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Abstract

A memoryless agent can acquire arbitrarily many signals. After each signal observation,

she either terminates and chooses an action, or she discards her observation and draws a new

signal. By conditioning the probability of termination on the information collected, she controls

the correlation between the payoff state and her terminal action. We provide an optimality

condition for the emerging stochastic choice. The condition highlights the benefits of selective

memory applied to the extracted signals. Implications—obtained in simple examples—include

(i) confirmation bias, (ii) speed-accuracy complementarity, (iii) overweighting of rare events,

and (iv) salience effect.
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1 Introduction

Economic agents often acquire information about the state of the economy before making their

decisions. The information is typically modelled as a signal that helps the agent refine the distri-

bution of the state and improve the decision-making. Often, signals come over time and agents can

absorb only a small number of them. We capture this information-processing friction by assuming

that agents receive as many signals as they wish but can remember only a finite number of them

when making their choices. In the simplest setting we analyze, the agent can only remember one

signal. A key strategic variable that we consider is to allow the agent to ignore some signals with

positive probability and restart the signal extraction process. We allow agents to employ an ar-

bitrary stationary decision process that specifies for each possible signal realization a probability

with which the agent restarts the process as well as the chosen action in case of termination. We

do not impose time constraints and costs in the basic formulation so that the friction comes solely

from the limited information-storing capacity of the agent.

We ask ourselves: Should the agent optimally make her choice as soon as she receives the

first signal whatever the realization of it is, or could she be better off by rerunning the very same

information-acquisition process? Can hesitation—selective repetition of a fixed stochastic decision

procedure—be welfare-enhancing?

A general insight is that selective rerunning of the primitive decision procedure is typically

optimal. To document this most generally, we provide a simple necessary condition satisfied by

the optimal rerunning strategy. The result is an interim indifference condition imposed on the

agent who has concluded her decision-making with a plan to choose a particular action. Given the

recommended action, the agent’s posterior expected payoff from implementing this action must be

the same as the posterior expected payoff from rerunning the whole decision-making—the whole

selective repetitions of the primitive signal extraction—and implementing whichever action the

second run of the decision-making will recommend. We refer to this as to the second-thought-free

condition.

For illustration, consider a binary decision of whether to make an investment of a fixed size. The

agent receives payoff 1 if she invests in the good state of the economy, payoff −1 if she invests in the

bad state, and receives 0 when she does not invest whatever the state. One of the two states is a

priori more likely; for sake of concreteness, let the prior probability of the good state be 2/3. Both

states give rise to a population of good and bad signals, with the share of the good signals at 90%

in the good state and 10% in the bad state. The agent draws possibly several signal realizations

in sequence but remembers only the last one when making her investment choice. As follows from

simple optimization considerations, assume she invests if and only if the last remembered signal

was good. Observe that the decision rule generated by the immediate termination upon the first

signal that comes in does not generate a second-thought-free choice rule: An agent whose first

observed signal was bad prefers to rerun the decision process, since the new run will either lead to

not investing again or will give rise to the signal realization that conflicts with the first observation

and will lead to investing. Since, conditional on two conflicting signals, the a priori more common
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state is more likely, investing is preferred in this contingency. The agent benefits from having

second thoughts when the first observed signal is surprising.

We interpret the probability of terminating the decision process after receiving a particular

signal as a search intensity targeting this particular signal. A higher probability of termination at

a given information set inflates the likelihood that the agent makes the terminal choice at the set.

We show that the failure of the second-thought-free condition with uniform search intensity in the

above investment decision example indicates that relative to the uniform search, the agent benefits

from decreasing the search intensity for the bad attribute. More generally, the second-thought-free

condition follows from the first-order condition imposed on the optimal search intensities.

The model provides microfoundations to a range of behavioral stylized facts. The unifying

principle of our behavioral insights is the intuition that the agent targets her search towards the

type of evidence that would provide her with more valuable posteriors under the uniform search.

This principle generates confirmation bias in the context of the above example, since evidence that

confirms the agent’s prior leads to more informed posterior than does evidence that contradicts

the prior. An optimally targeted information search also generates speed-accuracy complementarity

in the same setting; that is, accuracy of choice declines with the response time. The effect is

generated by the confirmation bias: The agent encountering evidence contradicting her prior is

likely to disregard the evidence and to have a second thought. Hence, long response times indicate

a surprising state of the world, and the constrained-optimal choice rule commits errors in the

surprising state relatively often. Overweighting of rare events occurs in a related setting in which

the agent’s task is to form a probability belief about an event that is known to be rare, such as a

flight accident, by observing a random flight outcome. Since observing a flight accident is far more

informative about the probability of future accidents than observing an uneventful flight, the agent

optimally biases her search towards eventful flights. In the last behavioral application, we show in

a setting with multiple states that distinct states of the world are salient in the sense that they

attract the agent’s attention (i.e., trigger higher termination rates in our framework). The effect

arises because an indistinct perception stimulus that can be generated by several similar states

is less informative than a distinct perception stimulus that is most likely generated by a specific

distinct state. Hence, the optimal information search targets stimuli indicating distinct states.

Our leading interpretation of the model is in terms of a single-person with information storage

limitations but perfect ability to adjust optimally her termination strategies as a function of what

she remembers. These adjustments can be viewed as a result of a successful trial and error process

or as a result of evolutionary pressures in which case the adjustments may not be fine-tuned to

each specific problem.1 Alternatively, one may think of the termination strategies and the final

decisions as being chosen by different persons and only the one in charge of the final decision would

be subject to information storage limitations, thereby allowing the termination strategies to be

optimally determined.

1In the latter case, while the second-thought free conditions need not be satisfied for each problem in isolation,
we would still derive that some degree of selective hesitation is optimal.
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There is a wide range of studies that propose different modeling of optimization over infor-

mation structures. Relative to rational inattention models (Sims, 2003), we provide a procedural

micro-foundation of our set of the feasible information structures (which must be obtained through

variations of the termination strategies and as such can straightforwardly be related to the time

dimension of the decision process). Perhaps surprisingly, our memoryless agent shares some of the

flexibility in her choice of information structures with the sequential-sampling model of Wald (1945)

in which there is perfect information aggregation. But, our approach allows for a simple derivation

of the speed-accuracy complementarity, which is less immediate to obtain with sequential-sampling

models (see however Fudenberg et al. (2018)).

Relative to studies based on finite automata (Hellman and Cover, 1970; Wilson, 2014; Basu

and Chatterjee, 2015), our approach yields a simple necessary condition for the optimal choice rule,

the second-thought-free condition. This condition arises because our agent chooses the probability

of termination at each of her information sets. Such a termination optimization is absent from

the related models with finite automata in which the termination is exogenous (or the objective

involves asymptotic performance as time diverges). The second-thought-free condition allows us to

characterize the optimal choice rule in the binary settings.

This paper belongs to a growing economic literature that explains behavioral stylized facts as

the constrained-optimal behavior of decision-makers facing information processing frictions. For

instance, Robson (2001), Rayo and Becker (2007), Netzer (2009), and Khaw et al. (2017) provide

microfoundations for risk attitudes; Gabaix and Laibson (2017) endogenize discounting; and Wilson

(2014), Compte and Postlewaite (2012), and Leung (2017) establish constrained-optimal ignorance

of weakly informative news.2

2 Model

An agent faces a decision under uncertainty. She chooses an action a ∈ A and receives a payoff

u(a, θ) in the fixed payoff state θ ∈ Θ drawn from an interior prior π ∈ ∆(Θ). The sets Θ and A

are finite. The agent chooses a Blackwell experiment p, where p is a family of conditional signal

distributions p(x | θ) that depend on θ ∈ Θ. The experiment generates a signal realization x from

a finite space X. The conditional signal distributions are fully mixed: p(x | θ) > 0 for all x, θ.

We allow the agent to choose among possibly several such experiments and we let P denote the

exogenous set of experiments from which she chooses. We impose no restrictions on P (other than

the full-support of each p).

The agent can repeat the selected experiment arbitrarily many times, but she is unable to

aggregate the information across the repetitions. Each run of the experiment is a cognition that

exhausts the agent’s capacity dedicated to the problem being solved. Once the agent hits the

constraint at the end of the experiment, she can continue only after she unclogs her capacity by

2Somewhat less related is a literature that explores how exogenous analogy-based and extrapolation-driven errors
in learning lead to behavioral biases; see coarse learning in Jehiel (2005) and its application to overoptimism in Jehiel
(2018). By contrast, in our approach, the agent optimizes the error distribution given the constraints.
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Figure 1: For each (p, β, σ), the decision process is a Markov chain evolving on the agent’s states
of mind, with transition probabilities that depend on the payoff state θ. The chain begins in the
state of mind O and transits to states x ∈ X = {x1, x2} with probabilities p(x | θ). The process
returns to O with probability 1− βx, or terminates with choice of a = σ(x) with probability βx.

amnesia.

We model this as follows. The agent can condition the repetition of the experiment on the

last observed signal realization. She chooses a vector β = (βx)x∈X ∈ B = [0, 1]|X| \ {(0, . . . , 0)}
of termination probabilities βx for each signal realization x; we call β a termination strategy.

The agent runs the experiment p for the first time, receives signal realization x(1) with probability

p(x(1) | θ) and terminates the reasoning with probability βx(1) . She restarts with the complementary

probability 1 − βx(1) , and receives a signal realization x(2) from a new run of the process p with

probability p(x(2) | θ), terminates with probability βx(2) or restarts with probability 1− βx(2) , and

continues until she terminates after a random number of repetitions of p; see Figure 1. When the

agent chooses having distinct βx for different x, then she implements the familiar idea of selective

memory; some facts and observations are easily forgotten whereas others are remembered and they

trigger choice. After the agent terminates the reasoning with a terminal signal realization x, she

selects an action a = σ(x) according to an action strategy σ : X −→ A.3 Let S be the set of all

mappings from X to A.

By excluding the termination strategy (0, . . . , 0) we force the agent to make a decision a ∈ A.

Since β 6= (0, . . . , 0) and each feasible experiment p generates all signal values with a positive

probability in each state, the decision process almost surely eventually terminates.

The outcomes of distinct runs of p are conditionally independent. Thus, the probability that

the agent terminates after t repetitions of the experiment p resulting in the signal history xt =

(x(1), . . . , x(t)) is

ρ
(
xt | θ; p, β

)
= βx(t)p(x

(t) | θ)
t−1∏
l=1

(1− βx(l)) p
(
x(l) | θ

)
. (1)

We let

r(a | θ; p, β, σ) =
∞∑
t=1

∑
xt:σ(x(t))=a

ρ
(
xt | θ; p, β

)
(2)

3We do not allow for mixed action strategies since the optimum can always be achieved with a pure action strategy.
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denote the probability that the agent who employs the experiment p, the termination strategy β, and

action strategy σ terminates with action a in state θ. We call r(p, β, σ) := (r(a | θ; p, β, σ))a∈A,θ∈Θ

the choice rule. The set of feasible choice rules is R(P) = {r(p, β, σ) : p ∈ P, β ∈ B, σ ∈ S}.
Sometimes we abuse notation, omit p, β, σ and write r(a | θ) for the probability of a in state θ

under the rule constructed by some p, β, σ.

The repeated-cognition problem is to select, for a given prior π, utility function u and set P, a

feasible choice rule r that maximizes the expected payoff:

max
r∈R(P)

∑
θ∈Θ,a∈A

πθr(a | θ)u(a, θ). (3)

The optimization in (3) can be an outcome of selective pressures that favor successful decision

procedures via cultural or biological evolution, or via competition of firms differing in their internal

procedures. There are no costs to delaying the decision in our model but incorporating such costs

would not affect our qualitative insights when these are not too big. We address agents with less

severe memory constraints and with exponential time discounting preferences in Section 7.

3 Optimal cognition biases

We now derive a necessary optimality condition that the choice rule solving the repeated-cognition

problem must satisfy. Generically, the condition requires the agent to engage in selective information

processing—that is, to ignore some signals more often than others.

3.1 Second-thought-free choice rules

We start with a definition of second-thought-free choice rules. If the agent’s decision process gen-

erates such a rule, then she has no incentive to rerun the process regardless of the action recom-

mendation with which the process terminates. Our main result below states that the optimal rule

is second-thought-free.

Let r be a generic stochastic choice rule that specifies conditional probabilities r(a | θ) of each

action a ∈ A in each state θ ∈ Θ.

Definition 1. The choice rule r is second-thought-free with respect to the utility u and prior π if

the agent prefers each action recommended by the rule to a new run of the rule r. That is, for each

action a chosen with positive probability,

Eα[u(a1, θ) | a1 = a] ≥ Eα[u(a2, θ) | a1 = a], (4)

where the expectations are with respect to the random variables θ and a2, and α(θ, a1, a2) = πθr(a1 |
θ)r(a2 | θ) is the joint distribution of the state and two actions consecutively generated by r.

The definition requires the agent who terminates with an action plan a to weakly prefer a to

forgetting a and choosing whichever action a new run of the decision process will recommend.
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Although the definition allows for the strict preference against having a second thought, the next

lemma shows that if a choice rule is second-thought-free, then the agent is indifferent between

terminating and the second thought.

Lemma 1. If r is second-thought-free, then (4) is met with equality for each action a chosen with

positive probability:

Eα[u(a1, θ) | a1 = a] = Eα[u(a2, θ) | a1 = a]. (5)

We refer to (5) as the second-thought-free condition.

Proof. If (4) holds with strict inequality for some a chosen with positive probability, then

Eα [u(a1, θ)] = Eα [Eα [u(a1, θ) | a1]] > Eα [Eα [u(a2, θ) | a1]] = Eα [u(a2, θ)] ,

which contradicts that a1 and a2 are conditionally iid.

3.2 Optimality condition

We provide here a general necessary optimality condition imposed on the stochastic choice rule.

Proposition 1. If a choice rule solves the repeated-cognition problem (3), then it is second-thought-

free and satisfies (5).

To understand the statement, consider the optimal choice rule r∗ generated by a process that

consists of a random number of repetitions of a primitive cognition p. Once these repetitions of

p terminate with a signal realization x and the agent is about to take an action a = σ(x), then,

according to the proposition, she must be indifferent between a, and running the process associated

with r∗ from scratch, where the new run of r∗ would involve new repetitions of p.

To prove Proposition 1, we introduce an effective experiment s(p, β). While the primitive

experiment p(x | θ) specifies the probability that its one run results in signal x, we define s(x | θ; p, β)

to be the probability that selective repetitions of p according to the termination strategy β terminate

with x. Relative to p(x | θ), the effective probabilities s(x | θ; p, β) are inflated for those x at which

the agent terminates with a high probability βx.

Lemma 2. An agent who employs a primitive experiment p and a termination strategy β terminates

with x in state θ with probability:

s(x | θ; p, β) =
βxp(x | θ)∑

x′∈X βx′p (x′ | θ)
. (6)

Proof. Experiment s(p, β) satisfies the recursive formula

s(x | θ; p, β) = βxp(x | θ) +
∑
x′∈X

(1− βx′) p
(
x′ | θ

)
s(x | θ; p, β).
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The first summand is the probability that the agent terminates with signal x after the first run of

the experiment p. The second summand is the probability that the agent continues after the first

run and terminates with x later. Solving for s(x | θ; p, β) gives (6).

The lemma implies that s(p, β) and hence also r(p, β, σ) are homogeneous of degree zero with

respect to β. Thus, since we abstract from the delay costs, for any optimal termination strategy

β∗, αβ∗ for α ∈ (0, 1) is optimal too, and it generates the same optimal choice rule r∗ as β∗. This

multiplicity of implementation of the optimal choice rule would disappear in a natural approxi-

mation of our model with exponential discount factor approaching 1. Such approximation would

select the quickest available decision process that implements the optimal feasible rule r∗; that is,

it would impose that maxx∈X βx = 1.

Proof of Proposition 1. Using (6), we rewrite the objective as follows.

max
p∈P,β∈B,σ∈S

∑
θ∈Θ,x∈X

πθ
βxp(x | θ)∑

x′∈X βx′p (x′ | θ)
u(σ(x), θ). (7)

Let rule r(p∗, β∗, σ∗) solve the repeated-cognition problem. Consider an action a chosen with a

positive probability and x such that σ∗(x) = a and β∗x > 0. The constraint βx ≥ 0 is not binding

for this x, and the first-order condition of (7) with respect to βx is:

∑
θ∈Θ

πθ
s (x | θ; p∗, β∗)

β∗x
u(a, θ)−

∑
θ∈Θ,x′∈X

πθs
(
x′ | θ; p∗, β∗

) s (x | θ; p∗, β∗)
β∗x

u
(
σ∗(x′), θ

)
=

∑
θ∈Θ

πθ
s (x | θ; p∗, β∗)

β∗x
u(a, θ)−

∑
θ∈Θ,a′∈A

πθr
(
a′ | θ; p∗, β∗, σ∗

) s (x | θ; p∗, β∗)
β∗x

u
(
a′, θ

)
≥ 0.

Multiplication by β∗x, summation over all x such that σ∗(x) = a, and division by
∑

θ πθr (a | θ; p∗, β∗, σ∗)
gives (4). Thus, the terminating agent weakly prefers termination to continuation. Lemma 1 implies

the indifference (5).

Since the objective function in (7) is homogenous of degree zero with respect to β, we can

restrict β to the simplex over the signal set X. This simplex is compact, the objective function

in (7) is continuous in β and the p(x | θ), hence the repeated-cognition problem has a solution

whenever the set of the primitive experiments P is compact.

Comment. Our agent can be viewed as having imperfect recall in the sense of Piccione and

Rubinstein (1997). Our approach corresponds to their ex ante approach, and the insight of Propo-

sition 1 can be related to the observation in their absent-minded driver example that the ex ante

optimal solution is also a (modified) multi-self equilibrium in which the decision problem is viewed

as a team composed of multiple selves all sharing the decision-maker’s objective.
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4 Analytical solution of the binary setting

The action and state sets are binary: A = Θ = {0, 1}. To avoid a trivial case, we assume that

neither action is dominant. Then, without loss of generality, u(a, θ) = uθ > 0 if a = θ and

u(a, θ) = 0 otherwise. State θ is drawn from an interior prior π ∈ ∆(Θ). The exogenous set P of

the feasible statistical experiments is finite, and each p ∈ P delivers a signal x from a finite signal

space X with probability p(x | θ). The agent chooses p ∈ P, the termination strategy β = (βx)x∈X

and action strategy σ : X −→ A to maximize the expected payoff.

The first result states that there exists a solution in which the agent ignores all but two signal

realizations of the chosen experiment p. That is, she always repeats the experiment upon encoun-

tering all but two signals. Roughly, the result follows because it is advantageous to consider only

the most informative signal realizations.4

Lemma 3. There exists a solution in which the termination probability βx is positive for at most

two signal values x ∈ X.

See Appendix for the proofs omitted in the main text.

Based on the lemma, we can, without loss of generality, restrict the signal space X to be binary,

and identify it with the action and state spaces, X = A = Θ. Again without loss of generality,

we choose signal labels in each experiment in such a way that each experiment p ∈ P satisfies the

monotone likelihood ratio property: p(1 | θ)/p(0 | θ) increases in θ. We continue to assume that

p(x | θ) > 0 for all x and θ.

Define σI to be the identity function, and let the agent employ the binary experiment p and

the action strategy σI . The next lemma characterizes the set Rp,σI = {r(p, β, σI) : β ∈ B} of

the feasible choice rules that such an agent has access to. To characterize this set, we introduce a

parameter that we dub perceptual distance between states 0 and 1 under the experiment p:

dp =
p(1 | 1)p(0 | 0)

p(0 | 1)p(1 | 0)
.

The perceptual distance is a summary statistic of the experiment p. The larger it is, the more p

reliably discriminates between the two states. The monotone likelihood property of each p implies

that dp > 1. The next lemma states that the perceptual distance is preserved under any termination

strategy β.

Lemma 4. Rp,σI = {r : r(1 | 1)r(0 | 0) = dpr(1 | 0)r(0 | 1)}.

That is, a rule r can be constructed from p if and only if it preserves the perceptual distance:
r(1|1)r(0|0)
r(0|1)r(1|0) = dp (or if it always selects a same action). By controlling the termination strategy β,

the agent trades off the likelihoods r(0 | 0; p, β, σI) and r(1 | 1; p, β, σI) of the correct choice in the

states 0 and 1, respectively. See Figure 2. The set Rp,σI of rules accessible from p is compact.

4This insight exploits the assumption of perfect patience, since impatient agents would trade off informativeness
against delay costs. We conjecture that when exponential discounting is considered, then the result that the agent
ignores all but two signal realizations continues to hold for sufficiently patient agents and generic signal structures.
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Figure 2: Each point in [0, 1]2 on this graph corresponds to a choice rule. The depicted curves are
the sets Rp,σI of the choice rules constructible from experiments p and action strategy σI . The thick
curve corresponds to the experiment p with the maximal perceptual distance d. Since the objective
is linear in the choice rule, the indifference curves are downward sloping lines. The dashed line is
the indifference curve tangential to Rp,σI . The dot depicts the solution of the repeated-cognition
problem.

Thanks to the chosen labeling of the signals, the agent can equate her choice to the observed

signal without a loss:

Lemma 5. For any rule r(p, β, σ) there exists β′ such that the rule r(p, β′, σI) achieves at least as

high expected payoff as r(p, β, σ).

The solution to the repeated-cognition problem in the binary setting exists since the objective

is continuous in the choice rule and the agent optimizes on the compact set
⋃
p∈P Rp,σI of the rules.

Let p be the experiment with the maximal perceptual distance: p ∈ arg maxp∈P dp, and let

d = maxp∈P dp. In line with the intuition that the agent should go for the most informative

experiment, we establish:

Lemma 6. There exists a solution to the repeated-cognition problem in which the agent employs

the experiment p with the maximal perceptual distance.

The last lemma implies that all details of the set P relevant for the solution are summarized in

the one-dimensional statistic d that is independent of the payoff function u.5

We are now ready to solve the binary setting. The optimal effective choice rule r∗(a | θ) =

r(a | θ; p, β∗, σI) consists of four unknown probabilities and it is determined by four conditions: the

second-thought-free condition (5), the feasibility condition from Lemma 4, and two normalization

conditions. Let parameter R = π1u1
π0u0

measure the relative a priori attractiveness of action 1.

5Such summary statistic of P continues to exist when 2 < |X| < ∞. For any pair of signal realizations (x, x′)

and an experiment p, let dx,x′,p = p(x|0)p(x′|1)
p(x|1)p(x′|0) . Then, d is the maximum of dx,x′,p over all ordered pairs (x, x′) and

experiments p.
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Proposition 2. 1. When R ≥ d, then the agent always chooses action 1;

2. when R ≤ 1/d, then the agent always chooses action 0;

3. when R ∈ (1/d, d), then the agent chooses both actions with positive probabilities and

r∗(1 | 1) =
dR−

√
dR

(d− 1)R
, r∗(0 | 0) =

d−
√
dR

d− 1
, (8)

β∗1
β∗0

=
dR−

√
dR√

dR−R
p(0 | 1)

p(1 | 1)
. (9)

When the ex ante attractiveness of one of the actions is too strong relative to the perceptual

distance of the two states, then the agent always chooses the ex ante attractive action. The decision

process is non-trivial for intermediate incentives: the agent engages in repeated cognition and she

chooses both actions with positive probabilities.

5 Behavioral applications

This section presents three behavioral effects illustrated in the binary setting from Section 4: con-

firmation bias, speed-accuracy complementarity, and overweighting of rare events.

5.1 Confirmation bias

Psychologists and economists distinguish at least three mechanisms leading to confirmation bias:

(i) People search for evidence selectively, targeting the evidence type in accord with their priors,

e.g. Nickerson (1998); (ii) they selectively memorize and recall the data supporting their priors,

e.g. Oswald and Grosjean (2004); and (iii) they selectively interpret ambiguous evidence, e.g. Rabin

and Schrag (1999) and Fryer et al. (2018). We focus on the first two mechanisms and interpret

them in light of our optimal repeated-cognition result.

Corollary 1. When action 1 is a priori more attractive, R ∈ (1, d), and the unique primitive

binary experiment is symmetric, p(1 | 1) = p(0 | 0) > 1/2, then the agent searches relatively more

intensively for signal value 1: β∗1 > β∗0 .

Proof. Since β∗1/β
∗
0 increases in R, it suffices to show that β∗1/β

∗
0 = 1 when R = 1 and the primitive

experiment p is symmetric. Indeed, when R = 1, then by (9),

β∗1
β∗0

=
√
d
p(0 | 1)

p(1 | 1)
=

√
p(0 | 0)p(0 | 1)

p(1 | 1)p(1 | 0)
= 1,

where d = p(0|0)p(1|1)
p(1|0)p(0|1) and the last equality follows from the symmetry of p.

To see the connection to confirmation bias, consider, like in our introductory example, an agent

whose task is to announce the realized state of the world: she receives reward u1 = u0 = 1 if she
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makes the correct announcement and 0 otherwise. The agent finds the state θ = 1 a priori more

likely than the state 0, π1 > π0. Consider the decision process that terminates immediately after the

first run of the experiment and chooses the action equal to the observed signal value: β0 = β1 = 1,

σ = σI . To establish that such an unbiased process is suboptimal it suffices to show that it does not

satisfy the second-thought-free condition. To see this, we examine the agent who has received the a

priori unlikely signal 0 and argue that she benefits from the second thought. Such a surprised agent

is better off by restarting instead of terminating with action 0, since if the new run of the process

concludes with signal 0 again, then the second thought will have been inconsequential. If, however,

the new run of the process concludes with signal and action 1, then the induced switch from action

0 to 1 is beneficial. This is because when the experiment p is symmetric, then, conditional on two

conflicting signals, the a priori more common state 1 is relatively more likely. The agent benefits

from second thought whenever she receives the surprising recommendation, and thus will deviate

from the uniform search in favor of the a priori likely signal value 1.

The optimal strategy resembles the natural process in which the selective memory gives rise to

confirmation bias. Consider the fastest optimal strategy, letting β∗1 = 1. When the agent observes

signal 1 that confirms her prior belief, then she terminates and immediately announces the state

1. But if she is surprised, observing signal 0 that contradicts her prior, then she discards the

signal with positive probability β∗0 and repeats the experiment. Although finding the exact optimal

value β∗0 may be difficult, the fact that double-checking one’s own reasoning when one arrives at

a surprising conclusion is a common practice suggests that people are able to deviate from the

unbiased information-acquisition process in the payoff improving direction.

Comments. 1) The above insight can receive an alternative political economy interpretation.

The two states θ represent left vs right wing policy. Consider a right-wing newspaper that targets

the right-wing readers viewed as having a prior belief in favor of the right-wing policy. Readers

can only absorb one piece of information (the analog of our information storage constraint) and

the newspaper has to decide which piece of information x as generated by p(x | θ) to choose as its

headline. Our model explains why such journals would target their search toward evidence favoring

the right-wing policy.6

2) Meyer (1991) studies optimal biases in a sequential-learning problem of an agent who receives

a sequence of signals and, unlike our agent, can aggregate the sequence. Meyer’s main insight is that

some asymmetries in the signal structure are optimal. Although optimal asymmetries arise both

in her and our frameworks, the two papers study distinct optimizations. While our agent controls

termination probabilities in a stationary decision process, Meyer’s agent controls the choice of a

Blackwell experiment in each round of a non-stationary process.

6This is to be contrasted with the reputation-based explanation of Gentzkow and Shapiro (2006). See also Calvert
(1985), Suen (2004), and Che and Mierendorff (2019) for constrained-optimal media-bias models.

12



5.2 Speed-accuracy complementarity

Our model generates the speed-accuracy complementarity effect—a stylized fact stating that de-

layed choices tend to be less accurate than speedy choices; see the psychology studies of Swensson

(1972) and Luce (1986). We establish this effect in the setting from the previous subsection.

Let ϕ(θ, a, t) be the joint probability distribution of the state θ, chosen action a, and the reaction

time t generated by the solution (p, β∗, σI) of the repeated-cognition problem.

Corollary 2. When action 1 is a priori more attractive, R ∈ (1, d), and the unique primitive

binary experiment is symmetric, p(1 | 1) = p(0 | 0) > 1/2, then the probability Prϕ(a = θ | t) of the

correct choice decreases with response time t.

Due to the stationarity of the decision process, the probability of the correct choice conditional

on the payoff state is independent of the reaction time: Prϕ(a = θ | θ, t) = Prϕ(a = θ | θ). At

optimum, this conditional probability of the correct choice is larger in the a priori more attractive

state 1 than in the state 0, reflecting the relative weights of the two states in the objective. Overall,

unconditionally on the payoff state, the probability Prϕ(a = θ | t) of the correct choice depends on

the response time because t correlates with θ. A long response time indicates that the agent has

repeatedly encountered the signal value 0 and has hesitated to terminate. Hence, conditional on

large t, the likelihood of the unattractive state 0 becomes high. The longer the agent has hesitated,

the more likely it is that she is facing the unattractive state in which she is making more mistakes.

Proof. β∗1 > β∗0 by Corollary 1. We let fθ = β∗1p(1 | θ) + β∗0p(0 | θ) denote the probability

of termination per each round in state θ. The response time t in the state θ is geometrically

distributed with the decision rate fθ: Prϕ(t | θ) = fθ(1− fθ)t for t = 0, 1, . . . . Since p(1 | 1) = p(0 |
0) > p(1 | 0) = p(0 | 1) and β∗1 > β∗0 , the decision rate is higher in state 1 than in state 0: f1 > f0.

Thus, the likelihood ratio Prϕ(t | θ = 1)/Prϕ(t | θ = 0) decreases with t, and hence Prϕ(θ = 1 | t)
decreases in t. The fact that β∗1 > β∗0 , and the symmetry of p implies that the probability of the

correct choice is larger in state 1 than in state 0:

r (1 | 1; p, β∗, σI) =
β∗1p(1 | 1)

β∗0p(0 | 1) + β∗1p(1 | 1)
>

β∗0p(0 | 0)

β∗0p(0 | 0) + β∗1p(1 | 0)
= r (0 | 0; p, β∗, σI) .

Since Prϕ(a = θ | t) = Prϕ(θ = 1 | t)r(1 | 1; p, β∗, σI) + Prϕ(θ = 0 | t)r(0 | 0; p, β∗, σI), the result

obtains.

Comment. The predictions of our model are in line with the evidence on state recognition prob-

lems reported in Ratcliff and McKoon (2008) according to which 1) the posterior probability of

correct recognition is higher when announcing the a priori more likely state and 2) late announce-

ments are relatively less precise. This is in contrast to the prediction of the traditional Wald model

(see Fudenberg et al. (2018) for an elaboration of Wald model in which the stakes attached to the

correct recognition are a priori unknown).
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5.3 Overweighting of rare events

We consider a state-recognition task in which the two actions are a priori equally attractive, R =

π0u0/π1u1 = 1, and π0 = π1 = 1/2. In contrast to previous applications, the distribution of the

signal values x = 0, 1 is asymmetric across states. Specifically, the probability of x = 1 in state θ is

ρθ ∈ (0, 1) and the probability of x = 0 is 1− ρθ. We assume, essentially without loss of generality,

that ρ0 < ρ1 < 1− ρ0.7 The a priori probability of event x = 1 is (ρ0 + ρ1)/2 < 1/2, and thus the

event x = 1 is relatively rarer than x = 0. The next result states that at the optimum, the agent is

relatively more likely to discard the more common event x = 0 in agreement with Kahneman and

Tversky (1979), who observe that agents tend to overweight rare events.

Corollary 3. When the two actions are a priori equally attractive, R = 1, then the agent is biased

in favor of the event x = 1: β∗1 > β∗0 > 0 (and her guess of the state equals the observed signal

realization, i.e. σ = σI).

Proof. This task is a special case of our binary setting with the primitive experiment p(x | θ) = ρθ if

x = 1, p(x | θ) = 1− ρθ if x = 0 and with equally a priori attractive actions, R = 1. Since ρ0 < ρ1,

the labeling of the signals satisfies the monotone likelihood property. Since R = 1 ∈ (1/d, d),

Proposition 2 implies that the agent’s behavior is stochastic, both β∗0 and β∗1 are positive, and the

ratio of the search intensities β∗1/β
∗
0 satisfies (9). Since R = 1, (9) simplifies to

β∗1
β∗0

=
√
d
p(0 | 1)

p(1 | 1)
=

√
p(0 | 1)p(0 | 0)

p(1 | 1)p(1 | 0)
=

√
(1− ρ1)(1− ρ0)

ρ1ρ0
.

The inequality β∗1 > β∗0 follows from ρ1 < 1− ρ0.

For illustration, consider a formation of belief over the probability of a flight accident. The

accident probability per flight in the safe state of the world is 10−6, whereas it is 10−5 in the

dangerous state of the world, and both states are a priori equally likely. The agent can sequentially

observe arbitrarily many past flight outcomes, but cannot aggregate the information, and recalls

only the last observed flight. She guesses that the state of the world is dangerous if and only if the

last observed flight is eventful.

Consider first an agent who always terminates right after the observation of the first data-

point. Such an agent benefits from a “second thought” whenever she observes an uneventful

flight: Either the second observed flight will be uneventful, in which case the second thought

will have been inconsequential, or the redrawn flight will be eventful and the agent will switch

her assessment from the safe to the dangerous state. Such a switch is beneficial since conditional

on two contradicting data-points the dangerous state is relatively more likely. Thus, relative to

the immediate termination strategy, the agent will benefit from discarding the uneventful flight

observations with positive probability.

7We can always achieve this by relabeling the states θ and the signals values x, unless ρ0 = ρ1 or ρ0 = 1− ρ1.
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6 A tractable setting with multiple states

We now present a class of settings with multiple payoff states that admits a simple analytical

solution in the form of a system of linear equations for the optimal termination probabilities.

Subsection 6.1 applies this solution in a stylized example that explains salience of perceptually

distinct states as a second-best adaptation.

The agent faces a perceptual task that requires her to announce a realization of the state θ ∈ Θ

drawn from a fully mixed prior π ∈ ∆(Θ), where 2 < |Θ| < ∞. She is endowed with a primitive

perception technology that generates a perceived value θ′ of the state. The primitive perception

is informative but noisy: the perceived value θ′ equals the true state θ with a high probability,

but mistakes, θ′ 6= θ, occur sometimes. We view the primitive perception technology as a black-

box model of a physiological sensor that generates a noisy impression θ′ of the true state θ. The

agent can use the sensor repeatedly but is not able to aggregate the information. She conditions the

repetition of the sensor’s use on the most recent perception and announces the terminal perception.

We formalize this perception task as follows. The agent makes an announcement a ∈ A = Θ,

where 2 < |Θ| <∞, and receives payoff u(a, θ) = uθ > 0 if her announcement is correct, a = θ, and

u(a, θ) = 0 if a 6= θ. Each use of the agent’s sensor generates a signal value/perception θ′ ∈ X = Θ,

with conditional probabilities p(θ′ | θ) > 0. The set P is the singleton {p}. We make the following

assumption.

Symmetry : p(θ′ | θ) = p(θ | θ′).
The symmetry assumption leads to a significant simplification of the second-thought-free condition

described in Lemma 9 in Appendix. Additionally, we make a simplifying assumption that the agent

uses the identity action strategy σI ; she announces the state equal to her last perception. We also

make the assumption that the optimal termination probabilities βx are positive for all x ∈ Θ.8 Let

r∗ = r(p, β∗, σI) be the optimal feasible choice rule.

Proposition 3. The optimal termination probabilities satisfy the system of linear equations,

∑
θ̃∈Θ

β∗
θ̃

p(θ̃ | θ)
(πθuθp(θ | θ))1/2

=
∑
θ̃∈Θ

β∗
θ̃

p(θ̃ | θ′)
(πθ′uθ′p(θ′ | θ′))1/2

for all θ, θ′ ∈ Θ. (10)

The proposition implies that the decision rate fθ =
∑

θ̃ β
∗
θ̃
p(θ̃ | θ) in each state θ is proportional

to (πθuθp(θ | θ))1/2 and thus is high in those states that are reliably identified by the primitive

experiment and in which the ex ante expected reward for the correct state recognition is high.

6.1 Salience

Bordalo, Gennaioli, and Shleifer (2012) interpret salience as directed attention focus. They quote

the popular work by Daniel Kahneman (2011):

“Our mind has a useful capability to focus on whatever is odd, different or unusual.”

8These two assumption are satisfied when p(θ | θ) is sufficiently close to one for each θ.
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The quote states a causal relation between the two features of the salient phenomena: These

are (i) odd, different or unusual, and because of (i), people benefit from (ii) focusing their attention

on such phenomena. Here, we confirm Kahneman’s intuition within our proposed framework. Our

microfoundation of the salience effect is related to the insight emerging in psychological research

on visual salience. Itti (2007) conceptualizes the visual salience effect as attention allocation to a

subset of the visual field that is “sufficiently different from its surroundings to be worthy of [one’s]

attention.” Similarly, in our model, a payoff state is salient if it stands out sufficiently from similar

states to be worthy of the focus of the agent’s information search.

For two states θ1 and θ2, we say that θ1 is more distinct than θ2 if for each other state θ3 6= θ1, θ2,

p(θ1 | θ3) < p(θ2 | θ3). Suppose for illustration that the perceptual task involves recognition of

a color from a set {azure, indigo, red}. Intuitively, the red color stands out of this set, and this

is captured by the above definition. Assume that the two shades of blue are similar in that the

agent’s first impression confuses them in 10% of cases, p(azure | indigo) = p(indigo | azure) = 0.1,

but p(θ | red) = p(red | θ) = 0.01 for θ ∈ {azure, indigo}. Then, the red color is more distinct

according to our definition than either of the two blue shades.

We focus on the effect stemming from the agent’s differential ability to perceptually discriminate

between the states, and thus we abstract from the differences in the ex ante rewards across states;

we assume that πθuθ is constant across all states. Additionally, we impose the following assumption,

Sufficient precision: p(θ | θ) > p(θ′ | θ) for all θ 6= θ′.

Proposition 4. If state θ1 is more distinct than state θ2, then the agent’s terminal perception is

biased in favor of the more distinct state θ1 at the expense of the less distinct state θ2:

r∗(θ1 | θ2) > r∗(θ2 | θ1).

Since the primitive perception technology p is symmetric by assumption, the asymmetry in

favor of the distinct state of the optimal terminal perception r∗ is driven solely by the optimization

of the termination strategy. To gain the intuition for the salience of the distinct states, consider a

state θ∗ that is similar to many other states and an agent who always terminates the process after

the first round: β = 1. This agent is relatively uninformed whenever she forms perception θ∗, since

the true state differs from θ∗ with a sizeable probability. The agent with this indistinct perception

θ∗ would thus benefit from “having a second thought”— i.e., from running the primitive perception

formation process once again. The optimal termination strategy involves repeating the primitive

process with relatively high probability whenever the agent forms a perception of an indistinct

state, and this shifts the terminal perception in favor of the distinct states.

7 Extensions

In the first subsection, we discuss how our model can accommodate agents with more general mem-

ory constraints. Subsection 7.2 accommodates agents who discount future payoffs at an exponential
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rate.

7.1 Sophisticated agents

To demonstrate the flexibility of the general model, we now discuss two specific settings. They

feature sophisticated agents with non-trivial memory that can be used to aggregate information

over several observed signal realizations. Perhaps surprisingly, we show that those settings can in

fact be interpreted as special cases of our general model that on its face value allows only for trivial

memory. We show that such accommodation of non-trivial memory is possible via expansion of

the set P of the primitive experiments. This allows us to establish the generality of the second-

thought-free condition.

Moreover, when the state and action spaces are binary, then the setting with sophisticated agents

boils down to the simple binary setting as formulated in Section 4, except for the determination of

the perceptual-distance parameter d, which is now endogenously determined by the agent’s ability

to process information.

Example 1 (imperfect information aggregation). This setting relaxes the agent’s inability to ag-

gregate information across the repetitions of her reasoning by endowing her with a finite set of

memory states that she can use to represent the signal histories. The setting of this example builds

on Hellman and Cover (1970) and Wilson (2014). The agent can repeatedly sample from a single

statistical experiment that generates signal realizations from a finite signal space. Additionally,

the agent is endowed with a finite set of memory states. After each run of the experiment, the

agent randomizes between terminating and continuation of the decision process, where in the latter

case, she may transition to a new memory state. The termination decisions and the transitions

among memory states follow a stationary mixed strategy that conditions on the current memory

state and the last observed signal. Once the agent terminates, she maps the last memory state and

the last observed signal value to a chosen action. The feasible statistical experiment and the set

of memory states specify a set of constructible choice rules, from which the agent chooses the one

that maximizes her ex ante expected payoff.

The formal specification of this example follows. The agent is endowed with one Blackwell

experiment µ(x | θ) with a finite signal space X and, additionally, with a finite set M of memory

states m. After each run of the experiment µ, the agent either terminates or continues with

decision-making. If the agent continues, then she transitions from the current memory state to

a new memory state and reruns the statistical experiment µ(x | θ). That is, the agent selects a

(generalization of the) termination strategy: γ : M ×X −→ ∆ (M ∪ {t}), where γ(m′ | m,x) is the

probability that the agent in memory state m who has observed signal realization x in the last run

of the experiment µ continues with the decision-making and transitions to memory state m′, and

γ(t | m,x) is the probability that such an agent terminates. The terminating agent chooses action

σ(m,x) that depends both on the current memory state and on the signal realization observed

in the last run of µ. The agent starts the decision-making in the memory state m0. A pair γ,

σ induces a θ-dependent Markov chain over the memory states that eventually terminates with
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choice σ(m,x), where m is the last memory state and x is the last signal realization observed. Let

p(a | θ; γ, σ) be the probability that the agent terminates with the choice a in state θ, and let Piia
be the set of all stochastic choice rules p that this agent can construct. She selects the choice rule

from Piia that maximizes her ex ante expected payoff.

We now demonstrate that this example is a special case of our baseline model. Consider the

baseline model with the signal space X = A and the set of the feasible primitive experiments

P = Piia. The set R(Piia) = {r(p, β, σ) : p ∈ Piia, β ∈ B, σ ∈ S} is then the set of stochastic

choice rules that can be constructed as follows. The agent runs any process p ∈ Piia, and observes

a signal value/action recommendation a with probability p(a | θ). She terminates with probability

βa, according to the termination strategy β = (βa)a∈A, and upon the termination chooses an action

a′ = σ(a), where σ ∈ S is any mapping A −→ A. She reruns the process p with probability

1− βa, observes a new action recommendation generated by p, et cetera, until she terminates after

a stochastic number of repetitions of the process p.

As it turns out, no new choice rules beyond those from Piia can be constructed by these selective

repetitions. This follows because the repetitions of the rule p ∈ Piia with the termination strategy

β can always be replicated with an appropriate choice of a different rule in Piia that whenever p

would terminate with a restarts the process from scratch with probability 1− βa. Formally:

Lemma 7. R(Piia) = Piia.

According to the lemma, Example 1 is a special case of our baseline model with P = Piia and

X = A, since in such a specification of the baseline model, the set of feasible rules coincides with

those in Example 1. In particular, the optimal choice rule p∗ ∈ Piia solving Example 1 coincides

with the optimal rule r∗ ∈ R(Piia) solving this specification of the baseline model.

The repeated-cognition problem with P = Piia is purely formal in that the optimal termination

probabilities β∗x = 1 for all x ∈ X = A, and thus the agent conducts the optimal process p∗ ∈ Piia
only once and terminates. Nevertheless, the observation that p∗ solves the repeated-cognition

problem has an important implication.

Corollary 4. The choice rule that solves Example 1 (imperfect information aggregation) is second-

thought-free.

Wilson (2014) differs from this example mainly in that she assumes exogenous termination

probabilities. By adding optimization over the terminations to the model of Wilson, we gained the

partial characterization of the optimal choice rule with no need to fully solve the problem: One can

conclude that the optimal choice rule is second-thought-free without analyzing the optimal use of

the memory states.

Example 2 (partial forgetting). The agent of this example can remember up to a fixed finite number

of signal realizations generated by a single statistical experiment. In each round of her decision

process, she can discard a subset of the currently remembered signals values, extract a new signal

realization, or terminate, where each of these decisions is determined by a stationary mixed strategy
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that conditions on the currently remembered stock of the signal values. The statistical experiment

and the maximal number of signals that the agent can remember determine the set of stochastic

choice rules that she can construct, from which she chooses the rule that maximizes her ex ante

expected payoff.

We first formalize this example as follows. Let H be the set of signal histories h of length

|h| ≤ N . The agent at a history h can (i) terminate her decision-making; (ii) discard some of

the information accumulated; or (iii), if |h| < N , acquire a new signal realization. (i) An agent

terminating at h chooses action σ(h). (ii) An agent who discards some information transitions

to a truncation h′ of her current history h.9 (iii) An agent who acquires a new signal realization

transitions to a history hx, where x is the new signal realization drawn from µ(x | θ). The decision-

making is governed by a pair of mappings γ : H × Θ −→ ∆ (H ∪ {t}) and σ : H −→ A, where

γ(h′ | h, θ) stands for the probability that the agent at history h in state θ continues decision-

making and transitions to h′, and γ(t | h, θ) is the probability of termination at history h in state θ.

The mapping γ is constrained to satisfy 1. γ(h′ | h, θ) is independent of θ if h′ is a truncation of h,

2. γ(t | h, θ) is independent of θ, 3. γ(hx|h,θ)
γ(hx′|h,θ) = µ(x|θ)

µ(x′|θ) , 4. γ(h′ | h, θ) = 0 unless h′ is a truncation of

h, or h′ = hx for some x ∈ X and |hx| ≤ N . Constraints 1 and 2 require the agent to condition the

decision to discard information or to terminate only on her current history independently of the

state. Constraint 3 allows the agent to expand her information set only by running the experiment

µ(x | θ). Constraint 4 restricts each step of information acquisition to one draw from µ(x | θ) or to

a partial discarding of the accumulated information. Let p(a | θ; γ, σ) be the probability that the

agent who employs (γ, σ) terminates with action a in the state θ. The agent chooses γ and σ to

maximize her ex ante expected payoff.

As with the previous example, let R(Ppf ) be the set of feasible choice rules in our baseline

model with the set of feasible primitive experiments P identified with Ppf .

Lemma 8. R(Ppf ) = Ppf .

Thus, again, the rule p∗ ∈ Ppf solving this example , and the optimal rule r∗ ∈ R(Ppf ) coincide,

and thus the rule solving the example must be second-thought-free.

Corollary 5. The choice rule that solves Example 2 (partial forgetting) is second-thought-free.

Additionally, when the state and action sets are binary, Proposition 2 applies to both examples

with d = p∗(1|1)p∗(0|0)
p∗(0|1)p∗(0|1) , and thus, relative to the baseline setting in which the agent remembers only

one signal, the examples have the same solution except for the determination of the endogenous

parameter d. Thus, for instance, if the state 1 is a priori more attractive than state 0, then the

agent is more likely to make the correct choice in state 1 than in state 0; r∗(1 | 1) > r∗(0 | 0).

Like in Subsection 5.1, the optimal decision procedure favours the evidence supporting the a priori

attractive state.

9A truncation is obtained by deleting one or more last elements in h.
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7.2 Impatient agents

Our baseline model abstracts from the cost of time in that the agent is only concerned with how

the repetitions of the signal extraction affect the correlation of the signal with the state. We now

incorporate discounting.

We continue to study the baseline model from Section 2, except that the agent discounts future

payoffs exponentially with the discount factor δ ∈ (0, 1). To accommodate discounting, we redefine

the choice rule induced by the experiment p, the termination strategy β and the action strategy σ

as follows.

rδ(a | θ; p, β, σ) =
∞∑
t=1

∑
xt:σ(xt)=a

δtρ
(
xt | θ; p, β

)
, (11)

where ρ
(
xt | θ; p, β

)
defined in (1) is the conditional probability of the signal history xt. That is,

rδ(a | θ; p, β, σ) is the discounted probability of the choice of action a in the state θ. When δ = 1,

then (11) coincides with our baseline definition of the choice rule.

The set of feasible discounted rules is Rδ(P) = {rδ(p, β, σ) : p ∈ P, β ∈ B, σ ∈ S}. The

discounted repeated-cognition problem is to select a feasible rule rδ that maximizes the expected

payoff:

max
rδ∈Rδ(P)

∑
θ∈Θ,a∈A

πθrδ(a | θ)u(a, θ), (12)

where discounting is incorporated in the definition of the feasible rules.

The next result generalizes the second-thought-free condition. Let r∗δ = rδ(p
∗, β∗, σ∗) be the

choice rule solving the discounted repeated-cognition problem (12).

Proposition 5. If the termination strategy β∗x ∈ (0, 1) is interior for all x such that σ∗(x) = a,

then ∑
θ∈Θ

πθu(a, θ)r∗δ (a | θ) = δ
∑

θ∈Θ,a′∈A
πθu(a′, θ)r∗δ (a

′ | θ)r∗δ (a | θ). (13)

The condition has the same interpretation as the second-thought-free condition in the absence of

discounting. The left-hand side is the payoff for following the optimal decision process r∗δ summed

up across all contingencies that terminate with choice of a. The right-hand side is the payoff that

the agent would get across the same contingencies if she restarted the decision process r∗δ instead

of the termination.

For illustration, we now revisit the confirmation bias application from Section 5.1 with an

impatient agent. We find that, unless discounting is too strong, the impatient agent chooses

qualitatively the same strategy as the patient one, although the impatient agent speeds up her

decision-making by choosing larger termination probabilities.

The setting is as follows. The agent chooses a ∈ {0, 1} and receives u(a, θ) = uθ > 0 if a = θ,

and zero reward otherwise. Action 1 is a priori more attractive than action 0; π1u1 > π0u0. The

agent has access to a single primitive experiment p that generates signal values in X = {0, 1}. The

experiment is symmetric with probabilities p(1 | 1) = p(0 | 0) = α > 1/2. We impose a sufficient-
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Figure 3: Confirmation bias with discounting. Action 1 is a priori more attractive: π1u1 = 5×π0u0.
The primitive experiment is symmetric: p(1 | 1) = p(0 | 0) = .9. The agent terminates immediately
when she observes signal value 1, β∗1 = 1. When δ > .71, then the agent is biased towards state 1:
when she encounters signal value 0, then she terminates the decision-process with a probability only
β∗0(δ) < 1 (the full curve). The dotted line is β∗0/β

∗
1 from the baseline model without discounting.

informativeness condition that the signal is sufficiently precise relative to the ex ante attractiveness

of action 1: α
1−α >

π1u1
π0u0

.

Proposition 6. The agent chooses the action equal to the last observed signal realization. She

terminates her decision-making immediately after she encounters signal realization 1: β∗1 = 1.

When δ ∈
(

1
α+(1−α)R , 1

]
, then the agent who observes x = 0 terminates with an interior probability

β∗0 ∈ (0, 1) that decreases in δ. When δ ∈
(

0, 1
α+(1−α)R

)
, then the agent terminates immediately:

β∗0 = β∗1 = 1.

8 Summary

Agents, who cannot comprehend all facts available to them, benefit from selective attention.

We show that agents can implement a targeted information search in a process that resembles the

natural phenomenon of hesitation. Like a hesitant person, the agent can, conditional on the action

contemplated, decide whether she implements the action or whether she will have a second thought,

and run the cognition process once more. Such hesitation can be productive, despite consisting

of repetitions of the same stochastic cognition process. By conditioning the probability of the

repetition on the conclusion of the reasoning, the agent controls the correlation of her terminal

conclusion and the payoff state. The optimal decision process arising in our model exhibits natural

hesitation patterns: The agent will have second thoughts—that is, she will repeat her cognition—

whenever the expected payoff for the currently favored choice is inferior to the expected payoff

for continuing decision-making. At optimum, the agent terminating the decision-making must be

indifferent between terminating with the currently contemplated action, and repeating the process.

In a sense, the condition formalizes the concept of a reasonable doubt. Abstracting from many
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considerations such as information aggregation across the jury members, a jury deciding a trial

under common law should be, if using the optimal decision procedure, indifferent between declaring

a verdict and announcing a hung jury and initiate retrial.

Let us conclude by reviewing the limitations of our main result. The central assumption—

the ability of the agent to freely repeat her decision process—may fail for several reasons. One

reason is that the agent may only have access to a limited data set that constrains her to a

finite number of repetitions of the primitive decision process, making the optimal termination

strategy non-stationary. Another complication arises if the outcomes of distinct runs of the same

cognition process are not conditionally independent as assumed in our model; this may arise if some

cognition errors are systematic and are likely to emerge in distinct repetitions of the cognition. We

conjecture that the second-thought-free condition holds in such a case, with the agent internalizing

the correlations between the cognition runs.
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A Appendix

A.1 Proofs for Section 4

Proof of Lemma 3. Assume that there exists a solution with βx positive for n > 2 signals x ∈ X.

We show that then there exists a solution with n− 1 positive signals. The proposition follows from

the induction on n.

Let us prove the induction step. Fix the primitive experiment p employed by the agent, let β be

an optimal termination strategy for the given p, and let X ′ be the set of signals with positive βx,

and write shortly s(x | θ) for the effective experiment s(x | θ; p, β) induced by p and β. Let us abuse

notation by letting s(x) =
∑

θ πθs(x | θ) stand for the unconditional effective probability of x. For

x ∈ X ′ let qx ∈ ∆(Θ) be the posterior belief upon terminating with x: qx(θ) = πθs(x | θ)/s(x).

Since |X ′| > 2 and the state space Θ is binary, there exists a signal x∗ ∈ X ′ such that qx∗ is in

the convex hull of the posteriors qx, x ∈ X ′ \ {x∗}. Let µx be the coefficients that decompose qx∗

into qx, x ∈ X ′ \ {x∗}. That is, µ ∈ ∆ (X ′ \ {x∗}) such that qx∗(θ) =
∑

x∈X′\{x∗} µxqx(θ) for all

θ ∈ Θ.

We will construct an alternative feasible effective experiment s̃(x | θ) with unconditional prob-

abilities of x denoted by s̃(x) and the posteriors πθs̃(x | θ)/s̃(x) denoted by q̃x(θ) such that:

s̃(x) =

s(x) + s(x∗)µx if x ∈ X ′ \ {x∗},

0 otherwise,
(14)

and

q̃x(θ) = qx(θ) for all x ∈ X ′ \ {x∗}, θ ∈ Θ. (15)

Since the experiment s̃ is more informative than s (in the sense of the Blackwell comparison), there

exists a solution with this alternative feasible effective experiment s̃, as needed for the induction

step.

It remains to construct s̃. Note that if an effective experiment s(x | θ; p, β) = βxp(x|θ)∑
x′ βx′p(x

′|θ) is

induced by some p and β, then for any vector of probabilities β̃x, the experiment

s̃(x | θ) =
β̃xs(x | θ; p, β)∑

x′∈X β̃x′s(x
′ | θ; p, β)

=
β̃xβxp(x | θ)∑

x′∈X β̃x′βx′p(x
′ | θ)

is also feasible, since it is induced by p and β′ = (β̃xβx)x∈X .

We claim that if

β̃x =

c
(

1 + s(x∗)µx
s(x)

)
if x ∈ X ′ \ {x∗},

0 otherwise,

where c is a constant such that β̃x ∈ (0, 1) for all x ∈ X, then the resulting s̃ satisfies the properties
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(14) and (15). Let us check:

s̃(x | θ) =
β̃xs(x | θ)∑

x′∈X′\{x∗} β̃x′s(x
′ | θ)

=
β̃xs(x | θ)

c
(∑

x′∈X′\{x∗} s(x
′ | θ) +

∑
x′∈X′\{x∗}

s(x∗)µx′
s(x′) s(x′ | θ)

)
=

β̃xs(x | θ)

c
(∑

x′∈X′\{x∗} s(x
′ | θ) +

∑
x′∈X′\{x∗}

s(x∗)µx′
πθ

qx′(θ)
)

=
β̃xs(x | θ)

c
(∑

x′∈X′\{x∗} s(x
′ | θ) + s(x∗)

πθ
qx∗(θ)

)
=

β̃xs(x | θ)

c
(∑

x′∈X′\{x∗} s(x
′ | θ) + s(x∗ | θ)

)
=

β̃xs(x | θ)
c

=

(
1 +

s(x∗)µx
s(x)

)
s(x | θ).

The property (14) holds since for all x ∈ X ′ \ {x∗}:

s̃(x) =

(
1 +

s(x∗)µx
s(x)

)
s(x) = s(x) + s(x∗)µx.

To establish the property (15), check that for all x ∈ X ′ \ {x∗} and all θ ∈ Θ:

q̃x(θ) =
πθs̃(x | θ)∑
θ′∈Θ s̃(x | θ′)

=
πθ

(
1 + s(x∗)µx

s(x)

)
s(x | θ)∑

θ′∈Θ

(
1 + s(x∗)µx

s(x)

)
s(x | θ′)

=
πθs(x | θ)∑
θ′∈Θ s(x | θ′)

= qx(θ).

Proof of Lemma 4. For any positive β,

r(1 | 1; p, β, σI)r(0 | 0; p, β, σI)

r(0 | 1; p, β, σI)r(1 | 0; p, β, σI)
=

β1p(1|1)∑
x βxp(x|1)

β0p(0|0)∑
x βxp(x|0)

β0p(0|1)∑
x βxp(x|1)

β1p(1|0)∑
x βxp(x|0)

=
p(1 | 1)p(0 | 0)

p(0 | 1)p(1 | 0)
= dp.

Thus, every r ∈ Rp,σI either always selects a same action, or satisfies r(1|1)r(0|0)
r(0|1)r(0|1) = dp. Vice versa,

if a rule r′ satisfies r′(1|1)r′(0|0)
r′(0|1)r′(0|1) = dp, then it belongs to Rp,σI . To see this, let ra denote the rule

that always selects action a. Consider positive β0, and note that r (p, (β0, β1), σI) is continuous

in β1, and converges to r1 and r0 as β1 approaches 1 and 0. Thus, there exists β such that

r′(1 | 1) = r (1 | 1; p, β, σI). Moreover, there is a unique rule r̃ that satisfies r̃(1 | 1) = r′(1 | 1) and
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r̃(1|1)r̃(0|0)
r̃(0|1)r̃(0|1) = dp. Thus, r′ must be r (p, β, σI) and hence constructible from p.10

Proof of Lemma 5. The statement is trivial when r(p, β, σ) chooses an action a′ with probability

1, since then we can set β′a′ = 1 and β′x = 0 for x 6= a′. Accordingly, assume that both actions

are chosen with positive probabilities under the rule r(p, β, σ) and σ(x) = 1 − x. For the sake of

contradiction, assume that r(p, β, σ) achieves a higher payoff than all rules constructible with p and

σI . Then, the payoff difference between the rule r(p, β, σ) and the choice rule that always selects

a = 1 must be positive:

π0u0r(0 | 0; p, β, σ) + π1u1r(1 | 1; p, β, σ)− π1u1 =

π0u0r (1 | 0; p, β, σI) + π1u1r (0 | 1; p, β, σI)− π1u1 =

π0u0r (1 | 0; p, β, σI)− π1u1r (1 | 1; p, β, σI) > 0,

where we have used r(a | θ; p, β, σI) = r(1− a | θ; p, β, σ) for the first equality. Similarly, the payoff

difference between the rule r(p, β, σ) and the rule that always selects a = 0 must be positive:

π0u0r(0 | 0; p, β, σ) + π1u1r(1 | 1; p, β, σ)− π0u0 =

π0u0r (1 | 0; p, β, σI) + π1u1r (0 | 1; p, β, σI)− π0u0 =

π1u1r(0 | 1; p, β, σI)− π0u0r(0 | 0; p, β, σI) > 0.

The last two inequalities imply

r(1 | 1; p, β, σI)

r(1 | 0; p, β, σI)
<
π0u0

π1u1
<
r(0 | 1; p, β, σI)

r(0 | 0; p, β, σI)
,

which establishes contradiction because by Lemma 4, the rule r(a | θ; p, β, σI) satisfies

r(1 | 1; p, β, σI)r(0 | 0; p, β, σI)

r(1 | 0; p, β, σI)r(0 | 1; p, β, σI)
=
p(1 | 1)p(0 | 0)

p(1 | 0)p(0 | 1)
,

and therefore it inherits the monotone likelihood ratio property from p.

Proof of Lemma 6. Consider the choice rule r(p, β, σI) constructed from the experiment p with

perceptual distance dp = d, and fix the probability r(0 | 0; p, β, σI) = α of the correct choice in

state 0 to a value α ∈ (0, 1). Then, by Lemma 4, the probability r(1 | 1; p, β, σI) of the correct

choice in state 1 satisfies
r(1 | 1; p, β, σI)α

(1− r(1 | 1; p, β, σI))(1− α)
= d.

For each α, the solution for r(1 | 1; p, β, σI) of this equation increases in d.

Proof of Proposition 2. The agent’s objective is linear with respect to the choice rule r(p, β, σ).

10Rules ra that always select an action a can be trivially constructed from p and σI by using βa = 1 and βx = 0
for x 6= a.
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Thus, the optimal rule is the point of tangency of the set Rp,σI of the feasible rules and of an

indifference line; see Figure 2. The slope dr(0|0;p,β,σI)
dr(1|1;p,β,σI) is decreasing in r (1 | 1; p, β, σI) and attains

value −1/d for r (1 | 1; p, β, σI) = 0, and value −d for r (1 | 1; p, β, σI) = 1. Thus, when R < 1/d

or R > d, then the problem has the corner solution as specified in statements 1 and 2 of the

proposition.

When R ∈
(
1/d, d

)
, then the optimal choice rule r∗ = r (p, β∗, σI) satisfies the feasibility

condition r∗(1|1)r∗(0|0)
r∗(0|1)r∗(0|1) = d, the second-thought-free condition (5) (applied to action a = 1):

π1u1r
∗(1 | 1) = π0u0r

∗(0 | 0)r∗(1 | 0) + π1u1r
∗(1 | 1)r∗(1 | 1),

and two normalization conditions
∑

a r
∗(a | θ) = 1, for θ ∈ {0, 1}. These four conditions jointly

imply the explicit solution for the optimal choice rule in (8). The expression (9) for β∗1/β
∗
0 follows

from (8) and the condition r∗(1|θ)
r∗(0|θ) =

β∗1p(1|θ)
β∗0p(0|θ)

.

A.2 Proofs for Section 6

The next result is an auxiliary lemma used in the proof of Proposition 4.

Lemma 9. The optimal effective choice rule r∗ satisfies for any pair of states θ, θ′ ∈ Θ:

πθuθr
∗(θ | θ)r∗(θ′ | θ) = r∗(θ | θ′)πθ′uθ′r∗(θ′ | θ′). (16)

Condition (16) is a strengthening of the second-thought-free condition (5). It requires that the

agent who has terminated the decision process with perception θ, and knows that the second run of

the process r∗ terminates with a value θ′ is indifferent between θ and θ′. This condition is stronger

than the second-thought-free condition (5), since (5) requires (16) to hold only on average across

all θ′. This strengthening holds for the special case of a symmetric experiment p.

Proof of Lemma 9. The optimal effective choice rule satisfies the second-thought-free condition (5),

equivalent to:

πθuθr
∗(θ | θ) =

∑
θ′∈Θ

πθ′uθ′r
∗(θ | θ′)r∗(θ′ | θ′) for all θ ∈ Θ,

which after two algebraic steps gives:

πθuθr
∗(θ | θ)

(
1− r∗(θ | θ)

)
=
∑
θ′ 6=θ

πθ′uθ′r
∗(θ | θ′)r∗(θ′ | θ′) for all θ ∈ Θ,

∑
θ′ 6=θ

πθuθr
∗(θ | θ)r∗(θ′ | θ) =

∑
θ′ 6=θ

πθ′uθ′r
∗(θ′ | θ′)r∗(θ | θ′) for all θ ∈ Θ.

The last system of equations is formally equivalent to the system of balance conditions for a Markov

chain. To see this, consider an ergodic Markov chain with transition probabilities from θ to θ′ equal
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to r∗(θ′ | θ). The balance condition for the stationary distribution µ(θ) of this chain is∑
θ′ 6=θ

µ(θ)r∗(θ′ | θ) =
∑
θ′ 6=θ

µ(θ′)r∗(θ | θ′) for all θ ∈ Θ,

and thus, for each state θ, πθuθr
∗(θ | θ) is proportional to the ergodic probability µ(θ) of the state

θ for the chain with transition probabilities r∗(θ′ | θ).
Recall that if a Markov chain with transition probabilities m(θ′ | θ) is reversible, then its

stationary distribution µ(θ) satisfies detailed balance conditions

µ(θ)m(θ′ | θ) = µ(θ′)m(θ | θ′) for all θ 6= θ′.

Thus, it suffices to prove that the probabilities r∗(θ′ | θ) constitute a reversible Markov chain.

Recall that a Markov chain m(θ′ | θ) is reversible if and only if it satisfies the Kolmogorov

criterion, which requires for all sequences of states θ1, θ2, . . . , θn,

m(θ2 | θ1)m(θ3 | θ2) . . .m(θn | θn−1)m(θ1 | θn)

m(θn | θ1)m(θn−1 | θn) . . .m(θ2 | θ3)m(θ1 | θ2)
= 1. (17)

The Markov chain with transition probabilities p(θ′ | θ) given by the primitive experiment p sat-

isfies the Kolmogorov criterion (17) since p is symmetric by assumption. Finally, for any positive

termination strategy β, the effective choice rule r(θ′ | θ; p, β, σI) satisfies the Kolmogorov criterion

too. This is because r(θ′ | θ; p, β, σI) =
βθ′p(θ

′|θ)∑
θ̃ βθ̃p(θ̃|θ)

, and when the expressions for r(θ′ | θ; p, β, σI)
are substituted into (17), then the terms βθ′ and the denominators cancel out, and hence

r(θ2 | θ1; p, βσI)r(θ3 | θ2; p, β, σI) . . . r(θ1 | θn; p, β, σI)

r(θn | θ1; p, β, σI)r(θn−1 | θn; p, β, σI) . . . r(θ1 | θ2; p, β, σI)
=

p(θ2 | θ1)p(θ3 | θ2) . . . p(θ1 | θn)

p(θn | θ1)p(θn−1 | θn) . . . p(θ1 | θ2)
= 1,

as needed.

Proof of Proposition 3. Lemma 9 implies for all pairs θ, θ′ ∈ Θ:

πθuθr
∗(θ | θ)r∗(θ′ | θ) = r∗(θ | θ′)πθ′uθ′r∗(θ′ | θ′).

By Lemma 2, we can substitute r∗(θ′ | θ) =
β∗
θ′p(θ

′|θ)∑
θ̃ β
∗
θ̃
p(θ̃|θ)

, which gives

β∗θβ
∗
θ′πθuθp(θ | θ)p(θ′ | θ)(∑

θ̃ β
∗
θ̃
p(θ̃ | θ)

)2 =
β∗θβ

∗
θ′p(θ | θ′)πθ′uθ′p(θ′ | θ′)(∑

θ̃ β
∗
θ̃
p(θ̃ | θ′)

)2 .

Using the symmetry of p we get∑
θ̃ β
∗
θ̃
p(θ̃ | θ′)∑

θ̃ β
∗
θ̃
p(θ̃ | θ)

=

(
πθ′uθ′p(θ

′ | θ′)
πθuθp(θ | θ)

)1/2

, (18)

which gives (10) after rearrangement.
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Proof of Proposition 4. To compare r∗(θ1 | θ2) and r∗(θ2 | θ1), we write

r∗(θ1 | θ2)

r∗(θ2 | θ1)
=

β∗θ1
p(θ1|θ2)∑

θ̃ β
∗
θ̃
p(θ̃|θ2)

β∗θ2
p(θ2|θ1)∑

θ̃ β
∗
θ̃
p(θ̃|θ1)

=

β∗θ1
p(θ1|θ2)

(πθ2uθ2p(θ2|θ2))
1/2

β∗θ2
p(θ2|θ1)

(πθ1uθ1p(θ1|θ1))
1/2

=
β∗θ1p

1/2(θ1 | θ1)

β∗θ2p
1/2(θ2 | θ2)

,

where we have used (18) in the second step, and the symmetry of p and equality of πθuθ across θ

in the last step. Define β̂θ = β∗θp
1/2(θ | θ). We need to prove that if θ1 is more distinct than θ2,

then β̂θ1 > β̂θ2 .

By (18),
(
β̂θ
)
θ

satisfy the system of linear equations:∑
θ′

Dθ′θβ̂θ′ = 1 for all θ,

where Dθ′θ = p(θ′|θ)
p1/2(θ′|θ′)p1/2(θ|θ) . We claim that if θ1 is more distinct than θ2, then Dθ3θ1 < Dθ3θ2 for

all θ3 6= θ1, θ2. This follows from p(θ3 | θ1) < p(θ3 | θ2) and from the symmetry of p:

p(θ1 | θ1) = 1− p(θ2 | θ1)−
∑

θ3 6=θ1,θ2

p(θ3 | θ1) > 1− p(θ1 | θ2)−
∑

θ3 6=θ1,θ2

p(θ3 | θ2) = p(θ2 | θ2),

and therefore,

Dθ3θ1 =
p(θ1 | θ3)

p1/2(θ1 | θ1)p1/2(θ3 | θ3)
<

p(θ2 | θ3)

p1/2(θ2 | θ2)p1/2(θ3 | θ3)
= Dθ3θ2 .

Thus,

Dθ1θ1 β̂θ1 +Dθ2θ1 β̂θ2 = 1−
∑

θ3 6=θ1,θ2

Dθ3θ1 β̂θ3 > 1−
∑

θ3 6=θ1,θ2

Dθ3θ2 β̂θ3 = Dθ2θ2 β̂θ2 +Dθ1θ2 β̂θ1 .

Using that Dθθ = 1 and Dθθ′ = Dθ′θ, we have

β̂θ1 +Dθ2θ1 β̂θ2 > β̂θ2 +Dθ2θ1 β̂θ1 .

The assumption of sufficient precision of p and symmetry of p imply that Dθ2θ1 < 1, and thus

β̂θ1 > β̂θ2 , as needed.

A.3 Proofs of the results from Section 7

Proof of Lemma 7. All rules feasible in Piia are feasible in R(Piia): R(Piia) ⊃ Piia. This is imme-

diate since when βa = 1 for all a ∈ A, then r(p, β, σI) = p for all p ∈ Piia.
It remains to showR(Piia) ⊂ Piia. Consider p(γ, σ) ∈ Piia constructed in the setting of Example

1 by the use of the generalized termination strategy γ(m,x), and the action strategy σ(m,x). Recall

that r(p(γ, σ), β, σ̂) is the choice rule constructed by repetitions of the rule p(γ, σ) according to
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the termination strategy β = (βa)a∈A and by applying the action strategy σ̂ : A −→ A upon the

termination. We need to show that there exists γ′ and σ′ such that r(p(γ, σ), β, σ̂) = p(γ′, σ′).

This is indeed so when the termination probability γ′(t | m,x) = γ(t | m,x)βσ(m,x) for m 6= m0,

the transition probability to the original memory state m0 is γ′(m0 | m,x) = γ(m0 | m,x) + γ(t |
m,x)

(
1− βσ(m,x)

)
, which is the sum of the probabilities that the original process γ transits to m0

and that the decision process r(p(γ, σ), β, σ̂) restarts after termination of p(γ, σ). Additionally, for

all m̃ 6= m0, γ′(m̃ | m,x) = γ(m̃ | m,x). The above choice of γ′ implies that the process p(γ′, σ′)

replicates the Markov process over the memory states under r(p(γ, σ), β, σ̂). Finally, to replicate

the choices upon terminations, we set the action strategy σ′(m,x) = σ̂(σ(m,x)) for all (m,x).

Proof of Lemma 8. Again, trivially, R(Ppf ) ⊃ Ppf , since r(p, (1, . . . , 1), σI) = p for all p ∈ Ppf .

Additionally, R(Ppf ) ⊂ Ppf . This is indeed so because for any β = (βa)a∈A and any σ̂ : A −→ A,

r(p(γ, σ), β, σ̂) = p(γ′, σ′) where the termination probability γ′(t | h, θ) = γ(t | h, θ)βσ(h), the

transition probability to the empty signal history ∅ is set to γ′(∅ | h, θ) = γ(∅ | h, θ) + γ(t |
h, θ)

(
1− βσ(h)

)
, and for all h̃ 6= ∅, γ′(h̃ | h, θ) = γ(h̃ | h, θ). Finally, the action strategy is set to

σ′(h) = σ̂(σ(h)) for all histories h.

Proof of Proposition 5. We extend the definition of the effective experiment to the setting with

discounting. Let

sδ(x | θ; p, β) =
∑
t

∑
xt:xt=x

δtρ
(
xt | θ; p, β

)
,

where ρ
(
xt | θ; p, β

)
is the probability of the signal history xt defined in (1). Thus, sδ(x | θ; p, β) is

the discounted probability that the agent’s last observed signal value is x. It satisfies the recursion:

sδ(x | θ; p, β) = βxp(x | θ) + δ
∑
x′∈X

(
1− βx′p

(
x′ | θ

))
sδ(x | θ; p, β), (19)

where the first summand is the probability that the decision process terminates with x in the first

round and the second summand is the discounted probability that the process terminates with x

later. Solving (19) for sδ gives

sδ(x | θ; p, β) =
βxp(x | θ)

1− δ + δ
∑

x′∈X βx′p(x
′ | θ)

.

The discounted repeated-cognition problem (12) is thus equivalent to

max
p∈P,β∈B,σ∈S

∑
θ∈Θ,x∈X

πθ
βxp(x | θ)

1− δ + δ
∑

x′∈X βx′p(x
′ | θ)

u(σ(x), θ). (20)

Consider x with an interior termination probability β∗x ∈ (0, 1) and let a = σ∗(x). The first-order
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condition of the problem (20) with respect to βx is:

∑
θ∈Θ

πθ
sδ(x | θ; p∗, β∗)

β∗x
u(a, θ)− δ

∑
θ∈Θ,x′∈X

πθsδ(x
′ | θ; p∗, β∗)sδ(x | θ; p

∗, β∗)

β∗x
u(σ∗(x′), θ) =

∑
θ∈Θ

πθ
sδ(x | θ; p∗, β∗)

β∗x
u(a, θ)− δ

∑
θ∈Θ,a′∈A

πθr
∗
δ (a
′ | θ; p∗, β∗, σ∗)sδ(x | θ; p

∗, β∗)

β∗x
u(a′, θ) = 0,

where we have summed over all x′ such that σ∗(x′) = a′ in the second line. Multiplication by β∗x

and summation over all x such that σ∗(x) = a gives (13).

Proof of Proposition 6. Due to the condition that α/(1−α) > R, any (β, σ) that leads to a selection

of only one action with certainty is dominated by the decision process that terminates after the first

round and chooses an action equal to the observed signal value. Thus, both β∗0 and β∗1 are positive,

and the action strategy is σ∗(x) = x or σ∗(x) = 1 − x. Let us show that the action strategy σ∗

must be the identity function σI .

Assume for contradiction that σ∗(x) = 1−x. The payoff difference between the rule rδ(p, β
∗, σ∗)

and the choice rule that always selects a = 1 must be positive, since the latter is dominated:

π0u0rδ(0 | 0; p, β∗, σ∗) + π1u1rδ(1 | 1; p, β∗, σ∗)− π1u1 =

π0u0rδ(1 | 0; p, β∗, σI) + π1u1rδ(0 | 1; p, β∗, σI)− π1u1 ≥

π0u0rδ(1 | 0; p, β∗, σI)− π1u1rδ(1 | 1; p, β∗, σI) > 0,

where the first inequality follows from the fact that any discounted choice rule satisfies
∑

a rδ(a |
θ; p, β, σ) ≤ 1. Similarly, the payoff difference between the rule rδ(p, β

∗, σ∗) and the rule that always

selects a = 0 must be positive:

π0u0rδ(0 | 0; p, β∗, σ∗) + π1u1rδ(1 | 1; p, β∗, σ∗)− π0u0 =

π0u0rδ(1 | 0; p, β∗, σI) + π1u1rδ(0 | 1; p, β∗, σI)− π0u0 ≥

π1u1rδ(0 | 1; p, β∗, σI)− π0u0rδ(0 | 0; p, β∗, σI) > 0.

The last two inequalities imply:

rδ(0 | 1; p, β∗, σI)

rδ(0 | 0; p, β∗, σI)
>
π0u0

π1u1
>
rδ(1 | 1; p, β∗, σI)

rδ(1 | 0; p, β∗, σI)
.

This establishes contradiction because as shown in the proof of Proposition 5, rδ(x | θ; p, β∗, σI) =

sδ(x | θ; p, β∗) = β∗xp(x|θ)
1−δ+δ

∑
x′ β
∗
x′p(x

′|θ) , and thus

rδ(1 | 1; p, β∗, σI)rδ(0 | 0; p, β∗, σI)

rδ(0 | 1; p, β∗, σI)rδ(1 | 0; p, β∗, σI)
=
p(1 | 1)p(0 | 0)

p(0 | 1)p(1 | 0)
> 1.

Further, it must hold that β∗0 = 1 or β∗1 = 1. Otherwise, if both β∗0 < 1 and β∗1 < 1, then the
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agent can increase both β∗x by a same factor. This preserves the conditional action distribution in

each state θ and increases the decision rates in both states, and thus it is a profitable deviation.

Additionally, it must be that β∗1 = 1: Using the expressions for sδ(θ | θ; p, β) = rδ(θ | θ; p, β, σI),
the payoff for σI and (β0, β1) = (β, 1) is

π0u0
βα

1− δ + δ(βα+ 1− α)
+ π1u1

α

1− δ + δ(α+ β(1− α))
, (21)

and payoff for σI and (β0, β1) = (1, β) is

π0u0
α

1− δ + δ(α+ β(1− α))
+ π1u1

βα

1− δ + δ(βα+ 1− α)
, (22)

The assumptions that π1u1 > π0u0 and that α > 1/2 imply that, for any β ∈ (0, 1), (21) exceeds

(22), as needed.

It therefore remains to find β∗0 ∈ (0, 1]. If the optimal value is interior, then it satisfies (13)

with a = 0:

π0u0rδ(0 | 0, p, β∗, σI) = δ
(
π0u0r

2
δ (0 | 0; p, β∗, σI) + π1u1rδ(1 | 1; p, β∗, σI)rδ(0 | 1; p, β∗, σI)

)
.

After the substitution of rδ(x | θ; p, β, σI) = βxp(x|θ)
1−δ+δ

∑
x′ βx′p(x

′|θ) , this condition simplifies into a

quadratic equation for β∗0 . When δ < 1
α+(1−α)R , then this condition does not have an interior

solution and the derivative of the value (21) with respect to β0 at β0 = 1 is positive. Thus, in this

case, the unique β∗0 satisfying the first-order condition is β∗0 = 1.

When δ > 1
α+(1−α)R , then the condition has an interior solution and the derivative of the value

(21) with respect to β0 at β0 = 1 is negative. Thus, for this range of parameters, the unique β∗0
satisfying the first-order condition is the interior value that solves the quadratic equation, solution

of which decreases in δ.
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