
Modification of Internal Representations as a Mechanism for
Learning in Neural Systems

Ken Kangda Wren

University College London

A dissertation submitted for the degree of Doctor of Philosophy at
Physiology Department UCL. London University

1999

ProQuest Number: U641981

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U641981

Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

D ed ica ted to my p a ren ts
and Laura,

w ith o u t whose su p p o rt, t h i s r e se a r c h would n o t
have been com p leted .

Declaration:

This project has been carried out under the supervision of Dr. A. R. Gardner-Medwin,
whose original idea prompted this research. Except where explicit reference is made,
the material contained in this dissertation is the result of my independent research, and
is, to the best of my knowledge, original.

Ackn owledgement

I would like to thank Dr. A. R. Gardner-Medwin, who has demonstrated to me how
disciplined investigations should be carried out. His integrity also serves as an
example for one’s conduct in life. I am extremely grateful for his sensibility and
patience, as well as the freedom that he has given me in this research.

Description of Thesis

Title: Modification of Internal Representations as a Mechanism for Learning in

Neural Systems.

1. Incoming sensory signals are processed by hierarchically organised modules in the

brain. In certain contexts, this may be modelled by a feedforward layered network

of interconnected binary units. The activity patterns in the intermediate layers are

internal representations.

2. A new learning algorithm uses projections from the desired output to modify

internal representations. Biologically realistic 2-layer synaptic rules can then be

applied to cause the associated input to evoke the modified representation(s) that

are more readily trained to produce the target output.

3. Simulation is carried out on benchmark tasks for 3-layer feedforward networks.

Comparisons with other popular algorithms are made. The results suggest that the

new algorithm has better generalisation performance with faster or equal learning

speed on the tasks simulated.

4. The learning algorithm is generalised to a multi-layer network setting, in which

internal representations are dynamically constructed.

5. The above will be put into the context of efficient sensory coding that is based on

Barlow’s ‘redundancy reduction’ proposal.

CHAPTER 1 INTRODUCTION...1

Section 1.1 Biological Basis of Standard Network M odels.. 2

Section 1.2 Standard Network Formalism: The Weight-Centric Approach.......................... 3

Section 1.3 An Alternative Proposal: The Pattern-Centric Approach....................................4

Section 1.4 Relationship to Broader Theoretical Issues..7

CHAPTER 2 BIOLOGICAL BACKGROUND... 9

Section 2.1 Neurons..9
2.1.1 Membrane Potentials... 9
2.1.2 The Frequency Code... 11
2.1.3 Synapses...13
2.1.4 Synaptic Integration and Plasticity.. 15

Section 2.2 Basic Characteristics of the Cortex..17
2.2.1 Cortical Layering and Columnar Organisations..17
2.2.2 Localization of Cortical Functions... 18

CHAPTER 3 NEURAL NETWORK MODELS...21

Section 3.1 Rosenblatt’s Simple Perceptron.. 21
3.1.1 The Basic Architecture..21
3.1.2 The Learning Procedure..22
3.1.3 Limitations... 25

Section 3.2 Multi-layer Perceptrons... 25
3.2.1 Pattern-Centric vs. Weight-Centric Learning Strategies... 26
3.2.2 The Standard Gradient-Descent Algorithm...27

Section 3.3 Self-Organising Networks..32
3.3.1 Supervised and Unsupervised Learning.. 32
3.3.2 Competitive Learning Strategy... 33
3.3.3 Kohonen Netw ork.. 34

Section 3.4 Homogeneous and Hierarchically Organised Attractor Networks....................35
3.4.1 Autoassociative Attractor Networks...35
3.4.2 Hierarchically Organised Attractor Networks...37

CHAPTER 4 THEORETICAL ASPECTS OF THE RA ALGORITHM......... 40

Section 4.1 An Overview of the RA Algorithm...40
4.1.1 Fundamental Steps in the RA Algorithm... 40
4.1.2 The Key Elements and the Biological Plausibility of R A ... 41
4.1.3 RA and Other Networks with Bi-directionally Connected Layers..................................... 46

Section 4.2 Modification of Internal Representations via Reverse Connections in RA... 48
4.2.1 The Basis for Constructing Internal Representations...49
4.2.2 Constructing a Modified Representation... 54
4.2.3 Setting the Number of Cells in a Representation...56
4.2.4 Random Tuning of Reverse Activation Strength...59

Section 4.3 The Reverse Weight Matrix.. 60
4.3.1 Identification of the Ideal Reverse Weight Matrix... 61
4.3.2 Standard Inverse Problems: Inverse Optics, Inverse M odels.. 63
4.3.3 The Transpose as a Possible Inverse Operator..66
4.3.4 Weight Statistics, Activity Ratios and Inversion by Transpose...67
4.3.5 Comments on Initial Weight Statistics and Activity Ratio Setting for RA learning 77

Section 4.4 Reverse Activation Algorithm in Multi-layer Networks......................................78
4.4.1 Using Stationary States to Constmct Internal Representations...79
4.4.2 Proof that Stationary States Always Exist on the Given Network.......................................80
4.4.3 Interpretation of Generalised R A ... 82

CHAPTER 5 SIMULATION OF REVERSE ACTIVATION ALGORITHM....83

Section 5.1 Methodology... 83
5.1.1 Sampling Tuneable Parameters...84
5.1.2 Preparations of Initial Conditions.. 89

Section 5.2 Data for Two Benchmark Learning Tasks...90
5.2.1 CT Discrimination Task.. 90
5.2.2 Mirror Symmetry Discrimination Task.. 105

CHAPTER 6 DISCUSSION AND CONCLUSIONS...................................... 119

Section 6.1 Optimal Activity Ratios.. 119

Section 6.2 Random Tuning of Reverse Activation Strengths...121
6.2.1 Purposeful Random Fluctuation..121
6.2.2 Applying a Population search Algorithm...124

Section 6.3 Generalisation Performance...125

Section 6.4 Technical Questions That Require Further Investigations...............................125
6.4.1 Comparisons between Variants of BP and RA.. 125
6.4.2 Simple and Complex Outputs.. 127

Section 6.5 Efficient Sensory Processing and Representation...125
6.5.1 The Goal of Sensory Information Processing.. 128
6.5.2 Different Concepts of Redundancy Reduction.. 128
6.5.3 Investigating Sparseness in the RA Context...130

BIBLIOGRAPHY..132

Chapter 1 Introduction

The study seeks to gain insights into sensory representation and learning mechanisms

in the brain with the aid of computer simulation of networks of artificial neurons. A

new learning algorithm for a certain class of networks will be proposed and

investigated.

This chapter introduces a novel approach to thinking about learning, which underlies

most of the investigations in the thesis. Learning, in most models, including those

considered here, is assumed to be brought about by changes in synaptic weights. But

the effects of learning are more usually discussed in terms of the resultant internal

representations (i.e. the patterns of cellular activity that arise from the stimuli), and

how these representations relate to the learning objective. This perspective can be

constructive simply because the activity patterns are readily observable variables,

more so than weight changes. The starting point of this thesis is the suggestion that

explicit changes of internal representations, with the objective of achieving

representations that make learning easier, may in fact be built into a learning

algorithm.

The Reverse Activation (RA) algorithm, the main subject of the thesis, derives from

thinking about what is a desirable change of representation and how this may be

achieved. Part of the learning process can then be described in terms of the

modification of internal representations. Weight changes are still associated with the

mechanics of learning. However, unlike in most conventional models, the step that

drives the weight changes is the explicit decision on the desired internal

representation.

After this general approach has been set out, a review of both relevant biological

issues and related theoretical approaches will follow, before the RA algorithm is

analysed with both theory and simulations.

Section 1.1 Biological Basis of Standard Network Models

The term neuron is used repeatedly in the thesis to refer to abstract neurons used in

artificial network models. A biological neuron has more complex behaviours than the

stereotypical abstract neuron. Radically different types of neurons exist in the brain.

Further, each of the brain’s regions is a vast network of distinctive sub-networks of

neurons. In contrast to this complexity, most network models have a simple

architecture consisting of identical units that are essentially summation devices

coupled with a transfer function. Despite these differences, there are many reasons for

accepting such networks as relevant to the study of the brain.

Despite their diversity, most types of biological neuron can be seen as computing

devices that receive inputs and generate outputs that are characterised by the

frequencies of the action potentials generated. The behaviour of such cells is largely

based on a single parameter, the soma membrane potential, (cf. Amit, 1989). Hence, a

network of identical abstract neurons is a useful idealisation of real networks in the

brain. Further, there is no intrinsic argument to suggest that the artificial neural net

will be any more ‘real’ if all the known properties of neurons are incorporated. Firstly,

some neuronal properties are vital, and some are presumably of little consequence to

the global properties of a neural net, but known properties are not necessarily more

important than the unknown properties. Secondly, it is always necessary to prioritise

and leave out properties that may not be important to one’s modelling purpose. A

network of simple neurons is only a first order approximation of the biological one.

but there is seldom good reason to think that what it can achieve could not be achieved

by real neurons, nor vice versa - that what it cannot achieve could be achieved by real

neurons.

At an appropriate scale, the organisation of neurons in the brain is fairly uniform. The

same simple architecture found in one locality (e.g. the retina) may appear elsewhere

also (e.g. the olfactory bulb) (Shepherd, 1974). Further, perhaps more importantly, in

many parts of the brain (e.g. association areas of neocortex), the architecture seems to

be governed by simple rules, with large numbers of neurons or functional groups of

neurons forming connections specified largely by global conditions such as layering,

and of cell and synaptic densities. The study of simple networks seems likely to be

important for the understanding of local functions, as well as large scale organisation

in the brain.

Section 1.2 Standard Network Formalism: The Weight-

Centric Approach

Most artificial networks, be it recurrent or feedforward, are pattern associators: they

associate an output activity pattern to an input activity pattern by way of system

dynamics as determined by the architecture and the weights of connections. They are

particularly useful in understanding associative memory and feature detection in

sensory pathways. To focus the argument, let us concentrate on multi-layered

feedforward networks.

Almost all learning algorithms for this type of network can be derived from the

mathematical idea of hill climbing in weight space: the network performance is

measured by some explicit analytic function of the current weight matrices in the net;

learning involves iteratively changing each weight according to its effect on the

performance function for the purpose of optimisation. Learning and generalisation are

thus reduced to interpolation and extrapolation: the network represents a particular

model (in the sense used for Statistical Inference), where the weights are the adjustable

parameters. Any such learning algorithm is a way of computing the ‘best fit’

parameters. Weights are the fundamental variables in this formalism, while activity

patterns (on intermediate layers) are somewhat incidental; that is, such learning

models lose nothing if the significance of these patterns is completely disregarded.

However, these activity patterns attract great interest because they correspond (or at

least the individual elements of them do) to the most important observable in

neurophysiological studies.

This approach gives a simple mathematical formalism to the learning problem, and

leads to many different learning algorithms, the most popular of which is Back-

Propagation (BP). One disadvantage of the approach, apart from being a rather rigid

view of learning, is that most of the derived algorithms, such as BP, are not

biologically plausible (see Section 3.2.2). Further, it is unsatisfactory that

representational patterns, despite being a primary variable in neural science studies,

are peripheral in these models of learning.

Section 1.3 An Alternative Proposal: The Pattern-Centric

Approach

The algorithm proposed in this study represents a departure from the above

framework; it will be referred to as the Reverse Activation (RA) algorithm. The

algorithm takes activity patterns, rather than weights, as the fundamental variables in

learning. Learning, to a large extent, becomes a matter of actively changing internal

representations (defined as the activity patterns on the intermediate layers). Weight

changes are still the intermediary, but they are driven by the goal of achieving a

chosen modified representation via local Hebbian type synaptic rules. The key

question is what constitutes an improved internal representation.

In the context of feedforward networks, the ideal representation for a novel input

would be one that leads, with no weight changes, to the generation of appropriate

outputs. Novel inputs are only likely to produce such ideal representations if there is a

remarkable correspondence between the information processing in a network and the

characteristics of the world that govern what are appropriate outputs for particular

input patterns. More realistically, the existing representation of a novel input will not

be ideal, but may be improved by altering the input processing so that fewer weight

changes are required between representation and output in order to generate

appropriate patterns.

The objective of directly manipulating internal representations may seem like a pipe-

dream. The basic mechanism proposed however is very simple. It is suggested, on

intuitive grounds, that the pattern created at the level of a representation by combining

input activation (driven from the sensory input pattern) with reverse activation (driven

from the paired output pattern) will generally be an improved representation for

learning the input-output pairing, better than the representation produced by the input

activation alone given existing weights. The weight matrix through which this reverse

activation operates is obviously critical for this strategy to work, and consideration of

this matrix will be an important subject of the thesis. But intuitively it seems plausible

that weights based loosely on prior associations between activity patterns in internal

representations and outputs may have the desired effect. If so, then the processes of

learning a new input-output pairing can be split between two sites: (1) the input

connections to the representation, which learns to generate an improved

representation, and (2) the output connections from the representation, which more

easily learn to generate the correct output. Several questions arise and will be

addressed: can the suggestion be analysed theoretically; to what extent could it benefit

learning; and how can the necessary conditions be arranged?

There have been earlier attempts at a pattern-centric approach, particularly the so-

called CHIR ("choosing internal representations") (Grossman et. al. 1988; Grossman,

1989; Nabatovsky et. al. 1990; Abramson et. al. 1993); also see (Domany et. al. 1995).

These proposals rely on active search in a vast table of potential internal representation

patterns. Some other versions of CHIR (Rujan, Machand, 1989; Mezard, Nadal, 1989)

take a more explicitly geometric approach, which still amounts to a ‘home-in’

mechanism in the high dimensional representation space in order to determine the

‘appropriate’ representations. Further, the final number of hidden units and hidden

layers in the solution found is uncertain, and there is no guarantee that the trivial

solution (i.e. one exclusive hidden unit for each input-output pair) would not emerge,

see (Domany et. al. 1995) for instance.

Unlike the above CHIR’s, the RA algorithm does not rely on a time-consuming

explicit search in the representation space. Instead, it iteratively modifies existing

representations via biological mechanisms. The weight-based algorithms such as BP

also iteratively modify internal representations, but only as a by-product of weight

modification. The important difference in RA is that weight changes are driven by

changes in internal representations, while in BP the exact opposite happens.

The RA algorithm raises a problem because it is not obvious how to study it

analytically since it is not based on any easily expressible optimisation procedure. As

often happens in this area, computer simulation is necessary for validation. The

presented simulations will concentrate mainly on comparing the RA algorithm with

the back-propagation (BP) algorithm. Both algorithms are tested on two benchmark

tasks, and are compared on the basis of learning speed, generalisation, and the ease of

parameter tuning. The result shows that on tasks tested, the RA algorithm has better

learning speed and generalisation performance. The latter is consistent with known

theories on generalisation. It will be argued that the very mechanism for improving

internal representations in the RA algorithm promotes better generalisation

performance. RA is outlined and studied in Chapter 4, 5 and 6. A population search

technique may be applied to the RA algorithm to improve its practicality, as discussed

in Chapter 6.

Section 1.4 Relationship to Broader Theoretical Issues

The pattern-centric approach to learning is readily related to broader issues in the

study of the brain. Crudely speaking, the subject of information processing in the

brain can be studied at the system level or at the neural (network) level. The former

concerns overall characteristics and complex functions of the brain, and offers

explanations in terms of information and computational theories. The latter concerns

the implementation or the manifestation of system level theories in terms of

computational algorithms that can be justifiably described as being ‘neural-network’,

based on known biological and physiological evidence. A complete understanding

requires comprehension at both levels. Ideally, one formulates computational theories,

which then can be seen at work in a neural network context; conversely, one can hope

that a particular discovery at the neural network level has a certain higher level

rationale.

The RA algorithm concerns the neural level. However, it naturally relates to two

higher level issues: learning and efficient coding. In Section 6.5, these topics will he

discussed, in particular, the concept of ‘redundancy reduction’ and how it leads to

compact coding, factorial coding and sparse coding strategy. The RA algorithm

provides an arena for studying the effect of sparseness on learning in feedforward

networks of more than 2 layers.

The RA algorithm implicitly requires a short-term memory for paired patterns,

independent of the representational changes that will eventually be brought about,

contributing to long term memory. It therefore touches on the issue of memory

consolidation in the brain. Temporal storage is required for at least the most recent

activity patterns on each layer so that conditions can be set up for creating and learning

the improved representations. Quite different mechanisms, possibly in different sites,

may be involved as an intermediate step to the consolidation of the long-term memory,

which could be modelled as the inter-layer weights. Both high quality transient

memory and the ability to re-generate patterns of activity without related sensory

stimuli (in imagination, rehearsal, dreams, etc.) are in fact prominent features of the

nervous system, whose functional role is not clear. This adds to the plausibility and

interest of the mechanisms of the algorithm.

Under this model, short-term memory assists the formation of efficient internal

representations that are part of long-term memory. It is also possible to model the

opposite interaction, in which long-term memory facilitates short-term recall, using the

same network architecture. For this purpose, a network of hierarchically arranged

layers, with the inter-layer connections functioning as long-term memory and the

within-layer connections functioning as short-term memory, may be used. The RA

algorithm can be generalised to such a network; see Section 4.4.

Chapter 2 Biological Background

It is helpful to review the biological reality behind the theoretical speculation ahead,

for motivation, context and perspective. The chapter may be skipped by readers

familiar with the subject. Section 2.1.1, 2.1.3, 2.1.4 and Section 2.2.1 contain

standard facts/theories based mainly on Shepherd (1974) and Nicholls, Martin,

Wallace (1992).

Section 2.1 Neurons

2,1.1 Membrane Potentials

Most neuronal behaviours stem from the selectivity properties of channels on the cell

membrane. Some channels may be open only to cations, some to anions. While most

anion channels are non-specific, cation channels may be specific to, for instance,

potassium, sodium or calcium. Ionic channels are usually gated. The selectivity and

gate mechanisms are responsible for the electrical signals generated within the nervous

system. Various mechanisms can cause ion channels to change states thereby

disturbing the established equilibrium and pushing the membrane away from its

resting state. Some channels respond to chemical signals such as neurotransmitters,

some to membrane deformations due to mechanical forces, and still others to the

membrane potential itself. These mechanisms provide the means through which

neurons respond to stimuli and each other.

The properties of K^, Na^ channels and their active transport can account for the

resting membrane potential. This, usually -70 mV, is the potential that governs the

concentration differential inside and outside the neuron for species of permeant ions

for which there is no active transport (mainly Cl); the equilibrium achieved is

dynamic. Sodium action potentials, stereotyped cycles of rapid membrane

depolarisation and repolarisation lasting up to 2 milliseconds, result from the

properties of voltage gated Na+ and K+ channels and occur in an all-or-nothing

fashion.

If a depolarising potential raises the local membrane potential sufficiently, the sodium

channels on that patch will open rapidly, but transiently. The increase will cause a

sudden influx of Na^ ions since sodium is much less concentrated inside the cell. The

local membrane potential then will shoot up to typically +40mV within 0.5-1

millisecond. Potassium permeability also responds to increase in membrane potential,

though its reaction is slower but more persistent, lasting several milliseconds. The

resulting persistent outgoing potassium current will drive the membrane potential

rapidly down, even to below the resting potential for a time, causing the so-called

refractory period, before the resting potential is restored, thus completing the cycle,

known as an action potential.

The local effects caused by an action potential induce depolarisation of the

neighbouring membrane patches, which automatically undergo the same cycle; the

induced action potential is exactly the same but for its location and timing. Further,

because of the refractory period at the end of each depolarisation, the induced action

potentials travel in a clean wave away from the initial patch and do not re-excite

membrane areas that have recently undergone an action potential. The speed and

range of this conduction are limited not only by the channel properties, but also by the

diameter and insulation (myelination) of an axon. Dendritic action potentials are

typically longer lasting and involve Ca2+ rather than Na+ entry.

10

2,1,2 The Frequency Code

Because the action potential is all-or-nothing and self-reproducing through the use of

local energy stores, it provides the basic means of long distance communication in a

biochemical environment, where reliable communications via passive flow of

analogue electrical signals are possible only on a scale measured in tens of

micrometers.

Since the action potential generated down an axon is exactly the same as the original

action potential, there is no transmission loss. However the all-or-nothing dependence

of action potential on stimuli also means that no information is conveyed in the time

course (‘shape’) of the potential. It is the event itself, or more precisely, the number of

action potentials in a given period, which carries information. This is called frequency

coding.

Given the time scale of an action potential of the order of 1 millisecond, one may

divide time into 1 millisecond intervals so that there is either 1 action potential

generated or none. The frequency code can therefore be represented as a sequence of

1 and O’s. The upper limit of transmission rate is around 1000 bits/second. However,

neurons on average fire less than half of the time, and there is correlation between

firing intervals. These redundancies alone place the upper limit at about 500

bits/second. One may expect further redundancies implemented in order to counter

noise.

If the input signals to a neuron have a measurable information content, one may devise

experiments to measure the transmission rate of the neuron. This is usually only

possible for sensory neurons or low level cortical neurons. In this capacity, sensory

neurons of insects and frogs can transmit information at a rate ranging from 60

bits/second to 300 bits/second (Bialek et. a l, 1991). Current evidence from

11

mammalian lateral geniculate neurons indicates a rate no more than 30 bits/second

(Tovee et. a l, 1993).

The above approach is not adequate for studying information processing in the cortex.

Each cortical neuron can receive signals directly from as many as 10 ̂ other neurons,

only a small fraction of which are sensory afferent signals. It is seldom clear exactly

what information is conveyed to and by a particular neuron, and information about

most aspects of sensory stimuli are probably conveyed in a population code, spread

across many neurons.

There is perhaps a deeper reason why cortical neurons must be analysed differently.

Cortical neurons are not merely encoders that transmit information: there is no

homunculus waiting to analyse the information. The population of cortical neurons as

a whole is in some sense the ‘end-user’ of sensory information. The point of interest is

not so much how a neuron encodes the incoming information and passes it on, but

how it responds to the incoming information (relayed to it by lower level neurons). If

one accepts that mental activity is a collective phenomenon made up by the individual

responses of cortical neurons, then the activity pattern across cortical cell populations

becomes a primary concern in this context. Thus, as one moves into the cortex, one

stops focusing on the details of the frequency code adopted by an individual neuron,

but on how sensory information is represented by the activity patterns of cell

populations; the concept of ‘population code’ or ‘internal representation’ becomes the

theme. We shall address these issues further in Section 2.2 and 2.3.

The abstract neuron used in modelling cortical functions is often assumed to be binary,

i.e. it either fires at the maximum rate in a discrete time interval or does not fire at all.

This no doubt is a caricature of the real situation. However, binarised activity is one

way to combat noise, which should be useful to the biological brain. It is a natural

extension of the frequency code.

12

2.1.3 Synapses

The states of ionic channels on the cell membrane, and therefore the membrane

potential, can be altered via a variety of mechanisms. Sensory neurons respond to

direct mechanical (pressure) and physical (light, odour) stimulation. Most neurons

including sensory neurons also receive direct electrochemical stimuli from other

neurons, so that signals can be passed on, enhanced, modulated, and transformed from

neuron to neuron. A synapse is a physical point of contact through which such

interactions take place. At a synaptic site, the gap between the membranes of two

cells ranges from 20-300 Angstrom, or 2-30 nanometers across, depending on the

nature of the synapse. By far the most common and more sophisticated synapses are

chemical synapses. They are strongly directional. The postsynaptic cell can act on the

presynaptic cell via the same synapse but generally not in the same manner as the

forward action.

Chemical synapses rely on neurotransmitters to change the postsynaptic membrane

potential. It takes time however for vesicles, little parcels o f neurotransmitters, to be

released, to diffuse across the synaptic cleft, and to take effect. The delay between the

pre- and post-synaptic potential is typically 0.5 to 1 millisecond. Of the delay, only

about one-tenth can be accounted for by diffusion. The rest of the Tong’ interval is

mainly due to the fact that to release the vesicles. Calcium must be present. It has

been found that the direct effect of the presynaptic potential is mainly the opening of

Ca^^ channels, through which extracellular Ca^ ̂ions flow inwardly.

Ample experimental evidence has demonstrated the quantal nature of transmitter

emission. Neurotransmitters are released in multiples of a quantum. Each quantum is

capable of eliciting a miniature postsynaptic potential (PSP) of certain amplitude. The

13

total PSP depends on the number of quanta released. The probability of a quantum

being released upon the arrival of a presynaptic potential is constant; each release is

typically statistically independent. These assumptions explain the observed statistics

of fluctuations in postsynaptic potentials very well.

One striking fact of the vertebrate nervous system is that the mean number of quanta

released per presynaptic impulse by synapses in the central nervous system can be as

much as 300 times lower than those in the periphery (such as neuromuscular

junctions). However, the probability of release per presynaptic impulse can be as high

as 0.9 in the central system. This dramatic difference in the mean quantal content is

merely an indication that the central nervous system is concerned with the integration

of information so that no one synapse has a dominant effect.

Once arrived at the postsynaptic membrane, some neurotransmitters act by directly

activating appropriate ion channels. Many transmitters act by indirect mechanisms:

they combine with receptors that are not ion channels themselves. The resulting

substance then either is acted upon by other intracellular messengers, or acts directly,

to modify the activity of other receptors, ion channels or ion pumps, thereby changing

the membrane potential. Indirect synapses are usually slower.

One important empirical principle concerning synaptic arrangements is Dale’s law,

which states that a neuron can manufacture only one type of neural transmitter. Note

that this does not imply that a presynaptic neuron can exert only excitatory or

inhibitory influences upon all of its postsynaptic cells. The actual sign of the effect of

a transmitter depends on the receptors, different types of which may exist in the

postsynaptic cells. By combining transmitter and receptor mechanisms, chemical

synapses exhibit extraordinary flexibility.

14

2.L4 Synaptic Integration and Plasticity

A cortical neuron can receive as many as 10"̂ convergent synapses. The effect of an

individual synapse is rarely enough on its own to generate aetion potentials in the

postsynaptic cell. The overall activity of the postsynaptic cell is the result of the

interplay between inputs from many convergent synapses.

The efficacy or strength of a (chemical) synapse usually refers to the size of the

resulting post-synaptic potential (PSP) and the length of synaptie delay, for a given

‘amount’ of presynaptic stimulation. Efficacy can vary both in the short term and in

the long term. These variations can be due to either pre- or post-synaptic mechanisms.

By altering the efficacy of synapses, a neuronal system may be able to learn.

It is tempting to assume that the PSPs of all synapses are integrated by a simple

numerical summation, and that the efficacy of a synapse, which is modifiable, can be

seen as the weighting factors in the sum; as the system leams, these ‘weights’ will be

modified in some way as a result of repeated pre- and post-synaptic activities. This is,

broadly speaking, what standard artificial neural network theory assumes, partly

because other alternatives are difficult to handle. This simplified picture of neuronal

eomputation is used extensively in network modelling (diseussed in Chapter 3).

Presently, let us compare this pieture with the eurrent knowledge of biological

synaptic integration and plasticity.

Intracellular recordings show that the colleetive effect of simultaneous stimulation, i.e.

spatial integration, crucially depends on the relative positions of synapses. Even when

the two synapses virtually overlap, their simultaneous effect may differ from the

numerical sum of the separate effects. As far as spatial integration is coneemed, those

synapses nearer the axon hillock seem to be more effective than those further from it.

When timing is considered, the above already complicated picture gets worse. A well-

15

timed inhibitory PSP (EPSP) further down the axon/dendrite can kill off an excitatory

PSP (EPSP) very effectively. In addition, even at a single synaptic site, repetitive

stimulation may enhance PSPs by virtue of temporal integration, with each PSPs

adding to the falling phase of the one before; this happens when the frequency of

stimulation is high enough (which is possible since PSPs have a much longer time

course than action potentials).

Is the plasticity of synapses any simpler to capture in modelling? Experimental

evidence does support the basic idea that synaptic strength can be modified. In

invertebrates (Leech and Aplysia), short-term and long-term synaptic changes have

been extensively studied, and can directly account for modifications in the animal’s

behaviour. However, the detailed modification prescriptions in various learning

models such as those introduced in Section 3.2 are difficult if at all possible to verify.

Studies do provide quite a detailed qualitative picture on how synaptic efficacy is

modified. Profound biochemical and morphological changes are involved. Most

synapses, direct or indirect, are regulated by a second chemical messenger system.

The system is activated by sufficient depolarisation, or by sufficient presence of

substances accompanying specific pre- or post-synaptic events. Once activated, either

the presynaptic terminal or the postsynaptic terminal, or both, will undergo changes.

Chemical messengers may trigger the production of proteins that will increase or

decrease the mean quantal content of transmitter release by the presynaptic terminal;

they may also effect morphological changes, e.g. the presynaptic terminal may

increase in size. There are also messengers that act on the postsynaptic dendrite so

that it becomes more sensitive to transmitters because of newly available receptors,

e.g. previously ‘locked’ ion channels can be now activated by the transmitter;

postsynaptic morphological changes may also take place.

16

One can see clearly from the above that plasticity is a complex phenomenon that

involves a long sequence of biochemical events. As such, it lends itself to regulation

by many potential mechanisms. There is increasing evidence that indeed even the

plasticity of a synapse is regulated. This is termed as metaplasticity, that is, a

modification of the synapse that manifests itself not as a change in the synaptic

efficacy, but as the change in the ability of the synapse to change its efficacy (Fischer

et. al., 1997). The biological utility of metaplasticity is intuitively appealing (locking

and unlocking of memory storage capacity for instance).

To conclude our brief review, while there is sufficient evidence to show that synaptic

integration and plasticity do not conform to the simple form assumed in many network

models, present evidence does suggest that biological synaptic integration and

plasticity tend to be more sophisticated and thus potentially more powerful.

Section 2.2 Basic Characteristics of the Cortex

2.2.1 Cortical Layering and Columnar Organisations

The neocortex has six layers, compared to the three layers of archicortex and the four

to five layers of paleocortex. The grey matter of the cortex, where most neuronal cell

bodies lie, is about 2 mm thick, and covers the entire cortical surface. Wrapped inside

is the white matter, which contains mostly fibres between cortical regions and glial

cells. Sensory and subcortical efferent and afferent fibres are a small fraction of all the

fibres in white matter. The input and output fibres enter and leave any cortical region

through the depths.

Common to most cortical areas are the vertical arrangement of afferent/efferent fibres

and the strong vertical orientation of axons/apical dendrites of cortical neurons in each

17

layer. The contrast between the perpendicular and horizontal organisation is striking.

In the perpendicular direction, the cortex is highly organised into layers; each layer is

characterised by its cell and fibre content. Horizontally, i.e. within each layer, neurons

and fibres are distributed more or less isotropically and homogeneously.

By columnar organisation one refers to the fact that neurons along a line perpendicular

to the cortical surface have similar receptive field and response properties. In other

words, they appear to be involved in the processing of the same bits of input signals.

Physiological and anatomical evidence both put the diameter of such columns at 30-

500 micrometers. Neighbouring columns are sharply demarcated from each other: they

either have distinct receptive fields or have different response properties (e.g.

responding to blue rather than red; responding to tactile signals rather than auditory).

However, connections between neighbouring columns appear to be rather non-specific

compared to vertical connections within a column. Available evidence supports the

idea that the activation of one column has a non-specific inhibitory effect on the

neurons in nearby columns but a small non-specific excitatory effect on those further

on; this is particularly true for pyramidal cells. This fact has inspired the winner-

takes-all coding strategy, which has many interesting applications; see Section 3.3.

2.2.2 Localization o f Cortical Functions

Amongst the earliest investigations of the brain are those concerned with the

association of functions to specific locations. In particular, it is found that visual,

auditory, olfactory, and somotosensory sensations are all localised to distinct regions

of the cortex; there are also the motor cortex for motor control, association cortex for

integrated memory and the prefrontal cortex for planning and other complex executive

functions. Each of these areas is divided into subregions. Such divisions correlate

well with Brodmann areas, which are based on morphology (Shepherd, 1974)

(Nicholls, Martin, Wallace, 1992).

18

The properties of neurons in each functionally uniform area are spatially ordered as

well (Shepherd, 1974) (Nicholls, Martin, Wallace, 1992). For example, in the area 1 of

somotosensory SI cortex, which receives tactile information, the receptive field of a

neuron varies systematically with its position on the surface of the cortex so that the

cortical surface contains a topographical map of the body. Such a map can be found

also in areas of motor cortex. Similarly, topographical maps of visual scene are found

in the visual cortex, and tonographical maps in auditory cortex.

On the one hand, all cortical areas have the same basic cell compositions, the same

basic ‘circuitry’}, and the same coding strategy (i.e. topographical representation) but

on the other hand different areas of the cortex specialise to perform different

functions. The inevitable questions are why and how.

It is relatively easy to explain how localisation is implemented. To obtain sensory

information of different modalities, different physical/chemical processes must be

utilised. For instance, sensory neurons that detect pressure are very different from

those that detect odour. Hence at the detection level, the nervous system must have

‘localisation’. Functional specialisation in the cortex thus might be seen as a simple

consequence of physical/chemical necessity, and would be a direct result of well-

designed carefully-specified sensory innervation. The sensory innervation argument

however cannot account for the sharp demarcation observed between the receptive

fields of neighbouring cortical columns, the basis of topographical maps. It has been

demonstrated instead (Kohonen, 1990) that lateral inhibition can achieve

topographical maps even when each neuron receives exactly the same inputs; cf.

Section 3.3.

One important advantage of localisation, which partially answers the why question, is

that it keeps the brain at a reasonable size. Most of the brain volume is filled with

19

myelinated axons that link different parts of the brain. The number of cells is

proportional to the surface area of the cortex, so the number of axons would be

roughly proportional to the square of the surface area. Thus given a fixed average

volume of an axon, the volume occupied by axons alone would increase as the square

of the surface area. Further, as the volume increases, the average volume for axons

would also increase due to longer lengths and consequently necessarily bigger cross-

sections and thicker myelin sheets. Hence the volume would actually go up more than

proportionally to the square of the surface area. Had the human brain, with its surface

area and average connection probability, been a mass of cells which are uniformly

randomly connected, its volume would have been enormous (Mitchison, 1992).

20

Chapter 3 Neural Network Models

Artificial neural network models attempt to incorporate some of the above qualitative

biological characteristics of neurons and their interactions into quantitative terms so as

to carry out more concrete investigations. Inevitable in this process some biological

realism must be sacrificed in order to draw upon useful mathematical tools. The

validity of this trade off is ultimately justified or refuted by the results.

In what follows, we shall deal with networks of simple formal neurons (see e.g. Amit,

1989). They are based on two basic assumptions: 1) sub-threshold excitations lead to

no activity; and 2) at any instant, a neuron receives an input that is the linear sum of all

inputs from individual input synapses; the weights in the summation correspond to the

efficacy of each of the modifiable input-synapses.

Section 3.1 Rosenblatt’s Simple Perceptron

5,1.1 The Basic Architecture

The most basic network of formal neurons consists of binary units arranged in two

layers: the input (I) and the output (O) layer. Most concepts in neural networks are

best illustrated in this simple context. The matrix Wio of modifiable weights specifies

the connection strengths from a cell in I to a cell in O layer so that given input pattern

P i , the activation A q to output cell O i is given by

Ao(i)=ZjWio (i,j)P i(i)

21

The activity of the cell Oi is binarised according to

0 (A o (i) -8 (i))

where 0 is a step-function, and 6 is a modifiable threshold. Note that this threshold

can be absorbed. Since

Ao(i)-0 (i)= Zj Wio (i ,j)Pi(j)-8 (0 =Zj’ W’iq (i , j ’)P’iO’),

where W’iq is Wio with -0 (i) listed as an additional column, and where P’l has an

additional unit that is 1 (i.e. always ‘on’). Such individually adjustable thresholds will

not be explicitly mentioned from now on.

The above network is able to associate an output pattern with a given input pattern.

The detailed relation depends on the status of the forward weights.

3,1.2 The Learning Procedure

The perceptron training procedure is as follows (Rosenblatt, 1962). To learn a specific

association task, a sample set of input-output pairs is prepared. These patterns are

then presented to the network one by one. For each input, bit errors of the network­

generated output pattern relative to the target pattern are then noted. If there is no

error, then no weight modification takes place; one proceeds to the next pair of

patterns. If there are errors, some modification for each weight is computed.

Connection weights are changed iteratively. That is, when they are modified, the

modifications are small. However, the training set is presented repeatedly and hence

the modifications are done repeatedly. One complete presentation of the training set is

called an epoch. The small weight changes in each epoch accumulate as the cycles go

22

on, until no modification takes place, i.e. until all mappings are achieved. Learning

time is measured by the number of epochs required. Most neural networks and

learning algorithms follow the above training procedure.

The perceptron synaptic rule is a particular way of calculating the necessary weight

modifications. It can be derived from performing gradient descent on the mean-square

error-surface over all mappings in the training set. According to this rule, the change

AW(i, j) to weight W(i, j) is given by the following

A W (i J) = X (O V O i) I j , (Eq.3.1)

where O î is the target output activity at cell i, Oj is the current output activity at cell i

evoked by the input, and Ij is the activity of the input cell j in the input pattern, and X

is some positive constant called step-size, small compared to the size of the weights.

Note that the step-size is the quantum of weight change in the binary setting and is

also referred to as the learning rate.

There is a legitimate concern over whether the above synaptic rule is biologically

plausible, particularly regarding the availability of error signals (O î - Oi) at the

presynaptic sites. Gardner-Medwin suggested (in private correspondence) one way of

interpreting the rule (Eq. 3.1). Note the prescribed modification, AW(i, j)= X (O ĵ -

Oi)Ij, can be separated into two stages: one of anti-learning i.e. forgetting while the

internally generated output is on, as suggested by the term -lOilj , and one of positive

learning while the target output is on, suggested by the term +X O î Ij. Each individual

stage is simple Hebbian or anti-Hebbian associative learning, which is arguably the

most biologically plausible synaptic rule. Anti-Hebbian-leaming or active forgetting

has been suggested in many different contexts and seems to be important to

understanding many phenomena in memory and learning; see (Crick, Mitchison, 1983;

Hopfield et. al. 1983), or (Dormany et. al. 1995; Hassoun 1996). For experimental

23

evidence of the existence of anti-Hebbian synaptic modification see for example (Bell

et. a l, 1990).

In the perceptron algorithm, there are 3 principle options for when a computed weight

modification may be implemented. The two most commonly used methods are on-line

updating and batch updating.

In the former, each weight is updated according to a prescribed formula (such as Eq.

3.1) immediately following the presentation of each pattern in training set. In the

latter, the training set patterns are learned as a whole: each weight is updated only after

all the input-output pairs are presented, and the modification is given by the sum of all

the required modification calculated from individual patterns. The third less well-

known updating procedure, proposed and referred to here as ‘total-on-line’ for

convenience, is a training procedure in which individual pairings in the training set are

learned completely, one at a time: weights are modified iteratively till the latest input-

output mapping is learned perfectly before the next input-output mapping is presented.

This ‘perfect learning’ is of course at the expense of possibly damaging the mappings

already ‘perfectly’ learned before the presentation of the latest mapping.

There are subtle differences between these three methods (Finoff 94; Hassoun, 1995;

Ripley 96; Saad, Solla, 1996). Briefly, the on-line method is the most volatile and

sensitive to step-size. The total-on-line method can be the most stable with respect to

step-size. The batch method is somewhere in between in this respect, and it is also

most mathematically sound but least biologically plausible. These will be explained in

more details. For small 2-layer perceptrons, such distinctions are less important as far

as performance is concerned.

Given the on-line or total on-line training procedures, the perceptron convergence

theorem states that if a solution set of weights exists for the problem, then the net will

24

converge to a solution with the Pereceptron synaptic rule. The convergence of the

batch procedure is guaranteed by gradient descent (to be discussed shortly).

3.1,3 Limitations

A well-known point about the simple perceptron is that it cannot learn any set of

mappings that are not linearly separable (Minsky, Papert, 1969). Notice that each

output unit classifies the input patterns into two categories: those that turn it on, and

those that do not. Input patterns can be represented as points in a vector space, in fact,

as the comers of a hyper-cube. The above categorisation is geometrically represented

by a plane separating the two sets of ‘comers’. This plane is in fact parameterised by

the weights onto the output unit concemed. If the mapping problem is such that the

implied categorisation by an output unit is not achievable by any plane, then it is not

linearly separable. Since no planes means no solution weights, the simple perceptron

cannot leam such a problem.

Section 3.2 Multi-layer Perceptrons

To resolve the above problem, extra layers of units can be introduced between the

input and output layer. Typically, 3-layer networks are studied, which with a

sufficiently large number of intermediate cells can leam any well-defined binary

mapping, if necessary by employing cells that individually detect specific input

pattems. Additional intemal layers usually do not enhance the computational

capabilities, though they may permit an economy of cells.

Consider a network of 3 layers, the input layer (I), the hidden layer (H), and the output

layer (O), with numbers of binary cells (in the 0-1 representation) equal to Ni, Nh, Nq

respectively. Let us call any non-linear operation that tums an activation pattem into a

25

binary pattem a binarisation operation for short. This may involve thresholds that are

either fixed or, for example, adjusted to achieve a particular number of active cells.

All input cells project to all hidden cells, which in turn project to all output cells. Call

the I=>H weight matrix W ih , and the H=>0 weight matrix W h o - The pattems on the H

layer are referred to as internal representations.

3,2,1 Pattern-Centric vs, Weight-Centric Learning Strategies

There are two ways to extend the basic perceptron teaming procedure from 2-layer

networks to 3-layer networks. The pattem-centric way is to devise an algorithm that

establishes a pattem Ph* on the H layer that is desirable as a new intemal

representation and to apply the perceptron mle to Wih directly so that input pattem ?i

comes to evoke ? h* instead of its initial representation ? h. The weight changes are

divided so as to achieve two new mappings: Pi=>?h* and PH*=>Po, where Pq is the

target output pattem. The perceptron mle can be applied at each stage. An altemative

(weight-centric) way would be to invoke a global output error function that can be

differentiated against each connection weight, thereby determining its appropriate

modification to achieve gradient descent. Both of the above can be regarded as

generalisations of the 2-layer perceptron teaming procedure.

As discussed in Section 1.3, the pattem-centric strategy is intuitively appealing. It

puts intemal representation at the very heart of teaming and processing, as it should

be. Human teaming experience lends support to any teaming strategy that actively

constmcts intemal representations of the extemal environment (in an effort to

accomplish a task). This approach will be carried forward in Chapter 4 and the

following chapters. The weight-centric strategies on other hand treat intemal

representation as a passive by-product. Unfortunately, past attempts in the pattem-

centric direction have been largely unsuccessful. The so-called CHIR (Section 1.3)

26

relies on cumbersome prescribed search mechanisms in the high-dimensional space of

potential representations and remains unattractive in practice.

3.2.2 The Standard Gradient-Descent Algorithm

Gradient descent prescribes that the appropriate weight change for each connection

should be proportional to the negative of the partial derivative of the chosen error

function with respect to that connection. As such it is a very general strategy, and is

adaptable to many learning environments (including networks with stochastic

neurons).

The most popular Back-Propagation algorithm (BP) has a mean square error function.

We shall discuss BP for illustration. There are other less popular but well-known

algorithms proposed for such multi-layer feedforward networks of continuous neurons.

They are all gradient descent methods of one form or another. The main difference

was in the error functions used: cf. for example (Peterson et. a l, 1989), which

contains the so-called Boltzmann Machine type algorithms, which do stochastic

gradient descent on an entropy measure. For more examples, consult (Hassoun 1995;

Ripley 1996).

The Back-Propagation Procedure

On a standard feedforward, deterministic network with the usual quadratic error

function, the basic gradient descent prescription reads as follows:

AW(i, j) (due to one training pattem)= X Zk (Ok -Ok) 50k / 5W(i, j).

27

This is the central element of the so-called back-propagation (BP) algorithm.

However, in order to apply gradient descent to binary networks, it is necessary to turn

the binary neurons into ones with continuous activity during learning. Let the transfer

function of each neuron b e / . It is customary to choose/ to be

/ (A) = tanh (pA), (Eq, 3.2)

where A denotes activation, and the parameter p evidently controls the ‘sharpness’ of

the transfer at A=0: it is called ’steepness'. As it goes to infinity, the transfer function

is essentially a thresholding function taking ±1 depending on the sign of the activation

A. Originally, (f (A)+l)/2 is used so that the activity level is between 0 and 1.

However it is a well-known rule of thumb that using tanh rather than the shifted

version improves learning speed in simulation by 30-50%. This has been confirmed

by many studies, see for example (Stometta et. a i, 1987; Peterson et. a l, 1989).

Since for a 3-layer network, the output is given by

Ok = A Z. WH0(k, i)/(ZjWiH (i, j) Ij)),

applying gradient descent gives the following learning rule:

AWnoCk, i) = X f (Ao(k)) (0 \ - Ok) Hi

AWm(i, j) = A. li f (AhÜ)) Zk f (Ao(k)) WHo(k, j) (0 \ - Ok) (Eq. 3.3a)

Note that the rule for the H => O weights reduces to the perceptron rule in the binary

limit with f regularised by the step-size X (the difference in f (Ao(k)) from cell to cell

is eliminated in the limit). However it is not possible to turn the rules into binary form

for both H=>0 weights and I=>H weights at the same time. This is because in the

28

second part of the rule, it is the square of f that appears. As one takes the binary limit,

it is thus impossible to keep both X f and X{f’Ÿ finite but non-zero by adjusting X.

Also, the ability to absorb f into the step-size means that steepness p and step-size X

are not independent parameters. In fact, the behaviour of the network remains

unchanged if one scales the steepness P to 1 and scales the learning rate by p ̂ and all

initial weights by p (Tbimm et. al. 1996).

Following the above training, the intemal representation on H layer(s) can sometimes

be interpreted in a neural context. The biologically controversial part of this learning

method is the second half of the rule (Eq.3.3). Note that the weight change for

synapses between I- and H-layers requires information that is only available on the O-

layer, namely, the information about the error and the H=>0 weights. For this reason,

this algorithm is given the name Back-Propagation since it is evidently necessary to

somehow propagate the information from the output layer to successive layers all the

way back to the layer immediately above the input layer. Further, the nature of the

error signals (containing derivatives and so on) is such that it is not easily coded by the

activity of cells. Some independent memory must be associated with each cell in

order to retain and transmit such information.

The algorithm has been applied extensively due its generality and mathematical

simplicity. There has been extensive investigation into this algorithm. Its properties

are by now well-known. Below is a brief summary. Detailed survey of the state of BP

research can be found in (Hassoun, 1995), and (Ripley, 1996) also contains useful

insights.

A Brief Review of Performance Properties

Learning is usually slow and unstable when the rule is applied in its basic form.

Arguably the single most effective method of improving convergence is the use of a

29

momentum term, cf. (Rumelhart, et. a l 1986; Hassoun, 1995). The idea is that each

required weight modification has a lingering contribution in all subsequent

modifications, but the contribution decays as a", where 0<a<l and n is discrete time.

That is

AW n+i = X E n + aAW n, 0<a<l (Eq, 3,3b)

where AW „ is the weight modification for a connection at step n, X the step-size. En

the error correction to that weight calculated according to some learning algorithm,

such as in (Eq. 3.3a).

Note that any learning algorithm can be supplemented by momentum smoothing,

regardless of the details. The algorithm in use, what ever it is, calculates the weight

modification required for the current step according to that algorithm. The momentum

term simply allows the weight modification carried out in the previous step to make a

weakened contribution also.

Momentum smoothing results in large modifications in flat regions of the error

surface, and prevents over-shooting in a rugged terrain, thereby making convergence

more reliable. Usually learning is not sensitive to the precise value of a as long as it is

not too small or too close to 1 (Rumelhart, et. a l 1986; Müller et. a l, 1991; Hassoun,

1995); for detailed investigations in the context of gradient descent/BP algorithms, see

(Tugay et. a l, 1989; Tollenaere, 1990). There have been proposals of self-adapting

momentum terms (Fahlman, 1988). However, the learning rule becomes extremely

cumbersome and seems even more remote from biological reality than ordinary BP.

Regardless of the modifications above, performance is sensitive to step-size. For fixed

parameters, performance is slow when step-size is excessively small, but unstable

when step-size is too big, and achieves optimum for an appropriate range of

30

intermediate step-sizes. In general, to speed up learning further, larger steps are

needed at the beginning but increasingly smaller steps are necessary for convergence.

Update schedules can affect convergence speed also. In classical BP, as in (Rumelhart

et. al. 1986), to be consistent with the mathematics of gradient descent, the batch

updating schedule must be adopted. As the gradient of the error function depends on

all pattems in the training set, the required weight changes are only known after a

complete presentation of the training set. This evidently is unrealistic in a biological

context, as the ‘training set’ in the real world may be indefinite, changing, and may

contain many redundant examples. Further, each connection weight is modified only

once every epoch in this strict gradient descent scenario, which seems excessively

cautious. Thus, the on-line updating schedule is often suggested for BP. It is found

that on-line updating approximates stochastic gradient descent if the step-size used is

vanishingly small; however, there is no essential difference between this infinitesimal

on-line and finite batch updating procedures (Finnoff, 1994). Using finely-tuned finite

step-size, the on-line method may but does not always improve learning speed when

the training set contains a large number of redundant (same or similar) examples and

when there are local minima in the error function; the quasi random character of on­

line updating gives an ‘annealing’-like effect (Finnoff, 1994). However, on-line

updating, unlike the batch method, cannot converge unless step-size is gradually

reduced eventually to zero as (learning) epochs go by (Ripley, 1996). It is thus more

volatile and tends to oscillate if step-size is not tuned and scheduled correctly. How

this is done is a matter of trial and error. Many heuristics have been proposed, though

all are computationally expensive and none definitive. There are adherents to either

the batch or the on-line method, but there is as yet no conclusive evidence to favour

either method. The total-on-line method (Section 3.1.2) seems not to have been

studied with BP, and some observations will be discussed in Section 6.4.

31

Finally, BP, like other gradient descent methods, is very sensitive to initial weights,

i.e. where the system starts gradient descent matters greatly. Further, if initial weights

are too big, units are likely to be saturated (i.e. close to either of the two extreme

activity levels), which make learning impossible or slow. The usual practice is to

normalise random initial weights so that they fall within ±3L/N^^ ,̂ where N is the

number of training pattems, and L is the typical length of the input pattem, cf.

(Hassoun, 1995); this simple normalisation can improve teaming speed. Note that

weights are thus expected to grow with and that periodic normalisation is

necessary if teaming is on-line with no defined training set. Such normalisation would

destroy past knowledge since the activity of a BP network depends continuously on

the weights. It is hard to reconcile this with biological reality.

Section 3.3 Self-Organising Networks

3,3.1 Supervised and Unsupervised Learning

Multi-layer perceptrons belong to the class of networks that do supervised learning in

the sense that they are trained with a specific set of input-output mappings. Another

class of networks is designed to achieve, iteratively, as their output, a particular type of

representation for a given input population. The training procedure usually involves

presenting sample inputs randomly selected from the population; weights are modified

following each presentation. The modification algorithm is such that weights will

converge so that continued presentation will no longer lead to any change. The

resulting activity pattems on each layer, associated with each input, are then regarded

as the intemal representations, which can be interpreted as achieving feature

extraction.

32

Note however that the difference between supervised learning and unsupervised

learning is not fundamental. The representation achieved through unsupervised

learning is useless unless it can facilitate the implementation of some learning goal.

This goal, in abstract language, is a set of defined mappings from the input population

to a certain output population. The representations achieved through unsupervised

learning may go some way towards achieving this overall mapping if the

representations selected by the unsupervised algorithm render the mapping problem

more readily solvable as a 2-layer problem. To be constructive in this way, the weight

training algorithm of an unsupervised network must implement valid assumptions

about the statistical structures of the input population and their relation to the likely

learning goals.

From this point of view, supervised learning (on a three-layer net) merely makes the

implicit goals explicit, while relying entirely on output errors to drive the creation of

appropriate intemal representations on the hidden layer.

3.3.2 Competitive Learning Strategy

One of the most widely used and versatile unsupervised learning algorithms is winner-

takes-all or competitive learning (Amari, Arbib, 1977); see also (Hassoun 1995). The

architecture of the network is the same as the simple perceptron except that the input

cells are continuous so that the input pattems can be any real vector. However, given

any input pattem P i , the activity at the next level is given by

Oi = 0 (ZjWio (i J)Pi(i) - Max {Z,Wio (i , k)Pi(k) ; i=l,2,...No}).

That is, only the one with the largest activation is allowed to be on. This function can

be implemented biologically through lateral inhibition.

33

In a training situation, only weights onto the winner cell w are modified according to

AWio(k,, i) = X (P i (i) -Wio(k^, i)). (Eq, 3,4)

Had X been 1, the new weight vector would simply be the input vector. On average,

when X is small, and the sampling of the input population extensive, the cell

concemed would tend to become an encoder of a group of inputs clustering close to

each other. Due to the exclusive nature of the winner-takes-all mle, each cell will

become sharply tuned to a particular cluster, thus serving as a detector for that cluster.

The input weight vector onto each cell is therefore a prototype (cluster centre). By

creating prototypes, a substantial amount of correlation in the input population is

eliminated. The network can be seen as a classifier, which discovers the categories

(clusters) as it samples the input populations.

3,3.3 Kohonen Network

The competitive algorithm simply represents one strategy that appears to be important

for the brain to adopt in order to eliminate the most common type of redundancy that

exists in our natural environment, namely, local correlation resulting from the

continuous nature of most properties. The cortical topographical representations of

body surface or retinal positions can be reproduced by this coding strategy. This is

explicitly demonstrated by the Kohonen network (Kohonen, 1990)

It is a type of soft competitive learning algorithm. The network consists of continuous

neurons such as the ones above. The architecture is still the two-layer perceptron one:

an input layer and output layer with full forward connections between the layers.

Training is exactly like that for ordinary competitive networks, but instead of having

only the weights onto the winner cell w modified as in (Eq. 3.4), the modification mle

34

is modified by a neighbourhood function Nw(k) to become AWio(k, i) = 1 Nw(k-kw)

(P i (i) -Wio(k, i)), where N^(k-k ,̂) is positive, with maximum value 1 and declines to

zero with distance k-k ,̂, the distance from the winner cell w. When the network is

large, one can approximate the output layer by a continuous line or continuous sheet.

Then, the above becomes, AWio(p, q) = ^ N^(p-pw) (Pi (q) -Wio(p, q)), where p, q are

coordinates on the output and input ‘sheet’ respectively (just like the j and i labels in

the discrete case). The neighbourhood function may be chosen as the symmetric

Gaussian centred at 0 (so that it is maximum at p*).

Remarkably, the above algorithm is capable of producing topographical

representations of the input space such as those observed in the cortex. In particular,

each cell in the resulting network shows a well-defined receptive field that is sharply

demarcated from that of neighbouring cells, despite the fact that all output cells

receive the same input signals.

Section 3.4 Homogeneous and Hierarchically Organised Attractor
Networks

3.4.1 A utoassociative A ttractor Networks

So far we have discussed networks that have feedforward connections only. These

networks must be driven externally, with no dynamic interaction. This need not be the

case if there are loop connections. In general, let us consider a uniformly connected

network of N (binary) neurons, with connectivity R, i.e. on average each cell projects

and receives projections from RN cells. For such a network it is no longer natural to

see it as layered (unless there are functional differences in the connections. In the

homogeneous case we simply need a NxN weight matrix to describe the network.

Once an input pattem is fed into such a network, activities can be sustained without

35

being driven externally and the activity pattem will evolve in time and can settle into a

previously experienced state (Marr, 1971; Gardner-Medwin, 1976; see also Willshaw

& Buckingham, 1990).

A convenient way to study the dynamics is to see the net as a point meandering its way

in the state space of the network. (A network state is the collection of instantaneous

states of all cells in the network.) A trajectory is completely determined by the initial

state and the weight matrix. There are usually fixed points in the dynamics. The

network will settle in such a state once it is reached. What is relevant are those fixed

points that are robust, called stable states. That is, following perturbation, the network

is capable of returning to and staying in those states. The set of states starting from

which the network will reach a given stable state in finite time is called the basin o f

attractions. The parallel between such dynamics and the act of recall is self-evident.

It is fair to say that any system with a reasonably rich dynamics containing numerous

stable states (and cycles) can be used to model a memory. This is the basic idea that

has been popularised by (Hopfield, 1982).

Uniformly connected networks, called autoassociative or attractor networks have

been extensively studied by physicists because it is amenable to thermodynamics; a

comprehensive exposition to this field can be found in (Amit, 1989). These

techniques reveal the essential properties and limitations of such a system as a model

for biological memory. The main results are that they have limited capacity, relatively

fast convergence; they are poor at storing and recalling non-orthogonal pattems (i.e.

pattems with lots of overlaps), though there are algorithms that can diminish this

problem (Gardner-Medwin, 1989; Gardner-Medwin & Kaul, 1995). This kind of

network, incorporated into a hierarchical network, may be appropriate for modelling

short-term memory (STM).

36

3,4,2 Hierarchically Organised Attractor Networks

The following hybrid structure is commonly proposed, e.g. (Marr, 1971; Amit, 1989).

E 0000000 • • • • 0000000 < - E
S B 0000000 • • • • 0000000 < - E

E => 0000000 • • • • 0000000 => E
B => 0000000 • • • • 0000000 E

Input Layer STMi:
autoassoeiative

STMq: Output layer
autoassoeiative

It is a hierarchically organised multi-layer network, with each layer an

autoassoeiative network. In addition to the forward connections between layers,

there are also backward connections from higher level layers to lower level ones.

For the above structure to be distinct from a purely autoassoeiative structure, one

must assume that the there are functional differences between the intemal

connections within each layer, the forward inter-layer connections, and the

backward inter-layer connections. The three classes of weights may behave

differently and play different roles. For instance, the autoassoeiative layers in the

above stmcture may model short-term memory (STM) while the inter-layer

connections, long-term memory (LTM). The activity pattems on each layer can

be induced in part by extrinsic connections and in part by connections within.

Examples of this type of networks include the following.

Bi-direction Associative Memory (BAM)

BAM (Kosko, 1988) is perhaps the simplest in this class. It is essentially a 2-layer

perceptron with symmetric connections that mn in both directions. Within each layer.

37

the connections are trivial (i.e. none). As such, it is merely a Hopfield associative

memory with incomplete connections.

The ART Network

ART, Adaptive Resonance Theory (Carpenter, Grossberg, 1987), is an unsupervised

network which consists of two bi-directionally connected layers FI, the pattem layer,

and F2, the category layer. Each cell in F2 is a category node and only one can he on

at any time (due to lateral inhibition). The connection from F2 to FI is such that the

'on'-node can turn on, in layer FI, the 'prototype' pattem of the category that the node

represents, in the absence of other influences to FI. The connections from FI to F2

have modifiable weights that can be changed in case the category assigned to a pattem

by these weights needs to be changed. Graphically, the ART network is as follows,

where an input layer to FI is added for later discussions.

Raw Inputs

<- m
=> 0 ■ < - z

I z
mm ■ z

Pattem Layer FI Category Layer F2

Given a pattem on FI, a category node on F2 will be chosen via the forward Fl-to-F2

connections. This node will tend to evoke the prototype of that category on FI via the

backward F2-to-Fl connections. A tuneable "vigilance parameter" will decide

whether the prototype is sufficiently close to the existing pattem on FI. If it is, then

the forward and backward connections become a positive feedback loop: a resonance

will be established and all connections will be reinforced. If it is not, an altemative

category will be assigned (by suppressing the failed node) to see if resonance can be

established. If all existing categories fail, a new category will be created with its

prototype as the existing pattem on FI. Once resonance is established, all weights will

be modified to promote the new category arrangement. In a steady state of the

38

network, whatever the pattem on FI is, a resonance can be established. That is, in a

steady state, any pattem on FI and the category node it evokes constitutes a fixed-

point of the dynamics, under the given "vigilance" level.

The Wake-Sleep Network

The Wake-Sleep model (Hinton et. al. 1995) is a multi-layer, unsupervised network of

stochastic model neurons. Every adjacent pair of layers in the network is connected by

top-down and bottom-up connections. Bottom-up “recognition” connections convert

inputs into representations in successive hidden layers, and top-down “generative”

connections reconstmct the representation in one layer from the representation in the

layer above. The top-down and bottom-up weights are trained separately in two

distinct phases. In the wake phase, neurons are driven by bottom-up, recognition

connections, and the top-down, generative connections are trained to increase the

probability that they would reconstmct the correct activity pattems in the layer below.

In the sleep phase, neurons are driven by top-down connections, and bottom-up

connections are trained to increase the probability that they would produce the correct

activity in the layer above.

39

Chapter 4 Theoretical Aspects of the Reverse Activation Algorithm

Before we launch into a detailed justification and analysis of the RA algorithm, we

shall first outline the procedures and issues involved, as well as their relation to other

network models with backward connections. The terminology established in Chapter

3 for 3-layer feedforward perceptron will be used throughout. In particular, assume

that each output cell has a ‘backward’ connection to each H-cell.

Section 4.1 An Overview of the RA Algorithm

4,1,1 Fundamental Steps in the RA Algorithm

The algorithm is a pattem-centric algorithm. That is, to leam to map input pattem Pj

to output pattem ?o on a 3-layer feedforward perceptron (as defined in Section 3.1 and

3.2), the algorithm first constmcts an intemal representation pattem ?h*. Then the

perceptron teaming mle (or some other valid mle) is applied on the I => H weights and

on the H => O weights to attempt to achieve the ?i to mapping and the ? h* to ?o

mapping respectively. It thus breaks down the 3-layer problem into two 2-layer

problems.

Note that the 2-layer teaming need not be carried out to completion, i.e. ? h* need not

be achieved completely. Weights are only modified one step at a time and teaming is

stopped as soon as the ?i -to-?o mapping is achieved. In other words, ? h* may not be

the final intemal representation adopted by the network, it merely provides a target to

motivate the I => H and the H => O weights to move in the right directions.

40

The key is therefore how Ph is constructed. The RA algorithm uses the following

procedure, which requires a reverse connection matrix from the O to the H layer, to be

discussed later.

1) Impose the input ?i and output ?o pattems simultaneously on the I and O layers

respectively;

2) Compute the combined activation pattem on H layer

Ah'*^=Wih Pi + vj/WoH Po (Eq. 4.1)

where Wih and Won denote the weight matrices from I=>H, H=>0, and 0=>H;

and Y is a pre-set, non-negative number called the reverse activation strength.

3) Produce binary activity pattem Ph* by way of the following:

Ph* 0)^1 only if Ah ̂(j) is one of the top W activation amongst all j= l,2 ,.. .Nh,

where W is a pre-set number, fixing the activity ratio of the intemal

representation.

4.1.2 The Key Elements and the Biological Plausibility o f RA

The Reverse Activation Matrix

The Two fundamental questions arise about the reverse activation matrix Wqh- What

determines the individual weights, i.e. the form of the matrix Wqh? And how is its

overall effect, i.e. the reverse activation strength (y) modulated?

41

The basic requirement for the W q h is that it should be an adequate inverse to the

forward matrix. That is, on the 2-layer network of the H and the O layer, given any

output pattem, the reverse matrix should be capable of producing a pattem on H which

produces the output itself via the forward matrix. This is because the purpose of the

reverse connections, when activated by a desired output pattem, is to shift the activity

on the H layer towards a pattem that will reproduce the output pattem via the forward

matrix. The best choice of W q h in fact appears to be the transpose of W h o , as

discussed in Chapter 4.

Once teaming of a set of I-O mappings has taken place, only the forward connections

are taken into account in assessing teamed performance. The reverse connections may

be able in principle to contribute to improving the quality of an output pattem through

dynamic interplay of the H and O layers during recall, but this would take time to

settle and only the correctness of a teamed output on the first step of such a dynamic

process is actually considered here.

Reverse Activation Strength

The reverse activation strength v|/ is an important tuneable parameter for the RA

algorithm. It is needed partly to counteract arbitrary scaling of the I=>H weights

relative to the H=>0 weights. But its more fundamental importance is to control how

much the new intemal representation is to differ from the one generated by the input

and the existing weights. Note that when \\f is 0, the modified representation coincides

with the existing representation. And when it is infinite, the chosen representation is

completely determined by the output and the 0=>H weights. In between, it regulates

the relative contributions of the paired input in determining the intemal representation.

Another way to see it is that \\f decides how learning is 'shared' between the I=>H and

42

H=>0 connections: when vi/=0, the input representation remains unchanged and

learning is entirely carried out on Who; whereas with vj/=oo, much of the learning

involves changes in Wih, which may result in a new representation that requires little

if any change to W h o to produce the desired output.

In the initial simulations of RA, \\f is fixed prior to training and remains fixed

throughout the epochs. It is necessary to try out different values to determine the

optimal range (rather like tuning for optimal step-size or momentum in BP). An

alternative version selects \\j randomly from a pre-determined range prior to each

superposition of inputs and outputs, so that v|/ changes every time it is used. The

advantage of the latter is that it obviates the need to tune \\j. It is interesting that this

seems to work almost as well as employing a constant and optimal \\j.

How could Y be modulated in a biological context? Two possibilities are through

effects of diffuse neuromodulators and, perhaps more simply, by varying the strength

with which the desired output pattern is activated. The latter mechanism strictly

contravenes the simplifying assumption made in the model that neurons are binary, but

it is of course quite feasible with more realistic neurons that have variable firing rates

Binarisation and Activity Ratio

The binarisation procedure is quite crucial in the construction of the internal

representation. It is done by fixing the activity ratio of the H layer. Then any

activation pattern is binarised by allowing only the few most-activated cells to be ‘on’.

Why is this necessary?

The problem of constructing a binary internal representation comes down to

determining which cells should be ‘on’ or ‘off. The object of the construction

43

procedure must be to include the ‘good’ cells (whatever that means) and exclude the

‘bad’ ones. RA amounts to saying that the way to measure ‘goodness’ is via the

‘combined activation’ defined in the (Eq. 4.1). As such the absolute value of the

activation of each cell has little relevance in determining if a cell should be included in

a representation or not because the activation is subject to arbitrary scaling. It is the

relative order of activation that matters to the RA construction procedure.

As a result, fixing the activity ratio of the H and O layer is inevitable so that only the

top few cells are allowed to be ‘on’. This is referred to as ramped binarisation. This

makes the activity ratio on the H layer a tuneable parameter, providing a perfect

opportunity to study the effect (on performance) of different activity ratio constraints

for internal representations. As such, the RA procedure is a way of solving a given

mapping task by constructing internal representations of a given activity ratio.

This binarisation procedure is also applied during recall on both the H layer and the O

layer, for consistency. The behaviour of the network is more robust as a result.

A Non-gradient Descent Method

One key difference between RA and BP or other gradient descent methods is that the

internal representations constructed are not driven by output-errors. The input and

output mappings alone determine directly what the appropriate internal representations

should be. Not having a defined error-surface in which to descent, it is hard to study

the method analytically. For instance, it is not clear why the process should converge

let alone learn anything at all.

Generalisation to Multiple Layers

RA can be generalised straightforwardly to networks of the type described in Section

3.4.2. Internal representations on successive layers are determined by the fixed points

44

of the dynamics resulting from the bi-directional linkage between the layers, keeping

the input and output layers clamped. In Section 4.4, it is proved that such fixed points

always exist and explained how this is consistent with the RA for 3-layer networks.

Biological Plausibility of Assumptions

The process of improving representations on the H layer is essentially a matter of

recruiting 'better' cells for the purpose of generating the desired output and dropping

'bad' cells. One could look on this as analogous to learning to notice features of an

input that lead you to the right conclusions about it, and learning to ignore features that

lead to the wrong conclusions, based on previous learning. The criterion for 'good'

cells is that they are strongly activated from (and by inference associated with) the

correct output as well as the input, using a suitable reverse weight matrix. In fact the

reverse matrix adopted for the simulations (the transpose of the forward weights) is

likely to be one of the more simple to establish biologically, since the reverse

connection between cells Oj and Hk is the same as the forward connection between the

same cells, and this might be expected on the basis of simple associative (Hebbian)

synaptic modification. Reciprocal connections from higher level centres are very

common in the brain (e.g. Mumford, 1991,1992; Lee et. al. 1998), though their

properties in relation to forward connections are not generally known.

The total number of active cells is kept fixed in the RA simulations ramped

binarisation so that it is the ranking of the H cells that should govern which cells

should be employed for a representation, not their absolute levels of activation. If

there are too few active cells then the capacity of a network to represent and learn

about different events is restricted, while too many active cells can lead to problems of

overlap and interference. Ramped binarisation could in practice be implemented by

negative feedback employing widespread recurrent inhibition set by the number of

active cells.

45

RA makes use of the simple perceptron learning rule for weight modifications, which

is a relatively plausible learning rule in a biological context, based on association

(Section 3.1.2). The simple perceptron rule is not in fact essential to the algorithm

itself. Any other 2-layer rule can be applied once an internal representation is

constructed. It is substantially more plausible than a learning rule based on back-

propagation.

The RA algorithm requires the existence of STM so that target-pattems on each layer

can be repeatedly recalled to train the inter-layer weights and improve representations.

Though the relationship between STM and LTM in producing consolidation is far

from clear, it is evident that the nervous system contains the capability of recalling at

least some aspects of the representations of recent stimuli and appropriate responses,

both during waking and sleep, partly on the basis of human reports of subjective

experience and partly from hippocampal animal studies (e.g. Skaggs & McNaughton,

1996).

4.1.3 RA in Relation to Other Bi-directional Models

Compared with BAM

BAM (Section 3.4.2) resembles the bi-directionally connected internal and output

layer in the proposed RA network. However, the potential dynamics on these two

layers, as a result of the bi-directionality, does not play any part in either training or

recall in RA. During RA training, while the modified internal representation is being

chosen, both the input and output layers are constrained to the input and the target

output patterns. During recall, the output is defined as the result of the first forward

sweep. Further, the reverse activation strength parameter, which plays a crucial role in

the choice of internal representations, makes the effect of the reverse connections

46

variable and asymmetrical. In BAM however the forward and reverse connections are

treated completely symmetrically.

The key purpose of the reverse connection in RA is to allow the output play a part in

shaping the internal representations of the input. In the future, one might consider

giving the dynamics a role in the computation of outputs, especially for novel inputs,

but this is not a fundamental feature of RA. Nor indeed is the symmetry of the

forward and backward weights, which is a simple and approximate solution to the

attainment of an ideal reverse matrix (Section 4.3.3).

Compared with the ART Network

One can incorporate ART (Section 3.4.2) into a 3-layer supervised network, while

retaining the spirit of ART, to make it comparable to RA. ART’s layer FI naturally

identifies with the hidden layer, receiving pre-processed inputs and activation from

layer F2, which identifies with the output layer. In the forward sweep, the input is

reduced to a prototype pattern on FI, which hopefully is associated with the desired

category nodes on F2. ART demands that in a steady state of the network (i.e. with

resonance achieved) any internal representation pattern must be similar to the

prototype pattern of an output category. In other words, in any steady state the internal

pattern evoked from the input alone must be always similar to the internal pattern

evoked from the associated output alone. How ‘similar’ will depend on the level of

"vigilance" chosen during learning (for very high levels, they should be the same).

The RA network does not use this symmetry as a goal that drives the construction of

internal representations.

However, in RA and in ART both the inputs and the required outputs play a direct role

in determining the internal representations that would finally emerge through their

respective learning procedure. Note that the "vigilance" parameter acts to either

47

accept or reject the pattern evoked from the input as the internal representation

depending on whether its similarity to the prototype of the corresponding output is

high enough. In case of acceptance, the network learns by changing weights between

FI to F2 only. In the second case, the prototype of the target category will be the

chosen internal representation and the network leams by changing the weights from

the input to layer FI only. Only in case of very high "vigilance" level, the internal

representation would be solely determined by the output and the network leams by

changing the weights from the input to layer FI only. This is similar to the situation

when the “reverse activation strength” parameter in RA is chosen to be very high.

However, there is an important difference. The “reverse activation strength”

parameter in RA provides a graded control as to how much the input (or output) will

contribute to the construction of the internal representations, in other words, how

learning will be shared between the group of connections linking the input to FI and

the group linking FI and F2. In ART on the other hand, for any given input-output

pair, the internal representation is either 100% input driven or 100% output driven.

Compared with the Wake-Sleep Network

The hidden and output layers in a RA network may be compared with the Wake-Sleep

network (Section 3.4.2), ignoring the stochastic nature of the neurons in Wake-Sleep.

Wake-Sleep, applied in a supervised fashion, would demand that the hidden-layer

pattern should evoke the required pattern on the output layer and that the output

pattern should be able to evoke the chosen internal representation pattern; connections

in each direction are trained separately and alternately. This closely resembles the

resonance requirement in ART except that the output pattern is not limited to being

exclusive categories.

Without allowing reverse connections from the hidden layer to the input layer, i.e.

applying Wake-Sleep only to the hidden and output layers, the internal representation

48

that would finally emerge after learning is mostly determined by the required output.

This differs from both RA and ART, in which the input also plays an ongoing role in

moulding the internal representation. Further, even if one allows reverse connections

from the hidden layer to the input layer and applies Wake-Sleep to the complete

network, the input and output would always play an equal part in determining the

internal representations. This is not the case in RA, nor in ART.

Section 4.2 Modification of Internal Representations via

Reverse Connections in RA

In this section, we study what a modified internal representation should be, and how it

can be generated in RA in details.

4,2,1 The Basis for Constructing Internal Representations

The ‘Minimal Disturbance Rule’

The intuition behind the RA algorithm is very simple. Any modification of weights

may cause interference i.e. may damage performance on mappings already learned by

the network. It is desirable that a novel pair o f input and output should be learned

with minimal disturbance to previous learning and hence to the existing weights. In

general, it seems likely that spreading small weight changes over a smaller number of

relevant weights will help to diminish overall interference.

fri order to apply the perceptron learning algorithm to both of these projections, there

must be a target pattern on each of the H and O layers. The target for the O layer is

clear - it is the desired output pattern. The target Ph* for the H layer may differ from

the initial ? h evoked by input pattern ?i so as to be better at eliciting the desired output

49

with no or reduced changes to H=>0 weights; this reduces the necessary disturbance to

the existing W h o matrix. But it must also not differ too much from Ph, s o that

disturbance to Wih is kept to a minimum. The upshot is that the target H- pattern ?h*

should be a compromise between the set of cells on H that are most easily activated

from the input pattern Pj and those that are most effective at eliciting the correct output

pattern Pq. The RA algorithm relies on the notion that the effectiveness at eliciting the

correct output pattern correlates with the reverse activation of the H layer from the

desired output, operating through a suitable connection matrix Won that can be set up

in a practical manner.

Combining Forward and Reverse Activation

At the cellular level, choosing a good representational pattern comes down to deciding

whether each H-cell should be ‘on’ or ‘off. The two factors to be considered in this

decision are the cell’s ease of activation by the input and its ‘effectiveness’ in evoking

the desired output, given the existing weights.

Ease of activation from the input is directly available to the H cells in the form of

forward activation vector Aj, where Aj (j)=Ei Wih (j, i)Pi(i), from the input layer to the

H cells. A representational pattern that is easy to implement is one in which the ‘on’

cells already have high activation from the input.

The effectiveness of an H-cell for evoking the required output depends only on the

output pattern and the forward H=>0 weights. In particular, it has nothing to do with

the I=>H weights and the input, much as the ease of activation has nothing to do with

the H=>0 weights and the output. To the extent that the reverse activation correlates

with this effectiveness, it influences the choice of a target representation by means of

the reverse activation vector Aq from the output layer to the H cells, expressed as

50

AoÛ)=Si WoH (i, i)Po(i)- The following diagram summarises our considerations so

far.

input
connections

with combined
activation A,

Output iines

reverse
connections

with combined
activation Aq

H layer

Figure 4.2a. Three types of connections associated with each H cell. Every H cell projects to the
output layer, and receives projections from the input as well as the output layer. If the input and the
target output patterns are imposed on the respective layer, the instantaneous activation received by an H
cell from the input layer is denoted as A, , and similarly, the instantaneous activation from the output
layer is denoted as Aq.

Since both the forward and reverse activations onto individual cells are relevant to

their selection for a new representation, it is helpful to portray them on a 2-D scatter

plot (Fig. 4.2b). Each H cell is plotted with its forward and reverse activations (Ai,

Ao) as Y- and X-coordinates, respectively. We shall refer to such a plot as the

activation scatter o f H cells, usually for a particular set of input-output pairs, given the

initial weights. Note that with Nh H-cells and N input-output pairs, the total number

of points in the plot will be NhxN (so each H cell appears N times).

It is important to understand this plot because it illustrates the learning process and the

thinking behind RA. This will be explained here in an informal manner, begging for

the moment the question of how it may be valid to treat reverse activation (on the X-

axis) as equivalent to effectiveness for generating the corresponding output. A strong

positive correlation in the scatter predicts 'easy' training, since the initial weights are

already such that those H cells strongly activated from the inputs also tend to be

51

effective for turning on the desired outputs. A negative correlation indicates that the

new learning task is at odds with the current weight configuration and past experience

of the network: the H cells most associated with the correct output pattern are those

that are poorly activated from the input. An absence of correlation would indicate

independence between the past experience of the network and the new learning task at

hand. The learning process can be represented through shifts in the positions of points

on this plot, as indicated by arrows.

Ao

Figure 4.2b. How internal representation may be modified. Each H cell is plotted according to the
activation it receives when the input and the target output pattern are imposed on the respective layer.
The vertical coordinate Aj is the forward activation received from the input pattern; the horizontal
coordinate Aq is the reverse activation from the output pattern. The horizontal line represents a simple
threshold applied with input activation alone: those cells above this line will become the active
representation. Non-zero strengths of reverse activation (T) give slanted threshold lines on the diagram,
with cells then activated only if they are above the slanted line. In general this leads to recruitment of H
cells with high Aq and dropping of cells with low Aq. Subsequent learning on the Wjh matrix, with this
as a target representation, leads to the vertical shifts indicated, while learning on the Who matrix
(reflected in Wqh) results in horizontal shifts.

What is Required of the Reverse Matrix

The reverse matrix needs to be set up so that the reverse activation Aq received by an

H cell from the target output pattern is a reasonable indicator of how effective the cell

is in evoking the target output pattern. Putting it in another way, the reverse matrix

52

must be such that a selection of H cells with high reverse activation will require less

H=>0 weight change to evoke the target output pattern. Stated more formally:

The required backward connection matrix tracks the state of the forward

connection matrix in such a way that the effectiveness o f any H cell

fo r producing a particular output pattern is indicated by the activation

received from the output pattern via the reverse connections. If so, for an

H-cell Hj, the reverse activation

A o (i)=Z i Wqh (j, i)Po(i). (Eq. 4.2)

Can be used a proxy for its effectiveness for producing an output pattern

Po={Oi,...,Oj,...} given the current forward weights Who-

However, the above is not very meaningful in that it does not explicitly provide a

way of testing whether any matrix fulfils the requirements: how does one know

whether any particular backward matrix is adequate for this purpose?

Note that it is the forward matrix that ultimately determines how

effective an H cell is in evoking a particular target output, so the

backward matrix Wqh must be determined by the forward matrix Who-

Therefore, the proper way to assess whether a matrix fulfils its role, i.e. whether it

does compute ‘effectiveness’ when plugged into (Eq. 4.2) is to see how well the

activity pattern on H-layer generated by the backward matrix actually produces the

target output pattern Pq (via the forward matrix).

If the forward matrix W h o has an inverse, then one may choose the backward matrix

to be WoH= Wno^. For a linear network of continuous neurons, this choice of reverse

53

matrix would give a perfect indication of effectiveness of any H cell in producing any

output Po when plugged into (Eq. 4.2) because

W h o A q — W h o W h o ' P o ~ P o -

In other words, if H cells are activated according to their reverse activation Aq as

computed by the reverse matrix W q h = W h o \ the output pattern can be produced

perfectly without any change to the forward weights. In this sense, this particular

choice of backward matrix Who^ provides an adequate computation of effectiveness.

However, the matrix inverse may not exist; and the case for it breaks down in the

presence of binarisation. A simpler and more general candidate might be

Woh=Who^ i.e., Who (i, j)=WoH (j, i) for all i,j, (Eq, 4,3)

where ‘T ’ indicates ‘transpose’. In this case, we simply have

Ao (j) =Zi Wno(i, j) Po(i). (Eq, 4,4)

This choice of reverse matrix assumes that the bigger the total weights from cell Hj to

the target ‘on’-output-cells, the more ‘effective’ it should be. Intuitively, this seems a

reasonable bet. In Section 4.3 the reverse matrix is considered further. Meanwhile,

the reverse matrix can be considered as the transpose in the discussions that follow.

4.2,2 Constructing a Modified Representation

An initial representation (P h) of the input pattern on the H layer, evoked by forward

activation alone, corresponds to the cells above a horizontal threshold line in Fig. 4.2b.

54

The desired modification of this representation corresponds to recruitment of cells on

the right of the diagram, strongly activated from the correct output and therefore

associated with these output cells on the basis of past experience and likely to be

effective at activating the these output cells. With a finite reverse activation strength

(Y), the total activation onto H cells is influenced by the X co-ordinate on the diagram

(Ao). A threshold uniformly applied to all the cells will then correspond to

recruitment of those above the slanted line, with gradient -Y:

Ai + V}/ Aq = threshold (Eq, 4.5)

The desirable H cells on the right tend to be recruited and those poorly associated with

the output pattern, on the left, are lost from the representation. This is the mechanism

for the creation of a new representation Ph* .

To establish the new representation ?h* from the input alone, the network must

change the I=>H weights. The I=>H weight modification, using ?h* as a target, results

in the vertical movement of cells on the scatter plot (see Fig 4.2b). Though it is

desirable to recruit cells with large positive Aq values and to exclude cells with

negative Aq values, the ease of activation (A%) from the input is also important. Cells

with initially high Aq but a very negative A% require substantial changes to the I=>H

weights to be recruited, and may cause too much interference. This corresponds to the

use of a very large Y, represented by a very steep slanted line on the scatter plot.

Since learning can also take place on the H=>0 weights, corresponding to the

horizontal movement of the cells (see Fig 4.2b) cells, the principle of minimal

disturbance to the existing weights necessitates an appropriate trade-off between

learning (hence changing weights) on the two sets of connections. The trade-off is

regulated by This is discussed in Section 4.2.4.

55

4,2.3 Setting the Number of Cells in a Representation

The new representation pattern Ph* depends on the binarisation process used to select

active cells on the basis of combined activation Ai+\j/Ao. A process called ramped

binarisation is employed.

Ramped Binarisation

The absolute value of the combined activation Ai+vj/Ao is employed as an indicator of

how advantageous it is for a particular H cell to be ‘on’ in the new internal

representation. However, it may happen that all H cells carry a small or negative

combined input and reverse activation; this may happen if the new mapping is very

different from those already learned by the network. In this case, one still has to

choose the best available internal representation, given the circumstances. One is not

in fact interested in the absolute value of the combined activation of each H cell, but

only the relative order of H cells according to these values.

The natural way to obtain the improved representation ?h* from the combined

activation pattern Ai+v|/Ao is therefore by ranking H cells according to their activation,

turning on the best activated of the H cells for the new representation. Operationally,

this is achieved by ramping, i.e. lowering the threshold on the H layer systematically

from a high level until the desired number of cells are on: ramped binarisation.

Ramping is easy to achieve biologically via a feedback mechanism involving

controlled mutual inhibition.

From a biological point of view, the absolute value of synaptic efficacy and membrane

potential are prone to many fluctuating factors. A binarised activity pattern is one

possible mechanism to achieve robust behaviour against such noise. However, for this

56

purpose, the binarisation procedure itself must be robust so that cell activity patterns

are preserved as far as possible against fluctuations or scaling of weights and

activation levels. Ramped binarisation meets the requirement better than ordinary

binarisation procedures that are based on a fixed threshold (such as 0), essentially

through feedback control.

Ramped binarisation is adopted as the normal procedure for RA. The effect on a

scatter plot is illustrated in Fig. 4.2c. The slanted threshold line is moved up or down

until the required number of cells is above it.

Figure 4.2c. How ramped binarisation fixes internal representation. An activation scatter for H
cells, as in Fig 4.2b. The modified internal representation pattern is constructed by turning on only cells
that fall above the tilted line, which is moved up or down by controlled inhibition until the correct
number of cells remain above the line. Hollow arrows show examples of thresholds adjusted to give just
2 active cells in the illustration.

The use of ramped binarisation makes the absolute value of activation meaningless;

only the relative value counts. Systematic vertical and horizontal shifts in the scatter

plots are irrelevant, and the relative vertical and horizontal scale changes are

significant through affecting the appropriate value of vp for a given activity ratio.

57

The details of the scatter and the choice of activation strength i.e. angle of the tilt,

determine the precise cut that gives the right number of active cells. For example, for

a small activity ratio, one would need to move the tilted threshold line to the ‘north­

east’ region of the scatter for most choices of tilting angles. The smaller the activity

ratio the more ‘north-east’ the region has to be.

These considerations may seem academic but we shall come back to them in Chapter

5, where they have practical implications to the tuning of reverse activation strength.

The Significance of Activity Ratio

One of the direct consequences of ramped binarisation procedure is that activity ratio

of patterns on each layer, on the intermediate layer in particular, naturally becomes an

integral part of learning on binary networks. This is interesting in view of Section 6.5

where the significance of (low) activity ratio in efficient cortical representations will

be discussed. By setting the strength of ramping, the activity ratios on a given layer

may be fixed at any desired level (without weight changes). It is particularly

interesting to consider the impact of activity ratio of internal representations on

learning performance.

More detailed analysis in Section 4.3.4 reveals that activity ratio affects the potential

performance of RA algorithm also in a direct way, independent from efficient

representation considerations.

58

Generalised Competitive Learning

Ramped binarisation, pushed to the extreme with only one 'on' cell, produces the

competitive learning situation, for which the ability to extract features contained in the

inputs without supervision is described in Section 3.3. Thus the RA learning

algorithm with ramped binarisation is a form of ‘n-bit’ competitive learning with

supervision; however, the supervision is less specific than in other supervised

algorithms, since the teaching signals are not in the form of specific output errors, but

are the required outputs themselves. To distinguish our situation from the usual

competitive learning, or from the usual supervised learning, one may call it n-bit

competitive learning with constraints (as opposed to 'with supervision).

4,2.4 Random Tuning of Reverse Activation Strength

The RA algorithm involves the superposition of input and reverse activation with a

weighting factor, the reverse activation strength \\f. The problem of how to determine

the appropriate vj/ is important here. See Chapter 5 and 6 (Fig. 5.8, 5.14 and 6.1 in

particular) for simulations showing the proposed solutions perform in practice. Some

information from these simulations is introduced into the discussion here, because it

has led to development of the strategy of random tuning.

To monitor the progress of training, it is common to plot the number of correct

mappings achieved at the end of each epoch against the number of training epochs that

have been carried out. Typically, the performance level rises relatively quickly before

flattening out to approach an asymptotic level.

For the RA algorithm with a fixed \\f value (‘fixed-\|/ RA’) throughout learning, the

observed learning curve approaches its asymptotic level very quickly. Further, it is

59

found that for bad \\f values, learning performance settles into its asymptotic level

much quicker than the performance of more successful trials (see for example Fig.

5.4).

For good \\f values, the resulting small net weight changes in the latter stage of training

simply reflect the fact that most of the mappings are correctly achieved so that

modifications only take place rarely. However, in the case of bad \\f values, there is

certainly no shortage of opportunities for weights to change. Yet, when net weight

changes at the end of each epoch are recorded, they are found to be declining quickly

to very nearly 0, corresponding to performance settling into its asymptotic state. The

appropriate conclusion to be drawn here is that for bad y/ values, the modifications

tend to cancel each other out, much more so than for good Xf/ values (see for example

Fig. 6.1).

This suggests that if v|/ is allowed to fluctuate randomly, then those modifications that

result from inappropriate y values will tend to cancel each other, while those that

result from good \\j values will add up and generally move in beneficial directions.

This bias will enable the network to learn positively over time, on average. This

somewhat speculative conjecture is vindicated in simulations. The quality of learning

is surprisingly good, comparable or better than the best of fixed-v|/ RA training in some

cases. This version of RA shall be referred to as random-\|/ RA, which is detailed in

Chapter 5.

Section 4.3 The Reverse Weight Matrix

This section considers in more detail a crucial aspect of the RA algorithm, the

backward connection matrix from the output to the intermediate layer. This issue is

60

self-contained and relates to the H and O layers only. That is, it is intrinsically a 2-

layer problem.

4.3.1 Identification of the Ideal Reverse Weight Matrix

Let Po be any pattern on the output layer. Since the output layer has Nq cells, P q

belongs to the No-dimensional real vector space. In general, one assumes that Po is

generated according to some process described by a probability density distribution P

over the vector space. This assumption covers the situations where Po is a Gaussian

vector, or where Po is always a binary vector, etc. Throughout the rest of the Chapter,

let us assume that the distribution P is uniform.

Recall (Eq. 4 . 2) and the associated requirements for the backward matrix W o h - One

may place optimisation criteria on this to make the requirements more concrete.

With respect to a given binarization mechanism B in the network, the

backward matrix is required to be such that the expectation calculated with

respect to P

E{d(Po, Po) } (Eq. 4.6)

is adequately small, where, in matrix-vector notation,

P q = Bo(WhoBh(WohPo)), (Eq. 4.7)

and d (,) is some distance (i.e. error) measure for binary patterns.

Let us clarify the above with the following diagram.

61

H 1 a y e r 0 1 a y e r H l a y e r

■
I W 0 H

1 ■
I w H 0

o l a y e r

S t e p 1 S t e p

Figure 4.3 The defining property of the reverse connection matrix Woh* Given any binary pattern
on the output layer, drawn from some probability distribution P, the matrix Wqh feeds it backwards to
produce a binary pattern Pĥ Bh(WohPo) on the H layer; this is then fed forwards by the matrix Who to
produce a binary pattern Pq*= Bo(WhoPh) on the O layer. The matrix Wqh is such that the average
distance between Pq* and Pq is small. With the appropriate choice of distance, this property should
imply that the average H=> O weight modification required to evoke pattern Pq from pattern Ph, which
is computed by the backward connection matrix Wqh, is small.

Evidently, the distance measure ,) is the entity through which one ultimately

expresses precisely what one means by the ‘effectiveness’ of an H cell (in producing

certain pattern ? o) , which determines what the reverse weight matrix W qh should be.

The distance natural to the present situation is bit error, that is,

^ (P o , P o > L |P o (i)-P o \i) |,

because given that the synaptic modification rule is perceptron, it reflects the amount

of H=>0 weight modifications required in order to produce pattern Po from pattern

P h= B h(W qhPo) •

How does one find a reverse matrix W qh that satisfies the above? It may be instructive

to note that the required reverse matrix by its definition above performs an inversion

operation; the problem corresponds formally to the so called inverse problem, which is

involved in modelling brain functions such as vision and sensorimotor control. Let us

examine its relevance to the present situation.

62

4.3,2 Standard Inverse Problems: Inverse Optics, Inverse Models

In the context of artificial vision (Kawato et. a l 1993), the desired outputs (patterns on

the O layer of Figure 4.3) may be the equivalent of the input images. The H layer

patterns correspond to the internal representations of the visual scene, in terms of, for

instance, lines, edges, colour and so on; the H layer plays the role of the visual cortical

areas. It is stated that visual recall (in this artificial model) is a forward optical

problem: it constructs something similar to a low-level ‘retinal’ pattern P q , from its

internal representation ?h bearing more relation to the outside world. The forward

matrix W h o then is the manifestation of a model of the forward optics. The earlier

visual pathway I=>H in this model, performs an inverse transform {inverse optics),

which turns a retinal visual image ?o into an internal representation ?h.

In the context of motor control, cf. (Jordan, 1990), the O layer patterns represent the

actual movement required (expressed in task coordinates such as speed, joint angles,

reach and so on), while the H layer patterns represent firing patterns of motor neurons.

Each firing pattern ?h is transformed forwardly into movements by a known map such

as the forward matrix Who- However, the central motor control must do the opposite:

it turns a desired movement into firing patterns. That is, it performs the inverse

transform that produces the appropriate firing pattern ?h from a desired movement

represented by pattern ?o; this is called an inverse model.

In either of the contexts above, at the simplest level, one usually assumes that the cells

in each layer have continuous outputs and that the problem is continuously

differentiable and approximately linear. The upshot is that one ends up with the

demand that the backward weight matrix W qh must be such that

WhoWoh^I, (Eq. 4.8)

63

where 1 is the unit NqxNq matrix. This is so that patterns originating on the O layer

can be reproduced: in the context of vision, the reconstruction of the image from its

internal representation; in the context of motor control, the intended movements (on

the O layer in terms of task coordinates) resulting from ‘motor neuron’ firing patterns

(H layer).

This equation amounts to No^ linear equations with NhxNq unknowns and NhxNq

coefficients from the known matrix W h o -

In the motor control case, one usually has N q < N h because the O patterns, which

represent movements, come from a space of a much lower dimension than the space of

firing patterns; in other words, many different firing patterns may achieve the same

desired motor task. In this case, infinitely many matrices W q h may exactly solve (Eq.

4.8); one may write

W o h - W ho V ,

where subscript ‘R’ indicates that the ‘inverse’ is only valid if it multiplies on the right

of W h o -

In the inverse optics case, it is usually assumed that N q > N h because ‘retinal’ images

are supposed to be reduced dimensionally (at least in the artificial setting), i.e., to be

more efficiently represented by lower dimensional patterns on H. It is obvious that

(Eq. 4.8) has no exact solution in this case. For technical reasons, the column vectors

of the forward matrix W h o are made linearly independent, which is always possible

without changing any essential aspect of the underlying problem.

The usual practice is then to choose a distance (error) measure <i(,) on the space of

image patterns P o , and seeks an ‘optimal’ solution that minimises the expectation

64

E { (/ (P o , P o)}, where F q = W h q W q h P q . The most common choice of distance ,) is

the Euclidean distance, that is, one seeks to minimise the average mean square error.

Let us assume that the probability density distribution of the images P q is uniform, for

simplicity. The optimal solution is then given by

W q h —(W h o ^ W h o) ̂ W h o ^; (Eq. 4.9)

This is the pseudoinverse solution: the backward matrix W qh is the pseudoinverse

W ho ̂ of the forward matrix W h o .

Our reverse matrix problem differs from the two standard cases above in some

important respects. The expectation (Eq. 4.6) contains the non-linearizable

binarisation operation B, and is calculated over binary patterns only.

Another important problem associated with the linear continuous solutions is that they

cannot be computed by local operations (not to mention that the solutions must be

computed differently according to whether Nh is greater or smaller than No). The

backward matrix must track any changes in the forward matrix in order to continue to

compute adequately the effectiveness of each H cell, i.e. to maintain the (pseudo)

inverse relation. If one accepts the linear continuous solutions, the backward matrix

modification A W qh required is determined by solving

(A W ho) W qh + W no(A W ou)—0 -

This is merely a set of linear simultaneous equations with unknowns A W oh (i , j),

which in general depends on every element of (A W ho) W oh and Won- It cannot be

computed via local synaptic rules.

65

4.3,3 The Transpose as a Possible Inverse Operator

Due to the above difficulties regarding the inversion problem, one is forced to seek

alternative reverse matrices. Recall that symmetric connection weights are used in

autoassociative memories. In particular, the transpose has been used to perform

inversion type tasks for binary patterns in the so-called bi-directional associative

memory, BAM, a bi-directionally connected 2-layer perceptron-type network (Kosko,

1988, Baum et. al. 1988). The transpose in this context is used to retrieve a given set

of binary patterns that have been transformed by a forward matrix. It is proved that

the dynamics on this 2-layer network, where the feed-backward connection matrix is

the transpose of the feed-forward one, is always stable in that it always settles into a

stationary state, in which the transpose is evidently an inversion operator.

One advantage for choosing the transpose as the reverse matrix for RA is that the

algorithm can be generalised readily to a multi-layer setting (as in Section 4.4.)

Another advantage is that local learning rule can be used to compute the transpose

during learning, provided that the reverse matrix is the transpose initially. Apply

Gardner-Medwin’s interpretation of the perceptron learning rule as a 2-stage Hebb

learning: one of anti-learning (forgetting) when the internally generated output is on,

and one of positive learning when the target output is on. Then since the same Hebb

rule applies to both the forward and backward connections one has.

H cell in the selected
representation on H

0 cell in the output
pattern Po (or Po^

Forward weight
change

Backward weight
change

on on + (-) + (-)
on off 0(0) 0(0)
off on 0(0) 0(0)
off off 0(0) 0(0)

Table 4.1. Two-stage Hebb learning results in symmetric weight changes. Pq denotes the target

output, which is imposed on O layer in the positive Hebb learning stage. Po ̂ denotes the current,

internally generated output, which is imposed during the negative Hebb learning stage.

66

Thus if the two weight matrices start off as the transpose of each other, perceptron

training will preserve this relation. This assumes that the weight of influence of H-

cells on 0-cells is the same as, or proportional to, that of 0-cells on H-cells.

Although, the transpose performs ‘dynamic inversion’ in BAM, it is not known how

good it is in performing ‘one-shot’ inverse operations.

4,3.4 Weight Statistics, Activity Ratios and Inversion by Transpose

In the following, an investigation on inversion by the transpose matrix is presented.

The conclusions are the result of certain characteristics on the weight statistics. We

shall argue on intuitive grounds only that these characteristics tend to hold.

As a matter of consistency, the type of weight statistics suitable for a learning

algorithm should be exactly the same statistics that are produced by such an algorithm

if it is applied for a long time in past learning. Recall that the RA algorithm uses the

ordinary perceptron rule. We examine what statistics the perceptron rule will produce.

In what follows, for simplicity, any probability distribution involved will be assumed

to have zero mean. This makes no consequential difference because on a binary

network with ramped binarisation, the absolute value of weights has no effect on the

network’s behaviour. It is only the differences that count. One can always shift the

origin to make the mean of distributions zero for any particular and therefore all

connections (since no one connection should be special).

It is shown in the following that the perceptron learning rule and the activity ratio

constraint imply that 1) any pair of out-going connections from a common H-cell to

the O layer tends to have negatively correlated weights, and that 2) the incoming

67

connections onto any particular O cell tend to be statistically independent. The basis

of argument is the central limit theorem, see e.g. (Feller, 1966) and properties of

Gaussian (i.e. normal) distributions.

Weights Are Gaussian Random Variables

Let us firstly examine the statistics of the forward matrix W h o - Let the present time be

n, and the present forward matrix be WHo(n). One has

Who(h)= Who(O) AWho(s),

where Who(O) is the initial matrix, AWho(s) is the modification at time s=l,2,...n. At

any entry WHo(iJ)(n) of the matrix, one evidently has

W n o (ij)(n)= W H o (i ,j) (0) +S", A W H o (i ,j) (s) . (Eq. 4.10)

That is, any entry WHo(ij)(n) is a sum of random numbers (given a long period of

unspecified learning expericence). One can always define time s, which merely

registers the number of opportunities (or 'turns') for the weight WHo(iJ) to be

modified, such that modifications AWHo(i,j)(s) and A W h o (î j)(s ’), s?^:s% are statistically

independent. In other words, one can always lump successive modifications together

and count them as one modification so that the Tumps’ are statistically independent.

‘Lumping’ is the most common technique to achieve statistical independence, cf.

(Feller, 1966). It is also consistent to assume that the initial value WHo(ij)(0) is

statistically independent to any subsequent modifications AWHo(iJ)(s).

Under the above assumptions, provided that past learning tasks can be modelled by

some stochastic process obeying very general technical conditions (such as the

68

existence of a second moment), one can apply the well known central limit theorem,

which says that such a sum E"i AWHo(iJ)(s) is a Gaussian random variable if n is

large enough. The approach to Gaussian distribution is usually very fast as n increases

(Feller, 1966). For instance, for modifications AWHo(ij)(s) where s= l,...,n that are

drawn from a uniform distribution, n=10 is sufficient for the sum to de described

accurately by a normal distribution.

One can then conclude that

the present value Who(î j)(n) o f any entry o f the forward matrix can be

modelled as a Gaussian random variable for reasonably large n.

In the absence of any other assumption about the nature of past learning tasks, it is

inevitable as well as convenient to assume that all of the entries WHo(iJ)(n) of matrix

WHo(n) are generated from a common Gaussian distribution; let us also shift the

distribution so as to have zero mean.

Non-positive Correlation of Outgoing Weights From the Same H Cell

Note that we have not yet made any assumptions about the correlation amongst the

matrix entries. Information about correlation may be obtained by looking at the

learning process more closely. We first look at the pair of out-going weights

WHo(ij)(n) and WHo(k,j)(n) from a common H cell j.

69

WHo(i,j)(s-1)fAWHo(i,j)(s)

WHo(k, j)(s-1)+AWHo(k, j)(s)

Figure 4.3a

Past increment AWHo(ij)(s) and AWHo(k,j)(s) may be regarded as having identical

statistics (not necessarily Gaussian) and 0 means. Consider the pair as a random

vector X=(AWHo(ij), AWHo(k,j)). Then the above amounts to saying that X, at any

time, must be generated from a distribution P(Xi, X2) that has 0 mean, and that is

symmetric in X] and X2 .

In this case, its covariance matrix can be written in the form of

(pa^ 1
I pa^) (Eq. 4.11a)

where is the variance, and |p| < 1 because of the equation

fdXidX2 (X]-X2)̂ P(X], X2)>0 for any probability density function P.

Applying the central limit theorem again, one concludes that

any pair (W H o (i,j) (n) , W H o (k ,j) (n)) o f out-going weights from a

common Yi-cell j, as the sum o f a large number o f random vectors X

(not necessarily Gaussian) with covariant matrix (Eq. 4.11a), is a

bivariate Gaussian variable with covariance matrix (Eq. 4.11a), where

70

G is redefined to absorb a constant factor n (directly corresponding to

the number o f independent weight modifications made in the past).

Next, let us argue that the correlation coefficient p is non-positive if weights have

been modified by a perceptron-type rule, assuming 1) fixed activity ratio that is less

than 0.5; 2) the independence of output cell activity otherwise, excluding the non­

independence originated fi*om the constant activity ratio assumption and; 3)

independence of errors.

There are only 2 possible occasions out of 16 (including the 4 in which no errors occur

on the two selected output cells) in which both modifications AWHo(i,j) and

AWHo(kj) take the same sign. The following table lists the signs of corrections in

contingencies where either AWnoCij) or AWHo(kj) is non-zero.

Sign o f correction if require i, k on require i, k off require i on, k off require i off, k on
l.only cell i is wrong + 0 -0 + 0 -0
2.only cell k is wrong 0 + 0 - 0 - 0+
2. both are wrong + + - - + - - +

Table 4.2

Note that only the 4 contingencies (++), (--), (+-) and (-+) are relevant to the

correlation of between AWHo(iJ) and A W H o (k ,j) .

Assuming independence of network outputs and target outputs during past learning,

then the two components of the Gaussian vector (A W H o (i,j) , A W H o (k ,j) are

independent of each other as the correlation between them are calculated to be zero.

Further, the correlation is negative for small networks. Due to the special condition

the total number of ‘on’ cells in outputs is fixed, the probability of a cell being ‘on’ is

not strictly independent of other cells. In fact, contingencies (++ or —) are forced to be

less frequent than contingencies (+- or -+), given activity ratios less than 0.5. This

effect is only significant for small networks. For large networks, as No goes to

71

infinity, the effect diminishes: the correlation approaches zero from below zero. (Note

if there is always only one ‘on’ cell in the outputs, then contingencies (++) or (--) do

not occur, implying a negative correlation).

In summary.

The correlation between A W H o (i,j) and A W H o (k ,j) is non­

positive under the assumed conditions. The parameter p in

(Eq. 4.11a) is non-positive, thus the weights W H o (i j) (n) and

W H o (k ,j) (n) are also non-positively correlated. The

covariance matrix (Eq. 4.11a) is such that

-Kp<0. (Eq. 4.11b)

Independence of Incoming Weights To the Same O Cell

Next, let us look at any row vector X(n) of the forward matrix WHo(n) at time n, i.e.

the incoming weights of a particular O cell. Let Xj(n) = W H o (i ,j) (n) , J = 1 ,2 , . . .N h , with i

fixed:

W ho(î, 1)(s-1)+AWH0(i, 1)(s)

W hoO, j)(s-1)+AWHo(i, j)(s)

F ig u re 4 .3 b

72

If the weights have been modified by perceptron-type rules, one notices that any

modification AX(s) to the row vector has a constant length (as a vector) proportional

to the activity ratio an of the H layer. Further, assuming that all these connection

weights are equally likely to be wrong and modified, the modification vector AX must

have an isotropic distribution in the Nh dimensional space. Under these two

conditions, the central limit theorem enables one to conclude that

The row vector X(n) o f the forward matrix Who(h), i.e. the incoming weights

onto any particular O cell, is a '^^-dimensional Gaussian vector with a

covariance matrix C=a^ 1, where 1 is the unit NyxNy matrix; in particular,

this implies that any two incoming weights o f a common O cell are

statistically independent.

Formalising the Inversion Problem in the Context of Gaussian Weights

and Fixed Activity Ratios

Let the binarisation procedure B in (Eq. 4.7) be the ramped binarisation procedure

(Section 4.2.3). Let us describe what this amounts to in case of a transpose matrix.

Assume that the activity ratio on H layer is Œh with total cell number Nh and the

activity ration on O layer, ao- Then using the transpose, for any output Pq, (Eq. 4.7)

reads

?o (0 = Bo(2̂jWho (A j)Bn (SkWno (k, j)Po (k))) , /=1,2,.. .No

Note that all Bh does is that it picks out the top-NeaH numbers out of Nh numbers,

each of which is the sum of Noao number of weights (since there are only Noao ‘on’

output cells in the output patterns. The operator Bq does likewise.

73

It is possible to calculate the probability of the ‘recovered’ pattern Pq being the same

as the original P q . Recall the statistical structure of the weights in Who: each weight

WHo(k, j) is a Gaussian random variable independently drawn from the same Gaussian

distribution of mean zero and variance Let us ignore the possible negative

correlation between weights in the same column (i.e. outgoing weights from a

common H cell). It will be clear that any negative correlation only increases the

probability. Thus, in the assumption of large Nh and No, any cell that survives the

binarisation operator must have its activation in the top-an (or top-ao) portion of the

relevant Gaussian distribution.

The problem of calculating the ‘recovery’ probability under the large number

assumption thus translates into the following integration exercise on Gaussian

distributions:

Given NhŒh sets of Noao numbers

{w(k,j)| k= l,2 ,..., NoOo}j, j= l,2 ,..., NhŒh

independently drawn from the Gaussian distribution G(0, a^)

such that the sum Skw(k,j) for each set belongs to the top-CLw

portion o f the Gaussian distribution G(0, Noaocr^), what is the

probability p{ao , an , cĵ) for the sum Ejw(k,j) to be in the

top-ao portion o f the Gaussian distribution G(0, Nnana^) for

k=l,2,...,Noao ?

The solutionp{ao , an , a^) to this problem gives the probability of all the ‘on’-0-cells

in Po being ‘on’ in Po*. The bigger this probability the better the inversion. Note that

although the sets are independent from each other, the numbers within each set are not

74

independent by virtue of the condition imposed on their sum even though the numbers

are otherwise drawn independently.

While the problem is well-defined, the calculation for p{ao , olh , a^) is highly

complex and the result cannot be expressed analytically. Let us simply list some

qualitative but precise properties in simple situations.

With a single active Cell on both the H and O Layers

The problem simplifies to one of calculating the probability of any number, randomly

drawn from the top-an portion of G(0,a^), being also in the top-ao portion of G(0,a^).

It is clear that as long as an^ ao, the probability is 1. That is, with a single ‘on’-cell,

and for large H and O layers, the transpose performs accurate inversion with

probability 1. Note that for finite (small) cell numbers, these conclusions cease to be

strict, since instead of considering the top a fraction of each probability distribution,

what is relevant is the top a fraction of a set of samples firom this distribution.

1) the probability will be less than 1 (since being top amongst a sample of say, 10,

leaves finite chance for being outside the 10%- or even the 20%-percentile of the

population);

2) the smaller the ratio an/ao, the higher the probability of perfect inversion since the

chances of being top amongst a sample of say, N h= 2 0 , implies a good chance of

being top amongst a sample of say, N q= 3 .

3) other factors being equal, any pair-wise negative correlation that exists amongst

outgoing weights from common H cells increases the probability of perfect

inversion as it implies that the peers, against which comparisons are made, are

drawn from G(0,a^) randomly but with a negative bias.

75

With a single active Cell on just the O Layer

This setting corresponds to the tasks simulated in Chapter 5. The problem simplifies

to calculating the probability of the sum of Nnan numbers, each randomly drawn from

the top-an portion of G(0,a^), being in the top-ao portion of the distribution G(0,

NnOtHa^).

Note that G(0, Nnana^) can be a much wider distribution than G(0,a^). As a result, it

is necessary to have a n « ao, in order for the probability to approach 1. For finite cell

numbers, given the properties of Gaussian distributions, one has

1) the smaller the ratio an/ao, the higher the probability of perfect inversion.

2) other factors being equal, any pair-wise negative correlation that exists amongst

outgoing weights from common H cells enhances the probability of perfect

inversion as it implies that peers, against which the comparisons are made, are the

sums of numbers drawn from G(0,a^) with a negative bias.

Note that the above implies that, in the 1-‘on’-output-cell setting, the smaller the H-

layer activity ratio, the better the transpose performs inversion.

It can be conjectured that in general, the smaller the H-layer activity ratio relative to

the 0-layer activity ratio, the better the quality of inversion by the transpose.

76

4.3,5 Comments on Initial Weight Statistics and Activity Ratio Setting

for RA learning

For the RA algorithm to function, the network setting must be such that it allows

‘adequate’ inversion by the reverse matrix. Otherwise the reverse activation received

by each H cell will contain little information about its effectiveness in evoking the

target output pattern; the basis of reverse activation becomes invalid. Having chosen

the transpose as the reverse matrix, it is important that the network parameters allow

‘adequate’ inversion by the transpose. It is impossible to define what level of accuracy

is ‘adequate’ since there is as yet a logical gap between the ability to invert and the

ability for the RA algorithm to construct ‘good’ representation to learn. But it is

clearly relevant.

From the last section, it can be seen that the adequacy, in case of the transpose, is

partly determined by the weight statistics. Because of this and our choice of the

transpose, certain restrictions on the initial weight statistics must be imposed. For

instance. Section 4.3.4 implies that positive correlation between outgoing weights

from common H cells is highly undesirable. In one of the tasks described in Chapter

5, initial weights are generated from mock-leaming random mapping tasks using

perceptron rules, thereby producing the desired statistics described in the last section.

It is not entirely clear whether the above mock-leaming preparation is essential for

RA-with transpose. However, Section 4.3.4 does suggest that independence amongst

weights may be good enough. This is indeed used also in simulation, for which RA-

with-transpose seems to function ‘normally’.

Another perhaps more important factor in determining the adequacy of the transpose is

the activity ratio of the internal representations in relation to that of the output

patterns. In general, internal representations with small activity ratio (i.e. sparse

representations) seem to be desirable, as far as inversion is concerned.

77

However, it is not clear how the ability of the transpose to invert accurately affects

overall learning performance (using the RA algorithm). Further, activity ratio must

affect learning in other ways. For instance, if the activity ratio is too low, there may

not be enough representational capacity on the H layer to solve a given problem (even

though the transpose can invert perfectly). We shall come back to this when

discussing simulation results.

Section 4.4 Reverse Activation Algorithm in Multi-layer Networks

Consider the multi-layer hierarchically arranged autoassociative network introduced in

Section 3.4.2. Label the input layer as the 1st layer and the output layer as the Nth,

with intermediate layer labelled accordingly. Denote this network by 1=>2<=>...<=>N.

Recall that each layer can function independently as an autoassociative memory, the

properties of which correspond well with short-term memory. In addition, there are

forward and backward connections linking every unit in one layer with every unit in

neighbouring layers (only forward connections from the input layer), usually

modelling long-term memory. As it has been assumed that the these three classes of

connections can function independently, let us ignore the internal autoassociative

weights, and concentrate on the difficulties presented by multiple hidden layers.

Let us continue to assume that the inter-layer connections are symmetric: forward

weights equal backward weights. One can generalise the RA algorithm to such a

multi-layer network functioning as a feedforward memory. The key part of the

algorithm is how to construct improved internal representational patterns on each

intermediate layer.

This involves superimposing the activation from the input and output pattern via

forward and backward connections (with a certain chosen reverse activation strength).

78

For the simple 3-layer net this operation is straightforward. With multiple

intermediate layers, it is more complicated as no layer is directly connected to both the

input and the output layer. When the input and output pattern are imposed on their

respective layer, what pattern is selected (after ramped binarisation) on layer K

depends on what patterns are selected on layer (K-1) and layer (K+1), which in turn

depend on what patterns are selected on layer K and, respectively, layer K-2 and layer

K+2. That is, one has a dynamic situation.

4.4.1 Using Stationary States to Construct Internal Representations

It may that the dynamics of a multi-layer network can settle into a stationary state so

that the patterns are mutually reinforcing and thus stable. The internal patterns so

produced when the network is in a stationary state (while the input and the output

layer are clamped) are the improved internal representations layer by layer. They can

then be implemented via perceptron rules. The above is then the key of the

generalised RA algorithm in a multi-intemal-layer setting.

It is crucial that the inter-layer dynamics, established when the input and output layers

are clamped, is such that there are always stationary states (not just cycles) in which to

settle. Otherwise one has no natural basis to favour one set of internal representations

over any other. This is a very stringent requirement. Fortunately, this requirement can

be met, thanks to the assumption that the backward and forward connections are

symmetric.

One can prove this assertion by employing standard techniques. In (Hopfield,1982), it

is proven that the dynamics of a network of symmetrically connected 0-threshold

binary neurons always admits stationary states; in (Kosko, 1988), it is proven that any

real connection weight matrix admits stationary states when it is used as a bi­

directional associative memory, so called BAM theory. In fact Kosko’s result follows

79

from Hopfield’s result since BAM is a special case of Hopfield net. The present

assertion regarding dynamics on the partially clamped network l=^2o...<=>N follows

similarly (“partially clamped” since the input and output patterns are fixed on the

input-output layers). However, the present context is sufficiently different to justify a

more detailed explanation. The following gives the important steps in the proof.

4.4.2 Proof that Stationary States Always Exist on the Given Network

Given the network 1=>2<=>...<=>N, let the weight matrices connecting layer K to K+1

be denoted as the corresponding backward connection matrix is thus

^K+i_K^^^K_K+i^T that the dynamics established when the input and the output

patterns are imposed is governed by the following energy function, in vector notations,

E (Po, P,; W, Y) = (-1/2) (Pz’' W '-¥ , + v|/ p / W' -̂'-'^Pn-i)

(-1 /2) Z ' (V)'" '' { (P / Pk-i) -K (vi/)(Pk’'(W'^-’'^')’' Pk+i)} (Eq. 4.12)

where Pk is the pattern on layer K, treated as vectors, with ? o=Pn and Pj=P] fixed,

being the input and output patterns, and y is a positive constant, the reverse activation

strength.

With respect to any cell in any hidden layer (K=2,...,N-1), the derivative of this energy

function against the activity of that cell is proportional to the combined activation that

it receives from the two neighbouring layers with a reverse activation strength \\i; the

proportionality being In discrete time, the pattern on each layer is updated

synchronously or asynchronously in turn according to the ramped binarisation

updating rule. Note that in such an update, the state of a cell is changed (i.e. turned

‘on’ from ‘o ff or ‘o ff from ‘on’) iff. the resulting value for the energy function above

80

is strictly lowered. That is, the energy function is strictly decreasing along the

dynamic flow.

Each term in the energy function is bounded below, so the energy function is also

bounded below. Further, this energy function is well-defined, as it is symmetric with

respect to P k and ? k + i for all K=2,...,N-1 (evident by taking the transpose of each

term, which should leave it unchanged since it is merely a real number). These

conditions ensure that local minima exist for the energy function (Eq. 4.12). Since the

dynamics strictly reduces the energy function, the system will settle into at least a local

minimum eventually, which implies that no further changes in the firing patterns will

result from future updates. The convergence of such dynamics, essentially a Hopfield

net, is usually swift; see examples in (Amit, 1989).

To summarise, one concludes that

any multilayer, bi-directionally connected network

1 =>2<̂ ...<=>N with real connection matrices admits

stationary states when the input and the output patterns are

imposed on the respective layers. The generalised RA

algorithm then selects the patterns in the stationary states so

achieved as the representational patterns on each internal

layer. These are then implemented in the feedforward map

via the simple perceptron rule layer by layer.

In the energy function (Eq. 4.12), a universal reverse activation strength has been

chosen. This is not strictly necessary. It is possible to have different strengths for

different pairs of layers. In which case, one can replace, in (Eq. 4.12), \j/ by i | / k - i ,

by Y o Y i v - Y k - 2 , and by YoYi,... Y n - 2 , where K=2,..., N-1, and Y k - i is the reverse

activation strength chosen for weights between layer K and K+1.

81

These parameters, as in the original RA, control ‘how the task of learning will be

shared amongst the forward matrices’. A large \ | /k - i implies more ‘burden’ on

connections coming into layer K and less on connections from layer K to K+1.

4.4,3 Interpretation of Generalised RA

When a pair of input and output patterns are imposed, the ensued dynamics on the

multi-layer net can be seen as an automatic search for a pattern configuration in which

the representational pattern on every layer is consistent with the activation that it

receives from its neighbouring layers, which is ultimately determined by the input and

the output pattern. If such patterns are chosen as the target internal representations,

overall weight modifications required to implement them in the forward mapping (by

changing the forward weights layer by layer) are expected to be small since they are

already mutually reinforcing. Note that in the 3-layer setting, the dynamic selection

process is trivial as there is no dynamics in the 3-layer net when the I and O layers are

clamped.

It should be interesting to find out how the generalised RA would work in multi-layer

simulations, though this work has not been carried out for the thesis. Immediately,

one can see that the technique of randomly tuning the reverse activation strengths (see

Section 4.2.4) is particularly relevant and perhaps essential to the generalised RA

algorithm due to the possibility of having numerous reverse activation strength

parameters.

82

Chapter 5 Simulation of Reverse Activation Algorithm

It is nearly impossible to work out analytically how the reverse activation (RA)

algorithm would perform in practice. In this Chapter, simulations are carried out for

3-layer networks using a matrix of reverse weights that is the transpose of the forward

weights (Section 4 .3 .3) . In other words, reverse weights (W q h) are equal to the

forward weights (W ho) connecting the same pairs of cells.

Section 5.1 Methodology

The purpose of these simulations is firstly to obtain information about the properties

of the RA algorithm itself, and secondly to make comparisons with standard

algorithms.

Standard three-layer binary networks are employed. The number of cells in the I and

O layers is fixed by the chosen learning task. Training is carried out for a selection of

initial conditions (independently generated initial weights), under each combination of

tuneable parameters. Hence if there are Xini initial conditions and Xcom sample

combinations of tuneable parameters, one has XinjxXcom trials in all. Each trial

consists of a fixed number of training epochs; it is continued according to the criterion

that it should be prolonged enough for the network performance to reach its

asymptotic level (so that further training will not yield any new information). Data

associated with learning is recorded at the end of each epoch in each trial.

As the data will reveal, performance can crucially depend on the choice of various

learning parameters. This is undesirable in a working system, so an alternative

procedure is explored in Section 4.2.4, allowing the various parameters to take random

83

values throughout learning. These simulations are repeated even for the same initial

conditions because each trial involves random processes.

5.1.1 Sampling Tuneable Par am eters

There are 3 tuneable parameters in the RA simulation: the step-size (i.e. unit weight

change) 1, the reverse activation strength \\f, and the H layer activity ratio an-

Step-size and updating procedure

The RA algorithm aims to find a representation that would allow learning with

minimal disturbance to previous learning and the existing weights (4.2.1). It does not

introduce new synaptic learning rules. Instead, it is merely a procedure for creating

improved internal representations; once a representation is determined, connection

weights are modified using perceptron rules till the correct output is produced.

Given the above background, the most natural updating procedure for learning with

RA is total-on-line (3.1.2), i.e. the most recent item is always learned with perfect

accuracy and thus can be recalled perfectly before the next presentation. This also

seems more biologically plausible than either batch or on-line updating, which do not

learn any single input-output mapping until after the whole training set is repeated,

often many times over.

There is an added advantage to total-on-line updating. The step-size X is involved in

RA only because RA uses the standard perceptron rule. Since the general effect of X

on simple and multi-layer perceptron learning is well-known (cf. Section 3.1 and 3.2),

84

in order to concentrate on the new aspects of RA learning, it is necessary to isolate and

minimise the effect o f l . To achieve this, total-on-line learning procedure was ideal.

In this procedure, the network is ‘forced’ to leam the most recent item perfectly.

Provided that the network is not too small (so that learning even one mapping is

difficult) and using the perceptron rule, the weight changes that achieve the new

mapping are restricted to those involving the active I and O cells and are a function of

the local landscape of the error surface, relatively independent of the step-size

involved. In other words, perfect learning of the new input-output mapping tends to

lead to the same weight configurations whatever the step-size: if the step-size is very

small, then more iterations may be required; if it is bigger, then those configurations

can be achieved with less iterations. The limit is that excessively large step changes

may make even learning one mapping unstable. Thus the effect of step-size on

performance is less with the total-on-line updating procedure, compared to the on-line

or batch alternative. This leaves one free to explore the effects of activation strength \\i

and the H layer activity ratio Œh, the two new elements introduced by RA.

The main RA simulations are thus done with a fixed step-size, 0.005, small enough

given the initial weights. It is of course useful to know how RA might cope in other

updating procedures. This will be discussed in Chapter 6.

The Size and Activity ratio of the Hidden (H) Layer

The size Nh of the hidden layer, in this kind of studies, is usually chosen so that it is

not too big (or too small) as to make learning too easy (or too difficult respectively) to

the extent that different learning algorithms become indistinguishable in performance.

For any given learning task, there is probably no unique choice that achieves the above

balance perfectly and there is not any general method to determine what size the

85

hidden layer should be. It is mostly a matter of trial and error, combined with hind

sight. In other words, one carries out some preliminary simulation for a chosen size of

the hidden layer and see if learning is too easy or too difficult for the learning

algorithms concerned; when the full simulation data has been collected, one checks

again that the hidden layer used is ’reasonable'. As such there is always a degree of

subjectivity involved and the final data set may still be open to debate as to whether

the chosen size for the hidden layer is too easy or too difficult to the learning

algorithms being tested. The simulation carried out in this work is no exception in this

respect. (However for the second task, the mirror symmetry task, the hidden-layer size

is taken from what is in the literature directly.)

The activity ratio an is fixed on the H layer for the RA algorithm, so an exhaustive

sampling of Œh is possible, i.e. W=NH(%H ={1, 2, . . . N h } where W is the number of

active cells. However, one would expect the learning performance to be more

sensitive to activity ratio an when it is very low; as an becomes higher (towards 50%),

the change in performance will get progressively less. The real interest is in finding

out at what ratio peak performance can be achieved. In data collection, it is sufficient

to sample more at the lower end of activity ratio and progressively less as the ratio gets

bigger.

Reverse Activation Strength

The reverse activation strength vj/ (>0) is the most important parameter in the RA

algorithm in determining performance. What is a ‘fair’ sampling method for v}/? If

plotting a function by sampling its variables can be a guide, a reasonable definition of

fair sampling of a continuous parameter x on which a variable y depends continuously

is the following:

86

A fair sampling set {xj, j= l,2 ,.. is such that the behaviour o f the

dependent variable y changes in a ‘steady enough' manner

between sampled parameter values (such that no major turning

points are missed while no unnecessary time is spent on ‘f la t’

regions). In other words, ideally one has Ay^= y(xj+\)-y{xj) roughly

constant fo r all]=l,2,....

It is largely a matter of judgement how fair sampling might be done as it relies on

answering the question of how the dependent variable changes with the parameter to

be sampled, which is the object of the sampling exercise in the first place. In the

present situation, performance of the RA algorithm will only differ for two different

values of \y if they lead to different cells recruited in the representation. This means

that there is no point in sampling in such small steps that no change in the

representation results. Hence a reasonable procedure seems to be that the samples

should be spaced so as roughly to alter the representations by equal numbers of cells.

Note that for given prior experience (as reflected by initial weights) and a chosen

activity ratio a^, v|/ alone affects the new internal representation pattern for an input-

output pair. Changing the value of \y effects the changes in internal representation and

hence the changes in weights. As the activity ratio is fixed, the set of all possible

internal representations are all on the surface of a Nn-dimensional ball of radius W

(= N h o c h). Any change in internal representation amounts to a rotation. Thus one can

visualise the chosen internal representations rotating as \\f varies.

It is reasonable to expect that the smaller the difference between the chosen internal

representations the smaller the difference will be between the resulting weight

changes. Therefore a fair sampling set of vj/ must have the property that as one goes

from one sample value to the next, the internal representations constructed rotates in a

steady manner. Note that this does not mean that the sampling set for \\i has to be

87

uniform. For instance, the function arctan{\]^) does not vary steadily when \\j is

sampled uniformly.

The use of the function arctan to explain the above point is not accidental. From its

definition, \|/ is the negative o f the gradient of the tilted threshold line in the activation

scatter of H-cells; see Figure 4.2b and Figure 4.2c of Section 4.2 for example. Note

the tilting angle has a range of [0, -nil) as \\f has a range of [0, oo). Given an input-

output mapping to be learned, two different strengths Vj/i and v| /2 (two different tilting

angles) will result in identical weight changes unless there are H cells that fall into the

‘gap’ between the two tilted threshold lines on the activation scatter. This is because

only then will the resulting internal representation patterns differ for \\f\ and Yz- For

new learning, a scatter graph such as Fig. 4.2b shows little correlation (4.2.1), so with

appropriate scaling the number of cells lying between lines of different tilt is

approximately proportional to the angle between them (arctan(-Yi) - arctan(-Y2)). For

this reason, \\f values are generally sampled uniformly in arctan(-Y), corresponding to

uniformly spaced tilting angles. For each step increase in the sample values of \\f the

modified representation is likely to differ by a roughly constant number of cells, which

is likely to lead to steady changes in the resulting weight modifications and hence in

the behaviour of the network in training.

A rationale for random selection of \\f values from within their sampling set was put

forward earlier (4.2.2, 4.2.4), and this is employed in some of the simulations, with an

independent random choice each time the RA algorithm is used to create a modified

representation. A uniform probability distribution is employed over a set of values

ranged uniformly in arctan(Y), as described above.

88

5.L2 Preparations o f Initial Conditions

In testing a learning algorithm, the usual practice is to use independently generated

random numbers from a uniform distribution (over the interval [0, 1] for instance) as

initial weights. While this is also adequate for the RA algorithm, some comment is

due here because the theory behind the RA algorithm makes certain assumptions about

the statistics of weights in the network as detailed in Section 4.3.4

As explained, the reverse activation through symmetric backward connections conveys

useful information on whether an H cell should be on or off when any pair of forward

weights from the same H cell is negatively correlated or at least statistically

independent (Section 4.3.4). Two types of initial weights are set up for simulations.

The first type contains sets of randomly independently generated weights. There is

thus no correlation between the weights; call them 0-correlation initial conditions. The

second type consists of sets of weights, each of which is the result of mock learning of

a randomly generated I ^ H ^ O mapping task (consisting of 20 triples of input,

intermediate and output patterns). The perceptron rule is used to improve weights

between successive layers. The activity ratios of all the mock I, H and O patterns are

kept the same, on average, as for the actual learning task. This indeed produces the

weight statistics analysed in Section 4.3.4. Note that this rather elaborate setup for

generating initial weights is not unique. Various initialisation heuristics have also

been proposed for BP in the past; it is arguable that the type of mock-leaming

procedure used here might be beneficial for BP learning (Denoeux, T.; Lengelle, R.;

1993).

The typical size of the initial weights used in simulation was such that they are

suitable for BP algorithm. Recall the end of Section 3.2.2, for BP the initial weights

should fall roughly within three times the ratio between the typical length of the input

pattern (as a vector) and the square-root of the number of training patterns. For the

89

two tasks used in the simulations here, this bound is around 1.35 and 2.4 respectively.

For task 1, at least 97.5% of the initial weights fall within this range, and 100% for the

second task. The RA algorithm itself, with ramped binarisation, is not sensitive to

initial weight size.

Section 5.2 Data for Two Benchmark Learning Tasks

The algorithm is simulated on two well-known benchmark classification tasks. For

the first problem, we shall obtain systematic information on how performance depends

on Y and an- The issue of generalisation ability will be emphasised in the second

task.

5,2,1 CTDiscrimination Task

The task is to discriminate between binary patterns C and T in all translations and

orientations. A 6x5 grid was chosen as the input layer, and with four orientations 0,

7t/2, 71, 371/2, which is the usual practice (Rumelhart et. al. 1986). Each input pattern is

either a C- or a T-pattem with certain translation and orientation. The output pattern

consists of 2 units, one for C, and one for T. There are in all 124 input patterns, 62 C-

pattems and 62 T-pattems.

Figure 5.1. Input patterns of the CT problem. Represent both C and T with 5 on-units on a 6x5 grid,
except for 14 of the T-pattems where T is on the edge of the grid, and is represented by 4 on-units.
Note that there is never more than one letter pattern in the actual input patterns; the figure is for
illustration only. Combining orientation with translation, these are 62 C-pattems, and 62 T-pattems.

90

Since the algorithm involves activity ratio clamping, to give a decent range for the

activity ratio parameter a, the H-layer is allowed to have 20 units. Simulation results

show that this is a good number to work with (that is, learning is not made too easy or

too difficult) for both BP and RA.

To mimic past learning experience, and hence to reproduce the required statistics of

weights, 12 sets of initial weights were prepared by mock-leaming I ^ H O

mappings. For each set, there were 20 randomly generated triplet of input, hidden and

output patterns, using the perceptron mle to successive layers. All weights were set

randomly and independently at the outset with small values (comparable to the step-

size used in mock learnings) . The activity ratios of all the mock-I and O patterns

were set at 5/30 and 1/2 respectively, similar to the actual CT task, while the activity

ratio of the mock-H patterns ranged from 8/20 to 14/20. Note that the mock-leaming

input pattems amount to about 0.17% of all possible input pattems of activity ratio

5/30. The resulting statistics of the initial weights are illustrated in the following

charts.

W eights From H to OW eights to 02

Figure 5.2. Statistics of initial weights. A ll three charts are plotted using actual w eights in all the 12
sets o f initial w eights, w hich are the results o f m ock learning using sim ple perceptron rule, (a) is the
distribution o f values o f the observed w eights from H to O. (b) is the scatter where the coordinates o f
each point are the w eights from an H cell onto the two output cells, (c) is the scatter where the
coordinates o f each point are w eights onto one common output ce ll from arbitrary H -ce lls labelled H
a n d H ’.

91

It is also useful to plot the activation scatter as in Figure 4.2b&c. For the initial

weights used in the simulation, given the training set pattems, it takes the following

form.

Output Activation

Figure 5.3. Activation scatter of H-cells, superimposed for all training pairs, before learning.
T w o different reverse activation strengths, 0.3 (16.7 degrees) and 1 (45 degrees), are show n as the
tilting threshold lines. T he strong tendency o f vertical alignm ent above is an artefact o f the fact that
there are on ly tw o output cells w hich correspond to exclusive categories; the p o ssib le values o f reverse
activation o f each H ce ll are therefore lim ited to two.

For each initial condition, the network was trained with a particular combination of

reverse activation strength Y and activity ratio a on the H-layer (more conveniently

identified by the number of on-cells W on H-layer). The following set of

combinations is chosen:

{\y=0, 0.0875, 0H763, 02679, 03640, 0.4663, 03774, 02002, 03391, LOOOO,

1.1918,2.7478, 10*}

X

{W=NHa=l, 2, 3, 4, 6, 8, 10, 12, 14, 16, 19}. (Eq. 5.1)

92

The \\f values correspond to the tangent of tilting angles ranging from 0 to 50 at 5-

degree intervals, with the additional 70 and 90 degrees to provide evidence of

completeness of this sampling set. Thus there are 13x11=143 combinations for which

data is obtained. Performance, measured by the percentage of correct mappings was

generally asymptotic after 90 passes. Step-size was 0.005, compared with weight size

of the order of 1.

Typical time-course

One characteristic of the RA algorithm seems to be its fast convergence to an

asymptotic performance, good or bad, obtained typically within 25 epochs, with a

substantial part of this performance achieved within the first 10 epochs. Convergence

was faster if the learning parameters were non-optimal. An advantage of fast

convergence is that in practical applications unsuccessful training sessions (due to

inappropriate parameter combinations) can be discovered and abandoned very early

on, saving time and resources. Figure 5.4 shows a typical range of time courses.

93

100
0.466

0.577

- - 1.192

40 0.0875

100000

o CT) h-CO CD CO s O)

Figure 5.4. Typical time-courses of learning with the RA algorithm. Perform ance, m easured in
percentage-correct at the end o f each epoch (a pass over the 124 task-m appings) is plotted. A ll five
curves w ere obtained w ith activity ratio o f 0 .5 , or W ^Nna^^lO, i.e. all internal representations contain
exactly 10 ‘o n ’ H -cells , with different reverse activation strengths (listed to the right), during learning.
Each curve is the average o f 12 repeats o f the sam e learning parameter com bination, with independently
generated initial w eights. M eans are plotted plus-m inus 1 S .E .M . (standard deviation over square root
o f the num ber o f independent repeats). W here they seem absent, either there is no variation (as in late
epochs o f v|;=0.58) or it is sm aller than data sym bols. The first points plotted were before training.
T im e-courses are sim ilar for other activity ratios.

For each parameter combination, the only source of variation in performance comes

from the 12 independent sets of initial weights. For the trials illustrated above, which

share the same W, the difference between average performance of different \\j values

are statistically highly significant. Standard errors are typically small (0-1) for optimal

or extremely non-optimal learning parameters. They are the largest (4.5) in the latter

epochs of trials with intermediate learning parameter combinations, indicative of a

transition in the properties of the network. Paired t-test of performance at the end of

each epoch confirms that confidence in the eventual outcome of the training trial

converges very quickly. The statistical separation of the sets of trials with different q/

94

values and eventual degrees of success is clear after a few epochs, long before the

asymptotic performance is reached. The best combination (W=10 and vj/=0.58) can be

separated fi*om for instance (W=10 and v|/=1.19) with confidence greater than 99.9%

from the very first epoch. Thus, early performance is a good predictor of later

performance.

A noteworthy feature is that although both extremely large (\|/=10^) and small reverse

activation strengths (vj/=0,0.09) tend to be non-optimal, the very large ones achieve

better learning results. Recall that larger V|/ means more changes to I=>H weights and

less to H=>0 weights; smaller i|/ means the opposite (Section 4.2.2). Given that there

are far more I=>H weights than H=>0 weights in the CT task, this observation should

not be surprising.

Performance dependence on \\f and a

Typically, for a fixed activity ratio a, the final performance level gradually reaches a

plateau and then falls off again as the reverse activation strength v|/ increases. The

performance also depends on the activity ratio (Fig. 5.5).

95

100

OW=10

Aw=2

20

Figure 5.5. Typical dependence of performance on fixed reverse activation strength vj/ for the CT
task. Data for two different activity ratios are illustrated, one for a=0.5, one for a=0.1, i.e. W=10,
W=2 respectively. The vj/ values are marked along the horizontal axis, measured in degrees of tilting
angle, i.e. in arctan{\^). The vertical axis is the percentage of correct mappings achieved after 90
epochs. Each data point is the average of 12 repeats with independent initial weights, ± 1 S.E.M.
(where larger than the symbol size).

What is important here is the existence of an optimal range for the reverse activation

strength i|/. The optimal value of vj/ (which is the multiplier of the reverse weights in

forming a new representation) depends naturally on the relative scaling of the H => O

and O => H weights, which are taken as equal here; and it may depend on the nature of

the task and the number of cells in each layer. But in this example it does not depend

much on the activity ratio chosen for the H layer. The full dependence of asymptotic

performance on a variety of combinations of reverse activation strength and activity

ratios is plotted in the Fig. 5.6. Optimal performance is for approximately W=5-16

(i.e. a=0.25-0.8) and v|/=0.5-0.8 (angles of 25-40°). For W=8,10,12 and n/=0.57,0.7

(angles of 30, 35°) 100% performance was achieved for every observed initial

condition.

The dependence of asymptotic performance on a variety of combinations of reverse

activation strength and activity ratios is plotted in the following.

96

□ 95-100
■ 90-95
□ 85-90
@ 80-85
□ 75-80
■ 70-75
□ 65-70
□ 60-65
■ 55-60
□ 50-55

45 R ev e rse
A ctivation

30 S tren g th

Num ber o f H -cells on '
in in te rn a l rep 'n

F ig u re 5 .6 . P er fo rm a n ce d e p e n d en ce on (W , v|;). Percentage o f correct m appings ach ieved after 90
epochs, the asym ptotic leve l, is plotted against 19x19 W-vj; com binations. Data points for com binations
{W = l, 2, 3, 4 , 6, 8, 10, 12, 14, 16, \9]x {a r c ta n (^ M , 5, 10,15 , 20 , 25 , 30 , 35 , 4 0 , 4 5 , 50 , 70, 90°} are
m eans from the sim ulations. The rest o f the plotted grid points are linearly interpolated values for clarity
in presentation. Such points are not used in d iscussions in the text. Each data point is averaged over 12
repeats w ith independently generated initial w eights. Standard errors are not show n, for clarity, but
exam ples are show n in Fig. 5 .5 .

Recall that the smaller the W, the more accurate the inversion performed by the

transpose (Section 4.3.4). The above observations suggest either that better inversion

does not necessarily imply better RA learning, or that for outputs consisting of only

one ‘on’ cells out of two, the inversion performed by the transpose is similarly

accurate for all W’s that are not too close to 20. Both appear to be true. The fact that

the output layer has only two output cells with strongly negatively correlated incoming

weights makes the transpose an accurate inverse operator for W up to 14. However

learning with W=8,10,12 clearly was better than with W=l,2,3, even though inversion

is slightly more accurate for small W’s. The conclusion is that activity ratio is

affecting learning in ways other than through the quality of inversion. In other words.

97

the benefit of having completely accurate inversion is offset by some disadvantage

associated with having too low an activity ratio on the H layer, quite likely simply the

paucity of representational capacity on the H layer with sparse coding on a limited

number of elements; more of this in Chapter 6.

The Underlying Weight Changes

It is instructive to compare the activation scatter of H cells before and after learning

with RA.

F ig u re 5 .7 . A c tiv a tio n sc a tter o f H -ce lls w ith resp ect to th e d esired in p u t-o u tp u t p a irs . T his is
show n (a) before learning (b) fo llow in g training w ith Vj/=0.36 (W = 4) (c) fo llow in g training with \|/=0.57
(W = 4), all on exactly the sam e sca le for com parison. Each circle corresponds to an H cell w ith
coordinates g iv en by the input and reverse activation it receives for a pair o f input and output vectors.
Thus, for each pair o f input and output patterns, 20 points are plotted. There are 62 input-output pairs
(random ly chosen from the training set) used to p lot these charts. The reverse activation strength used
during training is represented as the tilting threshold line in (b) and (c).

One can discern the effects of RA learning in the above. Cells that are initially above

the threshold line but receive negative reverse activations (implying that they

contribute to output errors) must have been either moved rightwards, i.e. their

projections to the correct 0-cell are increased, or pushed downwards, i.e. they are

turned off in internal representations. This results in the empty wedge shaped area in

98

the cloud of cells in the first and second quadrants. Examine in particular the 2

columns of cells to the extreme left of the ‘crowd’ in each of the charts. Each column

in fact turns out to concern a single H cell, which usually has large negative

projections to the correct O cell. RA learning has reduced the weights of projections

from the input layer onto these cells so that they are turned off in internal

representations.

Performance when reverse activation strength \\f is random

As explained in Section 4.2.4, by allowing v|/ take random values (whenever

superposition of input and reverse activation occurs in training), there is then no need

to find the optimal value of \\f by guess-work, a great simplification, if performance

does not suffer significantly.

In a random-tuning scenario, whenever the imposition of input and reverse activation

(via reverse connections) is needed, the reverse activation strength \\j is randomly

generated with equal chances from the fair sampling set (Eq. 5.1). Because of these

random selection processes, it is necessary to repeat trials with random reverse

activation strengths even for the same set of initial weights. In simulation, trials

starting with a single set of initial weights were repeated 4 times using different

random sequences of \\f values. The same 4 sequences were used for all initial

conditions and W to allow for paired comparisons.

For the CT problem, random tuning has proven to be quite effective as demonstrated

in Fig. 5.8.

99

W=4

100 100

90

80

70

60

50

40

30

20

10

0 (D

Figure 5.8. Time courses of learning with fixed and randomly varying y, for W=10 and W=4.
Thin lines are the tim e-courses o f learning with fixed \\i ranging from 0 .0 8 7 5 (5 degrees), to 1 .192 (50
degrees), at a 5-degree interval; each is an average over the 12 independent sets o f initial w eights. The
dotted lines are the m eans o f all o f these. The thick lines are the m eans for learning with vj; varying in 4
different random sequ en ces, and for the sam e 12 different initial conditions. For the random sequences,
standard errors for W = 10 are too sm all to be plotted; For W =4, error bars are show n as the average ±1
S.E .M . (for the 4 sequ en ces) for variance due to the different initial conditions, w hich accounted for 98%
o f the total variance after 90 epochs.

For any trial with a fixed W, there is now a new source of variation for performance,

coming from the random selection process for vj/, in addition to the variation due to the

changes in initial weights. For W=4, analysis of variance at the end of each epoch

revealed that initial conditions contribute around 98% of the total sum of squares (i.e.

total variance times the total degrees of freedom 4x12-1=47) throughout the learning

process. For W=10, variation vanished through perfect performance achieved between

the 35th and 40th epoch; prior to that, initial conditions were overwhelmingly (98%)

the dominant source of variations.

In all cases, performance with random variations of \\f suffers in the early stages

compared with fixed-\|/ learning with the optimal values. This is only to be expected

as fewer ‘correct’ weight changes are made per cycle than when the parameter vp is

fixed at an optimal value.

100

Comparison with Back-Propagation

A systematic BP algorithm simulation was also carried out on the same problem with

the same sets of initial weights. The BP code used is for a standard BP algorithm, i.e.

batch updates with a momentum term, taken from the textbook by Müller et. al.

(1991). To apply the algorithm, all the units are turned into graded response units,

taking value from [-1, +1]. (As discussed in Section 3.2, this choice achieves faster

learning than [0,1].) Testing of performance done was by the mid-point criterion, i.e.

only the sign of the activation of output cells needed to be correct. The above design

for such comparisons is standard, cf. for instance (Peterson et. a l, 1989). Apart from

batch updates, on-line and total-on-line updates have also been attempted, which will

be discussed in Section 6.4.

The dependence of BP performance on its free parameters is well known. Extensive

sampling of the combinations of step-size (0.0004 to 0.1), steepness (0.45 to 1) i.e. the

sharpness of the sigmoid transfer function, and momentum (0.2 to 0.9) was carried out

for each of the 12 sets of initial weights used for RA-leaming; see Section 3.2 for

definitions of these terms. The optimal combination (i.e. having the best average

asymptotic performance or the fastest convergence amongst those with equal

asymptotic performance) observed in this set turns out to be: step-size 0.02, steepness

0.45, and momentum 0.9. The comparisons are shown in Fig. 5.9.

101

100 ®®Sïnirnia33ïnrrc

80 -

50

10 -

CD (D CDTf S CD CD T-
0 0 cznCN 00CD

• RA-rand

■RA-best

——O — -BP-best

“ “ " BP-upper

Figure 5.9. Comparing the performance of RA and BP. The average tim e courses o f learning with
optim al param eter com binations for BP (step -size 0 .0 2 , steepness 0 .4 5 , m om entum 0 .9) and RA (W =10,
v|/=0.577) are plotted, (±1 S.E .M ., n= 12). The average learning curve for W = 10 with random Y is also
show n (±1 average S.E .M . for the sam e 12 initial conditions, using 4 random sequ en ces). For reference,
the highest o f any o f the observed B P learning curves at each epoch is show n dotted.

It may be that better performance can be achieved through combinations outside the

tested set since the observed optimal combination was at the extreme of the

investigated set. Note however, the range of definition for momentum is (0, 1); see

(Eq. 3.3b). When it is <0.5, the effect of momentum is too weak and when it is too

close to 1, it destroys learning. The value 0.9 emerged in our simulation is indeed the

most commonly used value for it (Rumelhart, et. al. 1986; Tugay et. a l , 1989;

Tollenaere, 1990; Müller et. al., 1991; Hassoun, 1995). The basic BP algorithm is

most sensitive to step-size. Steepness merely has the effect of scaling the effective

step-size in learning; see comments following (Eq. 3.3a).

At its best, RA seems superior to the basic BP simulated for learning the CT task,

particularly at the early stages. Note that the upper bound (at each epoch) of all

observed BP learning curves is also plotted (dotted). At each stage of the learning.

102

none of the BP trials with any tested parameter combination was above this line; this

ensures that one does not bias the comparison of early stage performance unfavourably

to BP by having selected the so-called ‘optimal’ parameter combination solely

according to the asymptotic performance rather than some early performance.

As is apparent from Fig. 5.9, BP was more variable than RA. This is not only true for

the optimal parameter combinations. Variation was more pronounced for poor

combinations, as for RA. Greater variation means greater difficulty in determining

whether a trial is worth continuing with the ongoing parameter combination. In other

words, a potentially important characteristic of RA that distinguishes it from BP is the

extent to which one can predict the ‘goodness’ of a parameter combination by looking

at performance during early stages of learning. Consider, if one ranks all the

parameter combinations according to their performance at the end of the wth epoch,

how sure can one be that this rank order will persist as learning continues? This can

be measured directly by the correlation between the intermediate ranking and the

ultimate ranking of parameter combinations. The intermediate ranking is the one

determined by performances at the end of an intermediate epoch. The ultimate

ranking is determined by the asymptotic performance at the end of the 90th epoch.

(There may be joint No. I ’s and so on in the ranking.) The intermediate ranking may

differ from the ultimate ranking but should converge to it as learning goes on, by

definition. One expects the correlation between the two to start from around 0 and

converge to 1.

103

0.6 - BP

0.4 -

- -R A

0.2 ^

28

- 0.2 -

- 0.4

Figure 5.10. Convergence of the ranking of parameter combinations. At the end o f each epoch,
parameter com binations (143 com binations tested for RA; 87 for B P) were sorted according to their
average perfoiTnance. The linear correlation betw een the resulting intermediate ranking and the
ultimate ranking, obtained at the end o f the 90th epoch, is plotted on the vertical axis. Large correlation
indicates greater predictability o f the ultim ate ‘g o o d n ess’ o f any particular param eter com bination from
its early perform ance.

It is hard to make such a comparison truly fair. This is largely because of the lack of

comparability of the learning parameters of RA and BP. One might, for example,

improve the apparent correlation for one condition in such a comparison by including

more inappropriate step-sizes, which will give trials that are easily distinguishable

from good step-sizes early during learning. A fair comparison should include in the

sampled parameter space a ‘natural mix’, in some sense, of good and bad

combinations, which is not a criterion that is easily formalised and met. However,

note that at the 10th epoch the correlation is roughly 0.5 and 0.9 for BP and RA

respectively. This would have required a very large bias of the sort described, but the

issue is not pursued further.

A higher predictability of the outcome of RA, based on earlier performance, may

perhaps be seen as due to an apparent defect of RA, compared with BP. For BP, even

non-optimal parameter combinations can usually achieve reasonable performance at

104

the end of the 90th epoch, or with a larger number of epochs. They would ultimately

achieve perfect learning with sufficient epochs; after all, the theory of gradient descent

guarantees this. This is not true for RA: an asymptotic level, good or bad, is achieved

quickly, and no amount of further iterations can improve it. To improve performance,

it is necessary to change to more appropriate parameter combinations altogether.

However, by way of compensation, the predictability of ultimate performance and the

fast convergence to it can be used to circumvent the problem. As suggested in Section

4.2.4, these properties may explain the surprising success (see Figure 5.8) of the

technique of random-tuning of reverse activation strength.

5.2.2 Mirror Symm etry Discrimination Task

The second bench-mark task studied, the mirror symmetry task, involves

discriminating 3 types of symmetry possessed (exclusively) by binary patterns on a

4x4 grid; these are left-right, top-down, and one of the possible diagonal symmetries.

For this task, the standard 3-layer network has a configuration of 16-12-3 (cf.

Peterson et. a l , 1989).

Figure 5.11. Examples of the three types of symmetries to be discriminated. T he dotted lines
indicate the axis o f sym m etry.

The Standard training arrangement for this task (Peterson et. a i , 1989) is adopted as

follows. Training is carried out on a set of 100 randomly generated sample patterns

with activity ratio falling into a chosen range (patterns generated with activity ratio

105

outside the range are rejected), each having one and only one of the 3 symmetries with

equal probabilities, subject to the activity ratio range requirement. Training stops

when performance is 100% on these patterns. Generalisation is then tested on another

non-overlapping set of 100 random patterns subject to the same constraints. The

training and testing procedure is repeated for 10 sets of randomly generated initial

weights.

Other aspects of the simulation are similar to the CT problem. The parameter

combinations tested (for each initial condition) were as follows

{vi/= 1.0818, 1.1709, 1.2685, 1.3764, 1.4966, 1.6319, 1.7856, 1.9626, 2.1692, 2.4142,

2.7106, 3.0777, 3.545733, 4.1653, 5.027339, 6.313752, 8.448957, 12.7062, 25.4517}

X

{W=NHtt=l, 2, 3, 4, 6, 8}. (Eq. 5.2)

There were thus 19 x 6=114 (W, v|/) combinations for each of the 10 sets of initial

weights. The reverse activation strengths, expressed in terms of tilting angles, range

from 47.25 to 87.75 degrees. The performance for angles outside this range was far

from optimal and therefore not systematically tested. Fig 5.16 provides the clue for

why this is so: the initial H-cell activation scatter is very elongated, i.e. the sensitive

region corresponds to larger values of reverse activation strength; smaller values or

equivalently, smaller angles, simply do not effect enough changes to existing internal

representations. Likewise, the activity ratios outside the tested range all have far from

optimal performance as the data will soon show.

106

The momentum term: smoothing In addition to RA

Recall that any learning algorithm can be supplemented by momentum smoothing,

regardless of the details. The algorithm in use, what ever it is, calculates the weight

modification required for the current step according to that algorithm. The momentum

term simply allows the weight modification carried out in the previous step to make a

weakened contribution in the current step. See (Eq. 3.3b) in Section 3.2.2. This

smoothes out the learning dynamics over the error-surface in weight space and makes

convergence more reliable. Smoothing is particularly helpful when the teaming task is

difficult.

For RA, momentum smoothing is applied in the same way as prescribed by (Eq. 3.3b).

The algorithm calculates the required weight modification as before. The actual

weight modification in this step however has an additional, weakened contribution

from the actual weight modification that took place in the previous step; so it goes on.

Usually learning is not sensitive to the precise value of momentum as long as it is not

exceedingly close to 0 or 1 (Rumelhart, et. a l 1986; Müller et. a l, 1991; Hassoun,

1995); for detailed investigations in the context of gradient descent/BP algorithms, see

(Tugay et. a l, 1989; Tollenaere, 1990). Momentum terms ranging from 0.2-0.9 were

tried for RA in preliminary simulations for the symmetry task, with little evident

difference in performance. Although 0.9, which is the mle-of-thumb optimal number

for momentum terms (Müller et. a l, 1990; Wasserman, 1989), was finally chosen

Performance dependence on v|/ and a

The broad characteristic of dependence of asymptotic performance on reverse

activation strength and activity ratio is similar to that observed in the CT

107

discrimination problem. However, the ‘area’ of optimal combinations was

considerably smaller; performance was much more sensitive to these parameters. The

overall dependence is illustrated in Fig. 5.12, for both zero-momentum and

momentum=0.9. It is clear that the latter gives superior learning results and it appears

to give a smoother dependence on parameters. However momentum does not

improve, and in some cases worsens, the performance of extremely non-optimal

parameter combinations.

108

(a)
100 .00-1 '

9 0 .0 0

8 0 .0 0

7 0 . 0 0 -J

6 0 0 0

5 0 0 0

4 0 .0 0

3 0 0 0

Reverse Activation
Strengttl

(In angles) Numtler of H-cells on ' in Internal Rep'r

r e r s e A c tiv a t io
S t r e n g t t l

(in a n g l e s)

H 9 0 - 1 0 0

□ 80 - 9 0

■ 7 0 -8 0

□ 60 - 7 0

f H -c e l ls 'o n ' in I n t e r n a l R e p '

Figure 5.12. Performance vs. (W , \\j) for symmetry discrimination. P lots are for (a) m om entum =0
and (b) m om entum = 0.9 . Percentage perform ance after 90 epochs is plotted against com binations o f W
and \ \ J . Points show n for W =5 and 7 are interpolated from adjacent points. O therw ise, points are m eans
for 10 sets o f initial conditions. Standard errors are not show n, but for (a) w ere up to 7 on the ‘s lo p e s’
and w ere m ostly 2-3 on flatter regions. For (b) Standard errors w ere sm aller.

109

Performance fell sharply for \|/<1.08 (or 47°) in preliminary simulations, though the

fall is not clear over the range of values studied for this chart). The optimal reverse

activation strength ‘scatters’ in a wider range than it does for CT, thus is more difficult

to tune. For W =l, it ranges from 1-5 (45-80 degrees). For W=2,3,4 it is more critical

and shifts toward the lower end of the range. The fact that the optimal values of \\f are

larger than for CT is largely a consequence of the relative variations of I and O

activation, with an elongated scatter (Fig. 5.16).

The activity ratio proved the more critical parameter in these simulations, with the

optimum ranging from 0.16 (W=2) to 0.33 (W=4), instead of the value 0.5 observed

for the CT simulation. There are different ways of considering an optimal activity

ratio: 1) the value at which the greatest average asymptotic performance can be

achieved with the best choice of v|/, or 2) the activity ratio that most often turns out to

be optimal for a fixed value of \\f, or 3) how often, regardless of v|/, performance

exceeds a reasonable threshold level. The data of Fig. 5.12b are re-analysed in Fig.

5.13 to show the optimal activity ratios, using all three indicators. Note that maxima

may be shared between activity ratios with equal performance; points within ±1

S.E.M. of one another were treated as equivalent. All three criteria identify W=2-4 as

optimal.

1 1 0

1 0 0

90 4
80

70 I

6 0 5 3

84

74 74

W = 1 W=2 W=3 W=4 W=5 W=6 W=7 W=8
(0. 08) (0.1 6) (0. 24) (0. 33) (0. 42) (0.5) (0 . 58) (0. 67)

Figure 5.13. Optimal Activity Ratios for the M irror Symmetry Task. Three different w ays o f
evaluating different activ ity ratios on the H layer are shown. The vertical lines sh ow the greatest average
perform ance (for any v|;), equivalent to the peak values in Figure 5 .12b w hen W is kept constant. The
dark histogram show s the fraction o f the points in Fig. 5 .12b , for a particular activity ratio, that are
optim al for the corresponding value o f Y, w hile the light histogram show s the fraction o f these points
that ex ceed a 77% perform ance criterion (chance = 33%)..

In Section 4.3.4 the theory suggested that for a given output activity ratio (here 33%),

good inversion by the transpose matrix required that the activity ratio on H should be

smaller (<33%), as shown here for good learning performance with RA. Clearly also,

W must not be too small. Activity ratio affects learning also through other factors.

Performance when reverse activation strength vj/ is random

The optimum value of \\) (fixed during learning) depended, for this task, on the activity

ratio and was in some circumstances fairly critical (Fig. 5.12b). As with the CT task,

it might be possible to resolve this difficulty if v|/ is allowed to fluctuate randomly. In

the CT task, learning performance so achieved matched the best achieved when vp was

fixed (5.1.2). For the symmetry problem, this only proved to be the case for the lowest

activity ratio (W=l), as shown in Fig. 5.14 where the average time courses of random-

\\j learning and for the best fixed value of ip are plotted for W=l, 2, 3, and 4.

I l l

100 110

100

8 0
 W = 2 -ra n d

 W = 1 -ra n d o W = 2 -b e s t

o W = 1 -b e s t6 0

5 0

4 0
4 0

3 0

20

100 100

9 0 9 0

8 0 8 0

 W = 4 -ra n d

O W = 4 -b e s t6 0

4 0

3 0

F ig u re 5 .1 4 . F ixed and ra n d o m \\i v a lu es w ith th e m irror sy m m etry task . For random v|/ variations,
the average is taken over 40 trials: 10 initial w eight sets, each repeated w ith 4 set sequences o f
independently se lected Y values. A verage standard errors (n = 10 , averaged over the 4 repeats) are
shown. T he curve for fixed vj; (m ean ± 1 S .E .M .) is for g iv in g the best asym ptotic leve l for each W.

Analysis of variance again revealed that variation in asymptotic performance came

mainly from the initial weights. The randomness of reverse aetivation strength

contributed less than 0.5% of the total variation in the case of W=l, and less than 5%

for W=3 and 4. When W=2, there was no variation in the observed asymptotic

performance.

Note that the greater the activity ratio, the more learning suffered by having to allow

the reverse activation strength to fluctuate randomly (and hence to take bad values).

Why this is so is not clear. There is room to improve the random tuning technique, as

discussed in Section 6.2.

112

Comparison with Back-Propagation

As for the CT task, the BP code from (Müller et. a l, 1991) was used in a comparison

with the RA algorithm. For the mirror symmetry task, there is the added advantage of

having BP data on precisely the same task from the literature (Peterson et. a l, 1989) as

an independent yardstick. Extensive sampling of the learning parameters are carried

out in the same way as for the CT task. The best parameter combination emerged in

this set is: step-size 0.04, steepness 0.45, and momentum 0.9. The same comment

following Fig. 5.9 applies here also.

To make the comparison fairer to BP, all performance levels are normalised in order to

account for the fact that BP may start learning with less than chance level (33%)

performance (unlike RA, it does not have a built-in mechanism for ensuring that only

one output cell is on). Normalised performance levels are defined as the ratio between

the difference in the absolute performance level of the current epoch and the initial

level, and the difference between the target absolute performance level (100%) and the

initial level. In other words, it shows what proportion of what is left to leam (i.e. the

difference between 100% and the initial level) has been learned at any point in time.

It was found that BP typically requires over 100 epochs (150-200) to leam the task or

to reach near-asymptotic level. Although most of the learning is done within 100

epochs, the convergence from this point on is usually painfully slow. This confirms

the observations of (Peterson et. a l, 1989), where BP is compared with another

algorithm on the same task and the number of epochs for BP on the same task are

quoted as typically 150 epochs.

Below, the observed time courses of performance during training are plotted for up to

100 epochs. Normalised performance level is used; it is defined as

113

(PerformanceJ - Performance_0) /(100% - Performance_0)

where j=0,l,... 100... is the epoch counter with 0 indicating the initial condition. This

removes some of the bias caused by the fact that BP does not have ramped binarisation

and hence tends to start with a worse performance level than RA initially.

In selecting the ‘best’ parameter combination for BP for this comparison, one looks for

not only the highest average performance at the 100th epoch but also the fastest

progression in prior epochs. Further, the upper bound of all simulated BP trials at

each epoch is also plotted: no observed BP trials could rise faster than this line.

110

100 BP-best

- - BP-upper

RA-best
(W=2)

RA-rnd
(W=2)

00 in sin s

F ig u re 5 .1 5 . C o m p a r in g th e p er fo rm a n ce o f R A and B P . The vertical axis m easures the norm alised
perform ance leve l (defined the text). This show s how fast each algorithm learns what rem ains to leam
given its particular starting level. For BP, the average perform ance o f the best param eter com bination
(step -size 0 .0 4 , steepness 0 .45 , and m om entum 0 .9) is plotted ± 1 S .E .M ., calculated from the 10
independent repeats. In addition, the norm alised absolute upper bound for all observed BP trials is
show n as the strong dotted line. For RA, the best average tim e courses, corresponding to W =2 and
Y =2.71 (6 9 .7 5 degrees), and also random -^ learning with W =2, are plotted ± 1 S .E .M . (see Figure 5.14
for details).

114

It is also instructive to compare the different effects of BP and RA learning on

connection weights. Plotted below is the activation scatter of H cells before and after

learning, given the initial and resulting weight matrices respectively and the 100 pairs

of patterns in the training set.

Output Activation

(b)RA

Output Activation

25 -20 -15 -10 -5. 5 10 15 20 25

Output Activation

(c)BP

-25 -20 -15 -10 15 20 25

Output Activation

Figure 5.16. Different effects of BP and RA learning on weights. The activation scatter o f H cells
g iven (a) the initial w eights, (b) the corresponding w eights resulted from R A learning w ith random -^
and W = 2, (c) the corresponding w eights resulting from BP. (a) is p lotted tw ice on different scales.
A ctivation strengths 1 (45 degrees) and 8 (82 degrees) are represented on chart (a) and (b).

Firstly notice the extremely elongated initial scatter, partly due to the fact that the

input patterns contain more on-cells than do the output patterns (roughly 8-to-l

compared with the 5- to-1 for CT); comparison can be made with Figure 5.3 for CT,

115

where the scatter is similar on the two axes. This is one of the factors behind the fact

that all optimal activation strengths observed for this task are bigger than for CT.

Although chart (b) corresponds to random reverse activation strength during RA

learning, the effect of RA is clear: H cells that once received large input activation but

were detrimental to producing the correct outputs (indicated by their negative reverse

activation) are either shifted to the right horizontally or down vertically. This results

in the fan-shaped scatter of (b). The fan-shape was evident for the separate graphs for

each of the 10 initial conditions and activity ratios W/Nh, though less pronounced for

large W. Apart from this characteristic change, the distributions of activation and

weights were little changed..

In contrast, for BP, the scatter of activation was much altered (Fig 5.16d). Firstly, note

the dramatic (approximately 3-fold) increase in activation. Direct observation

confirmed that weights increased from the initial 0-1 range to 0-10, consistent with the

growth formula (cf. Section 3.2) for weights subject to BP learning. This partly

explains the slow convergence. Secondly, the shape of the activation scatter for

weights trained by BP was less easy to characterise.

Generalisation Performance

After the network has learned perfectly the 100 training input-output maps, by

whichever algorithm, one can test for generalisation. Poor generalisation indicates

that the learning algorithm has learned on the basis of features of the training set other

than the symmetry differences, on the basis of which they were chosen.

The procedure was taken from Peterson et. a l (1989). Training and testing sessions

were carried out separately for 6 randomly generated training sets. Each of these

sessions was repeated 10 times with independently generated initial weights. The

116

mappings in the 6 training sets were randomly generated according to the specific

criteria set out at the beginning of Section 5.2.2. The 6 sets were divided into 3 groups

of 2 each, labelled A, B, C. Inputs in Group A had the lowest range of activity ratio,

as indicated by the group average of 0.4; group B contains patterns with intermediate

range of activity ratios with a group average of 0.5; group C has the highest range of

activity ratios here with a group average of 0.6. Associated with each group is a third

set of 100 mappings (of the same specification as the group) for testing generalisation

performance. Thus, a naive network is trained on training set A1 and tested on A3 for

generalisation (repeated for 10 independent sets of initial conditions); the same

exercise is carried out on A2 (with the same initial conditions), tested on A3. This

way one has 2 separate estimates for generalisation performance (measured by

percentage-correct on the corresponding, non-overlapping, testing set) for group A and

likewise for B and C, 6 estimates in total.

Thus there are, in all, 9 sets of sample patterns of 100 each into 3 groups, randomly

generated according to specifications; none o f the 3 within each group has common

patterns. It may be useful to note that on the 4x4 grid there are about 1500 patterns

having one and only one of the three symmetries to be discriminated in the task

(Peterson et. a l, 1989). Thus the above set up is possible.

The table below summarises the performance in these tests. Also listed is data from

(Peterson et. a l, 1989) for performance of the Mean Field algorithm (MF), which is a

form of gradient descent learning algorithm. For BP learning, generalisation

performance is better if one uses the 0-1 binary representation during learning

(Peterson et. a l, 1989) (On the other hand, it is known that learning is faster if the (-

l)-(+l) representation is used (Peterson et. a l, 1989)). Apart from the RA data and the

BP data for (-l)-(+l) representation, results are taken from (Peterson et. a l, 1989).

117

Group A Group B Group C

RA-rand-\u (best) 76%, 78%; 77% 80%, 78%; 79% 68%, 74%; 71%
M F tbest) 68%, 57%; 63% 67%, 57%; 62% 70%, 69%; 70%
BP (best for (-1H+1) rep'n) 49%, 46%; 48% 52%, 48%; 50% 59%, 62%; 61%
BP (0-1) 69%, 59%; 64% 67%, 59%; 63% 69%, 72%; 71%

Table 5.1 Generalisation Performance. For each algorithm and each test group, which contains two
training sets, the median generalisation performance for set 1, 2, and the average of the two medians are
listed in that order. For RA and BP, the medians are calculated for trials with the best parameter
combinations for learning the training sets (see Captions for Figure 5.14&5.15). Generalisation was
tested after achieving perfect performance on the training set. Data for Mean Field learning and BP
learning with the (0-1) representation are the best median results reported by Peterson et. al. (1989).

The above table suggests that RA learning tends to give the best generalisation

performance. For the RA and BP data obtained in the present simulation, the average

performance is usually within 1% of the median with standard error less than 3%, all

calculated on the 10 repeats with independent initial weights. The BP data above

confirms those in (Peterson et. a l, 1989).

118

Chapter 6 Discussion and Conclusions

We set out to develop a pattern-centric learning algorithm for multi-layer perceptron-

like networks. In this approach, internal representations are constructed first; they

then drive weight changes (via simple perceptron rule). This is the exact opposite of

the standard weight-centric approach to learning where internal representations are

byproducts of weight changes, which are calculated from some error/energy function.

The pattern-centric approach is more consistent with research on sensory

representation in the brain and provides a more direct link between ideas in that area

and network modelling. Unlike the disappointing pattern-centric attempts in the past,

the RA algorithm does not involve any cumbersome search mechanism in the vast

pattern space. Instead, the algorithm tries to involve processes that resemble known

biological mechanisms in the brain. In RA, internal representation is constructed

directly by a (non-linear) superposition of activation of input and output on the

representation layer.

Theoretical analysis of RA, carried out in Section 4.2-4.4, demonstrates the rationale

behind the key elements of RA, namely, (symmetric) reciprocal connections,

adjustable reverse connection strengths with possible random fluctuations during

learning, and ramped binarisation. Given plausible assumptions (Section 4.3), one can

show pair-wise independence and non-positive correlation, respectively, between

connection weights from the same hidden layer cell and between connection weights

converging to the same output layer cell in a network that uses perceptron-like

learning. In this context, symmetric reverse connections are capable of inversion

operation (from output patterns to hidden layer representations). The quality of the

inversion depends on activity ratios (of the output and internal representation

patterns). This is one of several ways through which activity ratio can play a part in

119

learning in such networks. RA is also extended to networks with more than one

representation layer (Section 4.4).

Subsequent simulation on 3-layer networks demonstrates the feasibility of the ideas

discussed in theory. On the toy problems studied, RA performed learning, consistent

with our theory. The performance is comparable to the basic BP algorithm and the

data set suggests that it can be made better than basic BP in terms of convergence

speed and generalisation. RA algorithm also performed adequately when reverse

connection strengths are not explicitly tuned but are allowed to fluctuate randomly

during learning. The simulation raised some interesting questions on the role of

activity ratio, the random tuning technique and its improvement, and generalisation

after training. These are discussed below along with some technical issues.

Section 6.1 Optimal Activity Ratios

Simulation data for the CT and the symmetry task, particularly the latter, demonstrates

the crucial role played by activity ratio of internal representations. This is possibly

mainly due to its effect on the accuracy of the transpose as an inverse operator (as

analysed in Section 4.3.4), i.e. the ability of the transpose to deliver accurate

information on the effectiveness of H cells in evoking right outputs.

What the simulation also demonstrates is the highest inversion quality (by having H

layer activity ratio much lower than that on the O layer) does not correspond to the

fastest learning however. One reason for this may be the fact that given the small size

of the network, low activity ratio too severely limits the representational capacity of

the H layer hence reducing the degrees of freedom, making problem solving more

difficult. A rule of thumb for choosing optimal activity ratios in practice therefore

seems to be the following:

1 2 0

the activity ratio o f the internal representation should be small enough (at

least less than the activity ratios o f the output layer) to ensure reasonable

accuracy fo r the inversion operation performed by the transpose matrix. It

however should not be too small to the extent o f limiting the representational

capacity o f the hidden layer too severely. In general, the activity ratio that

enables fastest learning is probably the biggest ratio that still allows

'reasonable' inversion by the transpose. In case o f simple output patterns (1-

'on'-cell only), this ratio is 1/NO according to Section 4.3.4.

It will be interesting to carry out more simulations to explore how optimal activity

ratio varies with output activity ratios as well as the size of the H layer in RA learning.

It is important to stress here that the above concerns only the speed of learning (the

training set). Faster learning does not mean better learning. Generalisation quality is

arguably the ultimate measure for the quality of learning achieved.

Section 6.2 Random Tuning of Reverse Activation Strengths

6,2,1 Purposeful Random Fluctuation

The one key features of the RA algorithm is fast convergence (but not necessarily to

the right state). This offers clues as to how the \|/-tuning problem can be solved. As

demonstrated repeatedly in the last section, convergence is particularly fast for very

non-optimal values of \\i.

This has been the basis for allowing \\f fluctuating randomly during learning. The key

inference drawn from the data on performances was that training settles into a state in

121

which weight changes tend to cancel each other very quickly when the value of \\f is

far from optimal. Examples of direct recordings indeed support this idea.

67 70 82

F ig u re 6 .1 . A v e ra g e net w e ig h t ch a n g es d u rin g lea rn in g a g a in st tim e (ep o ch s). The net change to
each I to H connection w eight, m easured in units o f step-size, during an epoch are recorded and
averaged (connection s w ith net zero change are exclud ed from the averaging process). Thus during the
first epoch , net w eight change m ade w ere on average 4.3 step -sizes. N ote the strong tendency for any
w eight change to be precise ly reversed during the epochs that fo llo w ed so that from the 10'*’ epoch
onw ards, the net effect o f the learning on w eights are alm ost zero (p recisely zero for the last twenty
epochs or so).

For the better \\) values however, by definition, weight changes have less tendency to

cancel each other out (otherwise performance will not improve). Thus when ty is

allowed to fluctuate randomly during learning, one expeets the network to benefit

from weight changes when the \\j value happens to be good on average since the net

effect of bad ip values on weights converge to zero on average.

As seen in the last section, randomly fluctuating reverse activation strength does result

in very effective learning. However as Figure 5.14 clearly demonstrated, learning

slows down because of the noise introduced by the bad Y values. The case of W=4 in

Figure 5.14 provides the elearest evidence for the explanation offered in Section 4.2.4

as to how the random-tuning teehnique works. It can be seen there that learning was

taking place on average despite the evidently detrimental effects of the bad \\i values.

122

The learning curve strongly suggests that perfect performance would eventually be

achieved given more epochs. These results encourage one to develop the idea further

to better take advantage of the above property of the RA algorithm.

One obvious extension is to allow the probability distribution from which the values

of activation strength \\f are randomly drawn to evolve so that it can become more and

more localised at the optimal values. This may be called ‘purposeful ’ random tuning

strategy whereas the original technique shall be called blind random tuning.

At the centre of the purposeful random tuning strategy is a ‘fitness’ measure for any

particular values of key parameters, \\f in this case. For each parameter value, the

measure is evaluated based on history of the network behaviour during periods when

that value happens to be ‘in charge’ by chance; these periods are sampling periods for

that particular value. The fitness measure for each parameter value is updated

whenever that value is used. The probability distribution is then changed

incrementally according to the latest fitness numbers so that it becomes more and

more concentrated on the most suitable set of values.

Several simple-minded but quickly available ‘fitness’ measures have failed to deliver

any clear improvements. One may have to allow longer sampling periods, counted in

epochs rather than patterns.

This opens a new possibility. One obvious basis for measuring fitness if sampling

periods are extended to epochs is the performance at the end of an epoch. In this case,

Y is allowed to fluctuate from epoch to epoch, rather than from pattern to pattern. The

performance improvement (or the lack of it) at the end of the epoch is then recorded

and used to see how it ranks amongst all the latest records for other values of \\f. The

probability distribution can then be modified incrementally according to the new

123

ranking order. Recall Figure 5.10, which shows that there is a strong predictability of

the ultimate fitness of v|/ from its performances in early epochs.

6.2,2 Applying a Population Search Algorithm

Figure 5.10 inspired another tuning method, which may be seen as a Population

Search Algorithm. One can start with a population of otherwise identical networks

learning with the RA algorithm, each with different reverse activation strength \|/.

Every 2-5 epochs, those networks whose performance is not in the top 50% of the

population can be terminated. After several round of elimination only a small number

of networks, for which the y value most probably will be optimal.

Figure 5.10 suggests that this method will be quite effective. The ranking according to

the performance of the 10̂ ̂ epoch is more than 95% correlated with the ultimate

ranking. It is quite remarkable considering that this means that the ordering of

performance is almost fixed as early as the 10̂*̂ epoch. Note that for the above

elimination method to work, one does not even require the strong correlation of

detailed rankings. All one needs is that if a v|/ value belongs to the top half of the

entire population at the beginning it should be highly likely for it to remain in the top

half in the end.

Further, this method may be combined with the blind random tuning technique. Given

that usually there is a range of activation strengths which are optimal, one can cut

short the above elimination process and start applying blind random-ij/ learning on the

remaining range of v|/ values. For instance for the CT and mirror symmetry problem,

one elimination process should be enough to enhance the speed of random-vy learning

dramatically, cf. Figure 5.6 and 5.12.

124

Section 6.3 Generalisation Performance

The data on the mirror symmetry task suggests better generalisation performance for

RA learning. More simulation is needed to confirm the assertion.

One reason for this may lie in the nature of how multi-layer perceptrons work. A

general feature of such neural networks is that 'similar' inputs tend to evoke 'similar'

outputs. Generalisation fails when two 'similar' or 'dissimilar' inputs are supposed to

evoke, respectively, two 'dissimilar' or 'similar' outputs. Successful generalisation

relies on the creation of internal representations that increase or decrease the similarity

between the input patterns as the case may be. RA learning implements this idea very

directly. Recall that in the RA algorithm, internal representation is selected by

imposing the input and the output pattern simultaneously. By effectively 'appending'

the output to the input pattern when selecting internal representations, one increases or

decreases the similarity between any pair of input patterns and hence the similarity

between their respective internal representation patterns according to whether the

associated outputs are the same or not. Thus, at the heart of RA learning, there is a

built-in mechanism that directly benefits generalisation capability.

There is perhaps a more profound factor at work in case of RA logarithm. It concerns

activity ratio fixing, which will be discussed in Section 6.5.

Section 6.4 Technical Questions That Require Further

Investigations

6,4.1 Comparisons between Variants of BP and RA

Although simulations demonstrated that the default version of RA compared

125

favourably with basic BP, further comparisons with the numerous improved variants

of BP are necessary in order to gauge RA’s practical potentials.

For instance, it is known that BP can leam faster with on-line updating (than with

batch updating) provided that step-size is appropriately scheduled to decline to zero

during learning. Detailed work and review on these variants can be found in (Fahlman

1988; Wasserman, 1989; Hassoun 1995; Ripley 1996). Owing to the difficulties in

tuning such variant BP’s and the fact that these techniques could be applied to RA as

well, comparisons of variants of both types of algorithm are omitted in this

developmental stage. Classical BP, one with batch updating and momentum

smoothing, is closest to the underlying gradient descent idea behind the algorithm.

Likewise, default RA, one with total-on-line updating, fixed or random activation

strengths, and momentum smoothing, is closest to its original derivation based on

biologically plausible learning mechanisms.

The on-line version of both BP and RA were tried. However, results in trial runs were

too erratic and the attempt on systematic simulation was abandoned, as it may be

unduly complex. It is more appropriate to carry it out as a separate project. The

preliminary simulation suggests the following. The total-on-line version of BP (which

seemed to be absent in the literature) can produce great performance but with higher

sensitivity to initial weights. It may be less sensitive to step-size compared to other

BP as long as step-size is not too big (Section 5.1.1). However, the number of

iterations required for a single mapping was counted in the hundreds during the early

epochs; it was also prone to be trapped in local minima even when learning a single

input-output pair. To put these in context, for the standard version of RA, which is

total-on-line, the number of iterations required to leam single mappings in early

epochs rarely exceeds 10. Further, it never fails to leam any single input-output pair.

The batch version of RA in test trials seemed to be more sensitive to step-size than the

126

default RA, as expected from Section 5.1.1. More fine-tuning is needed. Together

with additional parameters such as reverse activation strengths to tune, this version is

exceedingly cumbersome.

6.4,2 Simple and Complex Outputs

In the simulation so far, the output patterns, which correspond to exclusive categories,

have consisted of simple outputs: patterns having all but one cell turned off.

In theory, complex outputs do not represent additional computational complexity.

This is because the internal representations that can solve a problem with complex

outputs can also solve the equivalent problem in which the outputs are transformed to

simple patterns (by assigning each distinct complex output pattern with an exclusive

unit), and importantly, vice versa.

This is easily proved in the following way. Given a complex problem, first let RA

solve its equivalent version with simple outputs. Then, keep the I-to-H weights (and

thus the internal representation). The H-to-0 weight matrix that will solve the

complex problem is simply the existing H-to-0 weight matrix (found by RA learning

in the simple-output equivalent) multiplied by the fixed matrix consisting of only O’s

and I ’s which maps each simple output pattern back to its original complex form. The

process can also be reversed.

However, equal complexity does not mean equal ‘ease’. It is not immediately clear if

complex outputs will be easier or harder for RA than simple outputs. RA should

continue to function as long as the transpose still perform inversion ‘adequately’,

which in principle is possible given the appropriate relation between the H layer and O

layer activity ratio; see the final three subsections of Section 4.3.4.

127

Section 6.5 Efficient Sensory Processing and Representation

This section attempts to put the investigation so far into the broader context of

efficient sensory processing in the brain. It will present firstly an overview on what it

means and then relate these to what role RA can play in exploring these issues.

6.5.1 The Goal of Sensory Inform ation Processing

Sensory information, coded in terms of impulse frequencies, enter the brain via

millions of parallel fibres originated from sensory neurons. The process that

transforms a raw sensory signal into patterns of activity in high-level cortical neurons

is of great interest. Is there are a information-theoretic principle that applies to the

transformations carried out in the brain? The overriding principle may be termed as

‘redundancy reduction’ through successive transformations (Atteneave, 1954; Barlow,

1961). The subtler part of this principle, which is not usually appreciated, is that

depending on the type of ‘redundancy’ referred to, the principle leads to radically

different conclusions on the type of coding required to achieve ‘redundancy

reduction’. These lead to the concepts of compact coding, factorial coding, and sparse

coding/combinatorial coding. All can be said to reduce redundancies. A good and

perhaps the only review of all these strategies in a coherent context can be found in

(Field, 1994).

6.5.2 Different Concepts of Redundancy Reduction

Compact Coding

In the most naive interpretation, based on standard information theory as in (Shannon,

1949), the principle requires the reduction of overall redundancy. This is the same as

128

minimising the set of (binary) symbols coding the signals. Such a strategy is referred

to as compact coding and seems to be used in the early stages of sensory processing:

100 million receptors in the retina converging into only 1 million optic fibres, 50

million olfactory receptors (in the rabbits) into only 50,000 mitral cells, and less

obviously trichromacy in colour vision, etc.

Factorial Coding

However, in higher cortical processing there is then a great expansion of the number

of cells. Why? The answer also lies in ‘redundancy reduction’ but with a different

type of redundancy. Barlow suggested that the detection of association of events is

easier in a neural network context if the activity of representational elements is as

statistically independent as possible, conditioned on the set of possible input signals

(Barlow, 1961; Hentsche, Barlow, 1991; Gardner-Medwin, Barlow, 1992). This

essentially traces back to the inability of Hebb-type synaptic learning rules (Hebb,

1949) to code higher order statistics amongst input cells: to a post-synaptic cell, a pair

of input cells are indistinguishable from another pair with identical first order statistics

but different second order ones.

A factorial code (cf. Schmidhuber, 1992) tries to achieve the above ‘independence’ as

far as possible. Factorialisation is equivalent to reducing redundancy of order greater

than 1 in the resulting representation, i.e. reducing the non-independence amongst

representational elements.

Sparse Coding/Combinatorial Coding

Sparse coding, where signals are represented by a large number of symbols with a very

low activity ratio, is a form of factorialisation (Hentsche, Barlow, 1991). The sparser

129

the representation, the closer the code satisfies the factorial condition. Combinatorial

coding, where each signal is given an exclusive representational element, is an

extreme form of sparse coding if the resulting activity ratio is very small. There is a

trade off of course between sparseness and representational capacity. It is easy to

show that in order to achieve better sparseness while preserving representational

capacity, the number of binary element roughly grows to the order of l/(-alog(a)),

where a is the activity ratio. The great expansion of the number of representational

cells in higher cortical areas but with very low activity ratios supports the idea of

sparse coding.

6,5,3 Investigating Sparseness in the RA Context

Sparse codes became a subject of interest in the study of simple auto-associative

networks of binary units. The critical loading of such networks increases as activity

ratio falls (Gardner, 1988). There is no comparable result for feedforward networks

with more than 2 layers. Some authors start from the position that sparse codes are

useful and consider ways to achieve sparse codes on a 2-layer perceptron-like network.

One may for example minimise, via gradient descent, an explicit cost function that

relates to higher order redundancies (Hentsche, Barlow, 1991).

The RA algorithm essentially constructs representations with specified activity ratio

under the constraint of an explicit input-output task. It on the one hand explicitly

constrains the activity ratio of the representational patterns while on the other hand

forces the network to solve a given task. If the task is solved using the required

activity ratio then the representation achieved must have extracted important features

for achieving the task. As such, RA provides an arena for studying the effect of

representational activity ratio on solving classification tasks.

130

Recall Section 4.3.4, where it is found that sparser activity ratio on the hidden layer

leads to more accurate inversion by symmetric connection matrix, given ramped

binarisation. This is one way sparser representation is preferred in the RA context.

However simulation also suggests that the 'optimal' activity ratio, as far as learning

speed is concerned, is in fact the biggest activity ratio that is just low enough to ensure

reasonable quality of the information transmitted by the transpose about outputs.

Learning speed is far from everything of course. It may be that sparser internal

representations, while taking longer to achieve, lead to better generalisation. It is well

known in theory and in practice that given any two feedforward multilayer networks of

identical performance on the training set, the one with less degrees of freedom tends to

generalises better, cf. (Müller et. al., 1991; Hassoun 1995). Usually, 'degrees of

freedom' is understood as the size of the hidden layer. However, for RA, 'degrees of

freedom' is determined also by activity ratio. Given the same hidden layer, compared

with BP or others, the RA algorithm, through activity ratio fixing, has a much lower

degrees of freedom. The 'degree of freedom' principle implies that given two networks

of identical performance, the one with sparser internal representations (constructed via

the RA algorithm) is likely to have a better generalisation performance.

While our simulation data does not contradict this statement, the difference between

generalisation performance is not statistically significant. More study into this is

therefore needed.

131

BIBLIOGRAPHY

Abramson, S.; Saad, D.; Marom,E. (1993), "Training a Network with Ternary
Weights Using the CHIR Algorithm", IEEE Trans, on Neural Networks, 4(6), pp. 997-
1000.

Amari, S., Arbib, M. (1977), “Competition and cooperation in neural nets”. Systems
Neuroscience (J. Metzler, Ed.), Academic Press, San Diego, pp. 119-165.

Amit, D. J. (1989), Modelling Brain Function: The world o f attractor neural
networks, Cambridge University Press, Cambridge.

Atteneave, J. J. (1954), “Some informational aspects of visual perception”, Psychol.
Rev., 61, pp. 183-193.

Barlow, H. B. (1961), “The coding of sensory messages”. Current Problems in
Animal Behaviour (W. H. Thorpe and O. L. Zangwill, Eds.) Cambridge University
Press, Cambridge, pp. 330-360.

Baum, E.; Moody, J.; Wilczek, F. (1988), “Internal representations for associative
memory”, Biol. Cybern. 59, pp. 217-228.

Bell, C.; Caputi, A.; Grant, K.; Serrier J. (1990), “Storage of a sensory pattern by
anti-Hebbian synaptic plasticity in an electric fish”, Proc. Natl. Acad. Sci. USA, 90,
pp. 4650-4654.

Bialek, W.; Rieke, F.; de Ruyter van Steveninck, R.; Warland, D. (1991), “Reading a
neural code”. Science, 252, pp. 1854-1857.

Box, G.E.; Tiao, G.C.(1973) Bayesian Inference in Statistical Analysis, Addison-
Wesley, Reading, MA.

Carpenter, G.; Grossberg, S. (1987), “A massively parallel architecture for a self­
organizing neural pattern recognition machine”, Comput. Vis., Graph., Image Proc.,
37, pp. 54-115.

Crick, F.C.; Mitchison, G. (1983), “The fimction of dream sleep”. Nature, 304,
pp.111-114.
Denoeux, T.; Lengelle, R. (1993), "Initialisation of backpropagation network with
prototypes". Neural Networks, 6, pp. 351-363.

132

Desimone, R. (1992), “Neural circuits for visual attention in primate brain”. Neural
Networks fo r Vision and Image Processing, (G. Carpenter, S. Grossberg, Eds.) MIT
Press, Cambridge, MA. pp. 343-364.

Dormany, E.; Van Hemmen, J.L.; Schulten, K. (1995), Models o f Neural Networks:
Physics o f Neural Networks, Springer-Verlag, Berlin.

Fahlman, S.E. (1988), “Fast learning variations on back-propagation: an empirical
study”, Proc. 1988 Connectionist Models Summer School (D. Touretzky, G. Hinton,
T. Sejnowski, Eds.), Pittsburgh.

Feller, W. (1966), Chapter Vin.4, An Introduction to Probability Theory and Its
Applications II, John Wiley & Sons.

Field, D.J. (1987), “Relations between the statistics of natural images and the
response properties of cortical cells ”, J. Opt. Soc. Am., 4, pp. 2379-2794.

Field, D.J. (1993), “Scale-invariance and self-similar ‘wavelet’ transforms: An
analysis of natural scenes and mammalian visual systems”. Wavelets, Fractals and
Fourier Transforms: New Developments and New Applications. (M. Farge, J. Hunt, J.
Vassilicos, Eds.), Oxford: Clarendon, pp. 151-193.

Field, D.J. (1994), “What is the goal of sensory processing”. Neural Computat. 6, pp.
559-601.

Finn off, W. (1994), “Diffusion approximation for constant learning rate
backpropagation algorithm and resistence to local minima”. Neural Computat. 6 (2),
pp. 285-295.

Fischer, T.M; Blazis, D.E.; Priver, N.A.; Carew, T.J. (1997), “Metaplasticity at
identified inhibitory synapses in Aplysia”, Nature, 389, pp. 860-865.

Foldiak, D. J. (1990), “Forming sparse representations by local anti-Hebian learning”,
Biol. Cybern., 64, pp. 165-170.

Foster, J. M. (1989), The Prefrontal Cortex, Second Edition, Raven, New York.

Gardner, E. (1988) “The space of interactions in neural network models”, J. Phys. A,
21, pp. 257-270.

Gardner-Medwin, A. R. (1976), “The recall of events through the learning of
associations between their parts”, Proc. R. Soc. Lond. B. 194, pp. 375-402.

133

Gardner-Medwin, A. R. (1989) “Doubly modifiable synapses: a model of short and
long-term auto-associative memory”, Proc. R. Soc. Lond. B, 238, pp. 137-154.

Gardner-Medwin, A. R.; Barlow, H.B. (1992), “The effect of sparseness in
distributed representations on the detectability of associations between sensory
events”, J. Physiol. 452, pp. 282-300.

Gardner-Medwin AR & Kaul S (1995) “Possible mechanisms for reducing memory
confusion during sleep”. Behavioural Brain Research. 69, pp. 167-175

Gardner-Medwin, A. R., Wren, K. K. (1998), “A well-defined measure for
ignorance of a topic”, working paper.

Goldman-Rakic, P. S. (1987), “Circuitry of primate prefrontal cortex and regulation
of behaviour by representational memory”. Handbook o f Physiology Vol. 5. (F. Plum,
Ed.), American Physiological Society, pp. 373-417.

Grossman, T.; Meir, R.; Domany, D. (1988), “Learning by choosing internal
representations”. Complex Systems Vol. 2, pp. 555-575.

Grossman, T. (1989), Complex Systems Vol. 3, pp. 407.

Hassoun, M.H. (1995), Fundamentals o f Artificial Neural Networks, M.I.T. Press.

Hebb, DO. (1949) The Organisation o f Behaviour, Wiley, NY.

Hentsche, H.G.; Barlow, H.B. (1991), “Minimum-entropy coding with Hopfield
networks”. Network!, pp. 135-148.

Hinton, G.; Dayan, P.; Frey, B.; Neal, M. (1995), “The ‘wake-sleep’ algorithm for
unsupervised neural networks”. Science, 268, pp. 1158-1161.

Hopfield, J.J, (1982), “Neural networks and physical systems with emergent
collective computational abilities”, Proc. Nat. Acd. Sci. USA,^\, pp. 3088-3092.

Hopfield, J.J.; Feinstein, D.I.; Palmer, R.G. (1983), “‘Unlearning’ has a stabilizing
effect in collective memories”. Nature 304, pp. 158-159.

Jordan, M.I., (1990), “Motor learning and the degrees of freedom problem”.
Attention and Performance XIII (M. Jeannerod, Ed.), Erlbaum, Hillsdale, NJ, pp. 796-
836.

134

Kawato, M.; Hayakama, H.; Inui, T. (1993), “A forward-inverse network model for
visual perception”, Network: Comput. Neural Syst. 4, 415.

Kohonen, T. (1990), “The self-organizing map”, Proc. IEEE, 78, pp. 1464-1480.

Kosko, B. (1988), “Bi-directional associative memories”, IEEE Trans. Sys., Man,
Cybern., 18 NO. 1, pp. 149-160.

Lee, T.S.; Mumford, D.; Romero, R.; Lamme, V.A. (1998), “The role of primary
visual cortex in higher level vision”. Vision Research 38, pp. 2429-2454.

Maloney, L. T. (1986), “Evolution of linear models of surface spectral reflectance
with small number of parameters”, J. Opt. Soc. Am. A, 3, pp. 1673-1683.

Marr, D. (1971) “Simple memory: a theory for archicortex”, Phil. Trans. R. Soc.
Lond. B 262, pp. 23-81.

Mezard, M.; Nadal, J. (1989),/. Phys. A, 22, pp. 2191.

Minsky, ML.; Papert, S. (1969), Perceptrons: An Essay in Computational
Geometry, MIT Press, Cambridge, MA.

Mitchison, G. (1992), “Axonal trees and cortical architecture”. Trends Neurosci., 15,
pp. 122-126.

Müller, B.; Reinhard, J. (1991), Neural Networks: An Introduction, Berlin: Springer
Verlag.

Mumford, D. (1991), “On the computational architecture of the neocortex I”,
Biological Cybernetics 65, pp. 135-145.

Mumford, D. (1992), “On the computational architecture of the neocortex II”,
Biological Cybernetics 66, pp. 241-251.

Nabatovsky, D.; Grossman, T.; Domany, E. (1990), "Learning by CHIR without
storing internal representations". Complex Systems 4, pp 519.

Nicholls, J. G.; Martin, A. R.; Wallace, B. G. (1992), From Neuron To Brain, Third
Editition, Sinauer Associates, Inc.

Oja, E. (1992), “Principal components, minor components, and linear neural networks”.
Neural Networks, 5, pp. 927-935.

135

Peterson, C.; Hartman, E. (1989), “Explorations the mean field theory learning
algorithm”, Neural Netw., 2, pp. 475-494.

Ripley, B.D. (1996), Pattern Recognition and Neural Networks, Cambridge
University Press.

Rosenblatt, F. (1962), Principles o f Neurodynamics, Spartan Books.

Rujan, P.; Machand, M. (1989), Complex Systems, 3, pp. 229.

Rumelhart, D.; Hinton, G.; Williams, R. (1986), “Learning internal representations
by error propagation”. Parallel Distributed Processing I., MIT Press, Cambridge, MA.

Saad, D.; Solla, S.A. (1996), "Dynamics of on-line gradient descent learning for
multilayer neural networks". Advances in Neural Information Processing Systems, 8,
MIT. Press.

Schmidhuber, J. (1992), “Learning factorial codes by predictability minimisation”.
Neural Computat., 4, pp. 863-879.

Shannon, C.E.; Weaver, W. (1949), The Mathematical Theory o f Communication,
University of Illinois Press.

Shepherd, G.M. (1974), The Synaptic Organisation o f the Brain, Oxford University
Press.

Skaggs W.E., McNaughton B.L. (1996), “Replay of neuronal firing sequences in rat
hippocampus during sleep following spatial experience”, Science 271, pp. 1870-3.

Stewart, G.W. (1973), Introduction to Matrix Computations, Academic Press.

Stornetta, W.S.; Huberman,B.A. (1987), “An improved three-layer back­
propagation algorithm”, Proc. IEEE First International Conference on Neural
Networks (M. Caudill, C. Butler, Eds.).

Tanaka, K.; Saito, H.; Fukada, Y.; Moriya, M. (1991), “Coding visual images of
objects in the inferotemporal cortex of the macaque monkey”, J. Neurophysiol, 66,
pp. 170-189.

Thimm, G.; Moerland, P.; Fiesler, E. (1996), "Interchangeability of learning rate and
gain in backpropagation neural networks". Neural Computation 8 (2).

136

Tollenaere, C.B. (1990), “SuperSAB: Fast adaptive back propagation with good
scaling properties”, Neural Networks, 3 (5), pp. 561-573.

Tovee, M. J.; Rolls, E. T.; Treves, A.; Beilis, R. P. (1993), “Information encoding
and the response of single neurons in the primate temporal visual cortex”, J.
Neurophysiol, 70, pp. 650-654.

Tugay, M.; Tanik, Y. (1989), “Properties of the momentum LMS algorithm”.
Signal Processing, 18, pp. 117-127.

Willshaw, J.; Buneman, O. P.; Longuet-Higgins, H. C. (1969), “Non-holographic
associative memory”. Nature, 222, pp. 960.

Willshaw J.; Buckingham J. (1990) “An assessment of Marr’s theory of the
hippocampus as a temporary memory store”, Phil Trans. R. Soc. Lond. B 329, pp.
205-215.

Wasserman, P. (1989), Neural Computing: Theory and Practice, Van Nostrand
Reinhold, New York.

Zeki, S. (1993), A Vision o f the Brain, Blackwell Scientific Publications.

137

