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Description of Thesis

Title: Modification of Internal Representations as a Mechanism for Learning in

Neural Systems.

1. Incoming sensory signals are processed by hierarchically organised modules in the 

brain. In certain contexts, this may be modelled by a feedforward layered network 

of interconnected binary units. The activity patterns in the intermediate layers are 

internal representations.

2. A new learning algorithm uses projections from the desired output to modify 

internal representations. Biologically realistic 2-layer synaptic rules can then be 

applied to cause the associated input to evoke the modified representation(s) that 

are more readily trained to produce the target output.

3. Simulation is carried out on benchmark tasks for 3-layer feedforward networks. 

Comparisons with other popular algorithms are made. The results suggest that the 

new algorithm has better generalisation performance with faster or equal learning 

speed on the tasks simulated.

4. The learning algorithm is generalised to a multi-layer network setting, in which 

internal representations are dynamically constructed.

5. The above will be put into the context of efficient sensory coding that is based on 

Barlow’s ‘redundancy reduction’ proposal.
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Chapter 1 Introduction

The study seeks to gain insights into sensory representation and learning mechanisms 

in the brain with the aid of computer simulation of networks of artificial neurons. A 

new learning algorithm for a certain class of networks will be proposed and 

investigated.

This chapter introduces a novel approach to thinking about learning, which underlies 

most of the investigations in the thesis. Learning, in most models, including those 

considered here, is assumed to be brought about by changes in synaptic weights. But 

the effects of learning are more usually discussed in terms of the resultant internal 

representations (i.e. the patterns of cellular activity that arise from the stimuli), and 

how these representations relate to the learning objective. This perspective can be 

constructive simply because the activity patterns are readily observable variables, 

more so than weight changes. The starting point of this thesis is the suggestion that 

explicit changes of internal representations, with the objective of achieving 

representations that make learning easier, may in fact be built into a learning 

algorithm.

The Reverse Activation (RA) algorithm, the main subject of the thesis, derives from 

thinking about what is a desirable change of representation and how this may be 

achieved. Part of the learning process can then be described in terms of the 

modification of internal representations. Weight changes are still associated with the 

mechanics of learning. However, unlike in most conventional models, the step that 

drives the weight changes is the explicit decision on the desired internal 

representation.



After this general approach has been set out, a review of both relevant biological 

issues and related theoretical approaches will follow, before the RA algorithm is 

analysed with both theory and simulations.

Section 1.1 Biological Basis of Standard Network Models

The term neuron is used repeatedly in the thesis to refer to abstract neurons used in 

artificial network models. A biological neuron has more complex behaviours than the 

stereotypical abstract neuron. Radically different types of neurons exist in the brain. 

Further, each of the brain’s regions is a vast network of distinctive sub-networks of 

neurons. In contrast to this complexity, most network models have a simple 

architecture consisting of identical units that are essentially summation devices 

coupled with a transfer function. Despite these differences, there are many reasons for 

accepting such networks as relevant to the study of the brain.

Despite their diversity, most types of biological neuron can be seen as computing 

devices that receive inputs and generate outputs that are characterised by the 

frequencies of the action potentials generated. The behaviour of such cells is largely 

based on a single parameter, the soma membrane potential, (cf. Amit, 1989). Hence, a 

network of identical abstract neurons is a useful idealisation of real networks in the 

brain. Further, there is no intrinsic argument to suggest that the artificial neural net 

will be any more ‘real’ if  all the known properties of neurons are incorporated. Firstly, 

some neuronal properties are vital, and some are presumably of little consequence to 

the global properties of a neural net, but known properties are not necessarily more 

important than the unknown properties. Secondly, it is always necessary to prioritise 

and leave out properties that may not be important to one’s modelling purpose. A 

network of simple neurons is only a first order approximation of the biological one.



but there is seldom good reason to think that what it can achieve could not be achieved 

by real neurons, nor vice versa - that what it cannot achieve could be achieved by real 

neurons.

At an appropriate scale, the organisation of neurons in the brain is fairly uniform. The 

same simple architecture found in one locality (e.g. the retina) may appear elsewhere 

also (e.g. the olfactory bulb) (Shepherd, 1974). Further, perhaps more importantly, in 

many parts of the brain (e.g. association areas of neocortex), the architecture seems to 

be governed by simple rules, with large numbers of neurons or functional groups of 

neurons forming connections specified largely by global conditions such as layering, 

and of cell and synaptic densities. The study of simple networks seems likely to be 

important for the understanding of local functions, as well as large scale organisation 

in the brain.

Section 1.2 Standard Network Formalism: The Weight-

Centric Approach

Most artificial networks, be it recurrent or feedforward, are pattern associators: they 

associate an output activity pattern to an input activity pattern by way of system 

dynamics as determined by the architecture and the weights of connections. They are 

particularly useful in understanding associative memory and feature detection in 

sensory pathways. To focus the argument, let us concentrate on multi-layered 

feedforward networks.

Almost all learning algorithms for this type of network can be derived from the 

mathematical idea of hill climbing in weight space: the network performance is 

measured by some explicit analytic function of the current weight matrices in the net;



learning involves iteratively changing each weight according to its effect on the 

performance function for the purpose of optimisation. Learning and generalisation are 

thus reduced to interpolation and extrapolation: the network represents a particular 

model (in the sense used for Statistical Inference), where the weights are the adjustable 

parameters. Any such learning algorithm is a way of computing the ‘best fit’ 

parameters. Weights are the fundamental variables in this formalism, while activity 

patterns (on intermediate layers) are somewhat incidental; that is, such learning 

models lose nothing if the significance of these patterns is completely disregarded. 

However, these activity patterns attract great interest because they correspond (or at 

least the individual elements of them do) to the most important observable in 

neurophysiological studies.

This approach gives a simple mathematical formalism to the learning problem, and 

leads to many different learning algorithms, the most popular of which is Back- 

Propagation (BP). One disadvantage of the approach, apart from being a rather rigid 

view of learning, is that most of the derived algorithms, such as BP, are not 

biologically plausible (see Section 3.2.2). Further, it is unsatisfactory that 

representational patterns, despite being a primary variable in neural science studies, 

are peripheral in these models of learning.

Section 1.3 An Alternative Proposal: The Pattern-Centric 

Approach

The algorithm proposed in this study represents a departure from the above 

framework; it will be referred to as the Reverse Activation (RA) algorithm. The 

algorithm takes activity patterns, rather than weights, as the fundamental variables in 

learning. Learning, to a large extent, becomes a matter of actively changing internal



representations (defined as the activity patterns on the intermediate layers). Weight 

changes are still the intermediary, but they are driven by the goal of achieving a 

chosen modified representation via local Hebbian type synaptic rules. The key 

question is what constitutes an improved internal representation.

In the context of feedforward networks, the ideal representation for a novel input 

would be one that leads, with no weight changes, to the generation of appropriate 

outputs. Novel inputs are only likely to produce such ideal representations if there is a 

remarkable correspondence between the information processing in a network and the 

characteristics of the world that govern what are appropriate outputs for particular 

input patterns. More realistically, the existing representation of a novel input will not 

be ideal, but may be improved by altering the input processing so that fewer weight 

changes are required between representation and output in order to generate 

appropriate patterns.

The objective of directly manipulating internal representations may seem like a pipe- 

dream. The basic mechanism proposed however is very simple. It is suggested, on 

intuitive grounds, that the pattern created at the level of a representation by combining 

input activation (driven from the sensory input pattern) with reverse activation (driven 

from the paired output pattern) will generally be an improved representation for 

learning the input-output pairing, better than the representation produced by the input 

activation alone given existing weights. The weight matrix through which this reverse 

activation operates is obviously critical for this strategy to work, and consideration of 

this matrix will be an important subject of the thesis. But intuitively it seems plausible 

that weights based loosely on prior associations between activity patterns in internal 

representations and outputs may have the desired effect. If so, then the processes of 

learning a new input-output pairing can be split between two sites: (1) the input 

connections to the representation, which learns to generate an improved 

representation, and (2) the output connections from the representation, which more



easily learn to generate the correct output. Several questions arise and will be 

addressed: can the suggestion be analysed theoretically; to what extent could it benefit 

learning; and how can the necessary conditions be arranged?

There have been earlier attempts at a pattern-centric approach, particularly the so- 

called CHIR ("choosing internal representations") (Grossman et. al. 1988; Grossman, 

1989; Nabatovsky et. al. 1990; Abramson et. al. 1993); also see (Domany et. al. 1995). 

These proposals rely on active search in a vast table of potential internal representation 

patterns. Some other versions of CHIR (Rujan, Machand, 1989; Mezard, Nadal, 1989) 

take a more explicitly geometric approach, which still amounts to a ‘home-in’ 

mechanism in the high dimensional representation space in order to determine the 

‘appropriate’ representations. Further, the final number of hidden units and hidden 

layers in the solution found is uncertain, and there is no guarantee that the trivial 

solution (i.e. one exclusive hidden unit for each input-output pair) would not emerge, 

see (Domany et. al. 1995) for instance.

Unlike the above CHIR’s, the RA algorithm does not rely on a time-consuming 

explicit search in the representation space. Instead, it iteratively modifies existing 

representations via biological mechanisms. The weight-based algorithms such as BP 

also iteratively modify internal representations, but only as a by-product of weight 

modification. The important difference in RA is that weight changes are driven by 

changes in internal representations, while in BP the exact opposite happens.

The RA algorithm raises a problem because it is not obvious how to study it 

analytically since it is not based on any easily expressible optimisation procedure. As 

often happens in this area, computer simulation is necessary for validation. The 

presented simulations will concentrate mainly on comparing the RA algorithm with 

the back-propagation (BP) algorithm. Both algorithms are tested on two benchmark 

tasks, and are compared on the basis of learning speed, generalisation, and the ease of



parameter tuning. The result shows that on tasks tested, the RA algorithm has better 

learning speed and generalisation performance. The latter is consistent with known 

theories on generalisation. It will be argued that the very mechanism for improving 

internal representations in the RA algorithm promotes better generalisation 

performance. RA is outlined and studied in Chapter 4, 5 and 6. A population search 

technique may be applied to the RA algorithm to improve its practicality, as discussed 

in Chapter 6.

Section 1.4 Relationship to Broader Theoretical Issues

The pattern-centric approach to learning is readily related to broader issues in the 

study of the brain. Crudely speaking, the subject of information processing in the 

brain can be studied at the system level or at the neural (network) level. The former 

concerns overall characteristics and complex functions of the brain, and offers 

explanations in terms of information and computational theories. The latter concerns 

the implementation or the manifestation of system level theories in terms of 

computational algorithms that can be justifiably described as being ‘neural-network’, 

based on known biological and physiological evidence. A complete understanding 

requires comprehension at both levels. Ideally, one formulates computational theories, 

which then can be seen at work in a neural network context; conversely, one can hope 

that a particular discovery at the neural network level has a certain higher level 

rationale.

The RA algorithm concerns the neural level. However, it naturally relates to two 

higher level issues: learning and efficient coding. In Section 6.5, these topics will he 

discussed, in particular, the concept of ‘redundancy reduction’ and how it leads to 

compact coding, factorial coding and sparse coding strategy. The RA algorithm



provides an arena for studying the effect of sparseness on learning in feedforward 

networks of more than 2 layers.

The RA algorithm implicitly requires a short-term memory for paired patterns, 

independent of the representational changes that will eventually be brought about, 

contributing to long term memory. It therefore touches on the issue of memory 

consolidation in the brain. Temporal storage is required for at least the most recent 

activity patterns on each layer so that conditions can be set up for creating and learning 

the improved representations. Quite different mechanisms, possibly in different sites, 

may be involved as an intermediate step to the consolidation of the long-term memory, 

which could be modelled as the inter-layer weights. Both high quality transient 

memory and the ability to re-generate patterns of activity without related sensory 

stimuli (in imagination, rehearsal, dreams, etc.) are in fact prominent features of the 

nervous system, whose functional role is not clear. This adds to the plausibility and 

interest of the mechanisms of the algorithm.

Under this model, short-term memory assists the formation of efficient internal 

representations that are part of long-term memory. It is also possible to model the 

opposite interaction, in which long-term memory facilitates short-term recall, using the 

same network architecture. For this purpose, a network of hierarchically arranged 

layers, with the inter-layer connections functioning as long-term memory and the 

within-layer connections functioning as short-term memory, may be used. The RA 

algorithm can be generalised to such a network; see Section 4.4.



Chapter 2 Biological Background

It is helpful to review the biological reality behind the theoretical speculation ahead, 

for motivation, context and perspective. The chapter may be skipped by readers 

familiar with the subject. Section 2.1.1, 2.1.3, 2.1.4 and Section 2.2.1 contain 

standard facts/theories based mainly on Shepherd (1974) and Nicholls, Martin, 

Wallace (1992).

Section 2.1 Neurons

2,1.1 Membrane Potentials

Most neuronal behaviours stem from the selectivity properties of channels on the cell 

membrane. Some channels may be open only to cations, some to anions. While most 

anion channels are non-specific, cation channels may be specific to, for instance, 

potassium, sodium or calcium. Ionic channels are usually gated. The selectivity and 

gate mechanisms are responsible for the electrical signals generated within the nervous 

system. Various mechanisms can cause ion channels to change states thereby 

disturbing the established equilibrium and pushing the membrane away from its 

resting state. Some channels respond to chemical signals such as neurotransmitters, 

some to membrane deformations due to mechanical forces, and still others to the 

membrane potential itself. These mechanisms provide the means through which 

neurons respond to stimuli and each other.

The properties of K^, Na^ channels and their active transport can account for the 

resting membrane potential. This, usually -70 mV, is the potential that governs the 

concentration differential inside and outside the neuron for species of permeant ions 

for which there is no active transport (mainly Cl ); the equilibrium achieved is



dynamic. Sodium action potentials, stereotyped cycles of rapid membrane 

depolarisation and repolarisation lasting up to 2 milliseconds, result from the 

properties of voltage gated Na+ and K+ channels and occur in an all-or-nothing 

fashion.

If a depolarising potential raises the local membrane potential sufficiently, the sodium 

channels on that patch will open rapidly, but transiently. The increase will cause a 

sudden influx of Na^ ions since sodium is much less concentrated inside the cell. The 

local membrane potential then will shoot up to typically +40mV within 0.5-1 

millisecond. Potassium permeability also responds to increase in membrane potential, 

though its reaction is slower but more persistent, lasting several milliseconds. The 

resulting persistent outgoing potassium current will drive the membrane potential 

rapidly down, even to below the resting potential for a time, causing the so-called 

refractory period, before the resting potential is restored, thus completing the cycle, 

known as an action potential.

The local effects caused by an action potential induce depolarisation of the 

neighbouring membrane patches, which automatically undergo the same cycle; the 

induced action potential is exactly the same but for its location and timing. Further, 

because of the refractory period at the end of each depolarisation, the induced action 

potentials travel in a clean wave away from the initial patch and do not re-excite 

membrane areas that have recently undergone an action potential. The speed and 

range of this conduction are limited not only by the channel properties, but also by the 

diameter and insulation (myelination) of an axon. Dendritic action potentials are 

typically longer lasting and involve Ca2+ rather than Na+ entry.

10



2,1,2 The Frequency Code

Because the action potential is all-or-nothing and self-reproducing through the use of 

local energy stores, it provides the basic means of long distance communication in a 

biochemical environment, where reliable communications via passive flow of 

analogue electrical signals are possible only on a scale measured in tens of 

micrometers.

Since the action potential generated down an axon is exactly the same as the original 

action potential, there is no transmission loss. However the all-or-nothing dependence 

of action potential on stimuli also means that no information is conveyed in the time 

course (‘shape’) of the potential. It is the event itself, or more precisely, the number of 

action potentials in a given period, which carries information. This is called frequency 

coding.

Given the time scale of an action potential of the order of 1 millisecond, one may 

divide time into 1 millisecond intervals so that there is either 1 action potential 

generated or none. The frequency code can therefore be represented as a sequence of 

1 and O’s. The upper limit of transmission rate is around 1000 bits/second. However, 

neurons on average fire less than half of the time, and there is correlation between 

firing intervals. These redundancies alone place the upper limit at about 500 

bits/second. One may expect further redundancies implemented in order to counter 

noise.

If the input signals to a neuron have a measurable information content, one may devise 

experiments to measure the transmission rate of the neuron. This is usually only 

possible for sensory neurons or low level cortical neurons. In this capacity, sensory 

neurons of insects and frogs can transmit information at a rate ranging from 60 

bits/second to 300 bits/second (Bialek et. a l, 1991). Current evidence from

11



mammalian lateral geniculate neurons indicates a rate no more than 30 bits/second 

(Tovee et. a l, 1993).

The above approach is not adequate for studying information processing in the cortex. 

Each cortical neuron can receive signals directly from as many as 10  ̂ other neurons, 

only a small fraction of which are sensory afferent signals. It is seldom clear exactly 

what information is conveyed to and by a particular neuron, and information about 

most aspects of sensory stimuli are probably conveyed in a population code, spread 

across many neurons.

There is perhaps a deeper reason why cortical neurons must be analysed differently. 

Cortical neurons are not merely encoders that transmit information: there is no 

homunculus waiting to analyse the information. The population of cortical neurons as 

a whole is in some sense the ‘end-user’ of sensory information. The point of interest is 

not so much how a neuron encodes the incoming information and passes it on, but 

how it responds to the incoming information (relayed to it by lower level neurons). If 

one accepts that mental activity is a collective phenomenon made up by the individual 

responses of cortical neurons, then the activity pattern across cortical cell populations 

becomes a primary concern in this context. Thus, as one moves into the cortex, one 

stops focusing on the details of the frequency code adopted by an individual neuron, 

but on how sensory information is represented by the activity patterns of cell 

populations; the concept of ‘population code’ or ‘internal representation’ becomes the 

theme. We shall address these issues further in Section 2.2 and 2.3.

The abstract neuron used in modelling cortical functions is often assumed to be binary, 

i.e. it either fires at the maximum rate in a discrete time interval or does not fire at all. 

This no doubt is a caricature of the real situation. However, binarised activity is one 

way to combat noise, which should be useful to the biological brain. It is a natural 

extension of the frequency code.

12



2.1.3 Synapses

The states of ionic channels on the cell membrane, and therefore the membrane 

potential, can be altered via a variety of mechanisms. Sensory neurons respond to 

direct mechanical (pressure) and physical (light, odour) stimulation. Most neurons 

including sensory neurons also receive direct electrochemical stimuli from other 

neurons, so that signals can be passed on, enhanced, modulated, and transformed from 

neuron to neuron. A synapse is a physical point of contact through which such 

interactions take place. At a synaptic site, the gap between the membranes of two 

cells ranges from 20-300 Angstrom, or 2-30 nanometers across, depending on the 

nature of the synapse. By far the most common and more sophisticated synapses are 

chemical synapses. They are strongly directional. The postsynaptic cell can act on the 

presynaptic cell via the same synapse but generally not in the same manner as the 

forward action.

Chemical synapses rely on neurotransmitters to change the postsynaptic membrane 

potential. It takes time however for vesicles, little parcels o f neurotransmitters, to be 

released, to diffuse across the synaptic cleft, and to take effect. The delay between the 

pre- and post-synaptic potential is typically 0.5 to 1 millisecond. Of the delay, only 

about one-tenth can be accounted for by diffusion. The rest of the Tong’ interval is 

mainly due to the fact that to release the vesicles. Calcium must be present. It has 

been found that the direct effect of the presynaptic potential is mainly the opening of 

Ca^^ channels, through which extracellular Ca^  ̂ions flow inwardly.

Ample experimental evidence has demonstrated the quantal nature of transmitter 

emission. Neurotransmitters are released in multiples of a quantum. Each quantum is 

capable of eliciting a miniature postsynaptic potential (PSP) of certain amplitude. The

13



total PSP depends on the number of quanta released. The probability of a quantum 

being released upon the arrival of a presynaptic potential is constant; each release is 

typically statistically independent. These assumptions explain the observed statistics 

of fluctuations in postsynaptic potentials very well.

One striking fact of the vertebrate nervous system is that the mean number of quanta 

released per presynaptic impulse by synapses in the central nervous system can be as 

much as 300 times lower than those in the periphery (such as neuromuscular 

junctions). However, the probability of release per presynaptic impulse can be as high 

as 0.9 in the central system. This dramatic difference in the mean quantal content is 

merely an indication that the central nervous system is concerned with the integration 

of information so that no one synapse has a dominant effect.

Once arrived at the postsynaptic membrane, some neurotransmitters act by directly 

activating appropriate ion channels. Many transmitters act by indirect mechanisms: 

they combine with receptors that are not ion channels themselves. The resulting 

substance then either is acted upon by other intracellular messengers, or acts directly, 

to modify the activity of other receptors, ion channels or ion pumps, thereby changing 

the membrane potential. Indirect synapses are usually slower.

One important empirical principle concerning synaptic arrangements is Dale’s law, 

which states that a neuron can manufacture only one type of neural transmitter. Note 

that this does not imply that a presynaptic neuron can exert only excitatory or 

inhibitory influences upon all of its postsynaptic cells. The actual sign of the effect of 

a transmitter depends on the receptors, different types of which may exist in the 

postsynaptic cells. By combining transmitter and receptor mechanisms, chemical 

synapses exhibit extraordinary flexibility.

14



2.L4 Synaptic Integration and Plasticity

A cortical neuron can receive as many as 10"̂  convergent synapses. The effect of an 

individual synapse is rarely enough on its own to generate aetion potentials in the 

postsynaptic cell. The overall activity of the postsynaptic cell is the result of the 

interplay between inputs from many convergent synapses.

The efficacy or strength of a (chemical) synapse usually refers to the size of the 

resulting post-synaptic potential (PSP) and the length of synaptie delay, for a given 

‘amount’ of presynaptic stimulation. Efficacy can vary both in the short term and in 

the long term. These variations can be due to either pre- or post-synaptic mechanisms. 

By altering the efficacy of synapses, a neuronal system may be able to learn.

It is tempting to assume that the PSPs of all synapses are integrated by a simple 

numerical summation, and that the efficacy of a synapse, which is modifiable, can be 

seen as the weighting factors in the sum; as the system leams, these ‘weights’ will be 

modified in some way as a result of repeated pre- and post-synaptic activities. This is, 

broadly speaking, what standard artificial neural network theory assumes, partly 

because other alternatives are difficult to handle. This simplified picture of neuronal 

eomputation is used extensively in network modelling (diseussed in Chapter 3). 

Presently, let us compare this pieture with the eurrent knowledge of biological 

synaptic integration and plasticity.

Intracellular recordings show that the colleetive effect of simultaneous stimulation, i.e. 

spatial integration, crucially depends on the relative positions of synapses. Even when 

the two synapses virtually overlap, their simultaneous effect may differ from the 

numerical sum of the separate effects. As far as spatial integration is coneemed, those 

synapses nearer the axon hillock seem to be more effective than those further from it. 

When timing is considered, the above already complicated picture gets worse. A well-
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timed inhibitory PSP (EPSP) further down the axon/dendrite can kill off an excitatory 

PSP (EPSP) very effectively. In addition, even at a single synaptic site, repetitive 

stimulation may enhance PSPs by virtue of temporal integration, with each PSPs 

adding to the falling phase of the one before; this happens when the frequency of 

stimulation is high enough (which is possible since PSPs have a much longer time 

course than action potentials).

Is the plasticity of synapses any simpler to capture in modelling? Experimental 

evidence does support the basic idea that synaptic strength can be modified. In 

invertebrates (Leech and Aplysia), short-term and long-term synaptic changes have 

been extensively studied, and can directly account for modifications in the animal’s 

behaviour. However, the detailed modification prescriptions in various learning 

models such as those introduced in Section 3.2 are difficult if at all possible to verify.

Studies do provide quite a detailed qualitative picture on how synaptic efficacy is 

modified. Profound biochemical and morphological changes are involved. Most 

synapses, direct or indirect, are regulated by a second chemical messenger system. 

The system is activated by sufficient depolarisation, or by sufficient presence of 

substances accompanying specific pre- or post-synaptic events. Once activated, either 

the presynaptic terminal or the postsynaptic terminal, or both, will undergo changes. 

Chemical messengers may trigger the production of proteins that will increase or 

decrease the mean quantal content of transmitter release by the presynaptic terminal; 

they may also effect morphological changes, e.g. the presynaptic terminal may 

increase in size. There are also messengers that act on the postsynaptic dendrite so 

that it becomes more sensitive to transmitters because of newly available receptors, 

e.g. previously ‘locked’ ion channels can be now activated by the transmitter; 

postsynaptic morphological changes may also take place.
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One can see clearly from the above that plasticity is a complex phenomenon that 

involves a long sequence of biochemical events. As such, it lends itself to regulation 

by many potential mechanisms. There is increasing evidence that indeed even the 

plasticity of a synapse is regulated. This is termed as metaplasticity, that is, a 

modification of the synapse that manifests itself not as a change in the synaptic 

efficacy, but as the change in the ability of the synapse to change its efficacy (Fischer 

et. al., 1997). The biological utility of metaplasticity is intuitively appealing (locking 

and unlocking of memory storage capacity for instance).

To conclude our brief review, while there is sufficient evidence to show that synaptic 

integration and plasticity do not conform to the simple form assumed in many network 

models, present evidence does suggest that biological synaptic integration and 

plasticity tend to be more sophisticated and thus potentially more powerful.

Section 2.2 Basic Characteristics of the Cortex

2.2.1 Cortical Layering and Columnar Organisations

The neocortex has six layers, compared to the three layers of archicortex and the four 

to five layers of paleocortex. The grey matter of the cortex, where most neuronal cell 

bodies lie, is about 2 mm thick, and covers the entire cortical surface. Wrapped inside 

is the white matter, which contains mostly fibres between cortical regions and glial 

cells. Sensory and subcortical efferent and afferent fibres are a small fraction of all the 

fibres in white matter. The input and output fibres enter and leave any cortical region 

through the depths.

Common to most cortical areas are the vertical arrangement of afferent/efferent fibres 

and the strong vertical orientation of axons/apical dendrites of cortical neurons in each
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layer. The contrast between the perpendicular and horizontal organisation is striking. 

In the perpendicular direction, the cortex is highly organised into layers; each layer is 

characterised by its cell and fibre content. Horizontally, i.e. within each layer, neurons 

and fibres are distributed more or less isotropically and homogeneously.

By columnar organisation one refers to the fact that neurons along a line perpendicular 

to the cortical surface have similar receptive field and response properties. In other 

words, they appear to be involved in the processing of the same bits of input signals. 

Physiological and anatomical evidence both put the diameter of such columns at 30- 

500 micrometers. Neighbouring columns are sharply demarcated from each other: they 

either have distinct receptive fields or have different response properties (e.g. 

responding to blue rather than red; responding to tactile signals rather than auditory). 

However, connections between neighbouring columns appear to be rather non-specific 

compared to vertical connections within a column. Available evidence supports the 

idea that the activation of one column has a non-specific inhibitory effect on the 

neurons in nearby columns but a small non-specific excitatory effect on those further 

on; this is particularly true for pyramidal cells. This fact has inspired the winner- 

takes-all coding strategy, which has many interesting applications; see Section 3.3.

2.2.2 Localization o f Cortical Functions

Amongst the earliest investigations of the brain are those concerned with the 

association of functions to specific locations. In particular, it is found that visual, 

auditory, olfactory, and somotosensory sensations are all localised to distinct regions 

of the cortex; there are also the motor cortex for motor control, association cortex for 

integrated memory and the prefrontal cortex for planning and other complex executive 

functions. Each of these areas is divided into subregions. Such divisions correlate 

well with Brodmann areas, which are based on morphology (Shepherd, 1974) 

(Nicholls, Martin, Wallace, 1992).
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The properties of neurons in each functionally uniform area are spatially ordered as 

well (Shepherd, 1974) (Nicholls, Martin, Wallace, 1992). For example, in the area 1 of 

somotosensory SI cortex, which receives tactile information, the receptive field of a 

neuron varies systematically with its position on the surface of the cortex so that the 

cortical surface contains a topographical map of the body. Such a map can be found 

also in areas of motor cortex. Similarly, topographical maps of visual scene are found 

in the visual cortex, and tonographical maps in auditory cortex.

On the one hand, all cortical areas have the same basic cell compositions, the same 

basic ‘circuitry’}, and the same coding strategy (i.e. topographical representation) but 

on the other hand different areas of the cortex specialise to perform different 

functions. The inevitable questions are why and how.

It is relatively easy to explain how localisation is implemented. To obtain sensory 

information of different modalities, different physical/chemical processes must be 

utilised. For instance, sensory neurons that detect pressure are very different from 

those that detect odour. Hence at the detection level, the nervous system must have 

‘localisation’. Functional specialisation in the cortex thus might be seen as a simple 

consequence of physical/chemical necessity, and would be a direct result of well- 

designed carefully-specified sensory innervation. The sensory innervation argument 

however cannot account for the sharp demarcation observed between the receptive 

fields of neighbouring cortical columns, the basis of topographical maps. It has been 

demonstrated instead (Kohonen, 1990) that lateral inhibition can achieve 

topographical maps even when each neuron receives exactly the same inputs; cf. 

Section 3.3.

One important advantage of localisation, which partially answers the why question, is 

that it keeps the brain at a reasonable size. Most of the brain volume is filled with
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myelinated axons that link different parts of the brain. The number of cells is 

proportional to the surface area of the cortex, so the number of axons would be 

roughly proportional to the square of the surface area. Thus given a fixed average 

volume of an axon, the volume occupied by axons alone would increase as the square 

of the surface area. Further, as the volume increases, the average volume for axons 

would also increase due to longer lengths and consequently necessarily bigger cross- 

sections and thicker myelin sheets. Hence the volume would actually go up more than 

proportionally to the square of the surface area. Had the human brain, with its surface 

area and average connection probability, been a mass of cells which are uniformly 

randomly connected, its volume would have been enormous (Mitchison, 1992).
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Chapter 3 Neural Network Models

Artificial neural network models attempt to incorporate some of the above qualitative 

biological characteristics of neurons and their interactions into quantitative terms so as 

to carry out more concrete investigations. Inevitable in this process some biological 

realism must be sacrificed in order to draw upon useful mathematical tools. The 

validity of this trade off is ultimately justified or refuted by the results.

In what follows, we shall deal with networks of simple formal neurons (see e.g. Amit, 

1989). They are based on two basic assumptions: 1) sub-threshold excitations lead to 

no activity; and 2) at any instant, a neuron receives an input that is the linear sum of all 

inputs from individual input synapses; the weights in the summation correspond to the 

efficacy of each of the modifiable input-synapses.

Section 3.1 Rosenblatt’s Simple Perceptron

5,1.1 The Basic Architecture

The most basic network of formal neurons consists of binary units arranged in two 

layers: the input (I) and the output (O) layer. Most concepts in neural networks are 

best illustrated in this simple context. The matrix Wio of modifiable weights specifies 

the connection strengths from a cell in I to a cell in O layer so that given input pattern 

P i , the activation A q  to output cell O i is given by

Ao(i)=ZjWio (i,j)P i(i)
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The activity of the cell Oi is binarised according to 

0 (A o ( i ) -8  ( i) )

where 0  is a step-function, and 6 is a modifiable threshold. Note that this threshold 

can be absorbed. Since

Ao(i)-0 (i)= Zj Wio (i ,j)Pi(j)-8 (0 =Zj’ W’iq ( i , j ’)P’iO’),

where W’iq is Wio with -0 (i) listed as an additional column, and where P’l has an 

additional unit that is 1 (i.e. always ‘on’). Such individually adjustable thresholds will 

not be explicitly mentioned from now on.

The above network is able to associate an output pattern with a given input pattern. 

The detailed relation depends on the status of the forward weights.

3,1.2 The Learning Procedure

The perceptron training procedure is as follows (Rosenblatt, 1962). To learn a specific 

association task, a sample set of input-output pairs is prepared. These patterns are 

then presented to the network one by one. For each input, bit errors of the network­

generated output pattern relative to the target pattern are then noted. If there is no 

error, then no weight modification takes place; one proceeds to the next pair of 

patterns. If there are errors, some modification for each weight is computed. 

Connection weights are changed iteratively. That is, when they are modified, the 

modifications are small. However, the training set is presented repeatedly and hence 

the modifications are done repeatedly. One complete presentation of the training set is 

called an epoch. The small weight changes in each epoch accumulate as the cycles go
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on, until no modification takes place, i.e. until all mappings are achieved. Learning 

time is measured by the number of epochs required. Most neural networks and 

learning algorithms follow the above training procedure.

The perceptron synaptic rule is a particular way of calculating the necessary weight 

modifications. It can be derived from performing gradient descent on the mean-square 

error-surface over all mappings in the training set. According to this rule, the change 

AW(i, j) to weight W(i, j) is given by the following

A W ( i J ) = X ( O V O i ) I j ,  (Eq.3.1)

where O î is the target output activity at cell i, Oj is the current output activity at cell i 

evoked by the input, and Ij is the activity of the input cell j in the input pattern, and X 

is some positive constant called step-size, small compared to the size of the weights. 

Note that the step-size is the quantum of weight change in the binary setting and is 

also referred to as the learning rate.

There is a legitimate concern over whether the above synaptic rule is biologically 

plausible, particularly regarding the availability of error signals (O î - Oi) at the 

presynaptic sites. Gardner-Medwin suggested (in private correspondence) one way of 

interpreting the rule (Eq. 3.1). Note the prescribed modification, AW(i, j)= X (O ĵ -

Oi)Ij, can be separated into two stages: one of anti-learning i.e. forgetting while the 

internally generated output is on, as suggested by the term -lOilj , and one of positive 

learning while the target output is on, suggested by the term +X O î Ij. Each individual 

stage is simple Hebbian or anti-Hebbian associative learning, which is arguably the 

most biologically plausible synaptic rule. Anti-Hebbian-leaming or active forgetting 

has been suggested in many different contexts and seems to be important to 

understanding many phenomena in memory and learning; see (Crick, Mitchison, 1983; 

Hopfield et. al. 1983), or (Dormany et. al. 1995; Hassoun 1996). For experimental
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evidence of the existence of anti-Hebbian synaptic modification see for example (Bell 

et. a l, 1990).

In the perceptron algorithm, there are 3 principle options for when a computed weight 

modification may be implemented. The two most commonly used methods are on-line 

updating and batch updating.

In the former, each weight is updated according to a prescribed formula (such as Eq.

3.1) immediately following the presentation of each pattern in training set. In the 

latter, the training set patterns are learned as a whole: each weight is updated only after 

all the input-output pairs are presented, and the modification is given by the sum of all 

the required modification calculated from individual patterns. The third less well- 

known updating procedure, proposed and referred to here as ‘total-on-line’ for 

convenience, is a training procedure in which individual pairings in the training set are 

learned completely, one at a time: weights are modified iteratively till the latest input- 

output mapping is learned perfectly before the next input-output mapping is presented. 

This ‘perfect learning’ is of course at the expense of possibly damaging the mappings 

already ‘perfectly’ learned before the presentation of the latest mapping.

There are subtle differences between these three methods (Finoff 94; Hassoun, 1995; 

Ripley 96; Saad, Solla, 1996). Briefly, the on-line method is the most volatile and 

sensitive to step-size. The total-on-line method can be the most stable with respect to 

step-size. The batch method is somewhere in between in this respect, and it is also 

most mathematically sound but least biologically plausible. These will be explained in 

more details. For small 2-layer perceptrons, such distinctions are less important as far 

as performance is concerned.

Given the on-line or total on-line training procedures, the perceptron convergence 

theorem states that if a solution set of weights exists for the problem, then the net will
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converge to a solution with the Pereceptron synaptic rule. The convergence of the 

batch procedure is guaranteed by gradient descent (to be discussed shortly).

3.1,3 Limitations

A well-known point about the simple perceptron is that it cannot learn any set of 

mappings that are not linearly separable (Minsky, Papert, 1969). Notice that each 

output unit classifies the input patterns into two categories: those that turn it on, and 

those that do not. Input patterns can be represented as points in a vector space, in fact, 

as the comers of a hyper-cube. The above categorisation is geometrically represented 

by a plane separating the two sets of ‘comers’. This plane is in fact parameterised by 

the weights onto the output unit concemed. If the mapping problem is such that the 

implied categorisation by an output unit is not achievable by any plane, then it is not 

linearly separable. Since no planes means no solution weights, the simple perceptron 

cannot leam such a problem.

Section 3.2 Multi-layer Perceptrons

To resolve the above problem, extra layers of units can be introduced between the 

input and output layer. Typically, 3-layer networks are studied, which with a 

sufficiently large number of intermediate cells can leam any well-defined binary 

mapping, if necessary by employing cells that individually detect specific input 

pattems. Additional intemal layers usually do not enhance the computational 

capabilities, though they may permit an economy of cells.

Consider a network of 3 layers, the input layer (I), the hidden layer (H), and the output 

layer (O), with numbers of binary cells (in the 0-1 representation) equal to Ni, Nh, Nq 

respectively. Let us call any non-linear operation that tums an activation pattem into a
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binary pattem a binarisation operation for short. This may involve thresholds that are 

either fixed or, for example, adjusted to achieve a particular number of active cells. 

All input cells project to all hidden cells, which in turn project to all output cells. Call 

the I=>H weight matrix W ih , and the H=>0 weight matrix W h o - The pattems on the H 

layer are referred to as internal representations.

3,2,1 Pattern-Centric vs, Weight-Centric Learning Strategies

There are two ways to extend the basic perceptron teaming procedure from 2-layer 

networks to 3-layer networks. The pattem-centric way is to devise an algorithm that 

establishes a pattem Ph* on the H layer that is desirable as a new intemal 

representation and to apply the perceptron mle to Wih directly so that input pattem ?i 

comes to evoke ? h* instead of its initial representation ? h. The weight changes are 

divided so as to achieve two new mappings: Pi=>?h* and PH*=>Po, where Pq is the 

target output pattem. The perceptron mle can be applied at each stage. An altemative 

(weight-centric) way would be to invoke a global output error function that can be 

differentiated against each connection weight, thereby determining its appropriate 

modification to achieve gradient descent. Both of the above can be regarded as 

generalisations of the 2-layer perceptron teaming procedure.

As discussed in Section 1.3, the pattem-centric strategy is intuitively appealing. It 

puts intemal representation at the very heart of teaming and processing, as it should 

be. Human teaming experience lends support to any teaming strategy that actively 

constmcts intemal representations of the extemal environment (in an effort to 

accomplish a task). This approach will be carried forward in Chapter 4 and the 

following chapters. The weight-centric strategies on other hand treat intemal 

representation as a passive by-product. Unfortunately, past attempts in the pattem- 

centric direction have been largely unsuccessful. The so-called CHIR (Section 1.3)
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relies on cumbersome prescribed search mechanisms in the high-dimensional space of 

potential representations and remains unattractive in practice.

3.2.2 The Standard Gradient-Descent Algorithm

Gradient descent prescribes that the appropriate weight change for each connection 

should be proportional to the negative of the partial derivative of the chosen error 

function with respect to that connection. As such it is a very general strategy, and is 

adaptable to many learning environments (including networks with stochastic 

neurons).

The most popular Back-Propagation algorithm (BP) has a mean square error function. 

We shall discuss BP for illustration. There are other less popular but well-known 

algorithms proposed for such multi-layer feedforward networks of continuous neurons. 

They are all gradient descent methods of one form or another. The main difference 

was in the error functions used: cf. for example (Peterson et. a l, 1989), which 

contains the so-called Boltzmann Machine type algorithms, which do stochastic 

gradient descent on an entropy measure. For more examples, consult (Hassoun 1995; 

Ripley 1996).

The Back-Propagation Procedure

On a standard feedforward, deterministic network with the usual quadratic error 

function, the basic gradient descent prescription reads as follows:

AW(i, j) (due to one training pattem)= X Zk (Ok -Ok) 50k / 5W(i, j).
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This is the central element of the so-called back-propagation (BP) algorithm. 

However, in order to apply gradient descent to binary networks, it is necessary to turn 

the binary neurons into ones with continuous activity during learning. Let the transfer 

function of each neuron b e / .  It is customary to choose/ to be

/ (A) = tanh (pA), (Eq, 3.2)

where A denotes activation, and the parameter p evidently controls the ‘sharpness’ of 

the transfer at A=0: it is called ’steepness'. As it goes to infinity, the transfer function 

is essentially a thresholding function taking ±1 depending on the sign of the activation 

A. Originally, ( f  (A)+l)/2 is used so that the activity level is between 0 and 1. 

However it is a well-known rule of thumb that using tanh rather than the shifted 

version improves learning speed in simulation by 30-50%. This has been confirmed 

by many studies, see for example (Stometta et. a i, 1987; Peterson et. a l, 1989).

Since for a 3-layer network, the output is given by

Ok = A  Z. WH0(k, i)/(ZjWiH (i, j) Ij) ),

applying gradient descent gives the following learning rule:

AWnoCk, i) = X f  (Ao(k)) ( 0 \  - Ok ) Hi

AWm(i, j) = A. li f  (AhÜ)) Zk f  (Ao(k)) WHo(k, j ) ( 0 \  - Ok ) (Eq. 3.3a)

Note that the rule for the H => O weights reduces to the perceptron rule in the binary 

limit with f  regularised by the step-size X (the difference in f  (Ao(k)) from cell to cell 

is eliminated in the limit). However it is not possible to turn the rules into binary form 

for both H=>0 weights and I=>H weights at the same time. This is because in the
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second part of the rule, it is the square of f  that appears. As one takes the binary limit, 

it is thus impossible to keep both X f  and X{f’Ÿ  finite but non-zero by adjusting X. 

Also, the ability to absorb f  into the step-size means that steepness p and step-size X 

are not independent parameters. In fact, the behaviour of the network remains 

unchanged if one scales the steepness P to 1 and scales the learning rate by p  ̂ and all 

initial weights by p (Tbimm et. al. 1996).

Following the above training, the intemal representation on H layer(s) can sometimes 

be interpreted in a neural context. The biologically controversial part of this learning 

method is the second half of the rule (Eq.3.3). Note that the weight change for 

synapses between I- and H-layers requires information that is only available on the O- 

layer, namely, the information about the error and the H=>0 weights. For this reason, 

this algorithm is given the name Back-Propagation since it is evidently necessary to 

somehow propagate the information from the output layer to successive layers all the 

way back to the layer immediately above the input layer. Further, the nature of the 

error signals (containing derivatives and so on) is such that it is not easily coded by the 

activity of cells. Some independent memory must be associated with each cell in 

order to retain and transmit such information.

The algorithm has been applied extensively due its generality and mathematical 

simplicity. There has been extensive investigation into this algorithm. Its properties 

are by now well-known. Below is a brief summary. Detailed survey of the state of BP 

research can be found in (Hassoun, 1995), and (Ripley, 1996) also contains useful 

insights.

A Brief Review of Performance Properties

Learning is usually slow and unstable when the rule is applied in its basic form. 

Arguably the single most effective method of improving convergence is the use of a
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momentum term, cf. (Rumelhart, et. a l 1986; Hassoun, 1995). The idea is that each 

required weight modification has a lingering contribution in all subsequent 

modifications, but the contribution decays as a", where 0<a<l and n is discrete time. 

That is

AW n+i = X E n +  aAW n, 0<a<l (Eq, 3,3b)

where AW „ is the weight modification for a connection at step n, X the step-size. En 

the error correction to that weight calculated according to some learning algorithm, 

such as in (Eq. 3.3a).

Note that any learning algorithm can be supplemented by momentum smoothing, 

regardless of the details. The algorithm in use, what ever it is, calculates the weight 

modification required for the current step according to that algorithm. The momentum 

term simply allows the weight modification carried out in the previous step to make a 

weakened contribution also.

Momentum smoothing results in large modifications in flat regions of the error 

surface, and prevents over-shooting in a rugged terrain, thereby making convergence 

more reliable. Usually learning is not sensitive to the precise value of a  as long as it is 

not too small or too close to 1 (Rumelhart, et. a l 1986; Müller et. a l, 1991; Hassoun,

1995); for detailed investigations in the context of gradient descent/BP algorithms, see 

(Tugay et. a l, 1989; Tollenaere, 1990). There have been proposals of self-adapting 

momentum terms (Fahlman, 1988). However, the learning rule becomes extremely 

cumbersome and seems even more remote from biological reality than ordinary BP.

Regardless of the modifications above, performance is sensitive to step-size. For fixed 

parameters, performance is slow when step-size is excessively small, but unstable 

when step-size is too big, and achieves optimum for an appropriate range of
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intermediate step-sizes. In general, to speed up learning further, larger steps are 

needed at the beginning but increasingly smaller steps are necessary for convergence.

Update schedules can affect convergence speed also. In classical BP, as in (Rumelhart 

et. al. 1986), to be consistent with the mathematics of gradient descent, the batch 

updating schedule must be adopted. As the gradient of the error function depends on 

all pattems in the training set, the required weight changes are only known after a 

complete presentation of the training set. This evidently is unrealistic in a biological 

context, as the ‘training set’ in the real world may be indefinite, changing, and may 

contain many redundant examples. Further, each connection weight is modified only 

once every epoch in this strict gradient descent scenario, which seems excessively 

cautious. Thus, the on-line updating schedule is often suggested for BP. It is found 

that on-line updating approximates stochastic gradient descent if the step-size used is 

vanishingly small; however, there is no essential difference between this infinitesimal 

on-line and finite batch updating procedures (Finnoff, 1994). Using finely-tuned finite 

step-size, the on-line method may but does not always improve learning speed when 

the training set contains a large number of redundant (same or similar) examples and 

when there are local minima in the error function; the quasi random character of on­

line updating gives an ‘annealing’-like effect (Finnoff, 1994). However, on-line 

updating, unlike the batch method, cannot converge unless step-size is gradually 

reduced eventually to zero as (learning) epochs go by (Ripley, 1996). It is thus more 

volatile and tends to oscillate if step-size is not tuned and scheduled correctly. How 

this is done is a matter of trial and error. Many heuristics have been proposed, though 

all are computationally expensive and none definitive. There are adherents to either 

the batch or the on-line method, but there is as yet no conclusive evidence to favour 

either method. The total-on-line method (Section 3.1.2) seems not to have been 

studied with BP, and some observations will be discussed in Section 6.4.
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Finally, BP, like other gradient descent methods, is very sensitive to initial weights, 

i.e. where the system starts gradient descent matters greatly. Further, if initial weights 

are too big, units are likely to be saturated (i.e. close to either of the two extreme 

activity levels), which make learning impossible or slow. The usual practice is to 

normalise random initial weights so that they fall within ±3L/N^^ ,̂ where N is the 

number of training pattems, and L is the typical length of the input pattem, cf. 

(Hassoun, 1995); this simple normalisation can improve teaming speed. Note that 

weights are thus expected to grow with and that periodic normalisation is 

necessary if teaming is on-line with no defined training set. Such normalisation would 

destroy past knowledge since the activity of a BP network depends continuously on 

the weights. It is hard to reconcile this with biological reality.

Section 3.3 Self-Organising Networks

3,3.1 Supervised and Unsupervised Learning

Multi-layer perceptrons belong to the class of networks that do supervised learning in 

the sense that they are trained with a specific set of input-output mappings. Another 

class of networks is designed to achieve, iteratively, as their output, a particular type of 

representation for a given input population. The training procedure usually involves 

presenting sample inputs randomly selected from the population; weights are modified 

following each presentation. The modification algorithm is such that weights will 

converge so that continued presentation will no longer lead to any change. The 

resulting activity pattems on each layer, associated with each input, are then regarded 

as the intemal representations, which can be interpreted as achieving feature 

extraction.
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Note however that the difference between supervised learning and unsupervised 

learning is not fundamental. The representation achieved through unsupervised 

learning is useless unless it can facilitate the implementation of some learning goal. 

This goal, in abstract language, is a set of defined mappings from the input population 

to a certain output population. The representations achieved through unsupervised 

learning may go some way towards achieving this overall mapping if the 

representations selected by the unsupervised algorithm render the mapping problem 

more readily solvable as a 2-layer problem. To be constructive in this way, the weight 

training algorithm of an unsupervised network must implement valid assumptions 

about the statistical structures of the input population and their relation to the likely 

learning goals.

From this point of view, supervised learning (on a three-layer net) merely makes the 

implicit goals explicit, while relying entirely on output errors to drive the creation of 

appropriate intemal representations on the hidden layer.

3.3.2 Competitive Learning Strategy

One of the most widely used and versatile unsupervised learning algorithms is winner- 

takes-all or competitive learning (Amari, Arbib, 1977); see also (Hassoun 1995). The 

architecture of the network is the same as the simple perceptron except that the input 

cells are continuous so that the input pattems can be any real vector. However, given 

any input pattem P i , the activity at the next level is given by

Oi = 0  (ZjWio (i J)Pi(i) - Max {Z,Wio ( i , k)Pi(k) ; i=l,2,...No}).

That is, only the one with the largest activation is allowed to be on. This function can 

be implemented biologically through lateral inhibition.
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In a training situation, only weights onto the winner cell w are modified according to

AWio(k,, i) = X ( P i (i) -Wio(k^, i) ). (Eq, 3,4)

Had X been 1, the new weight vector would simply be the input vector. On average, 

when X is small, and the sampling of the input population extensive, the cell 

concemed would tend to become an encoder of a group of inputs clustering close to 

each other. Due to the exclusive nature of the winner-takes-all mle, each cell will 

become sharply tuned to a particular cluster, thus serving as a detector for that cluster. 

The input weight vector onto each cell is therefore a prototype (cluster centre). By 

creating prototypes, a substantial amount of correlation in the input population is 

eliminated. The network can be seen as a classifier, which discovers the categories 

(clusters) as it samples the input populations.

3,3.3 Kohonen Network

The competitive algorithm simply represents one strategy that appears to be important 

for the brain to adopt in order to eliminate the most common type of redundancy that 

exists in our natural environment, namely, local correlation resulting from the 

continuous nature of most properties. The cortical topographical representations of 

body surface or retinal positions can be reproduced by this coding strategy. This is 

explicitly demonstrated by the Kohonen network (Kohonen, 1990)

It is a type of soft competitive learning algorithm. The network consists of continuous 

neurons such as the ones above. The architecture is still the two-layer perceptron one: 

an input layer and output layer with full forward connections between the layers. 

Training is exactly like that for ordinary competitive networks, but instead of having 

only the weights onto the winner cell w modified as in (Eq. 3.4), the modification mle
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is modified by a neighbourhood function Nw(k) to become AWio(k, i) = 1 Nw( k-kw) 

( P i (i) -Wio(k, i) ), where N^( k-k ,̂) is positive, with maximum value 1 and declines to 

zero with distance k-k ,̂, the distance from the winner cell w. When the network is 

large, one can approximate the output layer by a continuous line or continuous sheet. 

Then, the above becomes, AWio(p, q) = ^ N^( p-pw) (Pi (q) -Wio(p, q) ), where p, q are 

coordinates on the output and input ‘sheet’ respectively (just like the j and i labels in 

the discrete case). The neighbourhood function may be chosen as the symmetric 

Gaussian centred at 0 (so that it is maximum at p*).

Remarkably, the above algorithm is capable of producing topographical 

representations of the input space such as those observed in the cortex. In particular, 

each cell in the resulting network shows a well-defined receptive field that is sharply 

demarcated from that of neighbouring cells, despite the fact that all output cells 

receive the same input signals.

Section 3.4 Homogeneous and Hierarchically Organised Attractor 
Networks

3.4.1 A utoassociative A ttractor Networks

So far we have discussed networks that have feedforward connections only. These 

networks must be driven externally, with no dynamic interaction. This need not be the 

case if there are loop connections. In general, let us consider a uniformly connected 

network of N (binary) neurons, with connectivity R, i.e. on average each cell projects 

and receives projections from RN cells. For such a network it is no longer natural to 

see it as layered (unless there are functional differences in the connections. In the 

homogeneous case we simply need a NxN weight matrix to describe the network. 

Once an input pattem is fed into such a network, activities can be sustained without
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being driven externally and the activity pattem will evolve in time and can settle into a 

previously experienced state (Marr, 1971; Gardner-Medwin, 1976; see also Willshaw 

& Buckingham, 1990).

A convenient way to study the dynamics is to see the net as a point meandering its way 

in the state space of the network. (A network state is the collection of instantaneous 

states of all cells in the network.) A trajectory is completely determined by the initial 

state and the weight matrix. There are usually fixed points in the dynamics. The 

network will settle in such a state once it is reached. What is relevant are those fixed 

points that are robust, called stable states. That is, following perturbation, the network 

is capable of returning to and staying in those states. The set of states starting from 

which the network will reach a given stable state in finite time is called the basin o f 

attractions. The parallel between such dynamics and the act of recall is self-evident. 

It is fair to say that any system with a reasonably rich dynamics containing numerous 

stable states (and cycles) can be used to model a memory. This is the basic idea that 

has been popularised by (Hopfield, 1982).

Uniformly connected networks, called autoassociative or attractor networks have 

been extensively studied by physicists because it is amenable to thermodynamics; a 

comprehensive exposition to this field can be found in (Amit, 1989). These 

techniques reveal the essential properties and limitations of such a system as a model 

for biological memory. The main results are that they have limited capacity, relatively 

fast convergence; they are poor at storing and recalling non-orthogonal pattems (i.e. 

pattems with lots of overlaps), though there are algorithms that can diminish this 

problem (Gardner-Medwin, 1989; Gardner-Medwin & Kaul, 1995). This kind of 

network, incorporated into a hierarchical network, may be appropriate for modelling 

short-term memory (STM).
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3,4,2 Hierarchically Organised Attractor Networks

The following hybrid structure is commonly proposed, e.g. (Marr, 1971; Amit, 1989).

E 0000000 •  • • • 0000000 < - E
S B 0000000 • • • • 0000000 < - E

E => 0000000 • • • • 0000000 => E
B => 0000000 •  • • • 0000000 E

Input Layer STMi:
autoassoeiative

STMq: Output layer
autoassoeiative

It is a hierarchically organised multi-layer network, with each layer an 

autoassoeiative network. In addition to the forward connections between layers, 

there are also backward connections from higher level layers to lower level ones.

For the above structure to be distinct from a purely autoassoeiative structure, one 

must assume that the there are functional differences between the intemal 

connections within each layer, the forward inter-layer connections, and the 

backward inter-layer connections. The three classes of weights may behave 

differently and play different roles. For instance, the autoassoeiative layers in the 

above stmcture may model short-term memory (STM) while the inter-layer 

connections, long-term memory (LTM). The activity pattems on each layer can 

be induced in part by extrinsic connections and in part by connections within.

Examples of this type of networks include the following.

Bi-direction Associative Memory (BAM)

BAM (Kosko, 1988) is perhaps the simplest in this class. It is essentially a 2-layer 

perceptron with symmetric connections that mn in both directions. Within each layer.
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the connections are trivial (i.e. none). As such, it is merely a Hopfield associative 

memory with incomplete connections.

The ART Network

ART, Adaptive Resonance Theory (Carpenter, Grossberg, 1987), is an unsupervised 

network which consists of two bi-directionally connected layers FI, the pattem layer, 

and F2, the category layer. Each cell in F2 is a category node and only one can he on 

at any time (due to lateral inhibition). The connection from F2 to FI is such that the 

'on'-node can turn on, in layer FI, the 'prototype' pattem of the category that the node 

represents, in the absence of other influences to FI. The connections from FI to F2 

have modifiable weights that can be changed in case the category assigned to a pattem 

by these weights needs to be changed. Graphically, the ART network is as follows, 

where an input layer to FI is added for later discussions.

Raw Inputs

<- m
=> 0 ■ < - z

I z
mm ■ z

Pattem Layer FI Category Layer F2

Given a pattem on FI, a category node on F2 will be chosen via the forward Fl-to-F2 

connections. This node will tend to evoke the prototype of that category on FI via the 

backward F2-to-Fl connections. A tuneable "vigilance parameter" will decide 

whether the prototype is sufficiently close to the existing pattem on FI. If it is, then 

the forward and backward connections become a positive feedback loop: a resonance 

will be established and all connections will be reinforced. If it is not, an altemative 

category will be assigned (by suppressing the failed node) to see if resonance can be 

established. If all existing categories fail, a new category will be created with its 

prototype as the existing pattem on FI. Once resonance is established, all weights will 

be modified to promote the new category arrangement. In a steady state of the
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network, whatever the pattem on FI is, a resonance can be established. That is, in a 

steady state, any pattem on FI and the category node it evokes constitutes a fixed- 

point of the dynamics, under the given "vigilance" level.

The Wake-Sleep Network

The Wake-Sleep model (Hinton et. al. 1995) is a multi-layer, unsupervised network of 

stochastic model neurons. Every adjacent pair of layers in the network is connected by 

top-down and bottom-up connections. Bottom-up “recognition” connections convert 

inputs into representations in successive hidden layers, and top-down “generative” 

connections reconstmct the representation in one layer from the representation in the 

layer above. The top-down and bottom-up weights are trained separately in two 

distinct phases. In the wake phase, neurons are driven by bottom-up, recognition 

connections, and the top-down, generative connections are trained to increase the 

probability that they would reconstmct the correct activity pattems in the layer below. 

In the sleep phase, neurons are driven by top-down connections, and bottom-up 

connections are trained to increase the probability that they would produce the correct 

activity in the layer above.
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Chapter 4 Theoretical Aspects of the Reverse Activation Algorithm

Before we launch into a detailed justification and analysis of the RA algorithm, we 

shall first outline the procedures and issues involved, as well as their relation to other 

network models with backward connections. The terminology established in Chapter 

3 for 3-layer feedforward perceptron will be used throughout. In particular, assume 

that each output cell has a ‘backward’ connection to each H-cell.

Section 4.1 An Overview of the RA Algorithm

4,1,1 Fundamental Steps in the RA Algorithm

The algorithm is a pattem-centric algorithm. That is, to leam to map input pattem Pj 

to output pattem ?o on a 3-layer feedforward perceptron (as defined in Section 3.1 and

3.2), the algorithm first constmcts an intemal representation pattem ?h*. Then the 

perceptron teaming mle (or some other valid mle) is applied on the I => H weights and 

on the H => O weights to attempt to achieve the ?i to mapping and the ? h* to ?o 

mapping respectively. It thus breaks down the 3-layer problem into two 2-layer 

problems.

Note that the 2-layer teaming need not be carried out to completion, i.e. ? h* need not 

be achieved completely. Weights are only modified one step at a time and teaming is 

stopped as soon as the ?i -to-?o mapping is achieved. In other words, ? h* may not be 

the final intemal representation adopted by the network, it merely provides a target to 

motivate the I => H and the H => O weights to move in the right directions.
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The key is therefore how Ph is constructed. The RA algorithm uses the following 

procedure, which requires a reverse connection matrix from the O to the H layer, to be 

discussed later.

1) Impose the input ?i and output ?o pattems simultaneously on the I and O layers 

respectively;

2) Compute the combined activation pattem on H layer

Ah'*^=Wih Pi + vj/WoH Po (Eq. 4.1)

where Wih and Won denote the weight matrices from I=>H, H=>0, and 0=>H; 

and Y is a pre-set, non-negative number called the reverse activation strength.

3) Produce binary activity pattem Ph* by way of the following:

Ph* 0)^1 only if Ah  ̂(j) is one of the top W activation amongst all j= l,2 ,.. .Nh,

where W is a pre-set number, fixing the activity ratio of the intemal 

representation.

4.1.2 The Key Elements and the Biological Plausibility o f RA 

The Reverse Activation Matrix

The Two fundamental questions arise about the reverse activation matrix Wqh- What 

determines the individual weights, i.e. the form of the matrix Wqh? And how is its 

overall effect, i.e. the reverse activation strength (y) modulated?
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The basic requirement for the W q h  is that it should be an adequate inverse to the 

forward matrix. That is, on the 2-layer network of the H and the O layer, given any 

output pattem, the reverse matrix should be capable of producing a pattem on H which 

produces the output itself via the forward matrix. This is because the purpose of the 

reverse connections, when activated by a desired output pattem, is to shift the activity 

on the H layer towards a pattem that will reproduce the output pattem via the forward 

matrix. The best choice of W q h  in fact appears to be the transpose of W h o , as 

discussed in Chapter 4.

Once teaming of a set of I-O mappings has taken place, only the forward connections 

are taken into account in assessing teamed performance. The reverse connections may 

be able in principle to contribute to improving the quality of an output pattem through 

dynamic interplay of the H and O layers during recall, but this would take time to 

settle and only the correctness of a teamed output on the first step of such a dynamic 

process is actually considered here.

Reverse Activation Strength

The reverse activation strength v|/ is an important tuneable parameter for the RA 

algorithm. It is needed partly to counteract arbitrary scaling of the I=>H weights 

relative to the H=>0 weights. But its more fundamental importance is to control how 

much the new intemal representation is to differ from the one generated by the input 

and the existing weights. Note that when \\f is 0, the modified representation coincides 

with the existing representation. And when it is infinite, the chosen representation is 

completely determined by the output and the 0=>H weights. In between, it regulates 

the relative contributions of the paired input in determining the intemal representation. 

Another way to see it is that \\f decides how learning is 'shared' between the I=>H and
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H=>0 connections: when vi/=0, the input representation remains unchanged and 

learning is entirely carried out on Who; whereas with vj/=oo, much of the learning 

involves changes in Wih, which may result in a new representation that requires little 

if any change to W h o  to produce the desired output.

In the initial simulations of RA, \\f is fixed prior to training and remains fixed 

throughout the epochs. It is necessary to try out different values to determine the 

optimal range (rather like tuning for optimal step-size or momentum in BP). An 

alternative version selects \\j randomly from a pre-determined range prior to each 

superposition of inputs and outputs, so that v|/ changes every time it is used. The 

advantage of the latter is that it obviates the need to tune \\j. It is interesting that this 

seems to work almost as well as employing a constant and optimal \\j.

How could Y be modulated in a biological context? Two possibilities are through 

effects of diffuse neuromodulators and, perhaps more simply, by varying the strength 

with which the desired output pattern is activated. The latter mechanism strictly 

contravenes the simplifying assumption made in the model that neurons are binary, but 

it is of course quite feasible with more realistic neurons that have variable firing rates

Binarisation and Activity Ratio

The binarisation procedure is quite crucial in the construction of the internal 

representation. It is done by fixing the activity ratio of the H layer. Then any 

activation pattern is binarised by allowing only the few most-activated cells to be ‘on’. 

Why is this necessary?

The problem of constructing a binary internal representation comes down to 

determining which cells should be ‘on’ or ‘off. The object of the construction
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procedure must be to include the ‘good’ cells (whatever that means) and exclude the 

‘bad’ ones. RA amounts to saying that the way to measure ‘goodness’ is via the 

‘combined activation’ defined in the (Eq. 4.1). As such the absolute value of the 

activation of each cell has little relevance in determining if a cell should be included in 

a representation or not because the activation is subject to arbitrary scaling. It is the 

relative order of activation that matters to the RA construction procedure.

As a result, fixing the activity ratio of the H and O layer is inevitable so that only the 

top few cells are allowed to be ‘on’. This is referred to as ramped binarisation. This 

makes the activity ratio on the H layer a tuneable parameter, providing a perfect 

opportunity to study the effect (on performance) of different activity ratio constraints 

for internal representations. As such, the RA procedure is a way of solving a given 

mapping task by constructing internal representations of a given activity ratio.

This binarisation procedure is also applied during recall on both the H layer and the O 

layer, for consistency. The behaviour of the network is more robust as a result.

A Non-gradient Descent Method

One key difference between RA and BP or other gradient descent methods is that the 

internal representations constructed are not driven by output-errors. The input and 

output mappings alone determine directly what the appropriate internal representations 

should be. Not having a defined error-surface in which to descent, it is hard to study 

the method analytically. For instance, it is not clear why the process should converge 

let alone learn anything at all.

Generalisation to Multiple Layers

RA can be generalised straightforwardly to networks of the type described in Section 

3.4.2. Internal representations on successive layers are determined by the fixed points
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of the dynamics resulting from the bi-directional linkage between the layers, keeping 

the input and output layers clamped. In Section 4.4, it is proved that such fixed points 

always exist and explained how this is consistent with the RA for 3-layer networks.

Biological Plausibility of Assumptions

The process of improving representations on the H layer is essentially a matter of 

recruiting 'better' cells for the purpose of generating the desired output and dropping 

'bad' cells. One could look on this as analogous to learning to notice features of an 

input that lead you to the right conclusions about it, and learning to ignore features that 

lead to the wrong conclusions, based on previous learning. The criterion for 'good' 

cells is that they are strongly activated from (and by inference associated with) the 

correct output as well as the input, using a suitable reverse weight matrix. In fact the 

reverse matrix adopted for the simulations (the transpose of the forward weights) is 

likely to be one of the more simple to establish biologically, since the reverse 

connection between cells Oj and Hk is the same as the forward connection between the 

same cells, and this might be expected on the basis of simple associative (Hebbian) 

synaptic modification. Reciprocal connections from higher level centres are very 

common in the brain (e.g. Mumford, 1991,1992; Lee et. al. 1998), though their 

properties in relation to forward connections are not generally known.

The total number of active cells is kept fixed in the RA simulations ramped 

binarisation so that it is the ranking of the H cells that should govern which cells 

should be employed for a representation, not their absolute levels of activation. If 

there are too few active cells then the capacity of a network to represent and learn 

about different events is restricted, while too many active cells can lead to problems of 

overlap and interference. Ramped binarisation could in practice be implemented by 

negative feedback employing widespread recurrent inhibition set by the number of 

active cells.

45



RA makes use of the simple perceptron learning rule for weight modifications, which 

is a relatively plausible learning rule in a biological context, based on association 

(Section 3.1.2). The simple perceptron rule is not in fact essential to the algorithm 

itself. Any other 2-layer rule can be applied once an internal representation is 

constructed. It is substantially more plausible than a learning rule based on back- 

propagation.

The RA algorithm requires the existence of STM so that target-pattems on each layer 

can be repeatedly recalled to train the inter-layer weights and improve representations. 

Though the relationship between STM and LTM in producing consolidation is far 

from clear, it is evident that the nervous system contains the capability of recalling at 

least some aspects of the representations of recent stimuli and appropriate responses, 

both during waking and sleep, partly on the basis of human reports of subjective 

experience and partly from hippocampal animal studies (e.g. Skaggs & McNaughton,

1996).

4.1.3 RA in Relation to Other Bi-directional Models 

Compared with BAM

BAM (Section 3.4.2) resembles the bi-directionally connected internal and output 

layer in the proposed RA network. However, the potential dynamics on these two 

layers, as a result of the bi-directionality, does not play any part in either training or 

recall in RA. During RA training, while the modified internal representation is being 

chosen, both the input and output layers are constrained to the input and the target 

output patterns. During recall, the output is defined as the result of the first forward 

sweep. Further, the reverse activation strength parameter, which plays a crucial role in 

the choice of internal representations, makes the effect of the reverse connections
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variable and asymmetrical. In BAM however the forward and reverse connections are 

treated completely symmetrically.

The key purpose of the reverse connection in RA is to allow the output play a part in 

shaping the internal representations of the input. In the future, one might consider 

giving the dynamics a role in the computation of outputs, especially for novel inputs, 

but this is not a fundamental feature of RA. Nor indeed is the symmetry of the 

forward and backward weights, which is a simple and approximate solution to the 

attainment of an ideal reverse matrix (Section 4.3.3).

Compared with the ART Network

One can incorporate ART (Section 3.4.2) into a 3-layer supervised network, while 

retaining the spirit of ART, to make it comparable to RA. ART’s layer FI naturally 

identifies with the hidden layer, receiving pre-processed inputs and activation from 

layer F2, which identifies with the output layer. In the forward sweep, the input is 

reduced to a prototype pattern on FI, which hopefully is associated with the desired 

category nodes on F2. ART demands that in a steady state of the network (i.e. with 

resonance achieved) any internal representation pattern must be similar to the 

prototype pattern of an output category. In other words, in any steady state the internal 

pattern evoked from the input alone must be always similar to the internal pattern 

evoked from the associated output alone. How ‘similar’ will depend on the level of 

"vigilance" chosen during learning (for very high levels, they should be the same). 

The RA network does not use this symmetry as a goal that drives the construction of 

internal representations.

However, in RA and in ART both the inputs and the required outputs play a direct role 

in determining the internal representations that would finally emerge through their 

respective learning procedure. Note that the "vigilance" parameter acts to either
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accept or reject the pattern evoked from the input as the internal representation 

depending on whether its similarity to the prototype of the corresponding output is 

high enough. In case of acceptance, the network learns by changing weights between 

FI to F2 only. In the second case, the prototype of the target category will be the 

chosen internal representation and the network leams by changing the weights from 

the input to layer FI only. Only in case of very high "vigilance" level, the internal 

representation would be solely determined by the output and the network leams by 

changing the weights from the input to layer FI only. This is similar to the situation 

when the “reverse activation strength” parameter in RA is chosen to be very high. 

However, there is an important difference. The “reverse activation strength” 

parameter in RA provides a graded control as to how much the input (or output) will 

contribute to the construction of the internal representations, in other words, how 

learning will be shared between the group of connections linking the input to FI and 

the group linking FI and F2. In ART on the other hand, for any given input-output 

pair, the internal representation is either 100% input driven or 100% output driven.

Compared with the Wake-Sleep Network

The hidden and output layers in a RA network may be compared with the Wake-Sleep 

network (Section 3.4.2), ignoring the stochastic nature of the neurons in Wake-Sleep. 

Wake-Sleep, applied in a supervised fashion, would demand that the hidden-layer 

pattern should evoke the required pattern on the output layer and that the output 

pattern should be able to evoke the chosen internal representation pattern; connections 

in each direction are trained separately and alternately. This closely resembles the 

resonance requirement in ART except that the output pattern is not limited to being 

exclusive categories.

Without allowing reverse connections from the hidden layer to the input layer, i.e. 

applying Wake-Sleep only to the hidden and output layers, the internal representation
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that would finally emerge after learning is mostly determined by the required output. 

This differs from both RA and ART, in which the input also plays an ongoing role in 

moulding the internal representation. Further, even if one allows reverse connections 

from the hidden layer to the input layer and applies Wake-Sleep to the complete 

network, the input and output would always play an equal part in determining the 

internal representations. This is not the case in RA, nor in ART.

Section 4.2 Modification of Internal Representations via 

Reverse Connections in RA

In this section, we study what a modified internal representation should be, and how it 

can be generated in RA in details.

4,2,1 The Basis for Constructing Internal Representations 

The ‘Minimal Disturbance Rule’

The intuition behind the RA algorithm is very simple. Any modification of weights 

may cause interference i.e. may damage performance on mappings already learned by 

the network. It is desirable that a novel pair o f input and output should be learned 

with minimal disturbance to previous learning and hence to the existing weights. In 

general, it seems likely that spreading small weight changes over a smaller number of 

relevant weights will help to diminish overall interference.

fri order to apply the perceptron learning algorithm to both of these projections, there 

must be a target pattern on each of the H and O layers. The target for the O layer is 

clear - it is the desired output pattern. The target Ph* for the H layer may differ from 

the initial ? h evoked by input pattern ?i so as to be better at eliciting the desired output
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with no or reduced changes to H=>0 weights; this reduces the necessary disturbance to 

the existing W h o  matrix. But it must also not differ too much from Ph, s o  that 

disturbance to Wih is kept to a minimum. The upshot is that the target H- pattern ?h* 

should be a compromise between the set of cells on H that are most easily activated 

from the input pattern Pj and those that are most effective at eliciting the correct output 

pattern Pq. The RA algorithm relies on the notion that the effectiveness at eliciting the 

correct output pattern correlates with the reverse activation of the H layer from the 

desired output, operating through a suitable connection matrix Won that can be set up 

in a practical manner.

Combining Forward and Reverse Activation

At the cellular level, choosing a good representational pattern comes down to deciding 

whether each H-cell should be ‘on’ or ‘off. The two factors to be considered in this 

decision are the cell’s ease of activation by the input and its ‘effectiveness’ in evoking 

the desired output, given the existing weights.

Ease of activation from the input is directly available to the H cells in the form of 

forward activation vector Aj, where Aj (j)=Ei Wih (j, i)Pi(i), from the input layer to the 

H cells. A representational pattern that is easy to implement is one in which the ‘on’ 

cells already have high activation from the input.

The effectiveness of an H-cell for evoking the required output depends only on the 

output pattern and the forward H=>0 weights. In particular, it has nothing to do with 

the I=>H weights and the input, much as the ease of activation has nothing to do with 

the H=>0 weights and the output. To the extent that the reverse activation correlates 

with this effectiveness, it influences the choice of a target representation by means of 

the reverse activation vector Aq from the output layer to the H cells, expressed as
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AoÛ)=Si WoH (i, i)Po(i)- The following diagram summarises our considerations so 

far.

input 
connections 

with combined 
activation A,

Output iines

reverse 
connections 

with combined 
activation Aq

H layer

Figure 4.2a. Three types of connections associated with each H cell. Every H cell projects to the 
output layer, and receives projections from the input as well as the output layer. If the input and the 
target output patterns are imposed on the respective layer, the instantaneous activation received by an H 
cell from the input layer is denoted as A, , and similarly, the instantaneous activation from the output 
layer is denoted as Aq.

Since both the forward and reverse activations onto individual cells are relevant to 

their selection for a new representation, it is helpful to portray them on a 2-D scatter 

plot (Fig. 4.2b). Each H cell is plotted with its forward and reverse activations (Ai, 

Ao) as Y- and X-coordinates, respectively. We shall refer to such a plot as the 

activation scatter o f H  cells, usually for a particular set of input-output pairs, given the 

initial weights. Note that with Nh H-cells and N input-output pairs, the total number 

of points in the plot will be NhxN (so each H cell appears N times).

It is important to understand this plot because it illustrates the learning process and the 

thinking behind RA. This will be explained here in an informal manner, begging for 

the moment the question of how it may be valid to treat reverse activation (on the X- 

axis) as equivalent to effectiveness for generating the corresponding output. A strong 

positive correlation in the scatter predicts 'easy' training, since the initial weights are 

already such that those H cells strongly activated from the inputs also tend to be
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effective for turning on the desired outputs. A negative correlation indicates that the 

new learning task is at odds with the current weight configuration and past experience 

of the network: the H cells most associated with the correct output pattern are those 

that are poorly activated from the input. An absence of correlation would indicate 

independence between the past experience of the network and the new learning task at 

hand. The learning process can be represented through shifts in the positions of points 

on this plot, as indicated by arrows.

Ao

Figure 4.2b. How internal representation may be modified. Each H cell is plotted according to the 
activation it receives when the input and the target output pattern are imposed on the respective layer. 
The vertical coordinate Aj is the forward activation received from the input pattern; the horizontal 
coordinate Aq is the reverse activation from the output pattern. The horizontal line represents a simple 
threshold applied with input activation alone: those cells above this line will become the active 
representation. Non-zero strengths of reverse activation (T) give slanted threshold lines on the diagram, 
with cells then activated only if they are above the slanted line. In general this leads to recruitment of H 
cells with high Aq and dropping of cells with low Aq. Subsequent learning on the Wjh matrix, with this 
as a target representation, leads to the vertical shifts indicated, while learning on the Who matrix 
(reflected in Wqh ) results in horizontal shifts.

What is Required of the Reverse Matrix

The reverse matrix needs to be set up so that the reverse activation Aq received by an 

H cell from the target output pattern is a reasonable indicator of how effective the cell 

is in evoking the target output pattern. Putting it in another way, the reverse matrix
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must be such that a selection of H cells with high reverse activation will require less 

H=>0 weight change to evoke the target output pattern. Stated more formally:

The required backward connection matrix tracks the state of the forward 

connection matrix in such a way that the effectiveness o f any H cell 

fo r  producing a particular output pattern is indicated by the activation 

received from the output pattern via the reverse connections. If so, for an 

H-cell Hj, the reverse activation

A o (i)=Z i Wqh (j, i)Po(i). (Eq. 4.2)

Can be used a proxy for its effectiveness for producing an output pattern 

Po={Oi,...,Oj,...} given the current forward weights Who-

However, the above is not very meaningful in that it does not explicitly provide a 

way of testing whether any matrix fulfils the requirements: how does one know 

whether any particular backward matrix is adequate for this purpose?

Note that it is the forward matrix that ultimately determines how 

effective an H  cell is in evoking a particular target output, so the 

backward matrix Wqh must be determined by the forward matrix Who-

Therefore, the proper way to assess whether a matrix fulfils its role, i.e. whether it 

does compute ‘effectiveness’ when plugged into (Eq. 4.2) is to see how well the 

activity pattern on H-layer generated by the backward matrix actually produces the 

target output pattern Pq (via the forward matrix).

If the forward matrix W h o  has an inverse, then one may choose the backward matrix 

to be WoH= Wno^. For a linear network of continuous neurons, this choice of reverse
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matrix would give a perfect indication of effectiveness of any H cell in producing any 

output Po when plugged into (Eq. 4.2) because

W h o  A q — W h o  W h o  ' P o ~  P o -

In other words, if H cells are activated according to their reverse activation Aq as 

computed by the reverse matrix W q h =  W h o  \  the output pattern can be produced 

perfectly without any change to the forward weights. In this sense, this particular 

choice of backward matrix Who^ provides an adequate computation of effectiveness.

However, the matrix inverse may not exist; and the case for it breaks down in the 

presence of binarisation. A simpler and more general candidate might be

Woh=Who^ i.e., Who (i, j)=WoH (j, i) for all i,j, (Eq, 4,3)

where ‘T ’ indicates ‘transpose’. In this case, we simply have

Ao (j) =Zi Wno(i, j) Po(i). (Eq, 4,4)

This choice of reverse matrix assumes that the bigger the total weights from cell Hj to 

the target ‘on’-output-cells, the more ‘effective’ it should be. Intuitively, this seems a 

reasonable bet. In Section 4.3 the reverse matrix is considered further. Meanwhile, 

the reverse matrix can be considered as the transpose in the discussions that follow.

4.2,2 Constructing a Modified Representation

An initial representation ( P h )  of the input pattern on the H layer, evoked by forward 

activation alone, corresponds to the cells above a horizontal threshold line in Fig. 4.2b.
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The desired modification of this representation corresponds to recruitment of cells on 

the right of the diagram, strongly activated from the correct output and therefore 

associated with these output cells on the basis of past experience and likely to be 

effective at activating the these output cells. With a finite reverse activation strength 

(Y), the total activation onto H cells is influenced by the X co-ordinate on the diagram 

(Ao). A threshold uniformly applied to all the cells will then correspond to 

recruitment of those above the slanted line, with gradient -Y:

Ai + V}/ Aq = threshold (Eq, 4.5)

The desirable H cells on the right tend to be recruited and those poorly associated with 

the output pattern, on the left, are lost from the representation. This is the mechanism 

for the creation of a new representation Ph* .

To establish the new representation ?h* from the input alone, the network must 

change the I=>H weights. The I=>H weight modification, using ?h* as a target, results 

in the vertical movement of cells on the scatter plot (see Fig 4.2b). Though it is 

desirable to recruit cells with large positive Aq values and to exclude cells with 

negative Aq values, the ease of activation (A%) from the input is also important. Cells 

with initially high Aq but a very negative A% require substantial changes to the I=>H 

weights to be recruited, and may cause too much interference. This corresponds to the 

use of a very large Y, represented by a very steep slanted line on the scatter plot. 

Since learning can also take place on the H=>0 weights, corresponding to the 

horizontal movement of the cells (see Fig 4.2b) cells, the principle of minimal 

disturbance to the existing weights necessitates an appropriate trade-off between 

learning (hence changing weights) on the two sets of connections. The trade-off is 

regulated by This is discussed in Section 4.2.4.
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4,2.3 Setting the Number of Cells in a Representation

The new representation pattern Ph* depends on the binarisation process used to select 

active cells on the basis of combined activation Ai+\j/Ao. A process called ramped 

binarisation is employed.

Ramped Binarisation

The absolute value of the combined activation Ai+vj/Ao is employed as an indicator of 

how advantageous it is for a particular H cell to be ‘on’ in the new internal 

representation. However, it may happen that all H cells carry a small or negative 

combined input and reverse activation; this may happen if the new mapping is very 

different from those already learned by the network. In this case, one still has to 

choose the best available internal representation, given the circumstances. One is not 

in fact interested in the absolute value of the combined activation of each H cell, but 

only the relative order of H cells according to these values.

The natural way to obtain the improved representation ?h* from the combined 

activation pattern Ai+v|/Ao is therefore by ranking H cells according to their activation, 

turning on the best activated of the H cells for the new representation. Operationally, 

this is achieved by ramping, i.e. lowering the threshold on the H layer systematically 

from a high level until the desired number of cells are on: ramped binarisation. 

Ramping is easy to achieve biologically via a feedback mechanism involving 

controlled mutual inhibition.

From a biological point of view, the absolute value of synaptic efficacy and membrane 

potential are prone to many fluctuating factors. A binarised activity pattern is one 

possible mechanism to achieve robust behaviour against such noise. However, for this
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purpose, the binarisation procedure itself must be robust so that cell activity patterns 

are preserved as far as possible against fluctuations or scaling of weights and 

activation levels. Ramped binarisation meets the requirement better than ordinary 

binarisation procedures that are based on a fixed threshold (such as 0), essentially 

through feedback control.

Ramped binarisation is adopted as the normal procedure for RA. The effect on a 

scatter plot is illustrated in Fig. 4.2c. The slanted threshold line is moved up or down 

until the required number of cells is above it.

Figure 4.2c. How ramped binarisation fixes internal representation. An activation scatter for H 
cells, as in Fig 4.2b. The modified internal representation pattern is constructed by turning on only cells 
that fall above the tilted line, which is moved up or down by controlled inhibition until the correct 
number of cells remain above the line. Hollow arrows show examples of thresholds adjusted to give just 
2 active cells in the illustration.

The use of ramped binarisation makes the absolute value of activation meaningless; 

only the relative value counts. Systematic vertical and horizontal shifts in the scatter 

plots are irrelevant, and the relative vertical and horizontal scale changes are 

significant through affecting the appropriate value of vp for a given activity ratio.
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The details of the scatter and the choice of activation strength i.e. angle of the tilt, 

determine the precise cut that gives the right number of active cells. For example, for 

a small activity ratio, one would need to move the tilted threshold line to the ‘north­

east’ region of the scatter for most choices of tilting angles. The smaller the activity 

ratio the more ‘north-east’ the region has to be.

These considerations may seem academic but we shall come back to them in Chapter 

5, where they have practical implications to the tuning of reverse activation strength.

The Significance of Activity Ratio

One of the direct consequences of ramped binarisation procedure is that activity ratio 

of patterns on each layer, on the intermediate layer in particular, naturally becomes an 

integral part of learning on binary networks. This is interesting in view of Section 6.5 

where the significance of (low) activity ratio in efficient cortical representations will 

be discussed. By setting the strength of ramping, the activity ratios on a given layer 

may be fixed at any desired level (without weight changes). It is particularly 

interesting to consider the impact of activity ratio of internal representations on 

learning performance.

More detailed analysis in Section 4.3.4 reveals that activity ratio affects the potential 

performance of RA algorithm also in a direct way, independent from efficient 

representation considerations.
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Generalised Competitive Learning

Ramped binarisation, pushed to the extreme with only one 'on' cell, produces the 

competitive learning situation, for which the ability to extract features contained in the 

inputs without supervision is described in Section 3.3. Thus the RA learning 

algorithm with ramped binarisation is a form of ‘n-bit’ competitive learning with 

supervision; however, the supervision is less specific than in other supervised 

algorithms, since the teaching signals are not in the form of specific output errors, but 

are the required outputs themselves. To distinguish our situation from the usual 

competitive learning, or from the usual supervised learning, one may call it n-bit 

competitive learning with constraints (as opposed to 'with supervision ).

4,2.4 Random Tuning of Reverse Activation Strength

The RA algorithm involves the superposition of input and reverse activation with a 

weighting factor, the reverse activation strength \\f. The problem of how to determine 

the appropriate vj/ is important here. See Chapter 5 and 6 (Fig. 5.8, 5.14 and 6.1 in 

particular) for simulations showing the proposed solutions perform in practice. Some 

information from these simulations is introduced into the discussion here, because it 

has led to development of the strategy of random tuning.

To monitor the progress of training, it is common to plot the number of correct 

mappings achieved at the end of each epoch against the number of training epochs that 

have been carried out. Typically, the performance level rises relatively quickly before 

flattening out to approach an asymptotic level.

For the RA algorithm with a fixed \\f value (‘fixed-\|/ RA’) throughout learning, the 

observed learning curve approaches its asymptotic level very quickly. Further, it is
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found that for bad \\f values, learning performance settles into its asymptotic level 

much quicker than the performance of more successful trials (see for example Fig. 

5.4).

For good \\f values, the resulting small net weight changes in the latter stage of training 

simply reflect the fact that most of the mappings are correctly achieved so that 

modifications only take place rarely. However, in the case of bad \\f values, there is 

certainly no shortage of opportunities for weights to change. Yet, when net weight 

changes at the end of each epoch are recorded, they are found to be declining quickly 

to very nearly 0, corresponding to performance settling into its asymptotic state. The 

appropriate conclusion to be drawn here is that for bad y/ values, the modifications 

tend to cancel each other out, much more so than for good Xf/ values ( see for example 

Fig. 6.1).

This suggests that if v|/ is allowed to fluctuate randomly, then those modifications that 

result from inappropriate y  values will tend to cancel each other, while those that 

result from good \\j values will add up and generally move in beneficial directions. 

This bias will enable the network to learn positively over time, on average. This 

somewhat speculative conjecture is vindicated in simulations. The quality of learning 

is surprisingly good, comparable or better than the best of fixed-v|/ RA training in some 

cases. This version of RA shall be referred to as random-\|/ RA, which is detailed in 

Chapter 5.

Section 4.3 The Reverse Weight Matrix

This section considers in more detail a crucial aspect of the RA algorithm, the 

backward connection matrix from the output to the intermediate layer. This issue is
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self-contained and relates to the H and O layers only. That is, it is intrinsically a 2- 

layer problem.

4.3.1 Identification of the Ideal Reverse Weight Matrix

Let Po be any pattern on the output layer. Since the output layer has Nq cells, P q  

belongs to the No-dimensional real vector space. In general, one assumes that Po is 

generated according to some process described by a probability density distribution P 

over the vector space. This assumption covers the situations where Po is a Gaussian 

vector, or where Po is always a binary vector, etc. Throughout the rest of the Chapter, 

let us assume that the distribution P  is uniform.

Recall (Eq. 4 . 2 )  and the associated requirements for the backward matrix W o h - One 

may place optimisation criteria on this to make the requirements more concrete.

With respect to a given binarization mechanism B in the network, the 

backward matrix is required to be such that the expectation calculated with 

respect to P

E{d(Po, Po ) }  (Eq. 4.6)

is adequately small, where, in matrix-vector notation,

P q = Bo( WhoBh(WohPo) ), (Eq. 4.7)

and d ( , ) is some distance (i.e. error) measure for binary patterns.

Let us clarify the above with the following diagram.
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Figure 4.3 The defining property of the reverse connection matrix Woh* Given any binary pattern 
on the output layer, drawn from some probability distribution P, the matrix Wqh feeds it backwards to 
produce a binary pattern Pĥ Bh(WohPo) on the H layer; this is then fed forwards by the matrix Who to 
produce a binary pattern Pq*= Bo(WhoPh) on the O layer. The matrix Wqh is such that the average 
distance between Pq* and Pq is small. With the appropriate choice of distance, this property should 
imply that the average H=> O weight modification required to evoke pattern Pq from pattern Ph, which 
is computed by the backward connection matrix Wqh, is small.

Evidently, the distance measure , ) is the entity through which one ultimately 

expresses precisely what one means by the ‘effectiveness’ of an H cell (in producing 

certain pattern ? o ) ,  which determines what the reverse weight matrix W qh  should be.

The distance natural to the present situation is bit error, that is,

^ ( P o , P o > L  |P o (i)-P o \i) |,

because given that the synaptic modification rule is perceptron, it reflects the amount 

of H=>0 weight modifications required in order to produce pattern Po from pattern

P h= B h( W  qhPo) •

How does one find a reverse matrix W qh that satisfies the above? It may be instructive 

to note that the required reverse matrix by its definition above performs an inversion 

operation; the problem corresponds formally to the so called inverse problem, which is 

involved in modelling brain functions such as vision and sensorimotor control. Let us 

examine its relevance to the present situation.
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4.3,2 Standard Inverse Problems: Inverse Optics, Inverse Models

In the context of artificial vision (Kawato et. a l 1993), the desired outputs (patterns on 

the O layer of Figure 4.3) may be the equivalent of the input images. The H layer 

patterns correspond to the internal representations of the visual scene, in terms of, for 

instance, lines, edges, colour and so on; the H layer plays the role of the visual cortical 

areas. It is stated that visual recall (in this artificial model) is a forward optical 

problem: it constructs something similar to a low-level ‘retinal’ pattern P q , from its 

internal representation ?h bearing more relation to the outside world. The forward 

matrix W h o  then is the manifestation of a model of the forward optics. The earlier 

visual pathway I=>H in this model, performs an inverse transform {inverse optics), 

which turns a retinal visual image ?o into an internal representation ?h.

In the context of motor control, cf. ( Jordan, 1990), the O layer patterns represent the 

actual movement required (expressed in task coordinates such as speed, joint angles, 

reach and so on), while the H layer patterns represent firing patterns of motor neurons. 

Each firing pattern ?h is transformed forwardly into movements by a known map such 

as the forward matrix Who- However, the central motor control must do the opposite: 

it turns a desired movement into firing patterns. That is, it performs the inverse 

transform that produces the appropriate firing pattern ?h from a desired movement 

represented by pattern ?o; this is called an inverse model.

In either of the contexts above, at the simplest level, one usually assumes that the cells 

in each layer have continuous outputs and that the problem is continuously 

differentiable and approximately linear. The upshot is that one ends up with the 

demand that the backward weight matrix W qh  must be such that

WhoWoh^I, (Eq. 4.8)
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where 1 is the unit NqxNq matrix. This is so that patterns originating on the O layer 

can be reproduced: in the context of vision, the reconstruction of the image from its 

internal representation; in the context of motor control, the intended movements (on 

the O layer in terms of task coordinates) resulting from ‘motor neuron’ firing patterns 

(H layer).

This equation amounts to No^ linear equations with NhxNq unknowns and NhxNq 

coefficients from the known matrix W h o -

In the motor control case, one usually has N q <  N h  because the O patterns, which 

represent movements, come from a space of a much lower dimension than the space of 

firing patterns; in other words, many different firing patterns may achieve the same 

desired motor task. In this case, infinitely many matrices W q h  may exactly solve (Eq. 

4.8); one may write

W o h -  W ho  V ,

where subscript ‘R’ indicates that the ‘inverse’ is only valid if it multiplies on the right 

of W h o -

In the inverse optics case, it is usually assumed that N q >  N h  because ‘retinal’ images 

are supposed to be reduced dimensionally (at least in the artificial setting), i.e., to be 

more efficiently represented by lower dimensional patterns on H. It is obvious that 

(Eq. 4.8) has no exact solution in this case. For technical reasons, the column vectors 

of the forward matrix W h o  are made linearly independent, which is always possible 

without changing any essential aspect of the underlying problem.

The usual practice is then to choose a distance (error) measure <i( , ) on the space of 

image patterns P o ,  and seeks an ‘optimal’ solution that minimises the expectation
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E { ( / ( P o , P o  )}, where F q  = W h q W q h P q . The most common choice of distance , ) is 

the Euclidean distance, that is, one seeks to minimise the average mean square error. 

Let us assume that the probability density distribution of the images P q  is uniform, for 

simplicity. The optimal solution is then given by

W q h —( W h o ^ W h o )   ̂ W h o ^; (Eq. 4.9)

This is the pseudoinverse solution: the backward matrix W qh  is the pseudoinverse 

W ho  ̂ of the forward matrix W h o .

Our reverse matrix problem differs from the two standard cases above in some 

important respects. The expectation (Eq. 4.6) contains the non-linearizable 

binarisation operation B, and is calculated over binary patterns only.

Another important problem associated with the linear continuous solutions is that they 

cannot be computed by local operations (not to mention that the solutions must be 

computed differently according to whether Nh is greater or smaller than No). The 

backward matrix must track any changes in the forward matrix in order to continue to 

compute adequately the effectiveness of each H cell, i.e. to maintain the (pseudo) 

inverse relation. If one accepts the linear continuous solutions, the backward matrix 

modification A W qh  required is determined by solving

(A W ho)  W qh  +  W no( A W ou)—0 -

This is merely a set of linear simultaneous equations with unknowns A W oh  (i , j), 

which in general depends on every element of (A W ho) W oh  and Won- It cannot be 

computed via local synaptic rules.
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4.3,3 The Transpose as a Possible Inverse Operator

Due to the above difficulties regarding the inversion problem, one is forced to seek 

alternative reverse matrices. Recall that symmetric connection weights are used in 

autoassociative memories. In particular, the transpose has been used to perform 

inversion type tasks for binary patterns in the so-called bi-directional associative 

memory, BAM, a bi-directionally connected 2-layer perceptron-type network (Kosko, 

1988, Baum et. al. 1988). The transpose in this context is used to retrieve a given set 

of binary patterns that have been transformed by a forward matrix. It is proved that 

the dynamics on this 2-layer network, where the feed-backward connection matrix is 

the transpose of the feed-forward one, is always stable in that it always settles into a 

stationary state, in which the transpose is evidently an inversion operator.

One advantage for choosing the transpose as the reverse matrix for RA is that the 

algorithm can be generalised readily to a multi-layer setting (as in Section 4.4.) 

Another advantage is that local learning rule can be used to compute the transpose 

during learning, provided that the reverse matrix is the transpose initially. Apply 

Gardner-Medwin’s interpretation of the perceptron learning rule as a 2-stage Hebb 

learning: one of anti-learning (forgetting) when the internally generated output is on, 

and one of positive learning when the target output is on. Then since the same Hebb 

rule applies to both the forward and backward connections one has.

H cell in the selected 
representation on H

0  cell in the output 
pattern Po (or Po^

Forward weight 
change

Backward weight 
change

on on + (-) + (-)
on off 0(0) 0(0)
off on 0(0) 0(0)
off off 0(0) 0(0)

Table 4.1. Two-stage Hebb learning results in symmetric weight changes. Pq denotes the target 

output, which is imposed on O layer in the positive Hebb learning stage. Po  ̂ denotes the current, 

internally generated output, which is imposed during the negative Hebb learning stage.
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Thus if the two weight matrices start off as the transpose of each other, perceptron 

training will preserve this relation. This assumes that the weight of influence of H- 

cells on 0-cells is the same as, or proportional to, that of 0-cells on H-cells.

Although, the transpose performs ‘dynamic inversion’ in BAM, it is not known how 

good it is in performing ‘one-shot’ inverse operations.

4,3.4 Weight Statistics, Activity Ratios and Inversion by Transpose

In the following, an investigation on inversion by the transpose matrix is presented. 

The conclusions are the result of certain characteristics on the weight statistics. We 

shall argue on intuitive grounds only that these characteristics tend to hold.

As a matter of consistency, the type of weight statistics suitable for a learning 

algorithm should be exactly the same statistics that are produced by such an algorithm 

if it is applied for a long time in past learning. Recall that the RA algorithm uses the 

ordinary perceptron rule. We examine what statistics the perceptron rule will produce.

In what follows, for simplicity, any probability distribution involved will be assumed 

to have zero mean. This makes no consequential difference because on a binary 

network with ramped binarisation, the absolute value of weights has no effect on the 

network’s behaviour. It is only the differences that count. One can always shift the 

origin to make the mean of distributions zero for any particular and therefore all 

connections (since no one connection should be special).

It is shown in the following that the perceptron learning rule and the activity ratio 

constraint imply that 1) any pair of out-going connections from a common H-cell to 

the O layer tends to have negatively correlated weights, and that 2) the incoming
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connections onto any particular O cell tend to be statistically independent. The basis 

of argument is the central limit theorem, see e.g. (Feller, 1966) and properties of 

Gaussian (i.e. normal) distributions.

Weights Are Gaussian Random Variables

Let us firstly examine the statistics of the forward matrix W h o - Let the present time be 

n, and the present forward matrix be WHo(n). One has

Who(h)= Who(O) AWho(s),

where Who(O) is the initial matrix, AWho(s) is the modification at time s=l,2,...n. At 

any entry WHo(iJ)(n) of the matrix, one evidently has

W n o ( ij)(n)= W H o ( i ,j ) (0 )  +S", A W H o (i ,j ) ( s ) .  (Eq. 4.10)

That is, any entry WHo(ij)(n) is a sum of random numbers (given a long period of 

unspecified learning expericence). One can always define time s, which merely 

registers the number of opportunities (or 'turns') for the weight WHo(iJ) to be 

modified, such that modifications AWHo(i,j)(s) and A W h o ( î j)(s ’), s?^:s% are statistically 

independent. In other words, one can always lump successive modifications together 

and count them as one modification so that the Tumps’ are statistically independent. 

‘Lumping’ is the most common technique to achieve statistical independence, cf. 

(Feller, 1966). It is also consistent to assume that the initial value WHo(ij)(0) is 

statistically independent to any subsequent modifications AWHo(iJ)(s).

Under the above assumptions, provided that past learning tasks can be modelled by 

some stochastic process obeying very general technical conditions (such as the
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existence of a second moment), one can apply the well known central limit theorem, 

which says that such a sum E"i AWHo(iJ)(s) is a Gaussian random variable if n is 

large enough. The approach to Gaussian distribution is usually very fast as n increases 

(Feller, 1966). For instance, for modifications AWHo(ij)(s) where s= l,...,n  that are 

drawn from a uniform distribution, n=10 is sufficient for the sum to de described 

accurately by a normal distribution.

One can then conclude that

the present value Who(î j)(n) o f any entry o f the forward matrix can be 

modelled as a Gaussian random variable for reasonably large n.

In the absence of any other assumption about the nature of past learning tasks, it is 

inevitable as well as convenient to assume that all of the entries WHo(iJ)(n) of matrix 

WHo(n) are generated from a common Gaussian distribution; let us also shift the 

distribution so as to have zero mean.

Non-positive Correlation of Outgoing Weights From the Same H Cell

Note that we have not yet made any assumptions about the correlation amongst the 

matrix entries. Information about correlation may be obtained by looking at the 

learning process more closely. We first look at the pair of out-going weights 

WHo(ij)(n) and WHo(k,j)(n) from a common H cell j.
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WHo(i,j)(s-1)fAWHo(i,j)(s)

WHo(k, j)(s-1)+AWHo(k, j)(s)

Figure 4.3a

Past increment AWHo(ij)(s) and AWHo(k,j)(s) may be regarded as having identical 

statistics (not necessarily Gaussian) and 0 means. Consider the pair as a random 

vector X=(AWHo(ij), AWHo(k,j)). Then the above amounts to saying that X, at any 

time, must be generated from a distribution P(Xi, X2) that has 0 mean, and that is 

symmetric in X] and X2 .

In this case, its covariance matrix can be written in the form of 

(  pa^ 1
I  pa^ )  (Eq. 4.11a)

where is the variance, and |p| < 1 because of the equation

fdXidX2 (X]-X2 )̂  P(X], X2)>0 for any probability density function P.

Applying the central limit theorem again, one concludes that

any pair (W H o ( i,j ) (n ) ,  W H o (k ,j ) (n ) )  o f out-going weights from a 

common Yi-cell j, as the sum o f a large number o f random vectors X  

(not necessarily Gaussian) with covariant matrix (Eq. 4.11a), is a 

bivariate Gaussian variable with covariance matrix (Eq. 4.11a), where
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G is redefined to absorb a constant factor n (directly corresponding to 

the number o f independent weight modifications made in the past).

Next, let us argue that the correlation coefficient p is non-positive if weights have 

been modified by a perceptron-type rule, assuming 1) fixed activity ratio that is less 

than 0.5; 2) the independence of output cell activity otherwise, excluding the non­

independence originated fi*om the constant activity ratio assumption and; 3) 

independence of errors.

There are only 2 possible occasions out of 16 (including the 4 in which no errors occur 

on the two selected output cells) in which both modifications AWHo(i,j) and 

AWHo(kj) take the same sign. The following table lists the signs of corrections in 

contingencies where either AWnoCij) or AWHo(kj) is non-zero.

Sign o f  correction if require i, k on require i, k off require i on, k off require i off, k on
l.only cell i is wrong + 0 -0 + 0 -0
2.only cell k is wrong 0 + 0 - 0 - 0+
2. both are wrong + + -  - + - -  +

Table 4.2

Note that only the 4 contingencies (++), (--), (+-) and (-+) are relevant to the 

correlation of between AWHo(iJ) and A W H o (k ,j ) .

Assuming independence of network outputs and target outputs during past learning, 

then the two components of the Gaussian vector (A W H o ( i,j ) ,  A W H o (k ,j )  are 

independent of each other as the correlation between them are calculated to be zero. 

Further, the correlation is negative for small networks. Due to the special condition 

the total number of ‘on’ cells in outputs is fixed, the probability of a cell being ‘on’ is 

not strictly independent of other cells. In fact, contingencies (++ or —) are forced to be 

less frequent than contingencies (+- or -+), given activity ratios less than 0.5. This 

effect is only significant for small networks. For large networks, as No goes to
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infinity, the effect diminishes: the correlation approaches zero from below zero. (Note 

if there is always only one ‘on’ cell in the outputs, then contingencies (++) or (--) do 

not occur, implying a negative correlation).

In summary.

The correlation between A W H o (i,j)  and A W H o (k ,j )  is non­

positive under the assumed conditions. The parameter p in 

(Eq. 4.11a) is non-positive, thus the weights W H o ( i j ) ( n )  and 

W H o (k ,j ) (n )  are also non-positively correlated. The 

covariance matrix (Eq. 4.11a) is such that

-Kp<0. (Eq. 4.11b)

Independence of Incoming Weights To the Same O Cell

Next, let us look at any row vector X(n) of the forward matrix WHo(n) at time n, i.e. 

the incoming weights of a particular O cell. Let Xj(n) = W H o ( i ,j ) (n ) ,  J = 1 ,2 , . . .N h , with i 

fixed:

W ho(î, 1)(s-1)+AWH0(i, 1)(s)

W hoO, j)(s-1)+AWHo(i, j)(s)

F ig u re  4 .3 b
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If the weights have been modified by perceptron-type rules, one notices that any 

modification AX(s) to the row vector has a constant length (as a vector) proportional 

to the activity ratio an of the H layer. Further, assuming that all these connection 

weights are equally likely to be wrong and modified, the modification vector AX must 

have an isotropic distribution in the Nh dimensional space. Under these two 

conditions, the central limit theorem enables one to conclude that

The row vector X(n) o f the forward matrix Who(h), i.e. the incoming weights 

onto any particular O cell, is a '^^-dimensional Gaussian vector with a 

covariance matrix C=a^ 1, where 1 is the unit NyxNy matrix; in particular, 

this implies that any two incoming weights o f a common O cell are 

statistically independent.

Formalising the Inversion Problem in the Context of Gaussian Weights 

and Fixed Activity Ratios

Let the binarisation procedure B in (Eq. 4.7) be the ramped binarisation procedure 

(Section 4.2.3). Let us describe what this amounts to in case of a transpose matrix. 

Assume that the activity ratio on H layer is Œh with total cell number Nh and the 

activity ration on O layer, ao- Then using the transpose, for any output Pq, (Eq. 4.7) 

reads

?o (0 = Bo( 2̂jWho (A j)Bn ( SkWno (k, j)Po (k)) ) ,  /=1,2,.. .No

Note that all Bh does is that it picks out the top-NeaH numbers out of Nh numbers, 

each of which is the sum of Noao number of weights (since there are only Noao ‘on’ 

output cells in the output patterns. The operator Bq does likewise.
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It is possible to calculate the probability of the ‘recovered’ pattern Pq being the same 

as the original P q . Recall the statistical structure of the weights in Who: each weight 

WHo(k, j) is a Gaussian random variable independently drawn from the same Gaussian 

distribution of mean zero and variance Let us ignore the possible negative 

correlation between weights in the same column (i.e. outgoing weights from a 

common H cell). It will be clear that any negative correlation only increases the 

probability. Thus, in the assumption of large Nh and No, any cell that survives the 

binarisation operator must have its activation in the top-an (or top-ao) portion of the 

relevant Gaussian distribution.

The problem of calculating the ‘recovery’ probability under the large number 

assumption thus translates into the following integration exercise on Gaussian 

distributions:

Given NhŒh sets of Noao numbers

{w(k,j)| k= l,2 ,..., NoOo}j, j= l,2 ,..., NhŒh

independently drawn from the Gaussian distribution G(0, a^) 

such that the sum Skw(k,j) for each set belongs to the top-CLw 

portion o f the Gaussian distribution G(0, Noaocr^), what is the 

probability p{ao , an , cĵ ) for the sum Ejw(k,j) to be in the 

top-ao portion o f the Gaussian distribution G(0, Nnana^) for  

k=l,2,...,Noao ?

The solutionp{ao , an , a^) to this problem gives the probability of all the ‘on’-0-cells 

in Po being ‘on’ in Po*. The bigger this probability the better the inversion. Note that 

although the sets are independent from each other, the numbers within each set are not
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independent by virtue of the condition imposed on their sum even though the numbers 

are otherwise drawn independently.

While the problem is well-defined, the calculation for p{ao , olh , a^) is highly 

complex and the result cannot be expressed analytically. Let us simply list some 

qualitative but precise properties in simple situations.

With a single active Cell on both the H and O Layers

The problem simplifies to one of calculating the probability of any number, randomly 

drawn from the top-an portion of G(0,a^), being also in the top-ao portion of G(0,a^). 

It is clear that as long as an^ ao, the probability is 1. That is, with a single ‘on’-cell, 

and for large H and O layers, the transpose performs accurate inversion with 

probability 1. Note that for finite (small) cell numbers, these conclusions cease to be 

strict, since instead of considering the top a  fraction of each probability distribution, 

what is relevant is the top a  fraction of a set of samples firom this distribution.

1) the probability will be less than 1 (since being top amongst a sample of say, 10, 

leaves finite chance for being outside the 10%- or even the 20%-percentile of the 

population);

2) the smaller the ratio an/ao, the higher the probability of perfect inversion since the 

chances of being top amongst a sample of say, N h= 2 0 ,  implies a good chance of 

being top amongst a sample of say, N q= 3 .

3) other factors being equal, any pair-wise negative correlation that exists amongst 

outgoing weights from common H cells increases the probability of perfect 

inversion as it implies that the peers, against which comparisons are made, are 

drawn from G(0,a^) randomly but with a negative bias.
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With a single active Cell on just the O Layer

This setting corresponds to the tasks simulated in Chapter 5. The problem simplifies 

to calculating the probability of the sum of Nnan numbers, each randomly drawn from 

the top-an portion of G(0,a^), being in the top-ao portion of the distribution G(0, 

NnOtHa^).

Note that G(0, Nnana^) can be a much wider distribution than G(0,a^). As a result, it 

is necessary to have a n «  ao, in order for the probability to approach 1. For finite cell 

numbers, given the properties of Gaussian distributions, one has

1) the smaller the ratio an/ao, the higher the probability of perfect inversion.

2) other factors being equal, any pair-wise negative correlation that exists amongst 

outgoing weights from common H cells enhances the probability of perfect 

inversion as it implies that peers, against which the comparisons are made, are the 

sums of numbers drawn from G(0,a^) with a negative bias.

Note that the above implies that, in the 1-‘on’-output-cell setting, the smaller the H- 

layer activity ratio, the better the transpose performs inversion.

It can be conjectured that in general, the smaller the H-layer activity ratio relative to 

the 0-layer activity ratio, the better the quality of inversion by the transpose.
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4.3,5 Comments on Initial Weight Statistics and Activity Ratio Setting 

for RA learning

For the RA algorithm to function, the network setting must be such that it allows 

‘adequate’ inversion by the reverse matrix. Otherwise the reverse activation received 

by each H cell will contain little information about its effectiveness in evoking the 

target output pattern; the basis of reverse activation becomes invalid. Having chosen 

the transpose as the reverse matrix, it is important that the network parameters allow 

‘adequate’ inversion by the transpose. It is impossible to define what level of accuracy 

is ‘adequate’ since there is as yet a logical gap between the ability to invert and the 

ability for the RA algorithm to construct ‘good’ representation to learn. But it is 

clearly relevant.

From the last section, it can be seen that the adequacy, in case of the transpose, is 

partly determined by the weight statistics. Because of this and our choice of the 

transpose, certain restrictions on the initial weight statistics must be imposed. For 

instance. Section 4.3.4 implies that positive correlation between outgoing weights 

from common H cells is highly undesirable. In one of the tasks described in Chapter 

5, initial weights are generated from mock-leaming random mapping tasks using 

perceptron rules, thereby producing the desired statistics described in the last section. 

It is not entirely clear whether the above mock-leaming preparation is essential for 

RA-with transpose. However, Section 4.3.4 does suggest that independence amongst 

weights may be good enough. This is indeed used also in simulation, for which RA- 

with-transpose seems to function ‘normally’.

Another perhaps more important factor in determining the adequacy of the transpose is 

the activity ratio of the internal representations in relation to that of the output 

patterns. In general, internal representations with small activity ratio (i.e. sparse 

representations) seem to be desirable, as far as inversion is concerned.
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However, it is not clear how the ability of the transpose to invert accurately affects 

overall learning performance (using the RA algorithm). Further, activity ratio must 

affect learning in other ways. For instance, if the activity ratio is too low, there may 

not be enough representational capacity on the H layer to solve a given problem (even 

though the transpose can invert perfectly). We shall come back to this when 

discussing simulation results.

Section 4.4 Reverse Activation Algorithm in Multi-layer Networks

Consider the multi-layer hierarchically arranged autoassociative network introduced in 

Section 3.4.2. Label the input layer as the 1st layer and the output layer as the Nth, 

with intermediate layer labelled accordingly. Denote this network by 1=>2<=>...<=>N. 

Recall that each layer can function independently as an autoassociative memory, the 

properties of which correspond well with short-term memory. In addition, there are 

forward and backward connections linking every unit in one layer with every unit in 

neighbouring layers (only forward connections from the input layer), usually 

modelling long-term memory. As it has been assumed that the these three classes of 

connections can function independently, let us ignore the internal autoassociative 

weights, and concentrate on the difficulties presented by multiple hidden layers.

Let us continue to assume that the inter-layer connections are symmetric: forward 

weights equal backward weights. One can generalise the RA algorithm to such a 

multi-layer network functioning as a feedforward memory. The key part of the 

algorithm is how to construct improved internal representational patterns on each 

intermediate layer.

This involves superimposing the activation from the input and output pattern via 

forward and backward connections (with a certain chosen reverse activation strength).
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For the simple 3-layer net this operation is straightforward. With multiple 

intermediate layers, it is more complicated as no layer is directly connected to both the 

input and the output layer. When the input and output pattern are imposed on their 

respective layer, what pattern is selected (after ramped binarisation) on layer K 

depends on what patterns are selected on layer (K-1) and layer (K+1), which in turn 

depend on what patterns are selected on layer K and, respectively, layer K-2 and layer 

K+2. That is, one has a dynamic situation.

4.4.1 Using Stationary States to Construct Internal Representations

It may that the dynamics of a multi-layer network can settle into a stationary state so 

that the patterns are mutually reinforcing and thus stable. The internal patterns so 

produced when the network is in a stationary state (while the input and the output 

layer are clamped) are the improved internal representations layer by layer. They can 

then be implemented via perceptron rules. The above is then the key of the 

generalised RA algorithm in a multi-intemal-layer setting.

It is crucial that the inter-layer dynamics, established when the input and output layers 

are clamped, is such that there are always stationary states (not just cycles) in which to 

settle. Otherwise one has no natural basis to favour one set of internal representations 

over any other. This is a very stringent requirement. Fortunately, this requirement can 

be met, thanks to the assumption that the backward and forward connections are 

symmetric.

One can prove this assertion by employing standard techniques. In (Hopfield,1982), it 

is proven that the dynamics of a network of symmetrically connected 0-threshold 

binary neurons always admits stationary states; in (Kosko, 1988), it is proven that any 

real connection weight matrix admits stationary states when it is used as a bi­

directional associative memory, so called BAM theory. In fact Kosko’s result follows
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from Hopfield’s result since BAM is a special case of Hopfield net. The present 

assertion regarding dynamics on the partially clamped network l=^2o...<=>N follows 

similarly (“partially clamped” since the input and output patterns are fixed on the 

input-output layers). However, the present context is sufficiently different to justify a 

more detailed explanation. The following gives the important steps in the proof.

4.4.2 Proof that Stationary States Always Exist on the Given Network

Given the network 1=>2<=>...<=>N, let the weight matrices connecting layer K to K+1 

be denoted as the corresponding backward connection matrix is thus

^K+i_K^^^K_K+i^T that the dynamics established when the input and the output

patterns are imposed is governed by the following energy function, in vector notations,

E (Po, P,; W, Y) = (-1/2) (Pz’' W '-¥ , + v|/ p /  W' -̂'-'^Pn-i)

( -1 /2 )  Z  ' (V)'" '' { ( P /  Pk-i) -K (vi/)(Pk’'(W'^-’'^')’' Pk+i)} (Eq. 4.12)

where Pk is the pattern on layer K, treated as vectors, with ? o=Pn and Pj=P] fixed, 

being the input and output patterns, and y  is a positive constant, the reverse activation 

strength.

With respect to any cell in any hidden layer (K=2,...,N-1), the derivative of this energy 

function against the activity of that cell is proportional to the combined activation that 

it receives from the two neighbouring layers with a reverse activation strength \\i; the 

proportionality being In discrete time, the pattern on each layer is updated

synchronously or asynchronously in turn according to the ramped binarisation 

updating rule. Note that in such an update, the state of a cell is changed (i.e. turned 

‘on’ from ‘o ff or ‘o ff from ‘on’) iff. the resulting value for the energy function above
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is strictly lowered. That is, the energy function is strictly decreasing along the 

dynamic flow.

Each term in the energy function is bounded below, so the energy function is also 

bounded below. Further, this energy function is well-defined, as it is symmetric with 

respect to P k  and ? k + i  for all K=2,...,N-1 (evident by taking the transpose of each 

term, which should leave it unchanged since it is merely a real number). These 

conditions ensure that local minima exist for the energy function (Eq. 4.12). Since the 

dynamics strictly reduces the energy function, the system will settle into at least a local 

minimum eventually, which implies that no further changes in the firing patterns will 

result from future updates. The convergence of such dynamics, essentially a Hopfield 

net, is usually swift; see examples in (Amit, 1989).

To summarise, one concludes that

any multilayer, bi-directionally connected network 

1 =>2<̂ ...<=>N with real connection matrices admits 

stationary states when the input and the output patterns are 

imposed on the respective layers. The generalised RA 

algorithm then selects the patterns in the stationary states so 

achieved as the representational patterns on each internal 

layer. These are then implemented in the feedforward map 

via the simple perceptron rule layer by layer.

In the energy function (Eq. 4.12), a universal reverse activation strength has been 

chosen. This is not strictly necessary. It is possible to have different strengths for 

different pairs of layers. In which case, one can replace, in (Eq. 4.12), \j/ by i | / k - i ,  

by Y o Y i v -  Y k - 2 ,  and by YoYi,... Y n - 2 , where K=2,..., N-1, and Y k - i  is the reverse 

activation strength chosen for weights between layer K and K+1.

81



These parameters, as in the original RA, control ‘how the task of learning will be 

shared amongst the forward matrices’. A large \ | /k - i  implies more ‘burden’ on 

connections coming into layer K and less on connections from layer K to K+1.

4.4,3 Interpretation of Generalised RA

When a pair of input and output patterns are imposed, the ensued dynamics on the 

multi-layer net can be seen as an automatic search for a pattern configuration in which 

the representational pattern on every layer is consistent with the activation that it 

receives from its neighbouring layers, which is ultimately determined by the input and 

the output pattern. If such patterns are chosen as the target internal representations, 

overall weight modifications required to implement them in the forward mapping (by 

changing the forward weights layer by layer) are expected to be small since they are 

already mutually reinforcing. Note that in the 3-layer setting, the dynamic selection 

process is trivial as there is no dynamics in the 3-layer net when the I and O layers are 

clamped.

It should be interesting to find out how the generalised RA would work in multi-layer 

simulations, though this work has not been carried out for the thesis. Immediately, 

one can see that the technique of randomly tuning the reverse activation strengths (see 

Section 4.2.4) is particularly relevant and perhaps essential to the generalised RA 

algorithm due to the possibility of having numerous reverse activation strength 

parameters.
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Chapter 5 Simulation of Reverse Activation Algorithm

It is nearly impossible to work out analytically how the reverse activation (RA) 

algorithm would perform in practice. In this Chapter, simulations are carried out for 

3-layer networks using a matrix of reverse weights that is the transpose of the forward 

weights (Section 4 .3 .3 ) .  In other words, reverse weights ( W q h )  are equal to the 

forward weights ( W ho)  connecting the same pairs of cells.

Section 5.1 Methodology

The purpose of these simulations is firstly to obtain information about the properties 

of the RA algorithm itself, and secondly to make comparisons with standard 

algorithms.

Standard three-layer binary networks are employed. The number of cells in the I and 

O layers is fixed by the chosen learning task. Training is carried out for a selection of 

initial conditions (independently generated initial weights), under each combination of 

tuneable parameters. Hence if there are Xini initial conditions and Xcom sample 

combinations of tuneable parameters, one has XinjxXcom trials in all. Each trial 

consists of a fixed number of training epochs; it is continued according to the criterion 

that it should be prolonged enough for the network performance to reach its 

asymptotic level (so that further training will not yield any new information). Data 

associated with learning is recorded at the end of each epoch in each trial.

As the data will reveal, performance can crucially depend on the choice of various 

learning parameters. This is undesirable in a working system, so an alternative 

procedure is explored in Section 4.2.4, allowing the various parameters to take random
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values throughout learning. These simulations are repeated even for the same initial 

conditions because each trial involves random processes.

5.1.1 Sampling Tuneable Par am eters

There are 3 tuneable parameters in the RA simulation: the step-size (i.e. unit weight 

change) 1, the reverse activation strength \\f, and the H layer activity ratio an-

Step-size and updating procedure

The RA algorithm aims to find a representation that would allow learning with 

minimal disturbance to previous learning and the existing weights (4.2.1). It does not 

introduce new synaptic learning rules. Instead, it is merely a procedure for creating 

improved internal representations; once a representation is determined, connection 

weights are modified using perceptron rules till the correct output is produced.

Given the above background, the most natural updating procedure for learning with 

RA is total-on-line (3.1.2), i.e. the most recent item is always learned with perfect 

accuracy and thus can be recalled perfectly before the next presentation. This also 

seems more biologically plausible than either batch or on-line updating, which do not 

learn any single input-output mapping until after the whole training set is repeated, 

often many times over.

There is an added advantage to total-on-line updating. The step-size X is involved in 

RA only because RA uses the standard perceptron rule. Since the general effect of X 

on simple and multi-layer perceptron learning is well-known (cf. Section 3.1 and 3.2),
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in order to concentrate on the new aspects of RA learning, it is necessary to isolate and 

minimise the effect o f l .  To achieve this, total-on-line learning procedure was ideal.

In this procedure, the network is ‘forced’ to leam the most recent item perfectly. 

Provided that the network is not too small (so that learning even one mapping is 

difficult) and using the perceptron rule, the weight changes that achieve the new 

mapping are restricted to those involving the active I and O cells and are a function of 

the local landscape of the error surface, relatively independent of the step-size 

involved. In other words, perfect learning of the new input-output mapping tends to 

lead to the same weight configurations whatever the step-size: if the step-size is very 

small, then more iterations may be required; if it is bigger, then those configurations 

can be achieved with less iterations. The limit is that excessively large step changes 

may make even learning one mapping unstable. Thus the effect of step-size on 

performance is less with the total-on-line updating procedure, compared to the on-line 

or batch alternative. This leaves one free to explore the effects of activation strength \\i 

and the H layer activity ratio Œh, the two new elements introduced by RA.

The main RA simulations are thus done with a fixed step-size, 0.005, small enough 

given the initial weights. It is of course useful to know how RA might cope in other 

updating procedures. This will be discussed in Chapter 6.

The Size and Activity ratio of the Hidden (H) Layer

The size Nh of the hidden layer, in this kind of studies, is usually chosen so that it is 

not too big (or too small) as to make learning too easy (or too difficult respectively) to 

the extent that different learning algorithms become indistinguishable in performance. 

For any given learning task, there is probably no unique choice that achieves the above 

balance perfectly and there is not any general method to determine what size the
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hidden layer should be. It is mostly a matter of trial and error, combined with hind 

sight. In other words, one carries out some preliminary simulation for a chosen size of 

the hidden layer and see if learning is too easy or too difficult for the learning 

algorithms concerned; when the full simulation data has been collected, one checks 

again that the hidden layer used is ’reasonable'. As such there is always a degree of 

subjectivity involved and the final data set may still be open to debate as to whether 

the chosen size for the hidden layer is too easy or too difficult to the learning 

algorithms being tested. The simulation carried out in this work is no exception in this 

respect. (However for the second task, the mirror symmetry task, the hidden-layer size 

is taken from what is in the literature directly.)

The activity ratio an is fixed on the H layer for the RA algorithm, so an exhaustive 

sampling of Œh is possible, i.e. W=NH(%H ={1, 2, . . . N h } where W is the number of 

active cells. However, one would expect the learning performance to be more 

sensitive to activity ratio an when it is very low; as an becomes higher (towards 50%), 

the change in performance will get progressively less. The real interest is in finding 

out at what ratio peak performance can be achieved. In data collection, it is sufficient 

to sample more at the lower end of activity ratio and progressively less as the ratio gets 

bigger.

Reverse Activation Strength

The reverse activation strength vj/ (>0) is the most important parameter in the RA 

algorithm in determining performance. What is a ‘fair’ sampling method for v}/? If 

plotting a function by sampling its variables can be a guide, a reasonable definition of 

fair sampling of a continuous parameter x on which a variable y  depends continuously 

is the following:
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A fair sampling set {xj, j= l,2 ,.. is such that the behaviour o f the 

dependent variable y  changes in a ‘steady enough' manner 

between sampled parameter values (such that no major turning 

points are missed while no unnecessary time is spent on ‘f la t’ 

regions). In other words, ideally one has Ay^= y(xj+\)-y{xj) roughly 

constant fo r  all ]=l,2,....

It is largely a matter of judgement how fair sampling might be done as it relies on 

answering the question of how the dependent variable changes with the parameter to 

be sampled, which is the object of the sampling exercise in the first place. In the 

present situation, performance of the RA algorithm will only differ for two different 

values of \y if they lead to different cells recruited in the representation. This means 

that there is no point in sampling in such small steps that no change in the 

representation results. Hence a reasonable procedure seems to be that the samples 

should be spaced so as roughly to alter the representations by equal numbers of cells.

Note that for given prior experience (as reflected by initial weights) and a chosen 

activity ratio a^, v|/ alone affects the new internal representation pattern for an input- 

output pair. Changing the value of \y effects the changes in internal representation and 

hence the changes in weights. As the activity ratio is fixed, the set of all possible 

internal representations are all on the surface of a Nn-dimensional ball of radius W 

(= N h o c h ). Any change in internal representation amounts to a rotation. Thus one can 

visualise the chosen internal representations rotating as \\f varies.

It is reasonable to expect that the smaller the difference between the chosen internal 

representations the smaller the difference will be between the resulting weight 

changes. Therefore a fair sampling set of vj/ must have the property that as one goes 

from one sample value to the next, the internal representations constructed rotates in a 

steady manner. Note that this does not mean that the sampling set for \\i has to be

87



uniform. For instance, the function arctan{\]^) does not vary steadily when \\j is 

sampled uniformly.

The use of the function arctan to explain the above point is not accidental. From its 

definition, \|/ is the negative o f the gradient of the tilted threshold line in the activation 

scatter of H-cells; see Figure 4.2b and Figure 4.2c of Section 4.2 for example. Note 

the tilting angle has a range of [0, -nil) as \\f has a range of [0, oo ). Given an input- 

output mapping to be learned, two different strengths Vj/i and v| /2  (two different tilting 

angles) will result in identical weight changes unless there are H cells that fall into the 

‘gap’ between the two tilted threshold lines on the activation scatter. This is because 

only then will the resulting internal representation patterns differ for \\f\ and Yz- For 

new learning, a scatter graph such as Fig. 4.2b shows little correlation (4.2.1), so with 

appropriate scaling the number of cells lying between lines of different tilt is 

approximately proportional to the angle between them (arctan(-Yi) - arctan(-Y2)). For 

this reason, \\f values are generally sampled uniformly in arctan(-Y), corresponding to 

uniformly spaced tilting angles. For each step increase in the sample values of \\f the 

modified representation is likely to differ by a roughly constant number of cells, which 

is likely to lead to steady changes in the resulting weight modifications and hence in 

the behaviour of the network in training.

A rationale for random selection of \\f values from within their sampling set was put 

forward earlier (4.2.2, 4.2.4), and this is employed in some of the simulations, with an 

independent random choice each time the RA algorithm is used to create a modified 

representation. A uniform probability distribution is employed over a set of values 

ranged uniformly in arctan(Y), as described above.
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5.L2 Preparations o f  Initial Conditions

In testing a learning algorithm, the usual practice is to use independently generated 

random numbers from a uniform distribution (over the interval [0, 1] for instance) as 

initial weights. While this is also adequate for the RA algorithm, some comment is 

due here because the theory behind the RA algorithm makes certain assumptions about 

the statistics of weights in the network as detailed in Section 4.3.4

As explained, the reverse activation through symmetric backward connections conveys 

useful information on whether an H cell should be on or off when any pair of forward 

weights from the same H cell is negatively correlated or at least statistically 

independent (Section 4.3.4). Two types of initial weights are set up for simulations. 

The first type contains sets of randomly independently generated weights. There is 

thus no correlation between the weights; call them 0-correlation initial conditions. The 

second type consists of sets of weights, each of which is the result of mock learning of 

a randomly generated I ^  H ^  O mapping task (consisting of 20 triples of input, 

intermediate and output patterns). The perceptron rule is used to improve weights 

between successive layers. The activity ratios of all the mock I, H and O patterns are 

kept the same, on average, as for the actual learning task. This indeed produces the 

weight statistics analysed in Section 4.3.4. Note that this rather elaborate setup for 

generating initial weights is not unique. Various initialisation heuristics have also 

been proposed for BP in the past; it is arguable that the type of mock-leaming 

procedure used here might be beneficial for BP learning (Denoeux, T.; Lengelle, R.; 

1993).

The typical size of the initial weights used in simulation was such that they are 

suitable for BP algorithm. Recall the end of Section 3.2.2, for BP the initial weights 

should fall roughly within three times the ratio between the typical length of the input 

pattern (as a vector) and the square-root of the number of training patterns. For the
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two tasks used in the simulations here, this bound is around 1.35 and 2.4 respectively. 

For task 1, at least 97.5% of the initial weights fall within this range, and 100% for the 

second task. The RA algorithm itself, with ramped binarisation, is not sensitive to 

initial weight size.

Section 5.2 Data for Two Benchmark Learning Tasks

The algorithm is simulated on two well-known benchmark classification tasks. For 

the first problem, we shall obtain systematic information on how performance depends 

on Y and an- The issue of generalisation ability will be emphasised in the second 

task.

5,2,1 CTDiscrimination Task

The task is to discriminate between binary patterns C and T in all translations and 

orientations. A 6x5 grid was chosen as the input layer, and with four orientations 0, 

7t/2, 71, 371/2, which is the usual practice (Rumelhart et. al. 1986). Each input pattern is 

either a C- or a T-pattem with certain translation and orientation. The output pattern 

consists of 2 units, one for C, and one for T. There are in all 124 input patterns, 62 C- 

pattems and 62 T-pattems.

Figure 5.1. Input patterns of the CT problem. Represent both C and T with 5 on-units on a 6x5 grid, 
except for 14 of the T-pattems where T is on the edge of the grid, and is represented by 4 on-units. 
Note that there is never more than one letter pattern in the actual input patterns; the figure is for 
illustration only. Combining orientation with translation, these are 62 C-pattems, and 62 T-pattems.
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Since the algorithm involves activity ratio clamping, to give a decent range for the 

activity ratio parameter a, the H-layer is allowed to have 20 units. Simulation results 

show that this is a good number to work with (that is, learning is not made too easy or 

too difficult) for both BP and RA.

To mimic past learning experience, and hence to reproduce the required statistics of 

weights, 12 sets of initial weights were prepared by mock-leaming I ^  H O 

mappings. For each set, there were 20 randomly generated triplet of input, hidden and 

output patterns, using the perceptron mle to successive layers. All weights were set 

randomly and independently at the outset with small values (comparable to the step- 

size used in mock learnings) . The activity ratios of all the mock-I and O patterns 

were set at 5/30 and 1/2 respectively, similar to the actual CT task, while the activity 

ratio of the mock-H patterns ranged from 8/20 to 14/20. Note that the mock-leaming 

input pattems amount to about 0.17% of all possible input pattems of activity ratio 

5/30. The resulting statistics of the initial weights are illustrated in the following 

charts.

W eights From H to OW eights to 02

Figure 5.2. Statistics of initial weights. A ll three charts are plotted using actual w eights in all the 12 
sets o f  initial w eights, w hich are the results o f  m ock learning using sim ple perceptron rule, (a) is the 
distribution o f  values o f  the observed w eights from  H to O. (b) is the scatter where the coordinates o f  
each point are the w eights from  an H cell onto the two output cells, (c ) is the scatter where the 
coordinates o f  each point are w eights onto one common output ce ll from  arbitrary H -ce lls  labelled  H 
a n d H ’.
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It is also useful to plot the activation scatter as in Figure 4.2b&c. For the initial 

weights used in the simulation, given the training set pattems, it takes the following 

form.

Output Activation

Figure 5.3. Activation scatter of H-cells, superimposed for all training pairs, before learning.
T w o different reverse activation strengths, 0.3 ( 16.7 degrees) and 1 (45 degrees), are show n as the 
tilting threshold lines. T he strong tendency o f  vertical alignm ent above is an artefact o f  the fact that 
there are on ly  tw o output cells  w hich correspond to exclusive  categories; the p o ssib le  values o f  reverse  
activation o f  each H ce ll are therefore lim ited to two.

For each initial condition, the network was trained with a particular combination of 

reverse activation strength Y and activity ratio a  on the H-layer (more conveniently 

identified by the number of on-cells W on H-layer). The following set of 

combinations is chosen:

{\y=0, 0.0875, 0H763, 02679, 03640, 0.4663, 03774, 02002, 03391, LOOOO, 

1.1918,2.7478, 10*}

X

{W=NHa=l, 2, 3, 4, 6, 8, 10, 12, 14, 16, 19}. (Eq. 5.1)
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The \\f values correspond to the tangent of tilting angles ranging from 0 to 50 at 5- 

degree intervals, with the additional 70 and 90 degrees to provide evidence of 

completeness of this sampling set. Thus there are 13x11=143 combinations for which 

data is obtained. Performance, measured by the percentage of correct mappings was 

generally asymptotic after 90 passes. Step-size was 0.005, compared with weight size 

of the order of 1.

Typical time-course

One characteristic of the RA algorithm seems to be its fast convergence to an 

asymptotic performance, good or bad, obtained typically within 25 epochs, with a 

substantial part of this performance achieved within the first 10 epochs. Convergence 

was faster if the learning parameters were non-optimal. An advantage of fast 

convergence is that in practical applications unsuccessful training sessions (due to 

inappropriate parameter combinations) can be discovered and abandoned very early 

on, saving time and resources. Figure 5.4 shows a typical range of time courses.
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Figure 5.4. Typical time-courses of learning with the RA algorithm. Perform ance, m easured in 
percentage-correct at the end o f  each epoch (a pass over the 124 task-m appings) is plotted. A ll five  
curves w ere obtained w ith activity ratio o f  0 .5 , or W ^Nna^^lO, i.e. all internal representations contain  
exactly  10 ‘o n ’ H -cells , with different reverse activation strengths (listed  to the right), during learning. 
Each curve is the average o f  12 repeats o f  the sam e learning parameter com bination, with independently  
generated initial w eights. M eans are plotted plus-m inus 1 S .E .M . (standard deviation  over square root 
o f  the num ber o f  independent repeats). W here they seem  absent, either there is no variation (as in late 
epochs o f  v|;=0.58) or it is sm aller than data sym bols. The first points plotted were before training. 
T im e-courses are sim ilar for other activity ratios.

For each parameter combination, the only source of variation in performance comes 

from the 12 independent sets of initial weights. For the trials illustrated above, which 

share the same W, the difference between average performance of different \\j values 

are statistically highly significant. Standard errors are typically small (0-1) for optimal 

or extremely non-optimal learning parameters. They are the largest (4.5) in the latter 

epochs of trials with intermediate learning parameter combinations, indicative of a 

transition in the properties of the network. Paired t-test of performance at the end of 

each epoch confirms that confidence in the eventual outcome of the training trial 

converges very quickly. The statistical separation of the sets of trials with different q/
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values and eventual degrees of success is clear after a few epochs, long before the 

asymptotic performance is reached. The best combination (W=10 and vj/=0.58) can be 

separated fi*om for instance (W=10 and v|/=1.19) with confidence greater than 99.9% 

from the very first epoch. Thus, early performance is a good predictor of later 

performance.

A noteworthy feature is that although both extremely large (\|/=10^) and small reverse 

activation strengths (vj/=0,0.09) tend to be non-optimal, the very large ones achieve 

better learning results. Recall that larger V|/ means more changes to I=>H weights and 

less to H=>0 weights; smaller i|/ means the opposite (Section 4.2.2). Given that there 

are far more I=>H weights than H=>0 weights in the CT task, this observation should 

not be surprising.

Performance dependence on \\f and a

Typically, for a fixed activity ratio a, the final performance level gradually reaches a 

plateau and then falls off again as the reverse activation strength v|/ increases. The 

performance also depends on the activity ratio (Fig. 5.5).
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Figure 5.5. Typical dependence of performance on fixed reverse activation strength vj/ for the CT 
task. Data for two different activity ratios are illustrated, one for a=0.5, one for a=0.1, i.e. W=10, 
W=2 respectively. The vj/ values are marked along the horizontal axis, measured in degrees of tilting 
angle, i.e. in arctan{\^). The vertical axis is the percentage of correct mappings achieved after 90 
epochs. Each data point is the average of 12 repeats with independent initial weights, ± 1 S.E.M. 
(where larger than the symbol size).

What is important here is the existence of an optimal range for the reverse activation 

strength i|/. The optimal value of vj/ (which is the multiplier of the reverse weights in 

forming a new representation) depends naturally on the relative scaling of the H => O 

and O => H weights, which are taken as equal here; and it may depend on the nature of 

the task and the number of cells in each layer. But in this example it does not depend 

much on the activity ratio chosen for the H layer. The full dependence of asymptotic 

performance on a variety of combinations of reverse activation strength and activity 

ratios is plotted in the Fig. 5.6. Optimal performance is for approximately W=5-16 

(i.e. a=0.25-0.8) and v|/=0.5-0.8 (angles of 25-40°). For W=8,10,12 and n/=0.57,0.7 

(angles of 30, 35°) 100% performance was achieved for every observed initial 

condition.

The dependence of asymptotic performance on a variety of combinations of reverse 

activation strength and activity ratios is plotted in the following.
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F ig u re  5 .6 . P er fo rm a n ce  d e p e n d en ce  on  (W , v|;). Percentage o f  correct m appings ach ieved  after 90  
epochs, the asym ptotic leve l, is plotted against 19x19  W-vj; com binations. Data points for com binations 
{W = l, 2, 3, 4 , 6, 8, 10, 12, 14, 16, \9 ]x {a r c ta n  ( ^ M ,  5, 10,15 , 20 , 25 , 30 , 35 , 4 0 , 4 5 , 50 , 70, 90°} are 
m eans from  the sim ulations. The rest o f  the plotted grid points are linearly interpolated values for clarity  
in presentation. Such points are not used in d iscussions in the text. Each data point is averaged over 12 
repeats w ith independently generated initial w eights. Standard errors are not show n, for clarity, but 
exam ples are show n in Fig. 5 .5 .

Recall that the smaller the W, the more accurate the inversion performed by the 

transpose (Section 4.3.4). The above observations suggest either that better inversion 

does not necessarily imply better RA learning, or that for outputs consisting of only 

one ‘on’ cells out of two, the inversion performed by the transpose is similarly 

accurate for all W’s that are not too close to 20. Both appear to be true. The fact that 

the output layer has only two output cells with strongly negatively correlated incoming 

weights makes the transpose an accurate inverse operator for W up to 14. However 

learning with W=8,10,12 clearly was better than with W=l,2,3, even though inversion 

is slightly more accurate for small W’s. The conclusion is that activity ratio is 

affecting learning in ways other than through the quality of inversion. In other words.
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the benefit of having completely accurate inversion is offset by some disadvantage 

associated with having too low an activity ratio on the H layer, quite likely simply the 

paucity of representational capacity on the H layer with sparse coding on a limited 

number of elements; more of this in Chapter 6.

The Underlying Weight Changes

It is instructive to compare the activation scatter of H cells before and after learning 

with RA.

F ig u re  5 .7 . A c tiv a tio n  sc a tter  o f  H -ce lls  w ith  resp ect to  th e  d esired  in p u t-o u tp u t p a irs . T his is 
show n (a) before learning (b) fo llow in g  training w ith Vj/=0.36 (W = 4 ) (c ) fo llow in g  training with \|/=0.57 
(W = 4), all on exactly  the sam e sca le  for com parison. Each circle corresponds to an H cell w ith  
coordinates g iv en  by the input and reverse activation it receives for a pair o f  input and output vectors. 
Thus, for each  pair o f  input and output patterns, 20 points are plotted. There are 62 input-output pairs 
(random ly chosen  from  the training set) used  to p lot these charts. The reverse activation  strength used  
during training is represented as the tilting threshold line in (b) and (c).

One can discern the effects of RA learning in the above. Cells that are initially above 

the threshold line but receive negative reverse activations (implying that they 

contribute to output errors) must have been either moved rightwards, i.e. their 

projections to the correct 0-cell are increased, or pushed downwards, i.e. they are 

turned off in internal representations. This results in the empty wedge shaped area in
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the cloud of cells in the first and second quadrants. Examine in particular the 2 

columns of cells to the extreme left of the ‘crowd’ in each of the charts. Each column 

in fact turns out to concern a single H cell, which usually has large negative 

projections to the correct O cell. RA learning has reduced the weights of projections 

from the input layer onto these cells so that they are turned off in internal 

representations.

Performance when reverse activation strength \\f is random

As explained in Section 4.2.4, by allowing v|/ take random values (whenever 

superposition of input and reverse activation occurs in training), there is then no need 

to find the optimal value of \\f by guess-work, a great simplification, if performance 

does not suffer significantly.

In a random-tuning scenario, whenever the imposition of input and reverse activation 

(via reverse connections) is needed, the reverse activation strength \\j is randomly 

generated with equal chances from the fair sampling set (Eq. 5.1). Because of these 

random selection processes, it is necessary to repeat trials with random reverse 

activation strengths even for the same set of initial weights. In simulation, trials 

starting with a single set of initial weights were repeated 4 times using different 

random sequences of \\f values. The same 4 sequences were used for all initial 

conditions and W to allow for paired comparisons.

For the CT problem, random tuning has proven to be quite effective as demonstrated 

in Fig. 5.8.
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Figure 5.8. Time courses of learning with fixed and randomly varying y, for W=10 and W=4.
Thin lines are the tim e-courses o f  learning with fixed \\i ranging from  0 .0 8 7 5  (5 degrees), to 1 .192 (50  
degrees), at a 5-degree interval; each is an average over the 12 independent sets o f  initial w eights. The  
dotted lines are the m eans o f  all o f  these. The thick lines are the m eans for learning with vj; varying in 4 
different random  sequ en ces, and for the sam e 12 different initial conditions. For the random  sequences, 
standard errors for W = 10  are too sm all to be plotted; For W =4, error bars are show n as the average ±1 
S.E .M . (for the 4 sequ en ces) for variance due to the different initial conditions, w hich accounted for 98%  
o f  the total variance after 90  epochs.

For any trial with a fixed W, there is now a new source of variation for performance, 

coming from the random selection process for vj/, in addition to the variation due to the 

changes in initial weights. For W=4, analysis of variance at the end of each epoch 

revealed that initial conditions contribute around 98% of the total sum of squares (i.e. 

total variance times the total degrees of freedom 4x12-1=47) throughout the learning 

process. For W=10, variation vanished through perfect performance achieved between 

the 35th and 40th epoch; prior to that, initial conditions were overwhelmingly (98%) 

the dominant source of variations.

In all cases, performance with random variations of \\f suffers in the early stages 

compared with fixed-\|/ learning with the optimal values. This is only to be expected 

as fewer ‘correct’ weight changes are made per cycle than when the parameter vp is 

fixed at an optimal value.

100



Comparison with Back-Propagation

A systematic BP algorithm simulation was also carried out on the same problem with 

the same sets of initial weights. The BP code used is for a standard BP algorithm, i.e. 

batch updates with a momentum term, taken from the textbook by Müller et. al. 

(1991). To apply the algorithm, all the units are turned into graded response units, 

taking value from [-1, +1]. (As discussed in Section 3.2, this choice achieves faster 

learning than [0,1].) Testing of performance done was by the mid-point criterion, i.e. 

only the sign of the activation of output cells needed to be correct. The above design 

for such comparisons is standard, cf. for instance (Peterson et. a l, 1989). Apart from 

batch updates, on-line and total-on-line updates have also been attempted, which will 

be discussed in Section 6.4.

The dependence of BP performance on its free parameters is well known. Extensive 

sampling of the combinations of step-size (0.0004 to 0.1), steepness (0.45 to 1) i.e. the 

sharpness of the sigmoid transfer function, and momentum (0.2 to 0.9) was carried out 

for each of the 12 sets of initial weights used for RA-leaming; see Section 3.2 for 

definitions of these terms. The optimal combination (i.e. having the best average 

asymptotic performance or the fastest convergence amongst those with equal 

asymptotic performance) observed in this set turns out to be: step-size 0.02, steepness 

0.45, and momentum 0.9. The comparisons are shown in Fig. 5.9.
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Figure 5.9. Comparing the performance of RA and BP. The average tim e courses o f  learning with 
optim al param eter com binations for BP (step -size  0 .0 2 , steepness 0 .4 5 , m om entum  0 .9 ) and RA (W =10, 
v|/=0.577) are plotted, (±1 S.E .M ., n= 12). The average learning curve for W = 10  with random  Y is also  
show n ( ±1 average S.E .M . for the sam e 12 initial conditions, using 4 random  sequ en ces). For reference, 
the highest o f  any o f  the observed B P learning curves at each epoch  is show n dotted.

It may be that better performance can be achieved through combinations outside the 

tested set since the observed optimal combination was at the extreme of the 

investigated set. Note however, the range of definition for momentum is (0, 1); see 

(Eq. 3.3b). When it is <0.5, the effect of momentum is too weak and when it is too 

close to 1, it destroys learning. The value 0.9 emerged in our simulation is indeed the 

most commonly used value for it (Rumelhart, et. al. 1986; Tugay et. a l ,  1989; 

Tollenaere, 1990; Müller et. al., 1991; Hassoun, 1995). The basic BP algorithm is 

most sensitive to step-size. Steepness merely has the effect of scaling the effective 

step-size in learning; see comments following (Eq. 3.3a).

At its best, RA seems superior to the basic BP simulated for learning the CT task, 

particularly at the early stages. Note that the upper bound (at each epoch) of all 

observed BP learning curves is also plotted (dotted). At each stage of the learning.
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none of the BP trials with any tested parameter combination was above this line; this 

ensures that one does not bias the comparison of early stage performance unfavourably 

to BP by having selected the so-called ‘optimal’ parameter combination solely 

according to the asymptotic performance rather than some early performance.

As is apparent from Fig. 5.9, BP was more variable than RA. This is not only true for 

the optimal parameter combinations. Variation was more pronounced for poor 

combinations, as for RA. Greater variation means greater difficulty in determining 

whether a trial is worth continuing with the ongoing parameter combination. In other 

words, a potentially important characteristic of RA that distinguishes it from BP is the 

extent to which one can predict the ‘goodness’ of a parameter combination by looking 

at performance during early stages of learning. Consider, if one ranks all the 

parameter combinations according to their performance at the end of the wth epoch, 

how sure can one be that this rank order will persist as learning continues? This can 

be measured directly by the correlation between the intermediate ranking and the 

ultimate ranking of parameter combinations. The intermediate ranking is the one 

determined by performances at the end of an intermediate epoch. The ultimate 

ranking is determined by the asymptotic performance at the end of the 90th epoch. 

(There may be joint No. I ’s and so on in the ranking.) The intermediate ranking may 

differ from the ultimate ranking but should converge to it as learning goes on, by 

definition. One expects the correlation between the two to start from around 0 and 

converge to 1.
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Figure 5.10. Convergence of the ranking of parameter combinations. At the end o f  each epoch, 
parameter com binations (143  com binations tested for RA; 87 for B P ) were sorted according to their 
average perfoiTnance. The linear correlation betw een the resulting intermediate  ranking and the 
ultimate  ranking, obtained at the end o f  the 90th epoch, is plotted on the vertical axis. Large correlation  
indicates greater predictability o f  the ultim ate ‘g o o d n ess’ o f  any particular param eter com bination from  
its early perform ance.

It is hard to make such a comparison truly fair. This is largely because of the lack of 

comparability of the learning parameters of RA and BP. One might, for example, 

improve the apparent correlation for one condition in such a comparison by including 

more inappropriate step-sizes, which will give trials that are easily distinguishable 

from good step-sizes early during learning. A fair comparison should include in the 

sampled parameter space a ‘natural mix’, in some sense, of good and bad 

combinations, which is not a criterion that is easily formalised and met. However, 

note that at the 10th epoch the correlation is roughly 0.5 and 0.9 for BP and RA 

respectively. This would have required a very large bias of the sort described, but the 

issue is not pursued further.

A higher predictability of the outcome of RA, based on earlier performance, may 

perhaps be seen as due to an apparent defect of RA, compared with BP. For BP, even 

non-optimal parameter combinations can usually achieve reasonable performance at
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the end of the 90th epoch, or with a larger number of epochs. They would ultimately 

achieve perfect learning with sufficient epochs; after all, the theory of gradient descent 

guarantees this. This is not true for RA: an asymptotic level, good or bad, is achieved 

quickly, and no amount of further iterations can improve it. To improve performance, 

it is necessary to change to more appropriate parameter combinations altogether.

However, by way of compensation, the predictability of ultimate performance and the 

fast convergence to it can be used to circumvent the problem. As suggested in Section 

4.2.4, these properties may explain the surprising success (see Figure 5.8) of the 

technique of random-tuning of reverse activation strength.

5.2.2 Mirror Symm etry Discrimination Task

The second bench-mark task studied, the mirror symmetry task, involves 

discriminating 3 types of symmetry possessed (exclusively) by binary patterns on a 

4x4 grid; these are left-right, top-down, and one of the possible diagonal symmetries. 

For this task, the standard 3-layer network has a configuration of 16-12-3 (cf. 

Peterson et. a l ,  1989).

Figure 5.11. Examples of the three types of symmetries to be discriminated. T he dotted lines 
indicate the axis o f  sym m etry.

The Standard training arrangement for this task (Peterson et. a i ,  1989) is adopted as 

follows. Training is carried out on a set of 100 randomly generated sample patterns 

with activity ratio falling into a chosen range (patterns generated with activity ratio
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outside the range are rejected), each having one and only one of the 3 symmetries with 

equal probabilities, subject to the activity ratio range requirement. Training stops 

when performance is 100% on these patterns. Generalisation is then tested on another 

non-overlapping set of 100 random patterns subject to the same constraints. The 

training and testing procedure is repeated for 10 sets of randomly generated initial 

weights.

Other aspects of the simulation are similar to the CT problem. The parameter 

combinations tested (for each initial condition) were as follows

{vi/= 1.0818, 1.1709, 1.2685, 1.3764, 1.4966, 1.6319, 1.7856, 1.9626, 2.1692, 2.4142, 

2.7106, 3.0777, 3.545733, 4.1653, 5.027339, 6.313752, 8.448957, 12.7062, 25.4517}

X

{W=NHtt=l, 2, 3, 4, 6, 8}. (Eq. 5.2)

There were thus 19 x 6=114 (W, v|/) combinations for each of the 10 sets of initial 

weights. The reverse activation strengths, expressed in terms of tilting angles, range 

from 47.25 to 87.75 degrees. The performance for angles outside this range was far 

from optimal and therefore not systematically tested. Fig 5.16 provides the clue for 

why this is so: the initial H-cell activation scatter is very elongated, i.e. the sensitive 

region corresponds to larger values of reverse activation strength; smaller values or 

equivalently, smaller angles, simply do not effect enough changes to existing internal 

representations. Likewise, the activity ratios outside the tested range all have far from 

optimal performance as the data will soon show.
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The momentum term: smoothing In addition to RA

Recall that any learning algorithm can be supplemented by momentum smoothing, 

regardless of the details. The algorithm in use, what ever it is, calculates the weight 

modification required for the current step according to that algorithm. The momentum 

term simply allows the weight modification carried out in the previous step to make a 

weakened contribution in the current step. See (Eq. 3.3b) in Section 3.2.2. This 

smoothes out the learning dynamics over the error-surface in weight space and makes 

convergence more reliable. Smoothing is particularly helpful when the teaming task is 

difficult.

For RA, momentum smoothing is applied in the same way as prescribed by (Eq. 3.3b). 

The algorithm calculates the required weight modification as before. The actual 

weight modification in this step however has an additional, weakened contribution 

from the actual weight modification that took place in the previous step; so it goes on.

Usually learning is not sensitive to the precise value of momentum as long as it is not 

exceedingly close to 0 or 1 (Rumelhart, et. a l 1986; Müller et. a l, 1991; Hassoun, 

1995); for detailed investigations in the context of gradient descent/BP algorithms, see 

(Tugay et. a l, 1989; Tollenaere, 1990). Momentum terms ranging from 0.2-0.9 were 

tried for RA in preliminary simulations for the symmetry task, with little evident 

difference in performance. Although 0.9, which is the mle-of-thumb optimal number 

for momentum terms (Müller et. a l, 1990; Wasserman, 1989), was finally chosen

Performance dependence on v|/ and a

The broad characteristic of dependence of asymptotic performance on reverse 

activation strength and activity ratio is similar to that observed in the CT
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discrimination problem. However, the ‘area’ of optimal combinations was 

considerably smaller; performance was much more sensitive to these parameters. The 

overall dependence is illustrated in Fig. 5.12, for both zero-momentum and 

momentum=0.9. It is clear that the latter gives superior learning results and it appears 

to give a smoother dependence on parameters. However momentum does not 

improve, and in some cases worsens, the performance of extremely non-optimal 

parameter combinations.
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Figure 5.12. Performance vs. (W , \\j) for symmetry discrimination. P lots are for (a) m om entum =0  
and (b) m om entum = 0.9 . Percentage perform ance after 90  epochs is plotted against com binations o f  W  
and \ \ J .  Points show n for W =5 and 7 are interpolated from  adjacent points. O therw ise, points are m eans 
for 10 sets o f  initial conditions. Standard errors are not show n, but for (a) w ere up to 7 on the ‘s lo p e s’ 
and w ere m ostly  2-3 on flatter regions. For (b) Standard errors w ere sm aller.
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Performance fell sharply for \|/<1.08 (or 47°) in preliminary simulations, though the 

fall is not clear over the range of values studied for this chart). The optimal reverse 

activation strength ‘scatters’ in a wider range than it does for CT, thus is more difficult 

to tune. For W =l, it ranges from 1-5 (45-80 degrees). For W=2,3,4 it is more critical 

and shifts toward the lower end of the range. The fact that the optimal values of \\f are 

larger than for CT is largely a consequence of the relative variations of I and O 

activation, with an elongated scatter (Fig. 5.16).

The activity ratio proved the more critical parameter in these simulations, with the 

optimum ranging from 0.16 (W=2) to 0.33 (W=4), instead of the value 0.5 observed 

for the CT simulation. There are different ways of considering an optimal activity 

ratio: 1) the value at which the greatest average asymptotic performance can be 

achieved with the best choice of v|/, or 2) the activity ratio that most often turns out to 

be optimal for a fixed value of \\f, or 3) how often, regardless of v|/, performance 

exceeds a reasonable threshold level. The data of Fig. 5.12b are re-analysed in Fig. 

5.13 to show the optimal activity ratios, using all three indicators. Note that maxima 

may be shared between activity ratios with equal performance; points within ±1 

S.E.M. of one another were treated as equivalent. All three criteria identify W=2-4 as 

optimal.
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Figure 5.13. Optimal Activity Ratios for the M irror Symmetry Task. Three different w ays o f  
evaluating different activ ity  ratios on the H layer are shown. The vertical lines sh ow  the greatest average  
perform ance (for any v|;), equivalent to the peak values in Figure 5 .12b  w hen W  is kept constant. The 
dark histogram  show s the fraction o f  the points in Fig. 5 .12b , for a particular activity ratio, that are 
optim al for the corresponding value o f  Y, w hile the light histogram  show s the fraction o f  these points 
that ex ceed  a 77%  perform ance criterion (chance =  33% )..

In Section 4.3.4 the theory suggested that for a given output activity ratio (here 33%), 

good inversion by the transpose matrix required that the activity ratio on H should be 

smaller (<33%), as shown here for good learning performance with RA. Clearly also, 

W must not be too small. Activity ratio affects learning also through other factors.

Performance when reverse activation strength vj/ is random

The optimum value of \\) (fixed during learning) depended, for this task, on the activity 

ratio and was in some circumstances fairly critical (Fig. 5.12b). As with the CT task, 

it might be possible to resolve this difficulty if v|/ is allowed to fluctuate randomly. In 

the CT task, learning performance so achieved matched the best achieved when vp was 

fixed (5.1.2). For the symmetry problem, this only proved to be the case for the lowest 

activity ratio (W=l), as shown in Fig. 5.14 where the average time courses of random- 

\\j learning and for the best fixed value of ip are plotted for W=l, 2, 3, and 4.
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F ig u re  5 .1 4 . F ixed  and  ra n d o m  \\i v a lu es  w ith  th e  m irror  sy m m etry  task . For random  v|/ variations, 
the average is taken over 40  trials: 10 initial w eight sets, each repeated w ith 4 set sequences o f  
independently se lected  Y values. A verage standard errors (n = 10 , averaged over the 4 repeats) are 
shown. T he curve for fixed  vj; (m ean ± 1 S .E .M .) is for g iv in g  the best asym ptotic leve l for each W.

Analysis of variance again revealed that variation in asymptotic performance came 

mainly from the initial weights. The randomness of reverse aetivation strength 

contributed less than 0.5% of the total variation in the case of W=l, and less than 5% 

for W=3 and 4. When W=2, there was no variation in the observed asymptotic 

performance.

Note that the greater the activity ratio, the more learning suffered by having to allow 

the reverse activation strength to fluctuate randomly (and hence to take bad values). 

Why this is so is not clear. There is room to improve the random tuning technique, as 

discussed in Section 6.2.
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Comparison with Back-Propagation

As for the CT task, the BP code from (Müller et. a l, 1991) was used in a comparison 

with the RA algorithm. For the mirror symmetry task, there is the added advantage of 

having BP data on precisely the same task from the literature (Peterson et. a l, 1989) as 

an independent yardstick. Extensive sampling of the learning parameters are carried 

out in the same way as for the CT task. The best parameter combination emerged in 

this set is: step-size 0.04, steepness 0.45, and momentum 0.9. The same comment 

following Fig. 5.9 applies here also.

To make the comparison fairer to BP, all performance levels are normalised in order to 

account for the fact that BP may start learning with less than chance level (33%) 

performance (unlike RA, it does not have a built-in mechanism for ensuring that only 

one output cell is on). Normalised performance levels are defined as the ratio between 

the difference in the absolute performance level of the current epoch and the initial 

level, and the difference between the target absolute performance level (100%) and the 

initial level. In other words, it shows what proportion of what is left to leam (i.e. the 

difference between 100% and the initial level) has been learned at any point in time.

It was found that BP typically requires over 100 epochs (150-200) to leam the task or 

to reach near-asymptotic level. Although most of the learning is done within 100 

epochs, the convergence from this point on is usually painfully slow. This confirms 

the observations of (Peterson et. a l, 1989), where BP is compared with another 

algorithm on the same task and the number of epochs for BP on the same task are 

quoted as typically 150 epochs.

Below, the observed time courses of performance during training are plotted for up to 

100 epochs. Normalised performance level is used; it is defined as
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(PerformanceJ  -  Performance_0) /(100% -  Performance_0)

where j=0,l,... 100... is the epoch counter with 0 indicating the initial condition. This 

removes some of the bias caused by the fact that BP does not have ramped binarisation 

and hence tends to start with a worse performance level than RA initially.

In selecting the ‘best’ parameter combination for BP for this comparison, one looks for 

not only the highest average performance at the 100th epoch but also the fastest 

progression in prior epochs. Further, the upper bound of all simulated BP trials at 

each epoch is also plotted: no observed BP trials could rise faster than this line.

110

100 BP-best

-  -  BP-upper

RA-best
(W=2)

RA-rnd
(W=2)

00 in sin s

F ig u re  5 .1 5 . C o m p a r in g  th e  p er fo rm a n ce  o f  R A  and  B P . The vertical axis m easures the norm alised  
perform ance leve l (defined  the text). This show s how  fast each algorithm  learns what rem ains to leam  
given  its particular starting level. For BP, the average perform ance o f  the best param eter com bination  
(step -size  0 .0 4 , steepness 0 .45 , and m om entum  0 .9 ) is plotted ±  1 S .E .M ., calculated  from  the 10 
independent repeats. In addition, the norm alised absolute upper bound for all observed  BP trials is 
show n as the strong dotted line. For RA, the best average tim e courses, corresponding to W =2 and 
Y =2.71 (6 9 .7 5  degrees), and also random -^  learning with W =2, are plotted ±  1 S .E .M . (see  Figure 5.14  
for details).
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It is also instructive to compare the different effects of BP and RA learning on 

connection weights. Plotted below is the activation scatter of H cells before and after 

learning, given the initial and resulting weight matrices respectively and the 100 pairs 

of patterns in the training set.

Output Activation

(b)RA

Output Activation

25 -20 -15 -10 -5. 5 10 15 20 25

Output Activation

(c)BP

-25 -20 -15 -10 15 20 25

Output Activation

Figure 5.16. Different effects of BP and RA learning on weights. The activation  scatter o f  H cells  
g iven  (a) the initial w eights, (b) the corresponding w eights resulted from  R A  learning w ith random -^  
and W = 2, (c ) the corresponding w eights resulting from  BP. (a) is p lotted tw ice  on different scales. 
A ctivation  strengths 1 (45 degrees) and 8 (82  degrees) are represented on chart (a) and (b).

Firstly notice the extremely elongated initial scatter, partly due to the fact that the 

input patterns contain more on-cells than do the output patterns (roughly 8-to-l 

compared with the 5- to-1 for CT); comparison can be made with Figure 5.3 for CT,
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where the scatter is similar on the two axes. This is one of the factors behind the fact 

that all optimal activation strengths observed for this task are bigger than for CT.

Although chart (b) corresponds to random reverse activation strength during RA 

learning, the effect of RA is clear: H cells that once received large input activation but 

were detrimental to producing the correct outputs (indicated by their negative reverse 

activation) are either shifted to the right horizontally or down vertically. This results 

in the fan-shaped scatter of (b). The fan-shape was evident for the separate graphs for 

each of the 10 initial conditions and activity ratios W/Nh, though less pronounced for 

large W. Apart from this characteristic change, the distributions of activation and 

weights were little changed..

In contrast, for BP, the scatter of activation was much altered (Fig 5.16d). Firstly, note 

the dramatic (approximately 3-fold) increase in activation. Direct observation 

confirmed that weights increased from the initial 0-1 range to 0-10, consistent with the 

growth formula (cf. Section 3.2) for weights subject to BP learning. This partly 

explains the slow convergence. Secondly, the shape of the activation scatter for 

weights trained by BP was less easy to characterise.

Generalisation Performance

After the network has learned perfectly the 100 training input-output maps, by 

whichever algorithm, one can test for generalisation. Poor generalisation indicates 

that the learning algorithm has learned on the basis of features of the training set other 

than the symmetry differences, on the basis of which they were chosen.

The procedure was taken from Peterson et. a l (1989). Training and testing sessions 

were carried out separately for 6 randomly generated training sets. Each of these 

sessions was repeated 10 times with independently generated initial weights. The
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mappings in the 6 training sets were randomly generated according to the specific 

criteria set out at the beginning of Section 5.2.2. The 6 sets were divided into 3 groups 

of 2 each, labelled A, B, C. Inputs in Group A had the lowest range of activity ratio, 

as indicated by the group average of 0.4; group B contains patterns with intermediate 

range of activity ratios with a group average of 0.5; group C has the highest range of 

activity ratios here with a group average of 0.6. Associated with each group is a third 

set of 100 mappings (of the same specification as the group) for testing generalisation 

performance. Thus, a naive network is trained on training set A1 and tested on A3 for 

generalisation (repeated for 10 independent sets of initial conditions); the same 

exercise is carried out on A2 (with the same initial conditions), tested on A3. This 

way one has 2 separate estimates for generalisation performance (measured by 

percentage-correct on the corresponding, non-overlapping, testing set) for group A and 

likewise for B and C, 6 estimates in total.

Thus there are, in all, 9 sets of sample patterns of 100 each into 3 groups, randomly 

generated according to specifications; none o f the 3 within each group has common 

patterns. It may be useful to note that on the 4x4 grid there are about 1500 patterns 

having one and only one of the three symmetries to be discriminated in the task 

(Peterson et. a l, 1989). Thus the above set up is possible.

The table below summarises the performance in these tests. Also listed is data from 

(Peterson et. a l, 1989) for performance of the Mean Field algorithm (MF), which is a 

form of gradient descent learning algorithm. For BP learning, generalisation 

performance is better if one uses the 0-1 binary representation during learning 

(Peterson et. a l, 1989) (On the other hand, it is known that learning is faster if the (- 

l)-(+l) representation is used (Peterson et. a l, 1989)). Apart from the RA data and the 

BP data for (-l)-(+l) representation, results are taken from (Peterson et. a l, 1989).
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Group A Group B Group C

RA-rand-\u (best) 76%, 78%; 77% 80%, 78%; 79% 68%, 74%; 71%
M F tbest) 68%, 57%; 63% 67%, 57%; 62% 70%, 69%; 70%
BP (best for (-1H+1) rep'n) 49%, 46%; 48% 52%, 48%; 50% 59%, 62%; 61%
BP (0-1) 69%, 59%; 64% 67%, 59%; 63% 69%, 72%; 71%

Table 5.1 Generalisation Performance. For each algorithm and each test group, which contains two 
training sets, the median generalisation performance for set 1, 2, and the average of the two medians are 
listed in that order. For RA and BP, the medians are calculated for trials with the best parameter 
combinations for learning the training sets (see Captions for Figure 5.14&5.15). Generalisation was 
tested after achieving perfect performance on the training set. Data for Mean Field learning and BP 
learning with the (0-1) representation are the best median results reported by Peterson et. al. (1989).

The above table suggests that RA learning tends to give the best generalisation 

performance. For the RA and BP data obtained in the present simulation, the average 

performance is usually within 1% of the median with standard error less than 3%, all 

calculated on the 10 repeats with independent initial weights. The BP data above 

confirms those in (Peterson et. a l, 1989).

118



Chapter 6 Discussion and Conclusions

We set out to develop a pattern-centric learning algorithm for multi-layer perceptron- 

like networks. In this approach, internal representations are constructed first; they 

then drive weight changes (via simple perceptron rule). This is the exact opposite of 

the standard weight-centric approach to learning where internal representations are 

byproducts of weight changes, which are calculated from some error/energy function. 

The pattern-centric approach is more consistent with research on sensory 

representation in the brain and provides a more direct link between ideas in that area 

and network modelling. Unlike the disappointing pattern-centric attempts in the past, 

the RA algorithm does not involve any cumbersome search mechanism in the vast 

pattern space. Instead, the algorithm tries to involve processes that resemble known 

biological mechanisms in the brain. In RA, internal representation is constructed 

directly by a (non-linear) superposition of activation of input and output on the 

representation layer.

Theoretical analysis of RA, carried out in Section 4.2-4.4, demonstrates the rationale 

behind the key elements of RA, namely, (symmetric) reciprocal connections, 

adjustable reverse connection strengths with possible random fluctuations during 

learning, and ramped binarisation. Given plausible assumptions (Section 4.3), one can 

show pair-wise independence and non-positive correlation, respectively, between 

connection weights from the same hidden layer cell and between connection weights 

converging to the same output layer cell in a network that uses perceptron-like 

learning. In this context, symmetric reverse connections are capable of inversion 

operation (from output patterns to hidden layer representations). The quality of the 

inversion depends on activity ratios (of the output and internal representation 

patterns). This is one of several ways through which activity ratio can play a part in
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learning in such networks. RA is also extended to networks with more than one 

representation layer (Section 4.4).

Subsequent simulation on 3-layer networks demonstrates the feasibility of the ideas 

discussed in theory. On the toy problems studied, RA performed learning, consistent 

with our theory. The performance is comparable to the basic BP algorithm and the 

data set suggests that it can be made better than basic BP in terms of convergence 

speed and generalisation. RA algorithm also performed adequately when reverse 

connection strengths are not explicitly tuned but are allowed to fluctuate randomly 

during learning. The simulation raised some interesting questions on the role of 

activity ratio, the random tuning technique and its improvement, and generalisation 

after training. These are discussed below along with some technical issues.

Section 6.1 Optimal Activity Ratios

Simulation data for the CT and the symmetry task, particularly the latter, demonstrates 

the crucial role played by activity ratio of internal representations. This is possibly 

mainly due to its effect on the accuracy of the transpose as an inverse operator (as 

analysed in Section 4.3.4), i.e. the ability of the transpose to deliver accurate 

information on the effectiveness of H cells in evoking right outputs.

What the simulation also demonstrates is the highest inversion quality (by having H 

layer activity ratio much lower than that on the O layer) does not correspond to the 

fastest learning however. One reason for this may be the fact that given the small size 

of the network, low activity ratio too severely limits the representational capacity of 

the H layer hence reducing the degrees of freedom, making problem solving more 

difficult. A rule of thumb for choosing optimal activity ratios in practice therefore 

seems to be the following:

1 2 0



the activity ratio o f the internal representation should be small enough (at 

least less than the activity ratios o f the output layer) to ensure reasonable 

accuracy fo r  the inversion operation performed by the transpose matrix. It 

however should not be too small to the extent o f limiting the representational 

capacity o f the hidden layer too severely. In general, the activity ratio that 

enables fastest learning is probably the biggest ratio that still allows 

'reasonable' inversion by the transpose. In case o f simple output patterns (1- 

'on'-cell only), this ratio is 1/NO according to Section 4.3.4.

It will be interesting to carry out more simulations to explore how optimal activity 

ratio varies with output activity ratios as well as the size of the H layer in RA learning.

It is important to stress here that the above concerns only the speed of learning (the 

training set). Faster learning does not mean better learning. Generalisation quality is 

arguably the ultimate measure for the quality of learning achieved.

Section 6.2 Random Tuning of Reverse Activation Strengths

6,2,1 Purposeful Random Fluctuation

The one key features of the RA algorithm is fast convergence (but not necessarily to 

the right state). This offers clues as to how the \|/-tuning problem can be solved. As 

demonstrated repeatedly in the last section, convergence is particularly fast for very 

non-optimal values of \\i.

This has been the basis for allowing \\f fluctuating randomly during learning. The key 

inference drawn from the data on performances was that training settles into a state in

121



which weight changes tend to cancel each other very quickly when the value of \\f is 

far from optimal. Examples of direct recordings indeed support this idea.

67 70 82

F ig u re  6 .1 . A v e ra g e  net w e ig h t ch a n g es  d u rin g  lea rn in g  a g a in st tim e (ep o ch s). The net change to 
each I to H connection  w eight, m easured in units o f  step-size, during an epoch  are recorded and 
averaged (connection s w ith net zero change are exclud ed  from the averaging process). Thus during the 
first epoch , net w eight change m ade w ere on average 4.3  step -sizes. N ote  the strong tendency for any 
w eight change to be precise ly  reversed during the epochs that fo llo w ed  so  that from  the 10'*’ epoch  
onw ards, the net effect o f  the learning on w eights are alm ost zero (p recisely  zero for the last twenty  
epochs or so).

For the better \\) values however, by definition, weight changes have less tendency to 

cancel each other out (otherwise performance will not improve). Thus when ty is 

allowed to fluctuate randomly during learning, one expeets the network to benefit 

from weight changes when the \\j value happens to be good on average since the net 

effect of bad ip values on weights converge to zero on average.

As seen in the last section, randomly fluctuating reverse activation strength does result 

in very effective learning. However as Figure 5.14 clearly demonstrated, learning 

slows down because of the noise introduced by the bad Y values. The case of W=4 in 

Figure 5.14 provides the elearest evidence for the explanation offered in Section 4.2.4 

as to how the random-tuning teehnique works. It can be seen there that learning was 

taking place on average despite the evidently detrimental effects of the bad \\i values.
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The learning curve strongly suggests that perfect performance would eventually be 

achieved given more epochs. These results encourage one to develop the idea further 

to better take advantage of the above property of the RA algorithm.

One obvious extension is to allow the probability distribution from which the values 

of activation strength \\f are randomly drawn to evolve so that it can become more and 

more localised at the optimal values. This may be called ‘purposeful ’ random tuning 

strategy whereas the original technique shall be called blind random tuning.

At the centre of the purposeful random tuning strategy is a ‘fitness’ measure for any 

particular values of key parameters, \\f in this case. For each parameter value, the 

measure is evaluated based on history of the network behaviour during periods when 

that value happens to be ‘in charge’ by chance; these periods are sampling periods for 

that particular value. The fitness measure for each parameter value is updated 

whenever that value is used. The probability distribution is then changed 

incrementally according to the latest fitness numbers so that it becomes more and 

more concentrated on the most suitable set of values.

Several simple-minded but quickly available ‘fitness’ measures have failed to deliver 

any clear improvements. One may have to allow longer sampling periods, counted in 

epochs rather than patterns.

This opens a new possibility. One obvious basis for measuring fitness if sampling 

periods are extended to epochs is the performance at the end of an epoch. In this case, 

Y is allowed to fluctuate from epoch to epoch, rather than from pattern to pattern. The 

performance improvement (or the lack of it) at the end of the epoch is then recorded 

and used to see how it ranks amongst all the latest records for other values of \\f. The 

probability distribution can then be modified incrementally according to the new

123



ranking order. Recall Figure 5.10, which shows that there is a strong predictability of 

the ultimate fitness of v|/ from its performances in early epochs.

6.2,2 Applying a Population Search Algorithm

Figure 5.10 inspired another tuning method, which may be seen as a Population 

Search Algorithm. One can start with a population of otherwise identical networks 

learning with the RA algorithm, each with different reverse activation strength \|/. 

Every 2-5 epochs, those networks whose performance is not in the top 50% of the 

population can be terminated. After several round of elimination only a small number 

of networks, for which the y  value most probably will be optimal.

Figure 5.10 suggests that this method will be quite effective. The ranking according to 

the performance of the 10̂  ̂ epoch is more than 95% correlated with the ultimate 

ranking. It is quite remarkable considering that this means that the ordering of 

performance is almost fixed as early as the 10̂*̂ epoch. Note that for the above 

elimination method to work, one does not even require the strong correlation of 

detailed rankings. All one needs is that if a v|/ value belongs to the top half of the 

entire population at the beginning it should be highly likely for it to remain in the top 

half in the end.

Further, this method may be combined with the blind random tuning technique. Given 

that usually there is a range of activation strengths which are optimal, one can cut 

short the above elimination process and start applying blind random-ij/ learning on the 

remaining range of v|/ values. For instance for the CT and mirror symmetry problem, 

one elimination process should be enough to enhance the speed of random-vy learning 

dramatically, cf. Figure 5.6 and 5.12.
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Section 6.3 Generalisation Performance

The data on the mirror symmetry task suggests better generalisation performance for 

RA learning. More simulation is needed to confirm the assertion.

One reason for this may lie in the nature of how multi-layer perceptrons work. A 

general feature of such neural networks is that 'similar' inputs tend to evoke 'similar' 

outputs. Generalisation fails when two 'similar' or 'dissimilar' inputs are supposed to 

evoke, respectively, two 'dissimilar' or 'similar' outputs. Successful generalisation 

relies on the creation of internal representations that increase or decrease the similarity 

between the input patterns as the case may be. RA learning implements this idea very 

directly. Recall that in the RA algorithm, internal representation is selected by 

imposing the input and the output pattern simultaneously. By effectively 'appending' 

the output to the input pattern when selecting internal representations, one increases or 

decreases the similarity between any pair of input patterns and hence the similarity 

between their respective internal representation patterns according to whether the 

associated outputs are the same or not. Thus, at the heart of RA learning, there is a 

built-in mechanism that directly benefits generalisation capability.

There is perhaps a more profound factor at work in case of RA logarithm. It concerns 

activity ratio fixing, which will be discussed in Section 6.5.

Section 6.4 Technical Questions That Require Further 

Investigations

6,4.1 Comparisons between Variants of BP and RA

Although simulations demonstrated that the default version of RA compared
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favourably with basic BP, further comparisons with the numerous improved variants 

of BP are necessary in order to gauge RA’s practical potentials.

For instance, it is known that BP can leam faster with on-line updating (than with 

batch updating) provided that step-size is appropriately scheduled to decline to zero 

during learning. Detailed work and review on these variants can be found in (Fahlman 

1988; Wasserman, 1989; Hassoun 1995; Ripley 1996). Owing to the difficulties in 

tuning such variant BP’s and the fact that these techniques could be applied to RA as 

well, comparisons of variants of both types of algorithm are omitted in this 

developmental stage. Classical BP, one with batch updating and momentum 

smoothing, is closest to the underlying gradient descent idea behind the algorithm. 

Likewise, default RA, one with total-on-line updating, fixed or random activation 

strengths, and momentum smoothing, is closest to its original derivation based on 

biologically plausible learning mechanisms.

The on-line version of both BP and RA were tried. However, results in trial runs were 

too erratic and the attempt on systematic simulation was abandoned, as it may be 

unduly complex. It is more appropriate to carry it out as a separate project. The 

preliminary simulation suggests the following. The total-on-line version of BP (which 

seemed to be absent in the literature) can produce great performance but with higher 

sensitivity to initial weights. It may be less sensitive to step-size compared to other 

BP as long as step-size is not too big (Section 5.1.1). However, the number of 

iterations required for a single mapping was counted in the hundreds during the early 

epochs; it was also prone to be trapped in local minima even when learning a single 

input-output pair. To put these in context, for the standard version of RA, which is 

total-on-line, the number of iterations required to leam single mappings in early 

epochs rarely exceeds 10. Further, it never fails to leam any single input-output pair.

The batch version of RA in test trials seemed to be more sensitive to step-size than the
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default RA, as expected from Section 5.1.1. More fine-tuning is needed. Together 

with additional parameters such as reverse activation strengths to tune, this version is 

exceedingly cumbersome.

6.4,2 Simple and Complex Outputs

In the simulation so far, the output patterns, which correspond to exclusive categories, 

have consisted of simple outputs: patterns having all but one cell turned off.

In theory, complex outputs do not represent additional computational complexity. 

This is because the internal representations that can solve a problem with complex 

outputs can also solve the equivalent problem in which the outputs are transformed to 

simple patterns (by assigning each distinct complex output pattern with an exclusive 

unit), and importantly, vice versa.

This is easily proved in the following way. Given a complex problem, first let RA 

solve its equivalent version with simple outputs. Then, keep the I-to-H weights (and 

thus the internal representation). The H-to-0 weight matrix that will solve the 

complex problem is simply the existing H-to-0 weight matrix (found by RA learning 

in the simple-output equivalent) multiplied by the fixed  matrix consisting of only O’s 

and I ’s which maps each simple output pattern back to its original complex form. The 

process can also be reversed.

However, equal complexity does not mean equal ‘ease’. It is not immediately clear if 

complex outputs will be easier or harder for RA than simple outputs. RA should 

continue to function as long as the transpose still perform inversion ‘adequately’, 

which in principle is possible given the appropriate relation between the H layer and O 

layer activity ratio; see the final three subsections of Section 4.3.4.
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Section 6.5 Efficient Sensory Processing and Representation

This section attempts to put the investigation so far into the broader context of 

efficient sensory processing in the brain. It will present firstly an overview on what it 

means and then relate these to what role RA can play in exploring these issues.

6.5.1 The Goal of Sensory Inform ation Processing

Sensory information, coded in terms of impulse frequencies, enter the brain via 

millions of parallel fibres originated from sensory neurons. The process that 

transforms a raw sensory signal into patterns of activity in high-level cortical neurons 

is of great interest. Is there are a information-theoretic principle that applies to the 

transformations carried out in the brain? The overriding principle may be termed as 

‘redundancy reduction’ through successive transformations (Atteneave, 1954; Barlow, 

1961). The subtler part of this principle, which is not usually appreciated, is that 

depending on the type of ‘redundancy’ referred to, the principle leads to radically 

different conclusions on the type of coding required to achieve ‘redundancy 

reduction’. These lead to the concepts of compact coding, factorial coding, and sparse 

coding/combinatorial coding. All can be said to reduce redundancies. A good and 

perhaps the only review of all these strategies in a coherent context can be found in 

(Field, 1994).

6.5.2 Different Concepts of Redundancy Reduction 

Compact Coding

In the most naive interpretation, based on standard information theory as in (Shannon, 

1949), the principle requires the reduction of overall redundancy. This is the same as
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minimising the set of (binary) symbols coding the signals. Such a strategy is referred 

to as compact coding and seems to be used in the early stages of sensory processing: 

100 million receptors in the retina converging into only 1 million optic fibres, 50 

million olfactory receptors (in the rabbits) into only 50,000 mitral cells, and less 

obviously trichromacy in colour vision, etc.

Factorial Coding

However, in higher cortical processing there is then a great expansion of the number 

of cells. Why? The answer also lies in ‘redundancy reduction’ but with a different 

type of redundancy. Barlow suggested that the detection of association of events is 

easier in a neural network context if the activity of representational elements is as 

statistically independent as possible, conditioned on the set of possible input signals 

(Barlow, 1961; Hentsche, Barlow, 1991; Gardner-Medwin, Barlow, 1992). This 

essentially traces back to the inability of Hebb-type synaptic learning rules (Hebb, 

1949) to code higher order statistics amongst input cells: to a post-synaptic cell, a pair 

of input cells are indistinguishable from another pair with identical first order statistics 

but different second order ones.

A factorial code (cf. Schmidhuber, 1992) tries to achieve the above ‘independence’ as 

far as possible. Factorialisation is equivalent to reducing redundancy of order greater 

than 1 in the resulting representation, i.e. reducing the non-independence amongst 

representational elements.

Sparse Coding/Combinatorial Coding

Sparse coding, where signals are represented by a large number of symbols with a very 

low activity ratio, is a form of factorialisation (Hentsche, Barlow, 1991). The sparser
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the representation, the closer the code satisfies the factorial condition. Combinatorial 

coding, where each signal is given an exclusive representational element, is an 

extreme form of sparse coding if the resulting activity ratio is very small. There is a 

trade off of course between sparseness and representational capacity. It is easy to 

show that in order to achieve better sparseness while preserving representational 

capacity, the number of binary element roughly grows to the order of l/(-alog(a)), 

where a  is the activity ratio. The great expansion of the number of representational 

cells in higher cortical areas but with very low activity ratios supports the idea of 

sparse coding.

6,5,3 Investigating Sparseness in the RA Context

Sparse codes became a subject of interest in the study of simple auto-associative 

networks of binary units. The critical loading of such networks increases as activity 

ratio falls (Gardner, 1988). There is no comparable result for feedforward networks 

with more than 2 layers. Some authors start from the position that sparse codes are 

useful and consider ways to achieve sparse codes on a 2-layer perceptron-like network. 

One may for example minimise, via gradient descent, an explicit cost function that 

relates to higher order redundancies (Hentsche, Barlow, 1991).

The RA algorithm essentially constructs representations with specified activity ratio 

under the constraint of an explicit input-output task. It on the one hand explicitly 

constrains the activity ratio of the representational patterns while on the other hand 

forces the network to solve a given task. If the task is solved using the required 

activity ratio then the representation achieved must have extracted important features 

for achieving the task. As such, RA provides an arena for studying the effect of 

representational activity ratio on solving classification tasks.
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Recall Section 4.3.4, where it is found that sparser activity ratio on the hidden layer 

leads to more accurate inversion by symmetric connection matrix, given ramped 

binarisation. This is one way sparser representation is preferred in the RA context. 

However simulation also suggests that the 'optimal' activity ratio, as far as learning 

speed is concerned, is in fact the biggest activity ratio that is just low enough to ensure 

reasonable quality of the information transmitted by the transpose about outputs.

Learning speed is far from everything of course. It may be that sparser internal 

representations, while taking longer to achieve, lead to better generalisation. It is well 

known in theory and in practice that given any two feedforward multilayer networks of 

identical performance on the training set, the one with less degrees of freedom tends to 

generalises better, cf. (Müller et. al., 1991; Hassoun 1995). Usually, 'degrees of 

freedom' is understood as the size of the hidden layer. However, for RA, 'degrees of 

freedom' is determined also by activity ratio. Given the same hidden layer, compared 

with BP or others, the RA algorithm, through activity ratio fixing, has a much lower 

degrees of freedom. The 'degree of freedom' principle implies that given two networks 

of identical performance, the one with sparser internal representations (constructed via 

the RA algorithm) is likely to have a better generalisation performance.

While our simulation data does not contradict this statement, the difference between 

generalisation performance is not statistically significant. More study into this is 

therefore needed.
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