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Description of Thesis

Title: Modification of Internal Representations as a Mechanism for Learning in

Neural Systems.

1. Incoming sensory signals are processed by hierarchically organised modules in the
brain. In certain contexts, this may be modelled by a feedforward layered network
of interconnected binary units. The activity patterns in the intermediate layers are

internal representations.

2. A new learning algorithm uses projections from the desired output to modify
internal representations. Biologically realistic 2-layer synaptic rules can then be
applied to cause the associated input to evoke the modified representation(s) that

are more readily trained to produce the target output.

3. Simulation is carried out on benchmark tasks for 3-layer feedforward networks.
Comparisons with other popular algorithms are made. The results suggest that the
new algorithm has better generalisation performance with faster or equal learning

speed on the tasks simulated.

4. The learning algorithm is generalised to a multi-layer network setting, in which

internal representations are dynamically constructed.

5. The above will be put into the context of efficient sensory coding that is based on

Barlow’s ‘redundancy reduction’ proposal.
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Chapter 1 Introduction

The study seeks to gain insights into sensory representation and learning mechanisms
in the brain with the aid of computer simulation of networks of artificial neurons. A
new learning algorithm for a certain class of networks will be proposed and

investigated.

This chapter introduces a novel approach to thinking about learning, which underlies
most of the investigations in the thesis. Learning, in most models, including those
considered here, is assumed to be brought about by changes in synaptic weights. But
the effects of learning are more usually discussed in terms of the resultant internal
representations (i.e. the patterns of cellular activity that arise from the stimuli), and
how these representations relate to the learning objective. This perspective can be
constructive simply because the activity patterns are readily observable variables,
more so than weight changes. The starting point of this thesis is the suggestion that
explicit changes of internal representations, with the objective of achieving
representations that make learning easier, may in fact be built into a learning

algorithm.

The Reverse Activation (RA) algorithm, the main subject of the thesis, derives from
thinking about what is a desirable change of representation and how this may be
achieved. Part of the learning process can then be described in terms of the
modification of internal representations. Weight changes are still associated with the
mechanics of learning. However, unlike in most conventional models, the step that
drives the weight changes is the explicit decision on the desired internal

representation.



After this general approach has been set out, a review of both relevant biological
issues and related theoretical approaches will follow, before the RA algorithm is

analysed with both theory and simulations.

Section 1.1 Biological Basis of Standard Network Models

The term neuron is used repeatedly in the thesis to refer to abstract neurons used in
artificial network models. A biological neuron has more complex behaviours than the
stereotypical abstract neuron. Radically different types of neurons exist in the brain.
Further, each of the brain’s regions is a vast network of distinctive sub-networks of
neurons. In contrast to this complexity, most network models have a simple
architecture consisting of identical units that are essentially summation devices
coupled with a transfer function. Despite these differences, there are many reasons for

accepting such networks as relevant to the study of the brain.

Despite their diversity, most types of biological neuron can be seen as computing
devices that receive inputs and generate outputs that are characterised by the
frequencies of the action potentials generated. The behaviour of such cells is largely
based on a single parameter, the soma membrane potential, (cf. Amit, 1989). Hence, a
network of identical abstract neurons is a useful idealisation of real networks in the
brain. Further, there is no intrinsic argument to suggest that the artificial neural net
will be any more ‘real’ if all the known properties of neurons are incorporated. Firstly,
some neuronal properties are vital, and some are presumably of little consequence to
the global properties of a neural net, but known properties are not necessarily more
important than the unknown properties. Secondly, it is always necessary to prioritise
and leave out properties that may not be important to one’s modelling purpose. A

network of simple neurons is only a first order approximation of the biological one,



but there is seldom good reason to think that what it can achieve could not be achieved
by real neurons, nor vice versa - that what it cannot achieve could be achieved by real

ncurons.

At an appropriate scale, the organisation of neurons in the brain is fairly uniform. The
same simple architecture found in one locality (e.g. the retina) may appear elsewhere
also (e.g. the olfactory bulb) (Shepherd, 1974). Further, perhaps more importantly, in
many parts of the brain (e.g. association areas of neocortex), the architecture seems to
be governed by simple rules, with large numbers of neurons or functional groups of
neurons forming connections specified largely by global conditions such as layering,
and of cell and synaptic densities. The study of simple networks seems likely to be
important for the understanding of local functions, as well as large scale organisation

in the brain.

Section 1.2 Standard Network Formalism: The Weight-
Centric Approach

Most artificial networks, be it recurrent or feedforward, are pattern associators: they
associate an output activity pattern to an input activity pattern by way of system
dynamics as determined by the architecture and the weights of connections. They are
particularly useful in understanding associative memory and feature detection in
sensory pathways. To focus the argument, let us concentrate on multi-layered

feedforward networks.

Almost all learning algorithms for this type of network can be derived from the
mathematical idea of kill climbing in weight space: the network performance is

measured by some explicit analytic function of the current weight matrices in the net;



learning involves iteratively changing each weight according to its effect on the
performance function for the purpose of optimisation. Learning and generalisation are
thus reduced to interpolation and extrapolation: the network represents a particular
model (in the sense used for Statistical Inference), where the weights are the adjustable
parameters. Any such learning algorithm is a way of computing the ‘best fit’
parameters. Weights are the fundamental variables in this formalism, while activity
patterns (on intermediate layers) are somewhat incidental; that is, such learning
models lose nothing if the significance of these patterns is completely disregarded.
However, these activity patterns attract great interest because they correspond (or at
least the individual elements of them do) to the most important observable in

neurophysiological studies.

This approach gives a simple mathematical formalism to the learning problem, and
leads to many different learning algorithms, the most popular of which is Back-
Propagation (BP). One disadvantage of the approach, apart from being a rather rigid
view of learning, is that most of the derived algorithms, such as BP, are not
biologically plausible (see Section 3.2.2). Further, it is unsatisfactory that
representational patterns, despite being a primary variable in neural science studies,

are peripheral in these models of learning.

Section 1.3 An Alternative Proposal: The Pattern-Centric

Approach

The algorithm proposed in this study represents a departure from the above
framework; it will be referred to as the Reverse Activation (RA) algorithm. The
algorithm takes activity patterns, rather than weights, as the fundamental variables in

learning. Learning, to a large extent, becomes a matter of actively changing internal



representations (defined as the activity patterns on the intermediate layers). Weight
changes are still the intermediary, but they are driven by the goal of achieving a
chosen modified representation via local Hebbian type synaptic rules. The key

question is what constitutes an improved internal representation.

In the context of feedforward networks, the ideal representation for a novel input
would be one that leads, with no weight changes, to the generation of appropriate
outputs. Novel inputs are only likely to produce such ideal representations if there is a
remarkable correspondence between the information processing in a network and the
characteristics of the world that govern what are appropriate outputs for particular
input patterns. More realistically, the existing representation of a novel input will not
be ideal, but may be improved by altering the input processing so that fewer weight
changes are required between representation and output in order to generate

appropriate patterns.

The objective of directly manipulating internal representations may seem like a pipe-
dream. The basic mechanism proposed however is very simple. It is suggested, on
intuitive grounds, that the pattern created at the level of a representation by combining
input activation (driven from the sensory input pattern) with reverse activation (driven
from the paired output pattern) will generally be an improved representation for
learning the input-output pairing, better than the representation produced by the input
activation alone given existing weights. The weight matrix through which this reverse
activation operates is obviously critical for this strategy to work, and consideration of
this matrix will be an important subject of the thesis. But intuitively it seems plausible
that weights based loosely on prior associations between activity patterns in internal
representations and outputs may have the desired effect. If so, then the processes of
learning a new input-output pairing can be split between two sites: (1) the input
connections to the representation, which learns to generate an improved

representation, and (2) the output connections from the representation, which more



easily learn to generate the correct output. Several questions arise and will be
addressed: can the suggestion be analysed theoretically; to what extent could it benefit

learning; and how can the necessary conditions be arranged?

There have been earlier attempts at a pattern-centric approach, particularly the so-
called CHIR ("choosing internal representations") (Grossman et. al. 1988; Grossman,
1989; Nabatovsky et. al. 1990; Abramson et. al. 1993); also see (Domany et. al. 1995).
These proposals rely on active search in a vast table of potential internal representation
patterns. Some other versions of CHIR (Rujan, Machand, 1989; Mezard, Nadal, 1989)
take a more explicitly geometric approach, which still amounts to a ‘home-in’
mechanism in the high dimensional representation space in order to determine the
‘appropriate’ representations. Further, the final number of hidden units and hidden
layers in the solution found is uncertain, and there is no guarantee that the trivial
solution (i.e. one exclusive hidden unit for each input-output pair) would not emerge,

see (Domany et. al. 1995) for instance.

Unlike the above CHIR’s, the RA algorithm does not rely on a time-consuming
explicit search in the representation space. Instead, it iteratively modifies existing
representations via biological mechanisms. The weight-based algorithms such as BP
also iteratively modify internal representations, but only as a by-product of weight
modification. The important difference in RA is that weight changes are driven by

changes in internal representations, while in BP the exact opposite happens.

The RA algorithm raises a problem because it is not obvious how to study it
analytically since it is not based on any easily expressible optimisation procedure. As
often happens in this area, computer simulation is necessary for validation. The
presented simulations will concentrate mainly on comparing the RA algorithm with
the back-propagation (BP) algorithm. Both algorithms are tested on two benchmark

tasks, and are compared on the basis of learning speed, generalisation, and the ease of



parameter tuning. The result shows that on tasks tested, the RA algorithm has better
learning speed and generalisation performance. The latter is consistent with known
theories on generalisation. It will be argued that the very mechanism for improving
internal representations in the RA algorithm promotes better generalisation
performance. RA is outlined and studied in Chapter 4, 5 and 6. A population search
technique may be applied to the RA algorithm to improve its practicality, as discussed
in Chapter 6.

Section 1.4 Relationship to Broader Theoretical Issues

The pattern-centric approach to learning is readily related to broader issues in the
study of the brain. Crudely speaking, the subject of information processing in the
brain can be studied at the system level or at the neural (network) level. The former
concerns overall characteristics and complex functions of the brain, and offers
explanations in terms of information and computational theories. The latter concerns
the implementation or the manifestation of system level theories in terms of
computational algorithms that can be justifiably described as being ‘neural-network’,
based on known biological and physiological evidence. A complete understanding
requires comprehension at both levels. Ideally, one formulates computational theories,
which then can be seen at work in a neural network context; conversely, one can hope
that a particular discovery at the neural network level has a certain higher level

rationale.

The RA algorithm concerns the neural level. However, it naturally relates to two
higher level issues: learning and efficient coding. In Section 6.5, these topics will be
discussed, in particular, the concept of ‘redundancy reduction’ and how it leads to

compact coding, factorial coding and sparse coding strategy. The RA algorithm



provides an arena for studying the effect of sparseness on learning in feedforward

networks of more than 2 layers.

The RA algorithm implicitly requires a short-term memory for paired patterns,
independent of the representational changes that will eventually be brought about,
contributing to long term memory. It therefore touches on the issue of memory
consolidation in the brain. Temporal storage is required for at least the most recent
activity patterns on each layer so that conditions can be set up for creating and learning
the improved representations. Quite different mechanisms, possibly in different sites,
may be involved as an intermediate step to the consolidation of the long-term memory,
which could be modelled as the inter-layer weights. Both high quality transient
memory and the ability to re-generate patterns of activity without related sensory
stimuli (in imagination, rehearsal, dreams, etc.) are in fact prominent features of the
nervous system, whose functional role is not clear. This adds to the plausibility and

interest of the mechanisms of the algorithm.

Under this model, short-term memory assists the formation of efficient internal
representations that are part of long-term memory. It is also possible to model the
opposite interaction, in which long-term memory facilitates short-term recall, using the
same network architecture. For this purpose, a network of hierarchically arranged
layers, with the inter-layer connections functioning as long-term memory and the
within-layer connections functioning as short-term memory, may be used. The RA

algorithm can be generalised to such a network; see Section 4.4.



Chapter 2 Biological Background

It is helpful to review the biological reality behind the theoretical speculation ahead,
for motivation, context and perspective. The chapter may be skipped by readers
familiar with the subject. Section 2.1.1, 2.1.3, 2.1.4 and Section 2.2.1 contain
standard facts/theories based mainly on Shepherd (1974) and Nicholls, Martin,
Wallace (1992).

Section 2.1 Neurons

2.1.1 Membrane Potentials

Most neuronal behaviours stem from the selectivity properties of channels on the cell
membrane. Some channels may be open only to cations, some to anions. While most
anion channels are non-specific, cation channels may be specific to, for instance,
potassium, sodium or calcium. Ionic channels are usually gated. The selectivity and
gate mechanisms are responsible for the electrical signals generated within the nervous
system. Various mechanisms can cause ion channels to change states thereby
disturbing the established equilibrium and pushing the membrane away from its
resting state. Some channels respond to chemical signals such as neurotransmitters,
some to membrane deformations due to mechanical forces, and still others to the
membrane potential itself. These mechanisms provide the means through which

neurons respond to stimuli and each other.

The properties of K*, Na* channels and their active transport can account for the
resting membrane potential. This, usually —70 mV, is the potential that governs the
concentration differential inside and outside the neuron for species of permeant ions

for which there is no active transport (mainly CI); the equilibrium achieved is



dynamic.  Sodium action potentials, stereotyped cycles of rapid membrane
depolarisation and repolarisation lasting up to 2 milliseconds, result from the
properties of voltage gated Na+ and K+ channels and occur in an all-or-nothing

fashion.

If a depolarising potential raises the local membrane potential sufficiently, the sodium
channels on that patch will open rapidly, but transiently. The increase will cause a
sudden influx of Na' ions since sodium is much less concentrated inside the cell. The
local membrane potential then will shoot up to typically +40mV within 0.5-1
millisecond. Potassium permeability also responds to increase in membrane potential,
though its reaction is slower but more persistent, lasting several milliseconds. The
resulting persistent outgoing potassium current will drive the membrane potential
rapidly down, even to below the resting potential for a time, causing the sp-called
refractory period, before the resting potential is restored, thus completing the cycle,

known as an action potential.

The local effects caused by an action potential induce depolarisation of the
neighbouring membrane patches, which automatically undergo the same cycle; the
induced action potential is exactly the same but for its location and timing. Further,
because of the refractory period at the end of each depolarisation, the induced action
potentials travel in a clean wave away from the initial patch and do not re-excite
membrane areas that have recently undergone an action potential. The speed and
range of this conduction are limited not only by the channel properties, but also by the
diameter and insulation (myelination) of an axon. Dendritic action potentials are

typically longer lasting and involve Ca2+ rather than Na+ entry.

10



2.1.2 The Frequency Code

Because the action potential is all-or-nothing and self-reproducing through the use of
local energy stores, it provides the basic means of long distance communication in a
biochemical environment, where reliable communications via passive flow of
analogue electrical signals are possible only on a scale measured in tens of

micrometers.

Since the action potential generated down an axon is exactly the same as the original
action potential, there is no transmission loss. However the all-or-nothing dependence
of action potential on stimuli also means that no information is conveyed in the time
course (‘shape’) of the potential. It is the event itself, or more precisely, the number of
action potentials in a given period, which carries information. This is called frequency

coding.

Given the time scale of an action potential of the order of 1 millisecond, one may
divide time into 1 millisecond intervals so that there is either 1 action potential
generated or none. The frequency code can therefore be represented as a sequence of
1 and 0’s. The upper limit of transmission rate is around 1000 bits/second. However,
neurons on average fire less than half of the time, and there is correlation between
firing intervals. These redundancies alone place the upper limit at about 500
bits/second. One may expect further redundancies implemented in order to counter

noise.

If the input signals to a neuron have a measurable information content, one may devise
experiments to measure the transmission rate of the neuron. This is usually only
possible for sensory neurons or low level cortical neurons. In this capacity, sensory
neurons of insects and frogs can transmit information at a rate ranging from 60

bits/second to 300 bits/second (Bialek et. al, 1991). Current evidence from

11



mammalian lateral geniculate neurons indicates a rate no more than 30 bits/second

(Tovee et. al., 1993).

The above approach is not adequate for studying information processing in the cortex.
Each cortical neuron can receive signals directly from as many as 10* other neurons,
only a small fraction of which are sensory afferent signals. It is seldom clear exactly
what information is conveyed to and by a particular neuron, and information about
most aspects of sensory stimuli are probably conveyed in a population code, spread

aCross many neurons.

There is perhaps a deeper reason why cortical neurons must be analysed differently.
Cortical neurons are not merely encoders that transmit information: there is no
homunculus waiting to analyse the information. The population of cortical neurons as
a whole is in some sense the ‘end-user’ of sensory information. The point of interest is
not so much how a neuron encodes the incoming information and passes it on, but
how it responds to the incoming information (relayed to it by lower level neurons). If
one accepts that mental activity is a collective phenomenon made up by the individual
responses of cortical neurons, then the activity pattern across cortical cell populations
becomes a primary concern in this context. Thus, as one moves into the cortex, one
stops focusing on the details of the frequency code adopted by an individual neuron,
but on how sensory information is represented by the activity patterns of cell
populations; the concept of ‘population code’ or ‘internal representation’ becomes the

theme. We shall address these issues further in Section 2.2 and 2.3.

The abstract neuron used in modelling cortical functions is often assumed to be binary,
i.e. it either fires at the maximum rate in a discrete time interval or does not fire at all.
This no doubt is a caricature of the real situation. However, binarised activity is one
way to combat noise, which should be useful to the biological brain. It is a natural

extension of the frequency code.

12



2.1.3 Synapses

The states of ionic channels on the cell membrane, and therefore the membrane
potential, can be altered via a variety of mechanisms. Sensory neurons respond to
direct mechanical (pressure) and physical (light, odour) stimulation. Most neurons
including sensory neurons also receive direct electrochemical stimuli from other
neurons, so that signals can be passed on, enhanced, modulated, and transformed from
neuron to neuron. A synapse is a physical point of contact through which such
interactions take place. At a synaptic site, the gap between the membranes of two
cells ranges from 20-300 Angstrom, or 2-30 nanometers across, depending on the
nature of the synapse. By far the most common and more sophisticated synapses are
chemical synapses. They are strongly directional. The postsynaptic cell can act on the
presynaptic cell via the same synapse but generally not in the same manner as the

forward action.

Chemical synapses rely on neurotransmitters to change the postsynaptic membrane
potential. It takes time however for vesicles, little parcels of neurotransmitters, to be
released, to diffuse across the synaptic cleft, and to take effect. The delay between the
pre- and post-synaptic potential is typically 0.5 to 1 millisecond. Of the delay, only
about one-tenth can be accounted for by diffusion. The rest of the ‘long’ interval is
mainly due to the fact that to release the vesicles, Calcium must be present. It has
been found that the direct effect of the presynaptic potential is mainly the opening of

Ca®" channels, through which extracellular Ca®* ions flow inwardly.
Ample experimental evidence has demonstrated the quantal nature of transmitter

emission. Neurotransmitters are released in multiples of a quantum. Each quantum is

capable of eliciting a miniature postsynaptic potential (PSP) of certain amplitude. The

13



total PSP depends on the number of quanta released. The probability of a quantum
being released upon the arrival of a presynaptic potential is constant; each release is
typically statistically independent. These assumptions explain the observed statistics

of fluctuations in postsynaptic potentials very well.

One striking fact of the vertebrate nervous system is that the mean number of quanta
released per presynaptic impulse by synapses in the central nervous system can be as
much as 300 times lower than those in the periphery (such as neuromuscular
junctions). However, the probability of release per presynaptic impulse can be as high
as 0.9 in the central system. This dramatic difference in the mean quantal content is
merely an indication that the central nervous system is concerned with the integration

of information so that no one synapse has a dominant effect.

Once arrived at the postsynaptic membrane, some neurotransmitters act by directly
activating appropriate ion channels. Many transmitters act by indirect mechanisms:
they combine with receptors that are not ion channels themselves. The resulting
substance then either is acted upon by other intracellular messengers, or acts directly,
to modify the activity of other receptors, ion channels or ion pumps, thereby changing

the membrane potential. Indirect synapses are usually slower.

One important empirical principle concerning synaptic arrangements is Dale’s law,
which states that a neuron can manufacture only one type of neural transmitter. Note
that this does not imply that a presynaptic neuron can exert only excitatory or
inhibitory influences upon all of its postsynaptic cells. The actual sign of the effect of
a transmitter depends on the receptors, different types of which may exist in the
postsynaptic cells. By combining transmitter and receptor mechanisms, chemical

synapses exhibit extraordinary flexibility.

14



2.1.4 Synaptic Integration and Plasticity

A cortical neuron can receive as many as 10* convergent synapses. The effect of an
individual synapse is rarely enough on its own to generate action potentials in the
postsynaptic cell. The overall activity of the postsynaptic cell is the result of the

interplay between inputs from many convergent synapses.

The efficacy or strength of a (chemical) synapse usually refers to the size of the
resulting post-synaptic potential (PSP) and the length of synaptic delay, for a given
‘amount’ of presynaptic stimulation. Efficacy can vary both in the short term and in
the long term. These variations can be due to either pre- or post-synaptic mechanisms.

By altering the efficacy of synapses, a neuronal system may be able to learn.

It is tempting to assume that the PSPs of all synapses are integrated by a simple
numerical summation, and that the efficacy of a synapse, which is modifiable, can be
seen as the weighting factors in the sum; as the system learns, these ‘weights’ will be
modified in some way as a result of repeated pre- and post-synaptic activities. This is,
broadly speaking, what standard artificial neural network theory assumes, partly
because other alternatives are difficult to handle. This simplified picture of neuronal
computation is used extensively in network modelling (discussed in Chapter 3).
Presently, let us compare this picture with the current knowledge of biological

synaptic integration and plasticity.

Intracellular recordings show that the collective effect of simultaneous stimulation, i.e.
spatial integration, crucially depends on the relative positions of synapses. Even when
the two synapses virtually overlap, their simultaneous effect may differ from the
numerical sum of the separate effects. As far as spatial integration is concerned, those
synapses nearer the axon hillock seem to be more effective than those further from it.

When timing is considered, the above already complicated picture gets worse. A well-
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timed inhibitory PSP (IPSP) further down the axon/dendrite can kill off an excitatory
PSP (EPSP) very effectively. In addition, even at a single synaptic site, repetitive
stimulation may enhance PSPs by virtue of temporal integration, with each PSPs
adding to the falling phase of the one before; this happens when the frequency of
stimulation is high enough (which is possible since PSPs have a much longer time

course than action potentials).

Is the plasticity of synapses any simpler to capture in modelling? Experimental
evidence does support the basic idea that synaptic strength can be modified. In
invertebrates (Leech and Aplysia), short-term and long-term synaptic changes have
been extensively studied, and can directly account for modifications in the animal’s
behaviour. However, the detailed modification prescriptions in various learning

models such as those introduced in Section 3.2 are difficult if at all possible to verify.

Studies do provide quite a detailed qualitative picture on how synaptic efficacy is
modified. Profound biochemical and morphological changes are involved. Most
synapses, direct or indirect, are regulated by a second chemical messenger system.
The system is activated by sufficient depolarisation, or by sufficient presence of
substances accompanying specific pre- or post-synaptic events. Once activated, either
the presynaptic terminal or the postsynaptic terminal, or both, will undergo changes.
Chemical messengers may trigger the production of proteins that will increase or
decrease the mean quantal content of transmitter release by the presynaptic terminal;
they may also effect morphological changes, e.g. the presynaptic terminal may
increase in size. There are also messengers that act on the postsynaptic dendrite so
that it becomes more sensitive to transmitters because of newly available receptors,
e.g. previously ‘locked’ ion channels can be now activated by the transmitter;

postsynaptic morphological changes may also take place.
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One can see clearly from the above that plasticity is a complex phenomenon that
involves a long sequence of biochemical events. As such, it lends itself to regulation
by many potential mechanisms. There is increasing evidence that indeed even the
plasticity of a synapse is regulated. This is termed as metaplasticity, that is, a
modification of the synapse that manifests itself not as a change in the synaptic
efficacy, but as the change in the ability of the synapse to change its efficacy (Fischer
et. al., 1997). The biological utility of metaplasticity is intuitively appealing (locking

and unlocking of memory storage capacity for instance).

To conclude our brief review, while there is sufficient evidence to show that synaptic
integration and plasticity do not conform to the simple form assumed in many network
models, present evidence does suggest that biological synaptic integration and

plasticity tend to be more sophisticated and thus potentially more powerful.

Section 2.2 Basic Characteristics of the Cortex

2.2.1 Cortical Layering and Columnar Organisations

The neocortex has six layers, compared to the three layers of archicortex and the four
to five layers of paleocortex. The grey matter of the cortex, where most neuronal cell
bodies lie, is about 2 mm thick, and covers the entire cortical surface. Wrapped inside
is the white matter, which contains mostly fibres between cortical regions and glial
cells. Sensory and subcortical efferent and afferent fibres are a small fraction of all the
fibres in white matter. The input and output fibres enter and leave any cortical region

through the depths.

Common to most cortical areas are the vertical arrangement of afferent/efferent fibres

and the strong vertical orientation of axons/apical dendrites of cortical neurons in each
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layer. The contrast between the perpendicular and horizontal organisation is striking.
In the perpendicular direction, the cortex is highly organised into layers; each layer is
characterised by its cell and fibre content. Horizontally, i.e. within each layer, neurons

and fibres are distributed more or less isotropically and homogeneously.

By columnar organisation one refers to the fact that neurons along a line perpendicular
to the cortical surface have similar receptive field and response properties. In other
words, they appear to be involved in the processing of the same bits of input signals.
Physiological and anatomical evidence both put the diameter of such columns at 30-
500 micrometers. Neighbouring columns are sharply demarcated from each other: they
either have distinct receptive fields or have different response properties (e.g.
responding to blue rather than red; responding to tactile signals rather than auditory).
However, connections between neighbouring columns appear to be rather non-specific
compared to vertical connections within a column. Available evidence supports the
idea that the activation of one column has a non-specific inhibitory effect on the
neurons in nearby columns but a small non-specific excitatory effect on those further
on; this is particularly true for pyramidal cells. This fact has inspired the winner-

takes-all coding strategy, which has many interesting applications; see Section 3.3.

2.2.2 Localization of Cortical Functions

Amongst the earliest investigations of the brain are those concerned with the
association of functions to specific locations. In particular, it is found that visual,
auditory, olfactory, and somotosensory sensations are all localised to distinct regions
of the cortex; there are also the motor cortex for motor control, association cortex for
integrated memory and the prefrontal cortex for planning and other complex executive
functions. Each of these areas is divided into subregions. Such divisions correlate
well with Brodmann areas, which are based on morphology (Shepherd, 1974)
(Nicholls, Martin, Wallace, 1992).
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The properties of neurons in each functionally uniform area are spatially ordered as
well (Shepherd, 1974) (Nicholls, Martin, Wallace, 1992). For example, in the area 1 of
somotosensory SI cortex, which receives tactile information, the receptive field of a
neuron varies systematically with its position on the surface of the cortex so that the
cortical surface contains a topographical map of the body. Such a map can be found
also in areas of motor cortex. Similarly, topographical maps of visual scene are found

in the visual cortex, and tonographical maps in auditory cortex.

On the one hand, all cortical areas have the same basic cell compositions, the same
basic ‘circuitry’}, and the same coding strategy (i.e. topographical representation) but
on the other hand different areas of the cortex specialise to perform different

functions. The inevitable questions are why and how.

It is relatively easy to explain how localisation is implemented. To obtain sensory
information of different modalities, different physical/chemical processes must be
utilised. For instance, sensory neurons that detect pressure are very different from
those that detect odour. Hence at the detection level, the nervous system must have
‘localisation’. Functional specialisation in the cortex thus might be seen as a simple
consequence of physical/chemical necessity, and would be a direct result of well-
designed carefully-specified sensory innervation. The sensory innervation argument
however cannot account for the sharp demarcation observed between the receptive
fields of neighbouring cortical columns, the basis of topographical maps. It has been
demonstrated instead (Kohonen, 1990) that lateral inhibition can achieve
topographical maps even when each neuron receives exactly the same inputs; cf.

Section 3.3.

One important advantage of localisation, which partially answers the why question, is

that it keeps the brain at a reasonable size. Most of the brain volume is filled with
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myelinated axons that link different parts of the brain. The number of cells is
proportional to the surface area of the cortex, so the number of axons would be
roughly proportional to the square of the surface area. Thus given a fixed average
volume of an axon, the volume occupied by axons alone would increase as the square
of the surface area. Further, as the volume increases, the average volume for axons
would also increase due to longer lengths and consequently necessarily bigger cross-
sections and thicker myelin sheets. Hence the volume would actually go up more than
proportionally to the square of the surface area. Had the human brain, with its surface
area and average connection probability, been a mass of cells which are uniformly

randomly connected, its volume would have been enormous (Mitchison, 1992).
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Chapter 3 Neural Network Models

Artificial neural network models attempt to incorporate some of the above qualitative
biological characteristics of neurons and their interactions into quantitative terms so as
to carry out more concrete investigations. Inevitable in this process some biological
realism must be sacrificed in order to draw upon useful mathematical tools. The

validity of this trade off is ultimately justified or refuted by the results.

In what follows, we shall deal with networks of simple formal neurons (see e.g. Amit,
1989). They are based on two basic assumptions: 1) sub-threshold excitations lead to
no activity; and 2) at any instant, a neuron receives an input that is the linear sum of all
inputs from individual input synapses; the weights in the summation correspond to the

efficacy of each of the modifiable input-synapses.

Section 3.1 Rosenblatt’s Simple Perceptron

3.1.1 The Basic Architecture

The most basic network of formal neurons consists of binary units arranged in two
layers: the input (I) and the output (O) layer. Most concepts in neural networks are
best illustrated in this simple context. The matrix Wy of modifiable weights specifies
the connection strengths from a cell in I to a cell in O layer so that given input pattern

Py, the activation Ao to output cell O; is given by

Ao(iy=2 Wi (i, ))P1()
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The activity of the cell O; is binarised according to

© (Ao()-6 (1))

where @ is a step-function, and 6 is a modifiable threshold. Note that this threshold

can be absorbed. Since

Ao(i)-0 ()= 2 Wio (i, JP1G)-6 (1) =2 W’io (i, )P"1(),

where W’ o is Wjo with -6 (i) listed as an additional column, and where P’; has an
additional unit that is 1 (i.e. always ‘on’). Such individually adjustable thresholds will

not be explicitly mentioned from now on.

The above network is able to associate an output pattern with a given input pattern.

The detailed relation depends on the status of the forward weights.

3.1.2 The Learning Procedure

The perceptron training procedure is as follows (Rosenblatt, 1962). To learn a specific
association task, a sample set of input-output pairs is prepared. These patterns are
then presented to the network one by one. For each input, bit errors of the network-
generated output pattern relative to the target pattern are then noted. If there is no
error, then no weight modification takes place; one proceeds to the next pair of
patterns. If there are errors, some modification for each weight is computed.
Connection weights are changed iteratively. That is, when they are modified, the
modifications are small. However, the training set is presented repeatedly and hence
the modifications are done repeatedly. One complete presentation of the training set is

called an epoch. The small weight changes in each epoch accumulate as the cycles go
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on, until no modification takes place, i.e. until all mappings are achieved. Learning
time is measured by the number of epochs required. Most neural networks and

learning algorithms follow the above training procedure.

The perceptron synaptic rule is a particular way of calculating the necessary weight
modifications. It can be derived from performing gradient descent on the mean-square
error-surface over all mappings in the training set. According to this rule, the change

AW(, j) to weight W(i, j) is given by the following

AW(, j)= A (- O, (Eq. 3.1)

where O; is the target output activity at cell i, O; is the current output activity at cell i
evoked by the input, and ] is the activity of the input cell j in the input pattern, and A
is some positive constant called step-size, small compared to the size of the weights.
Note that the step-size is the quantum of weight change in the binary setting and is

also referred to as the learning rate.

There is a legitimate concermn over whether the above synaptic rule is biologically
plausible, particularly regarding the availability of error signals (O"; - O;) at the
presynaptic sites. Gardner-Medwin suggested (in private correspondence) one way of
interpreting the rule (Eq. 3.1). Note the prescribed modification, AW(, j)= A (O; -
0O))]j, can be separated into two stages: one of anti-learning i.e. forgetting while the
internally generated output is on, as suggested by the term -AOj]; , and one of positive
learning while the target output is on, suggested by the term +A O"; . Each individual
stage is simple Hebbian or anti-Hebbian associative learning, which is arguably the
most biologically plausible synaptic rule. Anti-Hebbian-learning or active forgetting
has been suggested in many different contexts and seems to be important to
understanding many phenomena in memory and learning; see (Crick, Mitchison,1983;

Hopfield et. al. 1983), or (Dormany et. al. 1995; Hassoun 1996). For experimental
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evidence of the existence of anti-Hebbian synaptic modification see for example (Bell

et. al., 1990).

In the perceptron algorithm, there are 3 principle options for when a computed weight
modification may be implemented. The two most commonly used methods are on-line

updating and batch updating.

In the former, each weight is updated according to a prescribed formula (such as Eq.
3.1) immediately following the presentation of each pattern in training set. In the
latter, the training set patterns are learned as a whole: each weight is updated only after
all the input-output pairs are presented, and the modification is given by the sum of all
the required modification calculated from individual patterns. The third less well-
known updating procedure, proposed and referred to here as ‘fotal-on-line’ for
convenience, is a training procedure in which individual pairings in the training set are
learned completely, one at a time: weights are modified iteratively till the latest input-
output mapping is learned perfectly before the next input-output mapping is presented.
This “perfect learning’ is of course at the expense of possibly damaging the mappings

already ‘perfectly’ learned before the presentation of the latest mapping.

There are subtle differences between these three methods (Finoff 94; Hassoun, 1995;
Ripley 96; Saad, Solla, 1996). Briefly, the on-line method is the most volatile and
sensitive to step-size. The total-on-line method can be the most stable with respect to
step-size. The batch method is somewhere in between in this respect, and it is also
most mathematically sound but least biologically plausible. These will be explained in
more details. For small 2-layer perceptrons, such distinctions are less important as far

as performance is concerned.

Given the on-line or total on-line training procedures, the perceptron convergence

theorem states that if a solution set of weights exists for the problem, then the net will
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converge to a solution with the Pereceptron synaptic rule. The convergence of the

batch procedure is guaranteed by gradient descent (to be discussed shortly).

3.1.3 Limitations

A well-known point about the simple perceptron is that it cannot learn any set of
mappings that are not linearly separable (Minsky, Papert, 1969). Notice that each
output unit classifies the input patterns into two categories: those that turn it on, and
those that do not. Input patterns can be represented as points in a vector space, in fact,
as the corners of a hyper-cube. The above categorisation is geometrically represented
by a plane separating the two sets of ‘comners’. This plane is in fact parameterised by
the weights onto the output unit concerned. If the mapping problem is such that the
implied categorisation by an output unit is not achievable by any plane, then it is not
linearly separable. Since no planes means no solution weights, the simple perceptron

cannot learn such a problem.

Section 3.2 Multi-layer Perceptrons

To resolve the above problem, extra layers of units can be introduced between the
input and output layer. Typically, 3-layer networks are studied, which with a
sufficiently large number of intermediate cells can learn any well-defined binary
mapping, if necessary by employing cells that individually detect specific input
patterns.  Additional internal layers usually do not enhance the computational

capabilities, though they may permit an economy of cells.

Consider a network of 3 layers, the input layer (I), the hidden layer (H), and the output
layer (O), with numbers of binary cells (in the 0-1 representation) equal to Nj, Ny, No

respectively. Let us call any non-linear operation that turns an activation pattern into a
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binary pattern a binarisation operation for short. This may involve thresholds that are
either fixed or, for example, adjusted to achieve a particular number of active cells.
All input cells project to all hidden cells, which in turn project to all output cells. Call
the I=>H weight matrix Wy, and the H=0 weight matrix Wye. The patterns on the H

layer are referred to as internal representations.

3.2.1 Pattern-Centric vs. Weight-Centric Learning Strategies

There are two ways to extend the basic perceptron learning procedure from 2-layer
networks to 3-layer networks. The pattern-centric way is to devise an algorithm that
establishes a pattern Py on the H layer that is desirable as a new internal
representation and to apply the perceptron rule to Wiy directly so that input pattern P;
comes to evoke Py instead of its initial representation Py. The weight changes are
divided so as to achieve two new mappings: P1:>PH* and PH*:>P0, where Pg is the
target output pattern. The perceptron rule can be applied at each stage. An alternative
(weight-centric) way would be to invoke a global output error function that can be
differentiated against each connection weight, thereby determining its appropriate
modification to achieve gradient descent. Both of the above can be regarded as

generalisations of the 2-layer perceptron learning procedure.

As discussed in Section 1.3, the pattern-centric strategy is intuitively appealing. It
puts internal representation at the very heart of learning and processing, as it should
be. Human learning experience lends support to any learning strategy that actively
constructs internal representations of the external environment (in an effort to
accomplish a task). This approach will be carried forward in Chapter 4 and the
following chapters. The weight-centric strategies on other hand treat internal
representation as a passive by-product. Unfortunately, past attempts in the pattern-

centric direction have been largely unsuccessful. The so-called CHIR (Section 1.3)
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relies on cumbersome prescribed search mechanisms in the high-dimensional space of

potential representations and remains unattractive in practice.

3.2.2 The Standard Gradient-Descent Algorithm

Gradient descent prescribes that the appropriate weight change for each connection
should be proportional to the negative of the partial derivative of the chosen error
function with respect to that connection. As such it is a very general strategy, and is
adaptable to many learning environments (including networks with stochastic

neurons).

The most popular Back-Propagation algorithm (BP) has a mean square error function.
We shall discuss BP for illustration. There are other less popular but well-known
algorithms proposed for such multi-layer feedforward networks of continuous neurons.
They are all gradient descent methods of one form or another. The main difference
was in the error functions used: cf. for example (Peterson et. al, 1989), which
contains the so-called Boltzmann Machine type algorithms, which do stochastic
gradient descent on an entropy measure. For more examples, consult (Hassoun 1995;

Ripley 1996).

The Back-Propagation Procedure

On a standard feedforward, deterministic network with the usual quadratic error

function, the basic gradient descent prescription reads as follows:

AW(i, j) (due to one training pattern)= A > (O - Ox ) 80x/ OW(, j).
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This is the central element of the so-called back-propagation (BP) algorithm.
However, in order to apply gradient descent to binary networks, it is necessary to turn
the binary neurons into ones with continuous activity during learning. Let the transfer

function of each neuron be /. It is customary to choose f'to be

f(A)=tanh (BA), (Eq. 3.2)

where A denotes activation, and the parameter 3 evidently controls the ‘sharpness’ of
the transfer at A=0: it is called 'steepness’. As it goes to infinity, the transfer function
is essentially a thresholding function taking +1 depending on the sign of the activation
A. Originally, (f (A)+1)/2 is used so that the activity level is between 0 and 1.
However it is a well-known rule of thumb that using fanh rather than the shifted
version improves learning speed in simulation by 30-50%. This has been confirmed

by many studies, see for example (Stornetta et. al., 1987; Peterson et. al., 1989).

Since for a 3-layer network, the output is given by

O =A2i Whok, 1) f W (1, )) I}) ),

applying gradient descent gives the following learning rule:

AWyo(k, 1) = A £(Ao(k)) (O'% - Ox) H;

AW(i, j) = A I £(Au()) Zk £(Ao(k)) Wro(k, j)(O'- Ok) (Eq. 3.30)

Note that the rule for the H = O weights reduces to the perceptron rule in the binary
limit with f regularised by the step-size A (the difference in f(Ao(k)) from cell to cell
is eliminated in the limit). However it is not possible to turn the rules into binary form

for both H=0 weights and I=>H weights at the same time. This is because in the
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second part of the rule, it is the square of /” that appears. As one takes the binary limit,
it is thus impossible to keep both A f” and A(f * finite but non-zero by adjusting A.
Also, the ability to absorb f” into the step-size means that steepness 3 and step-size A
are not independent parameters. In fact, the behaviour of the network remains
unchanged if one scales the steepness P to 1 and scales the learning rate by p* and all

initial weights by f (Thimm et. al. 1996).

Following the above training, the internal representation on H layer(s) can sometimes
be interpreted in a neural context. The biologically controversial part of this learning
method is the second half of the rule (Eq.3.3). Note that the weight change for
synapses between I- and H-layers requires information that is only available on the O-
layer, namely, the information about the error and the H=0O weights. For this reason,
this algorithm is given the name Back-Propagation since it is evidently necessary to
somehow propagate the information from the output layer to successive layers all the
way back to the layer immediately above the input layer. Further, the nature of the
error signals (containing derivatives and so on) is such that it is not easily coded by the
activity of cells. Some independent memory must be associated with each cell in

order to retain and transmit such information.

The algorithm has been applied extensively due its generality and mathematical
simplicity. There has been extensive investigation into this algorithm. Its properties
are by now well-known. Below is a brief summary. Detailed survey of the state of BP
research can be found in (Hassoun, 1995), and (Ripley, 1996) also contains useful
insights.

A Brief Review of Performance Properties

Learning is usually slow and unstable when the rule is applied in its basic form.

Arguably the single most effective method of improving convergence is the use of a

29



momentum term, cf. (Rumelhart, et. al. 1986; Hassoun, 1995). The idea is that each
required weight modification has a lingering contribution in all subsequent

modifications, but the contribution decays as o", where 0<a<1 and n is discrete time.

That is

AW p1= M E o+ aAW 4, 0<a<l (Eq. 3.3b)

where AW ,, is the weight modification for a connection at step n, A the step-size, E,
the error correction to that weight calculated according to some learning algorithm,

such as in (Eq. 3.3a).

Note that any learning algorithm can be supplemented by momentum smoothing,
regardless of the details. The algorithm in use, what ever it is, calculates the weight
modification required for the current step according to that algorithm. The momentum
term simply allows the weight modification carried out in the previous step to make a

weakened contribution also.

Momentum smoothing results in large modifications in flat regions of the error
surface, and prevents over-shooting in a rugged terrain, thereby making convergence
more reliable. Usually learning is not sensitive to the precise value of a as long as it is
not too small or too close to 1 (Rumelhart, et. al. 1986; Miiller et. al., 1991; Hassoun,
1995); for detailed investigations in the context of gradient descent/BP algorithms, see
(Tugay et. al., 1989; Tollenaere, 1990). There have been proposals of self-adapting
momentum terms (Fahlman, 1988). However, the learning rule becomes extremely

cumbersome and seems even more remote from biological reality than ordinary BP.
Regardless of the modifications above, performance is sensitive to step-size. For fixed

parameters, performance is slow when step-size is excessively small, but unstable

when step-size is too big, and achieves optimum for an appropriate range of
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intermediate step-sizes. In general, to speed up learning further, larger steps are

needed at the beginning but increasingly smaller steps are necessary for convergence.

Update schedules can affect convergence speed also. In classical BP, as in (Rumelhart
et. al. 1986), to be consistent with the mathematics of gradient descent, the batch
updating schedule must be adopted. As the gradient of the error function depends on
all patterns in the training set, the required weight changes are only known after a
complete presentation of the training set. This evidently is unrealistic in a biological
context, as the ‘training set’ in the real world may be indefinite, changing, and may
contain many redundant examples. Further, each connection weight is modified only
once every epoch in this strict gradient descent scenario, which seems excessively
cautious. Thus, the on-line updating schedule is often suggested for BP. It is found
that on-line updating approximates stochastic gradient descent if the step-size used is
vanishingly small; however, there is no essential difference between this infinitesimal
on-line and finite batch updating procedures (Finnoff, 1994). Using finely-tuned finite
step-size, the on-line method may but does not always improve learning speed when
the training set contains a large number of redundant (same or similar) examples and
when there are local minima in the error function; the quasi random character of on-
line updating gives an ‘annealing’-like effect (Finnoff, 1994). However, on-line
updating, unlike the batch method, cannot converge unless step-size is gradually
reduced eventually to zero as (learning) epochs go by (Ripley, 1996). It is thus more
volatile and tends to oscillate if step-size is not tuned and scheduled correctly. How
this is done is a matter of trial and error. Many heuristics have been proposed, though
all are computationally expensive and none definitive. There are adherents to either
the batch or the on-line method, but there is as yet no conclusive evidence to favour
either method. The total-on-line method (Section 3.1.2) seems not to have been

studied with BP, and some observations will be discussed in Section 6.4.
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Finally, BP, like other gradient descent methods, is very sensitive to initial weights,
i.e. where the system starts gradient descent matters greatly. Further, if initial weights
are too big, units are likely to be saturated (i.e. close to either of the two extreme
activity levels), which make learning impossible or slow. The usual practice is to
normalise random initial weights so that they fall within +3L/N"2, where N is the
number of training patterns, and L is the typical length of the input pattern, cf.
(Hassoun, 1995); this simple normalisation can improve learning speed. Note that
weights are thus expected to grow with N'2, and that periodic normalisation is
necessary if learning is on-line with no defined training set. Such normalisation would
destroy past knowledge since the activity of a BP network depends continuously on

the weights. It is hard to reconcile this with biological reality.

Section 3.3 Self-Organising Networks

3.3.1 Supervised and Unsupervised Learning

Multi-layer perceptrons belong to the class of networks that do supervised learning in
the sense that they are trained with a specific set of input-output mappings. Another
class of networks is designed to achieve, iteratively, as their output, a particular type of
representation for a given input population. The training procedure usually involves
presenting sample inputs randomly selected from the population; weights are modified
following each presentation. The modification algorithm is such that weights will
converge so that continued presentation will no longer lead to any change. The
resulting activity patterns on each layer, associated with each input, are then regarded
as the internal representations, which can be interpreted as achieving feature

extraction.
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Note however that the difference between supervised learning and unsupervised
learning is not fundamental. The representation achieved through unsupervised
learning is useless unless it can facilitate the implementation of some learning goal.
This goal, in abstract language, is a set of defined mappings from the input population
to a certain output population. The representations achieved through unsupervised
learning may go some way towards achieving this overall mapping if the
representations selected by the unsupervised algorithm render the mapping problem
more readily solvable as a 2-layer problem. To be constructive in this way, the weight
training algorithm of an unsupervised network must implement valid assumptions
about the statistical structures of the input population and their relation to the likely

learning goals.

From this point of view, supervised learning (on a three-layer net) merely makes the
implicit goals explicit, while relying entirely on output errors to drive the creation of

appropriate internal representations on the hidden layer.

3.3.2 Competitive Learning Strategy

One of the most widely used and versatile unsupervised learning algorithms is winner-
takes-all or competitive learning (Amari, Arbib, 1977); see also (Hassoun 1995). The
architecture of the network is the same as the simple perceptron except that the input
cells are continuous so that the input patterns can be any real vector. However, given

any input pattern Py, the activity at the next level is given by

Oi =0 (ZjWIO (1 ,J)P](]) - Max {ZkWIO (1 , k)Pl(k) y i=1,2,...N0}).

That is, only the one with the largest activation is allowed to be on. This function can

be implemented biologically through lateral inhibition.
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In a training situation, only weights onto the winner cell w are modified according to

AWio(kw, 1) =& (P1 (1) -Wio(kw, 1))- (Eq. 3.9)

Had A been 1, the new weight vector would simply be the input vector. On average,
when A is small, and the sampling of the input population extensive, the cell
concerned would tend to become an encoder of a group of inputs clustering close to
each other. Due to the exclusive nature of the winner-takes-all rule, each cell will
become sharply tuned to a particular cluster, thus serving as a detector for that cluster.
The input weight vector onto each cell is therefore a prototype (cluster centre). By
creating prototypes, a substantial amount of correlation in the input population is
eliminated. The network can be seen as a classifier, which discovers the categories

(clusters) as it samples the input populations.

3.3.3 Kohonen Network

The competitive algorithm simply represents one strategy that appears to be important
for the brain to adopt in order to eliminate the most common type of redundancy that
exists in our natural environment, namely, local correlation resulting from the
continuous nature of most properties. The cortical topographical representations of
body surface or retinal positions can be reproduced by this coding strategy. This is

explicitly demonstrated by the Kohonen network (Kohonen, 1990)

It is a type of soft competitive learning algorithm. The network consists of continuous
neurons such as the ones above. The architecture is still the two-layer perceptron one:
an input layer and output layer with full forward connections between the layers.
Training is exactly like that for ordinary competitive networks, but instead of having

only the weights onto the winner cell w modified as in (Eq. 3.4), the modification rule
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is modified by a neighbourhood function N,,(k) to become AWo(k, 1) = A N,,( k-k,,)
(P (1) -Wio(k, 1) ), where N,,( k-k,,) is positive, with maximum value 1 and declines to
zero with distance k-k,,, the distance from the winner cell w. When the network is
large, one can approximate the output layer by a continuous line or continuous sheet.
Then, the above becomes, AWio(p, q) = A No( p-pw) (P1 (q) -Wio(p, q) ), where p, q are
coordinates on the output and input ‘sheet’ respectively (just like the j and i labels in
the discrete case). The neighbourhood function may be chosen as the symmetric

Gaussian centred at 0 (so that it is maximum at p,,).

Remarkably, the above algorithm 1is capable of producing topographical
representations of the input space such as those observed in the cortex. In particular,
each cell in the resulting network shows a well-defined receptive field that is sharply
demarcated from that of neighbouring cells, despite the fact that all output cells

receive the same input signals.

Section 3.4 Homogeneous and Hierarchically Organised Attractor
Networks

3.4.1 Autoassociative Attractor Networks

So far we have discussed networks that have feedforward connections only. These
networks must be driven externally, with no dynamic interaction. This need not be the
case if there are loop connections. In general, let us consider a uniformly connected
network of N (binary) neurons, with connectivity R, i.e. on average each cell projects
and receives projections from RN cells. For such a network it is no longer natural to
see it as layered (unless there are functional differences in the connections. In the
homogeneous case we simply need a NxN weight matrix to describe the network.

Once an input pattern is fed into such a network, activities can be sustained without
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being driven externally and the activity pattern will evolve in time and can settle into a
previously experienced state (Marr, 1971; Gardner-Medwin, 1976; see also Willshaw
& Buckingham, 1990).

A convenient way to study the dynamics is to see the net as a point meandering its way
in the state space of the network. (A network state is the collection of instantaneous
states of all cells in the network.) A trajectory is completely determined by the initial
state and the weight matrix. There are usually fixed points in the dynamics. The
network will settle in such a state once it is reached. What is relevant are those fixed
points that are robust, called stable states. That is, following perturbation, the network
is capable of returning to and staying in those states. The set of states starting from
which the network will reach a given stable state in finite time is called the basin of
attractions. The parallel between such dynamics and the act of recall is self-evident.
It is fair to say that any system with a reasonably rich dynamics containing numerous
stable states (and cycles) can be used to model a memory. This is the basic idea that

has been popularised by (Hopfield, 1982).

Uniformly connected networks, called autoassociative or attractor networks have
been extensively studied by physicists because it is amenable to thermodynamics; a
comprehensive exposition to this field can be found in (Amit, 1989). These
techniques reveal the essential properties and limitations of such a system as a model
for biological memory. The main results are that they have limited capacity, relatively
fast convergence; they are poor at storing and recalling non-orthogonal patterns (i.e.
patterns with lots of overlaps), though there are algorithms that can diminish this
problem (Gardner-Medwin, 1989; Gardner-Medwin & Kaul, 1995). This kind of
network, incorporated into a hierarchical network, may be appropriate for modelling

short-term memory (STM).

36



3.4.2 Hierarchically Organised Attractor Networks

The following hybrid structure is commonly proposed, e.g. (Marr, 1971; Amit, 1989).

= | 0000000 0000000 | «
§ W | = | 0000000 0000000 |
§ | = | 0000000 0000000 | = |
M | = | 0000000 0000000 | = 0
Input Layer STM;: STM,;: Output layer
autoassociative autoassociative

It is a hierarchically organised multi-layer network, with each layer an

autoassociative network. In addition to the forward connections between layers,

there are also backward connections from higher level layers to lower level ones.

For the above structure to be distinct from a purely autoassociative structure, one

must assume that the there are functional differences between the internal

connections within each layer, the forward inter-layer connections, and the

backward inter-layer connections.

The three classes of weights may behave

differently and play different roles. For instance, the autoassociative layers in the

above structure may model short-term memory (STM) while the inter-layer

connections, long-term memory (LTM). The activity patterns on each layer can

be induced in part by extrinsic connections and in part by connections within.

Examples of this type of networks include the following.

Bi-direction Associative Memory (BAM)

BAM (Kosko, 1988) is perhaps the simplest in this class. It is essentially a 2-layer

perceptron with symmetric connections that run in both directions. Within each layer,
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the connections are trivial (i.e. none). As such, it is merely a Hopfield associative

memory with incomplete connections.

The ART Network

ART, Adaptive Resonance Theory (Carpenter, Grossberg, 1987), is an unsupervised
network which consists of two bi-directionally connected layers F1, the pattern layer,
and F2, the category layer. Each cell in F2 is a category node and only one can be on
at any time (due to lateral inhibition). The connection from F2 to F1 is such that the
'on'-node can turn on, in layer F1, the 'prototype' pattern of the category that the node
represents, in the absence of other influences to F1. The connections from F1 to F2
have modifiable weights that can be changed in case the category assigned to a pattern
by these weights needs to be changed. Graphically, the ART network is as follows,

where an input layer to F1 is added for later discussions.

< )
I | 0
- 0
000 — o)
Raw Inputs Pattern Layer F1 Category Layer F2

Given a pattern on F1, a category node on F2 will be chosen via the forward F1-to-F2
connections. This node will tend to evoke the prototype of that category on F1 via the
backward F2-to-F1 connections. A tuneable "vigilance parameter" will decide
whether the prototype is sufficiently close to the existing pattern on F1. If it is, then
the forward and backward connections become a positive feedback loop: a resonance
will be established and all connections will be reinforced. If it is not, an alternative
category will be assigned (by suppressing the failed node) to see if resonance can be
established. If all existing categories fail, a new category will be created with its
prototype as the existing pattern on F1. Once resonance is established, all weights will

be modified to promote the new category arrangement. In a steady state of the
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network, whatever the pattern on F1 is, a resonance can be established. That is, in a
steady state, any pattern on F1 and the category node it evokes constitutes a fixed-

point of the dynamics, under the given "vigilance" level.

The Wake-Sleep Network

The Wake-Sleep model (Hinton et. al. 1995) is a multi-layer, unsupervised network of
stochastic model neurons. Every adjacent pair of layers in the network is connected by
top-down and bottom-up connections. Bottom-up “recognition” connections convert
inputs into representations in successive hidden layers, and top-down “generative”
connections reconstruct the representation in one layer from the representation in the
layer above. The top-down and bottom-up weights are trained separately in two
distinct phases. In the wake phase, neurons are driven by bottom-up, recognition
connections, and the top-down, generative connections are trained to increase the
probability that they would reconstruct the correct activity patterns in the layer below.
In the sleep phase, neurons are driven by top-down connections, and bottom-up
connections are trained to increase the probability that they would produce the correct

activity in the layer above.

39



Chapter 4 Theoretical Aspects of the Reverse Activation Algorithm

Before we launch into a detailed justification and analysis of the RA algorithm, we
shall first outline the procedures and issues involved, as well as their relation to other
network models with backward connections. The terminology established in Chapter
3 for 3-layer feedforward perceptron will be used throughout. In particular, assume

that each output cell has a ‘backward’ connection to each H-cell.

Section 4.1 An Overview of the RA Algorithm

4.1.1 Fundamental Steps in the RA Algorithm

The algorithm is a pattern-centric algorithm. That is, to learn to map input pattern P;
to output pattern Pp on a 3-layer feedforward perceptron (as defined in Section 3.1 and
3.2), the algorithm first constructs an internal representation pattern Py". Then the
perceptron learning rule (or some other valid rule) is applied on the I = H weights and
on the H = O weights to attempt to achieve the P to Py mapping and the Py" to Pg
mapping respectively. It thus breaks down the 3-layer problem into two 2-layer

problems.

Note that the 2-layer learning need not be carried out to completion, i.e. Py need not
be achieved completely. Weights are only modified one step at a time and learning is
stopped as soon as the P; -to-Po mapping is achieved. In other words, Py may not be
the final internal representation adopted by the network, it merely provides a target to

motivate the I = H and the H = O weights to move in the right directions.
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The key is therefore how Py’ is constructed. The RA algorithm uses the following
procedure, which requires a reverse connection matrix from the O to the H layer, to be

discussed later.

1) Impose the input P; and output Py patterns simultaneously on the I and O layers

respectively;

2) Compute the combined activation pattern on H layer

Ay"=Wy P+ yWoy Po (Eq. 4.1)

where Wiy and Woy denote the weight matrices from I=H, H=0, and O=H;

and vy is a pre-set, non-negative number called the reverse activation strength.

3) Produce binary activity pattern Py~ by way of the following:

Py’ ()=1 only if Ay (j) is one of the top W activation amongst all j=1,2,...Ny,

where W is a pre-set number, fixing the activity ratio of the internal

representation.

4.1.2 The Key Elements and the Biological Plausibility of RA

The Reverse Activation Matrix

The Two fundamental questions arise about the reverse activation matrix Woy. What
determines the individual weights, i.e. the form of the matrix Woyu? And how is its

overall effect, i.e. the reverse activation strength (y) modulated?
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The basic requirement for the Woy is that it should be an adequate inverse to the
forward matrix. That is, on the 2-layer network of the H and the O layer, given any
output pattern, the reverse matrix should be capable of producing a pattern on H which
produces the output itself via the forward matrix. This is because the purpose of the
reverse connections, when activated by a desired output pattern, is to shift the activity
on the H layer towards a pattern that will reproduce the output pattern via the forward
matrix. The best choice of Woy in fact appears to be the transpose of Wyo, as

discussed in Chapter 4.

Once learning of a set of I-O mappings has taken place, only the forward connections
are taken into account in assessing learned performance. The reverse connections may
be able in principle to contribute to improving the quality of an output pattern through
dynamic interplay of the H and O layers during recall, but this would take time to
settle and only the correctness of a learned output on the first step of such a dynamic

process is actually considered here.

Reverse Activation Strength

The reverse activation strength y is an important tuneable parameter for the RA
algorithm. It is needed partly to counteract arbitrary scaling of the I=>H weights
relative to the H=0 weights. But its more fundamental importance is to control how
much the new internal representation is to differ from the one generated by the input
and the existing weights. Note that when vy is 0, the modified representation coincides
with the existing representation. And when it is infinite, the chosen representation is
completely determined by the output and the O=H weights. In between, it regulates
the relative contributions of the paired input in determining the internal representation.

Another way to see it is that y decides how learning is 'shared' between the [=H and
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H=O connections: when y=0, the input representation remains unchanged and
learning is entirely carried out on Wyo; whereas with y=co, much of the learning
involves changes in Wiy, which may result in a new representation that requires little

if any change to Wyo to produce the desired output.

In the initial simulations of RA, y is fixed prior to training and remains fixed
throughout the epochs. It is necessary to try out different values to determine the
optimal range (rather like tuning for optimal step-size or momentum in BP). An
alternative version selects y randomly from a pre-determined range prior to each
superposition of inputs and outputs, so that y changes every time it is used. The
advantage of the latter is that it obviates the need to tune y. It is interesting that this

“seems to work almost as well as employing a constant and optimal .

How could y be modulated in a biological context? Two possibilities are through
effects of diffuse neuromodulators and, perhaps more simply, by varying the strength
with which the desired output pattern is activated. The latter mechanism strictly
contravenes the simplifying assumption made in the model that neurons are binary, but

it is of course quite feasible with more realistic neurons that have variable firing rates

Binarisation and Activity Ratio

The binarisation procedure is quite crucial in the construction of the internal
representation. It is done by fixing the activity ratio of the H layer. Then any
activation pattern is binarised by allowing only the few most-activated cells to be ‘on’.

Why is this necessary?

The problem of constructing a binary internal representation comes down to

determining which cells should be ‘on’ or ‘off’. The object of the construction
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procedure must be to include the ‘good’ cells (whatever that means) and exclude the
‘bad’ ones. RA amounts to saying that the way to measure ‘goodness’ is via the
‘combined activation’ defined in the (Eq. 4.1). As such the absolute value of the
activation of each cell has little relevance in determining if a cell should be included in
a representation or not because the activation is subject to arbitrary scaling. It is the

relative order of activation that matters to the RA construction procedure.

As a result, fixing the activity ratio of the H and O layer is inevitable so that only the
top few cells are allowed to be ‘on’. This is referred to as ramped binarisation. This
makes the activity ratio on the H layer a tuneable parameter, providing a perfect
opportunity to study the effect (on performance) of different activity ratio constraints
for internal representations. As such, the RA procedure is a way of solving a given

mapping task by constructing internal representations of a given activity ratio.

This binarisation procedure is also applied during recall on both the H layer and the O

layer, for consistency. The behaviour of the network is more robust as a result.

A Non-gradient Descent Method

One key difference between RA and BP or other gradient descent methods is that the
internal representations constructed are not driven by output-errors. The input and
output mappings alone determine directly what the appropriate internal representations
should be. Not having a defined error-surface in which to descent, it is hard to study
the method analytically. For instance, it is not clear why the process should converge

let alone learn anything at all.

Generalisation to Multiple Layers

RA can be generalised straightforwardly to networks of the type described in Section

3.4.2. Internal representations on successive layers are determined by the fixed points
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of the dynamics resulting from the bi-directional linkage between the layers, keeping
the input and output layers clamped. In Section 4.4, it is proved that such fixed points

always exist and explained how this is consistent with the RA for 3-layer networks.

Biological Plausibility of Assumptions

The process of improving representations on the H layer is essentially a matter of
recruiting 'better' cells for the purpose of generating the desired output and dropping
'bad' cells. One could look on this as analogous to learning to notice features of an
input that lead you to the right conclusions about it, and learning to ignore features that
lead to the wrong conclusions, based on previous learning. The criterion for 'good'
cells is that they are strongly activated from (and by inference associated with) the
correct output as well as the input, using a suitable reverse weight matrix. In fact the
reverse matrix adopted for the simulations (the transpose of the forward weights) is
likely to be one of the more simple to establish biologically, since the reverse
connection between cells O; and Hy 1s the same as the forward connection between the
same cells, and this might be expected on the basis of simple associative (Hebbian)
synaptic modification. Reciprocal connections from higher level centres are very
common in the brain (e.g. Mumford, 1991,1992; Lee et. al. 1998), though their

properties in relation to forward connections are not generally known.

The total number of active cells is kept fixed in the RA simulations ramped
binarisation so that it is the ranking of the H cells that should govern which cells
should be employed for a representation, not their absolute levels of activation. If
there are too few active cells then the capacity of a network to represent and learn
about different events is restricted, while too many active cells can lead to problems of
overlap and interference. Ramped binarisation could in practice be implemented by
negative feedback employing widespread recurrent inhibition set by the number of

active cells.
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RA makes use of the simple perceptron learning rule for weight modifications, which
is a relatively plausible learning rule in a biological context, based on association
(Section 3.1.2). The simple perceptron rule is not in fact essential to the algorithm
itself. Any other 2-layer rule can be applied once an internal representation is
constructed. It is substantially more plausible than a learning rule based on back-

propagation.

The RA algorithm requires the existence of STM so that target-patterns on each layer
can be repeatedly recalled to train the inter-layer weights and improve representations.
Though the relationship between STM and LTM in producing consolidation is far
from clear, it is evident that the nervous system contains the capability of recalling at
least some aspects of the representations of recent stimuli and appropriate responses,
both during waking and sleep, partly on the basis of human reports of subjective
experience and partly from hippocampal animal studies (e.g. Skaggs & McNaughton,
1996).

4.1.3 RA in Relation to Other Bi-directional Models

Compared with BAM

BAM (Section 3.4.2) resembles the bi-directionally connected internal and output
layer in the proposed RA network. However, the potential dynamics on these two
layers, as a result of the bi-directionality, does not play any part in either training or
recall in RA. During RA training, while the modified internal representation is being
chosen, both the input and output layers are constrained to the input and the target
output patterns. During recall, the output is defined as the result of the first forward
sweep. Further, the reverse activation strength parameter, which plays a crucial role in

the choice of internal representations, makes the effect of the reverse connections
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variable and asymmetrical. In BAM however the forward and reverse connections are

treated completely symmetrically.

The key purpose of the reverse connection in RA is to allow the output play a part in
shaping the internal representations of the input. In the future, one might consider
giving the dynamics a role in the computation of outputs, especially for novel inputs,
but this is not a fundamental feature of RA. Nor indeed is the symmetry of the
forward and backward weights, which is a simple and approximate solution to the

attainment of an ideal reverse matrix (Section 4.3.3).

Compared with the ART Network

One can incorporate ART (Section 3.4.2) into a 3-layer supervised network, while
retaining the spirit of ART, to make it comparable to RA. ART’s layer F1 naturally
identifies with the hidden layer, receiving pre-processed inputs and activation from
layer F2, which identifies with the output layer. In the forward sweep, the input is
reduced to a prototype pattern on F1, which hopefully is associated with the desired
category nodes on F2. ART demands that in a steady state of the network (i.e. with
resonance achieved) any internal representation pattern must be similar to the
prototype pattern of an output category. In other words, in any steady state the internal
pattern evoked from the input alone must be always similar to the internal pattern
evoked from the associated output alone. How ‘similar’ will depend on the level of
"vigilance" chosen during learning (for very high levels, they should be the same).
The RA network does not use this symmetry as a goal that drives the construction of

internal representations.

However, in RA and in ART both the inputs and the required outputs play a direct role
in determining the internal representations that would finally emerge through their

respective learning procedure. Note that the "vigilance" parameter acts to either
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accept or reject the pattern evoked from the input as the internal representation
depending on whether its similarity to the prototype of the corresponding output is
high enough. In case of acceptance, the network learns by changing weights between
F1 to F2 only. In the second case, the prototype of the target category will be the
chosen internal representation and the network learns by changing the weights from
the input to layer F1 only. Only in case of very high "vigilance" level, the internal
representation would be solely determined by the output and the network learns by
changing the weights from the input to layer F1 only. This is similar to the situation
when the “reverse activation strength” parameter in RA is chosen to be very high.
However, there is an important difference. The “reverse activation strength”
parameter in RA provides a graded control as to how much the input (or output) will
contribute to the construction of the internal representations, in other words, how
learning will be shared between the group of connections linking the input to F1 and
the group linking F1 and F2. In ART on the other hand, for any given input-output

pair, the internal representation is either 100% input driven or 100% output driven.

Compared with the Wake-Sleep Network

The hidden and output layers in a RA network may be compared with the Wake-Sleep
network (Section 3.4.2), ignoring the stochastic nature of the neurons in Wake-Sleep.
Wake-Sleep, applied in a supervised fashion, would demand that the hidden-layer
pattern should evoke the required pattern on the output layer and that the output
pattern should be able to evoke the chosen internal representation pattern; connections
in each direction are trained separately and alternately. This closely resembles the
resonance requirement in ART except that the output pattern is not limited to being

exclusive categories.

Without allowing reverse connections from the hidden layer to the input layer, i.e.

applying Wake-Sleep only to the hidden and output layers, the internal representation
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that would finally emerge after learning is mostly determined by the required output.
This differs from both RA and ART, in which the input also plays an ongoing role in
moulding the internal representation. Further, even if one allows reverse connections
from the hidden layer to the input layer and applies Wake-Sleep to the complete
network, the input and output would always play an equal part in determining the

internal representations. This is not the case in RA, nor in ART.

Section 4.2 Modification of Internal Representations via

Reverse Connections in RA

In this section, we study what a modified internal representation should be, and how it

can be generated in RA in details.

4.2.1 The Basis for Constructing Internal Representations
The ‘Minimal Disturbance Rule’

The intuition behind the RA algorithm is very simple. Any modification of weights
may cause interference i.e. may damage performance on mappings already learned by
the network. It is desirable that a novel pair of input and output should be learned
with minimal disturbance to previous learning and hence to the existing weights. In
general, it seems likely that spreading small weight changes over a smaller number of

relevant weights will help to diminish overall interference.

In order to apply the perceptron learning algorithm to both of these projections, there
must be a target pattern on each of the H and O layers. The target for the O layer is
clear - it is the desired output pattern. The target Py for the H layer may differ from
the initial Py evoked by input pattern P; so as to be better at eliciting the desired output
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with no or reduced changes to H=0 weights; this reduces the necessary disturbance to
the existing Wyo matrix. But it must also not differ too much from Py, so that
disturbance to Wiy is kept to a minimum. The upshot is that the target H- pattern PH*
should be a compromise between the set of cells on H that are most easily activated
from the input pattern P; and those that are most effective at eliciting the correct output
pattern Po. The RA algorithm relies on the notion that the effectiveness at eliciting the
correct output pattern correlates with the reverse activation of the H layer from the
desired output, operating through a suitable connection matrix Woy that can be set up

in a practical manner.

Combining Forward and Reverse Activation

At the cellular level, choosing a good representational pattern comes down to deciding
whether each H-cell should be ‘on’ or ‘off”. The two factors to be considered in this
decision are the cell’s ease of activation by the input and its ‘effectiveness’ in evoking

the desired output, given the existing weights.

Ease of activation from the input is directly available to the H cells in the form of
forward activation vector A;, where A; (=2 W (j, 1)Pi(i), from the input layer to the
H cells. A representational pattern that is easy to implement is one in which the ‘on’

cells already have high activation from the input.

The effectiveness of an H-cell for evoking the required output depends only on the
output pattern and the forward H=0 weights. In particular, it has nothing to do with
the I=H weights and the input, much as the ease of activation has nothing to do with
the H=0 weights and the output. To the extent that the reverse activation correlates
with this effectiveness, it influences the choice of a target representation by means of

the reverse activation vector Ap from the output layer to the H cells, expressed as
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Ao()=2i Wou (, 1)Po(i). The following diagram summarises our considerations so

far.
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Figure 4.2a. Three types of connections associated with each H cell. Every H cell projects to the
output layer, and receives projections from the input as well as the output layer. If the input and the
target output patterns are imposed on the respective layer, the instantaneous activation received by an H
cell from the input layer is denoted as A;, and similarly, the instantaneous activation from the output
layer is denoted as Ag.

Since both the forward and reverse activations onto individual cells are relevant to
their selection for a new representation, it is helpful to portray them on a 2-D scatter
plot (Fig. 4.2b). Each H cell is plotted with its forward and reverse activations (Ay,
Aop) as Y- and X-coordinates, respectively. We shall refer to such a plot as the
activation scatter of H cells, usually for a particular set of input-output pairs, given the
initial weights. Note that with Ny H-cells and N input-output pairs, the total number

of points in the plot will be NyxN (so each H cell appears N times).

It is important to understand this plot because it illustrates the learning process and the
thinking behind RA. This will be explained here in an informal manner, begging for
the moment the question of how it may be valid to treat reverse activation (on the X-
axis) as equivalent to effectiveness for generating the corresponding output. A strong
positive correlation in the scatter predicts 'easy' training, since the initial weights are

already such that those H cells strongly activated from the inputs also tend to be
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effective for turning on the desired outputs. A negative correlation indicates that the
new learning task is at odds with the current weight configuration and past experience
of the network: the H cells most associated with the correct output pattern are those
that are poorly activated from the input. An absence of correlation would indicate
independence between the past experience of the network and the new learning task at
hand. The learning process can be represented through shifts in the positions of points

on this plot, as indicated by arrows.
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Figure 4.2b. How internal representation may be modified. Each H cell is plotted according to the
activation it receives when the input and the target output pattern are imposed on the respective layer.
The vertical coordinate Aj is the forward activation received from the input pattern; the horizontal
coordinate Ay is the reverse activation from the output pattern. The horizontal line represents a simple
threshold applied with input activation alone: those cells above this line will become the active
representation. Non-zero strengths of reverse activation (V') give slanted threshold lines on the diagram,
with cells then activated only if they are above the slanted line. In general this leads to recruitment of H
cells with high A, and dropping of cells with low A,. Subsequent learning on the Wy matrix, with this
as a target representation, leads to the vertical shifts indicated, while learning on the Wyo matrix
(reflected in Wy ) results in horizontal shifts.

What is Required of the Reverse Matrix

The reverse matrix needs to be set up so that the reverse activation Ag received by an
H cell from the target output pattern is a reasonable indicator of how effective the cell

is in evoking the target output pattern. Putting it in another way, the reverse matrix
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must be such that a selection of H cells with high reverse activation will require less

H=0 weight change to evoke the target output pattern. Stated more formally:

The required backward connection matrix tracks the state of the forward
H=0O0 connection matrix in such a way that the effectiveness of any H cell
for producing a particular output pattern is indicated by the activation
received from the output pattern via the reverse connections. If so, for an

H-cell H;, the reverse activation

Ao (j)=zi WOH (j, l)Po(l) (Eq. 4.2)

Can be used a proxy for its effectiveness for producing an output pattern

Po={0;,...,0;,...} given the current forward weights Wyo.

However, the above is not very meaningful in that it does not explicitly provide a
way of testing whether any matrix fulfils the requirements: how does one know

whether any particular backward matrix is adequate for this purpose?

Note that it is the forward matrix that ultimately determines how
effective an H cell is in evoking a particular target output, so the

backward matrix Woy must be determined by the forward matrix Wyo.

Therefore, the proper way to assess whether a matrix fulfils its role, i.e. whether it
does compute ‘effectiveness’ when plugged into (Eq. 4.2) is to see how well the
activity pattern on H-layer generated by the backward matrix actually produces the

target output pattern Pg (via the forward matrix).

If the forward matrix Wyp has an inverse, then one may choose the backward matrix

to be Wou= Wyo™'. For a linear network of continuous neurons, this choice of reverse
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matrix would give a perfect indication of effectiveness of any H cell in producing any

output Po when plugged into (Eq. 4.2) because

Wio Ao= Wio Wio ™' Po= Po.
In other words, if H cells are activated according to their reverse activation Ao as
computed by the reverse matrix Wop= Wyo™', the output pattern can be produced

perfectly without any change to the forward weights. In this sense, this particular

choice of backward matrix Wyo™' provides an adequate computation of effectiveness.

However, the matrix inverse may not exist; and the case for it breaks down in the

presence of binarisation. A simpler and more general candidate might be

Wou=Wro', i.e., Wio (i, j)=Wou (j, i) for all i,j, (Eq. 4.3)
where ‘T’ indicates ‘transpose’. In this case, we simply have

Ao (§) =i Wro(i, j) Po(i). (Eq. 4.4)
This choice of reverse matrix assumes that the bigger the total weights from cell H; to
the target ‘on’-output-cells, the more ‘effective’ it should be. Intuitively, this seems a

reasonable bet. In Section 4.3 the reverse matrix is considered further. Meanwhile,

the reverse matrix can be considered as the transpose in the discussions that follow.

4.2.2 Constructing a Modified Representation

An initial representation (Py) of the input pattern on the H layer, evoked by forward

activation alone, corresponds to the cells above a horizontal threshold line in Fig. 4.2b.
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The desired modification of this representation corresponds to recruitment of cells on
the right of the diagram, strongly activated from the correct output and therefore
associated with these output cells on the basis of past experience and likely to be
effective at activating the these output cells. With a finite reverse activation strength
(*P), the total activation onto H cells is influenced by the X co-ordinate on the diagram
(Ao). A threshold uniformly applied to all the cells will then correspond to

recruitment of those above the slanted line, with gradient -'¥:

A+ y Ao = threshold (Eq. 4.5)

The desirable H cells on the right tend to be recruited and those poorly associated with
the output pattern, on the left, are lost from the representation. This is the mechanism

. . *
for the creation of a new representation Py .

To establish the new representation Py* from the input alone, the network must
change the I=>H weights. The I=H weight modification, using Py* as a target, results
in the vertical movement of cells on the scatter plot (see Fig 4.2b). Though it is
desirable to recruit cells with large positive Ao values and to exclude cells with
negative Ao values, the ease of activation (A;) from the input is also important. Cells
with initially high Ap but a very negative A; require substantial changes to the I=>H
weights to be recruited, and may cause too much interference. This corresponds to the
use of a very large ¥, represented by a very steep slanted line on the scatter plot.
Since learning can also take place on the H=O weights, corresponding to the
horizontal movement of the cells (see Fig 4.2b) cells, the principle of minimal
disturbance to the existing weights necessitates an appropriate trade-off between
learning (hence changing weights) on the two sets of connections. The trade-off is

regulated by ¥. This is discussed in Section 4.2.4.
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4.2.3 Setting the Number of Cells in a Representation

The new representation pattern Py” depends on the binarisation process used to select
active cells on the basis of combined activation ArtyAp. A process called ramped

binarisation is employed.

Ramped Binarisation

The absolute value of the combined activation Ai+yAo is employed as an indicator of
how advantageous it is for a particular H cell to be ‘on’ in the new internal
representation. However, it may happen that all H cells carry a small or negative
combined input and reverse activation; this may happen if the new mapping is very
different from those already learned by the network. In this case, one still has to
choose the best available internal representation, given the circumstances. One is not
in fact interested in the absolute value of the combined activation of each H cell, but

only the relative order of H cells according to these values.

The natural way to obtain the improved representation Py from the combined
activation pattern Ay Ao is therefore by ranking H cells according to their activation,
turning on the best activated of the H cells for the new representation. Operationally,
this is achieved by ramping, i.e. lowering the threshold on the H layer systematically
from a high level until the desired number of cells are on: ramped binarisation.
Ramping is easy to achieve biologically via a feedback mechanism involving

controlled mutual inhibition.
From a biological point of view, the absolute value of synaptic efficacy and membrane

potential are prone to many fluctuating factors. A binarised activity pattern is one

possible mechanism to achieve robust behaviour against such noise. However, for this
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purpose, the binarisation procedure itself must be robust so that cell activity patterns
are preserved as far as possible against fluctuations or scaling of weights and
activation levels. Ramped binarisation meets the requirement better than ordinary
binarisation procedures that are based on a fixed threshold (such as 0), essentially

through feedback control.

Ramped binarisation is adopted as the normal procedure for RA. The effect on a
scatter plot is illustrated in Fig. 4.2c. The slanted threshold line is moved up or down

until the required number of cells is above it.

Figure 4.2c. How ramped binarisation fixes internal representation. An activation scatter for H
cells, as in Fig 4.2b. The modified internal representation pattern is constructed by turning on only cells
that fall above the tilted line, which is moved up or down by controlled inhibition until the correct
number of cells remain above the line. Hollow arrows show examples of thresholds adjusted to give just
2 active cells in the illustration.

The use of ramped binarisation makes the absolute value of activation meaningless;
only the relative value counts. Systematic vertical and horizontal shifts in the scatter
plots are irrelevant, and the relative vertical and horizontal scale changes are

significant through affecting the appropriate value of \ for a given activity ratio.
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The details of the scatter and the choice of activation strength i.e. angle of the tilt,
determine the precise cut that gives the right number of active cells. For example, for
a small activity ratio, one would need to move the tilted threshold line to the ‘north-
east’ region of the scatter for most choices of tilting angles. The smaller the activity

ratio the more ‘north-east’ the region has to be.

These considerations may seem academic but we shall come back to them in Chapter

5, where they have practical implications to the tuning of reverse activation strength.

The Significance of Activity Ratio

One of the direct consequences of ramped binarisation procedure is that activity ratio
of patterns on each layer, on the intermediate layer in particular, naturally becomes an
integral part of learning on binary networks. This is interesting in view of Section 6.5
where the significance of (low) activity ratio in efficient cortical representations will
be discussed. By setting the strength of ramping, the activity ratios on a given layer
may be fixed at any desired level (without weight changes). It is particularly
interesting to consider the impact of activity ratio of internal representations on

learning performance.
More detailed analysis in Section 4.3.4 reveals that activity ratio affects the potential

performance of RA algorithm also in a direct way, independent from efficient

representation considerations.
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Generalised Competitive Learning

Ramped binarisation, pushed to the extreme with only one 'on' cell, produces the
competitive learning situation, for which the ability to extract features contained in the
inputs without supervision is described in Section 3.3. Thus the RA learning
algorithm with ramped binarisation is a form of ‘n-bit’ competitive learning with
supervision, however, the supervision is less specific than in other supervised
algorithms, since the teaching signals are not in the form of specific output errors, but
are the required outputs themselves. To distinguish our situation from the usual
competitive learning, or from the usual supervised learning, one may call it »-bit

competitive learning with constraints (as opposed to ‘with supervision’).

4.2.4 Random Tuning of Reverse Activation Strength

The RA algorithm involves the superposition of input and reverse activation with a
weighting factor, the reverse activation strength y. The problem of how to determine
the appropriate y is important here. See Chapter 5 and 6 (Fig. 5.8, 5.14 and 6.1 in
particular) for simulations showing the proposed solutions perform in practice. Some
information from these simulations is introduced into the discussion here, because it

has led to development of the strategy of random tuning.

To monitor the progress of training, it is common to plot the number of correct
mappings achieved at the end of each epoch against the number of training epochs that
have been carried out. Typically, the performance level rises relatively quickly before

flattening out to approach an asymptotic level.

For the RA algorithm with a fixed y value (‘fixed-y RA’) throughout learning, the

observed leaming curve approaches its asymptotic level very quickly. Further, it is
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found that for bad y values, learning performance settles into its asymptotic level
much quicker than the performance of more successful trials (see for example Fig.

5.4).

For good v values, the resulting small net weight changes in the latter stage of training
simply reflect the fact that most of the mappings are correctly achieved so that
modifications only take place rarely. However, in the case of bad y values, there is
certainly no shortage of opportunities for weights to change. Yet, when net weight
changes at the end of each epoch are recorded, they are found to be declining quickly
to very nearly 0, corresponding to performance settling into its asymptotic state. The
appropriate conclusion to be drawn here is that for bad y values, the modifications

tend to cancel each other out, much more so than for good y values ( see for example

Fig. 6.1).

This suggests that if y is allowed to fluctuate randomly, then those modifications that
result from inappropriate y values will tend to cancel each other, while those that
result from good y values will add up and generally move in beneficial directions.
This bias will enable the network to learn positively over time, on average. This
somewhat speculative conjecture is vindicated in simulations. The quality of learning
is surprisingly good, comparable or better than the best of fixed-y RA training in some
cases. This version of RA shall be referred to as random-y RA, which is detailed in

Chapter 5.

Section 4.3 The Reverse Weight Matrix

This section considers in more detail a crucial aspect of the RA algorithm, the

backward connection matrix from the output to the intermediate layer. This issue is
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self-contained and relates to the H and O layers only. That is, it is intrinsically a 2-

layer problem.

4.3.1 Identification of the Ideal Reverse Weight Matrix

Let Po be any pattern on the output layer. Since the output layer has No cells, Po
belongs to the No-dimensional real vector space. In general, one assumes that Pg is
generated according to some process described by a probability density distribution P
over the vector space. This assumption covers the situations where Pg is a Gaussian
vector, or where Pg is always a binary vector, etc. Throughout the rest of the Chapter,

let us assume that the distribution P is uniform.

Recall (Eq. 4.2) and the associated requirements for the backward matrix Woy. One

may place optimisation criteria on this to make the requirements more concrete.
With respect to a given binarization mechanism B in the network, the
backward matrix is required to be such that the expectation calculated with
respect to P
E{d(Po, Po’ )} (Eq. 4.6)
is adequately small, where, in matrix-vector notation,
Po'= Bo( WioBu(WorPo) ), (Eq. 4.7)

and d(, ) is some distance (i.e. error) measure for binary patterns.

Let us clarify the above with the following diagram.
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Figure 4.3 The defining property of the reverse connection matrix Woy. Given any binary pattern
on the output layer, drawn from some probability distribution P, the matrix Woy feeds it backwards to
produce a binary pattern Py=By(WouPo) on the H layer; this is then fed forwards by the matrix Wy to
produce a binary pattern Po'= Bo(WyoPy) on the O layer. The matrix Woy is such that the average
distance between Py and P is small. With the appropriate choice of distance, this property should
imply that the average H=> O weight modification required to evoke pattern Pg from pattern Py, which
is computed by the backward connection matrix Wy, is small.

Evidently, the distance measure d( , ) is the entity through which one ultimately
expresses precisely what one means by the ‘effectiveness’ of an H cell (in producing

certain pattern Pg), which determines what the reverse weight matrix Woy should be.

The distance natural to the present situation is bit error, that is,

d(Po, Po")=%i [Po(i)-Po (i),

because given that the synaptic modification rule is perceptron, it reflects the amount
of H=0 weight modifications required in order to produce pattern Po from pattern

Py=Bu(WonPo).

How does one find a reverse matrix Woy that satisfies the above? It may be instructive
to note that the required reverse matrix by its definition above performs an inversion
operation; the problem corresponds formally to the so called inverse problem, which is
involved in modelling brain functions such as vision and sensorimotor control. Let us

examine its relevance to the present situation.
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4.3.2 Standard Inverse Problems: Inverse Optics, Inverse Models

In the context of artificial vision (Kawato et. al. 1993), the desired outputs (patterns on
the O layer of Figure 4.3) may be the equivalent of the input images. The H layer
patterns correspond to the internal representations of the visual scene, in terms of, for
instance, lines, edges, colour and so on; the H layer plays the role of the visual cortical
areas. It is stated that visual recall (in this artificial model) is a forward optical
problem: it constructs something similar to a low-level ‘retinal’ pattern Po, from its
internal representation Py bearing more relation to the outside world. The forward
matrix Wyo then is the manifestation of a model of the forward optics. The earlier
visual pathway I=H in this model, performs an inverse transform (inverse optics),

which turns a retinal visual image Po into an internal representation Py.

In the context of motor control, cf. ( Jordan, 1990), the O layer patterns represent the
actual movement required (expressed in task coordinates such as speed, joint angles,
reach and so on), while the H layer patterns represent firing patterns of motor neurons.
Each firing pattern Py is transformed forwardly into movements by a known map such
as the forward matrix Wyo. However, the central motor control must do the opposite:
it turns a desired movement into firing patterns. That is, it performs the inverse
transform that produces the appropriate firing pattern Py from a desired movement

represented by pattern Po; this is called an inverse model.

In either of the contexts above, at the simplest level, one usually assumes that the cells
in each layer have continuous outputs and that the problem is continuously
differentiable and approximately linear. The upshot is that one ends up with the

demand that the backward weight matrix Wy must be such that

WhoWon=1, (Eq. 4.8)
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where 1 is the unit NoxNp matrix. This is so that patterns originating on the O layer
can be reproduced: in the context of vision, the reconstruction of the image from its
internal representation; in the context of motor control, the intended movements (on
the O layer in terms of task coordinates) resulting from ‘motor neuron’ firing patterns

(H layer).

This equation amounts to No2 linear equations with NyxNp unknowns and NyxNg

coefficients from the known matrix Wyo.

In the motor control case, one usually has No< Ny because the O patterns, which
represent movements, come from a space of a much lower dimension than the space of
firing patterns; in other words, many different firing patterns may achieve the same
desired motor task. In this case, infinitely many matrices Woy may exactly solve (Eq.

4.8); one may write

_ A
Won=Wuo Rr,

where subscript ‘R’ indicates that the ‘inverse’ is only valid if it multiplies on the right

of WH().

In the inverse optics case, it is usually assumed that No> Ny because ‘retinal’ images
are supposed to be reduced dimensionally (at least in the artificial setting), i.e., to be
more efficiently represented by lower dimensional patterns on H. It is obvious that
(Eq. 4.8) has no exact solution in this case. For technical reasons, the column vectors
of the forward matrix Wyo are made linearly independent, which is always possible

without changing any essential aspect of the underlying problem.

The usual practice is then to choose a distance (error) measure d( , ) on the space of

image patterns Po, and seeks an ‘optimal’ solution that minimises the expectation
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E{d(Po, Po* )}, where Po*= WuoWouPo. The most common choice of distance d( , ) is
the Euclidean distance, that is, one seeks to minimise the average mean square error.
Let us assume that the probability density distribution of the images Pg is uniform, for

simplicity. The optimal solution is then given by

Wor=(Wro Wro)" Who'; (Eq. 4.9)

This is the pseudoinverse solution: the backward matrix Woy is the pseudoinverse

Who' of the forward matrix Wyo.

Our reverse matrix problem differs from the two standard cases above in some
important respects. The expectation (Eq. 4.6) contains the non-linearizable

binarisation operation B, and is calculated over binary patterns only.

Another important problem associated with the linear continuous solutions is that they
cannot be computed by local operations (not to mention that the solutions must be
computed differently according to whether Ny is greater or smaller than Ng). The
backward matrix must track any changes in the forward matrix in order to continue to
compute adequately the effectiveness of each H cell, i.e. to maintain the (pseudo)
inverse relation. If one accepts the linear continuous solutions, the backward matrix

modification AWopy required is determined by solving
(AWno)Won + Who(AWon)=0.
This is merely a set of linear simultaneous equations with unknowns AWoy (i, j),

which in general depends on every element of (AWuo)Won and Wopn. It cannot be

computed via local synaptic rules.
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4.3.3 The Transpose as a Possible Inverse Operator

Due to the above difficulties regarding the inversion problem, one is forced to seek
alternative reverse matrices. Recall that symmetric connection weights are used in
autoassociative memories. In particular, the transpose has been used to perform
inversion type tasks for binary pattems in the so-called bi-directional associative
memory, BAM, a bi-directionally connected 2-layer perceptron-type network (Kosko,
1988, Baum et. al. 1988). The transpose in this context is used to retrieve a given set
of binary patterns that have been transformed by a forward matrix. It is proved that
the dynamics on this 2-layer network, where the feed-backward connection matrix is
the transpose of the feed-forward one, is always stable in that it always settles into a

stationary state, in which the transpose is evidently an inversion operator.

One advantage for choosing the transpose as the reverse matrix for RA is that the
algorithm can be generalised readily to a multi-layer setting (as in Section 4.4.)
Another advantage is that local learning rule can be used to compute the transpose
during learning, provided that the reverse matrix is the transpose initially. Apply
Gardner-Medwin’s interpretation of the perceptron learning rule as a 2-stage Hebb
learning: one of anti-learning (forgetting) when the internally generated output is on,
and one of positive learning when the target output is on. Then since the same Hebb

rule applies to both the forward and backward connections one has,

H cell in the selected O cell in the output Forward weight Backward weight
representation on H pattern Py (or Po°) change change

on on +(-) +(-)

on off 0(0) 0(0)

off on 0(0) 0(0)

off off 0(0) 0 (0)

Table 4.1. Two-stage Hebb learning results in symmetric weight changes. P, denotes the target

output, which is imposed on O layer in the positive Hebb learning stage. Po° denotes the current,

internally generated output, which is imposed during the negative Hebb learning stage.
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Thus if the two weight matrices start off as the transpose of each other, perceptron
training will preserve this relation. This assumes that the weight of influence of H-

cells on O-cells is the same as, or proportional to, that of O-cells on H-cells.

Although, the transpose performs ‘dynamic inversion’ in BAM, it is not known how

good it is in performing ‘one-shot’ inverse operations.

4.3.4 Weight Statistics, Activity Ratios and Inversion by Transpose

In the following, an investigation on inversion by the transpose matrix is presented.
The conclusions are the result of certain characteristics on the weight statistics. We

shall argue on intuitive grounds only that these characteristics tend to hold.

As a matter of consistency, the type of weight statistics suitable for a learning
algorithm should be exactly the same statistics that are produced by such an algorithm
if it 1s applied for a long time in past learning. Recall that the RA algorithm uses the

ordinary perceptron rule. We examine what statistics the perceptron rule will produce.

In what follows, for simplicity, any probability distribution involved will be assumed
to have zero mean. This makes no consequential difference because on a binary
network with ramped binarisation, the absolute value of weights has no effect on the
network’s behaviour. It is only the differences that count. One can always shift the
origin to make the mean of distributions zero for any particular and therefore all

connections (since no one connection should be special).
It is shown in the following that the perceptron learning rule and the activity ratio

constraint imply that 1) any pair of out-going connections from a common H-cell to

the O layer tends to have negatively correlated weights, and that 2) the incoming
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connections onto any particular O cell tend to be statistically independent. The basis
of argument is the central limit theorem, see e.g. (Feller, 1966) and properties of

Gaussian (i.e. normal) distributions.

Weights Are Gaussian Random Variables

Let us firstly examine the statistics of the forward matrix Wyo. Let the present time be

n, and the present forward matrix be Wyp(n). One has

Wio(n)= Wro(0) +2"1 AWro(s),

where Wyo(0) is the initial matrix, AWyo(s) is the modification at time s=1,2,...n. At

any entry Wyo(i,j)(n) of the matrix, one evidently has

Who(i,j)(m)= Wro(i,j)(0) +Z"1 AWro(i,j)(s). (Eq. 4.10)

That is, any entry Wyo(i,j)(n) is a sum of random numbers (given a long period of
unspecified learning expericence). One can always define time s, which merely
registers the number of opportunities (or ‘turns’) for the weight Wyo(i,j) to be
modified, such that modifications AW yo(i,j)(s) and AWyo(i,j)(s’), s#s’, are statistically
independent. In other words, one can always lump successive modifications together
and count them as one modification so that the ‘lumps’ are statistically independent.
‘Lumping’ is the most common technique to achieve statistical independence, cf.
(Feller, 1966). It is also consistent to assume that the initial value Wyo(i,j)(0) is

statistically independent to any subsequent modifications AWyo(i,j)(s).

Under the above assumptions, provided that past learning tasks can be modelled by

some stochastic process obeying very general technical conditions (such as the
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existence of a second moment), one can apply the well known central limit theorem,
which says that such a sum X"y AWyo(i,j)(s) is a Gaussian random variable if n is
large enough. The approach to Gaussian distribution is usually very fast as n increases
(Feller, 1966). For instance, for modifications AWyo(i,j)(s) where s=1,...,n that are
drawn from a uniform distribution, n=10 is sufficient for the sum to de described

accurately by a normal distribution.

One can then conclude that

the present value Wyo(i,j)(n) of any entry of the forward matrix can be

modelled as a Gaussian random variable for reasonably large n.

In the absence of any other assumption about the nature of past learning tasks, it is
inevitable as well as convenient to assume that all of the entries Wyo(i,j)(n) of matrix
Who(n) are generated from a common Gaussian distribution; let us also shift the

distribution so as to have zero mean.

Non-positive Correlation of Outgoing Weights From the Same H Cell

Note that we have not yet made any assumptions about the correlation amongst the
matrix entries. Information about correlation may be obtained by looking at the
learning process more closely. We first look at the pair of out-going weights

Who(1,))(n) and Wyo(k,j)(n) from a common H cell j.
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Wiiofi, iNs1) +tAWrofi, j)(s)

Wiol(k, j)(s-1) +AWho(k, j)(s)

Figure 4.3a

Past increment AWho(i,j)(s) and AWho(k,j)(s) may be regarded as having identical
statistics (not necessarily Gaussian) and 0 means. Consider the pair as a random
vector X=(AWyo(i,j), AWyo(k,j)). Then the above amounts to saying that X, at any
time, must be generated from a distribution P(X;, X3) that has 0 mean, and that is

symmetric in X; and X5.

In this case, its covariance matrix can be written in the form of

)
\ps? o ) (Eq. 4.11a)
where o7 is the variance, and |p| < 1 because of the equation
deldXz (Xl-Xz)2 P(X,, X3)>0 for any probability density function P.
Applying the central limit theorem again, one concludes that
any pair (Wno(1,))(n), Wuo(k,j))(n)) of out-going weights from a
common H-cell j, as the sum of a large number of random vectors X

(not necessarily Gaussian) with covariant matrix (Eq. 4.11a), is a

bivariate Gaussian variable with covariance matrix (Eq. 4.11a), where
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o’ is redefined to absorb a constant factor n (directly corresponding to

the number of independent weight modifications made in the past).

Next, let us argue that the correlation coefficient p is non-positive if weights have
been modified by a perceptron-type rule, assuming 1) fixed activity ratio that is less
than 0.5; 2) the independence of output cell activity otherwise, excluding the non-
independence originated from the constant activity ratio assumption and; 3)

independence of errors.

There are only 2 possible occasions out of 16 (including the 4 in which no errors occur
on the two selected output cells) in which both modifications AWgo(i,j) and
AWho(k,j) take the same sign. The following table lists the signs of corrections in

contingencies where either AWyo(i,j) or AWyo(kK,j) is non-zero.

Sign of correction if require i, k on require i, k off require i on, k off | requireioff, k on
l.only cell i is wrong +0 -0 +0 -0
2.only cell k is wrong 0+ 0- 0- 0+
3. both are wrong + + -- + - -+

Table 4.2

Note that only the 4 contingencies (++), (--), (+-) and (-+) are relevant to the

correlation of between AWyo(i,j) and AWyo(k,)).

Assuming independence of network outputs and target outputs during past learning,
then the two components of the Gaussian vector (AWpo(i,j), AWno(k,j) are
independent of each other as the correlation between them are calculated to be zero.
Further, the correlation is negative for small networks. Due to the special condition
the total number of ‘on’ cells in outputs is fixed, the probability of a cell being ‘on’ is
not strictly independent of other cells. In fact, contingencies (++ or --) are forced to be
less frequent than contingencies (+- or -+), given activity ratios less than 0.5. This

effect is only significant for small networks. For large networks, as Npo goes to
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infinity, the effect diminishes: the correlation approaches zero from below zero. (Note
if there is always only one ‘on’ cell in the outputs, then contingencies (++) or (--) do

not occur, implying a negative correlation).

In summary,
The correlation between AWyo(i,)) and AWyo(k,j) is non-
positive under the assumed conditions. The parameter p in
(Eq. 4.11a) is non-positive, thus the weights Wyo(i,j)(n) and
Wuo(k,j)(n) are also non-positively correlated. The

covariance matrix (Eq. 4.11a) is such that

-1<p=<0. (Eq. 4.11b)

Independence of Incoming Weights To the Same O Cell

Next, let us look at any row vector X(n) of the forward matrix Wyp(n) at time n, i.e.
the incoming weights of a particular O cell. Let Xj(n) = Wro(i,j)(n), j=1,2,...Np, with i
fixed:

Wholi, 1)(s-1) +AWyoli, 1)(s)

Figure 4.3b
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If the weights have been modified by perceptron-type rules, one notices that any
modification AX(s) to the row vector has a constant length (as a vector) proportional
to the activity ratio ay of the H layer. Further, assuming that all these connection
weights are equally likely to be wrong and modified, the modification vector AX must
have an isotropic distribution in the Ny dimensional space. Under these two

conditions, the central limit theorem enables one to conclude that

The row vector X(n) of the forward matrix Wyo(n), i.e. the incoming weights
onto any particular O cell, is a Ny-dimensional Gaussian vector with a
covariance matrix C=c" 1, where 1is the unit NyxNy matrix; in particular,
this implies that any two incoming weights of a common O cell are

statistically independent.

Formalising the Inversion Problem in the Context of Gaussian Weights

and Fixed Activity Ratios

Let the binarisation procedure B in (Eq. 4.7) be the ramped binarisation procedure
(Section 4.2.3). Let us describe what this amounts to in case of a transpose matrix.
Assume that the activity ratio on H layer is oy with total cell number Ny and the
activity ration on O layer, ap. Then using the transpose, for any output Po, (Eq. 4.7)

reads
Po’ (1) = Bo( Z{Who (/, ))Bu ( ZWro (k, ))Po (K)) ) , I=1,2,...No
Note that all By does is that it picks out the top-Nyoy numbers out of Ny numbers,

each of which is the sum of Noop number of weights (since there are only Npoo ‘on’

output cells in the output patterns. The operator Bo does likewise.
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It is possible to calculate the probability of the ‘recovered’ pattern Po being the same
as the original Po. Recall the statistical structure of the weights in Wyp: each weight
Who(k, j) is a Gaussian random variable independently drawn from the same Gaussian
distribution of mean zero and variance o®>. Let us ignore the possible negative
correlation between weights in the same column (i.e. outgoing weights from a
common H cell). It will be clear that any negative correlation only increases the
probability. Thus, in the assumption of large Ny and No, any cell that survives the

binarisation operator must have its activation in the top-ay (or top-op) portion of the

relevant Gaussian distribution.

The problem of calculating the ‘recovery’ probability under the large number
assumption thus translates into the following integration exercise on (Gaussian

distributions:
Given Nyoy sets of Nooo numbers
{W(k,_])l k=1,2,. cey NoOLo}j, j=1,2,. vy NHOLH

independently drawn from the Gaussian distribution G(0, c?)
such that the sum Zyw(k,j) for each set belongs to the top-oy
portion of the Gaussian distribution G(0, Noocooz), what is the
probability p(ao, oy , c?) Sor the sum Z;w(k,j) to be in the
top-0.o portion of the Gaussian distribution G(0, Nuoyo?) for
k=1,2,....Nooo ?

The solution p(co , oy , 6°) to this problem gives the probability of all the ‘on’-O-cells
in Po being ‘on’ in Py The bigger this probability the better the inversion. Note that

although the sets are independent from each other, the numbers within each set are not
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independent by virtue of the condition imposed on their sum even though the numbers

are otherwise drawn independently.

While the problem is well-defined, the calculation for p(oo , oy , o?) is highly
complex and the result cannot be expressed analytically. Let us simply list some

qualitative but precise properties in simple situations.

With a single active Cell on both the H and O Layers

The problem simplifies to one of calculating the probability of any number, randomly
drawn from the top-ay portion of G(0,0%), being also in the top-op portion of G(0,0%).
It is clear that as long as au< dg, the probability is 1. That is, with a single ‘on’-cell,
and for large H and O layers, the transpose performs accurate inversion with
probability 1. Note that for finite (small) cell numbers, these conclusions cease to be
strict, since instead of considering the top o fraction of each probability distribution,

what is relevant is the top o fraction of a set of samples from this distribution.

1) the probability will be less than 1 (since being top amongst a sample of say, 10,
leaves finite chance for being outside the 10%- or even the 20%-percentile of the

population);

2) the smaller the ratio ap/ao, the higher the probability of perfect inversion since the
chances of being top amongst a sample of say, Ny=20, implies a good chance of

being top amongst a sample of say, No=3.

3) other factors being equal, any pair-wise negative correlation that exists amongst
outgoing weights from common H cells increases the probability of perfect
inversion as it implies that the peers, against which comparisons are made, are

drawn from G(0,6°) randomly but with a negative bias.
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With a single active Cell on just the O Layer

This setting corresponds to the tasks simulated in Chapter 5. The problem simplifies
to calculating the probability of the sum of Nyay numbers, each randomly drawn from
the top-o portion of G(0,6%), being in the top-oo portion of the distribution G(0,

NHOLH(Y 2).

Note that G(0, NHaHoz) can be a much wider distribution than G(O,cz). As aresult, it
is necessary to have ay<< oy, in order for the probability to approach 1. For finite cell

numbers, given the properties of Gaussian distributions, one has

1) the smaller the ratio ay/a,, the higher the probability of perfect inversion.

2) other factors being equal, any pair-wise negative correlation that exists amongst
outgoing weights from common H cells enhances the probability of perfect
inversion as it implies that peers, against which the comparisons are made, are the

sums of numbers drawn from G(0,5°) with a negative bias.

Note that the above implies that, in the 1-‘on’-output-cell setting, the smaller the H-

layer activity ratio, the better the transpose performs inversion.

It can be conjectured that in general, the smaller the H-layer activity ratio relative to

the O-layer activity ratio, the better the quality of inversion by the transpose.
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4.3.5 Comments on Initial Weight Statistics and Activity Ratio Setting
for RA learning

For the RA algorithm to function, the network setting must be such that it allows
‘adequate’ inversion by the reverse matrix. Otherwise the reverse activation received
by each H cell will contain little information about its effectiveness in evoking the
target output pattern; the basis of reverse activation becomes invalid. Having chosen
the transpose as the reverse matrix, it is important that the network parameters allow
‘adequate’ inversion by the transpose. It is impossible to define what level of accuracy
is ‘adequate’ since there is as yet a logical gap between the ability to invert and the
ability for the RA algorithm to construct ‘good’ representation to learn. But it is

clearly relevant.

From the last section, it can be seen that the adequacy, in case of the transpose, is
partly determined by the weight statistics. Because of this and our choice of the
transpose, certain restrictions on the initial weight statistics must be imposed. For
instance, Section 4.3.4 implies that positive correlation between outgoing weights
from common H cells is highly undesirable. In one of the tasks described in Chapter
5, initial weights are generated from mock-learning random mapping tasks using
perceptron rules, thereby producing the desired statistics described in the last section.
It is not entirely clear whether the above mock-learning preparation is essential for
RA-with transpose. However, Section 4.3.4 does suggest that independence amongst
weights may be good enough. This is indeed used also in simulation, for which RA-

with-transpose seems to function ‘normally’.

Another perhaps more important factor in determining the adequacy of the transpose is
the activity ratio of the internal representations in relation to that of the output
patterns. In general, internal representations with small activity ratio (i.e. sparse

representations) seem to be desirable, as far as inversion is concerned.
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However, it is not clear how the ability of the transpose to invert accurately affects
overall learning performance (using the RA algorithm). Further, activity ratio must
affect learning in other ways. For instance, if the activity ratio is too low, there may
not be enough representational capacity on the H layer to solve a given problem (even
though the transpose can invert perfectly). = We shall come back to this when

discussing simulation results.

Section 4.4 Reverse Activation Algorithm in Multi-layer Networks

Consider the multi-layer hierarchically arranged autoassociative network introduced in
Section 3.4.2. Label the input layer as the 1st layer and the output layer as the Nth,
with intermediate layer labelled accordingly. Denote this network by 1=2<...<N.
Recall that each layer can function independently as an autoassociative memory, the
properties of which correspond well with short-term memory. In addition, there are
forward and backward connections linking every unit in one layer with every unit in
neighbouring layers (only forward connections from the input layer), usually
modelling long-term memory. As it has been assumed that the these three classes of
connections can function independently, let us ignore the internal autoassociative

weights, and concentrate on the difficulties presented by multiple hidden layers.

Let us continue to assume that the inter-layer connections are symmetric: forward
weights equal backward weights. One can generalise the RA algorithm to such a
multi-layer network functioning as a feedforward memory. The key part of the
algorithm is how to construct improved internal representational patterns on each

intermediate layer.

This involves superimposing the activation from the input and output pattern via

forward and backward connections (with a certain chosen reverse activation strength).
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For the simple 3-layer net this operation is straightforward. @ With multiple
intermediate layers, it is more complicated as no layer is directly connected to both the
input and the output layer. When the input and output pattern are imposed on their
respective layer, what pattern is selected (after ramped binarisation) on layer K
depends on what patterns are selected on layer (K-1) and layer (K+1), which in turn
depend on what patterns are selected on layer K and, respectively, layer K-2 and layer

K+2. That is, one has a dynamic situation.

4.4.1 Using Stationary States to Construct Internal Representations

It may that the dynamics of a multi-layer network can settle into a stationary state so
that the patterns are mutually reinforcing and thus stable. The internal patterns so
produced when the network is in a stationary state (while the input and the output
layer are clamped) are the improved internal representations layer by layer. They can
then be implemented via perceptron rules. The above is then the key of the

generalised RA algorithm in a multi-internal-layer setting.

It is crucial that the inter-layer dynamics, established when the input and output layers
are clamped, is such that there are always stationary states (not just cycles) in which to
settle. Otherwise one has no natural basis to favour one set of internal representations
over any other. This is a very stringent requirement. Fortunately, this requirement can

be met, thanks to the assumption that the backward and forward connections are

symmetric.

One can prove this assertion by employing standard techniques. In (Hopfield,1982), it
is proven that the dynamics of a network of symmetrically connected O-threshold
binary neurons always admits stationary states; in (Kosko, 1988), it is proven that any
real connection weight matrix admits stationary states when it is used as a bi-

directional associative memory, so called BAM theory. In fact Kosko’s result follows
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from Hopfield’s result since BAM is a special case of Hopfield net. The present
assertion regarding dynamics on the partially clamped network 1=2&...<>N follows
similarly (“partially clamped” since the input and output patterns are fixed on the
input-output layers). However, the present context is sufficiently different to justify a

more detailed explanation. The following gives the important steps in the proof.

4.4.2 Proof that Stationary States Always Exist on the Given Network

Given the network 1=2&...<N, let the weight matrices connecting layer K to K+1
be denoted as W*X''; the corresponding backward connection matrix is thus
WEHKS(WEKNT - Note that the dynamics established when the input and the output

patterns are imposed is governed by the following energy function, in vector notations,
E (Po, Py W, y) = (-1/2) (P," W'2P; + y M2 Py WNI-Npy ) +
(1/2) T W) (P W P + ()P’ (W) )} (Eg. 4.12)

where Py is the pattern on layer K, treated as vectors, with Po=Py and P=P; fixed,
being the input and output patterns, and y is a positive constant, the reverse activation

strength.

With respect to any cell in any hidden layer (K=2,...,N-1), the derivative of this energy
function against the activity of that cell is proportional to the combined activation that
it receives from the two neighbouring layers with a reverse activation strength ; the
proportionality being -(W)(K'Z). In discrete time, the pattern on each layer is updated
synchronously or asynchronously in turn according to the ramped binarisation
updating rule. Note that in such an update, the state of a cell is changed (i.e. turned

‘on’ from ‘off’ or ‘off” from ‘on’) iff. the resulting value for the energy function above
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is strictly lowered. That is, the energy function is strictly decreasing along the

dynamic flow.

Each term in the energy function is bounded below, so the energy function is also
bounded below. Further, this energy function is well-defined, as it is symmetric with
respect to Px and Pgs; for all K=2,..,N-1 (evident by taking the transpose of each
term, which should leave it unchanged since it is merely a real number). These
conditions ensure that local minima exist for the energy function (Eq. 4.12). Since the
dynamics strictly reduces the energy function, the system will settle into at least a local
minimum eventually, which implies that no further changes in the firing patterns will
result from future updates. The convergence of such dynamics, essentially a Hopfield

net, is usually swift; see examples in (Amit, 1989).
To summarise, one concludes that

any  multilayer, bi-directionally  connected network
1=2...<>N  with real connection matrices admits
stationary states when the input and the output patterns are
imposed on the respective layers. The generalised RA
algorithm then selects the patterns in the stationary states so
achieved as the representational patterns on each internal
layer. These are then implemented in the feedforward map

via the simple perceptron rule layer by layer.

In the energy function (Eq. 4.12), a universal reverse activation strength has been
chosen. This is not strictly necessary. It is possible to have different strengths for
different pairs of layers. In which case, one can replace, in (Eq. 4.12), v by k.1, &2
by Woy1,.. W2, and WM by woyi.. w2, where K=2,..., N-1, and yy.; is the reverse

activation strength chosen for weights between layer K and K+1.
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These parameters, as in the original RA, control ‘how the task of learning will be
shared amongst the forward matrices’. A large yk.; implies more ‘burden’ on

connections coming into layer K and less on connections from layer K to K+1.

4.4.3 Interpretation of Generalised RA

When a pair of input and output patterns are imposed, the ensued dynamics on the
multi-layer net can be seen as an automatic search for a pattern configuration in which
the representational pattern on every layer is consistent with the activation that it
receives from its neighbouring layers, which is ultimately determined by the input and
the output pattern. If such patterns are chosen as the target internal representations,
overall weight modifications required to implement them in the forward mapping (by
changing the forward weights layer by layer) are expected to be small since they are
already mutually reinforcing. Note that in the 3-layer setting, the dynamic selection
process is trivial as there is no dynamics in the 3-layer net when the I and O layers are

clamped.

It should be interesting to find out how the generalised RA would work in multi-layer
simulations, though this work has not been carried out for the thesis. Immediately,
one can see that the technique of randomly tuning the reverse activation strengths (see
Section 4.2.4) is particularly relevant and perhaps essential to the generalised RA
algorithm due to the possibility of having numerous reverse activation strength

parameters.
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Chapter S Simulation of Reverse Activation Algorithm

It is nearly impossible to work out analytically how the reverse activation (RA)
algorithm would perform in practice. In this Chapter, simulations are carried out for
3-layer networks using a matrix of reverse weights that is the transpose of the forward
weights (Section 4.3.3). In other words, reverse weights (Woy) are equal to the

forward weights (Wyo) connecting the same pairs of cells.

Section 5.1 Methodology

The purpose of these simulations is firstly to obtain information about the properties
of the RA algorithm itself, and secondly to make comparisons with standard
algorithms.

Standard three-layer binary networks are employed. The number of cells in the I and
O layers is fixed by the chosen learning task. Training is carried out for a selection of
initial conditions (independently generated initial weights), under each combination of
tuneable parameters. Hence if there are Xj, initial conditions and Xc.m sample
combinations of tuneable parameters, one has Xi,;xXcom trials in all. Each trial
consists of a fixed number of training epochs; it is continued according to the criterion
that it should be prolonged enough for the network performance to reach its
asymptotic level (so that further training will not yield any new information). Data

associated with learning is recorded at the end of each epoch in each trial.
As the data will reveal, performance can crucially depend on the choice of various

learning parameters. This is undesirable in a working system, so an alternative

procedure is explored in Section 4.2.4, allowing the various parameters to take random
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values throughout learning. These simulations are repeated even for the same initial

conditions because each trial involves random processes.

5.1.1 Sampling Tuneable Parameters

There are 3 tuneable parameters in the RA simulation: the step-size (i.e. unit weight

change) A, the reverse activation strength y, and the H layer activity ratio ay.

Step-size and updating procedure

The RA algorithm aims to find a representation that would allow learning with
minimal disturbance to previous learning and the existing weights (4.2.1). It does not
introduce new synaptic learning rules. Instead, it is merely a procedure for creating
improved internal representations; once a representation is determined, connection

weights are modified using perceptron rules till the correct output is produced.

Given the above background, the most natural updating procedure for learning with
RA is total-on-line (3.1.2), i.e. the most recent item is always learned with perfect
accuracy and thus can be recalled perfectly before the next presentation. This also
seems more biologically plausible than either batch or on-line updating, which do not
learn any single input-output mapping until after the whole training set is repeated,

often many times over.
There is an added advantage to total-on-line updating. The step-size A is involved in

RA only because RA uses the standard perceptron rule. Since the general effect of A

on simple and multi-layer perceptron learning is well-known (cf. Section 3.1 and 3.2),
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in order to concentrate on the new aspects of RA learning, it is necessary to isolate and

minimise the effect of A. To achieve this, total-on-line learning procedure was ideal.

In this procedure, the network is ‘forced’ to learn the most recent item perfectly.
Provided that the network is not too small (so that learning even one mapping is
difficult) and using the perceptron rule, the weight changes that achieve the new
mapping are restricted to those involving the active I and O cells and are a function of
the local landscape of the error surface, relatively independent of the step-size
involved. In other words, perfect learning of the new input-output mapping tends to
lead to the same weight configurations whatever the step-size: if the step-size is very
small, then more iterations may be required; if it is bigger, then those configurations
can be achieved with less iterations. The limit is that excessively large step changes
may make even learning one mapping unstable. Thus the effect of step-size on
performance is less with the total-on-line updating procedure, compared to the on-line
or batch alternative. This leaves one free to explore the effects of activation strength y

and the H layer activity ratio ay, the two new elements introduced by RA.

The main RA simulations are thus done with a fixed step-size, 0.005, small enough
given the initial weights. It is of course useful to know how RA might cope in other

updating procedures. This will be discussed in Chapter 6.

The Size and Activity ratio of the Hidden (H) Layer

The size Ny of the hidden layer, in this kind of studies, is usually chosen so that it is
not too big (or too small) as to make learning too easy (or too difficult respectively) to
the extent that different learning algorithms become indistinguishable in performance.
For any given learning task, there is probably no unique choice that achieves the above

balance perfectly and there is not any general method to determine what size the
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hidden layer should be. It is mostly a matter of trial and error, combined with hind
sight. In other words, one carries out some preliminary simulation for a chosen size of
the hidden layer and see if learning is too easy or too difficult for the learning
algorithms concerned; when the full simulation data has been collected, one checks
again that the hidden layer used is 'reasonable'. As such there is always a degree of
subjectivity involved and the final data set may still be open to debate as to whether
the chosen size for the hidden layer is too easy or too difficult to the learning
algorithms being tested. The simulation carried out in this work is no exception in this
respect. (However for the second task, the mirror symmetry task, the hidden-layer size

is taken from what is in the literature directly.)

The activity ratio oy is fixed on the H layer for the RA algorithm, so an exhaustive
sampling of oy is possible, i.e. W=Nyoy ={1, 2, ...Ny} where W is the number of
active cells. However, one would expect the learning performance to be more
sensitive to activity ratio oy when it is very low; as ay becomes higher (towards 50%),
the change in performance will get progressively less. The real interest is in finding
out at what ratio peak performance can be achieved. In data collection, it is sufficient
to sample more at the lower end of activity ratio and progressively less as the ratio gets

bigger.

Reverse Activation Strength

The reverse activation strength y (=0) is the most important parameter in the RA
algorithm in determining performance. What is a ‘fair’ sampling method for y? If
plotting a function by sampling its variables can be a guide, a reasonable definition of
fair sampling of a continuous parameter x on which a variable y depends continuously

is the following:
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A fair sampling set {x; j=1,2,...,} is such that the behaviour of the
dependent variable y changes in a ‘steady enough’ manner
between sampled parameter values (such that no major turning
points are missed while no unnecessary time is spent on ‘flat’
regions). In other words, ideally one has Ay;= y(xj+1)-y(x;) roughly

constant for all j=1,2,....

It is largely a matter of judgement how fair sampling might be done as it relies on
answering the question of how the dependent variable changes with the parameter to
be sampled, which is the object of the sampling exercise in the first place. In the
present situation, performance of the RA algorithm will only differ for two different
values of v if they lead to different cells recruited in the representation. This means
that there is no point in sampling in such small steps that no change in the
representation results. Hence a reasonable procedure seems to be that the samples

should be spaced so as roughly to alter the representations by equal numbers of cells.

Note that for given prior experience (as reflected by initial weights) and a chosen
activity ratio ay, W alone affects the new internal representation pattern for an input-
output pair. Changing the value of y effects the changes in internal representation and
hence the changes in weights. As the activity ratio is fixed, the set of all possible
internal representations are all on the surface of a Ny-dimensional ball of radius W
(=Nuoy). Any change in internal representation amounts to a rotation. Thus one can

visualise the chosen internal representations rotating as y varies.

It is reasonable to expect that the smaller the difference between the chosen internal
representations the smaller the difference will be between the resulting weight
changes. Therefore a fair sampling set of y must have the property that as one goes
from one sample value to the next, the internal representations constructed rotates in a

steady manner. Note that this does not mean that the sampling set for y has to be
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uniform. For instance, the function arctan(y) does not vary steadily when vy is

sampled uniformly.

The use of the function arctan to explain the above point is not accidental. From its
definition, v is the negative of the gradient of the tilted threshold line in the activation
scatter of H-cells; see Figure 4.2b and Figure 4.2c of Section 4.2 for example. Note
the tilting angle has a range of [0, -n/2) as y has a range of [0, « ). Given an input-
output mapping to be learned, two different strengths y; and y; (two different tilting
angles) will result in identical weight changes unless there are H cells that fall into the
‘gap’ between the two tilted threshold lines on the activation scatter. This is because
only then will the resulting internal representation patterns differ for y,; and y,. For
new learning, a scatter graph such as Fig. 4.2b shows little correlation (4.2.1), so with
appropriate scaling the number of cells lying between lines of different tilt is
approximately proportional to the angle between them (arctan(-y,) - arctan(-y,)). For
this reason, y values are generally sampled uniformly in arctan(-y), corresponding to
uniformly spaced tilting angles. For each step increase in the sample values of y the
modified representation is likely to differ by a roughly constant number of cells, which
is likely to lead to steady changes in the resulting weight modifications and hence in

the behaviour of the network in training.

A rationale for random selection of y values from within their sampling set was put
forward earlier (4.2.2, 4.2.4), and this is employed in some of the simulations, with an
independent random choice each time the RA algorithm is used to create a modified
representation. A uniform probability distribution is employed over a set of values

ranged uniformly in arctan(y), as described above.
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5.1.2 Preparations of Initial Conditions

In testing a learning algorithm, the usual practice is to use independently generated
random numbers from a uniform distribution (over the interval [0, 1] for instance) as
initial weights. While this is also adequate for the RA algorithm, some comment is
due here because the theory behind the RA algorithm makes certain assumptions about

the statistics of weights in the network as detailed in Section 4.3.4

As explained, the reverse activation through symmetric backward connections conveys
useful information on whether an H cell should be on or off when any pair of forward
weights from the same H cell is negatively correlated or at least statistically
independent (Section 4.3.4). Two types of initial weights are set up for simulations.
The first type contains sets of randomly independently generated weights. There is
thus no correlation between the weights; call them 0-correlation initial conditions. The
second type consists of sets of weights, each of which is the result of mock learning of
a randomly generated I > H — O mapping task (consisting of 20 triples of input,
intermediate and output patterns). The perceptron rule is used to improve weights
between successive layers. The activity ratios of all the mock I, H and O patterns are
kept the same, on average, as for the actual learning task. This indeed produces the
weight statistics analysed in Section 4.3.4. Note that this rather elaborate setup for
generating initial weights is not unique. Various initialisation heuristics have also
been proposed for BP in the past; it is arguable that the type of mock-learning
procedure used here might be beneficial for BP learning (Denoeux, T.; Lengelle, R;

1993).

The typical size of the initial weights used in simulation was such that they are
suitable for BP algorithm. Recall the end of Section 3.2.2, for BP the initial weights
should fall roughly within three times the ratio between the typical length of the input

pattern (as a vector) and the square-root of the number of training patterns. For the
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two tasks used in the simulations here, this bound is around 1.35 and 2.4 respectively.
For task 1, at least 97.5% of the initial weights fall within this range, and 100% for the
second task. The RA algorithm itself, with ramped binarisation, is not sensitive to

initial weight size.

Section 5.2 Data for Two Benchmark Learning Tasks

The algorithm is simulated on two well-known benchmark classification tasks. For
the first problem, we shall obtain systematic information on how performance depends
on y and ay. The issue of generalisation ability will be emphasised in the second

task.

5.2.1 CT Discrimination Task

The task is to discriminate between binary patterns C and T in all translations and
orientations. A 6x5 grid was chosen as the input layer, and with four orientations O,
n/2, T, 3n/2, which is the usual practice (Rumelhart ez. al. 1986). Each input pattern is
either a C- or a T-pattern with certain translation and orientation. The output pattern
consists of 2 units, one for C, and one for T. There are in all 124 input patterns, 62 C-

patterns and 62 T-patterns.

Figure 5.1. Input patterns of the CT problem. Represent both C and T with 5 on-units on a 6x5 grid,
except for 14 of the T-patterns where T is on the edge of the grid, and is represented by 4 on-units.
Note that there is never more than one letter pattern in the actual input patterns; the figure is for
illustration only. Combining orientation with translation, these are 62 C-patterns, and 62 T-patterns.
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Since the algorithm involves activity ratio clamping, to give a decent range for the
activity ratio parameter a, the H-layer is allowed to have 20 units. Simulation results
show that this is a good number to work with (that is, learning is not made too easy or

too difficult) for both BP and RA.

To mimic past learning experience, and hence to reproduce the required statistics of
weights, 12 sets of initial weights were prepared by mock-leaming I ~ H (0
mappings. For each set, there were 20 randomly generated triplet of input, hidden and
output patterns, using the perceptron mle to successive layers. All weights were set
randomly and independently at the outset with small values (comparable to the step-
size used in mock learnings) . The activity ratios of all the mock-I and O patterns
were set at 5/30 and 1/2 respectively, similar to the actual CT task, while the activity
ratio of the mock-H patterns ranged from 8/20 to 14/20. Note that the mock-leaming
input pattems amount to about 0.17% of all possible input pattems of activity ratio
5/30. The resulting statistics of the initial weights are illustrated in the following

charts.

. Weights F Hto O
Weights to 02 eights from Hto

Figure 5.2. Statistics of initial weights. A1l three charts are plotted using actual weights in all the 12
sets of initial weights, which are the results of mock learning using simple perceptron rule, (a) is the
distribution of values of the observed weights from H to O. (b) is the scatter where the coordinates of
each point are the weights from an H cell onto the two output cells, (c) is the scatter where the
coordinates of each point are weights onto one common output cell from arbitrary H-cells labelled H
andH’.
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It is also useful to plot the activation scatter as in Figure 4.2b&c. For the initial

weights used in the simulation, given the training set pattems, it takes the following

form.

Output Activation

Figure 5.3. Activation scatter of H-cells, superimposed for all training pairs, before learning.
Two different reverse activation strengths, 0.3 ( 16.7 degrees) and 1 (45 degrees), are shown as the
tilting threshold lines. The strong tendency of vertical alignment above is an artefact of the fact that
there are only two output cells which correspond to exclusive categories; the possible values of reverse
activation of each H cell are therefore limited to two.

For each initial condition, the network was trained with a particular combination of
reverse activation strength Y and activity ratio « on the H-layer (more conveniently

identified by the number of on-cells W on H-layer). The following set of

combinations is chosen:

{\y=0, 0.0875, 0H763, 02679, 03640, 0.4663, 03774, 02002, 03391, LOOOO,
1.1918,2.7478, 10%}

X

{W=NHa=l, 2, 3, 4, 6, 8, 10, 12, 14, 16, 19}. (Eq. 5.1)

92



The y values correspond to the tangent of tilting angles ranging from 0 to 50 at S-
degree intervals, with the additional 70 and 90 degrees to provide evidence of
completeness of this sampling set. Thus there are 13x11=143 combinations for which
data is obtained. Performance, measured by the percentage of correct mappings was
generally asymptotic after 90 passes. Step-size was 0.005, compared with weight size
of the order of 1.

Typical time-course

One characteristic of the RA algorithm seems to be its fast convergence to an
asymptotic performance, good or bad, obtained typically within 25 epochs, with a
substantial part of this performance achieved within the first 10 epochs. Convergence
was faster if the learning parameters were non-optimal. An advantage of fast
convergence is that in practical applications unsuccessful training sessions (due to
inappropriate parameter combinations) can be discovered and abandoned very early

on, saving time and resources. Figure 5.4 shows a typical range of time courses.
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Figure 5.4. Typical time-courses of learning with the RA algorithm. Performance, measured in
percentage-correct at the end of each epoch (a pass over the 124 task-mappings) is plotted. All five
curves were obtained with activity ratio of 0.5, or WANna”~~10, i.e. all internal representations contain
exactly 10 ‘on’ H-cells, with different reverse activation strengths (listed to the right), during learning.
Each curve is the average of 12 repeats of the same learning parameter combination, with independently
generated initial weights. Means are plotted plus-minus 1 S.E.M. (standard deviation over square root
of the number of independent repeats). Where they seem absent, either there is no variation (as in late
epochs of v[;=0.58) or it is smaller than data symbols. The first points plotted were before training.
Time-courses are similar for other activity ratios.

For each parameter combination, the only source of variation in performance comes
from the 12 independent sets of initial weights. For the trials illustrated above, which
share the same W, the difference between average performance of different |/ values
are statistically highly significant. Standard errors are typically small (0-1) for optimal
or extremely non-optimal learning parameters. They are the largest (4.5) in the latter
epochs of trials with intermediate learning parameter combinations, indicative of a
transition in the properties of the network. Paired t-test of performance at the end of

each epoch confirms that confidence in the eventual outcome of the training trial

converges very quickly. The statistical separation of the sets of trials with different ¢
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values and eventual degrees of success is clear after a few epochs, long before the
asymptotic performance is reached. The best combination (W=10 and y=0.58) can be
separated from for instance (W=10 and y=1.19) with confidence greater than 99.9%
from the very first epoch. Thus, early performance is a good predictor of later

performance.

A noteworthy feature is that although both extremely large (\p=105) and small reverse
activation stréngths (y=0,0.09) tend to be non-optimal, the very large ones achieve
better learning results. Recall that larger v means more changes to I=>H weights and
less to H=0 weights; smaller y means the opposite (Section 4.2.2). Given that there
are far more I=>H weights than H=0O weights in the CT task, this observation should

not be surprising.

Performance dependence on y and a

Typically, for a fixed activity ratio a, the final performance level gradually reaches a
plateau and then falls off again as the reverse activation strength y increases. The

performance also depends on the activity ratio (Fig. 5.5).
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Figure 5.5. Typical dependence of performance on fixed reverse activation strength y for the CT
task. Data for two different activity ratios are illustrated, one for a=0.5, one for a=0.1, i.e. W=10,
W=2 respectively. The y values are marked along the horizontal axis, measured in degrees of tilting
angle, i.e. in arctan(y). The vertical axis is the percentage of correct mappings achieved after 90
epochs. Each data point is the average of 12 repeats with independent initial weights, £ 1 S.E.M.
(where larger than the symbol size).

What is important here is the existence of an optimal range for the reverse activation
strength . The optimal value of y (which is the multiplier of the reverse weights in
forming a new representation) depends naturally on the relative scaling of the H = O
and O = H weights, which are taken as equal here; and it may depend on the nature of
the task and the number of cells in each layer. But in this example it does not depend
much on the activity ratio chosen for the H layer. The full dependence of asymptotic
performance on a variety of combinations of reverse activation strength and activity
ratios is plotted in the Fig. 5.6. Optimal performance is for approximately W=5-16
(i.e. 0=0.25-0.8) and y=0.5-0.8 (angles of 25-40°). For W=8,10,12 and y=0.57,0.7
(angles of 30, 35°) 100% performance was achieved for every observed initial

condition.

The dependence of asymptotic performance on a variety of combinations of reverse

activation strength and activity ratios is plotted in the following.
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Figure 5.6. Performance dependence on (W, v[;). Percentage of correct mappings achieved after 90
epochs, the asymptotic level, is plotted against 19x19 W-vj; combinations. Data points for combinations
{W=1, 2, 3,4, 6, 8, 10, 12, 14, 16, \9/x{arctan ("M , 5, 10,15, 20, 25, 30, 35, 40, 45, 50, 70, 90°} are
means from the simulations. The rest of the plotted grid points are linearly interpolated values for clarity
in presentation. Such points are not used in discussions in the text. Each data point is averaged over 12
repeats with independently generated initial weights. Standard errors are not shown, for clarity, but
examples are shown in Fig. 5.5.

Recall that the smaller the W, the more accurate the inversion performed by the
transpose (Section 4.3.4). The above observations suggest either that better inversion
does not necessarily imply better RA learning, or that for outputs consisting of only
one ‘on’ cells out of two, the inversion performed by the transpose is similarly
accurate for all W’s that are not too close to 20. Both appear to be true. The fact that
the output layer has only two output cells with strongly negatively correlated incoming
weights makes the transpose an accurate inverse operator for W up to 14. However
learning with W=8,10,12 clearly was better than with W=1,2,3, even though inversion
is slightly more accurate for small W’s. The conclusion is that activity ratio is

affecting learning in ways other than through the quality of inversion. In other words.
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the benefit of having completely accurate inversion is offset by some disadvantage
associated with having too low an activity ratio on the H layer, quite likely simply the
paucity of representational capacity on the H layer with sparse coding on a limited

number of elements; more of this in Chapter 6.

The Underlying Weight Changes

It is instructive to compare the activation scatter of H cells before and after learning

with RA.

Figure 5.7. Activation scatter of H-cells with respect to the desired input-output pairs. This is
shown (a) before learning (b) following training with Vj/=0.36 (W =4) (c) following training with \|/=0.57
(W=4), all on exactly the same scale for comparison. Each circle corresponds to an H cell with
coordinates given by the input and reverse activation it receives for a pair of input and output vectors.
Thus, for each pair of input and output patterns, 20 points are plotted. There are 62 input-output pairs
(randomly chosen from the training set) used to plot these charts. The reverse activation strength used
during training is represented as the tilting threshold line in (b) and (c).

One can discern the effects of RA learning in the above. Cells that are initially above
the threshold line but receive negative reverse activations (implying that they
contribute to output errors) must have been either moved rightwards, i.e. their
projections to the correct 0-cell are increased, or pushed downwards, i.e. they are

turned off in internal representations. This results in the empty wedge shaped area in

98



the cloud of cells in the first and second quadrants. Examine in particular the 2
columns of cells to the extreme left of the ‘crowd’ in each of the charts. Each column
in fact turns out to concern a single H cell, which usually has large negative
projections to the correct O cell. RA learning has reduced the weights of projections
from the input layer onto these cells so that they are tumed off in internal

representations.

Performance when reverse activation strength y is random

As explained in Section 4.2.4, by allowing y take random values (whenever
superposition of input and reverse activation occurs in training), there is then no need
to find the optimal value of y by guess-work, a great simplification, if performance

does not suffer significantly.

In a random-tuning scenario, whenever the imposition of input and reverse activation
(via reverse connections) is needed, the reverse activation strength y is randomly
generated with equal chances from the fair sampling set (Eq. 5.1). Because of these
random selection processes, it is necessary to repeat trials with random reverse
activation strengths even for the same set of initial weights. In simulation, trials
starting with a single set of initial weights were repeated 4 times using different
random sequences of y values. The same 4 sequences were used for all initial

conditions and W to allow for paired comparisons.

For the CT problem, random tuning has proven to be quite effective as demonstrated

in Fig. 5.8.
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Figure 5.8. Time courses of learning with fixed and randomly varying y, for W=10 and W=4.
Thin lines are the time-courses of learning with fixed |ii ranging from 0.0875 (5 degrees), to 1.192 (50
degrees), at a S-degree interval; each is an average over the 12 independent sets of initial weights. The
dotted lines are the means of all of these. The thick lines are the means for learning with vj; varying in 4
different random sequences, and for the same 12 different initial conditions. For the random sequences,
standard errors for W=10 are too small to be plotted; For W=4, error bars are shown as the average +1
S.E.M. (for the 4 sequences) for variance due to the different initial conditions, which accounted for 98%

of the total variance after 90 epochs.

For any trial with a fixed W, there is now a new source of variation for performance,
coming from the random selection process for vy, in addition to the variation due to the
changes in initial weights. For W=4, analysis of variance at the end of each epoch
revealed that initial conditions contribute around 98% of the total sum of squares (i.e.
total variance times the total degrees of freedom 4x12-1=47) throughout the learning
process. For W=10, variation vanished through perfect performance achieved between
the 35th and 40th epoch; prior to that, initial conditions were overwhelmingly (98%)

the dominant source of variations.

In all cases, performance with random variations of || suffers in the early stages
compared with fixed-\|/ learning with the optimal values. This is only to be expected
as fewer ‘correct’ weight changes are made per cycle than when the parameter wp is

fixed at an optimal value.
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Comparison with Back-Propagation

A systematic BP algorithm simulation was also carried out on the same problem with
the same sets of initial weights. The BP code used is for a standard BP algorithm, i.e.
batch updates with a momentum term, taken from the textbook by Miiller et. al.
(1991). To apply the algorithm, all the units are turned into graded response units,
taking value from [-1, +1]. (As discussed in Section 3.2, this choice achieves faster
learning than [0,1].) Testing of performance done was by the mid-point criterion, i.e.
only the sign of the activation of output cells needed to be correct. The above design
for such comparisons is standard, cf. for instance (Peterson et. al., 1989). Apart from
batch updates, on-line and total-on-line updates have also been attempted, which will

be discussed in Section 6.4.

The dependence of BP performance on its free parameters is well known. Extensive
sampling of the combinations of step-size (0.0004 to 0.1), steepness (0.45 to 1) i.e. the
sharpness of the sigmoid transfer function, and momentum (0.2 to 0.9) was carried out
for each of the 12 sets of initial weights used for RA-learning; see Section 3.2 for
definitions of these terms. The optimal combination (i.e. having the best average
asymptotic performance or the fastest convergence amongst those with equal
asymptotic performance) observed in this set turns out to be: step-size 0.02, steepness

0.45, and momentum 0.9. The comparisons are shown in Fig. 5.9.
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Figure 5.9. Comparing the performance of RA and BP. The average time courses of learning with
optimal parameter combinations for BP (step-size 0.02, steepness 0.45, momentum 0.9) and RA (W=10,
v|/=0.577) are plotted, (1 S.E.M., n=12). The average learning curve for W=10 with random Y is also
shown ( £1 average S.E.M. for the same 12 initial conditions, using 4 random sequences). For reference,

the highest of any of the observed BP learning curves at each epoch is shown dotted.

It may be that better performance can be achieved through combinations outside the
tested set since the observed optimal combination was at the extreme of the
investigated set. Note however, the range of definition for momentum is (0, 1); see
(Eq. 3.3b). When it is <0.5, the effect of momentum is too weak and when it is too
close to 1, it destroys learning. The value 0.9 emerged in our simulation is indeed the
most commonly used value for it (Rumelhart, et. al. 1986; Tugay et al, 1989;
Tollenaere, 1990; Miiller et. al, 1991; Hassoun, 1995). The basic BP algorithm is
most sensitive to step-size. Steepness merely has the effect of scaling the effective

step-size in learning; see comments following (Eq. 3.3a).
At its best, RA seems superior to the basic BP simulated for learning the CT task,

particularly at the early stages. Note that the upper bound (at each epoch) of all

observed BP learning curves is also plotted (dotted). At each stage of the learning.
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none of the BP trials with any tested parameter combination was above this line; this
ensures that one does not bias the comparison of early stage performance unfavourably
to BP by having selected the so-called ‘optimal’ parameter combination solely

according to the asymptotic performance rather than some early performance.

As is apparent from Fig. 5.9, BP was more variable than RA. This is not only true for
the optimal parameter combinations. Variation was more pronounced for poor
combinations, as for RA. Greater variation means greater difficulty in determining
whether a trial is worth continuing with the ongoing parameter combination. In other
words, a potentially important characteristic of RA that distinguishes it from BP is the
extent to which one can predict the ‘goodness’ of a parameter combination by looking
at performance during early stages of learning. Consider, if one ranks all the
parameter combinations according to their performance at the end of the nth epoch,
how sure can one be that this rank order will persist as learning continues? This can
be measured directly by the correlation between the intermediate ranking and the
ultimate ranking of parameter combinations. The intermediate ranking is the one
determined by performances at the end of an intermediate epoch. The ultimate
ranking is determined by the asymptotic performance at the end of the 90th epoch.
(There may be joint No. 1’s and so on in the ranking.) The intermediate ranking may
differ from the ultimate ranking but should converge to it as learning goes on, by
definition. One expects the correlation between the two to start from around O and

converge to 1.
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Figure 5.10. Convergence of the ranking of parameter combinations. At the end of each epoch,
parameter combinations (143 combinations tested for RA; 87 for BP) were sorted according to their
average perfoiTnance. The linear correlation between the resulting intermediate ranking and the
ultimate ranking, obtained at the end of the 90th epoch, is plotted on the vertical axis. Large correlation
indicates greater predictability of the ultimate ‘g¢oodness’ of any particular parameter combination from

its early performance.

It is hard to make such a comparison truly fair. This is largely because of the lack of
comparability of the learning parameters of RA and BP. One might, for example,
improve the apparent correlation for one condition in such a comparison by including
more inappropriate step-sizes, which will give trials that are easily distinguishable
from good step-sizes early during learning. A fair comparison should include in the
sampled parameter space a ‘natural mix’, in some sense, of good and bad
combinations, which is not a criterion that is easily formalised and met. However,
note that at the 10th epoch the correlation is roughly 0.5 and 0.9 for BP and RA
respectively. This would have required a very large bias of the sort described, but the

issue is not pursued further.

A higher predictability of the outcome of RA, based on earlier performance, may

perhaps be seen as due to an apparent defect of RA, compared with BP. For BP, even

non-optimal parameter combinations can usually achieve reasonable performance at
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the end of the 90th epoch, or with a larger number of epochs. They would ultimately
achieve perfect learning with sufficient epochs; after all, the theory of gradient descent
guarantees this. This is not true for RA: an asymptotic level, good or bad, is achieved
quickly, and no amount of further iterations can improve it. To improve performance,

it is necessary to change to more appropriate parameter combinations altogether.

However, by way of compensation, the predictability of ultimate performance and the
fast convergence to it can be used to circumvent the problem. As suggested in Section
4.2.4, these properties may explain the surprising success (see Figure 5.8) of the

technique of random-tuning of reverse activation strength.

5.2.2 Mirror Symm etry Discrimination Task

The second bench-mark task studied, the mirror symmetry task, involves
discriminating 3 types of symmetry possessed (exclusively) by binary patterns on a
4x4 grid; these are left-right, top-down, and one of the possible diagonal symmetries.
For this task, the standard 3-layer network has a configuration of 16-12-3 (cf.
Peterson et. al, 1989).

Figure 5.11. Examples of the three types of symmetries to be discriminated. The dotted lines

indicate the axis of symmetry.

The Standard training arrangement for this task (Peterson et ai, 1989) is adopted as
follows. Training is carried out on a set of 100 randomly generated sample patterns

with activity ratio falling into a chosen range (patterns generated with activity ratio
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outside the range are rejected), each having one and only one of the 3 symmetries with
equal probabilities, subject to the activity ratio range requirement. Training stops
when performance is 100% on these patterns. Generalisation is then tested on another
non-overlapping set of 100 random patterns subject to the same constraints. The
training and testing procedure is repeated for 10 sets of randomly generated initial

weights.

Other aspects of the simulation are similar to the CT problem. The parameter

combinations tested (for each initial condition) were as follows

{y=1.0818, 1.1709, 1.2685, 1.3764, 1.4966, 1.6319, 1.7856, 1.9626, 2.1692, 2.4142,
2.7106, 3.0777, 3.545733, 4.1653, 5.027339, 6.313752, 8.448957, 12.7062, 25.4517}
x

{W=Nyo=1, 2, 3, 4, 6, 8}. (Eq. 5.2)

There were thus 19 x 6=114 (W, y) combinations for each of the 10 sets of initial
weights. The reverse activation strengths, expressed in terms of tilting angles, range
from 47.25 to 87.75 degrees. The performance for angles outside this range was far
from optimal and therefore not systematically tested. Fig 5.16 provides the clue for
why this is so: the initial H-cell activation scatter is very elongated, i.e. the sensitive
region corresponds to larger values of reverse activation strength; smaller values or
equivalently, smaller angles, simply do not effect enough changes to existing internal
representations. Likewise, the activity ratios outside the tested range all have far from

optimal performance as the data will soon show.
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The momentum term: smoothing in addition to RA

Recall that any learning algorithm can be supplemented by momentum smoothing,
regardless of the details. The algorithm in use, what ever it is, calculates the weight
modification required for the current step according to that algorithm. The momentum
term simply allows the weight modification carried out in the previous step to make a
weakened contribution in the current step. See (Eq. 3.3b) in Section 3.2.2. This
smoothes out the learning dynamics over the error-surface in weight space and makes
convergence more reliable. Smoothing is particularly helpful when the learning task is

difficult.

For RA, momentum smoothing is applied in the same way as prescribed by (Eq. 3.3b).
The algorithm calculates the required weight modification as before. The actual
weight modification in this step however has an additional, weakened contribution

from the actual weight modification that took place in the previous step; so it goes on.

Usually learning is not sensitive to the precise value of momentum as long as it is not
exceedingly close to 0 or 1 (Rumelhart, et. al. 1986; Miiller et. al., 1991; Hassoun,
1995); for detailed investigations in the context of gradient descent/BP algorithms, see
(Tugay et. al., 1989; Tollenaere, 1990). Momentum terms ranging from 0.2-0.9 were
tried for RA in preliminary simulations for the symmetry task, with little evident
difference in performance. Although 0.9, which is the rule-of-thumb optimal number

for momentum terms (Miiller et. al., 1990; Wasserman, 1989), was finally chosen

Performance dependence on y and a

The broad characteristic of dependence of asymptotic performance on reverse

activation strength and activity ratio is similar to that observed in the CT
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discrimination problem. However, the ‘area’ of optimal combinations was
considerably smaller; performance was much more sensitive to these parameters. The
overall dependence is illustrated in Fig. 5.12, for both zero-momentum and
momentum=0.9. It is clear that the latter gives superior learning results and it appears
to give a smoother dependence on parameters. However momentum does not
improve, and in some cases worsens, the performance of extremely non-optimal

parameter combinations.
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Figure 5.12. Performance vs. (W, ) for symmetry discrimination. Plots are for (a) momentum=0
and (b) momentum=0.9. Percentage performance after 90 epochs is plotted against combinations of W
and /. Points shown for W=5 and 7 are interpolated from adjacent points. Otherwise, points are means
for 10 sets of initial conditions. Standard errors are not shown, but for (a) were up to 7 on the ‘slopes’

and were mostly 2-3 on flatter regions. For (b) Standard errors were smaller.
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Performance fell sharply for y<1.08 (or 47°) in preliminary simulations, though the
fall is not clear over the range of values studied for this chart). The optimal reverse
activation strength ‘scatters’ in a wider range than it does for CT, thus is more difficult
to tune. For W=1, it ranges from 1-5 (45-80 degrees). For W=2,3,4 it is more critical
and shifts toward the lower end of the range. The fact that the optimal values of y are
larger than for CT is largely a consequence of the relative variations of I and O

activation, with an elongated scatter (Fig. 5.16).

The activity ratio proved the more critical parameter in these simulations, with the
optimum ranging from 0.16 (W=2) to 0.33 (W=4), instead of the value 0.5 observed
for the CT simulation. There are different ways of considering an optimal activity
ratio: 1) the value at which the greatest average asymptotic performance can be
achieved with the best choice of \, or 2) the activity ratio that most often turns out to
be optimal for a fixed value of vy, or 3) how often, regardless of y, performance
exceeds a reasonable threshold level. The data of Fig. 5.12b are re-analysed in Fig.
5.13 to show the optimal activity ratios, using all three indicators. Note that maxima
may be shared between activity ratios with equal performance; points within +1
S.E.M. of one another were treated as equivalent. All three criteria identify W=2-4 as

optimal.
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Figure 5.13. Optimal Activity Ratios for the Mirror Symmetry Task. Three different ways of
evaluating different activity ratios on the H layer are shown. The vertical lines show the greatest average
performance (for any v|;), equivalent to the peak values in Figure 5.12b when W is kept constant. The
dark histogram shows the fraction of the points in Fig. 5.12b, for a particular activity ratio, that are
optimal for the corresponding value of Y, while the light histogram shows the fraction of these points
that exceed a 77% performance criterion (chance = 33%)..

In Section 4.3.4 the theory suggested that for a given output activity ratio (here 33%),
good inversion by the transpose matrix required that the activity ratio on H should be
smaller (<33%), as shown here for good learning performance with RA. Clearly also,

W must not be too small. Activity ratio affects learning also through other factors.

Performance when reverse activation strength V is random

The optimum value of |)) (fixed during learning) depended, for this task, on the activity
ratio and was in some circumstances fairly critical (Fig. 5.12b). As with the CT task,
it might be possible to resolve this difficulty if W is allowed to fluctuate randomly. In
the CT task, learning performance so achieved matched the best achieved when wp was
fixed (5.1.2). For the symmetry problem, this only proved to be the case for the lowest
activity ratio (W=I1), as shown in Fig. 5.14 where the average time courses of random-

|lj learning and for the best fixed value of ip are plotted for W=I, 2, 3, and 4.
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Figure 5.14. Fixed and random \|li values with the mirror symmetry task. For random V/ variations,
the average is taken over 40 trials: 10 initial weight sets, each repeated with 4 set sequences of
independently selected Y values. Average standard errors (n=10, averaged over the 4 repeats) are

shown. The curve for fixed vj; (mean = 1 S.E.M.) is for giving the best asymptotic level for each W.

Analysis of variance again revealed that variation in asymptotic performance came
mainly from the initial weights. The randomness of reverse aetivation strength
contributed less than 0.5% of the total variation in the case of W=I, and less than 5%
for W=3 and 4. When W=2, there was no variation in the observed asymptotic

performance.

Note that the greater the activity ratio, the more learning suffered by having to allow
the reverse activation strength to fluctuate randomly (and hence to take bad values).
Why this is so is not clear. There is room to improve the random tuning technique, as

discussed in Section 6.2.
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Comparison with Back-Propagation

As for the CT task, the BP code from (Miiller et. al., 1991) was used in a comparison
with the RA algorithm. For the mirror symmetry task, there is the added advantage of
having BP data on precisely the same task from the literature (Peterson et. al., 1989) as
an independent yardstick. Extensive sampling of the learning parameters are carried
out in the same way as for the CT task. The best parameter combination emerged in
this set is: step-size 0.04, steepness 0.45, and momentum 0.9. The same comment

following Fig. 5.9 applies here also.

To make the comparison fairer to BP, all performance levels are normalised in order to
account for the fact that BP may start learning with less than chance level (33%)
performance (unlike RA, it does not have a built-in mechanism for ensuring that only
one output cell is on). Normalised performance levels are defined as the ratio between
the difference in the absolute performance level of the current epoch and the initial
level, and the difference between the target absolute performance level (100%) and the
initial level. In other words, it shows what proportion of what is left to learn (i.e. the

difference between 100% and the initial level) has been learned at any point in time.

It was found that BP typically requires over 100 epochs (150-200) to learn the task or
to reach near-asymptotic level. Although most of the learning is done within 100
epochs, the convergence from this point on is usually painfully slow. This confirms
the observations of (Peterson et. al., 1989), where BP is compared with another
algorithm on the same task and the number of epochs for BP on the same task are

quoted as typically 150 epochs.

Below, the observed time courses of performance during training are plotted for up to

100 epochs. Normalised performance level is used; it is defined as
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(PerformanceJ - Performance 0) /(100% - Performance 0)

where j=0,1,... 100... is the epoch counter with 0 indicating the initial condition. This
removes some of the bias caused by the fact that BP does not have ramped binarisation

and hence tends to start with a worse performance level than RA initially.

In selecting the ‘best’ parameter combination for BP for this comparison, one looks for
not only the highest average performance at the 100th epoch but also the fastest
progression in prior epochs. Further, the upper bound of «all simulated BP trials at

each epoch is also plotted: no observed BP trials could rise faster than this line.
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Figure 5.15. Comparing the performance of RA and BP. The vertical axis measures the normalised
performance level (defined the text). This shows how fast each algorithm learns what remains to leam
given its particular starting level. For BP, the average performance of the best parameter combination
(step-size 0.04, steepness 0.45, and momentum 0.9) is plotted £ 1 S.E.M., calculated from the 10
independent repeats. In addition, the normalised absolute upper bound for all observed BP trials is
shown as the strong dotted line. For RA, the best average time courses, corresponding to W=2 and
Y=2.71 (69.75 degrees), and also random-" learning with W=2, are plotted + 1 S.E.M. (see Figure 5.14
for details).

114



It is also instructive to compare the different effects of BP and RA learning on
connection weights. Plotted below is the activation scatter of H cells before and after
learning, given the initial and resulting weight matrices respectively and the 100 pairs

of patterns in the training set.

(b)RA
Output Activation Output Activation
(c)BP
25 -20 -15 -10 -5. 5 10 15 20 25 -25 -20 -15 -10 15 20 25
Output Activation Output Activation

Figure 5.16. Different effects of BP and RA learning on weights. The activation scatter of H cells
given (a) the initial weights, (b) the corresponding weights resulted from RA learning with random-*
and W=2, (c¢) the corresponding weights resulting from BP. (a) is plotted twice on different scales.
Activation strengths 1 (45 degrees) and 8 (82 degrees) are represented on chart (a) and (b).

Firstly notice the extremely elongated initial scatter, partly due to the fact that the

input patterns contain more on-cells than do the output patterns (roughly 8-to-1

compared with the 5- to-1 for CT); comparison can be made with Figure 5.3 for CT,
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where the scatter is similar on the two axes. This is one of the factors behind the fact

that all optimal activation strengths observed for this task are bigger than for CT.

Although chart (b) corresponds to random reverse activation strength during RA
learning, the effect of RA is clear: H cells that once received large input activation but
were detrimental to producing the correct outputs (indicated by their negative reverse
activation) are either shifted to the right horizontally or down vertically. This results
in the fan-shaped scatter of (b). The fan-shape was evident for the separate graphs for
each of the 10 initial conditions and activity ratios W/Ny, though less pronounced for
large W. Apart from this characteristic change, the distributions of activation and

weights were little changed..

In contrast, for BP, the scatter of activation was much altered (Fig 5.16d). Firstly, note
the dramatic (approximately 3-fold) increase in activation. Direct observation
confirmed that weights increased from the initial 0-1 range to 0-10, consistent with the
N2 growth formula (cf. Section 3.2) for weights subject to BP learning. This partly
explains the slow convergence. Secondly, the shape of the activation scatter for

weights trained by BP was less easy to characterise.

Generalisation Performance

After the network has leamed perfectly the 100 training input-output maps, by
whichever algorithm, one can test for generalisation. Poor generalisation indicates
that the learning algorithm has learned on the basis of features of the training set other

than the symmetry differences, on the basis of which they were chosen.

The procedure was taken from Peterson et. al. (1989). Training and testing sessions
were carried out separately for 6 randomly generated training sets. Each of these

sessions was repeated 10 times with independently generated initial weights. The
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mappings in the 6 training sets were randomly generated according to the specific
criteria set out at the beginning of Section 5.2.2. The 6 sets were divided into 3 groups
of 2 each, labelled A, B, C. Inputs in Group A had the lowest range of activity ratio,
as indicated by the group average of 0.4; group B contains patterns with intermediate
range of activity ratios with a group average of 0.5; group C has the highest range of
activity ratios here with a group average of 0.6. Associated with each group is a third
set of 100 mappings (of the same specification as the group) for testing generalisation
performance. Thus, a naive network is trained on training set Al and tested on A3 for
generalisation (repeated for 10 independent sets of initial conditions); the same
exercise is carried out on A2 (with the same initial conditions), tested on A3. This
way one has 2 separate estimates for generalisation performance (measured by
percentage-correct on the corresponding, non-overlapping, testing set) for group A and

likewise for B and C, 6 estimates in total.

Thus there are, in all, 9 sets of sample patterns of 100 each into 3 groups, randomly
generated according to specifications; none of the 3 within each group has common
patterns. It may be useful to note that on the 4x4 grid there are about 1500 patterns
having one and only one of the three symmetries to be discriminated in the task

(Peterson et. al., 1989). Thus the above set up is possible.

The table below summarises the performance in these tests. Also listed is data from
(Peterson et. al., 1989) for performance of the Mean Field algorithm (MF), which is a
form of gradient descent learning algorithm. For BP learning, generalisation
performance is better if one uses the 0-1 binary representation during learning
(Peterson et. al., 1989) (On the other hand, it is known that learning is faster if the (-
1)-(+1) representation is used (Peterson et. al., 1989)). Apart from the RA data and the
BP data for (-1)-(+1) representation, results are taken from (Peterson et. al., 1989).
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Group A Group B Group C
RA-rand-y (best) 76%, 78%; 77% 80%, 78%; 79% 68%, 74%; 71%
MF (best) 68%, 57%; 63% 67%, 57%; 62% 70%, 69%; 70%
BP (best for (-1)-(+1) rep'n) 49%, 46%; 48% 52%, 48%; 50% 59%, 62%; 61%
BP (0-1) 69%, 59%; 64% 67%, 59%; 63% 69%, 72%; 711%

Table 5.1 Generalisation Performance. For each algorithm and each test group, which contains two
training sets, the median generalisation performance for set 1, 2, and the average of the two medians are
listed in that order. For RA and BP, the medians are calculated for trials with the best parameter
combinations for learning the training sets (see Captions for Figure 5.14&5.15). Generalisation was
tested after achieving perfect performance on the training set. Data for Mean Field learning and BP
learning with the (0-1) representation are the best median results reported by Peterson et. al. (1989).

The above table suggests that RA learning tends to give the best generalisation
performance. For the RA and BP data obtained in the present simulation, the average
performance is usually within 1% of the median with standard error less than 3%, all
calculated on the 10 repeats with independent initial weights. The BP data above

confirms those in (Peterson ez. al., 1989).

118



Chapter 6 Discussion and Conclusions

We set out to develop a pattern-centric learning algorithm for multi-layer perceptron-
like networks. In this approach, internal representations are constructed first; they
then drive weight changes (via simple perceptron rule). This is the exact opposite of
the standard weight-centric approach to learning where internal representations are
byproducts of weight changes, which are calculated from some error/energy function.
The pattern-centric approach is more consistent with research on sensory
representation in the brain and provides a more direct link between ideas in that area
and network modelling. Unlike the disappointing pattern-centric attempts in the past,
the RA algorithm does not involve any cumbersome search mechanism in the vast
pattern space. Instead, the algorithm tries to involve processes that resemble known
biological mechanisms in the brain. In RA, internal representation is constructed
directly by a (non-linear) superposition of activation of input and output on the

representation layer.

Theoretical analysis of RA, carried out in Section 4.2-4.4, demonstrates the rationale
behind the key elements of RA, namely, (symmetric) reciprocal connections,
adjustable reverse connection strengths with possible random fluctuations during
learning, and ramped binarisation. Given plausible assumptions (Section 4.3), one can
show pair-wise independence and non-positive correlation, respectively, between
connection weights from the same hidden layer cell and between connection weights
converging to the same output layer cell in a network that uses perceptron-like
learning. In this context, symmetric reverse connections are capable of inversion
operation (from output patterns to hidden layer representations). The quality of the
inversion depends on activity ratios (of the output and internal representation

patterns). This is one of several ways through which activity ratio can play a part in
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learning in such networks. RA is also extended to networks with more than one

representation layer (Section 4.4).

Subsequent simulation on 3-layer networks demonstrates the feasibility of the ideas
discussed in theory. On the toy problems studied, RA performed learning, consistent
with our theory. The performance is comparable to the basic BP algorithm and the
data set suggests that it can be made better than basic BP in terms of convergence
speed and generalisation. RA algorithm also performed adequately when reverse
connection strengths are not explicitly tuned but are allowed to fluctuate randomly
during learning. The simulation raised some interesting questions on the role of
activity ratio, the random tuning technique and its improvement, and generalisation

after training. These are discussed below along with some technical issues.

Section 6.1 Optimal Activity Ratios

Simulation data for the CT and the symmetry task, particularly the latter, demonstrates
the crucial role played by activity ratio of internal representations. This is possibly
mainly due to its effect on the accuracy of the transpose as an inverse operator (as
analysed in Section 4.3.4), i.e. the ability of the transpose to deliver accurate

information on the effectiveness of H cells in evoking right outputs.

What the simulation also demonstrates is the highest inversion quality (by having H
layer activity ratio much lower than that on the O layer) does not correspond to the
fastest learning however. One reason for this may be the fact that given the small size
of the network, low activity ratio too severely limits the representational capacity of
the H layer hence reducing the degrees of freedom, making problem solving more
difficult. A rule of thumb for choosing optimal activity ratios in practice therefore

seems to be the following:

120



the activity ratio of the internal representation should be small enough (at
least less than the activity ratios of the output layer) to ensure reasonable
accuracy for the inversion operation performed by the transpose matrix. It
however should not be too small to the extent of limiting the representational
capacity of the hidden layer too severely. In general, the activity ratio that
enables fastest learning is probably the biggest ratio that still allows
'reasonable’ inversion by the transpose. In case of simple output patterns (1-

‘on'-cell only), this ratio is 1/NO according to Section 4.3.4.

It will be interesting to carry out more simulations to explore how optimal activity

ratio varies with output activity ratios as well as the size of the H layer in RA learning.

It is important to stress here that the above concerns only the speed of learning (the
training set). Faster learning does not mean better learning. Generalisation quality is

arguably the ultimate measure for the quality of learning achieved.

Section 6.2 Random Tuning of Reverse Activation Strengths

6.2.1 Purposeful Random Fluctuation

The one key features of the RA algorithm is fast convergence (but not necessarily to
the right state). This offers clues as to how the y-tuning problem can be solved. As
demonstrated repeatedly in the last section, convergence is particularly fast for very

non-optimal values of y.

This has been the basis for allowing y fluctuating randomly during learning. The key

inference drawn from the data on performances was that training settles into a state in
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which weight changes tend to cancel each other very quickly when the value of \|f is

far from optimal. Examples of direct recordings indeed support this idea.

67 70 82

Figure 6.1. Average net weight changes during learning against time (epochs). The net change to
each I to H connection weight, measured in units of step-size, during an epoch are recorded and
averaged (connections with net zero change are excluded from the averaging process). Thus during the
first epoch, net weight change made were on average 4.3 step-sizes. Note the strong tendency for any
weight change to be precisely reversed during the epochs that followed so that from the 10 epoch
onwards, the net effect of the learning on weights are almost zero (precisely zero for the last twenty
epochs or so).

For the better |) values however, by definition, weight changes have less tendency to
cancel each other out (otherwise performance will not improve). Thus when ty is
allowed to fluctuate randomly during learning, one expeets the network to benefit
from weight changes when the |7 value happens to be good or average since the net

effect of bad ip values on weights converge to zero on average.

As seen in the last section, randomly fluctuating reverse activation strength does result
in very effective learning. However as Figure 5.14 clearly demonstrated, learning
slows down because of the noise introduced by the bad Y values. The case of W=4 in
Figure 5.14 provides the elearest evidence for the explanation offered in Section 4.2.4
as to how the random-tuning teehnique works. It can be seen there that learning was

taking place on average despite the evidently detrimental effects of the bad \li values.
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The learning curve strongly suggests that perfect performance would eventually be
achieved given more epochs. These results encourage one to develop the idea further

to better take advantage of the above property of the RA algorithm.

One obvious extension is to allow the probability distribution from which the values
of activation strength y are randomly drawn to evolve so that it can become more and
more localised at the optimal values. This may be called ‘purposeful’ random tuning

strategy whereas the original technique shall be called blind random tuning.

At the centre of the purposeful random tuning strategy is a ‘fitness’ measure for any
particular values of key parameters, y in this case. For each parameter value, the
measure is evaluated based on history of the network behaviour during periods when
that value happens to be ‘in charge’ by chance; these periods are sampling periods for
that particular value. The fitness measure for each parameter value is updated
whenever that value is used. The probability distribution is then changed
incrementally according to the latest fitness numbers so that it becomes more and

more concentrated on the most suitable set of values.

Several simple-minded but quickly available ‘fitness’ measures have failed to deliver
any clear improvements. One may have to allow longer sampling periods, counted in

epochs rather than patterns.

This opens a new possibility. One obvious basis for measuring fitness if sampling
periods are extended to epochs is the performance at the end of an epoch. In this case,
v is allowed to fluctuate from epoch to epoch, rather than from pattern to pattern. The
performance improvement (or the lack of it) at the end of the epoch is then recorded
and used to see how it ranks amongst all the latest records for other values of y. The

probability distribution can then be modified incrementally according to the new
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ranking order. Recall Figure 5.10, which shows that there is a strong predictability of

the ultimate fitness of y from its performances in early epochs.

6.2.2 Applying a Population Search Algorithm

Figure 5.10 inspired another tuning method, which may be seen as a Population
Search Algorithm. One can start with a population of otherwise identical networks
learning with the RA algorithm, each with different reverse activation strength .
Every 2-5 epochs, those networks whose performance is not in the top 50% of the
population can be terminated. After several round of elimination only a small number

of networks, for which the y value most probably will be optimal.

Figure 5.10 suggests that this method will be quite effective. The ranking according to
the performance of the 10™ epoch is more than 95% correlated with the ultimate
ranking. It is quite remarkable considering that this means that the ordering of
performance is almost fixed as early as the 10 epoch. Note that for the above
elimination method to work, one does not even require the strong correlation of
detailed rankings. All one needs is that if a y value belongs to the top half of the
entire population at the beginning it should be highly likely for it to remain in the top
half in the end.

Further, this method may be combined with the blind random tuning technique. Given
that usually there is a range of activation strengths which are optimal, one can cut
short the above elimination process and start applying blind random-y learning on the
remaining range of y values. For instance for the CT and mirror symmetry problem,
one elimination process should be enough to enhance the speed of random-y learning

dramatically, cf. Figure 5.6 and 5.12.
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Section 6.3 Generalisation Performance

The data on the mirror symmetry task suggests better generalisation performance for

RA learning. More simulation is needed to confirm the assertion.

One reason for this may lie in the nature of how multi-layer perceptrons work. A
general feature of such neural networks is that 'similar' inputs tend to evoke 'similar’
outputs. Generalisation fails when two 'similar' or 'dissimilar' inputs are supposed to
evoke, respectively, two 'dissimilar’ or 'similar' outputs. Successful generalisation
relies on the creation of internal representations that increase or decrease the similarity
between the input patterns as the case may be. RA learning implements this idea very
directly. Recall that in the RA algorithm, internal representation is selected by
imposing the input and the output pattern simultaneously. By effectively 'appending'
the output to the input pattern when selecting internal representations, one increases or
decreases the similarity between any pair of input patterns and hence the similarity
between their respective internal representation patterns according to whether the
associated outputs are the same or not. Thus, at the heart of RA learning, there is a

built-in mechanism that directly benefits generalisation capability.

There is perhaps a more profound factor at work in case of RA logarithm. It concerns

activity ratio fixing, which will be discussed in Section 6.5.

Section 6.4 Technical Questions That Require Further

Investigations

6.4.1 Comparisons between Variants of BP and RA

Although simulations demonstrated that the default version of RA compared
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favourably with basic BP, further comparisons with the numerous improved variants

of BP are necessary in order to gauge RA’s practical potentials.

For instance, it is known that BP can learn faster with on-line updating (than with
batch updating) provided that step-size is appropriately scheduled to decline to zero
during learning. Detailed work and review on these variants can be found in (Fahlman
1988; Wasserman, 1989; Hassoun 1995; Ripley 1996). Owing to the difficulties in
tuning such variant BP’s and the fact that these techniques could be applied to RA as
well, comparisons of variants of both types of algorithm are omitted in this
developmental stage. Classical BP, one with batch updating and momentum
smoothing, is closest to the underlying gradient descent idea behind the algorithm.
Likewise, default RA, one with total-on-line updating, fixed or random activation
strengths, and momentum smoothing, is closest to its original derivation based on

biologically plausible learning mechanisms.

The on-line version of both BP and RA were tried. However, results in trial runs were
too erratic and the attempt on systematic simulation was abandoned, as it may be
unduly complex. It is more appropriate to carry it out as a separate project. The
preliminary simulation suggests the following. The total-on-line version of BP (which
seemed to be absent in the literature) can produce great performance but with higher
sensitivity to initial weights. It may be less sensitive to step-size compared to other
BP as long as step-size is not too big (Section 5.1.1). However, the number of
iterations required for a single mapping was counted in the hundreds during the early
epochs; it was also prone to be trapped in local minima even when learning a single
input-output pair. To put these in context, for the standard version of RA, which is
total-on-line, the number of iterations required to learn single mappings in early

epochs rarely exceeds 10. Further, it never fails to learn any single input-output pair.

The batch version of RA in test trials seemed to be more sensitive to step-size than the
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default RA, as expected from Section 5.1.1. More fine-tuning is needed. Together
with additional parameters such as reverse activation strengths to tune, this version is

exceedingly cumbersome.

6.4.2 Simple and Complex Outputs

In the simulation so far, the output patterns, which correspond to exclusive categories,

have consisted of simple outputs: patterns having all but one cell turned off.

In theory, complex outputs do not represent additional computational complexity.
This is because the internal representations that can solve a problem with complex
outputs can also solve the equivalent problem in which the outputs are transformed to
simple patterns (by assigning each distinct complex output pattern with an exclusive

unit), and importantly, vice versa.

This is easily proved in the following way. Given a complex problem, first let RA
solve its equivalent version with simple outputs. Then, keep the I-to-H weights (and
thus the internal representation). The H-to-O weight matrix that will solve the
complex problem is simply the existing H-to-O weight matrix (found by RA learning
in the simple-output equivalent) multiplied by the fixed matrix consisting of only 0’s
and 1’s which maps each simple output pattern back to its original complex form. The

process can also be reversed.

However, equal complexity does not mean equal ‘ease’. It is not immediately clear if
complex outputs will be easier or harder for RA than simple outputs. RA should
continue to function as long as the transpose still perform inversion ‘adequately’,
which in principle is possible given the appropriate relation between the H layer and O

layer activity ratio; see the final three subsections of Section 4.3.4.
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Section 6.5 Efficient Sensory Processing and Representation

This section attempts to put the investigation so far into the broader context of
efficient sensory processing in the brain. It will present firstly an overview on what it

means and then relate these to what role RA can play in exploring these issues.

6.5.1 The Goal of Sensory Information Processing

Sensory information, coded in terms of impulse frequencies, enter the brain via
millions of parallel fibres originated from sensory neurons. The process that
transforms a raw sensory signal into patterns of activity in high-level cortical neurons
is of great interest. Is there are a information-theoretic principle that applies to the
transformations carried out in the brain? The overriding principle may be termed as
‘redundancy reduction’ through successive transformations (Atteneave, 1954; Barlow,
1961). The subtler part of this principle, which is not usually appreciated, is that
depending on the type of ‘redundancy’ referred to, the principle leads to radically
different conclusions on the type of coding required to achieve ‘redundancy
reduction’. These lead to the concepts of compact coding, factorial coding, and sparse
coding/combinatorial coding. All can be said to reduce redundancies. A good and
perhaps the only review of all these strategies in a coherent context can be found in

(Field, 1994).

6.5.2 Different Concepts of Redundancy Reduction

Compact Coding

In the most naive interpretation, based on standard information theory as in (Shannon,

1949), the principle requires the reduction of overall redundancy. This is the same as
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minimising the set of (binary) symbols coding the signals. Such a strategy is referred
to as compact coding and seems to be used in the early stages of sensory processing:
100 million receptors in the retina converging into only 1 million optic fibres, 50
million olfactory receptors (in the rabbits) into only 50,000 mitral cells, and less

obviously trichromacy in colour vision, etc.

Factorial Coding

However, in higher cortical processing there is then a great expansion of the number
of cells. Why? The answer also lies in ‘redundancy reduction’ but with a different
type of redundancy. Barlow suggested that the detection of association of events is
easier in a neural network context if the activity of representational elements is as
statistically independent as possible, conditioned on the set of possible input signals
(Barlow, 1961; Hentsche, Barlow, 1991; Gardner-Medwin, Barlow, 1992). This
essentially traces back to the inability of Hebb-type synaptic learning rules (Hebb,
1949) to code higher order statistics amongst input cells: to a post-synaptic cell, a pair
of input cells are indistinguishable from another pair with identical first order statistics

but different second order ones.

A factorial code (cf. Schmidhuber, 1992) tries to achieve the above ‘independence’ as
far as possible. Factorialisation is equivalent to reducing redundancy of order greater
than 1 in the resulting representation, i.e. reducing the non-independence amongst

representational elements.

Sparse Coding/Combinatorial Coding

Sparse coding, where signals are represented by a large number of symbols with a very

low activity ratio, is a form of factorialisation (Hentsche, Barlow, 1991). The sparser
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the representation, the closer the code satisfies the factorial condition. Combinatorial
coding, where each signal is given an exclusive representational element, is an
extreme form of sparse coding if the resulting activity ratio is very small. There is a
trade off of course between sparseness and representational capacity. It is easy to
show that in order to achieve better sparseness while preserving representational
capacity, the number of binary element roughly grows to the order of 1/(-alog(c)),
where o is the activity ratio. The great expansion of the number of representational
cells in higher cortical areas but with very low activity ratios supports the idea of

sparse coding.

6.5.3 Investigating Sparseness in the RA Context

Sparse codes became a subject of interest in the study of simple auto-associative
networks of binary units. The critical loading of such networks increases as activity
ratio falls (Gardner, 1988). There is no comparable result for feedforward networks
with more than 2 layers. Some authors start from the position that sparse codes are
useful and consider ways to achieve sparse codes on a 2-layer perceptron-like network.
One may for example minimise, via gradient descent, an explicit cost function that

relates to higher order redundancies (Hentsche, Barlow, 1991).

The RA algorithm essentially constructs representations with specified activity ratio
under the constraint of an explicit input-output task. It on the one hand explicitly
constrains the activity ratio of the representational patterns while on the other hand
forces the network to solve a given task. If the task is solved using the required
activity ratio then the representation achieved must have extracted important features
for achieving the task. As such, RA provides an arena for studying the effect of

representational activity ratio on solving classification tasks.
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Recall Section 4.3.4, where it is found that sparser activity ratio on the hidden layer
leads to more accurate inversion by symmetric connection matrix, given ramped
binarisation. This is one way sparser representation is preferred in the RA context.
However simulation also suggests that the 'optimal' activity ratio, as far as learning
speed is concerned, is in fact the biggest activity ratio that is just low enough to ensure

reasonable quality of the information transmitted by the transpose about outputs.

Learning speed is far from everything of course. It may be that sparser internal
representations, while taking longer to achieve, lead to better generalisation. It is well
known in theory and in practice that given any two feedforward multilayer networks of
identical performance on the training set, the one with less degrees of freedom tends to
generalises better, cf. (Miiller et. al.,, 1991; Hassoun 1995). Usually, 'degrees of
freedom' is understood as the size of the hidden layer. However, for RA, 'degrees of
freedom' is determined also by activity ratio. Given the same hidden layer, compared
with BP or others, the RA algorithm, through activity ratio fixing, has a much lower
degrees of freedom. The 'degree of freedom' principle implies that given two networks
of identical performance, the one with sparser internal representations (constructed via

the RA algorithm) is likely to have a better generalisation performance.
While our simulation data does not contradict this statement, the difference between

generalisation performance is not statistically significant. More study into this is

therefore needed.
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