrelevant for θ. By definition, we have

D∗ > 0. Also, it is straightforward to have

− 1 + λ · µ−1 · exp
(
µ−1 · (k −D∗)

)
= 0 . (A.3)
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In what follows, we characterize the optimal solution s∗(·) for different regions of θ.

First, we consider the region of θ > D∗. We show that 0 < s∗(θ) < θ in this region by

contradiction.

If s∗(θ) = θ > D∗, we have η1(θ) = 0 and η2(θ) > 0. From the first-order condition (A.1), we

obtain

− 1 + λ · µ−1 · exp
(
µ−1 · (k − θ)

)
= η2(θ) > 0 . (A.4)

On the other hand, as θ > D∗, we have

− 1 + λ · µ−1 · exp
(
µ−1 · (k −D∗)

)
> −1 + λ · µ−1 · exp

(
µ−1 · (k − θ)

)
. (A.5)

Conditions (A.3), (A.4), and (A.5) construct a contradiction. So we must have s∗(θ) < θ if

θ > D∗.

Similarly, if s∗(θ) = 0, we have η1(θ) > 0 and η2(θ) = 0. Again, from the first-order condition

(A.1), we obtain

− 1 + λ · µ−1 · exp
(
µ−1 · k

)
= −η1(θ) 6 0 . (A.6)

On the other hand, as D∗ > 0, we have

− 1 + λ · µ−1 · exp
(
µ−1 · (k −D∗)

)
< −1 + λ · µ−1 · exp

(
µ−1 · k

)
. (A.7)

Conditions (A.3), (A.6), and (A.7) construct another contradiction. So we must have s∗(θ) > 0

if θ > D∗.

Therefore, we have shown that 0 < s∗(θ) < θ for θ > D∗. From the discussion above for this

specific case, we conclude that s∗(θ) = D∗ for θ > D∗.

We then consider the region of θ < D∗. We show that s∗(θ) = θ in this region.

Because s∗(θ) 6 θ < D∗, we have

− 1 + λ · µ−1 · exp
(
µ−1 · (k − s∗(θ))

)
> −1 + λ · µ−1 · exp

(
µ−1 · (k −D∗)

)
. (A.8)

From condition (A.3), the right-hand side of this inequality (A.8) is zero. Together with the

first-order condition (A.1), the inequality (A.8) implies that η1(θ) = 0 and η2(θ) > 0. Therefore,
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we have s∗(θ) = θ in this region.

Also, from the first-order condition (A.1) and condition (A.3), it is obvious that s∗(D∗) = D∗.

In sum, the entrepreneur’s optimal security without inducing the investor to acquire informa-

tion features a debt with face value D∗ determined by condition (A.2).

We need to check that there exists D∗ > 0 and the corresponding multiplier λ > 0 such that

E
[
exp

(
−µ−1 · (min(θ,D∗)− k)

)]
= 1 , (A.9)

where D∗ is determined by condition (A.2).

Consider the left-hand side of condition (A.9). Clearly, it is continuous and monotoni-

cally decreasing in D∗. When D∗ is sufficiently large, the left-hand side of (A.9) approaches

E
[
exp

(
−µ−1 · (θ − k)

)]
, a number less than one, which is guaranteed by condition (2.3) and by

the feasibility condition s(θ) 6 θ. On the other hand, when D∗ = 0, it approaches exp
(
µ−1 · k

)
,

which is strictly greater than one. Hence, there exists D∗ > 0 such that condition (A.9) holds.

Moreover, from condition (A.2), we also know that D∗ is continuous and monotonically in-

creasing in λ. When λ approaches zero, D∗ approaches negative infinity, while when λ approaches

positive infinity, D∗ approaches positive infinity as well. Hence, for any D∗ > 0 there exists a

corresponding multiplier λ > 0.

Suppose D∗ 6 k. It is easy to see that this debt would be rejected by the investor due to

Proposition 1, a contradiction.

Finally, by condition (2.3) again, because the optimal security s∗(θ) satisfies

E
[
exp

(
−µ−1 · (s∗ (θ)− k)

)]
= 1 ,

Jensen’s inequality implies that E[s∗(θ)] > k given µ > 0. This concludes the proof.

Proof of Lemma 3. We derive the entrepreneur’s optimal security s∗ (·) and the corresponding

unconstrained part ŝ(·) through variational methods. Specifically, we characterize how the

entrepreneur’s expected payment responds to the perturbation of the optimal security.

Let s (·) = s∗ (·) + α · ε (·) be an arbitrary perturbation of the optimal security s∗ (·). Note

that the investor’s optimal screening rule ms (·) appears in the entrepreneur’s expected payoff
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uE(s(·)), according to condition (2.7), and it is implicitly determined by the proposed security

s (·) through the equation (2.6) for any θ. Hence, we need to first characterize how ms (·) varies

by the perturbation of s∗ (·). Taking the derivative for α at α = 0 for both sides of (2.6) leads to

µ−1ε (·) = g′′ (m∗s (·)) · ∂ms (θ)

∂α

∣∣∣∣
α=0

− g′′ (π∗s) · E
∂ms (θ)

∂α

∣∣∣∣
α=0

.

We take the expectation of both sides for θ and obtain

E
[
∂ms (θ)

∂α

∣∣∣∣
α=0

]
= µ−1 ·

(
1− E

[(
g′′ (m∗s (θ))

)−1
]
· g′′ (π∗s)

)−1
· E
[(
g′′ (m∗s (θ))

)−1
ε (θ)

]
.

Combining the above two equations, for any perturbation s (·) = s∗ (·) + α · ε (·), the investor’s

screening rule ms (·) is characterized by

∂ms (θ)

∂α

∣∣∣∣
α=0

= µ−1 ·
(
g′′ (m∗s (θ))

)−1
ε (θ)

+
µ−1 · (g′′ (m∗s (θ)))−1 · E

[
(g′′ (m∗s (θ)))−1 ε (θ)

]
(g′′ (π∗s))

−1 − E
[
(g′′ (m∗s (θ)))−1

] for any θ . (A.10)

We interpret condition (A.10). The first term of the right-hand side of (A.10) is the investor’s

local response to perturbation ε (·). It is of the same sign as the perturbation ε (·). When the

payment of the security increases at state θ, the investor is more likely to accept the security at

this state. The second term measures the investor’s average response to perturbation ε (·) over all

states. It is straightforward to verify that the denominator of the second term is positive due to

Jensen’s inequality. As a result, if the perturbation increases the investor’s payment on average

over all states, then the investor is more likely to accept the security.

Now, we can calculate the variation of the entrepreneur’s expected payoff uE(s(·)), according

to condition (2.7). Taking the derivative of uE(s(·)) for α at α = 0 leads to

∂uE(s(·))
∂α

∣∣∣∣
α=0

= E
[
∂ms (θ)

∂α

∣∣∣∣
α=0

(θ − s (θ))

]
− E [m∗s (θ) · ε (θ)] . (A.11)
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Substitute (A.10) into (A.11), and we obtain

∂uE(s(·))
∂α

∣∣∣∣
α=0

= E [r (θ) · ε (θ)] , (A.12)

where

r (·) = −m∗s (θ) + µ−1 ·
(
g′′ (m∗s (θ))

)−1 · (θ − s∗ (θ) + w∗) (A.13)

and

w∗ = E
[
(θ − s∗ (θ))

g′′ (π∗s)

g′′ (m∗s (θ))

](
1− E

[
g′′ (π∗s)

g′′ (m∗s (θ))

])−1

.

Note that w∗ is a constant that does not depend on θ and will be endogenously determined in

the equilibrium. As defined in the main text, r (·) is the Frechet derivative of the entrepreneur’s

expected payoff uE(s(·)) at s∗(·), which measures the marginal contribution of any perturbation

to the entrepreneur’s expected payoff when the security is optimal.

To further characterize the optimal security, we discuss the Frechet derivative r(·) in detail.

Recall that the optimal security would be restricted by the feasibility condition 0 6 s∗(θ) 6 θ.

Let

A0 = {θ ∈ Θ : θ 6= 0, s∗ (θ) = 0} ,

A1 = {θ ∈ Θ : θ 6= 0, 0 < s∗ (θ) < θ} ,

A2 = {θ ∈ Θ : θ 6= 0, s∗ (θ) = θ} .

Clearly, {A0, A1, A2} is a partition of Θ\ {0}. Because s∗ (θ) is the optimal security, we have

∂uE(s(·))
∂α

∣∣∣∣
α=0

6 0

for any feasible perturbation ε (·).35 Hence, condition (A.12) implies

r (θ)


6 0 if θ ∈ A0

= 0 if θ ∈ A1

> 0 if θ ∈ A2

. (A.14)

35 A perturbation ε(θ) is feasible for s∗(θ) if there exists α > 0 such that for any θ ∈ Θ, s∗ (θ) + α · ε (θ) ∈ [0, θ].
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According to Proposition 1, when the optimal security s∗(·) induces the investor to acquire

information, we have 0 < m∗s (θ) < 1 for all θ ∈ Θ. Hence, condition (A.14) can be rearranged as

r (θ)

m∗s (θ)
= −1 + µ−1 · (1−m∗s (θ)) · (θ − s∗ (θ) + w∗)


6 0 if θ ∈ A0

= 0 if θ ∈ A1

> 0 if θ ∈ A2

. (A.15)

Recall condition (2.6), given the optimal security s∗ (·), the investor’s optimal screening rule

m∗s (·) is

s∗ (·)− k = µ ·
(
g′ (m∗s (·))− g′ (π∗s)

)
, (A.16)

where

π∗s = E [m∗s (θ)]

is the investor’s unconditional probability of accepting the optimal security s∗ (·). Conditions

(A.15) and (A.16), as a system of functional equations, jointly determine the optimal security

s∗ (·) when it induces the investor’s information acquisition.

Finally, when we focus on the unconstrained part ŝ(·) of the optimal security, note that is

would not be restricted by the feasibility conditions. Hence, the corresponding Frechet derivative

r(·) always would be zero at the optimum. On the other hand, the investor’s optimal screening

rule would not be affected. As a result, conditions (A.16) and (A.15) become

ŝ (·)− k = µ ·
(
g′ (m̂s (·))− g′ (π∗s)

)
,

where

p∗s = E [m∗s(θ)] ,

and

(1− m̂s(·)) · (θ − ŝ(·) + w∗) = µ ,

where

w∗ = E
[
(θ − s∗(θ)) g′′ (π∗s)

g′′ (m∗s(θ))

](
1− E

[
g′′ (π∗s)

g′′ (m∗s(θ))

])−1

,
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in which p∗s and w∗ are two constants that do not depend on θ. This concludes the proof.

Proof of Lemma 4. From Lemma 3, (ŝ(·), m̂s(·)) satisfies the two Equations (2.11) and (2.12). By

condition (2.12), we obtains

m̂s(·) = 1− µ

θ − ŝ (·) + w∗
. (A.17)

Substituting (A.17) into (2.11) leads to

µ−1 (ŝ(·)− k) = g′
(

µ

θ − ŝ (·) + w∗

)
− g′ (π∗s) .

Taking the derivatives of both sides of the above functional equation for θ leads to

µ−1 · dŝ (θ)

dθ
= g′′ (m̂s (θ)) · dm̂s (θ)

dθ

= g′′ (m̂s (θ)) ·
µ ·
(

1− dŝ(θ)
dθ

)
(θ − ŝ (θ) + w∗)2

=
1− dŝ(θ)

dθ

θ − ŝ (θ) + w∗ − µ
, for any θ ,

where we use

g′′ (x) =
1

x (1− x)

while deriving the third equality. Rearrange the above equation, and we obtain

dŝ (θ)

dθ
=

µ

θ − ŝ (θ) + w∗

= 1− m̂s (θ) , for any θ ,

where the last equality follows (A.17).

Again, taking the derivatives of both sides of the above functional equation for θ leads to

µ−1 · dŝ (θ)

dθ
= g′′ (m̂s (θ)) · dm̂s (θ)

dθ

=
1

m̂s (θ) (1− m̂s (θ))
· dm̂s (θ)

dθ
, for any θ .
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Hence

dm̂s (θ)

dθ
= µ−1 · m̂s (θ) · (1− m̂s (θ)) · dŝ (θ)

dθ

= µ−1 · m̂s (θ) · (1− m̂s (θ))2 , for any θ .

This completes the proof.

In the following, we prove Proposition 3 by establishing five useful lemmas.

Proof of Proposition 3.

Lemma 5. Three possible relative positions between the unconstrained part ŝ(·) and the feasibility

constraints 0 6 s(θ) 6 θ may occur in equilibrium, in the θ ∼ s(θ) space:

i) ŝ(·) intersects with the 45◦ line s = θ at (θ̂, θ̂), θ̂ > 0, and does not intersect with the

horizontal axis s = 0;

ii) ŝ(·) goes through the origin (0, 0), and does not intersect with either the 45◦ line s = θ or

the horizontal axis s = 0 for any θ 6= 0;

iii) ŝ(·) intersects with the horizontal axis s = 0 at (θ̃, 0), θ̃ > 0, and does not intersect with

the 45◦ line s = θ.

Proof of Lemma 5. From Lemma 4, it is easy to see that the slope of ŝ(·) is always less than one.

Hence, Lemma 5 is straightforward.

In the three different cases, the actual optimal security s∗(·) will be constrained by the

feasibility condition in different ways. For example, s∗(·) will be constrained by the 45◦ line

s = θ in Case a, while, by the horizontal axis, s = 0 in Case c. By imposing the feasibility

conditions, we have the following characterization for s∗(·):

Lemma 6. In an equilibrium with information acquisition, the corresponding optimal security

s∗(·) satisfies

s∗(θ) =


θ if ŝ(θ) > θ

ŝ(θ) if 0 6 ŝ(θ) 6 θ

0 if ŝ(θ) < 0

,

where ŝ(θ) is the unconstrained part of the optimal security.
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Proof of Lemma 6. We proceed by discussing three cases.

Case 1: We show that ŝ(θ) > θ implies s∗(θ) = θ, for any θ.

Suppose s∗(θ) < θ. Then we have s∗(θ) < ŝ(θ). Because both (s∗(θ),m∗s(θ)) and (ŝ(θ), m̂s(θ))

satisfy condition (2.6), we must have m∗s(θ) < m̂s(θ). Therefore,

r(θ)

m∗s(θ)
= −1 + µ−1 · (1−m∗s(θ)) · (θ − s∗(θ) + w∗)

> −1 + µ−1 · (1− m̂s(θ)) · (θ − ŝ(θ) + w∗)

= 0 ,

which implies s∗(θ) = θ, a contradiction.

Note that, the logic for the inequality above is as follows. Because (ŝ(θ), m̂s(θ)) satisfies

condition (2.12), we must have θ − θ̂ + w∗ > 0. Hence, ŝ(θ) > s∗(θ) implies that

θ − s∗(θ) + w∗ > θ − ŝ(θ) + w∗ > 0 .

Also, by noting that

1−m∗s(θ) > 1− m̂s(θ) > 0 ,

we obtain the inequality above.

Hence, we have s∗(θ) = θ in this case.

Case 2: We show that ŝ(θ) < 0 implies s∗(θ) = 0 for any θ.

Suppose s∗(θ) > 0. Then we have s∗(θ) > ŝ(θ). By similar argument we know that m∗s(θ) >

m̂s(θ). Therefore,

r(θ)

m∗s(θ)
= −1 + µ−1 · (1−m∗s(θ)) · (θ − s∗(θ) + w∗)

< −1 + µ−1 · (1− m̂s(θ)) · (θ − ŝ(θ) + w∗)

= 0 ,

which implies s∗(θ) = 0. This is a contradiction. Hence, we have s∗(θ) = 0 in this case.

Case 3: We show that 0 6 ŝ(θ) 6 θ implies s∗(θ) = ŝ(θ) for any θ.

Suppose ŝ(θ) < s∗(θ). Then similar argument suggests r(θ)/m∗s(θ) < 0, which implies s∗(θ) =

49



0 < ŝ(θ). This is a contradiction.

Similarly, suppose s∗(θ) < ŝ(θ). Similar argument suggests that r(θ)/m∗s(θ) > 0, which implies

s∗(θ) = θ > ŝ(θ). This is, again, a contradiction. Hence, we have s∗(θ) = ŝ(θ) in this case.

This concludes the proof.

Lemma 6 is helpful because it tells us how to construct an optimal security s∗(·) from its

corresponding unconstrained part ŝ(·). Concretely, s∗(·) will follow ŝ(·) when the latter is within

the feasible region 0 6 s 6 θ. When ŝ(·) goes out of the feasible region, the resultant optimal

security will follow one of the feasibility constraints that is binding.

We apply Lemma 6 to the three cases described in Lemma 5. This gives the three potential

cases of the optimal security s∗(·), respectively.

Lemma 7. In an equilibrium with information acquisition, the optimal security s∗(·) may take

one of the following three forms:

i) when the corresponding unconstrained part ŝ(·) intersects with the 45◦ line s = θ at (θ̂, θ̂),

θ̂ > 0, we have

s∗ (θ) =

 θ if 0 6 θ < θ̂

ŝ (θ) if θ > θ̂
;

ii) when the corresponding unconstrained part ŝ(·) goes through the origin (0, 0), we have

s∗ (θ) = ŝ (θ) for θ ∈ R+ ;

iii) when the corresponding unconstrained part ŝ(·) intersects with the horizontal axis s = 0 at

(θ̃, 0), θ̃ > 0, we have

s∗ (θ) =

 0 if 0 6 θ < θ̃

ŝ (θ) if θ > θ̃
.

Proof of Lemma 7. Apply Lemma 5 to Lemma 6, then Lemma 7 is straightforward.

Lemma 7 shows that the optimal security s∗(·) takes different shapes in the three potential

cases. In Case a, s∗(·) follows a debt in states with low cash flows but increases in states with high

cash flows. In Case c, s∗(·) has zero payment in states with low cash flows, while is an increasing

function in states with high cash flows. Case b lies in between as a knife-edge case.

We proceed by determining whether these three potential cases are valid solutions to the
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entrepreneur’s problem in equilibrium with information acquisition. Interestingly, not all the

three cases can occur in equilibrium.

Lemma 8. If the entrepreneur’s optimal security s∗(·) induces the investor to acquire information

in equilibrium, then it must follow Case a in Lemma 7, which corresponds to a participating

convertible preferred stock with a face value θ̂ > 0.

Proof of Lemma 8. We prove by contradiction. Suppose that the last two cases in Lemma 7 can

occur in equilibrium. Hence, there exists a θ̃ > 0, such that s∗(θ) = 0 when 0 6 θ 6 θ̃ and

s∗(θ) = ŝ(θ) when θ > θ̃.

Note that, s∗(·) is strictly increasing when θ > θ̃. Also, because we focus on the equilibrium

with information acquisition, there must exist a θ′′ such that s∗(θ′′) > k; otherwise, the optimal

security would be rejected without information acquisition. Therefore, there exists a θ′ > θ̃ such

that s∗(θ′) = ŝ(θ′) = k. Recall condition (2.11), we have

m∗s(θ
′) = π̄∗s .

Moreover, because we have s∗(θ′) ∈ (0, θ′), we have

0 = r(θ′) = −m∗s(θ′) + µ−1 ·m∗s(θ′) · (1−m∗s(θ′)) · (θ′ − s∗(θ′) + w∗)

= −π̄∗s + µ−1 · π̄∗s · (1− π̄∗s) · (θ′ − k + w∗)

= µ−1 · π̄∗s · (1− π̄∗s) · (θ′ − k) + E[r(θ)] ,

where

E[r(θ)] = −π̄∗s + µ−1

(
E
[

(θ − s(θ)) · g′′(π̄∗s))
g′′(m(θ))

]
/g′′(π̄∗s) + w∗E

[
1

g′′(m(θ))

])
= −π̄∗s + µ−1

(
w∗ ·

(
1− E

[
g′′(π̄∗s)

g′′(m(θ))

])
/g′′(π̄∗s) + w∗E

[
1

g′′(m(θ))

])
= −π̄∗s +

µ−1w∗

g′′(π̄∗s)

= −π̄∗s + µ−1 · π̄∗s · (1− π̄∗s) · w∗ .

We can express the expectation term E[r(θ)] in another way. Note that, for any θ ∈ [0, θ̃], by
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definition we have

r(θ) = −m∗s(θ) + µ−1 ·m∗s(θ) · (1−m∗s(θ)) · (θ − s∗(θ) + w∗)

= −m̂s(θ̃) + µ−1 · m̂s(θ̃) · (1− m̂s(θ̃)) · (θ − 0− θ̃ + θ̃ + w∗)

= r(θ̃)− µ−1 · m̂s(θ̃) · (1− m̂s(θ̃)) · (θ̃ − θ)

= −µ−1 · m̂s(θ̃) · (1− m̂s(θ̃)) · (θ̃ − θ) .

Also, as s∗(θ) = ŝ(θ) for any θ > θ̃, we have r(θ) = 0 for all θ > θ̃. Hence,

E[r(θ)] = −µ−1 · m̂s(θ̃) · (1− m̂s(θ̃))

∫ θ̃

0
(θ̃ − θ)dΠ(θ) .

Therefore, we have

µ−1 · π̄∗s · (1− π̄∗s) · (θ′ − k) = −E[r(θ)] (A.18)

= µ−1 · m̂s(θ̃) · (1− m̂s(θ̃))

∫ θ̃

0
(θ̃ − θ)dΠ(θ) . (A.19)

Now we take the tangent line of s∗(·) at θ = θ̃. The tangent line intersects s = k at θ̃′, which

is given by

k

θ̃′ − θ̃
=
ds∗(θ)

dθ

∣∣∣∣
θ̃

= 1− m̂s(θ̃) .

Hence, we have

θ̃′ = θ̃ +
k

1− m̂s(θ̃)
. (A.20)

Also, note that we have shown that for any θ > θ̃, we have

ds∗(θ)

dθ
=
dŝ(θ)

dθ
= 1− m̂s(θ) = 1−m∗s(θ) .

Hence,

d2s∗(θ)

dθ2
= −µ−1 ·m∗s(θ) · (1−m∗s(θ))

2 < 0 .

Therefore, s∗(·) is strictly concave for θ > θ̃, and we also have θ̃′ < θ′. Consequently, by
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condition (A.20) and then conditions (A.18) and (A.19), we have

π̄∗s · (1− π̄∗s) ·

(
θ̃ +

m̂s(θ̃)

1− m̂s(θ̃)
· k

)
= π̄∗s · (1− π̄∗s) · (θ̃′ − k)

< π̄∗s · (1− π̄∗s) · (θ′ − k)

= m̂s(θ̃) · (1− m̂s(θ̃))

∫ θ̃

0
(θ̃ − θ)dΠ(θ) .

On the other hand, by Jensen’s inequality, we know that

π̄∗s · (1− π̄∗s) > E [m∗s(θ) · (1−m∗(θ))] .

Therefore, we have

m̂s(θ̃) · (1− m̂s(θ̃))

∫ θ̃

0
(θ̃ − θ)dΠ(θ) > π̄∗s · (1− π̄∗s) ·

(
θ̃ +

m̂s(θ̃)

1− m̂s(θ̃)
· k

)

> E [m∗s(θ) · (1−m∗(θ))] ·

(
θ̃ +

m̂s(θ̃)

1− m̂s(θ̃)
· k

)
.

Expand the expectation term above and rearrange, we obtain

m̂s(θ̃)
2 · k · Prob[θ 6 θ̃] +

∫ +∞

θ̃
m∗s(θ) · (1−m∗s(θ))dΠ(θ) ·

(
θ̃ +

m̂s(θ̃)

1− m̂s(θ̃)
· k

)

< m̂s(θ̃) · (1− m̂s(θ̃))

∫ θ̃

0
(−θ)dΠ(θ)

6 0 .

Nevertheless, the left-hand side of the above inequality should be positive, which is a contra-

diction. This concludes the proof.

Lemma 9. In the optimal security s∗(·), there must be θ̂ > θ′ = k.

Proof of Lemma 9. First, note that s∗(·) is strictly increasing and continuous. Also, note that

there exists a θ′′ such that s∗(θ′′) > k; otherwise, the offer will be rejected without information

acquisition.
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Therefore, there exists a unique θ′ such that s∗(θ′) = k, which ensures that m∗s(θ
′) = π̄∗s , and

r(θ′) = −π̄∗s + µ−1 · π̄∗s · (1− π̄∗s) · (θ′ − s∗(θ′) + w∗)

= µ−1 · π̄∗s · (1− π̄∗s) · (θ′ − s∗(θ′)) + E[r(θ)] .

Note that E[r(θ)] > 0 and θ′ − s∗(θ′) > 0, we have θ′ < θ̂. As θ′ = s∗(θ′) = k, it follows that

θ̂ > θ′ = k. This concludes the proof.

Together with the lemmas already established, combining Lemma 8 and Lemma 9 immediately

leads to Proposition 3.

Proof of Proposition 6. When we have E[θ] 6 k and

E
[
exp(µ−1(t · θ − k))

]
> 1 ,

according to Proposition 1, even if the entrepreneur proposes all the future cash flow to the

investor, the security would induce the investor to acquire information and accept it with a

positive (but less than one) probability. The only optimal security for this case is convertible

preferred stock. This concludes the proof.

Proof of Proposition 7. To facilitate the proof, we first characterize a frictionless centralized

economy to help benchmark the friction in the corresponding decentralized economy. In the

centralized economy, u, Θ, Π, k and µ are given as the same. However, we assume that the

entrepreneur has sufficient initial wealth and can also acquire information flexibly to screen the

project. Here, production still depends on information acquisition and financing, but they are

aligned. Thus, there is no friction and security design is irrelevant. The entrepreneur’s problem is

whether to undertake the project directly without acquiring information, to abandon it without

acquiring information, or to acquire information before making a decision. The entrepreneur’s

payoff gain from undertaking the project rather than abandoning it is

∆uI(θ) = uI(1, θ)− uI(0, θ) = θ − k , for any θ .
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We denote an arbitrary screening rule in the centralized economy by mc(·) and the optimal

screening rule by m∗c(·). Thus, the entrepreneur’s problem in the centralized economy is to choose

m∗c(·) that maximizes

E[mc(θ) · (θ − k)]− µ · I(mc(·)) . (A.21)

By construction, the entrepreneur’s objective (A.21) in the centralized economy is exactly

the expected social surplus in the decentralized economy (3.15). This immediately leads to the

following result.

Lemma 10. An optimal security in the decentralized economy achieves efficiency if and only if

the associated optimal screening rule m∗s(·) satisfies

Prob[m∗s(θ) = m∗c(θ)] = 1 ,

where m∗c(·) is the optimal screening rule in the corresponding centralized economy.

Proof of Lemma 10. The “if” part is straightforward, following the definition of efficiency. The

“only if” part is ensured by the fact that the optimal screening rule is always unique given an

arbitrary security, established in Proposition 1.

We then state another useful lemma. It allow us to focus on the first two types of equilibria

for welfare analysis.

Lemma 11. A project is initiated with a positive probability in the decentralized economy if and

only if it is initiated with a positive probability in the corresponding centralized economy.

Proof of Lemma 11. With the objective function (A.21) in the centralized economy, the en-

trepreneur’s optimal screening rule m∗c(·) is characterized by Proposition 1. Specifically, the

investor will initiate the project without information acquisition, i.e., Prob[m∗c(θ) = 1] = 1 if and

only if

E[exp(−µ−1 · (θ − k))] 6 1 ,
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will skip the project without information acquisition, i.e., Prob[m∗c(θ) = 0] = 1 if and only if

E[exp(µ−1 · (θ − k))] 6 1 ,

and will initiate the project with probability 0 < π̄∗c < 1, π̄∗c = E[m∗c(θ)], if and only if

E[exp(−µ−1 · (θ − k))] > 1 and E[exp(µ−1 · (θ − k))] > 1 ,

in which m∗c(·) is determined by the functional equation:

θ − k = µ · (g′(m∗c(·))− g′(π̄∗c )) .

It is straightforward to observe that, the project is initiated with a positive probability in the

frictionless centralized economy if and only if

E[exp(µ−1 · (θ − k))] > 1 . (A.22)

Note that, condition (A.22) is the same as condition (2.1) in Lemma 1 that gives the investment

criterion in the corresponding decentralized economy. This concludes the proof.

We continue the proof of Proposition 7. By Lemma 11, once we prove the “only if” parts of

both cases of debt and convertible preferred stock, the “if” parts will be proved simultaneously.

First, consider the case when s∗(·) is debt. In this case, we have Prob[m∗s(θ) = 1] = 1 , and

E[exp
(
−µ−1 · (s∗(θ)− k)

)
] 6 1 ,

both from Proposition 1. Because s∗(θ) < θ when θ > D∗, it follows that

E[exp
(
−µ−1 · (θ − k)

)
] 6 1 ,

which implies that Prob[m∗c(θ) = 1] = 1 , also by Proposition 1. Hence, we know that

Prob[m∗s(θ) = m∗c(θ)] = 1 ,
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which suggests that s∗(·), as debt, achieves efficiency, according to Lemma 10.

Second, consider the case when s∗(·) is convertible preferred stock that induces information

acquisition. In this case, we have Prob[0 < m∗s(θ) < 1] = 1 , and

E[exp
(
−µ−1 · (s∗(θ)− k)

)
] > 1 ,

again both from Proposition 1. Because s∗(θ) < θ when θ > θ̂, the relationship between

E[exp
(
−µ−1 · (θ − k)

)
] and 1 is ambiguous. If

E[exp
(
−µ−1 · (θ − k)

)
] 6 1 ,

we have Prob[m∗c(θ) = 1] = 1, and information acquisition is not induced in the centralized

economy. It follows that

Prob[m∗s(θ) = m∗c(θ)] 6= 1 .

Otherwise, if

E[exp
(
−µ−1 · (θ − k)

)
] > 1 ,

suppose we also have Prob[m∗s(θ) = m∗c(θ)] = 1 , then according to condition (A.16), we have

Prob[s∗(θ) = θ] = 1 ,

which violates Corollary 1. This is a contradiction. As a result, from Lemma 10, we know that

s∗(·), as convertible preferred stock, cannot achieve efficiency. This concludes the proof.
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