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Abstract

In this thesis, we extend the relational data model to incorporate partial orderings 

into data  domains and present a comprehensive formalisation of the extended model. 

The main contributions of the thesis are that we show how and why such an extension 

can considerably improve the capabilities of capturing semantics in a wide spectrum 

of advanced applications such as tree-structured information, temporal information, in­

complete information, fuzzy information and spatial information, whilst preserving the 

elegance of the theoretical basis of the model.

W ithin the extended model, we extend the relational algebra to the Partially Or­

dered Relational Algebra (FORA) and the relational calculus to the Partially Ordered 

Relational Calculus (PORC), respectively. These two languages are shown to be equiv­

alent. We then apply a generalized form of Paredaens’ and Bancilhon’s Theorem to 

justify our claim that the PORA is adequately expressive, i.e., non-uniformly complete. 

We also show that there is a one-to-one correspondence between three hierarchies of: 

computable queries, ordered domains and PORAs, according to the inherent structures 

of the underlying domains.

Moreover, we formally define Ordered Functional Dependencies (OFDs) and Ordered 

INclusion Dependencies (OINDs) for the extended model. We then present a sound and 

complete axiom system for OFDs and OINDs in the case of pointwise linear orderings. 

In addition, we establish a set of sound and complete chase rules for OFDs in the case 

of lexicographical linear orderings.

We extend SQL to OSQL as a query language for ordered databases. OSQL provides 

users with the capability to define partial orderings over data domains. In order to 

demonstrate the feasibility of OSQL, we have carried out an experimental implementation 

of the new language using the Oracle DBMS for low level data management. We have 

evaluated the implementation by conducting a user survey. From the results of the 

survey, we confirm that the essential features of OSQL which we have designed are easy 

to learn, understand and apply, and are useful in formulating queries involving order. 

Furthermore, we demonstrate that a wide range of queries in many advanced applications 

can be formualted in a unified manner by introducing the notion of an OSQL package.
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Chapter 1

Introduction

This thesis describes an extension of the relational data model to incorporate partial 

orderings into data domains. The basic aim of the extension is to improve the capabil­

ities of the model in capturing semantics of data. The thesis presents the theoretical 

investigation of the ordered relational model and the implementation of a minimal ex­

tension of SQL, called OSQL, which allows querying over ordered relational databases. 

We demonstrate that with such an extension and a package discipline, which allows a 

set of generic operations associated with a specific application to be grouped within 

a module, relational databcises can considerably widen their applicability in the areas 

of tree-structured information [15], incomplete information [38], fuzzy information [17], 

temporal information [144] and spatial information[50].

In Section 1.1 we give some background material and motivation for defining the 

ordered relational model. In Section 1.2 we explain the goals of our research and the 

major contributions of the thesis. In Section 1.3 we briefiy outline the main results 

obtained in the individual chapters of this thesis.

1.1 Background and M otivation

The development of DataBase Management Systems (DBMSs) has been a major re­

search topic in computer science for nearly four decades. One of the most fundamental 

components in any information system is the database. In order to provide various fa­

cilities for users in an efficient manner, a database should be built according to a formal 

database model (or simply a data model) which defines its data structures, query lan­

guages and integrity constraints. Several data models have been proposed since the 1960s
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[31, 10, 33, 30]. The most influential one is Codd’s proposal for the relational data model 

[34]. Since then, database products have been developed in order to conform with this 

model and relational DBMSs have gradually come to dominate the commercial market. 

Relational database theory has been comprehensively developed during the past 27 years. 

The relational data model is unquestionably the most successful data model to date.

What factors make the relational model so successful ?

In our view, the above question could be answered by considering several different 

facets related to DBMSs. For example, the model provides a sharp and clear boundary 

between the logical and physical levels of DBMSs [7, 147]. Moreover, the relational 

data model offers the advantage of physical data independence to users, that is, changing 

the physical organisation of a database does not require alteration of its logical data 

structures. Other crucial factors to its success can be justified from three perspectives 

as follows:

1. Prom the point of view of usability, the model is natural and has a simple interpre­

tation in terms of real world concepts. The essential data structure of the model 

is a relation, which can be visualised in a tabular format. Due to this simplicity, 

relational databases have gained acceptance from a broad range of users.

2. From the point of view of applicability, the model is flexible and general and can be 

used in many applications, especially in business-oriented ones such cis accounting 

and payroll processing. As a result, the model has the advantage that it has gained 

popularity and credibility in a variety of application areas.

3. From the point of view of formalism, the model is elegant enough to support ex­

tensive research and analysis. Since the framework of the model is based on the 

well-established set-theoretic formalism, it facilitates better database theory re­

search. Actually, it has inspired the development of many vital theoretical issues in 

databases such as query language and dependency theory, which have had a major 

impact on DBMS development.

As computing technology has been making steady progress, in the early 1980s there 

were new demands to apply database technology to handle different areas of applica­
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tions such as computer aided design (CAD), image-processing, text retrieval, statistical 

databases and geographical analyses [2, 103]. Unfortunately, the relational data model 

is inadequate to meet these new demands since they usually require more structure in 

the data domains in order to capture their semantics than that provided in the standard 

model. Moreover, it is apparent that relational databases cannot be easily applied to 

the areas of tree-structured information, temporal information, incomplete information, 

fuzzy information and spatial information. The shortcomings of the relational data model 

resulted in two main trends of data model development in order to facilitate the better 

use of database technology.

One main trend in the development of data models, which began around 1986, was 

the attem pt to combine the notion of an object into the data model [47, 102, 138], 

obviously as a result of the success of object-oriented programming in the 1980s. Object- 

oriented programming is commonly recognised as a powerful methodology to support 

the development and the maintenance of very large and complex applications. The 

use of the notion of objects in database systems seems interesting and promising, and 

thus following this direction, database researchers at that time opened a new realm of 

research concerning object-oriented databases. However, the research in the past decade 

involving the issues of incorporating objects into the data model indicated tha t it may 

be too optimistic regarding the success of the combination of objects and databases. For 

example, the commercial market for object-oriented databases has grown very slowly in 

terms of venture capitals and revenues ratio [140]. Some of the potential consumers of 

object-oriented databases such as CAD vendors have been slower than anticipated in 

using object database technology.

One difficulty for the object-oriented database paradigm is that the formalisation of 

object-orientation in the context of databases (c.f., see the interview of C.J. Date by Data 

Base Newsletter recorded in [44]) is not clearly understood and thus it is difficult to reach 

consensus. There are many interpretations of some fundamental concepts such as object 

identity and object class [25]. Although there are draft standards for an object language 

and a programming interface for object databases called ODMG-93 Release 1.2, which 

was released in 1996 [24], most object-oriented database vendors do not actually support 

all the features defined by the draft standard. There are still major differences between 

many claimed object-oriented databases in terms of query languages and programming 

interfaces. Moreover, there are many ways of allowing vendors to incorporate objects
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into database systems. Objects can be added to databases via an approach of radical 

transformation such as the systems Orion and O2  [78, 46], which attem pt to address all 

the features of objects, or a mild reform to the relational data model such as ADT-Ingres 

[139], which mainly extends the relational data model with user-defined abstract data 

types.

Another main trend is to develop specialised databases to cater for an individual class 

of application such as temporal and spatial databases. In contrast to object-oriented ex­

tensions, this approach does not maintain the spirit of finding an application independent 

data model as does the original relational data model. Some researchers even make fur­

ther specialisation within the scope of a particular application. For example, in the area 

of spatial applications, some researchers have proposed a model for one kind of spatial in­

formation having two spatial dimensions and two temporal dimensions [153], whilst other 

researchers have proposed a model for another kind of spatial information having polyg­

onal regions [71]. There are similar trends in the area of temporal databases [145, 98]. 

Prom the point of view of usability, this approach may quickly gain acceptance by the 

experts in the related discipline because they can easily understand the operations of the 

specialised database. In addition, the approach facilitates better understanding of the 

needs of the communities concerned. However, from the point of view of applicability, 

the disadvantage of this approach is tha t it loses the flexibility in adapting the model to 

other applications needing other specialised facilities.

We agree tha t some ideas from the object-oriented formalism such as abstract data 

types and object encapsulation can be very useful in the enhancement of the relational 

data model. However, we think that in the first place it is still necessary to clarify some 

fundamental concepts. We also recognise that the research into specialised databases can 

give deeper insights into the needs of the communities concerned. However, we think 

that the search for a unified model is necessary because it provides generic operations 

allowing the discovery of new possibilities in a wide variety of specialised areas. In this 

thesis we propose an extension of the relational model, in which we strive for a balance 

between these somewhat conflicting demands. On the one hand, our extended model 

unifies significant classes of different specialised applications. As a result, it provides a 

basis for the investigation of new possible applications. Moreover, it provides robustness 

and efficiency of the implemented generic operations. On the other hand, the extension 

we propose is as minimal as possible with respect to the relational data model, which
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may help to clarify the fundamental issue of user-defined data types in object-oriented 

databases, a key issue in the development of object-relational databases [140].

We bear in mind the successful factors of the relational data model that we have 

mentioned above. In our extension of the relational model we incorporate partial order­

ings into the data domains of the data model. There are several other reasons which 

motivate our extension. Firstly, there is strong evidence that ordering is inherent to the 

underlying structure of data in many database applications [20, 103, 130, 92, 129]. Fur­

thermore, in many applications incomparability of data is a prominent phenomenon that 

must be captured explicitly. Secondly, the semantics of partial orderings is simple and 

well understood. A partially ordered domain serves as a bridge between an unordered 

domain and a linearly ordered domain. Thirdly, with this minimal extension we preserve 

the formal basis of the relational model which can be employed to study the effect of 

partial orderings on many well-known theoretical issues such as the expressiveness of 

(piery languages and the axiomatisation of new classes of data dependencies arising from 

the extension.

tree-structured inform ation 
tem poral inform ation 
incom plete inform ation 
fuzzy inform ation 
spatial inform ation

applications involving 

m ore general types

business
applications

R elational databases

O rdered relational databases

O bject-relational databases

Figure 1.1: Application areas with respect to extended relational databases

We use a highly simplified diagram that is shown in Figure 1.1 to illustrate how our 

extension relates to the current development of relational databases. On the one hand, 

the ordered relational data model is much stronger than the conventional model, since it 

is capable of capturing semantics in a wide spectrum of advanced applications. On the
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other hand, it captures an im portant part of object-relational databases, since ordered 

domains can be viewed as a general kind of type.

1.2 Main Goals of the Research and the Thesis Contribu­

tion

The main goal of this research is to investigate the effect of partial orderings on the data 

structures, query languages and integrity constraints of the relational data model. The 

scope of our investigation includes the examination of existing advanced applications 

related to partial orderings under the framework of ordered relational databases.

The main contribution of the thesis is to show how and why the extension of the re­

lational data model to incorporate partial orderings into data domains can considerably 

improve the applicability of a DBMS. The ordered relational model is demonstrated to 

have the capability of capturing the semantics in a wide spectrum of advanced applica­

tions such as tree-structured information, temporal information, incomplete information, 

fuzzy information and spatial information, whilst preserving the elegance and simplicity 

of the conventional relational data model.

The potential benefits of the extension are threefold from the point of view of the 

development of relational databases.

1. The extension provides a viable alternative to other extensions of the relational 

data model. In practice, it can also be the optimised solution to an organisation 

somewhere between a specialised database, which may be too narrow a solution, 

and an object-oriented database, which may be too complex a solution.

2. As most major database vendors such as IBM, Informix and Oracle are putting 

their efforts in the direction of object-relational databases, our work on ordered 

domains serves as a good reference point for the development of the abstract data 

type facility for the object-relational database model.

3. We notice that in reality many large enterprises which use relational databases 

have just recently adapted to relational technology, and thus they may not be will­

ing to take large commercial risks and shift to the paradigm of object-oriented 

databases. On the other hand, as long as object-relational databases are upwards
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compatible they may accept such an extension. Our approach is a minimal exten­

sion of the relational model, which can reduce the risks of vendors in shifting to 

object-orientation and most im portant of all, there is convincing evidence of the 

benefits in our approach. Therefore, our work can provide significant impetus for 

the acceptance of object-relational database technology.

1.3 Outline of the Thesis

The thesis is divided into eight chapters, designated in the text by Chapter 1 to Chapter 

8 . We now give an overview of the thesis.

In this chapter we introduce the background and the overview of the extension of 

the relational model. The motivation, the objectives and the main contribution of the 

research have already been explained.

In Chapter 2 we formalise the ordered relational data model as an extension of the 

conventional relational data model to include partial orderings as an integral part of data 

domains. From the point of view of the standard three-level architecture of a DBMS, 

physical data independence includes the requirement that the physical ordering of data 

on a storage device cannot be accessed by users’ application programs [34]. This can be 

achieved by the standard domain orderings at the logical level such as numerical orderings 

and alphabetical orderings provided by DBMSs. One im portant notion introduced here 

is tha t given a domain then, apart from the standard domain orderings, we can also 

declare new semantic orderings at the external level above the logical level, which override 

the standard domain orderings. The following example illustrates the use of semantic 

orderings in various domains.

E x am p le  1 .1  In Figure 1.2(a) we have the semantic domain EMP_RANK consisting 

of three employee names describing a hierarchy in a company of the employees Mark, 

E than and Nadav. The semantics are tha t both Ethan and Nadav are the subordinates 

of Mark. In Figure 1.2(b) we have the semantic domain SALARY_TIME consisting of 

four calendar years which simply follow the chronological ordering provided by a DBMS. 

Note that in this case we can use the standard system ordering. In Figure 1.2(c) we 

have the semantic domain INCOMPLETE which captures the semantics of different null 

values in a database which models various types of incomplete information. The known 

data value “programmer” is more informative than the null symbol UNK (UNKnown),
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and the null symbols UNK and DNE (Does Not Exist) are more informative than the 

null symbol NI (No Information), meaning either the data value does not exist or the 

data value exists but is not known. In Figure 1.2(d) we have another semantic domain 

called QUALIFY which captures the semantics of the fuzzy requirement “good science 

background” defined in a company.

M ark

Ethan N adav

1996

1995

1994

1990

E M P .R A N K

(a)

SALARY _T1M E

(b)

P rogram m er

IN C O M PL E T E

(c)

M BA

Q UA LIFY

(d)

Figure 1.2: Using domains to capture the semantics in various information

In Chapter 3 we extend the relational algebra to the Partially Ordered Relational 

Algebra (the PORA) by allowing the ordering predicate , Ç, to be used in the formu­

lae of the selection operator (cr). Thereafter the relational calculus is extended to the 

Partially Ordered Relational Calculus (the PORC) in a similar manner. The PORA 

and the PORC are shown to be equivalent. This preserves the classical result of Codd’s 

completeness, which is an im portant notion regarding the expressiveness of query lan­

guages proposed by Codd [35]. We then show that the PORA expresses exactly the 

set of all possible relations which are invariant under order-preserving automorphisms 

over databases. Informally, an order-preserving automorphism is a permutation of the 

values in the active domain of a database instance that does not alter the database and 

also preserves the ordering of the active domain. This preserves non-uniform complete­

ness, which is an im portant notion concerning the expressiveness of query languages, also 

known as Paredaens’ and Bancilhon’s Theorem [123, 12]. Moreover, we investigate three 

hierarchies of: (1) computable queries, (2) query languages and (3) ordered domains, and 

show that there is a one-to-one correspondence between them. The implication of this 

result is that if the underlying data domains of an ordered database have more inherent 

structure, then a wider scope of queries is possible. In other words, the ordered relational 

model can provide more expressive query languages than those of the conventional one.
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and in this sense we can say that more meaningful queries are possible with respect to 

an ordered relational database.

In Chapter 4 we extend the notions of Functional Dependencies (FDs) [147, 9] and 

INclusion Dependencies (INDs) [109, 22] to be satisfied in an ordered databa.se and call 

them Ordered Functional Dependencies (OFDs) and Ordered INclusion Dependencies 

(OINDs), respectively. FDs and INDs are commonly recognised as the most fundamental 

data dependencies that arise in practice. Informally speaking, OFDs can capture a 

monotonicity property between two set of attributes, and OINDs can capture the notion 

of a Hoare ordering [20] between two sets of tuples. For example, the Hoare ordering 

can represent the semantics that a relation is more informative than another relation. 

In the special case of an unordered set, the Hoare ordering simply reduces to a set 

inclusion. As an illustration of the new data dependencies we have mentioned, the 

OFD SALARY <—>• SALARY_TIME over the relation EMPJDETAIL shown in Figure

1.3 states the fact that the SALARY of an employee increases with the SALARY.TIME. 

The OIND MANAGER[NAME, SALARY] t  EMP_DETAIL[NAME, SALARY] states 

tha t the (complete or incomplete) information of the name and salary of a manager, 

represented by a relation MANAGER, should be consistent with and upper bounded 

by the information given by the relation EMPJDETAIL. For example, assuming the 

said OIND holds, then the tuple {Mark, U N K )  is allowed in MANAGER, because it is 

consistent with and contains less information than the tuple {Mark, \^ K )  or the tuple 

{M ark,H)K)  in EMPJDETAIL. However, we can check tha t the tuple {B il l ,U N K )  is 

not allowed in MANAGER because it is not consistent with any tuple in EMPJDETAIL.

NAME SALARY PREVIOUS_WORK EDUCATION SALARY.TIME

Ethan 12K UNK MSc 1994

Mark lOK NI MBA 1990

Mark 18K NI MBA 1996

Nadav 15K Programmer BA 1995

Figure 1.3: An employee relation EMPJDETAIL

We further classify OFDs and OINDs with respect to two kinds of orderings, namely, 

lexicographical and pointwise-orderings. Lexicographical orderings resemble the way in
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which words are arranged in a dictionary and pointwise-orderings require each component 

of a data value to be greater than its predecessors. For example, the tuple (rri,. . .  

is less than another tuple (?/i,. . .  ,^n) according to a lexicographical ordering if there is 

an index j  >  I such that Xj < yj and for each i <  j ,  xi =  yi. The tuple (x i , . . . ,  

is less than another tuple (yi , . . . , ?/n) according to a pointwise-ordering if for all 1 < 

i < n, Xi < yi. We present sound and complete axiom systems for OFDs and OINDs, 

respectively, in the case of pointwise-orderings. In relational database theory, the chase 

is a fundamental theorem proving tool, whose main uses have been testing implication 

of data dependencies [101] and testing consistency of a relational database with respect 

to a set of data dependencies [61, 8 6 , 87]. The intuitive idea behind the chase is that 

we start with the hypothesis tha t a relation in a generalised form satisfies a set of data 

dependencies F. Suppose we want to test whether a data dependency /  follows from 

F. We then apply the chase rules with respect to F  to “chase it down” for all the 

consequences of F  that occur in this relation. If we can finally reach a state of the 

relation tha t represents the conclusion of / ,  then we have a proof tha t /  follows from 

F. If we fail to draw the desired conclusion, the relation that results when we finish 

the chase is a counter example, i.e., it satisfies F  but not / .  We present a set of sound 

and complete chase rules for OFDs in the case of lexicographical orderings. The chase 

rules are also im portant for studying OINDs in the case of lexicographical orderings. 

The axiom systems we present provide us with a useful tool to infer additional data 

dependencies from a given set of OFDs or OINDs and the chase rules form the basis of 

both a theorem prover and an inference engine for OFDs and OINDs.

In Chapter 5 we describe OSQL, which is an extension of SQL for the ordered re­

lational model, and show that OSQL combines the capabilities of standard SQL with 

the power of semantic ordering. Using OSQL users have the ability to define partial 

orderings over data domains which are implied by the underlying semantics of the data 

of an application. We also discuss the issues concerning the implementation of OSQL, 

which has been prototyped using Oracle for low level data management. The following 

running example demonstrates how OSQL can be applied to solve various problems that 

arise in DBMSs involving applications having tree-structured information, incomplete 

information, fuzzy information and temporal information under the unifying framework 

of the ordered relational model.
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E x am p le  1.2 Let us consider the relation EMPJDETAIL again shown in Figure 1.3.

• Tree-structured Information:

Using the semantic domain EMP_RANK shown in Figure 1.2(a) for the attribute 

NAME, we can formulate the query of finding the name and salary of the common 

bosses of Nadav and Ethan as follows.

(Q i.i) SELECT {*) (*)

FROM  EMPJDETAIL

WHERE {NAME > ’Nadav’ W ITHIN EMFJRANK)

AND  (NAME > ’E than’ W ITHIN EMP J iA N K ) .

W ith some knowledge of standard SQL, one can understand the meaning of the 

query Qi.i quite easily. The first clause (*) after SELECT means tha t all attributes 

are selected and the second clause (*) means tha t all tuples are selected. The 

keyword W ITHIN  specifies that the comparison NAME > ’Nadav’ is interpreted 

according to the semantic ordering of the domain EMP JIANK.

•  Temporal Information:

We assume that SALARY.TIME is a time attribute whose values are timestamps 

of the tuples in the relation EMPJDETAIL (for simplicity in presentation, we also 

assume tha t the time_stamping denotes valid time [145]). For instance, we can see 

that Mark has salary lOK in 1990 and his salary increased in 1996. Note that 

we do not record Mark’s salary if there had been no change since the year it was 

last updated. We can use the keyword LAST to find the last time the tuple was 

updated, since the domain of the attribute SALARY.TIME is linearly ordered cis 

is shown in Figure 1.2(b). W ith the following query, we show how to find M ark’s 

salary in 1993.

(Q 1.2) SELEC T  (SALARY.TIME, SALARY) {LAST)

FROM  EMPJDETAIL 

WHERE  NAME =  ’Mark’

AND  SALARY.TIME < =  1993.

• Incomplete Information:

Using the domain INCOMPLETE as shown in Figure 1.2(c) for the attribute PREÎ- 

VIOUS.WORK, we can formulate the query which finds the name and previous
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work of those employees whose previous work is more informative than NI, as fol­

lows.

(Q1.3) SELECT  (NAME, PREVIOUS_WORK) (*)

FROM  EMPJDETAIL

WHERE {PREYIOUS.W ORK > ’NP WTLT/iV INCOMPLETE).

• Fuzzy Information:

Using the semantic domain QUALIFY shown in Figure 1.2(d), we can formulate 

the query of finding the name of an employee with “good science background” by 

way of academic qualification as follows.

(Q1.4) SELECT {{EDUCATION WITHIN QUALIFY), NAME) DESC {1)

FROM  EMPJDETAIL.

The keyword DESC  specifies that the employees in EMP .DETAIL are sorted ac­

cording to the semantic ordering of the domain QUALIFY with the suitable ones 

put first.

In Chapter 6 we report on a survey that we have carried out in the Department of 

Computer Science at University College London. The main objective of the survey was 

to gain more insights into the usages and the acceptance of the extended features of the 

attribute list, the tuple list and the comparison clause of the OSQL SELECT command. 

We invited 70 students and 10 computer professionals to participate in an experiment to 

compare their performance between using OSQL and SQL in formulating a set of queries 

involving order. We also requested them to fill in a questionnaire for feedback purposes. 

From the attitudes of the subjects towards the use of OSQL, we can determine whether 

the various proposed features of OSQL are appropriate for database programmers to 

learn and apply. Our first finding is that the subjects in the OSQL survey formulated 

difficult queries involving order in an easier manner than in SQL. Our second finding 

is tha t the subjects confirmed that the extended features are easy to learn, understand 

and apply. From the subjects’ feedback in the questionnaire, we also realise that a more 

comprehensive implementation of OSQL, which includes a custom built user interface, is 

needed so that further experiments can be carried out to test the viability of the OSQL 

extension to SQL.
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In Chapter 7 we introduce the notion of an OSQL package, which informally is a 

collection of generic operations over an ordered domain. The incorporation of a package 

discipline into OSQL enhances the expressiveness of OSQL by utilising the capabilities of 

OSQL in a more systematic manner. We define in detail a variety of generic operations 

with respect to the mentioned advanced applications and classify them into four OSQL 

packages: OSQL.TREE, 0SQL_T1ME, OSQLJNCOM P and OSQL J ’UZZY. Using these 

packages, we now demonstrate how the above mentioned queries can be formulated in 

a simpler manner by embedding the generic operations of these OSQL packages into 

OSQL.

Using the package OSQL_TREE, the query (Qi.i) can be simplified as follows:

(Qi.s) SELECT {*) (*) FROM EMP_DETA1L

WHERE NAM E  /A  COM_ANCESTOR(’Nadav’, ’E than’).

The operation COM_ANCESTOR in (Q1.5) returns the names of all common bosses 

of Nadav and Ethan.

Using the package OSQL.TIME, the query (Q1.2) can be simplified as follows:

(Qi.e) SELECT {SALARY) (*) FROM SNAPSHOT(EM PJ)ETAlL, 1993) 

WHERE NAM E = ’Mark’.

The operation SNAPSHOT in (Qi.e) returns the employee records in 1993.

Using the package OSQLJNCOMP, the query (Q1.3) can be simplified as follows:

(Q 1.7) SELECT {NAME, PREV10US_W0RK) FROM EMP.DETA1L 

WHERE M 0R EJN F0(PR EV 10U S_W 0R K , ’NP).

The operation M OREJN FO  in {Q1 .7 ) checks whether the previous work of an 

employee is more informative than the null symbol ’NP.

Using the package O SQ L J’UZZY, the query (Q1.4) can be simplified as follows:

(Qi.s) RFFFOT(1MP0SE_FUZZY(EDUCAT10N, QUALIFY), NAME) (1) FROM  

EMPJDETAIL.

The operation IMPOSE J ’UZZY in (Qi.s) returns the most appropriate tuple such 

that it satisfies the imposed fuzzy requirement “good science background” by way 

of academic qualification.
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In addition to the four packages mentioned above, we also develop the package 

OSQL_SPACE for handling spatial information for the special case of rectangular re­

gions, which is one of the fundamental geometric regions in developing spatial databases 

[60, 98]. We assume that MIN.VERTEX and MAX.VERTEX are two spatial attributes 

used to specify a rectangular region. The following query shows how to use OSQL_SPACE 

to find Bill’s neighbours. The operation PICK_REGION in (Q1.9) is a graphical interface 

operation which converts the mouse pointed region on the screen (we assume it is Bill’s 

room) to its corresponding spatial attributes. The MEET operation is one of the eight 

Egenhofer-Franzosa topological relationships [49].

(Q1.9) 5ETECT (OCCUPANT) (*) PROM FLOOR_PLAN

WHERE  MEET(MIN_VERTEX, MAX.VERTEX, PICK_RECION()).

In Chapter 8 we conclude our work with some final remarks and discuss future work 

resulting from the ordered relational model.

Four appendices which are relevant to OSQL are attached to the end of the thesis 

for the purpose of reference. In Appendix A we present the full reference of the BNF 

for OSQL. In Appendix B we give the declaration of all the OSQL packages discussed 

in Chapter 7 and their operations. In Appendix C we include the full documentation of 

the survey detailed in Chapter 6 . In Appendix D we give a sample of the C code which 

implements OSQL.
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Chapter 2

The Ordered R elational M odel

In this chapter, we extend the conventional relational model and give the background 

and preliminary material needed throughout the thesis. In particular, the relational data 

model is extended to incorporate partial orderings into data domains.

In Section 2.1 we clarify the notions of order [65, 59, 133] and its relevance to the 

data domains used in existing information systems. In Section 2.2 we formally extend the 

relational data model [34] to include partial orderings into the structure of the model. In 

Section 2.3 we discuss the effect of orderings on the three DBMS levels of the conventional 

model [7, 147, 4]. In Section 2.4 we compare the features of our extension with the 

conventional relational data model. In Section 2.5 we review related work tha t has 

recognised the importance of ordering as a fundamental property in data modelling.

In the sequel, we employ the following mathematical notation for sets. Let S  and 

T  be sets, then | S  | denotes the cardinality of S', S' Ç T  denotes set inclusion, S  C T  

denotes proper set inclusion and V{S)  denotes the finite powerset of S'. We denote the k 

term  Cartesian product S  x S  ■ • • x S  hy , and the singleton {.4} simply by A  when no 

ambiguity arises. We also let id be the identity mapping on any set. A partially ordered 

set is depicted by a Hasse diagram [59] which is a graph where each node is an element 

of the base set, and each edge connects two distinct comparable elements such tha t one 

element is either an immediate successor or immediate predecessor [65] of another.
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2.1 The N otion of Order

In this section we present the basic concepts and terminology of partial orderings. In 

Subsection 2 .1.1, we define partial orderings and some im portant special cases. In Sub­

section 2.1.2, we introduce the extensions of orderings to a Cartesian product and a 

powerset, which are fundamental in the orderings of data domains.

2 .1 .1  F orm al D e fin it io n  o f  P a r tia l O rderin gs

D efin ition  2.1 (P artial Ordering) A partial ordering of the set 5 is a binary relation 

on 5, denoted by Ç, satisfying the following conditions.

For all x , y , z  e  S,

1. Reflexivity: x Ç. x.

2 . Anti-symmetry: If x  Q y and y Q x,  then x  = y.

3. Transitivity: If x  Q y and then %C z .

There are two im portant special cases of partial orderings in our context, linear 

orderings and unordering. Informally, given a set S  related by a partial ordering, in the 

former case all elements are related in a chain and in the latter case no two distinct 

elements are related. We formally define these two extreme cases as follows.

D efin ition  2.2 (Linear Ordering and U nordering) A linear ordering of the set S

is a partial ordering Ç ,  if it satisfies the l inearity  condition as follows, for all x , y  Ç: S, 

X  C. y  or y  Ç. X .  We denote this special case by <. An unordering  of the set «S' is a partial 

ordering Ç ,  if it satisfies the incomparability  condition as follows, for all x , y  E S / i f  x  y ,  

then neither x  Ç. y  nor y  Ç: x.  In other words, when each element is only comparable 

with itself, S  is unordered. We denote this special case by = , since Ç  is just the equality 

predicate =.

We denote that x  and y  are incomparable by a: || y  and that x  Ç. y  but x  ^  y  hy  

X [Z y . Note that for any elements x  and y  in S , i f x  ^  y ,  then exactly one of the following 

holds: X Q y,  y  C. X, OT X \\ y.  Furthermore, there is a very interesting case of linear 

orderings, dense linear orderings,  which are very often used in topological spaces [122]. 

For example, a point object in a two Euclidean dimensional space can be represented as 

a pair of real values whose domains are densely linearly ordered.
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D efin ition  2.3 (D ense Linear Ordering) A linear ordering <  is said to be dense, if 

for any two distinct elements x ,y  E S  such tha t x < y, there is an element z G S  which 

is distinct from x  and y such that x < z and z < y.

A partially ordered set (or simply an ordered set), denoted as S,  is a structure (5, Ç). 

It consists of a set S  which is partially ordered (or simply ordered) by the relation Ç. In 

particular, the structure {S, <) is called a linearly ordered set and the structure {S, =) 

is called an unordered se t  From now on, the term ordered will mean partially ordered, 

unless explicitly stated to the contrary.

D efin ition  2.4 (Subordering) For two ordered sets (T, and {S, Qs) satisfying 

T  Ç S  and for all ui,a2 G T, a\ Ç t  «2 if and only if a\ Cg 02, we call T  a subordering 

of S.  In this case we may write (T, Qt ) as (T, Ç5 ).

E xam ple 2.1 Let N  and R  be the set of natural numbers and real numbers, respectively. 

{N, <) and {R, <) with their usual ordering <  are typical examples of linearly ordered 

sets, in which R  is à dense linear ordering. The orderings of natural numbers and real 

numbers are collectively called numerical orderings, which is an essential property of the 

primitive domains in existing database systems. A set of object names is an unordered 

set (assuming we choose to interpret alphabets without lexicographical orderings). The 

finite powerset {V{S), Ç) is a partially ordered set.

2 .1 .2  E x te n s io n  o f  O rd erin gs

It is very desirable to define two extensions of the orderings of data domains in order to 

capture the semantics of data. One extension is on the Cartesian product of ordered sets. 

Another extension is on the powerset of an ordered set. We first discuss lexicographical 

ordering and pointwise-ordering, which are two common kinds of orderings on the Carte­

sian product of ordered sets. Then we discuss various kinds of orderings arising from the 

powerset of an ordered set.

Let Si , . . . , Sn  be n  ordered sets, t be an element in the Cartesian product S = 

Si X ■ • • X Sn and t[i] be the zth coordinate of t. We now define lexicographical orderings 

on the Cartesian product of ordered sets.

D efin ition  2.5 (Lexicographical O rdering) For all ti, t 2  E S, t\ Ç t 2 if either
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1. there exists k with 1 < k < n  such tha t ti[k] [Zs  ̂ 2̂^ ,  and for all 1 < i < k, ii[z] 

=  t 2 [i], or

2 . for all 1 <  2 <  n, =  t 2 [i].

For example, we can construct the lexicographical ordering on iV” , which is an infinite 

lexicographical ordering. Another im portant example is the lexicographical ordering on 

alphabets. Let A be a linearly ordered set over a finite alphabet. Then we can easily 

construct a finite lexicographical ordering on A” in the same way as iV", which we call a 

dictionary ordering or an alphabetical ordering, since it resembles the ordering of words 

in a dictionary. Note that A” is just a subset of the set of possible strings formed over 

A (those string of length n). The usual meaning of the domain C H AR{n)  in a DBMS 

should be interpreted by C H AR{n) = IJiLi and the lexicographical ordering on 

C H AR{n)  should be extended as follows, for any x ,y  E C H AR{n), x  < y i î  and only if 

either rr is a prefix of y or x  and y have a longest common prefix u such that x  = uv, 

y = uw and head{v) < head{w), where the operator head{u) returns the first character 

of a given string u.

E x am p le  2.2 Let A = {a < b}, then CHAR{2)  forms the following ordering:

a < aa < ab < b < ba < bb.

Another common way to form an ordering on C H AR{n),  which we denote by <q, is to 

use a combination of length and the lexicographical ordering of a string. The ordering <a 

is defined such tha t for any x ,y  E C H AR{n), x  <a y 'A and only if either length{x) < 

length{y), or length{x) =  length{y) and x < y. The operator length{u) returns the 

number of occurrences of characters in a given string u. We use the set CHAR{2)  in 

Example 2.2 to illustrate this ordering as follows:

a <Q b <a aa <a ab <q ba <a bb.

We note tha t the ordering of the domain DATE, called chronological orderings, can 

be viewed as the lexicographical ordering of the domains Y E A R ,  M O N T H  and D A Y ,  if

(1) the domain M O N T H  has the ordering as { J A N  < F E B  <  < D E C }  and (2) the

Cartesian product of the domains are taken in the following order: Y  E A R  x M O N T H  x 

D A Y .
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We next define another kind of ordering, pointwise-ordering^ on the Cartesian product 

of ordered sets.

D efin ition  2.6 (P o in tw ise -O rd erin g ) For all ti , ^2 G 5, ti  Cg Î2  if for all 1 < i < n, 

ii[*] Esi <2[*].

For example, assume that a domain of constants, denoted as Dom, contains a distin­

guished symbol UNK, which means the data value exists but is UNKnown. We define 

a partial ordering in D a m  as follows, for all x, y G D a m , x  Ç. y  if  x  =  y  ot x  = UNK. 

Then we can extend Ç to be a pointwise-ordering in a relation r over {A, B }  as follows, 

for all t i , t 2  Ç. r , ti Ç ^2 if ti[A] Ç t 2 [A] and ti[B] Ç t 2 [B]. This extension natu­

rally captures the meaning of t\ being less informative than (2, or alternatively t 2 being 

more informative than t\. Actually, the relationship between incompleteness and order­

ings has been commonly used in studying the issues concerning incomplete information 

[154, 91, 84, 87, 88].

It is apparent that the notion of less informative can be further extended from tuples 

to relations in a similar manner. However, Buneman in [20] recognises that there are 

three possible extensions to the powerset of an ordered set, namely, Hoare orderings 

[62], Smyth orderings [142] and Plotkin orderings [126], all of which are essential to the 

semantics of incomplete information in databases. The notion of one relation ri being 

less informative than another relation r 2  can be captured by these three orderings given 

in Definition 2.7.

D efin itio n  2.7  (H o are , S m y th  an d  P lo tk in  O rd erin g s) Let X , Y  G V{S).

1. A Hoare ordering, denoted by X  C** Y ,  is defined as for all x  G X ,  there exists 

y G Y  such that x  Ç5 y.

2. A Smyth ordering, denoted by X  Y , is defined as for all y G Y , there exists

X G X  such that x  Ç 5 y.

3. A Plotkin ordering, denoted by X  Y ,  is defined as % K and X  Y .

In the special case of unordered sets, Hoare and Smyth orderings become subsets 

and supersets, respectively. Thus, we can view a Hoare ordering as a generalised subset 

ordering and a Smyth ordering as a generalised superset ordering. Informally speaking.
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Hoare orderings can capture the concept that one relation contains more information 

than another. For example, the number of tuples in a temporal relation increases as time 

passes or the union of two relations carries the resulting relation to a “higher” order. On 

the other hand, Smyth orderings can capture the intuition tha t a relation in a “higher” 

order is a more precise description of a set of real world objects. For example, when 

querying a database, the answer obtained from the operations natural join and selection

[147], obtains a more precise description than in the database. Let us give an example 

to illustrate Definition 2.7.

E x am p le  2.3 In Figure 2.1, we show examples of Hoare, Smyth and Plotkin orderings. 

Obviously, all the tuples in r i  are also in V2  and thus we have vi r 2- Moreover, all 

the tuples in r i  are more informative than the tuple {UNK, CS, 30K) in rg. So we have 

r-g r\. Finally, we have rg r 2, since it satisfies tha t rg and rg

r\ =

NAME DEPT SALARY

NAME D EPT SALARY Bill CS 30K

Bill CS 30K r-2 = Mark CS 30K

Mark CS 30K Ethan EE 26K

Nadav EE 26K

(a)

rg =

(b)

NAME DEPT SALARY

UNK CS 30K

UNK EE 26K

(c)

Figure 2.1: Examples of Hoare, Smyth and Plotkin orderings

There are two extensions of ordering on the powerset of a linearly ordered set, which 

are especially useful in temporal domains. Let 5  be a linearly ordered set. We denote 

an interval 1 as [a, b) where a < b and define I  by I  = { t Ç i S \ a < t < b } .  Let Int be 

the collection of all finite intervals over S. We give the definition of precedence orderings 

and containment orderings as follows:
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D efin ition  2.8 (P reced en c e  an d  C o n ta in m e n t O rd erin g s) Let I\ =  [a i,6i), I 2  = 

[tt2 , 62) G In t.

1. A precedence ordering, denoted as I\ Qprec h i  is defined as a\ < 02 and b\ < 62.

2 . A containment ordering, denoted as h  Qcont h i  is defined cis 02 <  ai and b\ < 62.

In temporal databases, we commonly use a time interval to time-stamp a tuple in a 

temporal relation and thus each interval can be used for specifying the period of an event 

in a temporal database. In Figure 2.2(a), we show the fact tha t the period of an event Ei 

being specified by the interval Iei precedes the period of another event E 2  being specified 

by the interval I e 2 can be captured by Iei Qprec I e 2 ' Similarly, in Figure 2.2(b), we show 

that the fact that the period of an event E\  is within the period of another E 2  can be 

captured by Q c o n t  I e 2-

 Hfc. . he—H;.
futureai ^ ----- ^ b j  .  ^past #  Ÿ ^  future past

«2 •  " ' 1  ̂ \ 1I
b2

' ^  E.^ 2

(a) Precedence ordering (b) Containment ordering

Figure 2.2: Examples of precedence and containment orderings

2.2 Orderings in Databases

In this section we extend the relational data model to incorporate ordered domains. 

W ithin the extended model, we define ordered databases.

Let D be a countably infinite set of constant values and C/j be an ordering on D. 

W ithout loss of generality, we assume tha t all attributes share the same domain D. We 

now give the definition of an ordered database.

D efin itio n  2.9 (A ttr ib u te s  an d  O rd e re d  D om ains) We assume a countably infinite 

linearly ordered set of attribute names, {U, <u)- For all attributes AÇ: U, the domain of 

A  is {D,E-e ). We call the domain ordering of D.

D efin itio n  2.10 (R e la tio n  S chem a a n d  D a ta b a se  S chem a) A relation schema (or 

simply a schema) R, is a subset of U consisting of a finite set of attributes {Ai , . . . ,  Am}
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for some m > 1. A database schema is a finite set R  =  { Ri , . . . ,  Rn}  of relation schemas, 

for some n >  1.

D efin ition  2.11 (T up le  an d  T up le  P ro je c tio n )  Let X  = { A i , . .. ,Am}  be a finite 

subset of U where Ai ^  Aj for i ^  j  and A \ <u  • • • <u Am- A tuple t over X  is a 

member of D ^ .  We let t[Ai] denote the zth coordinate of t. The projection of a tuple t 

onto a set of attributes Y  = {Ai^, . . . ,  where 1 < <  • • • <  z/t <  m, is the tuple

t[Y] = J , . . . ,

D efin ition  2.12 ( Ordered R elation  and Ordered D atabase) An ordered relation 

(or simply a relation) r defined over a schema R is a finite set of tuples over R. An ordered 

database (or simply a database) over R  =  { R i , . . . ,  R„} is a finite set d = { r i , . . .  ,r„} 

such that each ri is a relation over R%. We call r and d an unordered relation and an 

unordered database^ respectively, if the underlying domain {D, Qd) is unordered, i.e., it 

is {D,=). Similarly, we call r and d a linearly ordered relation and a linearly ordered 

database, respectively, if the underlying domain is linearly ordered.

Therefore, we can view a conventional database as a special case of ordered databases 

with unordered domains. We compare the similarities and differences between various 

essential properties of conventional relations and ordered relations in the table given in 

Figure 2.3.

C o n v e n tio n a l R e la t io n s O rd ered  R e la t io n s

No duplicate tuples are allowed. Same as left.

Tuples are unordered. Tuples are ordered according to the ex­

tension of the domain ordering.

Attributes in a schema are unordered. Attributes in a schema are linearly 

ordered.

All domain elements are atomic. Same as left but note the correct inter­

pretation of such a phrase in Section 2.4.

Figure 2.3: Comparison between conventional relations and ordered relations
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2.3 Orderings and D ata Independence

Although ordering is a fundamental property of almost all primitive data types, existing 

database theory usually makes an implicit assumption that domains are either linearly 

ordered or unordered and thus the former case allows the less than predicate, <, to be 

used in selection formulae [147, 9]. In practice, all relational database systems support 

only the following three kinds of domain orderings considered to be essential in practical 

utilisation: (1) the alphabetical ordering over the domain of strings, (2 ) the numerical 

ordering over the domain of numbers, and (3) the chronological ordering over the domain 

of dates [41]. Let us call these orderings the standard domain orderings. There is strong 

evidence tha t ordering is inherent to the underlying structure of data in many database 

applications [20, 103, 130, 92, 129, 115, 116] and therefore the limited support of domain 

orderings results in loss of semantics of data. We call the ordering semantics in the 

context of a specific application semantic orderings, which will be addressed in detail in 

Chapter 5.

The ordering of tuples in a relation is useful information needed by the aggregate 

function ORDER BY, and thus in practice should be provided by the DBMS. We let 

a system ordering, denoted by <sys, on a relation r  be a linear ordering on r  tha t is 

generated by a DBMS. Note that the concept of system orderings and domain orderings 

are different. The ordering <sys may or may not follow the extension of domain orderings 

on tuples due to the fact that different DBMSs have their own storage and retrieval 

strategy. The following example helps further to clarify this concept.

E x am p le  2.4 Let r  over {A} be the relation {a, 6 , c} (having 3 tuples) and the domain 

of A  be alphabetically ordered. A system ordering, which is dependent on a particular 

DBMS, can take one of the six ways to arrange the tuples over r given in Figure 2.4.

A A A A A A

a a b b c c

b c a c a b

c b c a b a

Figure 2.4: Six possible system orderings of tuples in r
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Although in most cases the choice of the ordering of r  in the above example is done 

according to standard domain orderings (i.e., the first one in Figure 2.4), the ordering of 

tuples cannot be guaranteed to be alphabetically ordered if r  is the answer to a complex 

query over the DBMS. This is because the choice of ordering of r  is dependent on the 

implementation of a particular DBMS. It is worthwhile to consider how <sys affects the 

use of cursors in an embedded SQL statement [43]. For example, the result of selecting 

the nth tuple of r  is dependent on the ordering of tuples in r. In such case there will be a 

risk of losing physical data independence^ due to the fact tha t the returned tuples depend 

on <sysi which in tu rn  depends on the implementation of the system. This is rather 

undesirable and thus the current remedy is that we need to use the function ORDER 

B Y  to help “position” tuples when declaring a cursor (c.f., see chapter 10 in [43]). In 

other words, we need domain orderings to achieve physical data independence. We show 

in Figure 2.5 the differences between the various notion of orderings introduced so far.

Orderings DBMS level

semantic orderings

domain orderings

system orderings

EXTERNAL

CONCEPTUAL

INTERNAL

Figure 2.5: Orderings at different DBMS levels

We now define an operator called a domain ordering operator whose aim is to help 

present the relationship between domain orderings and data dependencies.

D efin itio n  2.13 (D o m ain  O rd e rin g  O p e ra to r )  Let r  be a relation over R  and X  

be a sequence of attributes which is a subset of R. Then a domain ordering operator 

over r, denoted by is defined as the set of linear orderings C on r such that for each 

<rG £  and for any tuples ^1,^2 G r, if ti[X] < x  t 2[%], then t\ <r ^2 (recall that < x  is a 

lexicographical ordering on the Cartesian products of data domains associated with X ).
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Furthermore, we call SOI (System Ordering Independent) if £  is a singleton.

E x am p le  2.5 Let D\ = {1,2} and D 2  = {a, 6, c} and a given relation r = {(2, a), (1, c), 

(1 , 6)}. Then the following ordered relations given in Figure 2.6 exhibit two different 

domain orderings in cja^ (r), because there are two choices of ordering for the tuples (1, 6) 

and (l,c) by the system.

^ 2

1 b

1 c

2 a

v4i A2

1 c

1 b

2 a

Figure 2.6: Two possible domain orderings of tuples on r

Thus we can understand from the above example that the ordering of r is still partially 

system dependent although it is ordered according to the domain ordering of A\  only. 

It is also clear that if X  is equal to the schema of r, then should be SOI. If X  is 

a proper subset of the schema of r, then it is desirable for ujx to be SOI, since we can 

save some computation resources of the system to achieve the independence of system 

orderings. This is because the system does not have to perform the sorting over every 

attribute in the relational schema in order to maintain ordered relations (recall that we 

assume that in an ordered relation tuples are ordered).

We conclude this subsection by the following Lemma describing an interesting re­

lationship between Functional Dependencies (FDs) and SOL The detailed study of the 

impact of order on FDs will be given in Chapter 4.

L em m a 2.1 Let r  be a relation over R, X , X '  Ç R  and 7r%(r) be the projection of the 

tuples in r onto X .

1 . A relation r satisfies a FD X  —>■ T  if and only if w%7rxy  (r) is SOL

2. X  is a superkey of a relation r if and only if w x(r) is SOL

3. X  is key of a relation r if and only if X  is a superkey and for no proper subset 

X '  cX ,u jx> {r)  is SOI. □
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2.4 Relationship to the Conventional M odel

As we have discussed in Chapter 1, the relational data model was introduced by E.F. 

Codd in 1970 [34], resulting in the development of relational DBMSs. His work is solidly 

founded on the concept of a relation in set theory. The set-oriented model offers three 

main advantages. Firstly, it provides the tabular format of a relation which is simple 

enough to be understood by all users including non-programmers. Secondly, it is flexible 

enough to be useful in a wide spectrum of applications, especially in the area of com­

mercial applications. Thirdly, it is elegant enough to support the development of many 

theoretical issues such as query languages and dependency theory.

These three essential ingredients of the relational data model have made it the most 

successful data model to date and should serve as guidelines for any further extensions 

of the relational data model. Partial orderings, which are binary relations on a set, are 

based on the set-theoretic formalism. We consider the effects on the following three 

components of the conventional model of incorporating partial orderings.

1. Structural. The structure of the relational data model represents information at 

three different levels stated below.

(a) D ata elements in a domain.

(b) Tuples in a relation.

(c) Relations in a database.

We impose a partial ordering on all data domains of attributes. There follows an 

induced lexicographical ordering on tuples as the relation schema is assumed to 

be linearly ordered. This serves as a minimal extended model which incorporates 

orderings.

2. Operational We extend the relational algebra and the relational calculus to the 

Partially Ordered Relational Algebra (which we call the PORA) and the Partially 

Ordered Relational Calculus (which we call the PORC), respectively, by allow­

ing the use of the ordering predicate Ç in both languages. We apply Paredaens’ 

and Bancilhon’s Theorem [12, 123] to examine the expressiveness of the PORA. 

Paredaens’ and Bancilhon’s Theorem is a fundamental result in query language 

theory, which characterises the expressiveness of the Relational Algebra (which we
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call the RA) in terms of automorphisms. An automorphism is a renaming of the 

occurrences of data values in a database such that it leaves the database invariant. 

Informally, the theorem states that a conventional relation can be obtained as the 

result of a RA expression on a database if and only if it is invariant by every au­

tomorphism of the database. Based on the PORA (or equivalently, the PORC) we 

extend SQL to Ordered SQL (which we call OSQL) which combines the capabilities 

of SQL with the power of semantic orderings.

3. Constraints: We consider Ordered Functional Dependencies (which we call OFDs) 

and Ordered Inclusion Dependencies (which we call OINDs) which are generalized 

forms of Functional Dependencies (which we call FDs) and inclusion dependencies 

(which we call INDs), respectively.

Therefore, the ordered relational data model is designed in an upwards compatible 

manner and ordered domains are the fundamental structure in our extension. Note 

that the notion of a domain in our model still obeys the principle of atomicity and an 

ordered relation satisfies the so-called first normal form  criterion [147]. We note that 

such a restriction does not necessarily mean that a domain must be as simple as numbers 

or strings. The principle of atomicity should be interpreted as the restriction tha t the 

internal structure of a domain element is not decomposable as far as the DBMS concerned 

[37, 41]. Using the terminology of objects, a domain element is encapsulated [155].

For example, the data type DATE obviously has three components, year, month and 

day, but can still be considered as an atomic domain. It may seem that a user could 

use the functions associated with D A T E  such as Y E A R  to violate the encapsulation 

principle. For instance, y E A R (‘T-July-1997”) returns the year 1997. This apparent 

paradox has been explained by Date in [41]. The internal structure of a domain element 

is not accessible by users, but it is perfectly permissible to access its internal structure 

through the standard functions associated with the domain. We would like to point out 

that the advantage in adopting this view of atomicity is that a domain can capture more 

complex data types. A domain can be a simple data  type such as Int or a compound 

data type such as the temporal domain D ATE  as we have mentioned. If the domain 

support is fully implemented to include more data types, relational databases can meet 

the demand of many advanced applications such as multimedia without violating the 

first normal form criterion.
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2.5 Other Related Work

In this section we discuss some related research work tha t has recognised the importance 

of ordering in information systems. However, we know of no similar attem pt to incor­

porate partial orderings into the data domains of the relational data model as we have 

done.

2 .5 .1  P a r tia l O rder D a ta b a ses

A recent proposal which notes the lack of awareness of partial ordering in data modelling 

models can be found in [129]. Raymond proposes tha t partial orderings should be a basic 

component in a database model and illustrates the potential of using partial orderings 

with some application examples such as textual information and software information. 

The conclusion of Raymond’s thesis is endorsed in this research that partial orderings are 

a fundamental property of data that needs to be captured in a data model. Moreover, it 

also aims at defining a unified data model in order to widen the applicability of databases.

However, there are three basic differences between his work and in this thesis. First, 

the idea of generalisation in Raymond’s work is based on the idea of object-oriented 

inheritance. As a result, a more generalized class does not necessarily support all the 

operations of its specialised classes. In contrast, our notion of generalization is based on 

the idea of upwards compatibility: a conventional database is a special case of ordered 

databases and the ordered relational data model generalises the structures, operations 

and integrity constraints of the conventional relational data model. Second, Raymond’s 

partial order model is defined to be a collection of algebraic operators for manipulating 

partially ordered sets. However, we present a thorough investigation of the impact of 

partial orderings on all the fundamental components of the conventional relational data 

model including the extensions of data dependencies and SQL. Third, our work is justified 

by the capability of unifying a wide spectrum of applications, the result of a survey result 

carried out to evaluate the prototype of the extension, and some theoretical metrics 

reported herein such as the soundness and completeness of the axiom systems for data 

dependencies, none of them being considered in Raymond’s work.

Ginsburg and Hull [55] have introduced the term order dependencies and examined 

the issue of the extension of functional dependencies to incorporate information involving 

order. Their work mainly focuses on the implication problem of order dependencies and
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the application of such dependencies in the area of physical implementation of relational 

databases. On the theoretical issues, the authors establish a formalism which is analogous 

to propositional calculus for analysing order dependencies. Moreover, they exhibit a 

sound and complete set of inference rules for order dependencies, whose implication 

problem is shown to be co-NP complete [54]. The central notion of order dependencies is 

similar to that of our definition of ordered functional dependencies arising from pointwise- 

orderings (POFDs), except that the involved domain orderings in order dependencies 

are further divided into total order, empty order and general partial-order. This finer 

classification of a partial ordering requires more sophisticated mathematical tools to 

explore the axiom systems for order dependencies. On the practical issues, the authors 

show that indexing space can be reduced substantially if order dependencies are present. 

For example, given a check account database and an order dependency stating that the 

check number of checks increases as the date that the check was written, a file which 

holds the check data will be automatically sorted by date if the file is sorted by the 

check number. This allows a substantial savings in storage space because without the 

knowledge of the order dependency, a dense index would have to be used.

2 .5 .2  M u lt i-R e so lu tio n  D a ta  M o d e l

The notion of a multi-resolution set adopted in [130] is equivalent to a special case of 

a partially ordered domain which can be defined as follows, a multi-resolution set is an 

ordered set with a unique minimal element and some maximal elements. It has been 

shown in this work that multi-resolution domains have very strong connections with 

the notion of approximation such as incompleteness or impreciseness of data. Actually, 

resolution is a necessary means of managing a very large amount of data transmission, 

since it is generally true tha t lower resolution data needs less space than higher resolution 

data, and thus takes less time to retrieve. For example, in the case of hypermedia 

information it normally consists of a very large amount of image data and thus resolution 

is an effective means of managing the size of data domain elements. Let us illustrate this 

concept with the following simplified multi-resolution domain:

{ ’Null’< ’Black and white icon’< ’Black and white raster’< ’8-bit Colour raster’< ’24-bit 

Colour raster’ }.
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In the above domain we have five distinct levels of resolution so tha t the users can 

select the appropriate level to save the transmission time for downloading a hypermedia 

document.

Based on the assumption of multi-resolution sets, the author extends the relational 

data model to support a construct tha t is called a sandbag, which essentially combines 

cardinality constraints of the scope of approximation into a multi-resolution set. For 

example, the sandbag “1( Ferrari, Red )3” means tha t there are one to three red Ferrari 

cars. A sandbag is a powerful construct to model incomplete or imprecise information, 

which can be viewed as a generalised form of histograms. The main result of this work is 

tha t it provides a formal framework to study the concept of multi-resolution data retrieval 

and presents some useful algorithms to implement sandbags. Moreover, it extends the 

conventional relational algebra to incorporate the notion of sandbags so that a relational 

DBMS can progressively refine the answer to a query. Overall speaking, a sandbag 

is a complex structure developed from the notion of sandwiches in [19], which has a 

rather complex definition. Although it is, to our knowledge, a novel attem pt to unify 

incomplete information and multimedia information, it is basically a tailor-made model 

for manipulating incomplete information. In most real life situations, the exact bounds of 

cardinalities will be unknown when the information is incomplete. Any artificial estimates 

would cause unnecessary burden upon the DBMS.

2 .5 .3  L ist or S eq u en ced  D a ta

There has been a fair amount of research to extend the relational data model to include 

lists or sequences as data types [63, 149, 57, 136]. A list can arrange objects in some 

pre-defined order. Thus it can be defined as a mapping between a collection of similarly 

structured real world objects and a linearly ordered domain. From this point of view, a 

linearly ordered set can be regarded as a non-repeating list. However, an ordered set is 

not allowed to contain duplicates. A list cannot, in general, represent a partial ordering 

and thus in this sense a list (or a sequence) and an ordered set are two incomparable 

entities. Richardson in [131] describes a way to incorporate lists into a data model and 

defines a collection of operators to manipulate a list. However, the expressive power 

of such operations is not clear and there is a lack of theoretical justification of such 

extensions.
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Wang [152] proposes two useful operators, called rs-operations, which are based on 

regular languages [54] and which define a family of list merging and extracting operations. 

Each operator takes a regular expression as an argument, and the words generated by 

the expression serve as patterns that direct how lists should be shuffled together or 

picked apart. A simple example is tha t the regular expression {x\XiX2 X\X2 ) merges 

the lists abd and ce and then generates abode. Another example is that by using the 

symbol *, the regular expression Q = {x\X2 )^ can generate the set of word patterns 

{xiX 2 iXiX2 X\X2 -, • ■ In a merge operation, Q can be used for producing the perfect 

shuffle of two equal-length lists, meaning tha t the two lists are evenly and maximally 

shufiled. For example, the perfect shuffle of two lists ac and bd is abed. In an extraction, 

Q can be used for producing the sublist of elements in odd (or even) numbered positions. 

These operators add considerable power to the user’s ability to manipulate lists.

2 .5 .4  O th er  U n ified  M o d e ls

A related approach is to extend the relational data model to incorporate abstract data 

types in domains, which have their associated operations as an integral part of each 

data type [138, 121]. As discussed in Chapter 1 , this approach is basically an object- 

oriented extension of the relational model (which is usually called the object-relational 

data model), resulting from the strong trend of object-oriented programming in the 1980s. 

Although research into the object-relational data model is still on-going, the abstract data 

type is an extremely powerful and established facility to have in a DBMS. In principle, 

we can use this facility to simulate ordered domains. The ordered relational model is 

related to this approach in two main areas. Firstly, our work helps to explore ordered 

data types, which is a fundamental but relatively unexplored territory of abstract data 

types in the object-relational data model. Secondly, our work provides some impetus for 

the acceptance of object-relational databases, since the current relational DBMSs can 

much more easily be upgraded to conform to our extension.

There is an attem pt in [83] to extend the relational data model in order to unify 

various kinds of incomplete information, fuzzy information and temporal information. 

Although the approach is based on fuzzy theory rather than orderings, it brings out the 

im portant fact that these different types of information systems have some fundamental 

common property which can be unified in the relational data model. It also brings 

out another im portant fact tha t in practice, fuzziness is usually embedded in temporal
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information. However, the author does not attem pt to develop a complete fuzzy temporal 

data model in his work. It is also interesting to mention the work in [153] which illustrates 

that spatial information is closely associated with temporal information in many real life 

applications. All these observations indicate that there is an essential need to adopt 

a uniform approach in order to handle these three kinds of information in an efficient 

manner.

Buneman and his colleagues have extensively investigated the generalisation of rela­

tional databases in the context of domain theory [20, 90, 72]. As discussed in Definition 

2.7, Buneman has studied three possible orderings on powerdomains (i.e., the powersets 

of domains) considered to be useful in incomplete information. His work on this gen­

eralisation utilises the Smyth orderings to provide a method of representing databases 

as typed objects in programming languages. He demonstrates that the proposed frame­

work can be used for generalising the two useful operators natural join and projection 

[20]. Moreover, he also characterises many im portant concepts such aa that of relational 

schema in databases, FDs and nested relations in terms of powerdomains. Although it 

was very convenient to use the Smyth orderings to obtain these fruitful results, it may lead 

to some counter-intuitive observations in actual databases. For example, a conventional 

relation is of a lower order than its subsets according to Smyth orderings. In fact, Hoare 

orderings also play an im portant role in in the theory of incomplete databases. Many 

database researchers still use Hoare orderings to capture the semantics of incompleteness 

in studying different issues concerning incomplete information [154, 89, 87, 88]. Libkin 

[91] presents an update semantics in incomplete information and proposes that Hoare or­

derings correspond to the natural orderings of sets, whereas Smyth orderings lead to the 

orderings of or-sets, which are basically sets of disjunctive facts (c.f., [6 8 , 134]). There 

are still many interesting extensions of the notion of orderings in powerdomains such 

as mixes, sandwiches, snacks and scones [90]. They are all used for providing different 

semantics of approximations.
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Chapter 3

Query Languages for the Ordered 

Relational M odel

In this chapter we extend the relational algebra (the RA) to the partially ordered relational 

algebra (the PORA) by allowing the ordering predicate Ç to be used in the formulae of 

the selection operator (cr). Thereafter the relational calculus (the RC) is extended to the 

partially ordered relational calculus (the PORC) in a similar manner. The extension is 

justified by the following four different facets related to query language theory. Firstly, it 

preserves the robustness of the PORA and the PORC, since these two languages can be 

shown to be equivalent. Secondly, it is consistent with the two im portant extreme cases 

of unordered and linearly ordered domains. In one special case of unordered domains 

(i.e., where each data element is only comparable with itself under ordering), the PORA 

reduces to the standard RA and gives the same result as Paredaens’ and Bancilhon’s 

Theorem [123, 12]. In another special case of linearly ordered domains (i.e., where any 

two data elements are comparable under ordering), the PORA expresses exactly the 

countably infinite set of all possible ordered relations on the active domain of a given 

ordered database. Thirdly, we show that the PORA is non-uniform complete, since it 

expresses exactly the set of ordered relations which are invariant under order-preserving 

automorphisms over databases. Fourthly, we demonstrate that there is a one-to-one 

correspondence between three well-defined hierarchies of: (1) computable queries, (2 ) 

query languages and (3) ordered domains.

As an illustration of the usefulness of the PORA, consider a partially ordered do­

main consisting of three names where Nadav Ç Mark and E than Ç Mark, capturing the
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semantics of both Nadav and Ethan being under the supervision of Mark. Suppose we 

would like to find the names of all members in Mark’s research group. This query can 

be formulated in the PORA as cr/yryiMEC'MarA:'(STAFF), where STAFF is a relation over 

{ N A M E } .  We note that such semantics cannot easily be captured without imposing an 

order on the underlying domain.

In Section 3.1 we give the definitions of the PORA and the PORC. We also present two 

useful operators, initial segment (7 ) and horizontal projection (r), in order to manipulate 

tuples in linearly ordered relations more effectively. We show that the expressive power 

are equivalent for the three languages of: (1) RAu{7 }, (2) RAU{r}, and (3) RAu{<} 

under the assumption that the cardinalities of relations are smaller than or equal to a 

fixed natural number. In Section 3.2 we demonstrate that the PORA and the PORC are 

equivalent and discuss some effects of this equivalence on the design of Ordered SQL, 

which extends SQL to the context of ordered databases. In Section 3.3 we investigate 

the expressive power of the PORA and show that it is complete in the sense that it 

satisfies a generalised Paredaens’ and Bancilhon’s Theorem [12, 123] (which we call BP- 

complete). In Section 3.4 we investigate three hierarchies of: (1) computable queries,

(2) query languages and (3) ordered domains, and demonstrate tha t there is a one-to- 

one correspondence between them. In Section 3.5 we investigate the issues concerning 

updating ordered domains and ordered databases. In Section 3.6 we briefly discuss an 

open problem of finding a syntactical characterisation of the concept of more ordered 

domains.

Throughout this chapter we use the term active domain.^ denoted by adorn(d), to 

represent the set containing those values that appear in a database instance d. Thus, 

(adom(d), Ç) is a subordering of the underlying domain of d (recall Definition 2.4 for 

subordering).

D efin itio n  3.1 (A ctive  D o m ain ) The active domain of a relation r  over R, denoted 

as adom{r), is defined by adom{r) = {u | 3A  G R, G r  such tha t t[A] =  v}. The active 

domain of a database instance d =  { r i , . . . ,  } over R  is defined by

n

adorn (d) =  [ J  adorn (r*).
Z=1
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3.1 Query Languages: the PO RA and the PORC

In this section we introduce an extension of the conventional relational algebra (RA) and 

the conventional relational calculus (RC) [34, 147], which are called the partially ordered 

relational algebra (PORA) and the partially ordered relational calculus (PORC), respec­

tively. These two languages are essentially those conventional ones with the ordering 

predicate added to deal with ordered domains.

3 .1 .1  T h e  P O R A : an  A lg eb ra ic  Q u ery  L an gu age

The PORA consists of a collection of six operators, each of which takes as input a set 

of relations and returns as output the relation resulting from applying the operator to 

them.

D efin ition  3.2 (P artia lly  Ordered R elational A lgebra). The PORA is a collection 

of the following six operators.

1. Union (U).

2. Cartesian product (x).

3. Difference (—).

4. Vertical projection {nx), where X  Ç U  is a finite set of attributes.

5. Renaming (p%_>y), where A  —>■ T  is a bijective function from a finite set of a t­

tributes X  Ç U  to a finite set of attributes Y  Ç.U.

6. Extended selection (ctjp), where the selection formula F  is restricted to be one of

the forms: A = B, A  ^  A  Q B  or A % B ,  where A E [/, and either B  E U oi B

is a constant.

The six operators given in Definition 3.2 are the standard ones (see [147, 9] for their 

formal definitions and semantics) and the meaning of the selection over the formula 

A C. B  is also as expected, i.e., given a relation r, cryiçg(r) =  E r  | t[A] Ç t[B]}. 

We choose to interpret the union compatibility as follows, the union is applicable only 

to two relations with the same schema and the orderings of the domains of the corre­

sponding attributes are the same. Let X  = {Ai , . . . ,A„}  and Y  = {J5i , . . . ,R„} be 

finite subsets of U. We use the shorthand notations <r%=y(r) to represent the expression
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(yAi=Bi (• • • {(^An=Br, W ) • • '), and crx^y(r) to represent the expression (r) U  • • • U

aAni^Bni"^) 1 respectively. As discussed in Chapter 2 , the ordering of a relation r  is the 

lexicographical ordering defined over r, which is an extension of domain orderings. We 

use CTxcvi'^) to mean the comparison according to lexicographical orderings, which is 

also a short hand notation representing the expression (JAicBii'f') U {<JAi=Bi{(^A2 nB2 {'^))) 

U  • • • U  {(7Ai=Bi  • • • An-l=Bn-l{(^AnCBni"^))) ' '

We now define PORA expressions using the six operators mentioned.

D efin itio n  3.3 (P a r tia lly  O rd e re d  R e la tio n a l A lg eb ra  E x p ressio n ) A PORA ex­

pression is a well-formed expression composed of a finite number of operators in the 

PORA whose operands are relation schemas. We denote by E p o r a  the set of all PORA 

expressions. For the sake of clarity, when no ambiguity arises we may omit some paren­

theses in EpoRA  expressions.

A query over an ordered database is formulated by means of a PORA expression and 

the answer to an expression is dependent on a database instance.

D efin ition  3.4 (A nsw er to  an  E x p ress io n ) Let d = { r \ , . . .  , r„} be a database over 

R  =  { R i , . . . ,  Rn}- The answer to an expression e E E r q r a  with respect to an ordered 

database d over R  is obtained by substituting the relation for every occurrence of Ri 

in e and computing the result by invoking the operators present in e. The answer is 

undefined, if there is some operand R  of an expression which is not in R . We denote the 

answer to e with respect to d by e{d).

An expression represents a query over a database. We need the notion of equivalence 

of expressions in order to compare the expressiveness of different queries.

D efin itio n  3.5 (E qu ivalence o f E x p ressio n s) Let D B{H )  denote the set of all data­

bases over R . Two expressions e\ and 62 are said to be equivalent^ denoted by ei =  62,

if for all d E DB(R.), ei{d) — 6 2 ( d ) .  Two sets of expressions E i  and E 2  are said to be

equivalent, denoted by E i = E 2 if

1. V 6 i G E l,  3 62 G F?2 such that 61 =  62, and

2. V 62 G E 2 , 3 e\ E E l  such that 61 =  62.

46



Informally, two sets of expressions being equivalent means tha t they represent the 

same set of queries. Using this concept we say an operator op is uniformly simulated by 

an expression e, if op is equivalent to e. If op is a PORA operator and e is a PORA expres­

sion which does not contain op, then the op is not primitive with respect to the PORA. In 

such cases it does not add any extra expressiveness into the PORA, except that it would 

help to simplify PORA expressions. One example is tha t we do not include the operator 

intersection (fl) in the PORA, since we can uniformly simulate it as the following expres­

sion: r \ r ir2 = r i ~  (ri — r 2). Another good example is tha t we do not include the operator 

natural join (m) in the PORA, since we can also uniformly simulate it as the following ex­

pression: r i  CXI T2 =  7TR^_Ai,...,Ri.Am,Bu...,Bn {(^Ri.Ai=R2 .Ai ' ' ' {<7Ri.Am^R2.Ami''^l X ^2)) ' ' 

where r\ and r 2 are over R i  and R 2 , respectively, A i , . . .  ,Am  are the common attributes 

of R i  and R 2 , and , . . . ,  are the attributes in either R \  or R 2 except those common 

attributes.

A weaker notion of simulation of operators called non-uniform simulation requires 

only that for any given database there exists a PORA expression equal to the result 

of the PORA operator on the database. A typical example is the difference operator 

(—), which can be non-uniformly simulated by the other operators in the PORA for 

given relations r\ and T2 as will be shown in Lemma 3.1. However, this refers to given 

instances of r\ and T2  only; the difference operator cannot be uniformly simulated by a 

PORA expression that involves only the other five operators of the PORA. Therefore, 

the difference operator is still primitive, which we should include in Definition 3.2.

L em m a 3.1 For every pair of relations r\ and T2  over kP, the relation (ri — 7-2) can be 

obtained as the result of a PORA expression whose operands are r\ and r 2 .

P ro o f. Let w — r iC \r 2  contain k tuples {U, . . . ,  defined over W .  First, we con­

struct a relation that is essentially the Cartesian product of w with itself k times with 

suitable renaming as follows: = p w -^ T iM  x ••• x pw^Tki'^)  times). Now con­

sider the expression e =  ctti^T2 {' ' ' • {(^Tk-i^Tk (w^)) • ' • ) ) ' " )  for all distinct

G which returns a relation with k factorial tuples; each of them is a

juxtaposition of the k tuples in w up to renaming of the attributes. We now have 

r\ — r 2 = • • • {crw^Tki’’̂  X e)) • • •) since ti will be eliminated by (Jw^Ti for

i G { ! , . . . ,  A:}. Thus, the remaining tuples are in the relation r\ — r 2 after taking the 

projection onto W . □
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The following example can help to clarify the above lemma.

E xam ple 3.1 Let r\ = {a, 6, c} and r2 =  {6, c, d} be the relations over {A}. Thus 

r i n  r 2 =  PB^A{T^B{(^B=c{pA-^B{ri) X pA-^c{r2 )))). So we have w = r i f ] r 2  = {b,c} 

over A. Now e =  <yBj^c{pA-^B{w) x p A -^ c M )  =  {bc^cb} over {B, C). Finally, r\ — r2  = 

X e))) =  {(%} as expected.

We observe that cr= is not primitive, since for any relation r it can be uniformly 

simulated as the following expression: cr^=B(r) =  cra ^ b {(^B'OA{f'))• Similarly, cr^^fî(r) 

can be simulated as follows, cr^^s(r) =  cfâ b {'^)^ <̂ B%A{f')- In the extreme case of 

unordered domain crç becomes (j=, i.e., for any given relation r, cr>içfi(r) =  (%^=g(r). 

Therefore, our definition of the PORA is consistent with the standard relational algebra 

used in [123]. Let UORA =  (p, x, —, U, vr,cr=,cr^} be the unordered relational algebra 

and LORA =  {p, x, —, U, tt, cr<, cr^} be the linearly ordered relational algebra for a given 

linear ordering of D. We formalise our observations as follows.

P roposition  3.2 Let (D, C,d) be the underlying domain. Then 

EpoRA = E u o r a  if (D, Qd) is unordered, and 

E p o R A  = E l o r a  if {D, Qd) is linearly ordered. □

Note that those relations which can be generated by E po r a  involve only relations in 

d and contain values solely in adom{d). We denote by ead{d) the PORA expression that 

generates adom{d). The following proposition will be repeatedly used in many formal 

proofs subsequently in this chapter.

P roposition  3.3 Let ead{d) =  UijT^Ajiri), VA  ̂ G Ri where Ri G R, and Vrf G d. Then 

adom{d) =  ead{d). □

The possible information of d is the countably infinite set of all relations that can be 

derived from the adom{d).

D efin ition  3.6 (Possib le Inform ation) The possible information of d, denoted by 

Poss{d), is defined by
oo

Poss{d) = [JV{adom{dy).
i=0
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Although the selection operator cr< in the LORA can be employed to make comparison 

of tuples in linearly ordered relations, it is still not clear whether it has sufficient power to 

retrieve tuples according to their orderings. For example, we would like to know whether 

the LORA can express some common queries involving order, such as retrieving the first 

three lowest sales figures in a sales record. We now introduce an operator called initial 

segment (7 ), which should help to manipulate tuples in a linearly ordered relation r  over 

schema R. This operator allows us to select the first n  tuples according to the linear 

ordering <^, where n is a positive integer.

D efin ition  3.7  (Initial Segm ent) The initial segment of a linearly ordered relation r 

over R, denoted by 7 ^ whose parameter n  is an integer, is defined by 7 n(r) =  | t G r

and t  is the A:th tuple t according to the linear ordering with 1 <  <  n} if 1 <  n;

otherwise, 7 n(r) is defined to be 0 .

We note tha t 7 n(r) =  r  if and only if n > | r  |. We give the following simple example 

to illustrate the usefulness of the initial segment operator.

E xam ple 3.2 Consider a linearly ordered relation r = {111,212,221} (3 tuples). Then 

7 i(r) =  {111}, 72 (7-) =  {111,212}, 7 n(r) =  r  for n > 3 and 7 ^(7") =  0 for n  <  0.

An interesting fact of jn  is that a weaker operator 71 (i.e., returning a first tuple) 

together with the UORA is sufficient to uniformly simulate the effect of 7„ in a linearly 

ordered relation r. For instance, 7 3 (r) =  7 i ( r  —7 i ( r  — 7 i ( r ) ) )U7 i ( r  —7 i ( r ) )U7 i(r).  The 

following proposition can be easily proved by using induction on the parameter n  of 7 .

P roposition  3.4 7n(7’) =  e for some expression e defined over {71 , U, —}. □

It is clear that the operator 7  ̂ is not equivalent to any UORA expression, since there 

is no operator in the UORA to be defined over linearly ordered relations. We now make 

a simple extension of the UORA as follows, UORA^  =  UORA U {7^} and assume that 

7 n(7’) is undefined over unordered relations. Then the expressive power of the UORA^  

is equivalent to that of the UORA if the domains are unordered, since in this case no 

extra power can be gained by 7 „. On the other hand, UORA^  can be applied to linearly 

ordered relations due to the fact that in general, all operators in the UORA can be applied 

to ordered databases. We now define a similar operator called horizontal projection (r), 

which allows us to select a particular tuple by specifying its position according to the 

ordering of a linearly ordered relation.
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D efin ition  3.8 (H orizontal P rojection). The horizontal projection of a linearly or­

dered relation r  over R, denoted by Tn whose parameter n  is an integer, is defined by 

T n i r )  =  {t \ t E r and t is the n th  tuple according to <^} if 1 < n; otherwise, r„(r) is 

defined to be 0 .

Note that r„(r) is a singleton if and only if 1 < n < | r  |, otherwise r„(r} =  0. The 

horizontal projection operator r  has the similar property as stated in Proposition 3.4.

P roposition  3.5 r„(r) =  e for some expression e defined over { ti, U, —}. □

We now let UORA^ = UORA U {r„} and denote by the set of all UORA^  ex­

pressions. Similarly, we denote by E uqra the set of all UORA^  expressions. The simple 

relationships between 7 ^, r„, and EJjqj^̂  ̂ can be formally stated as follows.

Lem m a 3.6 The following statements over linearly ordered relations are true.

1. The operator can be uniformly simulated by an expression.

2. The operator 7 ^ can be uniformly simulated by an expression.

Proof. Let r  be a linearly ordered relation over R.

1. We claim that r i ( r )  =  71 (r) and for n >  2, r„(r) =  7 n(’’) — 7n-i(7’)- This claim 

can be easily proven by using induction on n. Thus, it follows tha t Tn{r) can be 

expressed in E ^ qj^^.

2. This part can be easily established by noting that 7 n(?') can be expressed as r i( r )  U 

. . . Ur „ ( r ) .  □

We impose a restriction on the cardinalities of r  over R  in order to define a subclass 

of linearly ordered relations called bounded relations as follows, a relation r  is said to be 

bounded i f | r |  <  A; for some fixed natural number k. Furthermore, we call a database a 

bounded database if all relations in the database are bounded. Note tha t if r  satisfies the 

condition that | 7r>i(r) | <  A: for A  E R, then r  is bounded. The restriction of | 7Tyi(r) | < 

k is known as a domain constraint [74, 51, 32], which is also a basic kind of constraint in 

conventional databases. The assumption tha t a relation is bounded is certainly practical, 

since it is necessary to restrict the cardinalities of a relation in the implementation of a 

DBMS due to the limited space resources of a platform environment.
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Lem m a 3.7 T h e  f o l lo w in g  s t a t e m e n t s  o v e r  b o u n d e d  a n d  l in e a r l y  o r d e r e d  r e l a t io n s  a r e  

t r u e :

1. T h e  o p e r a t o r  c a n  b e  u n i f o r m ly  s i m u l a t e d  b y  a n  E l q r a  e x p r e s s io n .

2 . T h e  o p e r a t o r  (t a < b  c a n  b e  u n i f o r m ly  s i m u l a t e d  b y  a n  e x p r e s s io n .

Proof.

L e t  Ri  =  { R i . A i , . . . ,  R i . A m }  fo r  i  G { 1 , 2 } .

1. B y  P r o p o s i t i o n  3 .5 ,  i t  s u f f ic e s  t o  s h o w  t h a t  r i ( r )  i s  e q u i v a l e n t ly  t o  a n  E l q r a  

e x p r e s s io n .  I t  c a n  b e  c h e c k e d  t h a t  r i ( r )  =  s U  {r — w ) ,  w h e r e  s =

pRi^R{'^Ri{(^R^<R2 i‘r X r))) -  0 ) )  and w =

((T A i< R 2 (^  X r ) ) )  X r ) ) ) ,  r e s p e c t iv e ly .  W e  r e c a l l

t h a t  t h e  n o t a t i o n  U  {GR..Ai=^R^.AMRi.A2 <Rj.A2 {f')))

u  • • •  U  {(JR^.Ai=Rj.Ai • "  {(^Ri.Am-i=Rj.Am-i{^Ri.Am<Rj.Am{'^))) • • •)• N o t o  t h a t  t h o  

s u b e x p r e s s i o n  ( r  — w )  in  t h e  a b o v e  f o r m u la  i s  n e c e s s a r y  t o  c a t e r  fo r  t h e  c a s e  o f  r  

b e i n g  a  s i n g l e t o n ,  s i n c e  in  t h i s  c a s e  (^R^^R^if x  r )  =  0 .

2 .  N o t e  t h a t  t h e r e  a r e  a t  m o s t  km  {k t u p le s  x  m  a t t r i b u t e s )  d i s t i n c t  e l e m e n t s  in  r.  

T h e  s e l e c t i o n  o p e r a t o r  {(7a < b ) i s  e q u i v a l e n t ly  t o  t h e  f o l lo w in g  e x p r e s s io n :  (JA<B{f') 

=  7TRi(^AB=CD{r X s ) ) ,  w h e r e  s  i s  a  r e l a t io n  o v e r  { C ,  D } ,  w h ic h  i s  d e f in e d  b y  s  =  

U 5  ( r . i eadir ) )  x  r , ( e , , { r ) ) ) .  □

T h e  f o l lo w in g  e x a m p l e  h e l p s  t o  c la r i f y  L e m m a  3 .7 .

E xam ple 3.3 W e  u s e  t h e  s a m e  r e l a t io n  r  a s  g i v e n  in  E x a m p l e  3 .2 ,  w h o s e  s c h e m a  is  

R  =  { A , B , C } .  L e t  R i  =  { R i . A ^ R i . B , R i . C }  fo r  i  G { 1 , 2 , 3 } .  I t  c a n  b e  c h e c k e d  t h a t  

T i ( r )  =  s  =  ( r  X r ) ) ) ( r  x r ) ) ) .  ( W e  ig n o r e  { r - w )

fo r  t h e  s a k e  o f  c la r i t y  b u t  i t  c a n  b e  c h e c k e d  t h a t  r  — w  =  ^ s i n c e  r  i s  n o t  a  s i n g l e t o n . )  

W e  s h o w  b e l o w  t h e  p r o c e s s  o f  e v a lu a t in g  t h i s  e x p r e s s i o n  b y  s t e p w is e  c o m p u t a t i o n .

1 . L e t  S i  =  r  X  r  o v e r  { R i . A ,  R i . B , R i . C ,  R 2  A ,  R 2 .B ,  R 2 . C } .

T h e n  w e  h a v e  s i  =  ( 1 1 1 1 1 1 ,  1 1 1 2 1 2 ,  1 1 1 2 2 1 ,  2 1 2 1 1 1 ,  2 1 2 2 1 2 ,  2 1 2 2 2 1 ,  2 2 1 1 1 1 ,  

2 2 1 2 1 2 ,  2 2 1 2 2 1 }  (9  t u p l e s ) .

2 . L e t  S2  =

T h e n  w e  h a v e  S2  =  ctr^^a<R2 .a { s i )  U  {(JRi.a=R2 .a{(^Ri.b<R 2 . b { s i ) ) )  U
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{(yRi.A=R2 .A{(^Ri.B=R2 .B{(^Ri.c<R2 .c{si)))). Now S2 over R u  which consists of three 

tuples as given by {111212 , 111221 , 212221}.

3. Let s =  Pr^-^r{'ïïr^{s2 )) -  Pr2 -^r{'^R2 {s2 )) = {111,212} -  {212,221}. Then we 

have s = {111} over R  as the required answer.

As an illustration of part 2 of Lemma 3.7, the selection operator (t a < b  can be uni­

formly simulated as follows, (7y^<g(r) =  t^r{cfab=cd{t x s))? where s = (ri(ead(r)) x 

T i { e a d { r ) ) )  U (T i ( e g d (r ) )  x T 2 { e a d { r ) ) )  U { r 2 { e a d { r ) )  x T 2 { e a d { r ) ) )  =  {11,12,22}. (We do 

not show Tn for n < 3 since it is equal to 0.) Then we have 7TR{aAB=CD{'f' x s)) =  

{ 111, 221}.

We now summarise the expressiveness of ^ u o r a  E r o r a  as the following

theorem.

T heorem  3.8 and E r o r a  are equivalent over bounded and linearly

ordered databases.

Proof.

The result follows by Definition 3.5, Lemma 3.6 and Lemma 3.7. □

3 .1 .2  T h e  P O R C : a  C a lcu lu s Q u ery  L an gu age

In this subsection we make a simple extension of the conventional tuple relational calculus 

[147, 9] called the partially ordered relational calculus (PORC). We first define the set of 

symbols which are allowed in formulas of the PORC.

D efin ition  3.9 (Sym bols o f th e  P O R C ) The symbols of the PORC have the following 

six items:

1. Constant values (or simply constants) are a, a i , 02 , . . . ,  which are elements of the 

domain D .

2. Tuple variables (or simply variables) are t , t i , t 2 , ^ , which are members of a count- 

ably infinite set of variables V such that V D D =  0.

3. Relational symbols are R^ R \, R 2 , . . . ,  which are drawn from a countably infinite set 

of variables 71 such tha t 7?. fl V fl D  =  0.
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4. The operators are =  and Ç.

5. The logical connectives are 3, V and -i.

6 . Delimiters are () (parentheses), and ,(comma).

Note tha t we consider the negation, disjunction and existential quantifier only since 

they are sufficient to generate other connectives such as V {universal quantifier), A (con­

junction), => (implication) and ^  (equivalence). For example, R i A R 2 = ->((->Ri) V 

(- 1̂ 2)) and VjR =  ->3(->R). Although x = y can be represented 8iS (x Ç. y A y Ç. x), we 

include the equality predicate =  for the sake of clarity in expressions. We denote by t[i] 

the 2th  component of a tuple t. We now define atomic formulas over symbols, which are 

the basic components of a PORC expression.

D efinition  3.10 (A tom ic Formulas) The atomic formulas of the PORC have the 

following two forms.

1. R(t), where R is a relation symbol and f is a variable.

2 . xOy, where 6 6  {=, Ç}, a: is a component reference of a variable of the form t[i],

where f is a variable and i is an index, and y is either a component reference or a 

constant.

We write rr ^  ^ as an abbreviation ->(x Qy) .

D efin ition  3.11 (W ell-form ed Form ulas) The well-formed formulas (or simply for­

mulas) are defined recursively as follows.

1. An atomic formula is a formula.

2. If F  is a formula, then so are -iF  and (F).

3. If F i and F2 are formulas, then so is F i V  Fg.

4. If F  is a formula, then so is 3t : R (F)  (or simply 3t(F)  if no ambiguity arises),

where Ms a variable and R  is a set of attributes.

5. No other formulas are formulas.

53



We omit parentheses in formulas if no ambiguity arises as to the meaning of a formula. 

In addition, we assume tha t all the relation schemas corresponding to the relation symbols 

tha t are mentioned in F  are included in a database schema R. We call a variable defined 

by item (4) of Definition 3.11 a bound variable, otherwise we call a variable a. free variable. 

We write for a formula F  to indicate that are the free variables

occurring in F.

We now define PORC expressions using well-formed formulas and free variables.

D efin ition  3.12 (P artially  Ordered R elational C alculus Expression) A PORC  

expression, consisting of a free variable t, a bijective function g from a finite set of 

attributes R Ç Î7 to a finite set of attributes S  C U, and a well-formed formula F, is 

defined as {t : g{R) | F (t)} .

Note that in the above definition there can be only one free variable in F. If g is an 

identity, i.e., no renaming of attributes is required, we just omit g and write the PORC 

expression as {t : R | F{t)}. We denote by E po rc  the set of all PORC expressions, and 

by E lorc  and EpoRC the set of those PORC expressions for the cases of linearly ordered 

domains and unordered domains, respectively (c.f., E lqra  and E uqra in Proposition 

3.2). We now define the semantics of PORC expressions.

D efin ition  3.13 (Satisfaction  o f a Formula by a Tuple) Let d = {r i , . . . , rn}  

be a database over the schema R  =  { R i , . . . ,  R^} and consider the PORC expression 

{t : R I F{t)}. A tuple u = {a \ , . . .  ,am) satisfies the formula F  with respect to d, if 

u 6 D ^ ,  and one of the following conditions is satisfied:

1. If F  is the atomic formula R{t), then R G R  and the tuple u satisfies u E r, where 

r G d which is over R.

2. If F  is the atomic formula xOy, then aiOaj is satisfied, where substitutes x  and 

either y = t\j] and aj substitutes y, or î/ is a constant and Oj =  y.

3. If F  is the formula (Fi), then u satisfies the formula F  if u satisfies F\.

4. If F  takes on one of the forms: -iFi, Fi A F2 , Fi V F2, then u satisfies F  is defined 

according to the semantics of the corresponding Boolean connectives on the tru th  

values of F\ and F2 [53].
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5. If F  is the formula, 3t\ : Ri{F i{ t ,t i )) ,  where the arities of t and t\ are m  and m i, 

respectively, then u satisfies F  if there exists a tuple (61, . . . ,  bmi ) G such that 

when (61, . . . ,  bmi) is substituted for t\ ,  u satisfies Fi{t).

Informally, an answer to a PORC expression with respect to a database d is the set 

of all tuples satisfying F.

D efin ition  3.14 (A nsw er to  a PO R C  expression) The answer to a PORC  expres­

sion : R I F{t)}  with respect to a database d over R, denoted as {t : R | F(t)}(d), is 

a relation r  over schema R, which is defined hy r = {t \ t  satisfies F}. The answer is 

undefined if there is some relation symbol R  of an expression which is not in R.

An im portant detail to be considered is that the answer to a PORC expression is 

supposed to be finite and is dependent only on a given database d. However, PORC 

expressions allow us to define the formulas as shown in the following example, whose 

result is an infinite set of tuples [147].

E xam ple 3.4 Consider the following two PORC expressions.

1. { t : R  \ ^R{t)}.

2 . { t : R \  A (i[l] =  ti[l])) V (R ii t i )  A (([2] =  ii[2])))}.

It is clear that the answer to the first expression in the above example depends, not 

only on the database instance d, but also on the domain D. Let us call such formulas 

domain-dependent formulas. If D  is infinite, then the first expression results in an infinite 

relation as an answer, which is undesirable, since we can only have a finite number of 

tuples in relations. As the second example shows, a domain-dependent formula does not 

necessarily have negation. It can be checked that the answer to this expression depends 

on D  and thus results in an infinite number of tuples as an answer. So it is not trivial to 

deduce from the syntax of the formula whether it is domain-dependent or not. In fact, it 

has been shown that this problem in the context of the conventional RC is undecidable

[148], i.e., the following problem is undecidable;

Is the formula in an E uorc expression a domain-dependent formula?

Therefore, it follows that the problem of domain-dependence of EpoRC is also unde­

cidable, due to the fact tha t E uorc is just the special case of E pq rc  (i.e., when D  is 

unordered). We formalise our discussion by the following proposition.
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P ro p o s itio n  3.9 Given a formula F  in a PORC expression, the problem of whether F  

is domain-dependent is undecidable. □

There are two possible approaches to tackle this problem.

The first approach is to impose certain restrictions on the syntax of all subformulas 

to ensure tha t a PORC expression is safe [147], in the sense that the answer of the 

expression depends on d only. (By a subformula of a formula F  we mean a substring F  

tha t is also a formula.) For example, one restriction is that we only allow the negation 

operator to apply to a formula which is in a conjunction with some safe formulas. Another 

restriction is that we do not allow different free variables occurring in Fi and F2  when 

they are connected by disjunction. It is clear tha t the first and the second expressions in 

Example 3.4 violate these two restrictions respectively.

The second approach is to impose a restriction on the semantics of PORC expressions. 

Note that a PORC expression is domain-dependent mainly because the variables in the 

expression are allowed to vary freely over the domain. Therefore, we can resolve this 

problem by assuming that all substitutions of variables are chosen from a subset of 

adom{d). For example, we can assume tha t each variable in a well-formed formula is 

associated with a declaration of range [9], and thus the answer of a PORC expression 

cannot contain any new values apart from those in the declared ranges. We adopt this 

approach and from now on assume that all the constants in the first item in Definition 3.9 

should be chosen from adom{d), and that the set of all constants appearing in a PORC 

expression is a subset of adom{d).

3.2 Equivalence between the PO R A  and the PORC

In this section we compare the expressive power of the PORA and the PORC. We show 

that they are actually equivalent. The equivalence can be established by the next two 

lemmas. The method that we use is standard (c.f., see Chapter 3 in [147]), whose 

basic idea is to carry out induction on the number of occurrences of operators in PORA 

expressions (or PORC expressions in the reverse direction).

L em m a 3.10 For every PORC expression Cc, there is an equivalent PORA expression

P ro o f. We prove it by induction on the number of occurrences of the connectives and
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the quantifiers in F. Assume an Cc expression to be of the form {t : R  | F{t)}.

{Basis). There are two cases of atomic formulas.

1. The formula is Ri{t)] the corresponding PORA expression is Ca = r i ,  where r\ is a 

relation over the schema R\.

2. The formula is x 6 y; the corresponding PORA expression is Ca = cFAiOAji^ad)^ if 

X = t[i] and y = t\j], or Ca = (^AiSai^ad)^ if ^ =  n, where Cad is the expression to

generate the active domain of the relation r  (see Proposition 3.3 for the definition

of Cad)-

{Induction). We consider the negation, disjunction and existential quantifier as follows.

1. Negation: F  = ->Fi.

Gg =  (cad)” — e^i, where e^i is the corresponding PORA expression for F i.

2. Disjunction: F  = {F\) V (F2).

6 a = epi U 6 f 2 , where and ep2 are the corresponding PORA expressions for Fi 

and F2, respectively.

3. Existential quantifier: F  = 3t\ : Ri{F\).

6g =  7TRi{eFi), where e^i is the corresponding PORA expression for F\.

This completes the induction. □

L em m a 3.11 For every PORA expression eg, there is an equivalent PORC expression

6c-

P ro o f. We use similar method as the previous lemma. The proof is by induction on the 

number of occurrences of the six operators that are defined in Definition 3.2.

{Basis). There are two cases of relations.

1. For the case of a constant relation, without loss of generality, we assume tha t it is 

a unary relation which has only one tuple, eg =  {(a)}; Cg =  : F  | t[l] = a} where 

R  =  {A}.

2 . For the case of a relation r E d, over R  = { A \ , . . . ,  A„}; 6 c = [t : R \  R{t)}.

{Induction). We consider various primitive operators, op 6  PORA, at the top level of 

the algebraic expression. Let Cg, 6^ ,61,62 £  E r o r a - For the cases of unary operators of

57



projection, selection and renaming, we let the corresponding calculus expression for e'̂  

be e'̂  = {t : R  \ F{t)}, where R  = { ^ i , . . . ,  An}. Thus we have =  op{e'a). For the cases 

of binary operators of Cartesian product, union and difference, we let the corresponding 

calculus expressions for ei be {t : R \ \ Fi{t)} and 62 be {t : R 2 \ F2(t)}, respectively. 

Thus we have =  (ei)op(e2).

1. Projection; without loss of generality, we assume tha t only the attribute An is 

projected out: Ca = 7rAi,...,An-i{^'a)'i the calculus expression is Cc = {t : R  \ 3ti : 

Ri{F{t)  A (t[l] =  ^i[l]) A • • • A {t[n -  1] = ti[n — 1]))}, where R i = R  — {A„}.

2 . Selection: =  (^AidB{^a)'i then the calculus expression is given hy Cc = {t : R  \ 

F{t) A {t[i]6t[j])} if B  = Aj, oi 6c = {t : R  \ F{t) A {t[i]6a)] if B  = a.

3. Renaming: Ca = px^Yie'a)  with X  = { A i , . . . ,A m }  and Y  = { B \ , . .. ,Bm}, 

respectively. Let p be a bijective function from X  to Y”, which is defined by

g{Ai) = Bi. Then the calculus expression is given by Cc = {t : g{R) | F{t)}

where p(R) =  {^(A i),...,p (v l^ )} .

4. Cartesian product: e\ x 62; we let R  = R \ U R 2 . Then the calculus expression 

is given by Cc =  : R | 3ti3t2{Fi{ti) A ^ 2 (^2) A {t[l] = ti[l]) A - -  A {t[m] =

ti[m]) A • • • A {t[m +  1] =  ^2[1]) A • ■ • A {t[n] = t2 [n — m]))}.

5. Union: ei U 62; the calculus expression is given by 6c =  : R | Fi{t) V F2 (^)}.

6 . Difference: the proof is similar to the case of union except we replace the formula 

in the calculus expression Cc by {Fi{t) A ->F2 {t)).

This completes the induction. □

We now give the main theorem in this section.

T h e o re m  3.12 E p q r a  and E p o r c  are equivalent.

P ro o f. By Definition 3.5, Lemma 3.10 and Lemma 3.11, we can readily establish the 

equivalence. □

The above theorem shows that the PORA and the PORC actually express the same 

set of queries. It also shows the robustness of these two languages and thus they can 

be adopted as a benchmark for evaluating expressiveness of a query language in ordered
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databases. From this point of view, we can say that the PORA (or the PORC) is Codd- 

complete [35], since Codd suggests that the RC is adopted to be the standard to measure 

completeness of a query language in conventional databases. Moreover, SQL, which is 

the most common query language for commercial DBMSs, is developed to conform to the 

standard of the RC. We adopt the conventional approach in developing SQL and extend 

SQL to Ordered SQL (OSQL). Our extension is also based upon the essential features of 

PORC. For example, we extend the WHERE predicate in OSQL to implement the atomic 

formula t[i] Qd t[j] in the PORC as follows. Ai < Aj WITHIN D, where the keyword 

RTTiLTiV specifies the ordered domain D, and A{ and Aj are attributes corresponding to 

the tuple components t[z] and t[j], respectively.

An im portant feature of OSQL is the implementation of a tuple list, which is basically 

the listing of different levels of an internal hierarchy of a relation. We can view an internal 

hierarchy as a generalisation of the position of a tuple in a linearly ordered relation. We 

need some terminology to explain the underlying idea of this extension. Let (r, Çr) be an 

ordered relation. We denote by part{r) a partition of r, which is a set of pairwise disjoint 

non-empty subsets of r such that U repart(r)^ =  r, and call an element T  6  part{r) 

a tuple level of r. An internal hierarchy of a relation r  is a linearly ordered partition 

induced by

D efin itio n  3.15 (In te rn a l H ie ra rch y  o f a  R e la tio n ) An internal hierarchy of r  is a 

linearly ordered set {part{r), <), such tha t

1. VT G part{r), V^i,t2 G T, either = t 2  or t\ || t 2  (i.e., T  is unordered).

2. MTi,Tj G part{r), Ti < Tj  V î G Ti,Vf2 G T j,  t 2 %r ^i-

3. y X i ,T j  G part[r), Ti < Tj  => 3ti G Ti, 3t2 G Tj  such that t\  Cr ̂ 2-

A tuple u G s is said to be minimal, where s Ç r, if for any t Ç: s, t C.j. u  implies that 

t = u. We remark that s may have more than one minimal tuple. In the special case of 

linearly ordered relations, s has a unique minimal tuple. In the other extreme case of an 

unordered relation, all tuples in s are minimal.

E x am p le  3.5 Consider a unary relation having 5 tuples, (r, <r) =  {{a ,h ,c ,d ,e] ,{a  Ç 

c, 6 Ç c, c Ç e ,d  Ç e}) (5 tuples). We show two possible internal hierarchies part{r) = 

{T i,7 2 , 7 3 } given in Figure 3.1.
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(a) (b)

Figure 3.1: Two possible internal hierarchies for a relation r

The following lemma shows that by successively collecting the sets of minimal tuples in 

the subsets of a relation we can construct an internal hierarchy as illustrated in Figure 

3.1(b).

Lem m a 3.13 Every relation contains an internal hierarchy.

P roo f.

Let r  be a given relation. We use the following algorithm to generate a partition. 

A lg o rith m  3.1

1 . b eg in

2 . ro =  r  and Tq =  0 ;

3. do  u n til n _ i =  0

4. Ti is the set of minimal tuples of — Tj_i;

5. r e tu r n  Result =  { T i,. . .  ,T/};

6 . end.

It is trivial tha t the above algorithm will term inate for a finite relation r. Let the Icist 

tuple level generated by the algorithm be T/ and {T\ <  Tg < - - < T)} be a collection of 

subsets obtained by the above algorithm, where the linear ordering is according to the 

order of generation of Tj in the steps 3 and 4. Clearly, it is a partition of r such that 

for all t i , t 2  G Ti, if t\ and ^2 are distinct, then we have t\ || t 2 , since they are both the 

minimal tuples of r*. So it satisfies part 1 in Definition 3.15. Now, we assume to the

contrary that G Ti,3t2 G Tj such that t 2 Er h  and Ti < Tj. Then it follows that

t 2 = t\ ,  since t\ is a minimal tuple and is less than 2̂- However, this is impossible because
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Ti and Tj are disjoint. Hence part 2 is also satisfied. Finally, part 3 can be established 

by noting that Ti is the set of all minimal elements of some superset of Tj. It follows 

that for any element t 2 G Tj, there is an element t\ G Ti such tha t ti Cr 2̂- O

The next lemma is immediately followed by the definition of Algorithm 3.1.

Lem m a 3.14 The internal hierarchy generated by Algorithm 3.1 is unique.

Proof.

This can be easily established by using induction on Ti and the fact tha t Ti is the unique 

set of all minimal tuples of r*. □

The following lemma can be regarded as a generalisation of part 1 of Lemma 3.7 

to partially ordered relations. It shows that the tuple levels of the internal hierarchy 

generated by Algorithm 3.1 can be expressed by the PORA (or equivalently, the PORC) 

for a relation r over R.

Lem m a 3.15 Any tuple level of the internal hierarchy generated by Algorithm 3.1 can 

be expressed by the PORA.

Proof.

We can generate Tj, where 1 <  i <  n, recursively as follows.

2 =  1: Ti =  s U (r — w ) ,  where s =

X r))) -  x r))), and w  =

PR,^R{TTR,{aR^^ji^{r X r))) U pR^^R{7TR^{aji^^ji^{r x r))), respectively.

2 >  1: Ti = sU  (ri — w), where n  = (■ ■ ■ ((r — Ti) — Tg) • • • — Ti_i), s =

PRi^R(^Ri((^RiCR2(^i ^  n ))) -  PR2^R(^R2((^RiCR2(^i X n))), and w  = 

PRi-^R('^Ri(crR,cR2(^i X n ) ) )  u  pR2-,R(7TR^((7ji^^jiJri X n))), respectively. □

Lemmas 3.13, 3.14 and 3.15 have practical significance as they indicate that a unique 

internal hierarchy can be generated by collecting the minimal tuples of a relation (or its 

subset) and in addition, using the PORA we can express a tuple level of such hierarchy for 

a given relation. The concept of tuple levels is very natural and easy to understand. In 

the special case of linearly ordered relations, Ti is the singleton containing the 2th  tuple.

Thus, our choice of the SELEC T  statement in OSQL to include a tuple list specifying

tuple levels in a relation can be justified by this formalism. (We will discuss OSQL in 

detail in Chapter 6 .)
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3.3 Non-Uniform  Com pleteness of the PO RA

In this section we present our result of a generalisation of Paredaens’ and Bancilhon’s 

Theorem [123, 12] to ordered databases. We begin this section by discussing the concept 

of order-preserving database automorphism and then we examine the expressive power 

of the PORA by Paredaens’ and Bancilhon’s Theorem.

3 .3 .1  O rd er-P reserv in g  D a ta b a se  A u to m o r p h ism s

We generalise the notion of automorphism [9] to the context of ordered databases. Infor­

mally, an ordering automorphism of an ordered set is a permutation of its elements such 

tha t the ordering of the set is preserved.

D efin itio n  3.16 (O rd e rin g  Iso m o rp h ism  an d  O rd e rin g  A u to m o rp h ism ) Let

{S, Ç5 ) and (T, be ordered sets. The function /  : S  — > T  is an ordering iso­

morphism if /  is bijective and /  satisfies the condition tha t a\ Qs 0-2 if and only if / ( a i )  

E t  f{o>2 )\ («S', E 5 ) and (T, are ordering isomorphic if there exists an ordering iso­

morphism /  : S  — > T. In particular, if T  =  5  and Ç,t = Eg, then we call /  an ordering 

automorphism of (5, Cg). If the set {a 6  S' | f{a)  ^  a} is finite, then we call /  a finite 

ordering automorphism. We denote the set of all finite ordering automorphisms of an 

ordered set (S, Cg) by Aut{S, Cg), or simply Aut{S)  when Cg is clear from the context.

We now define an order-preserving automorphism of a database. Informally, this is 

a permutation of the values in the active domain of a database instance that does not 

alter the database and also preserves the ordering of the active domain.

D efin itio n  3.17 (O rd e r-p re se rv in g  D a ta b a se  A u to m o rp h ism ) Let h be a partial 

function from D to D such that it is an ordering automorphism of {adom{d), Ç). The 

extension of h to tuples t, relations r and databases d is defined recursively as follows:

1 . h(i) =  (h((%i) , . . . ,  h((2j7j)), if t =  (u i, . . . ,  Um)'

2 . h{r) =  {h { ti ) , . . . ,  h{tk)}, if r  =  { t i , . . . ,

3. h{d) = { /i(r i) ,...,h (rn } } , i i d  = { n , . . . , r ^ } .

We call h an order-preserving database automorphism if its extension to d satisfies h{d) = 

d] by this we mean that h ( r j  =  n  for 1 < z <  n. Furthermore, h can be regarded as
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an identity on {D — adom{d)) unless further specified. We denote the set of all order- 

preserving database automorphisms of database d by Aut{C.,d), or simply Aut{d) when 

Ç is clear from the context.

The following example should help to clarify the meaning of Aut{d).

E x am p le  3.6 Let d contain just a single relation having 4 tuples, r = { x z ,y z ,x w ,y w } ,  

and let (adom(d),C) =  { { w ,x ,y , z } ,{ x  Ç: y , x  Ç. z , x  Q w}). We define functions: h\ by 

hi{x) =  y, hi{y) = x, hi{z) = z  and hi{w) = w; h 2 by h2 {x) = x, h 2 {y) = z, h2 {z) = y 

and h 2 {w) = w\ and fig by hz{x) =  x, ^ 3(1/) =  y, h^(z) =  w and hs{w) = z. Then 

h\ 0  Aut{d) because, although it preserves the database instance, it does not preserve 

the ordering; and /i2 0  Aut{d) because, although it preserves the ordering, it does not 

preserve the database instance; however, fig G Aut{d) because it preserves both the 

ordering and the database instance.

It follows from Definition 3.17 that, for all partial orderings Ç, id G Aut{Q^d) Ç 

Aut{=,d). Moreover, id is the only element of Aut{<,d)  for any linear ordering < It 

also follows that Aut{C.,d) = Aut{=,d)r\Aut{adom{d), Ç).

3 .3 .2  A  G e n e ra lisa tio n  o f  P a r e d a e n s ’ an d  B a n c ilh o n ’s T h eo rem

We now present our result of the generalisation of Paredaens’ and Bancilhon’s theorem in 

this subsection. The underlying principle in our approach is to view an ordered database 

as an unordered database together with a binary relation s representing {adom{d), Qd )- 

An ordered relation r derived from d is regarded as an unordered relation over r  x s, 

where s is a binary relation representing {adom{r), Qd )- We assume from now on tha t (1) 

adom{r) Ç adom{d) (we note tha t this is equivalent to assuming r G Poss{d)), and (2) 

the set of constants using in selection formulas (7 =  0. We need the following technical 

lemmas to establish our main theorem. The proofs of the next two lemmas follow from 

the definition of order-preserving automorphism.

Lem m a 3.16 Let d = { r i , . . . ,  r„} be a database over { i? i,. . . ,  Rn}-, s be the unordered 

relation over S  given by s =  {(a, 6) \ aC .b  and a, 6 G adom(d)}, and let d' = { r \ , , r„, s} 

considered as an unordered database over { i? i,. . . ,  i?„, 5}. Then Aut{=, d') = d).

Proof.

We show Aut(d') = Aut{d) by the following two parts.
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{Aut[d!) Ç Aut{d)). Let h G Aut{d'). It follows tha t h{s) = s and thus (a, 6) G s if and 

only if (/i(a), h{b)) G s. Hence, we have Va, b G adom{d), a Ç 6 if and only if h{a) Ç h{b). 

So h G Aut[d).

{Aut{d) Ç Aut{d')). Let h G Aut{d). It follows from Definition 3.17 that h preserves 

the ordering of adom{d) and h{d) = d. Thus, Va, 6 G adom{d), a Ç 6 if and only if 

h{a) Ç h{b). Hence, we have h{s) = s and thus h{d') = d!. So h G Aut{d'). □

For a relation r, we define Aut{r) = Aut{{r}).

Lem m a 3.17 Let r  be a relation over R, s be the unordered relation over S  defined by 

s =  { (a ,6) I a Ç 6 and a, 6 G adom{r)}, and let r ' =  r  x s considered as an unordered 

relation over RS.  Then Aut{=,r ')  = Aut{C.,r).

Proof.

We show Aut{r) = Aut{r') by the following two parts.

{Aut{r) Ç Aut{r')). Let h G Aut{r) and t G r ' . By the definition of r ', it follows that 

3^1 G r and t 2  E. s such tha t t\ = t[R] and t 2  = t[5]. By the definition of Aut{r), we have 

h{ti) G r and h{t2 ) G s. It follows that 3 /  G r' such that t  [i?i] =  h{ti) and / [S'] =  h{t2 )- 

Thus, h{t) G r'.

{Aut{r') C Aut{r)). Let h G Aut{r') and G r  and t 2  E s. Then 3t G r' such that 

[̂jR] =  ti and t[S] = 2̂* By the definition of Aut{r'), we have h{t) G r ' . It follows that 

h{t\) G r and h[t2 ) E s . □

Defining d' and r' as the above two lemmas, the following result can be proved using 

induction on the number of relational operators together with some algebraic manipula­

tion.

The next lemma follows from the previous two lemmas, where d' and r' are defined 

above.

L em m a 3.18 Let d be a database over R  and r  a relation over R. Then e'[d') = r' for

some e' E E uqra if and only if e(d) = r for some e E E p q r a -

Proof.

IF: Let e^{d) be the answer to an expression in E r qra  with respect to d having k 

operators. We show by induction on the number of operators in e tha t e(d') =  r' for 

some e G E u q r a - Let e{d) be some relation r over R.

(Basis). We have d = {r} and d' = {r, s} where s is defined as in Lemma 3.16, it is
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trivial that r' = r x  s with s = s.

{Induction). Assume that e^{d) = r  and e'(d') =  r ',  where k > l. For any operator 

op G PORA —{cr^çfî}, we have e'(d') =  (op(7r; ( ( / ) ) ) xs if op is unary and e'(d') =  

(((7T/î(rJ))op ((7riî(r2)))x s  if op is binary. For the operator cr^çs, we have e'(d') =  

{'^r{o'ab=cd{'>^')))^s, where {C ,D }  is the schema of s. We note tha t s can be expressed 

by an UORA expression in all the above cases. W ithout loss of generality, assume op 

is unary, we have s = 7rcD(^AB=CD{ead{op{7rR{r'))) x ead(op(7Ti?(r'))) x s) (recall the 

definition of Cad in Proposition 3.3).

ONLY IF: Similarly, we prove this part by induction.

{Basis). We have d' = {s} and d =  0. Thus, r and s =  0. It is trivial that e{d) = r. 

{Induction). Assume that (e')^(d') =  r' and e{d) = r , where A: >  1. We first show 

tha t s and s can be expressed by the PORA expressions, s = cr^izB(ead(d) x Cad{d)) and 

s = cTACB{ead{r) X Cad{r)), respectively. For any operator op G U O R A — {cta=b}, we 

have e{d) =  7rR{op{rxs)) if op is unary and e{d) = ^ ^ ) ^ P ( ^ 2 X 5 ) )  if op is binary,

where R \  and R 2 are the schemas of r\ and r 2, respectively. For the operator g a = B i we 

have e{d) = 'k r { g a ^ b { ( ^ b ^ a { t  x  s ) ) ) .  □

In order to compare Aut{d) and A ut(r), we interpret Aut{d) Ç Aut{r)  as follows, for 

all h G Aut{d), h{r) = r and h is a permutation of the elements in {adom{d) — adom{r)). 

Note that this interpretation is consistent with the usual meaning of set inclusion Ç 

when adom{d) = adom{r). Using our notation, we can state Paredaens’ and Bancilhon’s 

theorem in [123] as follows.

Lem m a 3.19 Let d be an unordered database. Then e{d) = r  for some e G E u q ra  if 

and only if Aut{=, d) Ç Aut{=, r). □

We now show that this can be generalised to ordered databases.

T heorem  3.20 Let d be an ordered database over R  and r  an ordered relation over R. 

Then e{d) = r  for some e G E p q r a  if and only if Aut{C.,d) Ç Aut{C.,r).

Proof.

From Lemma 3.16, Aut{=,d')  =  Aut{C.,d), and from Lemma 3.17, Aut{= ,r ')  = Aut{C. 

,r). The result then follows from Lemma 3.19, with d' substituted for d and r' for r, 

together with Lemma 3.18. □
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We note tha t Theorem 3.20 can be straightforwardly extended to data  domains having 

any specified binary relation, but in this case a -  may be primitive. Moreover, our result 

can be easily generalised to the case of C ^  0 by replacing Aut{d) in Theorem 3.20 by 

the so-called C-fixed Aut{d) (see section 2.3 in [9]), which is defined as {h E Aut{d) | h 

is an identity on C}.

We close this section with the following corollary, which is an interesting result that 

follows from Theorem 3.20. Informally, in the case of linearly ordered domains, the 

LORA expresses exactly the countably infinite set of all possible relations generated by 

the active domain of a given database.

C o ro lla ry  3.21 Let d be a linearly ordered database. Then e{d) = r  for some e E E lqra  

if and only if r  E Poss{d).

P ro o f.

IF: As we have observed, Aut{d) = {id}. Now, since id  E Aut{r)., the statement Aut{d) Ç 

Aut{r) holds for all relations r in Poss{d). Furthermore, LORA =  PORA for linearly 

ordered databases. By Theorem 3.20, it follows that there exists e E E l q r a  such that 

e{d) =  r.

ONLY IF: It is trivial tha t for all e E E l q r a i  ^(d) E Poss{d). □

3.4 Hierarchy of Computable Queries w ith Ordered D o­

mains

In this section we investigate the relationship between computable queries, ordered do­

mains and partially ordered relational algebras. We first define a hierarchy for each of 

them and then we show tha t there exists a one-to-one correspondence between these 

three hierarchies.

We now use an index subscript to denote different orderings over D, i.e., T>i = (D, C j  

where i is a positive integer. We also use Aut{T>i) and PO RAi  to represent the set of 

ordering automorphisms and the PORA in which is crç., respectively. The semantics 

of “more ordered” domains can be defined in terms of ordering automorphisms of the 

subsets of domains.

D efin itio n  3.18 (M ore  O rd e re d  D o m ain ) A domain V 2  is said to be more ordered 

than another domain D i, denoted by V \ ■< V 2 , if for all T  Ç D, Aut{T, Ç2) Q Aut{T, Çi).
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The informal reason for allowing T  Ç. D m. the above definition is that we take into 

account the fact an active domain of a database can be defined on any subset of D. 

As a consequence of the definition, Aut{d) would not be affected by the automorphisms 

induced from outside the active domain. Let us consider the following example.

E x am p le  3.7 In Figure 3.2(a) we use Hasse diagrams representing ordered domains.

Obviously, we have for all T  Ç Z) =  {a, 6, c}, Aut(T, Ç3) Ç Aut(T, Ç2) Q

and thus the relationship X>i < X>2 < 7^3 can be captured by Definition 3.18 in a natural

manner.

Figure 3.2: Hasse diagrams of ordered domains

Now we consider the expressiveness of the PORA for different orderings. Let the set 

of relations generated from the information contained in a given database d, denoted by 

G en(Çi,d), be defined as {r | r  =  e{d) for some e G E p o R A i } -

D efin ition  3.19 (M ore  P ow erfu l R e la tio n a l A lg eb ra ) A relational algebra PORA2  

is more powerful than another P O R A i,  denoted by P O R A \ ■< PORA2, if for all databases 

d, Gen{n.i,d) Ç Gen{Q2 ,d)-

If PORA2  is a more powerful language than P O R A i,  then we can retrieve more rela­

tions from a given database instance using P O R A 2 . We still need to make an extension 

of the notion of computable query for ordered databases, but we take a different approach 

from [28]. The motivation for our definition is to include those queries which are mean­

ingful with respect to the ordered domain concerned. The criteria for being meaningful 

over an ordered database d is that the query must be invariant under all order-preserving 

database automorphisms over d.

Let D B{H )  be the countably infinite set of all databases defined over a database 

scheme R  and let % =  U ^o RiD^). (Recall tha t we assume tha t D is a common domain 

for all attributes.)
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D efin ition  3.20 (M eaningful C om putable Query) A meaningful computable query 

with respect to a given domain denoted by 6, is a partial recursive function from 

Z)B(R) to X such that for all d E DB{H),

1. if 6{d) is defined, then S{d) E Poss{d), and

2. for all h E Aut{C.i,d), h{0{d)) = 0{d).

We denote the set of all meaningful computable queries by Qi.

Note that our definition of a meaningful computable query is the same as the con­

ventional one if we restrict ourselves to unordered domains. Now we state two technical

lemmas and then present our main theorem. The first lemma follows easily from The­

orem 3.20 and Lemma 3.17. It can be regarded as a generalisation of Lemma 3.17 to 

databases. The second lemma is useful when we compare different ordered databases. 

Basically it allows us to consider ordering automorphisms on the underlying domain 

instead of automorphisms on databases.

Lem m a 3.22 Let d =  { r i , . . . ,  r„} be a database over { R \ , . . . ,  s be the unordered 

relation over S  given by s =  {(a, 6) | a Ç 6 and o, 6 E adom(d)}, and let r  =  r i x •• - x r„ x s ,  

considered as an unordered relation over R \ - ■ ■ RnS. Then Aut{Q, d) = Aut{=, r). 

Proof.

We show Aut{C.,d) = Aut{= ,r)  by the following two parts.

{Aut{C., d) Ç Aut{=, r)). We let r ' =  r i  x • • • x r„ , which is an ordered relation obtained by 

the PORA expression as shown. By Theorem 3.20, it follows tha t Aut{C.,d) Ç Aut{n.,r') 

and also by Lemma 3.17, it follows that Aut{C.,r') Ç Aut{=,r).  So we have Aut{C.,d) Ç 

Aut{=,r).

{Aut{=,r) Ç Aut{Q,d)). Let h E Aut{=^r). We claim tha t h{vi) = r* and h(s) = s. 

Assume to the contrary tha t this claim does not hold. Then we have either h{vi) ^  r* or 

h{s) ^  s. Assume that h{vi) ^  n , then 3t E ri such that h{t) 0  r^. Let t' E r  such that 

t'[Ri] = t. Thus it follows tha t h{t') 0  r, which leads to contradiction, since we assume 

h E Aut{=,r).  The argument is similar to the case of h{s) ^  s. We now have h E Aut{=  

, d'), where d' = { r i , . . . ,  s}. By Lemma 3.16, it follows tha t Aut(=, d') = Aut{C., d).

Thus, h e  Aut{C,D,d). □
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L em m a 3.23 V \ ■< V 2  if and only if Aut{Q 2 id) Q Aut{C.i,d) for all databases d over 

R.

P ro o f.

IF: Consider any h 6  Aut{T, Ç2) with T  C D. Let X  = {a Ç: T  \ a ^  h{a)} and, since 

h is a finite automorphism, suppose X  — { o i, . . .  , 0 ^}. Define a database d over R  as 

follows, for all r E d, r consists of exactly k tuples { h , . .. ,tk}  for some finite natural 

number fc, where U = (&%,..., for 1 < % < A;. Obviously, we have tha t h G Aut{Ç.2 ,d). 

By hypothesis, this implies h G Aut{C.i,d) and thus h G Aut{T, Ç i).

ONLY IF: This follows easily by using the fact tha t =  Aut{=^d)r[Aut (T,

for any database d, where T  = adom{d). □

We now present our main result stating the association between domains, queries and 

languages. This allows us to establish hierarchies for these entities.

T h e o re m  3.24

1 . T>i :< T>2 if and only if Qi C Q2 ,

2. V i :< T>2 if and only if P O R A \ ■< P O R A 2 .

P ro o f.

(1) IF: Assume V \ T>2 i by Definition 3.18 and Lemma 3.23, this implies that there 

exists a database d' such that /i2 0  Aut{C.i^d') for some h2  G Aut{Ç.2 ^df). Let d' =  

{ r i , . . .  ,rn}. We now construct an instance of a query that is in Qi but not in Q 2 . We

substitute d = d' and r = r' in Lemma 3.22. Then we have that for all h G Aut{Ç.i,d'),

h{r') = r'. On the other hand, h2 {r') 7̂  r' since h 2  0  Aut{Q\^d'). We define a query ô as 

follows: 6{d) =  r' when d = d' and 0{d) is equal to 0 otherwise. By part (2) of Definition 

3.20, Ô E Qi but S 0  Q2 -

ONLY IF: Let Ô E Qi and d G D B (R ) .  From part (1) of Definition 3.20, 6 (d) G Poss{d) 

and from p a rt(2) of Definition 3.20, for all h E Aut{Ç,i,d), h{S{d)) = 6{h{d)). By the 

assumption V \ :< V 2  and Lemma 3.23, Aut{U,2 ^d) Ç A ut(Ç i,d). Therefore, for all 

h E Aut{C,2 ,d), h{6{d)) = 6{h{d)) and thus 6 G Q 2 -

(2) IF: Assume T>i X>2? by Definition 3.18 and Lemma 3.23, there exists a database 

d' =  { r i , . . . , r „ }  such that Aut{Ç-2 ^d') ^  A ut(Ç i,d '). It suffices to exhibit a database 

d and a relation r  such tha t r E (jen (Ç i,d ) but r 0  Gen{C.2 ,d). We let d = d' and
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r  =  r i  X • • • X X s and s  =  {(a, 6) | a Çi 6 and a, 6 G adom(d')}, respectively. Clearly, s 

can be derived from d by some e G P O R A \  and thus r  G G en(E i, d). It remains to show 

r  0  G en(Ç2, d). Suppose r  G Gen(Ç2, d). By Theorem 3.20, Aut{Ç,2 ,d') Ç A ut(Ç 2 ,r )  =  

Aut{=^r)r\Aut{adom{r)^^ 2 )- It follows that A u t{ ^ 2 id') Ç Aut{=,r).  By Lemma 3.22 

it follows tha t Aut{C.2 ,d') Ç A ut(Ç i,d '), which leads to a contradiction.

ONLY IF: Let r G G en(Ç i,d). We need to show tha t r  G Gen{Ç.2 ,d). By Theorem 3.20, 

Aut{n.i,d) Ç Aut{Q i,r) .  Thus Aut{adom{d), Ç.2 ) fl Aut{C.i,d) Ç Aut{adom{d),C.2 ) fl 

Aut{C.i,r). Moreover, we have Aut{n.i,d) = Aut{adom{d),C,i) n  Aut{—^d) and Aut{\I.i 

,r )  =  Aut{adom{d), Ç i) D Aut{=,r).  It follows tha t Aut{adom{d), Ç2) C Aut{adom{d), Çi 

) n  Aut{=^d) Ç Aut{adom{d), Ç2) C Aut{adom{d), Ç i) H Aut{=,r).  By the assumption 

of T>i :< T>2 and by Definition 3.18, we have Aut{adom{d), Ç2) Q Aut{adom{d), Ç i). It 

follows that Aut{adom{d), Ç.2 ) H Aut{=,d)  Ç Aut{adom{d),C.2 ) H Aut{=,r).  Hence we 

have Aut{C.2 ,d) C Aut{C.2 î )̂- By Theorem 3.20 again, we have r G Gen{C.2 -,d). □

The following corollary states that there is a correspondence between the set of mean­

ingful computable queries and the relational algebra. Informally the relational algebra 

P O RAi  (non-uniformly) expresses the result of Qi on a fixed database instance. There­

fore in this sense we can say that the language PO R A i  is non-uniformly complete.

Corollary 3.25 Q\ Ç Q2  if and only if P O R A i :<  P O R A 2 .

Q ueries Q= Ç Ç Qi Ç Ç Q<

t

D om ains ( D ,= )X  . ■ ■

I t

A lg eb ras P O R A ^ d  • ■ X PO RAi  X • ■ X PORA<

Figure 3.3: A correspondence between hierarchies of queries, domains and languages
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We present the diagram in Figure 3.3, which summarises the relationship between the 

hierarchies of (1) meaningful computable queries, (2) partially ordered domains, and (3) 

partially ordered relational algebras we have discussed. The implications of this result are 

that if the underlying data domains of an ordered database have more inherent structure, 

then a wider scope of queries are possible. In other words, the ordered relational model 

can provide more expressive query languages than those of the conventional one, and in 

this sense we can say tha t more meaningful queries are possible with respect to an ordered 

relational database. There is still an open problem to find a syntactic characterisation 

tha t is equivalent to the definition of a more ordered domain.

3.5 U pdating Ordered Databases

There has been a fair amount of research on the topic of updates in conventional databases 

[4]. The problem of updating databases can be further partitioned by considering three 

perspectives related to the relational data model, which are listed as follows.

1. Updating views at the external level of a DBMS.

2 . Updating relations at the conceptual level of a DBMS.

3. Updating the underlying domain of attributes.

Each of these three kinds of updates is related to the others. The first category of 

updates is still an on-going research issue, which concerns achieving logical data indepen­

dence of conventional databases or their extensions such as incomplete databases [58]. 

Basically, a view in a database tailors the database to different requirements of a vari­

ety of database users. For example, using the view facilities provided by a DBMS, the 

DataBase Administrator (DBA) can choose to hide certain information in a database for 

some security reasons, or to materialise a view so as to facilitate the very recent strategy 

of data warehousing used in the commercial sector [69, 107]. However, the relational 

data model does not provide the users with full support of logical data independence. 

For example, if a view is obtained by projection on a relation r, then deleting a tuple 

from the view may lead to ambiguity in deleting the corresponding tuple in r, since a 

projected tuple may come from many possible tuples in r. Thus it results in the so-called 

view update problem as follows, given a view and an update against this view, how to
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translate the given update into an appropriate update against its underlying relational 

database without causing unnecessary loss of information.

The view update problem occurs similarly in ordered databases. There is no difference 

in the ordered relational model in this case of updating unless it affects the underlying 

domain. One approach to solve this problem is to restrict view updates in certain types 

[27] in order to prevent an inconsistent database occurring at the conceptual level. An­

other approach is to provide users with a universal relation interface [147], which can 

achieve logical database independence by allowing users to view the database as if it were 

composed of a single relation.

The problem of updating relations in the context of ordered databases is related to a 

more fundamental question of updating domains. Suppose a tuple involving a value which 

is associated with some new semantics of its domain is inserted into an ordered relation, 

then the semantic domain may need to be updated. For example, when a new manager 

is employed in a company, the boss/subordinate relationship may be changed and in 

such a case the domain EMP_NAME should be updated to reflect the new hierarchy 

of employees. It is interesting to note that some semantic domains are relatively static 

and they can be regarded as intensional data [9] such as relation schemas. For example, 

the semantic domain of the post ranks in a university, {lecturer <  senior lecturer < 

professor} is invariant with respect to database instances. Suppose a tuple involving a 

value which associates with some semantics of its domain is deleted from a relation, then 

this value may need to be deleted from the semantic domains. For example, when a 

manager has left a company, the boss/subordinate relationship may be changed and the 

domain EMP_NAME should be updated accordingly.

We now address the issue of updating ordered domains. By updating we mean a 

sequence of delete or insert operations. Let us begin with two basic assumptions regarding 

ordered domains. First, we assume that the domain V  we intend to update is finite. 

Second, we assume the uniqueness name axiom, i.e., each domain value is required to 

have a unique name which is distinguishable from other names of values.

We first consider the special case of V  being unordered. Suppose we want to delete 

an element a from V. If this value does not occur in r  (i.e., a 0  adom{r)), then in 

principle, there should be no restriction on such a delete on %), since it does not affect 

r. Otherwise, a delete operation should be carried out on the affected tuple (i.e., those
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tuples containing a) in r  prior to the delete being carried out on V. In such a case there 

are three approaches we can use to eliminate the occurrences of a from r.

1. To replace the occurrence of a with null values in the affected tuples if null symbols 

such as U N K  are provided (i.e., an incomplete relation is defined).

2. To remove all the affected tuples from r.

3. To reject such a delete operation on V.

We believe that all the above approaches are reasonable in practice. Thus the seman­

tics of deleting an element from a domain should be further clarified. For example, an 

employee record (Jose, junior-programmer^ \2 K  ) in a relation EMPJRECORD over 

the schema {EMPJMAME, POST_TITLE, SALARY} represents the fact that the em­

ployee Jose, who is a junior programmer, has salary 12K. Then there are several possible 

semantics for deleting the value “junior programmer” in the corresponding domain of 

POST_TITLE. One scenario is that the post title is being changed but the company 

has not yet formerly approved a new title. Then the first approach is appropriate. An­

other scenario is that all junior programmers have left their jobs and thus the company 

changes its management structure and decides that this post title will not be used in 

future. Then the second approach is appropriate. The third scenario is that the DBA 

wants to delete the post title only if there is no employee still possessing such a post 

title in the EMP_RECORD. It is reasonable to expect that the DBMS should provide 

the users with further guidance to carry out this process.

The issue of maintenance of the partial ordering in a domain is also essential when up­

dating a domain. The strategy we adopt is to keep the change to be minimal with respect 

to the ordering on the domain. We formalise this concept as the following definition.

D efin itio n  3.21 (O rd e r-P re se rv in g  U p d a te s )  Let V  — (D, □/)) be a domain such 

tha t after it has been updated becomes V \ = (D i, Edi)- We call the update an order- 

preserving update if a Qd b implies that a b for any pair of elements a,b E Di.

We observe that when deleting an element a from T> the ordering between its successor 

and predecessor should also be removed. If a is a minimal element in then the delete 

is an order-preserving update; otherwise, we have many possible ways to define the new 

ordering of the elements tha t are previously connected to a in D and the delete may not 

be an order-preserving update.
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D efin itio n  3.22 (D e le te  O p e ra to r)  Let del[a) denote the deletion of the element a 

from a domain V. We call the process of invoking del {a) on V  the delete operation. The 

delete operator can be classified into the following three modes of a-del, P~del and 7 -deZ, 

respectively.

1. The delete operator in a  mode, denoted as a-del {a), represents the process of 

deleting an element a from V  and then promoting one of its successors to its original 

position.

2. The delete operator in (3 mode, denoted as (3-del{a), represents the process of delet­

ing an element a from V  and then connecting all its successors to all of its prede­

cessors (if they exist).

3. The delete operator in 7  mode, denoted as 'y-del{a), represents the process of delet­

ing an element a from V  without adjusting the ordering of its successors and pre­

decessors, i.e., only removing x  Qd y whenever x  = a or y = a.

The following example illustrates the delete of an element a from domain V  via a-del, 

P-del and 7 -deZ to become T>i, V 2 and P 3 , respectively.

E x am p le  3.8 Figure 3.4(a) shows the domain T> before the delete operation del{a). 

Figure 3.4(b) shows tha t the domain T>\, which is the result of a-del{a). Note tha t the 

choice of a successor (elements d or e) is system dependent. Figure 3.4(c) shows tha t the 

domain V 2 , which is the result of (3-del{a). Again, the choice of a successor is system 

dependent. Figure 3.4(d) shows that the domain V 3 , which is the result of 'y-del{a). 

Thus, the domain is more fragmented than the mentioned ones.

b  b

aO P

(a) before delete (b) a-del{a) (c) f3-del{a) (d) 'y-del{a) 

Figure 3.4: Various modes of deleting an element a from V

74



The choice of deletion modes depends on the underlying semantics of the delete oper­

ation. For example, if D is a semantic domain representing the hierarchy in a company, 

then the operator a-del may be used to promote an employee to replace a retired man­

ager. The operator (3-del may be used when a manager is retired, and his subordinates 

are all assigned to report to his bosses. The last operator j-del may be used to represent 

a step prior to the process of re-defining all ranks of employees. It is reasonable to expect 

that a DBMS should provide the users with further guidance to carry out this process.

We now consider inserting an element into T>. When an element a is added into V,  we 

should define the new ordering relationships between a and the existing elements in 2), 

which can be either a successor or a predecessor relationship. We formalise this concept 

as follows.

D efin ition  3.23 ( In se r t  O p e ra to r)  Let x  be an element m V  = {D C/j) and a be a

new element which after adding it to T> becomes T>i = {Di Edi)- The successor operator, 

denoted as succ{x,a), creates an ordering x  a. The predecessor operator, denoted as 

pred{a,x), creates an ordering a Qdi The insert operator, denoted as ins{a), consists 

of a finite set of operations succ{x, a) and pred{a, x), such tha t if X\ Çd X2  Qd • • • Qd ^n-, 

then either pred{a,X\) 0  ins{a) or succ{xn,a) ^  ins{a). We call the process of invoking 

the insert operator on V  the insert operation.

Note that the restriction pred{a,x\)  0  ins(a) or succ{xn,a) 0  ins{a) in the above 

definition is to prevent a “cyclic ordering” occurring in X>i, for example if b Cp c, then 

ins{a) = {pred{a,b),succ{c,a)} results in a Qdi b Qdi c Qdi a, which violates the anti­

symmetric criteria of a partial ordering (see Definition 2.1). Moreover, it can be checked 

tha t EjD Ç Thus the original ordering of V  is preserved by the insert operation.

We state this fact as the following observation.

O b se rv a tio n  3.1: The operator ins  is an ordering-preserving update.

E x am p le  3.9 Let us consider an element f  inserted into the domain V  as given in 

Figure 3.5(a). The following are three possible insert operations: in s i{ f )  = {pred{f,d)}, 

%ns2( /)  =  {succ{c,f)}  a n d m s 3( /)  =  {succ{d, f) ,p red { f ,c )} ,  which result in the domains 

V i,  T>2 , and V 3 , as given in Figure 3.5(b), Figure 3.5(c) and Figure 3.5(d), respectively.

We recall that updating is considered to be a sequence of insert and delete operations. 

From this point of view, we can first use the delete operator 'y-del repeatedly to remove all
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(a) Before insert (b) in s i{ f )  (c) in s 2 {f)  (d) m s3( /)

Figure 3.5: Inserting an element /  into T>

the existing elements in T>. Thereafter we use the insert operator ins  to form an arbitrary 

new domain X>2 by successively inserting elements to V 2  with the desired ordering defined 

by an appropriate set of the succ and pred  operators. The expressiveness of insert 

and delete operations in updating a domain can be informally stated as the following 

observation.

O b se rv a tio n  3.2: The two operators ins{a) and 'y-del{a) are sufficient to transform 

an ordered domain V  = {D ,Q d ) into another ordered domain T>i = (D i, EDi), where 

Di = D\J  {a}.

Note that if V  is infinite, then the operator ins  may not be capable of defining the 

new ordering of T>i, since it is a finite set of prec and succ. In such a case the above 

observation is not applicable. For example, if V  is unordered, we cannot have an insert 

operation to obtain a new domain T>\ such that V i = 7) Li {a} and b Qdi cl for all b E D.

3.6 Discussion

In this section we briefly discuss the open problem of finding a syntactic characterisation 

of “more ordered” that is equivalent to Definition 3.18. Recall tha t V i  =  {D, Çi) and V 2  

=  (-D, ^ 2)- We first state the problem as follows, given two domains T>i and V 2 , is there a 

characterisation of their structures such that V i :< V 2  if and only if Aut{T>2 ) Ç Aut{T>i)?

A possible attem pt of defining “more ordered domains” , which corresponds to the 

intuitive view of “more ordered” can be described as follows, if V 2  is more ordered than 

T>i, then those pairs of elements ordered by Çi are also ordered by Ç2. From this point 

of view, we now give the following definition.
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D efin itio n  3.24 (M ore O rd e re d  D o m ain s) T>i X V 2  if for all elements 01,02  G D, 

if oi Çi 02 , then oi Ç2 02 .

Although this definition seems to be very natural, it is far too simple to be a complete 

solution to the problem. There are many cases happening that T>i V 2 according to 

Definition 3.24 but Aut{V 2 ) G Aut{V\).  The following is one of the counter examples.

E x am p le  3.10 In Figure 3.6, the component 6 Çi o in V \  but 6 ^ 2  a in thus T>i 

T>2 . However, we still have that Aut{V 2 ) Ç Aut{T>i) because A ut{V 2 ) =  {%d, h}, where h 

is an automorphism defined by h{a) = o, h{b) = 6, h{c) = d and h{d) = c, which is equal 

to Aut{Vi).

o o o o

Figure 3.6: A counter example of Theorem 3.24 arising from Definition 3.24

From our further investigation, we find tha t there may be a dichotomy between 

the notion of automorphism and ordering of domains. Informally speaking, if we focus 

ourselves mainly on the ordering structures of domains as stated in Definition 3.24, we 

cannot establish a simple relationship between automorphisms of two domains.

77



Chapter 4

D ata D ependencies and D atabase  

D esign Issues for the Ordered 

Relational M odel

Functional dependencies (FDs) [147, 9] and inclusion dependencies (INDs) [109, 22] are 

commonly recognised as the most fundamental data dependencies tha t arise in practice 

in conventional relational databases. In this chapter we examine these data dependencies 

in the context of ordered relational databases.

We extend the notions of FDs and INDs to hold in an ordered database and call them 

ordered functional dependencies (OFDs) and ordered inclusion dependencies (OINDs), 

respectively. Informally speaking, OFDs can capture a monotonicity property between 

two sets of values projected onto some attributes in a relation, and OINDs can capture 

the notion of a Hoare ordering (recall Definition 2.7) between two sets of values projected 

onto some attributes in a database. We also discuss the interactions between OFDs and 

OINDs.

The semantics of OFDs and OINDs are defined by means of two possible extensions of 

the domain orderings: pointwise-orderings and lexicographical orderings, whose semantics 

have been discussed in Chapter 2. We classify OFDs and OINDs according to whether 

we use pointwise-orderings or lexicographical orderings in their definitions. Altogether 

there are four categories of data dependencies, whose short forms are written as POFDs, 

LOFDs, POINDs and LOINDs, respectively. A summary of our classification of OFDs 

and OINDs with examples of their notations is given as the table in Figure 4.1
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D a ta  D ep en d en c ies Po in tw ise- O rd e rin g s L ex icog raph ica l O rd erin g s

Ordered Functional POFD LOFD

Dependencies (OFDs) X ^ Y

Ordered Inclusion POIND LOIND

Dependencies (OINDs) Ê R[X] £  5[y]

Figure 4.1: OFDs and OINDs arising from different extensions of domain orderings

In the relational database literature, the implication problem is an im portant issue 

arising from investigating data dependencies, which we now state as follows: given a 

relation r which satisfies a set of data dependencies F, is it also true that r satisfies 

a data dependency / ?  If the answer to the above question is positive, then we say F 

logically implies /  and denote this fact by F \= f .  There are two approaches to tackle this 

problem.

One approach is to establish a set of inference rules which constitutes the axiom 

system A. Hence, we can use the rules of A  to derive f  from F and denote this process 

by F h / .  We call A  sound and complete, if we can prove that F h /  if and only if F 

1= / .  A sound and complete axiom system for F is very desirable, since it guarantees 

the implication problem for F is recursively enumerable. This is due to the fact tha t in 

principle, we can exhaustively apply the rules of A  to generate all data dependencies that 

can be logically implied by F. In addition, the axiom system A  provides us with a basis 

to find a more efficient algorithm for solving the implication problem.

Another approach is to develop a chase procedure which consists of a set of chase rules 

as a theorem proving tool. We choose an appropriate chase rule to apply to a relation r 

until a fixpoint is attained in order to test whether r  satisfies F [101, 9, 87]. Moreover, 

the chase procedure operates on a relation containing variables as data values, known as 

a tableau [5, 9], which is basically the template for those relations that could possibly 

violate / .  Suppose we can prove that using the chase procedure we can transform a 

tableau that satisfies F into a tableau that also satisfies / ,  and this holds if and only if F 

\= f .  Then we are able to use the chase procedure to confirm or refute that F logically
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implies / .  We call the chase procedure possessing this properly sound and complete.

We assume that the domains are linearly ordered in discussing the issues of OFDs and 

OINDs. In Section 4.1 we present FDs in the context of ordered databases. In Section

4.2 we adopt the first mentioned approach to show that the axiom system comprising the 

inference rules for POFDs, which is a superset of Armstrong’s axiom system for FDs, are 

sound and complete. We adopt the second mentioned approach to extend the chase rules 

for the case of LOFDs. We investigate the properties of a relation r  being chased with 

respect to a set of LOFDs F (which we denote as C H A S E {r .^ ) )  and then show that the 

procedure CH ASE{r^¥)  terminates and satisfies F. Moreover, using an extended notion 

of tableaux for LOFDs, we show that the chase is sound and complete for LOFDs. Hence, 

the implication problems for POFDs and LOFDs are decidable and it is linear time for 

POFDs. We also present a set of inference rules for LOFDs, which are shown to be sound 

but we do not know if they are complete. In Section 4.3 we generalise the definition of 

conventional inclusion dependencies to Ordered INclusion Dependencies (which we call 

OINDs). We present a set of inference rules for POINDs and LOINDs, respectively, which 

are both shown to be sound. We show that the axiom system comprising the inference 

rules for POINDs is also complete. The interaction between OINDs and OFDs is also 

discussed. In Section 4.4 we discuss some database design issues for ordered databases 

in the presence of OFDs and OINDs. In Section 4.5 we give our concluding remarks for 

this chapter.

Throughout this Chapter we refer to a sequence of attributes as a short hand for a 

sequence of distinct attributes. (In other words, we assume tha t sequences of attributes 

do not contain any repeated attributes.) We use the common notation for both sequences 

and sets, i.e., X  and Y  are used to denote sequences of attributes, whereas A  and B  are 

used to denote single attributes. When no ambiguity arises we refer to a sequence of 

attributes as a set of attributes. However, we remark tha t the sequence A B  and B A  

are different, whereas the sets A B  and B A  are the same. We take A  G (Ai , . . . , A„)  

to mean A  G {Ai , . . . , A„}  and ( Ai , . . . , A„ )  Ç ( B i , . . . ,  By^) where n < m, to mean 

{Ai , . . . ,  An} Ç { B i , . . . ,  Bm}- We may also write Ai • • • A„ instead of (Ai , . . . ,  A„) to 

describe a sequence when convenient.

Let X  = ( A i , . . . ,  Am) and Y  = ( B i , . . . ,  B„). We denote the fact tha t two sequences 

have the same elements, i.e., {Ai , . . . ,  Am} = { Bi , . . . ,  B„}, by A  ~  T . The difference
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between two sequences of attributes, denoted as X  — y ,  is defined by the sequence 

resulting from removing all the common attributes in X  and Y  from X  while maintaining 

the original order of the remaining attributes in X . Y  is said to be a subsequence of X  if 

Y  Ç X  and the attributes of Y  maintain the original order of X .  We also denote by X Y  

the concatenation of two sequences X  and Y, where X  and Y  are disjoint, i.e., they have 

no common attributes. If X  and Y  are not disjoint, then X Y  is defined to be X (Y  — X ).  

A prefix of X ,  denoted by pre{X), is a sequence of the form ( Ai , . . .  ,Ami)  where 1 < 

m i < m. A shuffle of X  and Y ,  denoted by shu{X, Y ) ,  is defined as a sequence of the form 

( C l , . . . ,  Cm+n), where there exists two subsequences of attributes . . . ,  C% )̂ =  X  

and {Cj^,. . .  ,Cj^) = Y .  For example, let X  = {a,b,c) and Y  = (1,2,3). Then both 

(a, 1,2,3,6,  c) and (1, a, 2,6, c, 3) are sh u {X ,Y ) .  However, (6, c, a, 1,2,3) is not because 

the ordering of X  is not maintained.

4.1 Functional Dependencies (FDs) in Ordered Databases

Bearing in mind that the implication problem is an im portant issue arising in developing 

the theory of data dependencies and FDs are the most natural data dependencies arising 

in practice, we first formalise the notion of logical implication and an axiom system, and 

then review Armstrong’s axiom system for FDs, which is a classical example of axiom 

systems in the literature of relational database theory [147, 9].

D efin itio n  4.1 (Logical Im p lic a tio n  a n d  A xiom  S ystem ) We say that a set of data 

dependencies F logically implies a data dependency /  over R, written F [= / ,  whenever 

for all relations r  over R, if for all / '  G F, r  |= / '  holds, then r  [= /  also holds. An axiom 

system A  for F is a set of inference rules (or simply rules) that can be used to derive 

data  dependencies from F over R. We say that /  is derivable from F by A,  if there is 

a finite sequence of data dependencies over R, whose last element is f ,  and where each 

data  dependency in the said sequence is either in F or follows from a finite number of 

previous data dependencies in the sequence by one of the inference rules. We denote by 

F h /  the fact that /  is derivable from F by a specified axiom system.

We remark tha t Definition 4.1 will be repeatedly used in different contexts of data 

dependencies. For example, in this section the set of data dependencies F  is restricted 

to the scope of FDs. However, when discussing OFDs in the next section, we will use F
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h /  to mean tha t a set of OFDs F logically implies an OFD / .  Similarly, we will also 

use F h /  to mean that a set of OINDs F logically implies an OIND /  when discussing 

OINDs in Section 4.3.

Armstrong’s axiom system provides a set of inference rules which can infer new FDs 

from given ones. It is also well-known tha t Armstrong’s axiom system is sound and 

complete for FDs being satisfied in conventional relations. This result is very significant 

in database design, since using this axiom system we can derive some efficient algorithms 

to confirm whether or not a given FD holds in a relation schema [9]. Moreover, it provides 

us with a basis to further develop FDs in the context of other advanced applications which 

have fuzzy, incomplete or imprecise information [128, 8 6 , 87].

D efin itio n  4.2 (A rm s tro n g ’s A x iom  S y stem ) Let X , Y, Z  be subsets of  R, A  E R

and F be a set of FDs. Armstrong’s axiom system constitutes the following inference 

rules for FDs.

( F D l )  Reflexivity: if Y Ç %, then F \~ X  ^  Y .

(F D 2) Augmentation-. If F h A  —> V, then F h X A  - ^ Y A .

(F D 3) Transitivity-, if F h A  —>■ T  and F \- Y  ^  Z,  then F h X  —>■ Z.

There are two possible views of FDs in the context of ordered databases. The first 

one is straightforward, that is, a FD in conventional relational databases can be viewed 

as a special case of an OFD when a database is unordered.

Another view of FDs in the context of ordering is more interesting. We recall that 

we have discussed the notion of SOI (System Ordering Independence) in Chapter 2, 

which basically means tha t the ordering of tuples in a relation is not affected by the 

implementation of the system. We have also defined the domain ordering operator ljx 

which governs the ordering of a relation r  over R  by imposing the lexicographical ordering 

over X  C R. The operator ujx is a useful tool to study the relationship between domain 

orderings and data dependencies. When combining with projection we have the 

following interesting properties.

P ro p o s itio n  4.1 Let X ,Y ,  Z  Ç  R  and r  be a relation over R. The following statements 

are true.

1. ujR{r) is SOL
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2. if wx7r%y(r) is SOI, then ujxz'^xri'f') is SOL

3. if cüxT^XYz{r) is SOI, then cj%7rxy(r )  is SOI.

4. if w x7Txy(r) is SOI, then o;xz7rxyz(?^) is SOI.

5. if w x7Txy(r) is SOI and cjyTry^(r) is SOI, then ujx^^xzir) is SOI. □

We can now use u x  to define FDs via the notion of SOI as follows.

D efin ition  4.3 (A lte rn a tiv e  D efin ition  o f F D  in  O rd e re d  R e la tio n s) An ordered 

relation r  over R  satisfies a functional dependency X  ^  Y  ii ujx'^xri'f') is SOI.

The operator ivx can be further used to define a subclass of relations called object 

relations [14, 85]. We need the following definition to illustrate this concept.

D efin itio n  4.4 (M e ta -a t t r ib u te  in  O rd e re d  R e la tio n s)  An attribute M  G R is said 

to be a meta-attribute for an ordered relation r  over R, if it satisfies that ujMxi"^) = ^ for 

all X  C R, where X  can be empty.

We call a relation schema R an object relational schema if it contains a distinguished 

attribute being a meta attribute. Furthermore, we call a subclass of relations object 

relations, if it consists of relations that are defined over object relational schemas. Meta­

attributes in object relational schemas are maintained by the system only, and thus they 

can be hidden from users. The definition of m eta-attributes formalises the use of tuple 

identifiers. For example, the relational DBMS Oracle employs an attribute called ROWID  

(ROW IDentifier) to manipulate tuples but this attribu te is normally hidden from users 

[82]. The following proposition states tha t m eta-attributes possess the desirable property 

of SOI.

P ro p o s itio n  4.2 is SOI.

We now extend Armstrong’s axiom system for FDs to the class of object relations by 

adding the following inference rule.

(F D 4) Meta-attribute: F h M  —>• R.

We need the following inference rule, which can be derivable from FD l to FD3, to 

prove next theorem.

(F D 5) Union: if F h A  ^  T  and F h AT —> Z, then F h AT -y Y Z .
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The closure of a set of attributes, X  C R,  with respect to a given set of FDs F, 

denoted as X"*", is given by =  {A | F h X  —>■ A}. We now show that the axiom 

system comprising inference rules from FD l to FD4 is also sound and complete for FDs, 

holding in the class of object relations. The method tha t we use is standard (c.f., see 

Chapter 7.3 in [147]), whose idea is first assuming that X  —>■ T  cannot be inferred from 

the axiom system, and then presenting a relation as a counterexample in which all the 

dependencies of F hold except X  —>• T . In other words, we obtain the result tha t F does 

not logically imply X  —̂ Y .

T h e o re m  4.3 The axiom system comprising inference rules from F D l to FD4 is sound 

and complete for a set of FDs F, holding in the class of object relations.

P ro o f.

By Proposition 4.1, it follows that the inference rules from FD l to FD3 are sound. FD4 

is also sound by Definition 4.4 and Proposition 4.2. We prove completeness by showing 

tha t if F t/ X  -> y ,  then F ^  X  -> T . Equivalently for the latter, it is sufficient to 

exhibit a relation r  such that r  |= F but r X  —> Y .  Let r  be the relation shown in 

Figure 4.2, where M, X""" and Z  denote pairwise disjoint sets of attributes such that 

Z  = R  — M X +. Note that M  0  X"'", otherwise, it is trivial tha t X  —> T  by FD4.

M X+ z

1 1 . . .  1 1 . . . 1

0 1 . . .  1 0 . . .  0

Figure 4.2: An object relation r  showing tha t r ^  X  ^  Y

We first show that r  |= F. Suppose to the contrary tha t r ^  F and thus there exists a 

FD, C ^  D E F such tha t r ^  C D. It follows by the construction of r tha t C Ç X"*" 

and there exists A E {D C\ Z M )  such tha t A  0  X"*". Suppose A E Z.  By FD l, it follows 

tha t C ^  A  and by FD3 again, it follows tha t X  A. This leads to contradiction, since 

it follows that A  E X+. Suppose A  = M .  By FD4, it follows that M  —)> 72, by FD l, 

it follows that M  —)■ T , by FD3, it follows that X  -> M , and finally by FD3 again, it 

follows that X  -> y .  This leads to contradiction, since we have derived F h X  —>■ y .

We conclude the proof by showing that r  ^  X  -> y .  Suppose to the contrary that 

r  f= X  -4- y ;  by the construction of r, y  Ç X"*" since M  0  X"^. It implies that for all
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A e Y  \= X  A. Therefore, for all A  G Y , F \~ X  A. By FD5, it follows that F h 

X  Y . This leads to contradiction, since we have derived F t- % —> T . □

4.2 Ordered Functional Dependencies (OFDs)

An OFD in the ordered relational data model involves comparing the orderings between 

two sets of data  items. We find that OFDs arise naturally in many applications, especially 

in those that consist of temporal data. A typical example is that an OFD can capture the 

constraint tha t the salary of an employee increases every year. Another good example 

(c.f., see [55]) is the constraint tha t in a bank account the chronological ordering of 

date increases as does the numerical ordering of check numbers. Moreover, OFDs can 

be applied to maintain the “sum of data values” relative to a set of attributes. For 

instance, the total production for a manufacturing plant should increase every month or 

the commission earned by an insurance salesperson should increase as the total number 

of policies he can make from his/her customers.

The semantics of an OFD with two or more attributes on either the left hand side or 

right hand side are defined according to lexicographical orderings and pointwise-ordering 

on the Cartesian product of the underlying domains of the attributes in the OFD, which 

gives rise to POFDs and LOFDs, respectively. From now on, OFDs means either POFDs 

or LOFDs. We remark also that they are exactly the same data dependencies in the 

special case of unary attributes, which means tha t only one attribute is allowed on both 

the left and right hand sides of an OFD.

To illustrate the usage of OFDs, we show in Figure 4.3 a relation called EMP_RECORD 

over the set of attributes {EMP, POST.TITLE, YEARS, SALARY}. The semantics of 

SALARY .RECORD are: an EMPloyee with a given POST TITLE, who has been working 

in a company for some YEARS, has the present SALARY.

EMP POST.TITLE YEARS SALARY

Mark Senior Programmer 15 35K

Nadav Junior Programmer 7 25K

Ethan Junior Programmer 6 22K

Figure 4.3: An employee relation SALARY-RECORD
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We assume there is a semantic ordering in POST-TITLE as represented by the 

following domain {’Junior Programmer’ < ’Senior Programmer’}. Then the relation 

SALARY -RECORD given in Figure 4.3 satisfies the POFD, (POST-TITLE, YEARS} 

SALARY, which states the fact that the SALARY of an employee is greater than 

other employees with junior post titles and less experience in the company, and the 

LOFD, (POST-TITLE, YEARS} SALARY, which states the fact the SALARY of 

an employee is greater than other employees with junior post titles, or with the same 

post title but less experience in the company. Note that the semantics of the POFD 

and the LOFD mentioned above are different. For instance, in the former case, an em­

ployee has higher salary than another one only if he/she has both a senior post title and 

more experience than another, whereas in the latter case, it requires only that he/she 

has a senior post title than another. Furthermore, if Mark leaves his post and the pro­

motion of Ethan to replace Mark’s position is carried out by updating his record to be 

{Ethan, Senior Programmer,  Q,26K) (i.e., updating the third tuple), then this updat­

ing violates neither the POFD nor the LOFD. However, if his record is updated to be 

{Ethan, Senior Programmer,  6 , 2AK), then it violates the LOFD, since Ethan now has a 

more senior title but less salary than Nadav. On the other hand, the POFD still holds in 

this updating, since Nadav still has more experience than Ethan. The appropriateness 

for the choice between the POFD or the LOFD in this case depends entirely on the 

semantics of the promotion policy adopted by the company.

We let X  be { A i , . . .  ,Am)  and, without loss of generality, assume that D  is the 

underlying domain of all the attributes in X .  We recall tha t the pointwise-ordering 

C-x h  means that for all Ai G X ,  ti[Ai] Qd  2̂ [^i], and the lexicographical ordering 

E x  ^2 means tha t either (1) there exists k with 1 <  A: < m such that ti[Aj] = 2̂[^j] 

with 1 < i  <  A: and ti[Ak] E d  or (2) ti[Ai] = t 2 [Ai] for all Ai G X .  We use the

common notation, Ç, for both pointwise-ordering and lexicographical ordering whenever 

the meaning is understood from context. We first discuss OFDs having domains with 

pointwise-orderings and then OFDs having domains with lexicographical orderings.

4 .2 .1  O F D s A r is in g  from  P o in tw ise -O rd er in g s

We give the definition of a POFD as follows.
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D efin ition  4.5 (O rd e re d  F u n c tio n a l D ep en d en cy  A ris in g  fro m  P o in tw ise -O rd er 

ings) An ordered functional dependency arising from pointwise-orderings (or simply a 

POFD) over a relation schema i?, is a statement of the form R  : X  Y  (or simply 

X  Y  whenever R  is understood from the context), where X , Y  Ç R  are sequences of 

attributes. The POFD X  <—> T  is said to be standard if X  7  ̂ 0.

Hereinafter we will assume that all POFDs are standard. We now give the definition 

of the semantics of a POFD.

D efin ition  4.6 (S a tisfac tio n  o f a  P O F D ) A POFD, R  : X  Y ,  is satisfied in a 

relation r over B, denoted by r  |= X  Y, if for all t i , t 2  G r, ti[X] Qx t 2 [X] implies 

that ti[Y] Cy t 2 [Y], where and Cy are pointwise-orderings on the Cartesian products 

of the domains of X  and Y , respectively.

We next give a set of inference rules for POFDs and show that Armstrong’s axiom 

system carries over to ordered relations with respect to POFDs.

D efin itio n  4.7  (In fe ren ce  R u les  for P O F D s) Let X, Y, Z, W  be subsets of R  and F

be a set of POFDs over R. The inference rules for POFDs are defined as follows:

(P O F D l)  Reflexivity: if Y Ç X , then F h X  '-7  F .

(P O F D 2 ) Augmentation: if F h X  T  and Z  Q R,  then ¥  \~ X Z  ^ Y Z .

(P O F D S ) Transitivity: if F h X  T  and F h T  Z, then ¥  \~ X  Z.

(P O F D 4 ) Permutation: i f F h X ' ^ y ’, W ~ X  and Z  ^  Y ,  then ¥  \- W  Z.

We remark that P0F D 4 is introduced because we are dealing with sequences of 

attributes rather than the usual sets of attributes in FDs. The following lemma can be 

readily proved by induction on the number of steps in the inference of X  T  from a 

set of POFDs.

L em m a 4.4 Let F be a set of POFDs, f  = X  Y  he a POFD and /*  =  X  —>• T  be 

a FD corresponding to / .  We define F* = {f* \ f  E F}.  Then /*  is derivable from F* 

using Armstrong’s axiom if and only if F h / .  □
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The above lemma is useful because it suggests that we can apply existing algorithms 

for FDs to determine whether a POFD /  can be inferred from a given set of POFDs 

using the inference rules from PO FD l to P0FD 4. For example, Beeri and Bernstein’s 

algorithm [13] can be used to compute the closure of a set of attributes with respect to 

a set of POFDs. We need the following rules derivable from Definition 4.7 to establish 

the soundness and completeness of the axiom system for POFDs.

L em m a 4.5 The following inference rules can be derived from the inference rules in 

Definition 4.7.

(P O F D S ) Decomposition: if F h X  T , then F \- X  Z,  where Z  C Y .

(P O F D 6 ) Union: if F h X  T  and F h X  Z, then F h X  Y Z .  □

The closure of a set of attributes X""" in the context of POFDs is given by X'*' =  {A  

I F F X A }. We now show in the following theorem that the above axiom system is 

sound and complete for POFDs, holding in ordered databases. The underlying idea in 

this proof is standard [147] and similar to Theorem 4.3. Moreover, we need to assume 

tha t each domain has at least two named elements. We believe tha t this eissumption is 

reasonable in practice.

T h e o re m  4.6 The axiom system comprising from PO FD l to P0F D 4 is sound and com­

plete for POFDs.

P ro o f.

It is easy to show tha t the inference rules from PO FD l to P 0FD 4 are sound. We prove 

completeness by showing that if F 1/ X  T , then F ^  X  ^  Y .  Equivalently for the 

latter, it is sufficient to exhibit a relation, say r, such tha t r  |= F but r  ^  X  T . Let r 

be the relation consisting of two tuples and Î2  shown in Figure 4.4, where Z  = R  — X'^.

X + z

^1 1 . . .  1 1 . . .  1

h 1 . . .  1 0 • • • 0

Figure 4.4: A relation r  showing that r ^  X  Y

Assuming tha t 0 Cl 1, we have 1 g  0 (i.e. t\[Z] ^  t 2 [Z]). We first show tha t r |= F. 

Suppose to the contrary tha t r ^  F and thus there exists a POFD, C D € F such



that r C D.  It follows by the construction of r and by POFD-5 tha t C  Ç X~^ and 

that 3A G Z  such tha t A  0  By PO FD l and by P0FD 5, it follows that C A, 

and by P0FD 3, it follows that X  <—> A. This leads to contradiction, since it follows that 

A  G We conclude the proof by showing that r X  Y .  Suppose to the contrary

that r X  Y . By the construction of r, T  Ç X+. This leads to contradiction, since

by P0FD 6 we have X  Y' ,  where Y '  ~  Y.  Then by P 0FD 4 we have derived F h 

X  ^ Y .  □

4 .2 .2  O F D s A r is in g  from  L ex ico g ra p h ica l O rd erin gs

We give the definition of a LOFD as follows.

D efin ition  4.8 (O rd e re d  F u n c tio n a l D e p en d en cy  A ris in g  fro m  L ex icog raph i­

cal O rd e rin g s) An ordered functional dependency arising from lexicographical orderings 

(or simply a LOFD) over a relation schema R,  is a statement of the form R  : X  Y  (or 

simply X  Y  whenever R  is understood from the context), X ^ Y  C R  are sequences of 

attributes.

Similar to POFDs, we assume that all LOFDs are standard. We now give the defini­

tion of the semantics of a LOFD.

D efin itio n  4.9 (S a tisfac tio n  o f a  L O F D ) A LOFD, R  : X  Y ,  is satisfied in a 

relation r over B, denoted by r  X  F , if for all f i , f2 G r, ii[X] Q x  2̂[AT] implies 

that ti[Y] Qy  2̂ [F], where C,x and Qy  are the lexicographical orderings on the Cartesian 

product of the domains of X  and F , respectively.

We observe that the concept of POFDs and LOFDs are incomparable. A relation sat­

isfying the POFD X  F  may not necessarily satisfy the LOFD X  Y  and conversely, 

a relation satisfies the LOFD X  F  may not necessarily satisfy the POFD X  F . 

The following example helps to illustrate this point.

E x am p le  4.1 Consider the relations ri and r 2 over R  = {A, B, C}  shown in Figure 4.5. 

It is clear tha t in (a) r\ \= A  E C  but r i ^  A EC.  On the other hand, in (b) 

t’2 1= A E  C  but r 2 ^  A E  C.

The chase is a fundamental theorem proving tool in relational database theory. The 

main uses of the chase have been testing implications of data dependencies [101] and
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r i  =

A B C A B C

1 3 6 r2 = 1 4 6

2 4 5 2 3 5

(a) (b)

Figure 4.5: Relations r i  and r 2 showing that POFDs and LOFDs are incomparable.

testing consistency of a relational database with respect to a set of data dependencies 

[61, 86]. We now extend the classical chase defined over conventional relations with 

respect to FDs [101, 9] to ordered relations with respect to LOFDs. The extended chase 

will be used as a sound and complete inference tool for LOFDs in Theorem 4.9. We 

need two operations equate and swap to manipulate values in ordered domains before 

presenting our chase rules.

D efin ition  4.10 (E q u a te  a n d  Sw ap O p e ra tio n s)  We denote m m (a, b) and max{a, b) 

the minimum and maximum of the values a and 6, respectively. For any two distinct 

tuples ^1,^2 E r  over R  and some A G R, the equate of t\ and t 2  on A, denoted as 

equate{ti[A], t 2 [A]), is defined by replacing both ti[A] and ^ 2 ^  by min{ti[A]^t2 [A])] the 

swap of ti  and t 2  on A, denoted as swap{ti[A], 2̂[^]), is defined by replacing ti[A] by 

min{ti[A], t 2 [A]) and t 2 [A] by max{ti[A]^t2 [A]), respectively.

We demonstrate how to use the equate and swap operations with the following ex­

ample.

E x am p le  4.2 Consider a relation r shown in Figure 4.6 (a), which consists of two tuples 

=  (2) and <2 =  (1), respectively. We apply the equate operation of ti and (2 on A  

resulting in the relation shown in Figure 4.6 (b). We apply the swap operation of t\ and 

t 2  on A  resulting in the relation shown in Figure 4.6 (c).

We now give the chase rules, which are applied to two tuples in a relation with respect 

to a set of LOFDs.

D efin itio n  4.11 (C h ase  R u le s  for L O F D s) Let t\ and (2 be two tuples in r such that 

ti[%] Qx h [ ^ ]  but ti[Y] g y  t 2 [y], A  be the first attribu te in X  such that ti[A] 7  ̂ t 2 [A],
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A

tl 2

t2 1

A

1̂ 1

t2 1

A

1̂ 1

t2 2

(a) r = (b) equate(ti[A],t2 [A]) (c) swap{ti[A],t2 [A])

Figure 4.6: An example of using the equate and swap operations

if such an attribute exists, and B  be the first attribute in Y  such tha t ^  t 2 [B]  ̂ then 

the chase rules for the LOFD % Y, is defined by the following two rules:

E q u a te  ru le : if t\[X] = t2 [X] but ti[B] ^  t 2 [B], then equate{ti[B],t2 [B])]

Sw ap ru le : if^i[A] C t 2 [A] but t2 [B] C h[B]^ then swap{ti[B],t2 [B]), or if (2[A] C ti[A] 

but ti[B] C 2̂(^ 1, then swap{tilA]^t2 [A]).

The said chase rules cater for all the possible cases when there are two tuples in a 

relation violating X  Y .  We note tha t in applying the chase rules we need a fixed 

ordering on the tuples t\ and 2̂- If we choose different orderings on t\  and t2  in differ­

ent applications of the rules, then the chase procedure may result in a non-terminating 

process. We further clarify this point by the following example.

E x a m p le  4.3 Let F = {A B , C  B }  and the tuples tp =  (146) and tq = (235), 

respectively, as shown in Figure 4.7 (a). First we let t i  = tp and ^2 =  tq-, then apply the

A B C

tp (as tl) 1 4 6

tq (as t 2 ) 2 3 5

A B C

tp (as t 2 ) 1 3 6

tq (as tl) 2 4 5

A B C

tp 1 4 6

tq 2 3 5

(a) before the chase (b) chase {oi A B  on (a) (c) chase ioi C B  on (b)

Figure 4.7: An example showing tha t the chase procedure never terminates

swap rule with respect io A B  and thus obtain the result as shown in Figure 4.7 (b). 

Now we let t\  = tq and t 2  = tp (i.e., change the ordering of tp and tq). Then we apply 

the swap rule with respect to C ^  B  and thus obtain the result as shown in Figure 4.7 

(c), which is the beginning relation that we have shown in Figure 4.7 (a).

91



Fortunately, this undesirable property can be removed if we impose a fixed linear 

ordering on r and assign t\ to be the smaller tuple and t 2  to be the larger tuple with 

respect to this ordering. We will show in Lemma 4.7 that under such a condition the 

chase procedure always terminates. Therefore, in Example 4.3 if we assume the ordering 

of tp and tq is fixed as given in Figure 4.7 (a) throughout the chase procedure, then the 

process terminates and it can be checked that the final relation is obtained as shown in 

Figure 4.8.

A B C

tp (as 4 ) 1 3 5

tq (as 2̂) 2 4 6

Figure 4.8: The chase procedure terminates in Example 4.3 with a fixed ordering

Let r = {^1, . . .  ,tji} be an ordered relation over R  and F be a set of LOFDs with

\ R  \= m.  We now give the pseudo-code of an algorithm designated, CHASE{r ,F) ,

which applies the chase rules given in Definition 4.11 to i? cis long as possible and returns 

the resulting relation r  over R,  also denoted as CHASE{r ,F).

A lgorithm  4.1 {CHASE{r ,  F))

1. begin

2. Result := r = { t l , . . .  ,tn) ;

3. Tm p:=  0;

4. w hile Tmp Result do

5. Tm p := Result;

6. if  3 X  E F, 3 tp,tq E Result such tha t

tp[^] E x  tq[X] but tp[Y] g y  t 2 [Y] then

7. Apply the appropriate chase rule to Result with

1̂ ~  ^min{p,q) 2̂ ^max{p,q) 'i

8. end w hile

9. return Result;

10. end.
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Lem m a 4.7 CHASE{r^F)  in Algorithm 4.1 terminates and satisfies F.

Proof.

Let Pj with 1 < j  <  m be the sequence ( a i j , . . . ,  a„j), where aij =  ti[Aj] (i.e., Pj = 

TTAj (Result)), be the minimum value in Pj, and pp'^'^ be the sequence . . . ,

(a sequence of n  identical values). Suppose an application of a chase rule changes Pj to 

Pj = (a'lj, . . .  Since the chase rules neither change the value nor introduce

any new values into the variable Result, pp^'^ is unchanged throughout the process of 

the chase. In order to prove that CH ASE(r ,F )  terminates, it suffices to show that 

pmin p f  p.^ where <iex is a lexicographical ordering. There are two cases to 

consider.

In the first case the change to Pj is due to an application of the equate rule. Then by 

Algorithm 4.1 we have Upj ^  Uqj. It follows that a' ĵ = min(apj, Ugj), aP = min(apj,aqj) 

and a[j = aij for i 0  {p,q}.  Thus, Pj <iex Pj-

In the second case the change to Pj is due to an application of the swap rule. W ithout 

loss of generality we assume p < q. Then by Algorithm 4.1 Uqj < Upj. It follows that 

a'pj = min(apj,aqj), aP = max(apj,aqj) and a\j =  aij for i 0  {p,q}- Thus, P j </ex Pj- 

It is also trivial that in both cases P j”*"̂ P j, since the minimum of any two values 

in Pj is greater than or equal to the minimum of all values in Pj.

Due to the consideration above, it follows tha t C H ASE(r ,F )  satisfies F, otherwise, 

we can apply one of the chase rules given in Definition 4.I I  to CH ASE(r ,F ) ,  thus leading 

to contradiction, since CH ASE(r ,F )  has not yet terminated. □

Lem m a 4.8 CH ASE(r ,F )  in Algorithm 4.1 can be computed in time polynomial in the 

size of r and F.

Proof.

By Definition 4.II , we observe that the lines 6 to 7 in Algorithm 4.1 can be executed 

at most 0 (m )  times for a LOFD in F, where m  is the number of distinct symbols in r. 

Thus, there is at most 0 (m ) application of chase rules to r. So each execution of the 

while loop beginning in line 4 and ending at line 8 can be computed in polynomial time 

in the size of r and F. □

E xam ple 4.4 Let F = {A B , B  C}  and a relation r  consisting of three tuples

tl = (332), t 2  = (221) and t^ = (313), respectively, as shown in Figure 4.9 (a). First, 

we carry out the chase rules to eliminate the violation of A P  as follows, apply the
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chase rule swap{t2 [B],t^[B]) since t 2 [A] C ts[A] but ts[B] C t 2 [B], and then apply the 

chase rule equate{ti[B],t3 [B]) since ti[A] = ts[A] but t\[B] ^  3̂[-B]. We thus obtain 

the intermediate result as shown in Figure 4.9 (b), which satisfies A  B.  Second, we 

carry out the chase rules to eliminate the violation of 5  C as follows, apply the chase 

rule equate{ti[C],ts[C]) since h[B] = ts[B] but ti[C] ^  ts[C]. The chase procedure now 

terminates and the final result CHASE{r^F)  is given in Figure 4.9 (c), which satisfies F.

A B C

3 3 2

h 2 2 1

h 3 1 3

A B C

1̂ 3 2 2

2̂ 2 1 1

3̂ 3 2 3

A B C

1̂ 3 2 2

h 2 1 1

h 3 2 2

(a) r prior to the chase (b) chase î o t  A B  on (a) (c) chase for 5  (7 on (b)

Figure 4.9: An example of obtaining CHASE{r ,F )

We note tha t the result of the chase is not necessarily unique. For instance, in the 

above example we can apply equate{t\[B], first to eliminate the violation of A ' ^  B,  

then we have at least two ‘I ’s under the column of attribute B,  this leads to a final result 

different from tha t given in Figure 4.9 (c). Although the final result of the chase may 

not be unique, we still can apply it in tackling the implication problem of LOFDs. This 

point is illustrated by the results shown in next theorem and Theorem 4.12.

T h e o re m  4.9 Let r  be a relation over R and F be a set of LOFDs over R. Then r  |= F 

if and only if r  =  CHASE{r ,F).

P ro o f.

{IF:) Assume to the contrary that r  ^  F and thus there exists a LOFD, A  T  G F 

such tha t r ^  X  Y.  It follows tha t there must be two rows, t \ , t 2  G r, such that 

ti[X] Q x  2̂[A"] but ti[T] g y  t 2 [Y]] so the chase rule îoy X  Y  can be applied to r 

resulting in a different relation. Hence r  ^  CH ASE{r ,  F).

{ONLY IF:) It follows from Definition 4.11 that a chase rule for F can be carried out 

only if r  violates some LOFD in F. □

Lemma 4.7 and Theorem 4.9 are fundamental because they allow the chase procedure 

to be employed in order to test the satisfaction of r with respect to a set of F in a finite
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number of steps; many similar results for different kinds of data dependencies such as 

FDs, INDs and JDs (Join Dependencies) can be found in [101, 73, 104]. These results 

provide us with a theorem proving tool to test consistency of a database with respect 

to a set of LOFDs. Furthermore, the chase can be used for maintaining consistency by 

applying the rules in Definition 4.11 to fix the violation of a LOFD in relations. This is 

also found to be im portant in the case of fuzzy or imprecise relations [86]. For example, 

assuming tha t a relation r  is updated with information obtained from several different 

sources in a mobile computing environment [11], it may be the case that at any given 

time the relation violates some LOFDs. Thus we can modify the relation by using the 

chase rules.

In order to provide a proof procedure for LOFDs, we now define the notion of ordered 

variables. Such variables afford us the ability to infer orderings between attribute values 

and to set up a set of templates for relations.^ which are essentially the same concept as 

tableaux used in [101, 9, 87].

D efin ition  4.12 (O rdered Variables and V ariable D om ain) The variable domain 

of a relation schema R, denoted by vdom{R),  is the finite set { / i , . . . ,  /m, ? • • •,

where m = | 72 |. The variables and hi with i 6 {1, . . .  ,m} are called low ordered vari­

ables and high ordered variables., respectively. We call them  collectively ordered variables, 

whose ordering is given by l{ \Z h{.

We now define a set of relations defined over variable domains with respect to a 

given LOFD, which basically enumerate all the possible cases for two tuples violating the 

LOFD.

D efin ition  4.13 (T em plate R elations for a L O FD ) Let /  be the LOFD X  Y  

over R  with \ X  \= n  and \ R  \— m.  We use two short hand symbols ui and Vi to 

represent one of the following three cases: (1) Ui = li and Vi = k,  (2) U{ = li and Vi = hi 

or (3) Ui = hi and Vi = li. A template relation (or simply a template) with respect to / ,  

denoted as ry, is a relation consisting of two tuples, t\ and t 2 , whose underlying domain 

is vdom{R),  such that it is equal to either Tq or 7%, where Pre{X)  =  (aji,. . .  ,Xk) for 

1 < k < n.

We remark tha t in Definition 4.13 the symbols Ui and Vi represent three possibilities 

of combinations of li and hi. Therefore, it is easy to verify that there are templates
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To =

A R - X

1̂ h '  "  f"n '^n+l ‘ ■ ■ '^m

2̂ h '  " I n 'ï̂ n+1 ■ ■ ■ '^m

Tk =

Xi • •Xk-l Xk R  -  P re(A )

tl h - • h-1 k '^n+l ' ’ '

t2 h - • h - i hk ^n+1■''

Figure 4.10: Template relations for a LOFD

defined by Tq and templates defined by for each k. Altogether there are +

(STu-n _|-------|_3m-i^ _  gm-Ti_|_3’̂ -3 ’̂  _  3{2+3^ templates. Note that there are some

redundant templates in both Tq and Tjfc, if we take into account the fact that there are 

two possible orderings for ti and 2̂ , but it does not affect the order of the upper bound 

of the number of templates, which is shown to be 0 (3 ”^).

We apply the chase rules to a template relation using the ordering defined on a 

variable domain vdom{R).  The following proposition gives the result corresponding to 

Theorem 4.9.

P roposition  4.10 Let ry be a template relation over R  and F be a set of LOFDs over 

R. Then ry |= F if and only if ry =  CHASE{r f , F) .  □

A template relation can be viewed as a relation instance consisting of two tuples by 

using an ordering isomorphism mapping values in D  to low ordered variables and high 

ordered variables, respectively. We formalise this idea by the following definition.

D efin ition  4.14 (V aluation M apping) Let R  = { Ai , . . .  ,Am} and vdom{R) =  {/i,

. . . ,  lmi hi, • • •, hm, }• A valuation mapping p is a mapping from vdom{R)  to D  such that 

p{li) < p{hi) for all 1 <  Î <  m. We extend p to a tuple t by p{t) = {p{t[Ai]),. . .  ,p{t[Am]))- 

Furthermore, we extend p to a template relations ry by p(ry) =  {p{ti), p{t2 )}.

The next proposition states that if there is a valuation mapping relating a template 

relation to a relation having two tuples, then they satisfy the same set of LOFDs.

P roposition  4.11 Let p(ry) =  r, where r  is a relation over R  having two tuples. Then 

ry 1= A  y  if and only if r  |= A  T.

Proof.

The result immediately follows by Definition 4.14 since ry is isomorphic to r  and the 

ordering of data values in the zth column of r  corresponds to the ordering of the ordered 

variables L and hj. □
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The following example shows how to apply a valuation mapping to a template relation.

E x am p le  4.5 Consider the template relation ry over { A , B , C }  with respect to the 

LOFD / ,  A BC,  which is shown in Figure 4.11 (a). We define the valuation mapping 

p by p{li) = 1, p{l2 ) = 2, p(/i2) =  3, p(/3) =  4 and pih^) = 5. Then we have p(ry) shown 

in Figure 4.11 (b). Note tha t in this example ry is one of the templates defined by Tq in 

Definition 4.13.

ry =

A B C A B C

h h h3 p{rf) = 1 2 5

h h2 h 1 3 4

(a) (b)

Figure 4.11: An example showing the application of a valuation mapping

We now extend the notion of tableaux for a LOFD /  to be a set of templates. The 

tableaux in our Ccise is different from that for FDs, which just requires a single template 

for FDs (see Theorem 4.2 in [9]). We define tableaux, denoted by T y, to be the set of all 

template relations in Definition 4.13.

D efin ition  4.15 (Satisfaction  and a V aluation M apping o f  Tableaux) The chase 

of T y , denoted as CHASE{Tf ,F) ,  is defined by CHASE{ Tf , F)  =  {CHASE{ r f , F)  | 

ry G T y } . CHASE{Tf , F)  satisfies X  Y , denoted by CHASE{ Tj , F)  \= X  ^ Y ,  if 

for all ry G T y , CHAS E( r f ,F)  \= X  ^  Y . Furthermore, CHASE{Tf , F)  satisfies F, 

denoted by CHASE{Tf , F)  |= F, if for all % ^  Y G F, CHASE{Tf , F)  \= X Y . A 

valuation mapping of T y is a valuation mapping of some ry in T y.

The following theorem shows that the chase rules can be also viewed as a sound and 

complete inference procedure for LOFDs.

T heorem  4.12 Let F be a set of LOFDs over R and /  be a LOFD X  Y . Then 

CHASE{Tf ,  F ) \ = f  if and only if F ^  / .

Proof.

IF: Assume CHASE{Tf , F)  ^  / .  By Definition 4.15, there exists ry G Ty such that 

CHA S E { r j ,F )  ^  /  but C HASE{ r f , F)  |= F. Note tha t CHASE{ r f , F)  is a template
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which can be viewed as an instance. Therefore, we have a valuation mapping p to generate 

a relation instance p{CHASE{rf^F))  and by Proposition 4.11, p{CHASE{rf , F) )  |= F 

but p{CHASE{rf^F))  ^  / .  This leads to contradiction.

ONLY IF: We let wi,W2 be any two tuples in a relation r such tha t w\ W2. We 

claim w\ Cy W2 - Let Sf G Ty be the template relation such tha t p{t\) = w\ and 

p{t2 ) = W2 - We can always find such an sy because Ty exhausts all possibilities of 

two tuples which satisfy the condition wi Q x  W2. Thus we have p{sf) = {w\ ,W2} 

and p{sf) \= F. By Proposition 4.11, we have sy [= F. It follows by Proposition 4.10 

tha t Sy =  CHASE{s f , F) .  Since we have assumed that CHASE{Tf , F)  |= / ,  we have 

CHA S E { s f , F)  \= / .  Thus, p{CHASE{Tf ,F) )  =  p{sf) =  {wi ,W2}, which implies that 

wi  Cy W2 as required. □

The following corollary is an immediate result of Theorem 4.12.

C o ro lla ry  4.13 Let F be a set of LOFDs over R.  The chase procedure is a decidable, 

sound and complete inference algorithm for LOFDs.

The above corollary shows that the chase rules together with tableaux can be used to 

provide a systematic way to solve the implication problem for LOFDs. Furthermore, it 

provides a basis for further investigation in examining the completeness of the following 

axiom system for LOFDs [87].

D efin itio n  4.16 (In ference  R u les fo r L O FD s) Let F be a set of LOFDs over R. The 

inference rules for LOFDs are defined as follows:

(L O F D l)  Prefix Decomposition: if F h X  T , then F h X  pre{Y).

(L O F D 2) Right Augmentation: if F h X  T  and Z  Ç R^ then F X Z  Y .

(L O FD S) Pseudo Transitivity: if F h X  W Y  and F h T  Z, then F \- X  W Z .

(L O F D 4) Right Union and Shuffle: if F h X  T  and F l- X  Z, then

F I- X  shu{Y,pre{Z)).

(L O FD S) Left Union and Shuffle: i f F F X ' ^ Z  and F h F  Z, then 

F h shu{X,pre{Y))  Z.

(L O F D 6) Right Contraction /: if F h Wi W 2  and F I- X  Y s h u { W i ,W 2 )Z,  then

F h X ' ^ Y W i Z .
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(L O FD 7) Right Contraction II: if F h Wi W 2  and F h X  Y W 1 Z 1 W 2 V,  then 

F h X ' ^ Y W i Z V .

(L O FD S) Left Contraction /: if F h Wi W 2 and F h Y shu{Wi,  W 2 )Z  X ,  then

F h Y W i Z ' s ^ X .

(L O FD 9) Left Contraction II: if F h Wi W 2  and F h Y W 1 Z W 2 V  X ,  then 

F h Y W i Z V ' - ^ X .

The following lemma can be easily obtained from Definition 4.16.

L em m a 4.14 The axiom system comprising the inference rules shown in Definition 4.16 

is sound for LOFDs. □

We remark that the refiexivity rule is just a special case of LOFDl. In addition, we 

note that the augmentation rule (this should not be confused with L0FD 2), which is 

sound for POFDs, is not sound as an inference rule for LOFDs. Consider the counterex­

ample, where r is the ordered relation shown in Figure 4.12; it is clear that r \= A B  

but r  ^  EC.

A B C

1 3 5

2 3 4

Figure 4.12: A counterexample for the augmentation rule for LOFDs

The next lemma shows the interesting result tha t the converse of rules of L0FD 6 to 

L0FD 9 can be derived from Definition 4.16.

L em m a 4.15 The following rules can be derived from the inferences rule LOFDl to 

L0FD9.

(L O F D  10) Right Expansion I: if F \~ X  Y W \ Z  and F h Wi W 2 , then 

FhX'^Yshu(Wi ,W2)Z.

(L O F D ll)  Right Expansion 77: if F b % Y W \ Z V  and F h W\  W2, then 

F F X - ^ Y W i ZW2V.
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(LO FD 12) Left Expansion /: if F h Y W \ Z  ^  X  and F h W\ ^  W 21 then 

Y s h u { W i , W 2 ) Z ' ^  X .  

(LO FD13) Left Expansion II: if F h Y W i Z V  X  and F h Wi W 2 , then 

F \ - Y W i Z W 2 V ' ^ X .  □

The following lemma proves the inference rules defined in Definition 4.16 are sound 

for LOFDs.

Lem m a 4.16 The axiom system comprising rules from LOFDl to L0FD 9 is sound for 

LOFDs holding in ordered databases. □

The following proposition summarises the relationships between the satisfaction of 

POFDs, LOFDs and FDs in a relation r.

P roposition  4.17 Let r  be a relation.

1. \ i r  \= X  '—̂ Y^  then r \= X  ^  Y .

2. \{ r  \= X  ' ^ Y ^  then r X  Y . □

From the above proposition, we can deduce tha t the set of relations which satisfy a 

set of POFDs (or LOFDs) is a subset of relations which satisfy the corresponding set of 

FDs F * , where F* is defined as { X  —)■ Y  \ X  ^  Y  E F (or % T  E F)}.

4.3 Ordered Inclusion Dependencies (OINDs)

In this section we continue our investigation of data  dependencies in the ordered relational 

model by introducing ordered inclusion dependencies. Inclusion dependencies (INDs) are 

fundamental data  dependencies that arise in practice, which can express the set inclusion 

between the projections of two relations. A well-known example is that an IND can

capture the fact that the set of managers’ names is contained in the set of employees’

names of a company.

D efin ition  4 .17  (Inclusion D ependency) An inclusion dependency (or simply an 

IND) over a database schema R  is a statement of the form R[A] Ç S[Y], where R , S e  

R  and X  C R,  Y  Ç S  are sequences of distinct attributes such that | A  | =  | T  |. An 

IND is said to be trivial, if it is of the form R[A] Ç R[A]. An IND R[A] Ç S[Y] over R
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is satisfied in d, denoted by d |= R[X] Ç 5[y], whenever 7r%(r) Ç 7ry(s), where r, s G d 

are the relations over R  and 5, respectively.

We first review the inference rules constituting an axiom system which was shown to 

be sound and complete for INDs by Casanova, Fagin and Papadimitrious [22]. For the 

sake of simplicity, we call this axiom system Casanova’s axiom system. This result will 

be useful in proving our OINDs axiom systems.

D efinition  4.18 (C asanova’s A xiom  System ) Let I be a set of INDs over R  and 

R, R i, ^ 2 ,^ 3  G R. Casanova’s axiom system constitutes the following inference rules for 

INDs.

( IN D l)  Reflexivity: if A  Ç R, then I h R[X] Ç R[X],

(IN D 2) Projection and Permutation: if I h R 2[^] G Ri[X],  where X  = ( Ai , . . . ,

Ç Ri,  y  =  {Bi , . . . ,  Bm) Q R 2  and z i , ...,%& is a sequence of distinct integers from 

(1 , . . .  , then I H R 2 [R%̂ ? • • • ? Rik\ — [-^û ? • • • ? ]■

(IN D 3 ) Transitivity: if I h Rz[Z] Ç R2M  and I h R2M  Q Ri[X],  then I h Rs[Z] Ç 

Ri[X].

An OIND in the ordered relational model can capture the notion of Hoare orderings 

between two sets of values projected onto some attributes of two relations in a database, 

which arise naturally in those applications that consist of incomplete information, which 

we have discussed in Chapter 2. Similar to OFDs, the semantics of an OIND with two or 

more attributes on each side are also defined according to lexicographical orderings and 

pointwise-orderings on the Cartesian products of the underlying domains of the attributes 

in the OIND, which give rise to POINDs and LOINDs, respectively. Thus, from now on 

OINDs means either POINDs or LOINDs. We note that POINDs and LOINDs are 

exactly the same data dependencies in the special case of unary attribute on the left and 

right hand sides.

To illustrate the usage of POINDs and LOINDs, we show in Figure 4.13 tha t a 

database consisting of two relations, called CURRENT JRECORD and HISTORY, which 

are both over the set of attributes {EMP, SALARY, YEAR, MONTH}. We allow the 

null value symbol UNK, which means “value at present unknown” , to be used in the
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EMP SALARY YEAR MONTH

Mark 35K 1997 May

Nadav UNK 1996 Dec

UNK 24K 1995 Oct

EMP SALARY YEAR MONTH

Mark 30K 1996 Sep

Mark 35K 1997 May

Nadav 25K 1996 Dec

Ethan 24K 1995 Oct

(a) CURRENT_RECORD (b) HISTORY

Figure 4.13: Relations CURRENT .RECORD and HISTORY

attributes EMP and SALARY only (recall that all data values are assumed to be larger 

than UNK).

The semantics of this database are: in CURRENT_RECORD an EMPloyee has the 

most recently updated SALARY starting from the date specified by the YEAR and the 

MONTH, and in HISTORY an EMPloyee has had the given SALARY starting from the 

date specified by the YEAR and the MONTH. If we assume that each EMP in CUR- 

RENT_RECORD is included in the set of EMP of HISTORY and each SALARY in CUR­

RENT JRECORD is included in the set of SALARY in HISTORY, then this semantics can 

be captured by the POIND, CURRENT_RECORD[EMP, SALARY] Ù HISTORY[EMP, 

SALARY]. As these relations are time-stamped by the attributes YEAR and MONTH, 

we can use the LOIND, HISTORY[YEAR, MONTH] Ç CURRENT_RECORD[YEAR, 

MONTH] to state the fact tha t CURRENT_RECORD contains the most recently up­

dated record in HISTORY.

We note tha t the POIND and the LOIND in this case have different implications in 

updating. For example, if we want to update Mark’s record to be {Mark,  40AT, 1997, Oct), 

then assuming the POIND, we should insert this tuple into HISTORY prior to updating 

CURRENT-RECORD. On the other hand, when assuming the LOIND we should up­

date CU RRENTRECORD prior to inserting the tuple in HISTORY. Note also that we 

cannot use the POIND, HISTORY[YEAR, MONTH] Ç CU RREN TRECO RD [YEAR, 

MONTH] to capture this semantics of the mentioned LOIND (recall tha t DATE is a 

lexicographical ordering).

We first discuss OINDs having domains with pointwise-orderings and then OINDs 

having domains with lexicographical orderings.
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4 .3 .1  O IN D s A r is in g  from  P o in t  w ise -O rd er in g s

We now give the definition of a POIND as follows.

D efin itio n  4.19 (A n  O rd e re d  In c lu sio n  D ep en d en cy  A ris in g  fro m  Po in tw ise- 

O rd e rin g s) An ordered inclusion dependency arising from pointwise-orderings (or simply 

a POIND) over a database schema R , is a statement of the form R[A] Ç 5[y], where 

R, 5  G R  and X  Ç. R, Y  C S  are sequences of attributes such tha t | A  | =  | F  [.

We now give the definition of the semantics of a POIND.

D efin itio n  4.20 (S a tisfac tio n  o f a  P O IN D ) A POIND, R[X] Ê S[Y], over R  is 

satisfied in an ordered database d over R , denoted by d |= R[X] Ç 5[F], if Vti G r, 

3^2 G 5 such that ti[X] Ç t 2 [Y], where Ç is a pointwise-ordering, r  G d is the relation 

over R G R  and s G d is the relation over S' G R.

Prom now on we will assume that when R[X] Ù S[F] G I and d is a database over R , 

then r G d is the relation over R G R  and 5 G d is the relation over S G R.

We observe that an IND in conventional relational databases can be viewed as a 

POIND in the special case of unordered databases. The following proposition gives a 

simple relationship between POINDs and INDs.

P ro p o s itio n  4.18 If d h  Ç S[F], then d f- R[X] Ç S[F]. □

We note that the converse of the above proposition does not hold as shown in the 

following counterexample.

E x a m p le  4.6 Let d =  {r} be a database over R  =  {R, R} where r = {0} (1 tuple) 

and 8 = {1} (1 tuple) are the relations over R  and S,  respectively, with R  =  {A} and 

S  = {R}. Then d R[A] t  R[R] but d ^  R[A] Ç R[R].

We note that Casanova’s axiom system [22] can be carried over to be the set of 

inference rules for POINDs,  simply by replacing the symbols Ç in an IND as Ù in 

an POIND for the inference rules given in Definition 4.18. The following lemma is 

immediately followed by the inference rules for POINDs (c.f., see the similar result in 

Lemma 4.4).
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Lem m a 4.19 Let I be a set of POINDs, a  = R[X] Ê 5[y] be a POIND, a* = R[X] Ç 

5'[y] be an IND corresponding to a  and I* = {a* | a  G I}. Then I* h a* if and only if I 

h a .  □

We now show Casanova’s axiom system is also sound and complete for POINDs.

T heorem  4.20 The axiom system comprising from INDl to IND3 is sound and complete 

for POINDs.

Proof.

It is easy to show that the inference rules from INDl to IND3 are sound for POINDs. Let 

a  =  R[X] Ç S[Y] with X  = (Ai , . . . ,  An) and Y  = ( B i , . . . ,  Bn). We prove completeness 

by showing tha t if I 1/ a , then I ^  a . Thus, we need to exhibit a database d such that 

d t= I but d ^  a.

By the assumption tha t I 1/ a  and thus by Lemma 4.19, we have I* \/ a*. From the 

completeness of the axiom system for INDs, it follows that I* ^  a*. So there exists a 

database d* such that d* |= I* but d* ^  a*. By Proposition 4.18, we now have d* \= I. If 

d* ^  a , then the result is immediately followed, since d* is the required database d. So 

assume that d* |= a. Since d* ^  a*, we have a tuple t G r  such that t[X] G 7r%(r) but 

t[X] 0  7Ty(s).

We now let =  ( a i , . . . ,  an) and be any one of the maximal values in Trg. (s). 

Now we claim tha t there must be some i such tha t ai C Otherwise, it leads to

contradiction as follows, ( a i , . . . , a „ )  =  (6^®^,. . . ,  6^®^) since we assume d* |= a . So 

there must be a tuple ts £ s such that t[X] Ç ts[Y]. Since all ai in t[X] are maximal 

values, it follows that ts[Y] = t[X] and thus t[X] G 7ry(s).

We define a permutation h on adom{d*) to swap the elements a{ and in d*

as follows, h{ai) = h{b^^^) = a{ and h is an identity for others. We apply h to

exchange the occurrences of o* and 6^“  ̂ in d*. Let the resulting database be d', the tuple 

t become t' and s become s'. Clearly, d' ^  a , since for all values bi G 7TBi{s'), t'[Ai] % hi.

It remains to show that d' \= I  and then d' is the required database d. Since d' and d*

are identical to each other up to the renaming of u* and 6^“® only, i.e., d' is isomorphic 

to d*. Thus, d' \= I* and it follows by Proposition 4.18 again, d' \= I. □

4 .3 .2  O IN D s A r is in g  from  L ex ico g ra p h ica l O rderin gs

We now give the definition of a LOIND as follows.

104



D efin ition  4.21 (A n Ordered Inclusion D ep en dency  A rising from  Lexicograph­

ical O rderings) An ordered inclusion dependency arising from lexicographical orderings 

(or simply a LOIND) over a database schema R, is a statement of the form R[A] Ç S[Y], 

where R, 5  G R  and X  Ç Y  C S  are sequences of attributes such that | % |= | Y |.

We now give the definition of the semantics of a LOIND.

D efin ition  4.22 (Satisfaction  o f a L O IN D ) A LOIND, R[X] Ê S[Y], over R  is 

satisfied in an ordered database d over R, denoted by d |= R[X] Ç 5[Y], if Vti G r, 

3^2 G s such tha t ti[X] Ç t 2 [Y], where Ç is a lexicographical ordering, r  G d is the 

relation over R  G R  and s G d is the relation over 5  G R.

Similar to POINDs, we observe that an IND in conventional relational databases 

can be viewed as a LOIND in the special case of unordered databases. The following 

proposition gives a simple relationship between LOINDs and INDs (c.f., see Proposition 

4.18).

P roposition  4.21 If d |= R[X] Ç S'[Y], then d |= R[X] Ç S[Y]. □

We note that the converse of the above proposition does not hold. The counterex­

ample can be shown by using the same database d given in Example 4.6; we then have 

d h  R[A] £  S[B] but d ^  R[A] Ç ^[R].

We now give a set of inference rules for LOINDs.

D efin ition  4.23 (Inference R ules o f LO IN D s) Let I be a set of LOINDs. The 

inference rules for LOINDs are defined as follows:

(L O IN D  1) Reflexivity: ïî X  C R,  then I h Ri[A] £  Ri[A].

(L O IN D 2) Prefix Projection: if I h R2\X\ £  Ri[A] where | Pre{X)  |= | Pre{Y)  |, then 

I h R 2 \pre{Y)] £  Ri\pre{X)].

(L O IN D S) Transitivity: if I h R 2 [Y] £  Ri[X]  and I h R^lZ] £  R 2 [Y], then 

I h Rs[Z] £  Ri[A].

It is easy to check that the above inference rules are sound for LOINDs.

Lem m a 4.22 The axiom system comprising from LOINDl to LOINDS is sound for 

LOINDs. □
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The following proposition shows that there is a simple relationship between POINDs 

and LOINDs.

P roposition  4.23 If d |= R[X] Ù S'[y], then d \= R[X] £  <S'[y]. □

We note that the converse of the above proposition does not hold. For example, let 

d = {r, a} be a database over R  =  { R ,S }  where r = {01} (1 tuple) and s = {10} (1 

tuple) are the relations over R  and S, respectively, with R  = {A B }  and S  = {CD}.  

Then d \= R[AB] £  S[CD] but d ^  R[AB] £  S[CD].

We have not been able to establish the completeness for the axiom system comprising 

from LOINDl to LOINDS. A further approach to tackle this problem is to establish a 

chase procedure similar to that of LOFDs; in such case Definition 4.11 may be useful.

4 .3 .3  In te r a c tio n s  b e tw e e n  O F D s an d  O IN D s

There are two im portant interaction rules between FDs and INDs [109] in conventional 

databases: (1) the pullback rule, which derives a new FD from a FD and an IND, and 

(2) the collection rule, which derives an IND from two INDs and a FD. We first review 

these two rules and then examine their semantics in the context of OFDs and OINDs.

D efin ition  4.24 (Pullback R ule and C ollection  R ule for F D s and IN D s) Let S

be a set of INDs and FDs.

(Pullback): if S h R[WZ]  Ç S[XY],  with | X  |=1 y  |, and S h 5  : X  y ,  then 

E \-  R : W  ^  Z.

(C ollection): if E h R[UV] Ç S[XY],  R[UW] Ç S[XZ]  and E h 5  : X  ^  y ,  then 

R[UVW] Ç S[XYZ].

As the next example illustrates, in ordered databases the pullback rule is unsound 

for OFDs and OINDs.

E xam ple 4.7 Consider the database d given in Figure 4.14. Let E =  [R[AB] £  

S[CD],S  : C D}.  Then it can be checked tha t d \= T, but d ^  S  : A  ^  B.  

Note that this result still holds even we replace R[AB] £  S[CD] by R[AB] £  S[CD], 

C ^  D hy C D  and S  : A  B  hy S  : A B ,  respectively.
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r =

A B

0 0

0 1

s =
C D

1 1

Figure 4.14; A database shows that the pullback rule is unsound for OFDs and OINDs.

We next show that there also exists a counterexample to the soundness of the collec­

tion rule for POINDs and OFDs. However, in contrast to the pullback rule in the case 

of LOINDs, the collection rule is sound for LOINDs and OFDs.

E x am p le  4.8 Consider the database d given in Figure 4.15. Let S =  {R[AB] Ç 

S[DE], R[AC] Ç S[DF], S  : D ^  E}.  Then it can be checked that d j= E but 

d ^  R[ABC]  Ç S[DEF].  Note that this result still holds even we replace S  : D ^  E  hy 

S  : D ^ E .

r =
A B C

0 1 1

D E F

1 1 0

0 0 1

Figure 4.15: A database shows tha t the collection rule is unsound for OFDs and POINDs

We now give a formal proof of the soundness of the collection rules for LOINDs when 

interacting with OFDs.

L em m a 4.24 Let S be a set of LOINDs and OFDs. The following inference rules are 

sound for LOINDs and OFDs.

(P O F D -L O IN D ) Collection 7: if E h R[UV] £  S[XY],  E h R[UW]  £  S[XZ]  and 

E h 5  : a: y ,  then E h R[UVW]  £  S[XYZ].

(L O F D -L O IN D ) Collection II: if E h R[UV] £  S[XY],  E h R[UW] £  S[XZ]  and 

^ \ -  S i X ' ^  Y , then E h R[UVW]  £  S[XYZ].

P ro o f. We show that \/t G r, 3t' G s such that t[UVW]  Ç t '[XYZ],  where Ç is a 

lexicographical ordering. Let t E r. By R[UV] £  S'fA’F], we have G s such that
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t[UV] ç  t i[XY].  If t[UV] C t i[XY],  then the result immediately follows, since we have 

t[UVW]  C t i [X YZ ]  and thus t is the required t ' . Otherwise, t\UV\ = t \[XY]  and then 

we have t\U] = ti[X] and t[V] =

By R[UW]  Ç S[XZ],  we have t 2  E s such that t[UV] Ç t 2 [XY] {t\ and t 2  may not be 

distinct). If t[U] C t 2 [X], then the result immediately follows, since we have t[UVW]  C 

t 2 [XYZ].  Otherwise, t[U] = t 2 [X] and t[W] Ç t 2 [Z]. So we have t 2 [X] = ti[X]. By S: 

X  Y  (or S: X  y ) , we have t 2 [Y] = ti[y ]. Thus, t[V] = t 2 [Y]. Then the result also 

follows, since t[UVW]  Ç t 2 [XYZ]  and t 2 is the required t'. □

Figure 4.16: Satisfaction of various OFDs and OINDs in databases

We compare the satisfaction of an OFD and an OIND in ordered databases introduced 

so far as the diagram given in Figure 4.16 (the scale here is irrelevant). We let S A T { f )  

be a set of database instances that satisfy a data dependency / ,  and f \  = X  Y ,  

f 2 = X  ^ Y , h  = X ' ^ Y , g i =  R[X] £  5[Y], 9 2  = R[X] t  5[T] and ^3 =  R[X] Ç ^[y].

We remark that in the special case of unordered domains, there are no differences 

between FDs, POFDs and LOFDs, and between INDs, LOINDs and POINDs. In such a 

case we have SA T { f i )  = S A T ( f 2 ) = SA T { fs )  and SAT{gi)  =  SAT{g 2 ) = SAT{g 3 ). 

Besides, if X  and Y  are unary, then in general we have S A T { f 2 ) = SAT{fs )  and 

SAT{gi)  = S A T { 9 2 ).

4.4 Database Design Issues w ith respect to OFDs and OINDs

Relational database design plays an im portant role in relational database theory and 

thus it is extensively covered in most database textbooks [147, 105, 9, 44]. Relational 

database design can be viewed as the process of replacing a relation schema R,  together
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with a set of data dependencies over R h y  â set of relational schemas R , which we call a 

decomposition of R.

D efin itio n  4.25 (D ecom position ) A set R  =  {-Ri, • • •, Rn}  is said to be a decomposi­

tion of a relational schema R  (or simply a decomposition whenever R  is understood from 

the context) if (JILi Ri = R  and Ri Q R  for all Ri E R

The motivations behind the process of a decomposition are twofold. First, an ap­

propriate decomposition can remove the redundancy of data in a relation over R  [150]. 

Second, an appropriate decomposition can remove the problem caused by insertion and 

deletion anomalies [36]. There are many criteria suggested in the literature to capture 

the notion of appropriateness in conventional databases [105].

One desirable property is that a decomposition possesses the property of lossless join 

(or simply is lossless) [5]. This is because in practice a query usually involves the join of 

many relations and thus this property guarantees tha t a relation can be recovered from 

its projections. We next give the formal definition of this concept.

D efin itio n  4.26 (Lossless Jo in )  Let R  be a decomposition of R.  The project-join 

mapping with respect to R  is a mapping of relations r  over R,  denoted by mR, is defined 

by m a (r )  =  (r) x  • • • ex 7TR^{r). This decomposition is a lossless join with respect

to a set of OFDs F, if for every ordered relation r over R  tha t satisfies these OFDs, then 

the condition r  =  m R (r) holds.

Two other desirable properties which leads to good database design are BCNF and 

key-based INDs. These properties take into consideration the importance of FDs and 

INDs in conventional databases. FDs generalise the notion of entity integrity and keys 

[37] and INDs generalise the notions of referential integrity and foreign keys [37, 41]. 

We now extend the definitions of key, superkey and Boyce-Codd normal form into the 

context of ordered databases [147, 9].

D efin itio n  4 .27  (K ey  a n d  S u perkey ) Let F be a set of POFDs (or LOFDs) over R  

and let R 6 R . A sequence of attributes AT Ç R is a superkey for R  with respect to F 

(or simply a superkey for R if F is understood from the context) if F |= R : A  R  (or 

F 1= R ; X  R). A sequence of attributes X  G R is a key for R with respect to F (or 

correspondingly simply a key for R if F is understood from the context) if X  is a superkey 

for R and there does not exist a proper subset T  of X  such that T  is a superkey for R.
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D efin itio n  4.28 (B oyce-C odd  N o rm a l F o rm ) A database schema R  is in Boyce- 

Codd normal form  (BCNF) with respect to a set of OFDs F over R  (or simply in BCNF 

if F is understood from context) if for every OFD, X  is a superkey for R.

We now examine a basic result in database design in ordered databases, which states 

that if a FD y  —> X  holds in a database over a schema R  =  { X Y Z } ^  then the decompo­

sition R  =  {X y, y%} of R  is lossless [147]. This property of FDs forms the basis of an 

algorithm to obtain a BCNF database schema for obtaining the lossless join of a decom­

position having two components. We present the similar result of lossless decomposition 

for OFDs as follows:

T h e o re m  4.25 Given a relation scheme R  = [ X Y Z ]  with an OFD, either y  X  or 

y  X, then the relation scheme R  has a lossless decomposition into two components 

Ri  =  { X Y }  and Eg =  {Y Z } .

P ro o f.

By Proposition 4.17, we have y  X  or y  X  implies Y  X .  Thus it is a lossless 

join. □

The converse of the above theorem holds [132] in the context of conventional FDs. 

However, we observe that a similar result does not hold for OFDs, even when we consider 

unary OFDs. Let us consider the following counterexample.

E x am p le  4.9 Consider a relation r  over R  = {A B C }  decomposed into r i over R  =  

{ A B }  and rg over Rg =  {RC}, all of which are given in Figure 4.17. It is clear that 

neither of the following holds in r: B"—̂ A, B ^ C , B ' ^ A  or B ' ^ C .

r =

A B C

1 4 5

2 3 6

r\

A B B C

1 4 rg = 4 5

2 3 3 6

Figure 4.17: A decomposition of r  into r i  and rg

We now extend the definition of of key-based INDs [104, 105] for OINDs in ordered 

databases as follows.
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D efin itio n  4.29 (K ey -B ased  O IN D s) An OIND, R[X] £  S[Y] (or R[X] t  5[y]), 

over R  is key-based if Y is a key for S. If R[X]  £  S[Y] is a key-based OIND, then the set 

of attributes X  is called a foreign key of R  with respect to S  (or simply a foreign key of 

R ii S is understood from context). A set I of OINDs is key-based if every OIND in I is 

key-based.

The concept of key-based OINDs is closely related to tha t of referential integrity 

[37, 41]. Assume that for each relation schema in R  we designate one of its keys as being 

a primary key [37]. Then a referential constraint can be defined as a key based OIND of 

the form R[Y] £  S[Y] (or R[X]  £  -S'[y]), where Y  is the primary key of S.

We show another desirable property in tha t the interactions between OFDs and 

LOINDs are reduced by showing that F and I have no interaction with respect to the 

collection rule if R  is in BCNF and I is key-based.

L em m a 4.26 Let a  be R[%] £  5'[y] derivable from the inference rules for LOINDs and 

OFDs, F be a set of POFDs (or LOFDs) such that R  is in BCNF and I be a set of 

key-based LOINDs. Then the collection rule POFD-LOIND (or LOFD-LOIND) is not 

used in any proof of a  from F U  I.

P ro o f.

We use induction on the number of inference rules, k, used to derive a  from F U  I.

(Basis): If /c =  0, the result follows since a  € I. So I h a.

(Induction): Assume the result holds when the number of inferences rules used to 

derive I h a  is A:, where A; > 0. We then prove tha t the result of the number of inferences 

rule used to derive a  from F U  I.

By inductive hypothesis, it follows that the collection rule must have been the last 

inference rule used in the proof of F U I h a . Let a  be the LOIND R\UVW]  £  S[XYZ].  

Thus, it must be the case tha t a  follows from R[UV] £  S[XY]^ R[UW]  £  S[XZ]  and 

S  : X  Y  (ov S  : X  ^  Y) .  By assumption we have the keys X Y , X Z  and X.  Suppose 

V  Ç.U and W  ÇU .  Then it is clear that R[UVW]  £  S[ XYZ]  can be obtained without 

using S  : X  Y . So we have either V  % U oi W  ^  U.  W ithout loss of generality 

we assume V  ^ U .  By  the assumption that R[UV] £  S'[XY] is key-based, we have X Y  

is a proper superset of X . It follows that X  is not a super key of 5, which violates the 

assumption tha t R  is in BCNF. □
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As a consequence of above Lemma 4.26 we can see tha t by assuming key-based 

LOINDs we can reduce the interactions arising from the collection rule. This is desirable 

because the implication problem for LOINDs and OFDs reduces to separate implication 

problems for LOINDs and OFDs. The result is consistent with the suggestion [105] for 

conventional databases tha t a good design principle in the presence of FDs and INDs is 

to obtain a BCNF database schema together with a set of key-based INDs.

4.5 Discussion

We have introduced OFDs and OINDs in ordered databases and studied their implica­

tion problems. Moreover, we have also investigated the interactions between OFDs and 

OINDs by examining the pullback rule and the collection rule. We classify OFDs and 

OINDs into two categories according to whether they arise from lexicographical orderings 

or pointwise-orderings on the Cartesian products of underlying domains. In the special 

cases of unary OFDs and OINDs, these two categories are identical. We have presented a 

sound and complete axiom system for POFDs. We have also presented a set of sound and 

complete chase rules for LOFDs, which can be employed as a theorem proving tool for 

LOFDs. Our results suggest tha t a good design principle is to obtain a BCNF databcise 

schema together with a set of key-based OINDs, since it gives rise to no interactions 

between OFDs and OINDs with respect to the pullback rule and collection rule.

The chase procedure given in Definition 4.11 can be further utilised to prove the 

completeness (or otherwise) of the axiom system comprising the inference rules for LOFDs 

given in Definition 4.16, which is a more refined axiom system for LOFDs. Specifically, 

we need to show that given a set of LOFDs F and a LOFD / ,  C H A SE {r,F )  implies that 

F h / .  The main techniques we use in the proof is to carry out induction on the number 

of chase steps in CH ASE{r,F ).  If the result can be obtained, then by Theorem 4.12, we 

have F 1= /  implies that C H ASE{r,F ).  Hence we can conclude tha t F |= /  implies that 

F h / ,  which is the completeness of the axiom system. The proof is rather complex since 

it involves the technicalities in examining many possible cases arising in the inductive 

step (c.f., see Theorem 5.7 in [87]).

There is an open problem to find a chase procedure for LOINDs, tha t is, CHASE{d,l)-, 

where d is a database and I is a set of LOINDs. Our preliminary idea is that a chase rule 

for LOINDs can be defined as follows, if R[X] Ç S[Y] G I and 3ti G r  such that ^ t 2  6  s
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with ti[X] Ç t 2 [Y], then add a tuple t 2  over S  to s, with t 2 [Y] = ti[X] and VA £ S  — Y ,  

2̂[A] =  min, where m in  is a minimal value in adom{d) (recall that the active domain 

adom{d) is defined in Chapter 3). The appropriateness of this definition needs to be 

further examined. Moreover, we still have to investigate the computational complexity 

of the implication problems for LOFDs, LOINDs, and mixed OFDs and OINDs.

Finally, we have examined the collection rule and the pullback rule. A further problem 

following this line is to study the issue concerning the completeness of the axiomatisation 

of a mixed set of OFDs and OINDs. In other words, we still need to research whether 

there are any new rules for the interactions of OFDs and OINDs. An intuitive approach 

is to combine both the chase procedures for OFDs and OINDs in order to build the chase 

procedure CHASE{d^FX) (c.f., [9, 87]), which is then used to test whether a database 

satisfies a set of OFDs and OINDs. Meanwhile, the chase procedure CHASE{d^FX) can 

provide insight into the detailed mechanism of the interactions of OFDs and OINDs.
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Chapter 5

An Extension of SQL to the  

Ordered Relational M odel

In this chapter we describe OSQL, which is an extension of SQL for the ordered relational 

model, and show that OSQL combines the capabilities of standard SQL with the power of 

semantic ordering. By using OSQL users have the ability to define partial orderings over 

data domains which are implied by the underlying semantic of the data of an application. 

The syntax of OSQL is a minimal extension of SQL and thus it should be easy for 

current SQL users to adapt to OSQL. Although it is a minimal extension, OSQL allows 

the users to formulate a wide range of queries, such as fuzzy or temporal, which are 

either very awkward or impossible to formulate in standard SQL. We also discuss the 

experimental implementation of OSQL that we have carried out using Oracle for low 

level data management.

We emphasise that OSQL is not just an ad-hoc extension of SQL solely to remedy a 

few problems with conventional SQL queries. It has a very wide range of applicability 

which can assist in coping with the recent growing demand of support for advanced 

database applications such as tree-structured information, incomplete information, fuzzy 

information and temporal information.

The remainder of this chapter is organized aa follows. In Section 1 we discuss the 

relationship between OSQL and SQL and the motivation for the extension to SQL. In 

Section 2 we describe the OSQL syntax. In Section 3 we outline the architecture of the 

implementation of OSQL over Oracle, which is one of the popular relational DBMSs. 

The prototype, which can be easily adapted to other relational DBMSs, provides us with
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the platform for gaining feedback from users. In Section 4 we demonstrate the benefits 

of OSQL through examples of how it can be used to support advanced applications hav­

ing tree-structured information, incomplete information, fuzzy information and temporal 

information.

5.1 Comparing OSQL with the SQL Standard

Current relational Database Management Systems (DBMSs) are based on Codd’s rela­

tional data model and their query languages are specified by the SQL2 standard [43] 

which is an extension of the relational algebra to incorporate some useful features such 

as aggregate functions and arithmetic capability [147].

We now demonstrate some of the inadequacies of SQL2 for certain types of fairly 

common queries. Let us consider the following three queries in the example below:

E xam ple 5.1

1. Obtain the third and sixth lowest rainfalls from a rainfall record.

2 . Obtain exactly five vacant seats from a theatre booking system.

3. Obtain the names of all John’s bosses.

None of the queries in the above example can be written as a simple SQL statement. 

The first query shows a common problem that both naive and m ature SQL users have. 

There is no straightforward way to answer this query in SQL. The best way to do this, 

is to formulate it into a nested query aided with the aggregrate functions COUNT  and 

M A X  (see section 25.1 in [27]). Moreover, it is not easy to avoid mistakes in formulating 

such SQL statements. It was also discovered in the survey reported in [99] that proper 

use of aggregate functions and nesting in SQL is difficult for many SQL users.

The second query cannot be answered satisfactorily due to the lack of output control 

of the number of tuples returned by SQL. As for the last query, in Oracle’s SQL we may 

use the CONNECT B Y  clause to answer it but the same problem as before arises again. 

The use of this clause is non-trivial and, in addition, we must have the boss/ subordinate 

relationship of each person explicitly stored in the database.

Another option in solving the above problems is to use a database programming 

approach. The common solutions are: embedded SQL programming such as Oracle’s
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Pro*C and a procedural language extension to SQL such as PL/SQL. But there are at 

least three drawbacks in the programming solution. Firstly, this approach requires a very 

competent level of programming skill, which is definitely a hindrance to the majority of 

users who are not professional programmers. Secondly, most queries do not need the 

full power of a fully-fledged programming language and, in fact, we will have to pay 

the performance penalty if there are too many calls from the programming level to the 

relational level. Thirdly, ordering is a fundamental property of information. It would be 

extremely inefficient to embed this property into an application program rather than to 

capture it in a database model.

SQL3, the most recent version of SQL, has the provision for new data types such 

as the list type [81, 108], which involves the notion of ordering. In addition, SQL3 has 

some powerful capabilities for defining abstract data types such as user-defined functions, 

which can simulate partial ordering of domains. However, as we have discussed in chapter 

2.5.3, lists and ordered sets are two incomparable concepts and in addition, the issue 

of ordering abstract data type instances in SQL3 is a non-trivial issue [108]. Overall, 

SQL3 is much more complex than SQL2, and the process of adding to SQL3 the facility 

of managing objects has proved to be extremely difficult. Some design problems have 

already been found in SQL3 due to incompatible features arising from the integration 

of object orientation into SQL [106]. In any case the publication of SQL3 as an official 

standard which will replace SQL2 is predicted to be no sooner than 1998. It is then 

reasonable to anticipate, from the size of the proposed SQL3 standard documents, that 

the process of upgrading existing relational database systems in order to comply with 

the SQL3 standard will take even a longer time.

Based on the above consideration, we suggest OSQL as a suitable intermediate lan­

guage to fill in the gap between SQL2 and SQL3. There are still two good reasons for 

the desirability of OSQL. First, due to the relative simplicity of the OSQL extension we 

do not anticipate many problems in upgrading SQL2 to comply with OSQL’s ordering 

mechanism. Second, OSQL’s notion of ordering on domains has the advantage of being 

easier to comprehend by users than the corresponding notion in SQL3.

We now show how the queries in Example 5.1 can be formulated in a simpler manner 

in OSQL:

(Qs.i) SELECT {RAINJFALL) (3,6) FiüOM RAINJlECORD.TABLE.
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(Q5.2) SELECT {SEATJNUMBER) (1..5) Fi^OM THEATRE_BOOKING_TABLE 

WHERE  STATUS =  ’vacant’.

(Q 5.3) (EMPLOYEE JSf AME) (*) FROM EM PLO YEE.TABLE WHERE EM­

PLOYEE AME > ’John’ W TF/iV  EMP_RANK.

Although we have not yet formally introduced OSQL, the meaning of the above 

statements is quite easy to understand, assuming that the reader has some knowledge 

of standard SQL. For instance, the clause (3,6) in the query (Q5.1) means that the 

third and sixth tuples, according to the order of RAIN_FALL, are output and the clause 

(1..5) in the query (Q5 .2 ) means tha t the first to fifth tuples, according to the order of 

SEAT-NUMBER, are output. The keyword W ITHIN  in the query (Q5.3) specifies that 

the comparison EMPLOYEEJMAME > ’John’ is interpreted according to the semantic 

ordering of the domain EMP-RANK.

We conclude this section by summarising the features of OSQL below:

1. OSQL is based on the PORC (or equivalently, the PORA), which was formally 

defined in Chapter 3. The PORC is an extension of the relational calculus in the 

context of the ordered relational model. The expressiveness of the PORA has also 

been investigated in Chapter 3 and has been shown to be BP-complete [123, 12].

2. OSQL needs few syntactical modifications to the basic form of SQL2 and can also 

be interfaced to existing relational DBMSs to enhance their expressive power and 

usability.

3. OSQL incorporates some of the suggestions put forward by Date to improve SQL- 

type query languages, mainly concerning the support of the wider use of the “< ” 

operator (see chapter 2 in [41]).

4. OSQL can be used to support the modelling and querying of hierarchical data 

domains such as tree-structured data, which we refer to from now on simply as 

tree-structured information. OSQL can also be widely applied to areas demanding 

advanced applications such as the querying of incomplete and temporal databases.

5. OSQL provides an easy way to control the number of output tuples without having 

to do low level programming. This facility is both necessary and convenient for
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database users, especially for those who are non-programmers, when querying over 

large relational databases.

5.2 OSQL Specification.

In this section, we describe the extensions of OSQL to the Data Manipulation Language 

(DML) and D ata Definition Language (DDL) of the standard SQL. In addition to the 

extended DML and DDL, OSQL provides a package definition language (PDL), which is 

detailed in Chapter 7. The full reference of the syntax of OSQL in Backus-Naur Form 

(BNF) can be consulted in Appendix A.

5 .2 .1  D a ta  M a n ip u la tio n  L an gu age

Simple queries in OSQL have their general form as:

SELECT { lists of attributes ) [ANY  | ALL] { levels of tuples ) [ASC \ DESC]

FROM  ( lists of ordered relations )

WHERE  ( comparison clause )

Here an attribute list is a list of attributes similar to the usual one, except that it 

provides us with an option that an attribute can be associated with a semantic domain by 

the syntax attribute name W ITHIN domain name. The purpose of declaring a WITHIN  

clause is to override the system ordering with the semantic ordering of the semantic 

domain specified by the domain name. When the WITHIN  clause is missing then the 

system ordering will be assumed.

A tuple level., which is a set of positive numbers, with the usual numerical ordering, 

can also be w ritten in some short forms (see Appendix A.2). As a set of tuples in a 

linearly ordered relation r = { t i , . .. ,tn}  is isomorphic to a set of linearly ordered tuples, 

we interpret each number i in a tuple level as an index to the position of the tuple ti, 

where i =  1, . . .  , n  and t\  < ■ ' - < tn- In the case of a partially ordered relation, we 

generalise the notion of a tuple level, meaning tha t a tuple level is the set of all minimal 

tuples of (or a subset of ) a relation. Recall tha t we have proved in Chapter 3 how 

an internal hierarchy can be generated by a successive extracting of tuple levels from a 

relation.

An interesting situation of an internal hierarchy to consider is when the output of a
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relation is partially ordered as a tree, having tuple levels { / i , . . .  ,lm}- In such a case we 

choose to interpret each number j  in a tuple level as an index to a corresponding tree 

level Ij, where j  =  1, . . .  , m and li < ' • • < Im- Hence, a user can specify the retrieve of 

ALL  the tuples or A N Y  one of the tuples in a specified level Ij. We note that in the case 

of a linearly ordered relation, the choice of using ALL  or ANYha,s  the same effect on the 

output since there is only one tuple in each level.

Let us examine the following example of an employees relationship of an organisation 

as shown in Figure 5.1.

John Sim on —  Level 1

f f
Bill Ethan N adav Level 2

M ark < —  Level 3

Figure 5.1: Relationship between employees in an organisation

E x am p le  5.2 We can see from this figure that if a user specifies ALL{1) in the tuple 

list, the system returns ’Simon’ and ’John’. Alternatively, if a user specifies A A y(l) or 

simply (1) in the tuple list, the system returns only ’John’ (the system uses alphabetical 

ordering to choose the first tuple in this level).

A comparison clause follows the FROM  keyword and a list of all relations used in

a query. The meaning of the usual comparators < , > , < = , > =  is extended to include

semantic comparison as we have mentioned earlier. A typical form of a semantic com­

parison is:

( attribute ) (comparator) ( attribute ) W ITH IN  ( semantic domain )

W ithout the optional W ITHIN  clause, the comparison is just the conventional one and 

is based on the relevant system ordering.

The following examples help further to clarify the semantic of the SELECT  command.

E x am p le  5.3 Let us examine at the following OSQL statements:

(Q 5 .4 )  SELECT (NAME, SALARY) (*) FROM EMPLOYEE.

(Q 5 .5 )  SELECT {SALARY, NAME) (*) FROM EMPLOYEE.
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(Qs.e) SELECT {{NAME WITHIN EMPJRANK),  SALARY) (+)

FROM  EMPLOYEE.

Note that the ordering of tuples in an output relation depends on two factors. Firstly, 

on the ordering of domains of individual attributes and secondly on the order of the 

attributes in an attribute list. The attribute list of the query (Q5.4) is (NAME, SALARY), 

and thus tuples in the output answer are ordered by NAME first and only then by 

SALARY (see Figure 5.2(a)). Therefore the ordering of tuples is, in general, different to 

tha t of query (Q5.5), whose list is specified as (SALARY, NAME), since the output of 

{Q5.5)  is  ordered by SALARY first and then by NAME (see Figure 5.2(b)). It will also be 

different from tha t of (Qs.e) whose list is ((NAME W ITHIN EMPJRANK)^ SALARY), 

where the ordering of NAME is given by the semantic domain EMP_RANK shown in 

Figure 5.1 (see Figure 5.2(c)). The standard aggregate functions [80] such as COUNT, 

MIN, MAX, AVG, SUM  still apply to ordered relations.

NAME SALARY

Bill 12K

Ethan 28K

John 14K

Mark 30K

Nadav 28K

Simon 12K

SALARY NAME

12K Simon

14K Bill

14K John

28K Ethan

28K Nadav

30K Mark

NAME SALARY

John 14K

Simon 12K

Bill 14K

Ethan 28K

Nadav 28K

Mark 30K

(a) (b) (c)

Figure 5.2: An employee relation EMPLOYEE with different ordering

5 .2 .2  D a ta  D e fin it io n  L an gu age

The syntax of OSQL allows users to define semantic domains using the CREATE DO­

M A IN  command as follows:

CREATE D OM AIN  ( domain name ) ( data types )

ORDER A S  { ordering specification )
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The first part of the command is similar to the SQL standard statement that declares 

a domain. Following the ORDER A S  keywords is a specification of the ordering of a 

semantic domain. The basic syntax of the ordering-specification is: ((data-pair), (data- 

pa ir),... ) where data-pair is of the form, data-item B <  data-item A, if and only if data- 

item A is greater than data-item B in the semantic domain. For example the definition 

of the semantic domain shown in Figure 5.1 can be written as follows:

(Q5.7) CREATE D OM AIN EMP JRAISIK CHAR{5) ORDER A S

(’Simon’< ’E than’, ’John’< ’BiU’, ’E than’< ’Mark’, ’Bill’< ’M ark’, ’Nadav’< ’Mark’).

For a large and complex domain, this syntax may be tedious. Thus OSQL provides two 

useful short forms to make the task of formulating queries easier. First we allow the 

use of set notation, {}, to represent a set of data items with common predecessor (or 

successor). So the previous example can be rewritten as follows:

(Qs.s) CREATE DOMAIN EMFJRANK CHAR{5) ORDER A S

({’Bill’,’Nadav’,’E than’} < ’M ark’, ’John’< ’Bill’, ’Simon’< ’E than’)

Second we allow the use of the keyword OTHER  for those data items not mentioned 

explicitly, with two options OTHER SYO  and OTHER UNO meaning that those data 

values not mentioned are treated as SYstem Ordered or UNOrdered. Note that by default 

we assume other data items are unordered unless there is an explicit declaration that 

orders these items. We will see more examples later which demonstrate how this keyword 

can be useful in some applications.

To conclude this section, we show examples of using OSQL in formulating some 

queries over ordered databases. The reader may refer to the relation EM Pl in Figure 

5.9.

(Q5.9) Find four names of employees whose salaries are greater than 10,000.

SELECT (NAME) (1..4) FROM  E M Pl WHERE SALARY > lOK.

(Os.10) Find the first and the fourth lowest salaries.

SELECT (SALARY) (1,4) FROM EM PL

(Q5.11) Find the highest salary.

SELECT  (SALARY) (LAST) FROM  EM Pl,  

or equivalently,
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{Q5 .12) SELECT {SALARY)  (1) DESC FR OM E U P l .

5.3 Im plem entation of OSQL

In this section we present an overview of the design of the system architecture and 

the implementation strategy of OSQL. The implementation of OSQL provides us the 

following benefits.

1. It allows us to experiment with the capabilities of OSQL. Hence, we obtain a better 

insight into the actual benefit of ordering, allowing us to explore further research 

topics concerning ordered databases.

2. It provides us with a prototype which has enabled us to carry out a user survey, 

whose findings and feedback are reported in Chapter 6.

3. It offers a basis for us to build packages of different applications in order to enhance 

the utilities of ordered databases. The use of different packages in many advanced 

applications is detailed in Chapter 7.

We have implemented OSQL by building a layer on top of the Oracle DBMS. The ad­

vantage of this approach is that the prototype of the OSQL system could be implemented 

fairly quickly by making use of the existing database functionality of Oracle such as stor­

age and transaction management. Moreover, using such a strategy, the OSQL system 

is very flexible in the sense that it could be easily transported to other platforms. The 

disadvantage of this approach is tha t the potential of OSQL cannot be fully analysed. 

For example, the actual performance of queries over ordered databases is not known to 

us, since we do not have access to the working of the query optimiser. Nevertheless, 

further research is needed at the physical level to investigate how best it can support 

ordered databases. Such an investigation is beyond the scope of this thesis.

5 .3 .1  T h e  S y s te m  A r c h ite c tu r e

The query language OSQL which operates over ordered relational databases has been pro­

totyped on a SUN machine Unix platform, using Oracle for low level data management. 

Oracle was chosen since it is both a typical and the world’s most popular relational 

DBMS, which is readily available at UCL. The system allows the user to enter both
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OSQL and SQL statements via the front end of a Unix interface. Thereafter, the OSQL 

precompiler generates a corresponding program consisting of a sequence of Oracle SQL 

statements and calls a dynamic SQL handling routine. This routine pipes the program 

into the back end Oracle server for execution. The overview of the system architecture 

is depicted in Figure 5.3.

Oracle

System

Query

Result

OSQL or SQL 
Statem ents

OSQL
System

Unix 
Front end

C Precom piler 

Interface
DBM S 

Back end

Figure 5.3: Architecture of the OSQL system

The current implementation does not take up many additional resources from the 

back end relational DBMS. The information about a semantic domain can be realised in 

a standard relation and thus it can be maintained by the Oracle DBMS. We illustrate 

tha t how the semantic domain EMP_RANK described in Figure 5.1 can be easily main­

tained by using a relation called ORDERINGJEMP_RANK created in a database. After 

executing the CREATE  DOMA/iV statement w ritten as (Q5 .7 ), the OSQL system gen­

erate an internal relation ORDERING_EMP_RANK to represent the semantic domain 

EMP_RANK. There are two approaches to construct this internal relation.

One approach is to use transitive reduction as the representation of the semantic 

domain, which is shown in Figure 5.4.

In this approach, the binary relation ORDERING_EMP_RANK, consisting of two 

attributes over ORDERING-SMALL and ORDERING-LARGE, implements the order­

ings between pairs of elements. For example, the first tuple in the relation, which is 

{Bill^ M ark),  means tha t Bill is under Mark in the organisation. Note that the relation 

ORDERING-EMP-RANK is a transitive reduction in the sense tha t it contains no tuple 

derivable from transitive closure. This approach caters for space reduction, i.e., we use 

the minimal numbers of tuples describing the semantic ordering of a given domain. The 

transitive closure can be easily obtained by the command CONNECT B Y  m  Oracle,
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ORDERING-SMALL ORDERING-LARGE

Bill Mark

Ethan Mark

Nadav Mark

John Bill

Simon Ethan

O R D E R IN G  J ^ M P J i A N K

Figure 5.4: An internal relation to maintain the semantic domain EMP_RANK

which essentially performs a closure operation.

Another possible approach which uses the transitive closure as the representation of 

semantic ordering shown in Figure 5.5. This approach has the advantage of minimising 

the cost of query execution time. Let us consider the following semantic comparison in 

OSQL: STAFF < ’Mark’ WITHIN EMP_RANK. In such case the semantic comparison 

can be done in a linear time if we use the transitive closure of ORDERING_EMP_RANK.

ORDERING-SMALL ORDERING-LARGE

Bill Mark

Ethan Mark

Nadav Mark

John Bill

Simon Ethan

John Mark

Simon Mark

ORDERING_EMP_RANK 

Figure 5.5: Using a transitive closure to maintain the semantic domain EMP_RANK

Although these two approaches, the transitive reduction representation and the tran­

sitive closure representation, are equivalent in the sense that they represent the same 

partial ordering of a semantic domain, they have different implications in updating se­
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mantic domains. If we delete the tuple {John^ Bill)  of ORDERING_EMP_RANK in 

Figure 5.4 (i.e., the transitive reduction representation), then in the meantime it implic­

itly removes the ordering relationship between John and Mark. We also note that in 

this approach we have freedom to delete any tuple. In contrast, if we delete the same 

tuple {John, Bill)  of ORDERING_EMP_RANK in Figure 5.5 (i.e., the transitive closure 

representation), it preserves the semantics of orderings of other elements in the domain. 

However, it may not possible to delete a particular tuple in such approach. For example, 

we cannot delete the tuple {John, M ark)  only, otherwise the relation would be an invalid 

representation of a partial ordering, since we have John  Ç Bill and Bill Ç M ark  but 

John  2  M ark,  which violates the transitivity criteria of a partial ordering (see Definition 

2 . 1).

We remark that in most cases it is not necessary that all the values in a semantic 

domain be explicitly stored in the database because many of these values are unordered 

relative to each other (recall the keyword OTHER  to represent those values which are not 

mentioned). Moreover, we use the Oracle SQL command CREATE VIEW  to form the 

necessary intermediate relations, and thus should not burden the system with large space 

usage overheads. Moreover, the dynamic SQL routine guarantees tha t the translated SQL 

program runs efficiently.

5 .3 .2  T h e  I m p le m e n ta tio n  M e th o d

The implementation of the OSQL system is divided into four main modules as follows: 

Tokens Checker, Syntax Checker, SQL Handler and SQL Translator. We describe their 

functions in the table given in Figure 5.6.

We use Lex, Yacc and Pro*C (Oracle’s C compiler allowing embedded SQL state­

ments) to implement the OSQL system. This system is complied and linked together 

to perform the translation of OSQL statements into SQL statements. The diagram in 

Figure 5.7 illustrates the implementation of the system with respect to its modules.

The on-line running of the system performs four basic processes: (1) OSQL lexical 

and syntax checking, (2) Translating from OSQL into SQL, (3) Interacting with Oracle, 

(4) Exception Handling of the different stages. Firstly, the system check the correctness 

of an input OSQL statement (see Appendix A for the formal syntax of OSQL) and sep­

arate it from system control commands such as “quit” . This process includes checking 

whether the symbols (or tokens) and the syntactical structure of an input statement are
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M o d u les F u n ctio n s

1. Token Checker Checking for the correctness of symbols (or 

tokens) of an input statement or command

2. Syntax Checker Checking the correctness of the syntactical 

structure of an input statement

3. SQL Handler Communicating between the OSQL interface 

and Oracle

4. SQL Translator Translating a valid OSQL statement into a 

SQL program

Figure 5.6: Brief description of the modules in the implementation of the OSQL system

valid. We invoke the module tokens checker and the module syntax checker to perform 

the tasks, which are implemented by the programs called osql.l and osql.y, respectively. 

Secondly, the module OSQL translator, which is implemented by the program trans­

lation, c, translates a valid OSQL statement into a SQL program, i.e., a sequence of 

standard SQL statements. Another common implementation approach is to combine the 

process of lexical and syntax checking and code generation. However, we find that in our 

case the separation of these modules is easier to manage in practice. Thirdly, the mod­

ule SQL handler, which is implemented by the program dynamic.pc, communicates with 

Oracle in order to execute the translated SQL program. The communication between 

the C programs and Oracle is done by embedded Pro*C calls, which is the Oracle C 

programming interface. In our case, the SQL program is not fully known until runtime. 

For example, the tables or columns to be referenced in a SELEC T  statement may only 

be known as a result of data itself retrieved when the system is running. Therefore, we 

use dynamic SQL Method 4 (i.e., SQL Descriptor Areas) [119], which can handle such 

statements with an unknown number of select-list items or input host variables to be 

constructed at run time and then executed dynamically. Fourthly, at different stages 

there are many possible kinds of errors occurring, which are dealt by the SQL Handler 

during the exception handling process. The rollback mechanisms becomes very complex
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Modules Preprocessing

Compiling 
and linking

Yacc

Token Checker

SQL handler

Syntax Checker

OSQL Translator

OSQL

Figure 5.7: The implementation of the OSQL system

and our system is still immature in this respect. Thus, there is much room for improving 

in the exception handling process. As we discuss in Chapter 6, one common feedback 

from the user survey is tha t the system can be improved by providing them with more 

error diagnosis and on-line help.

The implementation was achieved using Oracle SQL statements and is currently oper­

ational; all the OSQL statements mentioned in this Chapter have been successfully tested 

on the system. Some sample code for the mentioned programs are listed in Appendix D. 

The diagram given in Figure 5.8 illustrates the stages in the on-line running of the system.

Error
Messages

Input
Query

Output ^

Syntax Checking 
Token Checking

OSQL Translating SQL handling Oracle

Exception Handling

Answers

Figure 5.8: The stages of on-line running of the OSQL system

5.4 Application Examples of OSQL

There is a growing demand for support in relational DBMSs of applications involving 

tree-structured information [15], incomplete information [38], fuzzy information [17] and
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temporal information [144]. There has already been a fair amount of research on how to 

incorporate such applications into the framework of the relational model; see for instance 

[37, 145, 111]. The drawback of the solutions tha t have been proposed so far is that 

they do not provide a unified treatm ent for all the above mentioned applications. In this 

section, we demonstrate how OSQL can be applied to solve various problems that arise 

in all of these applications under the unifying framework of the ordered relational model.

We remark that many tailor-made systems have been developed for specific appli­

cations [16], representing an approach which is quite different from what we suggest. 

This can arise from a perceived need to support specialised domains. For example, some 

temporal researchers [145] claim tha t the time domain is fundamentally different from 

other relational model domains. One even claims that his particular time domain is 

fundamentally different from other temporal domains [75].

Unquestionably, a system tailored to a particular application has the advantage of 

making it easier for users of that application to understand the operations supported. 

However, a tailor-made system lacking a general algebraic query capability may be less 

powerful than one based on the unified approach we present. Furthermore, such spe­

cialised approaches either make substantial changes to standard SQL or extend the con­

ventional relational model, this forming a barrier to their widespread adoption.

5 .4 .1  T ree -S tr u c tu re d  In fo rm a tio n

Tree data is very common in practice, for example, the manager/ subordinate relation­

ship and the parent/child relationship. In standard SQL the support for tree-structured 

information is poor due to the fact that there is no trivial way to handle tree like struc­

tures when the data elements are unordered [27]. We now consider the following relation 

E M Pl as shown in Figure 5.9.

Suppose tha t the hierarchy of the employees in EM Pl is as in the diagram shown in 

Figure 5.1 and that the domain EMP_RANK is declared as by the statement (Q5 .7 ) (or 

equivalently the statement (Qs.g)). We consider the following queries over the relation 

E M Pl.

(Q 5 .1 3 )  Find the most senior staff member.

SELECT ((NAME W ITHIN EM P.RANK))  (1) DESC FROM EM Pl.

128



NAME SALARY

Bill 12K

Ethan 29K

John 14K

Mark 30K

Nadav 28K

Simon lOK

Figure 5.9: An employee relation EM Pl

(Q 5 .1 4 )  Find a member of staff at the most junior level.

SELECT {{NAME WITHIN EMFJRANK)) (1) FROM EMPl.

(Q5.15) Find all the members of staff at the most junior level.

SELECT ((NAME W ITHIN EMPJRANK)) ALL{1) FROM EMPl.

(Qs.ie) Find the name and salary of all the bosses of “John”.

SELECT {*) (*) F R O M E M P l WHERE {NAME > ’John’ tF/T^/iVEMP_RANK).

(Q5.17) Find the name and salary of the common bosses of “John” and “Simon” .

SELECT {*) (*) FR O M E M P l WHERE {NAME > ’John’ lF/ra/iVEM P_RAN K ) 

AND  (NAME > ’Simon’ WITHIN EMP J lA N K ) .

Various semantic domains could be defined on employees, which depend on the needs 

of specific applications. For example, in a typical organisation we can define a domain 

EMP_QUALIFICATION or EMP_CONNECTION which orders the names of employees 

according to their academic qualifications and community connections, respectively.

5 .4 .2  In c o m p le te  In fo rm a tio n

In reality, we do not expect a database containing large volumes of data to have perfect 

information on the enterprise it is modelling, due to the fact tha t information may be 

missing or imprecise. We call the former type of information incomplete information 

[38] and the la tter type of information fuzzy information [17]. We expect an upgraded 

relational DBMS to handle incomplete and fuzzy information and provide reasonable 

answer for queries over them.
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Consider the relation EMP2, shown in Figure 5.10, which contains some records with 

incomplete information. We classify the incompleteness into three unmarked null symbols 

whose semantics is given in [154, 38, 37], respectively:

UNK: Value exists but is UNKnown at the present time, for example some employees 

do not want to disclose their ages, this kind of incompleteness is presented as the 

symbol “UNK”.

DNE: Value Does Not Exist, for example a fresh graduate does not have any previous 

work experience.

NX: No Information is available for the value, for example we may not have any infor­

mation available as to whether an employee has previous working experience. The 

employee either has no previous working experience or it is unknown at the present 

time.

NAME SALARY PREVIOUS-WORK ACADEMIC-ATTAINMENT

Mark 30K UNK PhD

Ethan 29K DNE MSc

Nadav 28K administrator MBA

Bill 20K programmer MSc

John 14K NI BSc

Simon lOK NI A Level

Figure 5.10: An employee relation EMP2

We now introduce the notion of more informative values, which allows us to deduce 

useful information available from the relation having incomplete data. The diagram in 

Figure 5.11 shows a partial ordering, say < , based upon the relative information content 

in a domain augmented with the three null values we have introduced. We can extend 

this partial order to tuples by defining a tuple ti to be less informative than another 

tuple t 2 if for all attributes A in the relational schema, ti[A] < t 2 [A].

In other words, UNK and DNE are more informative than NI, and any values which 

are not unmarked null symbols are more informative then UNK. Let us define a semantic 

domain called INCOMPLETEJDOMAIN for the attribute PREVIOUS-WORK:

130



O TH ER

D NEU NK

Figure 5.11: A partial ordering on a data domain

(Qs.is) CREATE D OM AIN m C O M P LE TE JD O M A m  CHAR{10) ORDER A S  

(’N F < ’DNE’,’N r < ’UNK’<  OTHER).

Now we can query the relation EMP2 as follows:

(Q5.19) Find the name and previous work of those employees whose previous work is 

more informative than or equal to UNK.

SELECT  (NAME, PREVIOUS-WORK) (*) F R 0 M E U P 2

(PREVIOUS-WORK > =  ’UNK’ WITHIN INCOMPLETE JDOMAIN).

5 .4 .3  F u zzy  In fo rm a tio n

There is a strong correspondence between ordering and fuzziness. Assuming that the 

comparison, <, indicates linear ordering, the semantic comparison x \  < X2  can be used 

to represent the fact that the data  value x \  is fuzzier than the data value X2  [29]. The 

smaller the value is with respect to an ordered domain, the fuzzier the value is relative to 

a given fuzzy requirement. For example, the more junior an employee is with respect to 

the ordered domain EMP-RANK, the “better chance” for this employee to be promoted.

The advantage of using such associations is that we do not need to define a membership 

function for a fuzzy set of data values as adopted by the traditional approach in fuzzy 

set theory [76]. Therefore, we can avoid measuring the fuzziness of data in terms of an 

exact number, which is in practice difficult and sometimes unnatural.

As a more detailed illustration, suppose tha t there is a project which requires an 

employee with a good science background and academic qualification. We can declare 

a semantic domain called PREFERRED-QUALIFICATION to capture the semantics of 

the requirement “good science background” as follows:

(Q5.20) CREATE EDM A/APREFERRED-QUALIFICATION CHAR{10)

ORDER A S  {{OTHER  UiV(9}<’BSc’, ’BSc’< { ’P hd’, ’MSc’}) .
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We demonstrate our idea by a typical example of a fuzzy query.

{Q5.21)  Find three names of those employees with good science background and academic 

qualification preferred.

SELEC T  ((ACADEMIC-ATTAINTMENT W ITHIN  

PREFERRED_QUALIFICATION), NAME) (1..3) DESC FROM EMP2.

Another advantage of the above approach is that, as pointed out by Chang in [29], 

the output will be a sorted list of tuples arranged in a manner so that the first will be the 

“most appropriate” one with respect to the fuzzy requirement “good science background 

and academic qualification” . As a result, it supports a decision based on a fuzzy criterion.

5 .4 .4  T em p o ra l In fo rm a tio n

There is already a substantial amount of research on incorporating time into the frame­

work of the relational model (see the collection of papers in [145]). This research is 

motivated by the many applications tha t need to make reference to past and/or future 

data. For example, storing historical data allows this data to be reviewed for forecasting 

purposes. One of the approaches to manipulating temporal data is to use an attribute, 

which we call a time attribute and to timestamp the attribute values of this attribute with 

time-points [144]. For simplicity, we assume tha t the timestamping denotes valid time 

[145]. Let us consider the example shown in Figure 5.12, where we make use of the time 

attribute SALARY_TIME to timestamp the attribute SALARY with the time-points of 

years. For instance, we can see that Mark had salary 20K in 1990 and his salary increased 

to 25K in 1992.

In contract to [144] we do not use an ordered pair such as {SALARY^ S A L A R Y  FT I  M E )  

as a data item to represent temporal information, since it gives a Non-First Normal Form 

relation resulting in an added degree of complexity.

The following temporal queries are typical for a temporal database.

(Q5.22) W hat was the salary of Bill in 1990?

SELECT (SALARY.TIME, SALARY) (LAST)  FR 0M E M P3 WHERE  

NAME =  ’Bill’ AND  SALARY.TIME < =  1990.

(Q5.23) W hat is the salary of Mark now (assume the current year is 1996)?

(SALARY.TIME, SALARY) (LAST)  FR 0M E M P3 WHERE
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NAME SALARY SALARY TIME

Mark 20K 1990

Mark 25K 1992

Mark 30K 1995

Ethan 21K 1994

Ethan 29K 1996

Nadav 28K 1995

Bill lOK 1988

Bill 15K 1991

Bill 18K 1995

Bill 20K 1996

John 14K 1996

Simon lOK 1996

Figure 5.12: An employee relation EMP3

NAME =  ’Mark’ AND  SALARY_TIME < =  1996.

(Q5.24) W hat was the starting salary of Mark and when was it?

(SALARY.TIME, SALARY) (1) FROM  EMP3 WHERE  

NAME =  ’Mark’.

(Q5.25) W hat is the salary history of Ethan?

5 F L F 0 T  (SALARY.TIME, SALARY) (*) FROM  EMP3 WHERE  

NAME =  ’E than’.

(Q5.26) W hat are the names of employees who earned more than 20K during the period 

1992-1995 inclusive?

SELECT  (NAME) (*) FROM  EMP3 WHERE

SALARY >  20K AND  SALARY.TIME < =  1995 AND  SALARY.TIME > =  1992.

Note tha t the relation EMP3 does not necessarily contain a tuple for every year, for 

example there is no change in salary for Bill in 1990. Thus, in the query (Q5.22) OSQL 

will select the “most recently updated” tuple before 1990. This can be done by using 

the keyword L A S T  together with the comparison SALARY.TIME < =  1990 as shown in
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(Q5.22). A similar remark also applies to query (Q5 .23)-

134



Chapter 6

A User Survey on OSQL

In Chapter 5 we discussed OSQL, which is the extension of SQL for the ordered relational 

data  model, OSQL provides the facilities of semantic orderings over domains in addition 

to the standard ones. From the point of view of usability, we believe that the human 

factors are im portant measures in order to justify our implementation of OSQL. In order 

to gain further insight into the usage and the acceptance of the semantic orderings pro­

vided by the OSQL SELECT command, we invited 70 students (or simply the students 

sample), who were studying a relational databases course, and 10 computer professionals 

(or simply the professionals sample) to participate in our user survey (or simply the sur­

vey). We call the students sample and the professionals sample collectively, the subjects. 

The subjects were asked to apply the OSQL SELECT statement to formulate a set of 

queries in the experiment designed for the survey (or simply the survey queries), which 

was done using our prototype of OSQL as detailed in Chapter 5. The survey queries are 

very common queries when using order in databases, and represent different degrees of 

difficulty involving the notion of order. The subjects were then requested to hand in the 

solution to the survey queries and to comment on the difficulty and the usefulness of the 

OSQL SELECT statement.

We present the results of the experiment as part of the report on the survey. From 

the attitudes of the subjects towards the use of OSQL, we have determined whether the 

various proposed features of OSQL are really easy to learn, understand and apply in 

practice. Furthermore, from our observations throughout the process of the survey and 

the communication with the subjects via different channels (e.g., email), we have obtained 

many valuable suggestions which should help to improve OSQL and convert the current
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OSQL prototype into a fully-fledged product in the future. Amongst our conclusions we 

identify tha t (1) the subjects in the survey formulated difficult queries involving order 

in an easier manner than in SQL, and (2) the extended features in the OSQL SELECT 

statement were easy for the subjects to learn, understand and apply. The survey may 

also provide beneficial pointers to the teaching, presentation and evolution of OSQL and 

SQL in general.

The specific objectives of the study include the following five aspects.

1. To access the subjects’ attitudes on the usefulness of the three extended features 

of OSQL which are (1) the attribute list, (2) the tuple list, and (3) the comparison 

clause of the OSQL SELECT command (explained in detail in Section 6.2).

2. To determine whether the said features of the OSQL SELECT command are easy 

to apply in formulating the survey queries.

3. To compare the accuracy of the solutions to the survey queries being formulated in 

OSQL and SQL, respectively.

4. To identify ways of improving the syntax of the OSQL SELECT command and the 

current implementation of OSQL from the feedback of the subjects.

5. To identify the related areas tha t can be helpful in the development of more prac­

tical and effective training courses for current and potential OSQL users.

In Section 6.1 we describe the method used in carrying out the survey and the general 

issues relating to the survey queries. In Section 6.2 we discuss the underlying ideas in 

designing the questionnaire of the survey. In Section 6.3 we present the results of the 

survey. The analysis is grouped under the following categories: (1) the knowledge profile 

of the subjects, (2) the result of the subjects’ attem pts in formulating the survey queries, 

and (3) the subjects’ attitudes on the extended features of the OSQL SELECT command. 

In Section 6.4 we discuss the implications of the survey for the issues concerning the usages 

and development of OSQL.

6.1 The User Survey

The students sample (70 people) were all full-time students of which 39 were undertaking 

the conversion MSc in Information Technology or Computer Science at University College
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London (or UCL). The other 31 students were final year undergraduates. They had 

completed the first 8 weeks (out of 11 weeks) lectures of a database management course 

and had just finished a piece of coursework on using SQL prior to the survey. Most of 

the students had not used Oracle before the course. However, a majority of them had 

other computer science knowledge and experience such as C + +  programming.

The professionals sample (10 people) consisted of 5 computer science researchers and 

5 experienced practitioners. The researchers were doing research on some areas related 

to database systems in the Department of Computer Science of UCL. The 5 experienced 

practitioners had been exposed to a relational database environment for at least 2 years 

and had been using SQL.

There were only very few unanswered questionnaires (5 people in the students sample 

and 1 person in the professionals sample), which were treated as invalid questionnaires, 

and were not taken into account in our survey. As a result, 74 questionnaires were 

completed totalling a response rate of 92.5%.

We targeted the extended features of the OSQL SELECT statement, which were clas­

sified into the following three aspects: the attribute list, the tuple list and the comparison 

clause. We presented the OSQL SELECT statement in the format as given below to the 

subjects in order to facilitate better comprehension.

SELECT { a ttribute list ) ( tuple list ) 

relation list 

WHERE  ( comparison clause )

The survey queries were designed to involve the use of the mentioned features. The 

subjects were required to attem pt the survey queries listed in the experiment sheet (see 

the survey documents in Appendix C). There were a total nine queries which retrieved 

information from an Oracle database provided by the Department of Computer Science 

in UCL. The database consisted of two ordered relations containing the information that 

might be used by a frame company and a furniture company, respectively. The structure 

and content of these relations were straightforward enough to be easily understood. The 

subjects were required to use OSQL (as Task I in the experiment) and SQL (as Task II 

in the experiment), respectively, to formulate these queries over the given database.

Prior to the experiment, there was one meeting with students, which lasted up to 

60 minutes. Before the meeting we had prepared the following documents the subjects
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needed to complete the survey (which we will refer to as the documents).

1. An OSQL mini-manual (or simply the manual) described the essential features of 

OSQL, the overall architecture of the system and the technical details to connect 

to the system.

2. An experiment sheet listed the survey queries and included the necessary instruc­

tions for returning their solutions.

3. A questionnaire consisting of 6 questions.

At the beginning of the meeting, we issued the manual, the experiment work sheet 

and the questionnaire to the subjects. Thereafter the meeting was devoted to introducing 

OSQL and the demonstration of the example queries in the manual (see Appendix C .l 

for Queries 1 to 15 given in the manual). The subjects were requested to return within 

one month, their solutions to the survey queries and their output from these queries, and 

also the filled in questionnaires. Finally, we had approximately ten minutes to allow the 

subjects to ask questions about the survey.

In order to motivate the students sample to complete the survey queries, we notified 

the students tha t their work for the experiment sheet would contribute part of the marks 

for their coursework. On the other hand, for the sake of objectivity, we also told them 

tha t their questionnaire would not count towards their final mark but tha t its completion 

was compulsory. Finally, we assured the students that the questionnaire would be treated 

in an anonymous fashion. The aim of the said measures was to encourage the students 

sample to be honest when filling in their questionnaires.

We adopted a binary grading method, correct or incorrect., to simplify the process of 

deciding the correctness of the subjects’ work on the survey queries. These two grades 

were classified according to the criteria as stated below.

1. A correct solution meant tha t one of the following three conditions was satisfied:

(a) The solution to a query was completely correct.

(b) The solution to a query had a minor error such as a missing attribu te in an 

attribu te list. This error was able to be corrected fairly easily and the solution 

yielded a reasonable result.
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(c) The solution to a query was correct with respect to another possible interpre­

tation of the query and this alternative interpretation was reasonable.

2. An incorrect solution meant that one of the following three conditions was satisfied:

(a) The query was unattempted.

(b) The solution to a query had a major error.

(c) The solution was correct with respect to another possible interpretation of the 

query. However, this alternative interpretation was unreasonable.

If several errors in both categories were found in the solution of a query, the solution 

was treated as an incorrect solution. The order of queries in the experiment sheet was 

roughly based on our beliefs of their difficulty. Thus, Query 1 was assumed to be the 

easiest one and Query 9 the hardest one.

We used simple statistical analysis on the results of Task I and Task II of the ex­

periment such as the percentage of correct answers to each query. We were cautious in 

comparing the solutions of SQL and OSQL because for some simple queries their results 

were remarkably close. The details of the statistics of correct solutions to the survey 

queries formulated in OSQL and SQL are summarised in tabular format and will be 

discussed in Section 6.4.

6.2 Questionnaire Design

The survey questionnaire, which was designed to be as concise as possible for the conve­

nience of the subjects, contained six main questions (some questions had several parts). 

As we already stated before, the majority of the subjects were students in the Depart­

ment of Computer Science at UCL. The background information most interesting to us 

was their experience of using SQL or having other related computer experience. Based 

on these considerations, we decided that Questions 1 and 2 of the questionnaire would so­

licit information about the profile of respondents’ SQL knowledge and the programming 

languages known to them.

Question 3 collected the data about the OSQL experiment in a table, which recorded 

the number of attem pts for each query in Task I of the experiment. The number of 

attem pts to complete a query reflected the difficulty encountered by subjects when using 

OSQL to formulate it. We classified the number of attem pts into four categories as below.
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1. Less than three times.

2. Three to six times.

3. More than six times.

4. Unsuccessful.

We decided that the first category of the above classification was a reasonable range to 

show that the query was relatively easy to users. The next category implied that there 

were minor problems for the users when using OSQL. The subjects might experience 

minor frustration but making three to six times attem pt did not seem to discourage them 

very much. The third category indicated that the subjects had problems in formulating 

a query using OSQL. The fourth category is self-explanatory, which implied that the 

subjects failed to formulate a query in OSQL.

Question 4 was another part (Task II) of the experiment which recorded the number 

of attem pts at using standard SQL to formulate the survey queries, which were the same 

set of queries as in Task I. We used them as a reference to compare with the result of 

the corresponding queries formulated in OSQL.

Question 5 was the evaluation of the extended features of OSQL SELECT command 

given by the subjects. We adopted the five-point Likert scale, which is the most commonly 

used attitude scale type in Psychology [93], to seek comments on the usefulness and the 

difficulty of the OSQL statement. This question reflected the attitudes of the subject 

towards the OSQL SELECT commands. In order to evaluate the command in more 

detail, we specifically asked the subjects in this question for the usefulness of the three 

extended features of OSQL, i.e., the attribute list, the tuple list and the comparison clause 

cis well cis the difficulty they had encountered while using them (see the instructions to 

the subjects and the format of this question in Appendix C.3).

Finally, question 6 is designed to be divergent so tha t we can gain feedback on OSQL 

in a more open manner.
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6.3 Summary of Results

6 .3 .1  K n o w led g e  P ro file  o f  th e  S u b je c ts

The following table summarises the general information of the subjects’ experience of 

using SQL.

Experience of SQL Percentage

Learned SQL on the course 85.00

Less than 2 years 6.25

2 to 4 years 6.25

More than 4 years 2.50

Figure 6.1: Experience of SQL of the subjects

The majority of the subjects (85%) were first exposed to SQL through the course 

in our department as shown in Figure 6.1. This is a reasonable result because most of 

the subjects are students. It could be argued that if the questionnaire was distributed 

more widely to include more SQL professionals in the subjects, the result would be more 

representative. However, in our case we have an advantage tha t the subjects acquired 

similar exposure to both SQL and OSQL, and thus the comparison of these languages 

can be achieved in a fairer manner. Furthermore, any negative responses found in the 

survey signify that they should be recognised at an early stage in the training of both 

using OSQL or SQL.

Other Programming Languages Percentage

C or CH—h 92.50

M iranda 58.75

Microsoft software 37.50

HTML 25.00

Java, Basic and others 26.25

Figure 6.2: Computing knowledge and experience of the subjects 

As for the computing knowledge and experience of the subjects, we find that they had
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a certain degree of exposure to other programming languages as shown in Figure 6.2. The 

most popular ones were C, C + +  and Miranda, which were the languages the students 

sample learned from the basic courses provided by our department. However, it was very 

rare for the subjects to have knowledge and experience in other database programming 

languages such as those offered by Sybase or Informix. The Microsoft software here, 

refers to word processing software and similar packages.

6 .3 .2  T h e R e su lt  o f  F orm u la tin g  th e  S u rv ey  Q ueries

In order to compare the performance of using OSQL and SQL, we aggregate the results 

of the number of the correct solutions and the attem pts for all queries in Tasks 1 and 11. 

We compare the result of Question 3 and 4 from two perspectives. Firstly, in Figure 6.3 

we present a bar chart of the percentage of the total number of correct solutions obtained 

using OSQL and that of using SQL. Secondly, we present a table in Figure 6.4 showing 

the aggregated result for the number of attem pts for each query recorded in Question 

3 and Question 4 of the questionnaires. It seems reasonable to view both the number 

of correct solutions obtained and the number of attem pts as pointers which indicate the 

difficulty of either using OSQL or SQL to formulate a query.

a 100% o

o
U

D£«

£

50%

0%

Correct Attempts of the Survey Queries

Q1 Q2 Q3

c
Q4 Q5 Q6 

OSQL correctness

Q7 Q8 Q9 Survey Queries

SQL correctness

Figure 6.3: A bar chart to compare the correct solution of the survey queries

Figure 6.3 shows that over 90% of subjects formulated Query 1, 2 and 3 correctly 

both in OSQL and SQL. It is not difficult to verify that the subjects showed less than
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P e r c e n ta g e
Q u e r ie s L a n g u a g e s L ess  th a n  3  t im e s 3  t o  6  t im e s M o re  th a n  6  t im e s U n su c c e s s fu l

1 O S Q L 9 2 .3 1 4 .6 2 3 .0 8 0.00
S Q L 9 6 .9 2 3 .0 8 0.00 0.00

2 O S Q L 9 2 .3 1 6 .1 5 1 .5 4 0.00
S Q L 9 6 .9 2 3 .0 8 0.00 0.00

3 O S Q L 8 9 .2 0 1 0 .7 7 0.00 0.00
S Q L 9 3 .8 5 4 .6 2 1 .5 4 0.00

4 O S Q L 8 3 .0 7 1 6 .9 2 0.00 0.00
S Q L 7 .6 9 3 5 .3 8 3 3 .8 5 2 3 .0 8

5 O S Q L 7 6 .9 2 20.00 3 .0 7 0.00
S Q L 7 5 .3 8 1 8 .4 6 4 .6 2 1 .5 3

6 O S Q L 4 4 .6 1 4 4 .6 1 9 .2 3 1 .5 3
S Q L 6 .1 5 4 3 .0 8 2 7 .6 9 2 3 .0 8

7 O S Q L 5 3 .8 5 3 6 .9 2 7 .6 9 1 .5 3
S Q L 1 8 .4 6 4 0 .0 0 1 5 .3 8 2 6 .1 5

8 O S Q L 4 3 .0 8 4 3 .0 8 1 3 .8 5 0.00
S Q L 3 3 .8 5 3 2 .3 1 1 0 .7 7 2 3 .0 8

9 O S Q L 3 6 .9 2 4 4 .6 1 1 5 .3 8 3 .0 8
S Q L 1 5 .3 8 4 0 .0 0 2 3 .0 8 2 1 .5 4

Figure 6.4: Attempts of survey queries formulating in OSQL and SQL

5% difference in the correctness of formulating these queries, which were considered to 

be easy queries. It is also consistently shown in Figure 6.4 that over 90% subjects were 

able to finish these queries in less than 3 attem pts. One further interesting point which 

can be deduced from Figures 6.3 and 6.4 is tha t there is a strong correlation between 

the number of attem pts in formulating the survey queries and the percentage of correct 

solutions obtained for the survey queries. Thus, it implies the obvious conclusion that 

the less the number of attem pts that are required to formulate a query, the higher the 

chance that the query is correct. It is also interesting to note that the performance of 

using SQL is slightly better than that use of OSQL in these three simple queries. This 

can be attributed to the simpler syntactical structure of the SQL SELECT statement 

and thus the subjects could formulate these queries more accurately.

A substantial difference in the performance of formulating queries in OSQL and SQL 

is found in Query 4 given as below.

What is the cost of the third and fifth cheapest part?

The query above involves the uses of many levels of nesting in SQL and it was a much

harder query for the subjects as many researchers have already anticipated [39, 99]. Under
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this circumstance, the merits of using the tuple list in the OSQL SELECT command is 

fairly evident as indicated in Figure 6.4. It shows tha t over 80% of the subjects finished 

this query in less than three attem pts when using OSQL whereas less than 10% finished 

within three attem pts when using SQL to do it. Moreover, the unsuccessful attem pts 

using SQL are up to 23%, which indicates some inadequacies of SQL in handling this 

type of query.

The performance in Query 5 using SQL gives a much better result than Query 4 

because this query just requires the subjects to use the standard orderings provided by 

Oracle using comparison and sorting. However, when it comes to the queries requiring 

more semantics of data (a parts hierarchy and incomplete information) as in Queries 6 , 

7, 8 and 9, the result shows clear differences between using OSQL and SQL. In this case 

the number of attem pts using SQL is significantly greater than that of OSQL. Also more 

subjects, between 20% to 50% more, managed to work out the correct solution when 

using OSQL. It shows tha t OSQL is very useful in the area of semantic comparison and 

confirms that our extension on semantic domains is helpful.

Considered above, the superiority of OSQL has been demonstrated in the survey 

queries because using it required less query attem pts and also more accurate results were 

obtained in formulating the survey queries using OSQL. Moreover, OSQL is also a viable 

extension to SQL in practice if we take account into the fact that we just used one hour 

to introduce OSQL to the subjects for the experiment of the survey. Note that standard 

SQL queries will execute in the OSQL system, since the system is designed to be upwards 

compatible.

6 .3 .3  T h e  S u b je c ts ’ A tt itu d e s  to  th e  E x te n d e d  F ea tu res

We summarise the results of Question 5 by aggregating the results into percentages and 

then summarising the data  into the table shown in Figure 6.5. The majority of the 

subjects, which is well over 80%, chose the scales 4 and 5, to rate the usefulness of 

the extended features. In particular, the subjects expressed their strong support for 

usefulness of the tuple list, in which over 50% of the subjects gave the scale 5. As for 

the difficulty of using the attribute list and the tuple list, more than 90% of the subjects’ 

responses were spread fairly evenly amongst the scales 1 to 3. This indicates tha t these 

two features are basically not difficult for the subjects although they are not overly easy. 

Relatively speaking, the use of semantic domains in the comparison clause seems to be
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E x te n s io n U s e fu ln e s s D if f ic u lty
1 2 3 4 5 1 2 3 4 5

A ttr ib u te  l is t  (% ) 0.00 4 .6 2 2 3 .0 8 3 5 .3 8 3 6 .9 2 3 5 .3 8 3 5 .3 8 2 3 .0 8 3 .0 8 3 .0 8
T u p le  l is t  (% ) 0.00 4 .6 2 9 .2 3 3 0 .7 7 5 5 .3 8 3 5 .3 8 2 7 .6 9 3 2 .3 1 4 .6 2 0.00

C o m p a r iso n  (% ) 3 .0 8 3 .0 8 1 3 .8 5 4 4 .6 2 3 5 .3 8 1 6 .9 2 2 9 .2 3 4 1 .5 4 7 .6 9 4 .6 2

Figure 6.5: Users’ attitudes on using the extended features

more difficult than the attribute list and the tuple list, as less subjects (approximately 

20% less than other features) chose the scales 1 and 2 for the difficulty of this feature.

As for Question 6 , we summarise below the useful comments in three areas.

1. In general, the subjects showed appreciation of the extended features of the OSQL 

SELECT command. Many of their comments in this question expressed their sup­

port for our extension. They agreed that OSQL provided many benefits for them 

to formulate the survey queries. The tuple list was the most positive feature that 

the subjects frequently mentioned.

2. As far as the OSQL syntax is concerned, the subjects commented that the OSQL 

SELECT command was quite easy to use as it syntactically resembled the SQL 

SELECT statement. However, some pointed out that the use of brackets in seman­

tic orderings such as the attribute list ((NAME W ITH INEM PJRANK), SALARY) 

wcis best avoided as too many brackets would easily cause typing errors.

3. As far as the implementation of OSQL is concerned, many subjects were dissatisfied 

with the inadequacy of the error recovery mechanism, the on-line help manual and 

the system facilities provided by our implementation. For example, the subjects 

expected more editing commands to be available to correct their queries.

There were also some interesting points raised by a few subjects. Some mentioned 

that the attribute list had imposed some restrictions on the format of the presentation of 

the query result. Also, some suggested that in the attribu te list, more use of the asterisk 

symbol to specify other attributes was necessary. An example raised by one of the 

subjects was tha t the attribu te list (COST *) might mean that the tuples were sorted by 

the attribu te COST in the first place but that the orderings of other attributes would be 

immaterial.
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6.4 Evaluation of OSQL as a Result of the Survey

Assuming that our results are in fact representative, we find tha t there are many im­

plications obtained from this survey for the extended features of the OSQL SELECT 

command as follows.

• W ith respect to the attributes list we should provide further optional facilities in 

the attribute list to aid the users when using semantic domains. In particular, it 

would be helpful to provide the users with the asterisk symbol when they want 

to specify other attributes whose orderings are irrelevant.

• W ith respect to the tuple list, it has proved to be a powerful mechanism and a 

user-friendly facility for users to manipulate orderings. We should preserve this 

good feature in further design.

• W ith respect to the comparison clause, the semantic orderings are useful features 

but they may not be so trivial to some inexperienced users. More elaborations 

should be given for OSQL beginners in order to help them to acquire the use of the 

concept of semantic orderings.

We admit tha t there are not enough on-line facilities, such as a good user interface, for 

the present OSQL prototype. It affects the users’ attitudes towards the extended features. 

Therefore, a more comprehensive implementation of OSQL, which includes more error 

diagnosis and a custom-built user interface, is needed so that further experiments can 

be carried out to test the viability of the OSQL extension to SQL. One method is to 

incorporate the SELECT command into a graphical user interface, for example, instead 

of typing the name of a semantic domain in the comparison, users may make their choices 

from a drop down menu in a window environment, which presents a series of available 

semantic domains. In fact, OSQL can also provide the facility to develop a library of 

custom-built semantic domains together with their relevant operations via the notion of 

package. We will discuss in Chapter 7 the full detail of the package facility in OSQL.

We have identified possible biases to our data, which may limit the findings in the 

survey. Firstly, the samples should not, in general, be restricted to students and com­

puter professionals. People in other organisations may yield different results. However, 

in our case the students sample is more readily available. It is also convenient for us to
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manage the process of the survey within the time constraints. Secondly, the students 

collective viewpoint may be biased by perceiving OSQL as an obstacle to overcome to 

obtain a good mark for the coursework rather than as a means to assist SQL develop­

ment. Despite the fact that we have taken some precautions to avoid this happening 

(recall tha t the measures were stated in Section 6.2), one still could argue that their 

opinions are, to some extent, guided by us or by the OSQL manual rather than their 

own experience. Thirdly, the survey queries adopted in the experiment sheet involve no 

nestings in OSQL statements. Thus, the full capabilities of OSQL over SQL have not 

yet been fully illustrated in the survey.

We have three short-term objectives and a long-term goal in order to continue and 

evolve the survey in future. Firstly, we plan to extend the scope of the survey outside 

of the current sample groups to include more computer professionals. Secondly, we plan 

to improve the interface of the OSQL system and the error diagnosis facilities as we 

mentioned before so that OSQL can be more fairly evaluated. Thirdly, we plan in the 

next experiment to include queries that involve more complex ordered domains and nested 

OSQL statements. As a more long-term goal, we are interested to know how much the 

performance of the survey queries also applies to SQL3, which is estimated to be released 

in 1998.
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Chapter 7

The D evelopm ent o f OSQL 
Packages for M odelling Advanced  
Applications

In this chapter we demonstrate that OSQL aided with a package discipline is extremely 

powerful and has a very wide range of applicability. In particular we demonstrate 

that OSQL is very useful in managing the five advanced database applications of tree- 

structured information, temporal information, incomplete information, fuzzy information 

and spatial information, which are described in more detail in the table given in Figure 

7.1.

P ack age N a m e B r ie f  D e sc r ip tio n

OSQL_TREE Provides support for tree-structured information in or­
dered databases. For example, finding the common an­
cestors between two nodes.

OSQL_TIME Provides support for temporal information in ordered 
databases. For example, finding the historical informa­
tion pertaining to a relation for a given year.

OSQLJNCOM P Provides support for incomplete information in ordered 
databases. For example, comparing two tuples in order to 
decide which one contains more information than another.

OSQL_FUZZY Provides support for fuzzy requirement in ordered 
databases. For example, finding the most suitable tuples 
in a relation according to a given fuzzy requirement.

OSQL_SPACE Provides support for spatial information in ordered 
databases. For example, finding all spatial objects on the 
left side of a selected region.

Figure 7.1: Brief description of the OSQL packages

148



The use of packages is very popular and successful in many existing software systems 

such as Mathematica [146], PL/SQL in Oracle [52] and most recently in DK%X2g: [66] and 

Java [8]. Similar to the usage of packages in other systems, OSQL packages, supported by 

OSQL language constructs, enjoy many of the benefits of using modularisation techniques 

as a management tool.

A related approach is to use abstract data types to define domains and their associated 

operations, which can be treated as an integral part of the data type. This approach was 

initiated by the ADT-Ingres project at Berkeley [118]. There followed many projects to 

further this line of development, such as Postgres [138], the EXODUS project [26] and 

the Starburst project [94]. Examples of commercial products which are now available 

are Illustrais DataBlades and IBM’s Database Extenders. Following our analysis of the 

development of the relational model in Chapter 1, this approach is basically an object- 

oriented extension of the conventional model, resulting from the strong trend of object- 

oriented programming in the 80s. For instance, the system RAD [121] provides a language 

which enhances the relational algebra operations with external programs which allow the 

database programmer to introduce arbitrary new data types to a relational DBMS. As 

a result, RAD is computationally query complete [28]. However, optimisation of RAD 

programs would be rather difficult due to the fact tha t they can only be introduced to 

the execution engine at run time.

We emphasise that our approach is novel in the sense tha t we regard partial ordering 

as a fundamental property of data which is captured explicitly in the ordered relational 

model. Furthermore, our approach adheres to the principle of upwards compatibility, 

since OSQL packages are provided as additional utilities to be used rather than replacing 

any standard features of a relational DBMS. Thus, our approach provides maximum 

flexibility for users and allows the design of optimisation strategies for the execution 

engine of a relational DBMS.

We summarise other features of OSQL packages as below;

1. A top-down design approach is adopted for the grouping of related operations in 

an OSQL package where the semantics of the package follow from a set of core 

operations specified by the pre-deflned requirements of the package.

2. Constraints within an OSQL package can be enforced and supported by a lan­

guage construct called enforcement and thus operations in an OSQL package can
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be controlled in a more coherent manner.

3. OSQL packages can hide the implementation details of the code of their operations. 

The database adm inistrator has the flexibility to decide whether an operation is 

public or private.

The remainder of this chapter is organised as follows. In Section 7.1 we present the 

syntax of an OSQL package. From Section 7.2 to Section 7.6, we define the generic 

operations arising from tree-structured information, temporal information, incomplete 

information, fuzzy information and spatial information, respectively, in the form of five 

OSQL packages shown in Figure 7.1.

7.1 The Syntax of OSQL Packages

In this section we introduce the Package Definition Language (PDL), which defines the 

building blocks of an OSQL package; the full syntax of the PDL is given in Appendix 

A.3.

An OSQL package is defined by the following statement.

PACKAGE  ( package name )

(package body)

END PACKAGE

where the package body consists of a parameter component, a function component 

and an enforcement component. These three components are specified by the following 

six basic PDL language constructs:

1. Parameter constructs.

2. Function constructs.

3. OSQL constructs.

4. Program constructs.

5. Enforcement constructs.

The parameter component in an OSQL package is organized as a sequence of param­

eter constructs followed by the keyword PARAM ETER  as follows:
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PARAM ETER: parameter construct [parameter construct].,.

where a parameter construct is of the form package data type: variable names^ declar­

ing the global variables used in the function and enforcement components. For example, 

VARCHAR, INT and BOOL are package data types representing characters, integers 

and boolean values, respectively. After each package data type declaration there follows 

one or more variable names of the package data type. We use the symbol “$” to specify 

those variable names that are known to the system at compile time.

The function component in a package is organized as a sequence of function constructs 

followed by the keyword FUNCTION. A function construct is a block structure which is 

defined as follows:

( function name ) ( input variables )

( param eter list )

DEFINE  

( function body )

R E TU R N  [( output variables )]

where parameter list is a sequence of parameter constructs and where the variables are 

local to the function. The function body describes the operation of the function consisting 

of an OSQL construct or a program construct. An OSQL construct is simply an OSQL 

statem ent such that its variables have been declared either within a function (i.e., local 

variables) or in the parameter component at the beginning of the package (i.e., global 

variables). A function in a package returns a list of zero or more values.

As the expressive power of OSQL is limited [112], we enhance OSQL with a pro­

gram construct in OSQL, which is of the form A S  PROG program name. The program 

name is the path  location and the name of a program, which is written in the C pro­

gramming language, which allows SQL statements to be embedded in it. This program 

performs the operation of the function. For example, the program construct “AS PROG 

\usr\P rog \tree .rooC  in a function body specifies tha t the C program tree.root found 

in the directory \u s r \P r o g \  implements the function.

The enforcement component in a package is organized as a sequence of enforcement 

constructs followed by the keyword ENFORCEMENT. An enforcement construct, which 

is similar to a function construct, is also a block structure as follows:
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( enforcement name )

DEFINE

(enforcement body)

END

where the body of an enforcement construct is formulated by a program construct 

which implements some constraints over the functions of an OSQL package. For example 

an enforcement construct can be implemented to ensure that the identified domain is 

indeed tree-structured. We reserve the enforcement, ENFORCE JN IT , to be used by the 

system for the initialization of an OSQL package.

We refer to all functions and enforcements collectively as operations. There are two 

categories of operations, which are also common in some programming languages: one is 

that of public operations, which are available to the users, and another is that of private 

operations, which are only accessible by calling them from other operations within the 

package tha t they belong to. We use the keywords PUB  and P R Ito  label the operations as 

public and private, respectively. By default, whenever there is no such keyword labelling, 

we treat an operation as private. The public operations comprise the interface of a 

package to the database users, whilst the private operations are encapsulated and thus 

hidden from the users. For example, all enforcements are private because they are used 

by the system to ensure the integrity of the domain and the consistency of the functions 

in a package.

Note tha t there is an im portant difference between using an OSQL construct and a 

program construct in a function. The OSQL statement in an OSQL construct can be 

decomposed and restructured by the query execution engine of a relational DBMS for 

optimisation purposes. For instance, the query {Q7.1)  below, which uses the package 

function COM_ANCESTOR,

{Q7.1)  SELEC T  (*) (*) FROM EMP_DETAIL 

WHERE NAM E  /AT COM_ANCESTOR(’Nadav’, ’E than’),

i s  e q u i v a l e n t  t o  t h e  q u e r y  ( Q 7 .2 ) b e lo w ,

( Q 7 .2 ) SE LE C T {*) (*) FROM EMP.DETAIL 

WHERE  (NAME >  ’Nadav’ W/TR/iV EMP.RANK)

AND  (NAME > ’E than’ W/TR/iV EM PJIA N K ),
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which is an ordinary OSQL statement not using any functions. On the other hand, 

an external program specified in a program construct is “opaque” with respect to a 

relational DBMS, in the sense that its code can only be integrated into its associated 

OSQL statement at run time and thus allows no possibility of optimisation at compile 

time. As a result, operations defined by OSQL constructs are, in general, more efficient 

to implement than those defined by program constructs.

7.2 Example OSQL Packages I: Tree-Structured Informa­
tion

OSQL-TREE provides support for queries having tree-structured information such as 

finding the root and the parent of a node [27]. The terminology concerning trees used 

in the OSQL package are the usual ones [6]. We restrict the term tree to mean a rooted 

tree and, without loss of generality, consider only the case of having one tree in a tree 

domain. We also ignore those operations that involve updating nodes and consider only 

the operations needed for data  retrieval.

D efin ition  7.1 R equirem ents and Core O perations o f OSQL_TREE

ri : for each node, there is an operation ci which finds its parent.

r 2 ‘ for each node, there is an operation C2 which finds its children.

rg: for each tree, there is an operation cg which finds its root.

for each node, there is an operation C4 which finds all its leaf nodes.

r^: for each node, there is an operation C5 which finds all its ancestors.

re', for each node, there is an operation cq which finds all the nodes in the subtree rooted 
at the node.

A requirement ri is said to be realised by the core operation Ci (or c% is the realisation 

of ri), where i G { 1 ,... , 6 }. We call the set of all core operations of OSQL.TREE the 

core set of OSQL.TREE and denote it by C O R E {O SQ LJTR E E ).

Note that it is not necessary tha t for every c* in C O R E {O SQ LJTR E E ), there exists 

exactly one corresponding operation in OSQL.TREE such tha t it has the same effect as 

Ci", a similar remark also applies to other packages. We now present the description of 

the operations in OSQL.TREE in the table given in Figure 7.2.
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O p era tio n s B r ie f  D e sc r ip tio n

I D E N T I F Y  fu n c t io n T o  I D E N T I F Y  a  g iv e n  d o m a in  a s  th e  tr e e  d o m a in  
u se d  in  O S Q L .T R E E .

P A R E N T  fu n c t io n T o  fin d  th e  P A R E N T  o f  a  n o d e  w ith in  th e  tr e e  d o m a in  
u se d  in  O S Q L .T R E E .

C H IL D R E N  fu n c t io n T o  fin d  a ll C H IL D R E N  o f  a  n o d e  w ith in  t h e  tr e e  d o ­
m a in  u se d  in  O S Q L .T R E E .

A N C E S T O R  fu n c t io n T o  fin d  a ll th e  n o d e s  p r io r  t o  a  n o d e  w ith in  th e  tr e e  
d o m a in  u s e d  in  O S Q L .T R E E .

C O M .A N C E S T O R  fu n c t io n T o  fin d  a ll th e  C O M m o n  A N C E S T O R S  o f  tw o  g iv e n  
n o d e s  w ith in  th e  tr e e  d o m a in  u s e d  in  O S Q L .T R E E .

O F F S P R I N G  fu n c t io n T o  fin d  t h e  n o d e s  in  t h e  su b tr e e  o f  a  g iv e n  n o d e .

L E A V E S  fu n c t io n T o  f in d  a ll th e  le a f  n o d e s  o f  th e  tr e e  d o m a in  u se d  in  
O S Q L .T R E E .

R O O T  fu n c t io n T o  fin d  th e  R O O T  o f  th e  tr e e  d o m a in  u se d  in  
O S Q L .T R E E .

L E V E L  fu n c t io n T o  fin d  th e  L E V E L  o f  a  n o d e  w ith in  th e  tr e e  d o m a in  
u se d  in  O S Q L .T R E E .

S W A P  fu n c t io n T o  S W A P  tw o  n o d e s  in  th e  tr e e  d o m a in  u se d  in  
O S Q L .T R E E .

V E R I F Y  fu n c t io n T o  V E R I F Y  th a t  th e  id e n t if ie d  tr e e  d o m a in  sa t is f ie s  
th e  s e m a n t ic s  o f  a  tr e e  d o m a in .

N O D E -C O U N T  fu n c t io n T o  c o u n t  th e  n u m b e r  o f  n o d e s  in  a  g iv e n  s u b s e t  o f  th e  
tr e e  d o m a in  u se d  in  O S Q L .T R E E .

E N F O R C E J N I T  e n fo r c e m e n t T o  e n fo r c e  th e  in it ia l iz a t io n  w h ic h  id e n t if ie s  th e  d o ­
m a in  T R E E  t o  b e  u s e d  a s  th e  tr e e  d o m a in  o f  
O S Q L .T R E E .

E N F O R C E J D E N T I F Y
e n fo r c e m e n t

T o  e n fo r ce  t h e  v e r if ic a t io n  o v e r  t h e  id e n t if ie d  d o m a in  
g iv e n  b y  t h e  fu n c t io n  I D E N T I F Y .

E N F O R C E J S W A P
e n fo r c e m e n t

T o  e n fo r c e  t h e  v e r if ic a t io n  o v e r  th e  tr e e  d o m a in  a fter  
p e r fo r m in g  th e  fu n c t io n  S W A P .

Figure 7.2: The description of the operations in OSQL.TREE

The reader can consult Appendix B for the full reference of the code of the operations. 

A similar remark also applies to other OSQL packages.

We assume that when OSQL.TREE is loaded into the system, there is a tree do­

main in the database. To enforce this assumption, the enforcement ENFORCEJNIT 

will search for the domain that is called TREE as the underlying domain to be used in 

the OSQL package. However, the users can still use the function IDENTIFY to declare 

other tree domains for the OSQL package. We use a relation called TREE_LEVEL, 

whose relational schema consists of two attributes LEVEL_NUMBER and NODE, to 

maintain the information of node levels in the tree domain. The function LEVEL can be 

used to access the relation TREE_LEVEL to find out the level of a node. The functions 

NODE-COUNT and VERIFY are private functions, which are only used by other opera-
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tions in OSQL.TREE. The function SWAPJ^ODE is necessary so tha t we do not have to 

create a new tree domain in case some changes are required in the ordering of the nodes 

in the tree domain that is currently used. The declarations pertaining to OSQL.TREE 

are given in Figure 7.3.

PACKAGE O S Q L .T R E E  
PARAMETER:

VARCHAR: t r e e j i o d e . l ,  t r e e j io d e _ 2 ,  e x t  .d o m a in ,  
tr e e .d o m a in ,  $ e x t j : e la t io n ,  $ e x t .a t t  

BOOL: b o o l .v a l ,
INT: n o d e J e v e l ,  c o u n t m o d e s  
REL: n o d e s  

FUNCTION:
PUB I D E N T I F Y ( e x t .d o m a in )  RETURN  
PUB P A R E N T ( t r e e j i o d e . l )  RETURN nodes 
PUB C H I L D R E N ( t r e e m o d e . l )  RETURN nodes 
PUB A N C E S T O R ( t r e e m o d e . l )  RETURN nodes 
PUB C O M .A N C E S T O R ( t r e e m o d e . l , t r e e m o d e .2 )  RETURN nodes 
PUB O F F S P R I N G ( t r e e m o d e . l )  RETURN nodes 
PUB L E A V E S O  RETURN nodes 
PUB R O O T ()  RETURN nodes 
PUB L E V E L ( t r e e j io d e . l )  RETURN nodedevel 
PUB S W A P ( t r e e m o d e . l , t r e e j io d e .2 )  RETURN  
V E R I F Y  ( t r e e .d o m a in )  RETURN b o o l .v a l  
N O D E .C O U N T ( n o d e s )  RETURN c o u n t  m o d e s  

ENFORCEMENT:
E N F O R C E J N I T O  
E N F O R C E J D E N T I F Y O  
E N F O R C E D  W A P  0  

END PACKAGE

Figure 7.3: The package declaration for OSQL.TREE

E x a m p le  7.1 In this example, we present some typical tree-structured information 

queries on the relation EM P.TREE shown in Figure 7.4(a) in order to demonstrate 

how to apply the package operations within OSQL statements. The domain of employee 

names is depicted as a tree in Figure 7.4(b).
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NAME SALARY

Bill I2K

Ethan 29K

John 14K

Lee 25K

Mark 30K

Paul 23K

Simon lOK

Paul John Simon ^ ------------- Level 1 (leaf nodes)Lee

\ /
Ethan

Mark

Level 2

Level 3 (root)

(a) (b)

Figure 7.4: An employee relation EM P.TREE and the tree domain

1. The function IDENTIFY(EM P.RANK) will identify EMP_RANK to be the tree 

domain concerned instead of the default domain TREE; NODE.COUNT is a pri­

vate function for internal use, for example NODE_COUNT(CHILD(’E than’)) =  2; 

the function SWAP('M ark% ’Bill’) changes the ordering of the tree in Figure 7.4(b) 

as follows:
Paul John Simon

\ /  \ /
Lee

Ethan Mark

2 . Find the most senior staff member.

(Q 7.3)  SELEC T {^) (*) FROM EM P.TREE WHERE  /A R O O T ().

3. Find the name and salary of the immediate boss of Bill.

(Q 7.4)  SELEC T (^) (*) FROM EM P.TREE WHERE NAM E IN  

PARENT(’Bill’).

4. Find the name and salary of the immediate subordinates of Bill.

(Q 7.5) SELEC T (*) (*) FROM EM P.TREE W ^FR F NAME IN  

CHILDREN(’BiH’).

5. Find the name and salary of the common bosses of David and Bill.

(Q 7.6) SELEC T {*) (*) FROM EM P.TREE W ^FR F NAME IN
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COM_ANCESTOR(’B iir,’David’).

6 . Find the name and salary of all the subordinates of Bill.

(Q 7.7) SELEC T {^) (*) FROM EM P.TREE WHERE IN

OFFSPRING(’Biir).

7. Find the name and salary of all the bosses of Bill.

(Qt.s) s e l e c t  {*) (*) FROM EM P.TREE W HERE NAM E IN  

ANCESTOR(’B iir).

8 . Find the name of the staff members who are in the same level as Bill. 

(Q 7.9) SELEC T  ((NAME WITHIN EM PJIAN K)) (LEVEL(’Bill’)) 

FROM  EM P.TREE.

7.3 Example OSQL Packages II: Temporal Information

The underlying semantics of time used in this OSQL package is that time is considered 

to be linearly ordered [97]. In our implementation an ordered relation is employed to 

maintain the data elements of a time domain, which are non-empty, finite, linearly or­

dered, and of the same data  type. This relation can only be accessed by the operations 

of the package and the comparison of temporal data can be applied only over the time 

domain.

One of the many approaches [145] in the literature to manipulating temporal data 

is to use an attribute, which we call a time attribute, and to timestamp the attribute 

values of this attribute with either time instants or time intervals [144, 98]. We assume 

temporal data  is timestamped with the time interval during which it is valid.

Let us consider the relation EM P.TIM E in Figure 7.7, which uses the attributes 

FROM .TIM E and TO .TIM E to denote time intervals. We can see that, for instance, 

Mark had salary 20K in the time interval 1992 <  YEAR < 1995 (note tha t in our 

formalism the year 1995 is not included in the time interval).

The advantage of using time intervals in modelling time data is that it can save 

storage space. However, there are some complications arising from using time intervals 

in modelling time data. For example, they cannot directly support the update or retrieval 

of tuples at a particular time instant and some useful operations such as the snapshot
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operation obtaining the temporal relation in a particular year, cannot be carried out in 

a direct manner. To solve this problem, two operations EXTEND  and COALESCE hdiwe 

been suggested in the literature [145]. It can be shown that these two operations can 

be formulated in OSQL, with the assumption tha t an ordered relation is maintained for 

the time domain used in OSQL_TIME. Therefore, in this sense, we can claim that the 

expressive power of OSQL.TIME is temporally complete (see Chapter 4 in [145]). We 

now introduce the following design requirements for OSQL.TIME, in which we use the 

terminology of [145].

D efin ition  7.2 R equirem ents and Core O perations o f OSQL_TIM E

r\'. for a given temporal relation, there is an operation c\ which returns the snapshot 

relation for a given time instant of the current time domain.

r 2 ' there is an operation C2 which provides a standard time domain to model the Grego­

rian calendar system (i.e. DAY-MONTH-YEAR).

rg: there is an operation cg which allows users to define the time resolution of a certain 

granularity up to the unit time interval.

Similar to Definition 7.1, we call the set tha t consists of all the core operations of 

OSQL_TIME the core set of OSQL.TIME and denote it by CORE(OSQL-TIME).

Note tha t we have not required that the set of core operations contain some of the 

common temporal operators [135], such as overlaps and contains (see Chapters 4, 5 and 

6 in [145]), which can be explicitly defined in order to compare time intervals, since they 

can be quite easily formulated in OSQL comparison predicates. For instance, given two 

time intervals l\ and I2  specified by { fro m i,to i)  and { fro m 2 ,to 2 ) respectively, h  over­

laps with I2  can be written as the predicate ((̂ o% >  fr o m 2 W ITH IN  time-dom ain) AND  

{to2  > fr o m i W ITH IN tim e-dom ain)) and I2  contains li can be written as the predicate 

{{from i > fr o m 2 W ITH IN  time-dom ain) AND {to2  > to\ W ITH IN  tim e-dom ain)). 

Nevertheless, one can still argue that it would be useful to have the mentioned opera­

tions in the OSQL package, but that is another m atter. We now present the following 

description of the operations in OSQL.TIME in the table given in Figure 7.5.

We assume tha t DATE (i.e. DAY-MONTH-YEAR) is the default domain to be used 

in the package unless the function IDENTIFY is used to specify another time domain.
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O p er a tio n s B r ie f  D e sc r ip tio n

I D E N T I F Y  fu n c t io n T o  I D E N T I F Y  a  g iv e n  d o m a in  a s  th e  t im e  d o m a in  
u se d  in  O S Q L .T I M E .

C U R R E N T  fu n c t io n T o  r e tu r n  a ll th e  C U R R E N T  tu p le s  in  a  t e m p o r a l  
r e la t io n .

H IS T O R Y  fu n c t io n T o  r e tu r n  a ll tu p le s  w h ic h  a re  n o t  v a lid  a t  p r e se n t .
S N A P S H O T  fu n c t io n T o  r e tu r n  a ll tu p le s  w h ic h  w ere  v a lid  a t  a  g iv e n  t im e  

in s ta n t .
S U C C  fu n c t io n T o  r e tu r n  th e  S U C C e ss o r  o f  a  g iv e n  t im e  in s ta n t  in  

th e  t im e  d o m a in  u se d  in  O S Q L .T I M E .
P R E D  fu n c t io n T o  r e tu r n  th e  P R E D e c e s s o r  o f  a  g iv e n  t im e  in s ta n t  in  

th e  t im e  d o m a in  u se d  in  O S Q L .T I M E .

D U R A  fu n c t io n T o  c a lc u la te  th e  D U R A t io n  b e tw e e n  tw o  t im e  in s ta n ts  
in  th e  t im e  d o m a in  u s e d  in  O S Q L .T I M E .

E X P A N D  fu n c t io n T o  c o n v e r t  in te r v a l- s ta m p e d  t u p le s  in  a  g iv e n  r e la t io n  
in to  in s ta n t - s ta m p e d  tu p le s .

C O A L E S C E  fu n c t io n T o  c o n v e r t  in s ta n t - s ta m p e d  tu p le s  in  a  g iv e n  r e la t io n  
in to  in te r v a l- s ta m p e d  tu p le s ,  i .e .  t h e  r e v e r se  o f  th e  
E X P A N D  fu n c t io n .

T I M E J I E S  fu n c t io n T o  c r e a te  a  t im e  d o m a in  w h o se  t im e  sc a le  is  d e fin e d  
b y  th e  u ser s .

V E R I F Y  fu n c t io n T o  V E R I F Y  t h a t  t h e  id e n tif ie d  t im e  d o m a in  sa t is f ie s  
th e  s e m a n t ic s  o f  a  t im e  d o m a in .

S T R I P  .T I M E  fu n c t io n T o  p r o je c t  o u t  th e  t im e  a t tr ib u te s  F R O M .T I M E  a n d  
T O .T I M E  fro m  th e  r e la t io n a l  s c h e m a  for  a  g iv e n  re­
la t io n  a n d  r e tu rn  t h e  r e m a in in g  a t tr ib u te s .

E N F O R C E J N I T
e n fo r c e m e n t

T o  e n fo r c e  th e  in it ia l iz a t io n  w h ic h  id e n t if ie s  th e  d o ­
m a in  D A T E  t o  b e  u s e d  a s  t h e  t im e  d o m a in  o f  
O S Q L .T I M E .

E N F O R C E J D E N T I F Y
e n fo r c e m e n t

T o  e n fo r ce  t h e  v e r if ic a t io n  o v e r  t h e  id e n t if ie d  d o m a in  
g iv e n  b y  t h e  fu n c t io n  I D E N T I F Y .

Figure 7.5: The description of the operations in OSQL.TIME

Other standard domains available in OSQL.TIME include YEAR, MONTH, DAY, 

HOUR, MINUTE, SECOND. Furthermore, a user-defined time domain of an arbitrary 

resolution can be defined by the function TIME_RES. We use a relation called 

TIME_DOM_REL, whose relational schema consists of the attribute TIMEJDATA, to 

maintain the standard time domains. If the time domain is user-defined, the package 

will prompt the user for the definition of the NOW variable. The function STRIP.TIM E 

can be used to remove the time attributes of the schema of a temporal relation. The 

EXPAND function would be useful if users want to update a temporal relation. If we 

want to add a tuple into the relation EM P.TIM E, then we have to first EXPAND the 

relation and then COALESCE the updated relation. We now show the declaration part
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of OSQL.TIME in Figure 7.6.

PACKAGE O S Q L .T I M E  
PARAMETER:

VARCHAR: t im e .d o m a in ,  e x t jr e la t io n ,  t i m e J n s t a n t . l ,  t im e j n s t a n t .2 ,  N O W  
n o n _ t im e .sc h e m a , e x t  .d o m a in  

INT: g r a n u la r ity , d u r a t io n  
BOOL: b o o l .v a l  
REL: r e su lt  r e l a t io n  

FUNCTION:
PUB I D E N T I F Y ( e x t .d o m a in )
PUB C U R R E N T (e x t^ r e la t io n )  RETURN ves\i\t-re\ation  
PUB H IS T O R Y  (e x tjr e la t io n )  RETURN Tesultjcelation 
PUB C O A L E S C E (e x t jr e la t io n )  RETURN lesnltjcelation  
PUB S U C C ( t im e d n s t a n t . l )  RETURN tim eAnstant-2  
PUB P R E D  ( t im e  J n s t a n t . l )  RETURN timeAnstantJ2 
PUB D U R A ( t im e _ in s t a n t . l ,  t im e .in s ta n tJ 2 )  RETURN duration  
PUB S N A P S H O T (e x t j : e la t io n ,  t i m e J n s t a n t . l )  RETURN result jceiation 
PUB E X P A N D  (e x tjr e la t io n )  RETURN result jcelation 
PUB T I M E J I E S  (g r a n u la r ity , e x t .d o m a in )  RETURN  
V E R I F Y  ( t im e .d o m a in )  RETURN  b o o l .v a l  
S T R I P .T I M E ( e x t j r e la t io n )  RETURN  n o n .t im e .s c h e m a  

ENFORCEMENT:
E N F O R C E J N I T O  
E N F O R C E J D E N T I F Y O  

END PACKAGE

Figure 7.6: The package declaration for OSQL.TIME

E x a m p le  7.2 We use the relation EM P.TIM E shown in Figure 7.7 whenever it is nec­

essary.

1. IDENTIFY (YEAR) identifies the standard domain YEAR, which specifies the 

ordered set {1900 <  < 2050} and IDENTIFY (MONTH) identifies another

standard domain { J A N  <  <  D E C }. If the user has used the function

T IM E JIE S(100, HUNDRED) to create a domain HUNDRED, then IDENTIFY 

(HUNDRED) identifies this user-defined domain, which specifies the ordered set 

{0 <  - <  99}.

2. Find the current salaries of all employees.

(Qy.io) SELEC T {NAME, SALARY) (*) FROM  CURRENT (EM P.TIM E).

3. Find the salary history of Mark.

(Q7.11) SELEC T {*) (*) FROM HISTORY(EMP.TIME). 

WHERE  NAME =  ’M ark’
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4. Find the salary of Bill in 1994.

(Q7.12) SELEC T {SALARY) (*) SNAPSHOT(EMP_TIME, 1994)

WHERE  NAME =  ’Bill’.

5. Find the names of those employees who have been worked for more than two years. 

(Q7.13) SELEC T {NAME) (*) FROM  EU R .TIM E

WHERE D \]RA{FROM .TlM E, TO.TIM E) > 2.

NAME SALARY FROM .TIM E TO.TIM E

Bill 15K 1991 1995

Bill ISK 1995 1996

Bill 20K 1996 1997

Mark 25K 1992 1995

Mark 30K 1995 1997

Figure 7.7: An employee relation EM P.TIM E stamping with time intervals

7.4 Example OSQL Packages III: Incom plete Information

In this OSQL package, we classify the incompleteness into three unmarked null symbols, 

UNK, DNE and NI, whose semantics has already been discussed in Subsection 5.4.2. 

Recall tha t we use the notion of more informative values, which allows us to deduce 

useful information available from a relation having incomplete data.

The ordering of null values is captured by the standard incomplete domain called 

INCOMP provided by OSQL JNCOM P. Recall tha t the domain can be formulated by the 

OSQL statement in {Qs.is) in Chapter 5. As we would like to make the domain INCOMP 

standard, we do not allow any user-defined incomplete domains in OSQL JNCOM P. The 

description of the operations is shown in the table in Figure 7.8 and the declaration part 

of OSQL JN C O M P is shown in Figure 7.9.

D efin ition  7.3 R equirem ents and Core O perations o f OSQL J N C O M P

r\: there is an operation ci which defines the standard domain describing the semantics 

of incompleteness such as the null values as shown in Figure 5.11 in Chapter 5.
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r 2t for a given incomplete relation, there is an operation C2 which returns all the tuples 

containing only known values.

rg: for a given incomplete relation, there is an operation cg which returns tuples contain­

ing various degree of incompleteness.

r^: there is an operation C4 which checks whether one tuple is more informative than 

another with respect to some attributes.

Similar to Definition 7.1, we call the set that consists of all core operations of OSQL JNCO M P 

the core set of OSQL JN CO M P and denote it by CORE(OSQL-INCOMP).

O p era tio n s B r ie f  D e sc r ip tio n

C O M P L E T E _ V A L
fu n c t io n

T o  r e tu rn  a ll tu p le s  w h ic h  c o n ta in  o n ly  k n o w n  v a lu e s  
o f  a n  a t tr ib u te  in  a n  in c o m p le te  r e la t io n .

P A R T I A L .V A L  fu n c t io n T o  r e tu rn  a ll tu p le s  w h ic h  c o n ta in  a  n u ll v a lu e  o f  a n  
a t tr ib u te  in  a n  in c o m p le te  r e la t io n .

D N E .V A L  fu n c t io n T o  r e tu rn  a ll tu p le s  w h ic h  c o n ta in  th e  D N E  v a lu e  o f  
a n  a t tr ib u te  in  a n  in c o m p le te  r e la t io n .

N I .V A L  fu n c t io n T o  r e tu rn  a ll tu p le s  w h ic h  c o n ta in  th e  N I v a lu e  o f  a n  
a t tr ib u te  in  a n  in c o m p le te  r e la t io n .

U N K .V A L  fu n c t io n T o  r e tu r n  a ll tu p le s  w h ic h  c o n ta in  th e  U N K  v a lu e  o f  
a n  a t tr ib u te  in  a n  in c o m p le te  r e la t io n .

M O R E J N F O  fu n c t io n T o  ch eck  w h e th e r  tu p le s  a re  m o r e  in fo r m a tiv e  th a n  a  
g iv e n  a t tr ib u te  v a lu e .

L E S S  J N F O  fu n c t io n T o  ch eck  w h e th e r  tu p le s  a re  le s s  in fo r m a tiv e  th a n  a  
g iv e n  a t tr ib u te  v a lu e .

I D E N T I F Y  fu n c t io n T o  I D E N T I F Y  th e  d o m a in  I N C O M P  a s  th e  in c o m ­
p le te  d o m a in  u se d  in  O S Q L  J N C O M P .

V E R I F Y  fu n c t io n T o  V E R I F Y  t h a t  t h e  d o m a in  IN C O M P  sa t is f ie s  th e  
s e m a n t ic s  o f  a n  in c o m p le te  d o m a in .

E N F O R C E J N I T
e n fo r c e m e n t

T o  e n fo r ce  t h e  in it ia l iz a t io n  w h ic h  id e n t if ie s  th e  d o ­
m a in  IN C O M P  a s  t h e  in c o m p le te  d o m a in  u s e d  in  th e  
p a ck a g e .

Figure 7.8: The description of the operations in OSQL JNCOM P

Note that the function IDENTIFY in this OSQL package is private, since the users are 

not allowed to change the meaning of various null symbols. This shows that the pack­

age approach is very fiexible in modelling versatile information. The functions COM- 

PLETE_VAL, PARTIAL.VAL, DNE.VAL, NI.VAL and UNK.VAL provide users with 

the ability to manipulate various types of incomplete information based on the notion of
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being “more informative” . The functions M OREJNFO and LESS JN FO  provide users 

with the ability to semantically compare tuples in incomplete databases.

PACKAGE OSQL JNCOMP 
PARAMETER:

VARCHAR: ext_att, incomplete.domain, ext .relation, ext.val, predicate 
BOOL: booLval 
REL: result relation
PUB COMPLETE_VAL(extj:elation, ext_att) RETURN vesnltjcelation 
PUB PARTIAL_VAL(extj:elation, ext_att) RETURN result Jcelation 
PUB DNE_VAL(extjrelation, ext_att) RETURN result jcelation 
PUB NI_VAL(extrelation, ext_att) RETURN result-relation 
PUB UNK.VAL (extjrelation, ext_att) RETURN result jcelation 
PUB MOREJNFO(ext.att,ext.val) RETURN predicate 
PUB LESSJNFO(ext.att,ext.val) RETURN predicate 
IDENTIFYO RETURN
VERIFY(incomplete.domain) RETURN  bool.val 

ENFORCEMENT:
ENFORCEJNITO 

END PACKAGE

Figure 7.9: The package declaration for OSQL JN CO M P

E xam ple 7.3 We use the relation EMP JN CO M P in Figure 7.10 whenever it is neces­

sary.

NAME PREVIOUS.W ORK

Mark UNK

Ethan DNE

Nadav adm inistrator

Bill programmer

John NI

Simon NI

Figure 7.10: An employee relation EMP JN CO M P

1. Find the name and previous work of those employees whose previous work is less 

informative than unknown (i.e., UNK).

(Q7.14) SELECT (NAME, PREVIOUS.WORK) (*) FROM  EMP JNCO M P 

W HERE  LESS JNFO(PREVIOUS_WORK, ’UNK’).
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2. Find the name and previous work of those employees whose information of previous 

work is not complete.

(Q7.15) SELEC T  (NAME, PREVIOUS.WORK) (*) FROM  

PARTIAL_VAL( EMP JNCOM P, PREVIOUS.W ORK).

3. Find the name and previous work of those employees whose previous work does not 

exist (i.e., DNE).

(Q7.16) SELEC T  (NAME, PREVIOUS.WORK) (*) FROM  

DNE.VAL(EMPJNCOMP, PREVIOUS.WORK).

7.5 Example OSQL Package IV: Fuzzy Information

In OSQL J^UZZY we provide functions for users to impose fuzzy requirements on a rela­

tion. Users can obtain the most suitable information based on the defined requirements 

in the OSQL package. We assume that for each fuzzy requirement, there is a domain 

called fuzzy domain, which captures the semantics of the requirement, for example as 

we have shown in (Q5.20) given in Chapter 5, that the fuzzy requirement “good science 

background and academic qualification” can be captured by the fuzzy domain QUAL­

IFY. Therefore, the requirement can be referred to by the name of its corresponding fuzzy 

domain. If there are several fuzzy requirements to be imposed on a relation, then their 

priorities can be defined by the function ORDER J'U ZZY  and tuples can be ordered and 

then retrieved according to the priorities of fuzzy requirements.

D efin ition  7.4 R equirem ents and Core O perations o f OSQLJFUZZY

r\: for each fuzzy requirement, there is an operation c\ which identifies a unique fuzzy 

domain associated with it.

r 2: there is an operation C2 which specifies the relative priorities of different requirements.

r^: there is an operation cg which retrieves tuples in a sorted list, in which the most 

suitable one is the first, from a relation according to a set of fuzzy requirements.

Similar to Definition 7.1, we call the set that consists of all core operations of OSQLJFUZZY 

the core set of OSQLJFUZZY and denote it by CORE(OSQL-FUZZY).

We now present the description of the operations in the table in Figure 7.11.
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O p era tio n s B r ie f  D e sc r ip tio n

I D E N T I F Y  fu n c t io n T o  I D E N T I F Y  a  fu z z y  d o m a in  t o  b e  u se d  t o  c a p tu r e  
th e  s e m a n t ic  o f  a  fu z z y  r eq u ire m en t.

I M P O S E T U Z Z Y  fu n c t io n T o  I M P O S E  a  F U Z Z Y  r eq u ire m en t o n  a n  a t tr ib u te .
O R D E R  J 'U Z Z Y  fu n c t io n T o  o rd er  t h e  r e la t iv e  p r io r it ie s  o f  a  s e t  o f  

fu z z y  r e q u ir e m e n ts  w h ic h  a re  c u r r e n tly  u s e d  in  
O S Q L J U Z Z Y .

L I S T J I E Q  fu n c t io n T o  l is t  a ll th e  fu z z y  r e q u ir e m e n ts  u s e d  in  
O S Q L J U Z Z Y .

V E R I F Y  fu n c t io n T o  v e r ify  t h a t  th e  g iv e n  d o m a in  sa t is f ie s  t h e  s e m a n t ic s  
o f  a  fu z z y  d o m a in .

E N F O R C E J N I T
e n fo r c e m e n t

T o  e n fo r ce  th e  in it ia l iz a t io n  w h ic h  p r e p a r es  a n  e m p ty  
r e la t io n  c a lle d  F U Z Z Y J ) I C T  t o  m a in ta in  t h e  fu z z y  
r e q u ir e m e n ts .

E N F O R C E J D E N T I F Y
e n fo r c e m e n t

T o  e n fo r c e  th e  v e r if ic a t io n  o v er  t h e  id e n t if ie d  fu z z y  
d o m a in  g iv e n  b y  t h e  fu n c t io n  I D E N T I F Y .

E N F O R C E J M P O S E
e n fo r c e m e n t

T o  e n fo r c e  th e  p r io r it ie s  o f  th e  id e n t if ie d  fu z z y  
r e q u ir e m e n ts .

Figure 7.11: The description of the operations in OSQL_FUZZY

The priorities of a set of fuzzy requirements are system defined (system ordered) if they 

are not specified. The function ORDER_FUZZY can be used to arrange the priorities of 

requirements. There is a param eter called order, which is a natural number describing the 

relative priority of the requirement defined in the second param eter fuzzy .domain. The 

information about the priorities is maintained by the relation called FUZZYJDICT, whose 

relational schema consists of the attributes FUZZY_REQ and PRIORITY, containing all 

the name information of the fuzzy requirements and their priorities. The users can use the 

function LIST_REQ, which returns the relation FUZZYJDICT, to check for the priorities 

of all fuzzy requirements. The declaration part of OSQLJFUZZY is shown in Figure 7.12.

E x a m p le  7.4 Let us consider the relation EMPJFUZZY in Figure 7.13 whenever it 

is necessary, and suppose tha t there is a project which requires an employee with a 

good science background in his/her academic qualification and strong connections in the 

research community. We use two fuzzy domains called QUALIFY and CONNECT to 

capture these semantics of the requirements. The fuzzy domain QUALIFY has been 

formulated in (Q5.20) in Chapter 5 and the fuzzy domain CONNECT is given as the 

statem ent ( Q 7 .1 7 ) below.
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PACKAGE O S Q L _ F U Z Z Y  
PARAMETER:

VARCHAR: fu z z y  .d o m a in , e x t_ a tt ,  p r e d ic a te  
INT: o rd er  
BOOL: b o o l .v a l  
REL: r e s u lt  jr e la t io n  

FUNCTION:
PUB I D E N T I F Y (fu z z y .d o m a in )  RETURN
PUB I M P O S E  J U Z Z Y ( e x t .a t t ,  fu z z y  .d o m a in )  RETURN predicâte 
PUB O R D E R _ F U Z Z Y (fu z z y .d o m a in , o rd er) RETURN 
PUB L IS T _ R E Q ()  RETURN result jcelation 
V E R I F Y  (fu z z y  .d o m a in )  i t  R E T U R N  b o o l .v a l  

ENFORCEMENT:
E N F O R C E J N I T O  
E N F O R C E J D E N T I F Y O  
E N F O R C E J M P O S E O  

END PACKAGE

Figure 7J2: The package declaration for OSQLJFUZZY

NAME EDUCATION

Bill MSc

Ethan MSc

John BSc

Mark PhD

Nadav MBA

Simon A-Level

Figure 7J3: An employee relation EMP J ’UZZY

1. {Q7.17)  CREATE D OM AIN CON]<lECT CHAR{10)

ORDER A S  {OTHER < ’Mark’ < ’E than’).

2. Find the names of those employees with good science background in academic qual­

ification and strong connection in the research community.

(Q7.18) SELEC T  (IM PO SE J’UZZY(NAME, CONNECT), IMPOSEJfUZZY 

(EDUCATION, QUALIFY) (1) EMP J ’UZZY.

The employee Mark will be returned for this query.

3. We now use the function ORDERJUZZY(CONNECT, 1) and ORDER. 

FUZZY (QUALIFY, 2) to change the priorities of the requirements, i.e., the re­

quirement CONNECT should be considered first and then QUALIFY the second.
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Then the employee E than will be returned for the query (Qz.is)-

4. Finally the fuzzy requirements can be listed as below by the function 

LISTJFIEQO given in Figure 7.14.

FUZZY_REQ PRIORITY

CONNECT 1

QUALIFY 2

Figure 7.14: A relation returned by LIST_REQ()

7.6 Exam ple OSQL Package V: Spatial Information

In the past few years, applications that involve in computing geometric and pictorial 

objects are easier to implement due to the progress in processing capabilities and the 

computation of bitm ap graphics. As a result, there are increasing demands in han­

dling spatial data in many applications such as sophisticated user-interfaces. Computer 

Assisted Design (CAD), image processing. Geographical Information Systems (CIS) and 

the usages of pattern  recognition in the areas of medicine, cartography and robot control.

Spatial data  domains share many common features with time domains. Firstly, the 

underlying semantics of each dimension in space is considered to be linearly ordered. Sec­

ondly, the eight Egenhofer-Franzosa topological relationships (or simply EF-relationships) 

[49], of spatial data: disjoint^ meet, overlap, covers, covered by, inside, contains and 

equal, [48, 122] are inherent to the generic operations on spatial data. Note tha t EF- 

relationships are also applicable in temporal data  [145] (recall the operations overlap 

and contains in Section 7.2). Thirdly, spatial data needs a high level of abstraction to 

capture its semantics. For example, in temporal information we need a time interval to 

timestamp an event and in spatial information we need a rectangular region to model a 

room in the floor plane of a building. It has already been pointed out by [153] tha t in 

practice, many queries over CIS are related to both temporal and spatial concepts. Let 

us consider a simplifled CIS relation in Example 7.5.

E xam ple  7.5 The relation DESERT shown below records the snapshot of remotely 

sensed data captured by a satellite for a desert at a particular place and time. The
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A disjoint B 

A
B

A equal B 

A

A meet B

A

A overlap B 

A

A inside B

A covered by B

A contain B

A covers B

Figure 7.15: The eight binary topological relationships between rectangular regions

attribute LOCATION refers to a specific flight path of the satellite. The attribute 

FROM.TIM E represents the receiving date when the data was captured by the remote 

sensing device. The accepting or rejecting of the CLASSIFICATION is determined by 

the image quality of satellite’s photo.

LOCATION FROM.TIM E TO.TIM E CLASSIFICATION DESERT J^REA

001-007 9-1-92 1-12-93 Accepted 1000

001-007 1-12-93 23-1-94 Rejected UNK

001-007 23-1-94 30-4-96 Rejected UNK

001-007 30-4-96 30-4-97 Accepted 1100

001-007 30-4-97 NOW Accepted 1150

Figure 7.16: A CIS relation DESERT to analyse desertification

The following queries over DESERT are typical. They are all easily formulated by 

making use of the package OSQL.TIME we presented in Section 7.2.

1. How big is the desert area in the region 001-007 now?

{Q7.19)  SELEC T {DESERT J iR E A )  (*) FROM CURRENT(DESERT).

2. W hat are the failed classification (i.e., rejected) histories of 001-007?

(Q7.20) SELEC T {FROUJTIME, TO.TIM E) (*) FROM  HISTORY(DESERT). 

WHERE  CLASSIFICATION =  ’Rejected’

3. Find the desert growth information from 9-1-92 to 30-4-96.
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(Q7.2i ) 5Æ;L^(7T (FROM.TIME, TO.TIM E, DESERT.AREA) (*)

FROM  COALESCE(DESERT) IFFFR F FROM.TIME < =  ’9-1-92’

AND  TO.TIM E > =  ’30-4-96’.

The above queries show tha t temporal dimension plays an im portant role in a spatial 

information system. However, spatial data is much more complicated than temporal data 

in the following aspects.

1. Spatial data can be zero (e.g., a point), one (e.g., a line), two (e.g., an area) or three 

(e.g., a volume) dimensional and thus their interactions become very complex. In 

contrast, temporal data is just one dimensional if we consider time intervals as the 

timestamps for the data.

2. W ithin a fixed dimensional space, spatial data has lots of primitive regions, which 

require different parameters to characterise them. For example, in the special case 

of two dimensional spaces, we may have rectangular regions (being characterised 

by the four vertices), circular regions (being characterised by the centre and the 

radius) or algebraic curve regions (being characterised by the polynomial function) 

[122].

3. In order to manipulate spatial data  more easily in practice, we normally employ 

a graphical environment to represent the data. The coupling of the language for 

spatial data queries and the language for the display control has been strongly 

advocated by many spatial database researchers (a good summary can be found 

in Table 1 of [50]). Therefore, it is vital to consider some appropriate graphical 

display facilitates, which should be included in any spatial extension of SQL.

In our opinion, the research on the issues of the expressiveness tha t a spatial query 

should possess and the essential operations tha t a spatial information system requires are 

still not resolved [124, 125]. Moreover, a definitive formalism of the semantics for spatial 

data representation is not yet available. Therefore, we only demonstrate some interesting 

operations that OSQLJSPACE can provide for handling two dimensional spatial objects. 

By no means does this package provide a comprehensive coverage of all the generic 

operations tha t are required in manipulating spatial information.
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D efin ition  7.5 R equirem ents and Core O perations o f OSQL_SPACE

ri'. for each EF relationship, there is an operation c\ which specifies the relationship 

between spatial objects.

r 2: for each dimension in space, there is an operation C2 which specifies the relative 

spatial order between spatial objects.

rg: there is an operation cg which returns the area of a two dimensional spatial object.

r4 '. there is an operation to represent a spatial object graphically by using its spatial 

attributes.

rs: there is an operation to convert a selected object in a display interface into its spatial 

attributes.

Similar to Definition 7.1, we call the set tha t consists of all core operations of 

OSQL_SPACE the core set of OSQLJSPACE and denote it by CO RE(O SQLSPACE).

The focus of this package will be exclusively on the operations tha t manipulate rect­

angular regions being parallel to X and Y axes of a two dimensional coordinates plan. We 

choose such a kind of primitive region because it is a very typical two dimensional spatial 

object. One example is the map of a city showing all buildings and roads. Moreover, 

in spatial database systems it is quite common to use multiple rectangles to approxi­

mate real spatial data [120, 60]. We need only two spatial attributes M IN -VER TE X  and 

M A X^VE RTEX  to specify a rectangular region. These two attributes describe respec­

tively the left lowest and right highest vertices of a rectangle. The advantage of using 

two vertices instead of using four vertices in modelling a rectangle is tha t it saves storage 

space. Let us illustrate this point with the diagram of the coordinates plane shown in 

Figure 7.17.

B(W) C (4,3)

A (1,1) D (4,1)

MIN VERTEX = A 

MAX VERTEX = C

Figure 7.17: Using two vertices to specify a rectangular region
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The rectangle on this plane has four vertices {A :(l,l), B;(l,3), C:(4,3), D:(4,l)}, 

which can be specified by MIN.VERTEX =  (1,1) (i.e., point A) and MAX.VERTEX =  

(4,3) (i.e., point C).

We now present the description of the operations in OSQL_SPACE in the table given 

in Figure 7.18. Broadly speaking, there are four categories of operations in this package, 

which are classified according to the following concepts.

1. Topological relationships describe the different cases of intersections between two 

rectangular regions in space. They are DISJOINT, OVERLAP, MEET and CON­

TAIN, which represent the corresponding EF-relationships. Note that we have 

not required tha t OSQL_SPACE contain operations for the other EF-relationships 

equals inside and covers^ covered.hy, since they can be quite easily formulated by 

using CONTAIN and AREA. For instance, the relationship equal between two rect­

angular regions recti and rect2  can be stated as recti CONTAINS rect2 and the 

AREA of recti is equal to that of reef2-

2. Orientation relationships describe the relative spatial order between rectangular 

regions in space. They are WEST, EAST, SOUTH and NORTH.

3. Display facilities provide the necessary operations to control the graphical environ­

ment. They are SET_DISPLAY, PICK_REGION, BOUNDARY and WHOLE.

4. Arithmetic parameters involve the measurement of regions such as AREA and 

PERL Note tha t we may need a different set of arithmetic parameters for other 

primitive regions. For example, we may include some operations to calculate a 

sector area or an arc length in the case of circular regions.

We assume tha t the coordinates on a two dimensional space are captured by the 

standard domain 2DSPACE. In other words, 2DSPACE is a set of coordinates of points 

which are specified in the usual format of “(X-coordinate, Y-coordinate)” , where the 

X-coordinate and the Y-coordinate are elements of an integer domain with the numerical 

ordering. To simplify the presentation of OSQL_SPACE, we do not consider three dimen­

sional spatial domains. However, some operations in OSQL_SPACE can be generalised
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O p era tio n s B r ie f  D e sc r ip tio n

IDENTIFY function To IDENTIFY a given domain as the spatial domain 
used in OSQL_SPACE.

DISJOINT function To check whether two rectangular regions satisfy the 
topological relationship DISJOINT.

OVERLAP function To check whether two rectangular regions satisfy the 
topological relationship OVERLAP.

MEET function To check whether two rectangular regions satisfy the 
topological relationship MEET.

CONTAIN function To check whether two rectangular regions satisfy the 
topological relationship CONTAIN according to the 
convention that the first region in the parameter list 
of the function contains the second one.

EAST function To return all tuples whose regions are on the EAST 
side of a given rectangular region.

WEST function To return all tuples whose regions are on the WEST 
side of a given rectangular region.

SOUTH function To return all tuples whose regions are on the SOUTH 
side of a given rectangular region.

NORTH function To return all tuples whose regions are on the NORTH 
side of a given rectangular region.

PERI function To calculate the PERIMETER of a given rectangular 
region.

AREA function To calculate the AREA of a given rectangular region.
PICK_REGION function To convert a REGION on the screen PICKed by 

a mouse to the corresponding spatial attributes 
MIN.VERTEX and MAX.VERTEX.

SET_DISPLAY function To set the specification of a display environment to 
handle the spatial attributes of an object.

BOUNDARY function To outline the boundary of all given rectangular re­
gions specified by a spatial attribute.

WHOLE function To display the whole region of all given rectangular 
regions specified by a spatial attribute.

XCOMP function To extract the X-components of a given spatial 
attribute.

YCOMP function To extract the Y-components of a given spatial 
attribute.

VERIFY function To VERIFY that the identified spatial domain satis­
fies the semantics of a spatial domain.

ENFORCEJNIT
enforcement

To enforce the initialization which identifies the do­
main 2DSPACE to be used as the space domain of 
OSQLJSPACE.

ENFORCEJDISPLAY
enforcement

To activate the display environment for representing 
spatial data.

Figure 7.18: The description of the operations in OSQL_SPACE
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or extended to the case of three dimensional space. For example, all the topological rela­

tionships can be generalised by incorporating one more coordinate (i.e., Z-coordinate) in 

their corresponding operations. The orientation relationships can be extended by adding 

the operations ABOVE/BELOW to handle the orientation in the extra dimension. We 

do not consider a user-defined arbitrary resolution in space domain because it relates 

to some technical details of the display environment such as the resolution power of the 

display. We now show the declaration part of OSQL_SPACE in Figure 7.19.

PACKAGE OSQLJSPACE 
PARAMETER:

VARCHAR: space.domain, ext .relation, region_parameter, x.comp, y.comp, 
min_vertex_l, max_vertex_l, min_vertex.2, max_vertex.2, 
ext.domain, display .predicate, topological.predicate 

INT: perimeter, area 
BOOL: bool.val 
REL: result ̂ relation 

FUNCTION:
PUB IDENTIFY(ext.domain) RETURN
PUB DISJOINT(min.vertex.l, max.vertex.I, min.vertex.2, max.vertex.2)

RETURN topological.predicate 
PUB OVERLAP (min.vertex.l, max.vertex.I, min_vertex.2, max.vertex.2)

RETURN  topological.predicate 
PUB MEET (min.vertex.l, max.vertex.I, min_vertexJ2, max.vertex.2)

RETURN topological.predicate 
PUB CONTAIN(min.vertex.l, max.vertex.I, min.vertex.2, max.vertex.2)

RETURN topological.predicate 
PUB EAST (extjrelation, min.vertex.l, max.vertex.I) TZETfTRA result jrelation 
PUB WEST (extjrelation, min.vertex.l, max.vertex.I) result jrelation
PUB NORTH(extjrelation, min.vertex.l, max.vertex.I) RETURN resultjcelation  
PUB SOUTH(ext jrelation, min.vertex.l, max.vertex.I) RETfTRA result jrelation 
PUB PERI(min.vertex.I, max.vertex.I) RETURN penmetei 
PUB AREA (min.vertex.l, max.vertex.I) RETURN area 
PUB PICK_REGION() RETURN legionjparameteT  
PUB SETT)ISPLAY(colour, pattern, mode) RETURN  
PUB BOUNDARY(extj-elation) RETURN  
PUB WHOLE(extjrelation) RETURN 
XCOMP(min.vertex.I) RETURN xjcomp 
YCOMP (min.vertex.l) RETURN y-comp 
VERIFY(space.domain) RETURN  bool.val 

ENFORCEMENT:
ENFORCEJNITO
ENFORCET)ISPLAY()

END PACKAGE

Figure 7.19: The package declaration for OSQL.SPACE

E x am p le  7.6 We use the spatial relation FLOORJPLAN shown in Figure 7.20 when­

ever it is necessary. The queries (Q 7.22) ,  {Q7.23) ,  (Q7.24) and (Q7.27) are about spatial
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properties only. Other queries combine spatial and non-spatial properties.

PURPOSE OCCUPANT MIN.VERTEX MAX.VERTEX

Staff room Bill (14,6) (17,9)

Staff room Lee (17,6) (19,9)

Staff room Ethan (19,6) (22,9)

Staff room Mark (1,0) (3,3)

Seminar room DNE (0,6) (12,9)

Lift DNE (12,8) (13,9)

Staircase A DNE (13,6) (14,9)

Stairccise B DNE (0,0) (1,3)
Lecture room DNE (3,0) (16,3)

Phd lab DNE (16,0) (22,3)

Printing room DNE (18,0) (22,3)

Figure 7.20: A spatial relation FLOORJPLAN

1. (Q7.22) Show the floor plan described by the relation FLOOR-PLAN. 

WHOLE(5'ELECT (MIN.VERTEX, MAX_VERTEX) (*) FROMFLOOR_PLAN.

The result is the desired map shown in Figure 7.21. Further features are also shown 

on the map due to the effect of the queries (Q7.23 and Q7.27).

2. Highlight the location of Bill’s office with a shaded pattern.

(Q7.23) SET_DISPLAY(default, default, shaded).

W RO LE{SELEC T  (MIN_VERTEX, MAX_VERTEX) (*) FROM  FLOOR_PLAN 

W HERE OCCUPANT = ’Bill’).

3. W hat are the purposes of the space on the opposite side to Bill’s office?

(Q7.24) SELECT (PURPOSE) (*) FROMSOUTH(FLOOR_PLAN, PICK_DISPLAY()). 

Then the purpose “Lecture room” will be returned for this query.

4. Show if there is a lift on the left side of Bill’s office?

(Q7.25) SELECT{M 1N.YERTEX, MAX.VERTEX) (*) FROMEAST(FLOOR_PLAN, 

MIN_VERTEX, MAX.VERTEX) PURPOSE =  ’Lift’.

Then the spatial attributes of Lift will be returned for this query.
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5. Who are Bill’s neighbours?

(Q7.26) (OCCUPANT) (*) FLOOR_PLAN

WHERE MEET(MIN_VERTEX, MAX_VERTEX,PICK_DISPLAY()).

Then “Lee” will be returned because his office is on the right side of Bill’s.

6. Outline the partitions of the PhD laboratory by dotted lines.

(Q7.27) SET .DISPLAY (default, default, dotted line).

BOUNDARY {SELECT {MIN .VERTEX , MAX_VERTEX) (*) FROMFLOOR_PLAN 

WHERE PURPOSE =  ’Printing room’).

7. Find the names of the staff whose rooms have area greater than 10 square units. 

(Q7.28) 5ELECT (OCCUPANT) (*) Fi?(9M FLOOR_PLAN

IFZfERE AREA(MIN_VERTEX, MAX.VERTEX > 10)

AND PURPOSE =  ’Staff room’.

S em in a r L ift
E th an

C o rr id o r

M ark L ec tu re  room
PhD  L ab o ra to ry

: P rin tin g  Room

S ta ircase  B

Figure 7.21: A graphical representation of the relation FLOORJPLAN

7.7 Conclusions

We have presented a modularisation package discipline based on OSQL which supports 

a wide spectrum of applications. An OSQL package has the advantage that it integrates 

all of the useful operations with respect to a particular application in a more coherent 

and systematic way. OSQL provides us with new facilities to support the development of 

a package as well as to compare attributes according to semantic orderings, in addition 

to the usual system orderings. Thus, it allows us to capture the needed richer data 

semantics in advanced applications and it improves the expressive power of the standard 

SQL.

We are still in the process of implementing the PDL of OSQL using Oracle PL/SQL 

in order to define the mentioned OSQL packages and to make them available as built-in
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Queries
in

various

applications

Result

- >

O SQL_TREE tree dom ain '

O SQL_TIM E tim e dom ain |

O S Q L JN C O M P incom p dom ain '

OSQL_FU ZZY fuzzy dom ain [

O SQL_SPACE spatial dom ain '

OSQL
System

Oracle

U nix 
Front end

Packages
Interface

C Precom piler 
Interface

DBM S 
Back end

Figure 7.22: Architecture of the OSQL system

facilities. Our design of the system architecture is shown in Figure 7.22, which is built on 

top of OSQL system. We anticipate tha t it is possible to load more than one package into 

the system at the same time. All the functions of the loaded packages, which are qualified 

by their corresponding package names, can be applied directly in formulating a query. 

For example, the following query which involves the application having tree-structured 

information, temporal information and incomplete information can be formulated in a 

unified manner by using three OSQL packages. The relation EMPJDETAIL is shown in 

Figure 1.3 in Chapter 1.

(Q7.29) Find the name and salary of the common bosses of Nadav and Ethan in 1996, 

whose work is less informative than ’UNK’.

SELEC T  (NAME, SALARY) (*)

FROM  OSQL_TIME.SNAPSHOT(EMP_DETAIL, 1996)

WHERE  OSQL_TREE.COM_ANCESTOR(Nadav, Ethan)

AND  OSQLJNCOMP.LESSJNFO(PREV_W ORK, ’UNK’).
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Chapter 8

Conclusions and Further Research

In this thesis we have presented the ordered relational model, which is a minimal extension 

of the relational data model. We have shown throughout the thesis that partial orderings 

in data domains have an im portant part to play in modelling data. The ordered relational 

model suggests tha t it is possible to unify a very large class of advanced real world 

applications in an efficient way. In Section 8.1 we review the main contributions of 

the thesis and evaluate our work from the points of view of usability, applicability and 

formalism. Finally, we discuss ongoing and further research in Section 8.2.

8.1 Summary of the Thesis Contribution

We have demonstrated that the extension of the relational data model to incorporate par­

tial orderings into data domains can considerably improve the applicability of a relational 

DBMS. We now briefly recall the impact of partial orderings on the three fundamental 

components of the conventional relational data model.

W ith respect to its data structures, the relational data  model is extended to incorpo­

rate partial orderings into data domains. Hence, it provides the flexibility to manipulate 

tuples in an ordered database according to the the semantics of underlying domains. 

We have shown th a t this extension serves as a good foundation to investigate the issues 

concerning query languages and data dependencies.

W ith respect to its query languages, we have extended the relational algebra and the 

relational calculus to the PORA and the PORC, respectively, by allowing the use of the 

ordering predicate, Ç, in both languages. The PORA and the PORC are shown to be
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equivalent. Based on the PORA (or its counterpart the PORC), we have extended SQL 

to OSQL, which combines the capabilities of SQL with the power of semantic orderings. 

In order to gain more insights into the viability of OSQL, we have built a prototyped 

system of OSQL over the Oracle DBMS. The prototype was employed to perform a user 

survey in the department of computer science at UCL. From the survey we can confirm 

tha t the various extended features of the OSQL SELECT command are easy to learn, 

understand and apply, and are useful in formulating queries involving order.

W ith respect to its data dependencies, we have formally defined OFDs and OINDs, 

and have studied their semantics with respect to two categories of orderings: lexico­

graphical orderings and pointwise orderings. In the Ccise of pointwise orderings, we have 

presented sound and complete axiom systems for OFDs and OINDs. In the case of lex­

icographical orderings, we have presented a set of novel chase rules to OFDs, which are 

used to tackle the implication problem of OFDs. This set of chase rules is a useful tool 

for investigating other kind of data dependencies tha t require order.

Our work is best evaluated in the context of the three successful factors of the rela­

tional model, which we have discussed in Chapter 1.

1. From the point of view of usability, the ordered relational model is as natural and 

simple as the conventional relational model. Ordered domains are easily understood 

by non-specialist users due to the fact that partial orderings are structural truths 

about many types of data organisation in the real world. Our extension is done in 

a minimal and disciplined manner. The ordered database model we have defined 

is easily compatible with the syntax and semantics of the conventional relational 

database model.

2. From the point of view of applicability, the ordered relational model has been 

demonstrated to have the capabilities of capturing semantics in a wide spectrum of 

advanced applications such as tree-structured information, temporal information, 

incomplete information, fuzzy information and spatial information. In each of the 

above cases, the ordered relational model solves many interesting and common 

queries in a satisfactory manner. Moreover, it is the only data model known to us 

tha t combines all the above application capabilities under a single unified model.

3. From the point of view of formalism, the ordered relational model is elegant enough 

to support theoretical research in the areas of: data dependencies such as OFDs
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and OINDs, the expressiveness of the ORA and the generic properties of queries 

over ordered databases. Moreover, we can build upon the rich mathematical re­

search into the notion of order to investigate many im portant issues such as query 

completeness and axiomatisation of data dependencies.

8.2 Problem s for Further Investigation

There is still a wide range of research issues that can be carried out on both the theoretical 

and the implementational aspects of the ordered relational model. We now discuss several 

areas that deserve our attention in further research.

1. Extension and specialisation of ordered domains:

An interesting area for extension is to define some operators so tha t powerdomains 

can be derived from ordered domains (c.f., [20]). A useful ordering introduced by 

this extension is the containment ordering of a powerdomain. Apart from what 

we have discussed in textual databases, the concept of containment is closely as­

sociated with the object-oriented extension, since inheritance can be viewed as a 

containment ordering, in the sense that a derived type contains all the features of 

a base type. Containment is also related to the Entity-Relationship approach [30] 

because the ISA relationship can be viewed as a containment ordering. In addition 

to containment orderings, Hoare orderings and Smyth orderings [62, 143] are also 

im portant kinds of orderings arising from powerdomains since they generalise the 

notions of superset and subset, respectively.

In contrast to the extension of domains to powerdomains, we may examine in more 

depth some restricted classes of partially ordered domains such as lattices and 

pre-orderings (or quasi-orderings) [59]. The restricted aspect of these extensions 

may bring out some interesting theoretical properties and provide more insights in 

optimisation of OSQL queries in practice.

2. OSQL implementation of packages and further user surveys:

Although it is not our goal at this stage to develop a commercial version of the 

OSQL packages defined in Chapter 7, there are still many ways to employ our OSQL 

system as a basis to prototype certain package operations. One approach is to use 

Oracle PL/SQL facilitates to define functions tha t implement some operations,
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for example as SNAPSHOT and HISTORY in OSQL_TIME. Another approach is 

to use the C precompiler available under Oracle to deploy a package interfacing 

with OSQL. The prototype can serve as a basis to gain feedback from users as 

we did in the OSQL survey. The advantage of using precompiling C programs to 

develop the prototype of OSQL packages is that we can design and build a user 

interface more easily. A viable technique is to use embedded calls to the X windows 

system for creating and controlling an X-window interface (cf., [127]). W ith such 

an implementation we can extend the scope of our user survey by including a more 

comprehensive set of queries to verify the findings reported in Chapter 5.

3. Automorphisms and orderings:

As we have pointed out in Chapter 3, there is an open problem to find a suitable 

syntactic definition of the notion “more ordered” in terms of the ordering automor­

phisms of an ordered domain. In a broader context, an ongoing research problem 

can be informally rephrased as follows, given the special class of abstract data types 

that are restricted to have generic binary relationships on data elements, is there 

a syntactic characterisation of the structure in terms of some generalised notion of 

automorphism. As the idea of automorphism represents some kinds of symmetry in 

domains, our intuitive feeling is that we may need to introduce some notion related 

to group theory in order to achieve a more general result.

4. Ordered data dependencies:

We have developed the chase for LOFDs in Chapter 4 as a theorem proving tool, 

however, the maximal potential of this tool has not been fully developed. We are 

currently using the chase to prove the completeness of the set of inference rules of 

LOFDs proposed in Chapter 4. If we succeed in the proof, then the set of inference 

rules provide a more elegant axiom system for LOFDs. Otherwise, it implies that 

there may be some missing inference rules and in this case, the use of the chase in the 

proof may provide some insights to discover the missing inference rules. The chase 

is also a good reference point to design new inference procedures for LOINDs or 

for investigating the interaction of OFDs and OINDs. Besides, the chase supports 

the future work concerning the issues of time and space complexity of enforcing 

the data  dependencies in ordered databases. Another im portant issue relevant to 

ordered data dependencies is the issue concerning database design. Although we
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have investigated the relationship between lossless join  property [5] and OFDs in 

Chapter 4, we think tha t the effect of order on database design is not clearly known. 

For example, one question is how ordered data dependencies affect the dependency 

preservation property [13], and a more general question is whether there are any 

desirable properties of ordered data dependencies, or some useful special classes of 

them, in the context of relational database design.

5. Updating ordered databases:

We have briefly discussed the issue of updating ordered domains in Chapter 3 but 

the problem of updating ordered databases has not been discussed in detail. It can 

be further investigated in terms of the algorithms and formal semantics of updating 

ordered domains, ordered databases and data  dependencies. In particular, it is also 

im portant to consider how to enforce data dependencies to ensure tha t updates do 

not cause inconsistencies of data with respect to a set of OFDs or OINDs.

6. Notion of package completeness:

As we know that OSQL packages, SQL3 and most SQL extensions are computa­

tionally complete, we feel that there is a need to establish a new framework to 

compare and contrast the operational completeness of different OSQL packages. In 

any case this problem also relates to the completeness of SQL3 and, in general, 

object-relational query languages.

To close this thesis, we would like to mention another large research area, tha t is, 

how to integrate the facilitates of user-defined orderings into the kernel of DBMSs at the 

physical level of a DBMS. A possible starting point is to examine a data structure called 

an Ordered B-tree [100, 139], which may serve as a basis to implement ordered relations. 

Roughly speaking, an Ordered B-tree stores data, for example tuple identifiers, in its leaf 

pages and a multi-level index is provided in each subtree to access data. In order to find 

a tuple identifier, the system is designed so tha t a scan can be performed from the root 

of the tree until a leaf page is encountered.
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A ppendix A

A Grammar of OSQL

Conventions:

• Key words are indicated by uppercase italicized characters.

• Non-terminal symbols are enclosed with

• Alternatives are separated by If only one of the symbols is to be chosen out of several 
alternatives, then we enclose them with In order not to cause confusion, we use “{{”
and “}}” to represent the terminal symbols and respectively.

• Optional clauses are enclosed with “[ ]”.

• “0 ” are just terminal symbols.

• Default keywords are underlined.

• A positive number begins with # .

• . . .  at the end if a subclause indicates that it may be repeated.

A .l D ata D efinition Language

1. CREATE DOMAIN { domain-name ) ( data-type ) [ORDER AS 
( ordering-specification )]
( ordering-specification ) (( data-pair )[, ( data-pair )]...)
( data-pair ) [data-item | {{data-item,...}}] < [data-item | {{data-item,...}}]

2. CREATE DOMAIN { domain-name ) A5 ( domain-name )

3. CREATE TABLE { table-name )
(( column-specification ) [,( column-specification )]...) [ORDER AS  
( attribute-list )]
( column specification ) ::= (attribute-name { data-type ))
( data-type )::= {C'iL4i2(integer) | NUMBER{integer)}

A .2 D ata M anipulation Language

1. SELECT { attribute-list ) [{A N Y  | ALL}] ( tuple-list ) [{ASC  | DESC}] FROM { relation- 
list ) [ WHERE { condition )]
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( a t t r ib u te - l is t  ) ((  e x te n d e d - a t t r ib u t e  ) [,( e x t e n d e d -a t tr ib u te  ) ] . . . )

( e x t e n d e d -a t tr ib u te  ) { a t t r ib u te -n a m e  | ( a t tr ib u te -n a m e  WITHIN 
{ d o m a in -n a m e  ) | * ) }

( tu p le - l is t  ) ( { # n  [, # n ] )  | LAST \ # n l . . .  # n 2  | * } )

( c o n d it io n  ) : :=  ( a t t r ib u te -n a m e  | v a lu e )  ( c o m p a r a to r  )

( { a t tr ib u te -n a m e  | v a lu e } )  [WITHIN ( d o m a in -n a m e  )]

( c o m p a r a to r  ) { < | > | > = | < = | < > }

2 . DELETE FROM { t a b le -n a m e  ) [{ WHERE { c o n d it io n  ) | TUPLE 
{ tu p le - l is t  )} ]

3 . DELETE FROM ( ta b le -n a m e  ) [{ WHERE { c o n d it io n  ) | TUPLE 
{ tu p le - l is t  )} ]

4 . ALTER TABLE ( ta b le -n a m e  ) {ADD ( (  c o lu m n - lis t  ))  | MODIFY 
((  c o lu m n - l is t ) )  | ORDER AS  ( (  a t t r ib u te - l is t  ) ) }

A .3 Package Definition Language

1. PACKAGE { p a c k a g e -n a m e  ) 

p a c k a g e -b o d y  )

END PACKAGE 
p a c k a g e -b o d y  ) :: =  { PARAMETER: ( p a r a m e te r - lis t  )

FUNCTION:{ fu n c t io n - l is t  ) ENFORCEMENT:{ e n fo r c e m e n t- lis t  ) }

p a r a m e te r - lis t  ) : : = { (  p a r a m e te r -c o n s tr u c t  ) [ (  p a r a m e te r -c o n s tr u c t  ) ] . . .}  

p a r a m e te r -c o n s tr u c t  ) :: =  ( p a c k a g e -d a ta - ty p e  ): v a r ia b le -n a m e  [,v a r ia b le -n a m e]  

p a c k a g e -d a ta - ty p e  );: =  { VARCH AR \ IN T  | BOOL | REL }

3.

4.

function-list ) :: = { ( function-construct ) [( function-construct )]...} 
function-construct ) :: =

{P R II PUB}] { function-name ) variable-names ( parameter-list ) 
DEFINE 

function-body )
RETURN  variable-names 

function-body ) : : = [ (  program-construct ) | ( OSQL-construct ) ] 
program-construct ) :: =  AS PROG program-name pseudocode 
OSQL-construct ) :: =  [ DDL statements | DML statements ]

enforcement-list ) :: =  { ( enforcement-construct ) [( enforcement- 
construct )]...} 

enforcement-construct ) :: =  
enforcement-name )

DEFINE
{ program-construct )
END

193



A ppendix B

A D etailed D escription of Built-In  
OSQL Packages

B .l  OSQL.TREE Package and Its Operation

PACKAGE O S Q L _ T R E E  

PARAMETER:
VARCHAR: tr e e _ n o d e _ l ,  tree_ n o d e_ 2 , e x t -d o m a in ,  

tr e e .d o m a in ,  $ e x t -r e la t io n , $ e x t -a t t  

BOOL: b o o l-v a l ,

INT: n o d e J e v e l ,  c o u n t-n o d e s  

REL: n o d e s  

FUNCTION:
PUB I D E N T I F Y ( e x t - d o m a in )  RETURN  
PUB P A R E N T ( t r e e _ n o d e - l)  RETURN nodes 
PUB C H I L D R E N (tr e e _ n o d e - l )  RETURN nodes 
PUB A N C E S T O R ( t r e e _ n o d e - l)  RETURN nodes 
PUB C O M - A N C E S T O R ( t r e e - n o d e - l ,  t r e e -n o d e -2 )  RETURN nodes 
PUB O F F S P R I N G ( t r e e - n o d e - l )  RETURN nodes 
PUB L E A V E S O  RETURN nodes 
PUB R O O T ()  RETURN nodes 
PUB L E V E L ( t r e e j io d e - l )  R E T f /R A  n o d e J e v e l  

PUB S W A P ( t r e e - n o d e - 1 , tr e e -n o d e -2 )  RETURN  
V E R I F Y (tr e e -d o m a in )  RETURN  b o o L v a l  

N O D E - C O U N T ( n o d e s )  RETURN  c o u n t -n o d e s  

ENFORCEMENT:
E N F O R C E J N I T O  

E N F O R C E J D E N T I F Y O  

E N F O R C E D  W A P  0  

END PACKAGE

PUB I D E N T I F Y ( e x t - d o m a in )
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DEFINE
CREATE D O M A IN  tieejdom am  ylS* e x t_ d o m a in  

R E T U R N

PU B  P A R E N T (tr e e _ n o d e _ l)

DEFINE
SELECT [$ext-a tt W ITHIN treeA om am )  (1 )  FRO M  $extJce\ation 
WHERE {$ext-a tt >  t r e e _ n o d e _ l tr e e _ d o m a in )

R E T U R N  n o d e s

PU B  C H IL D R E N (tr e e _ n o d e _ l)

DEFINE
SELECT  ( $ e x t_ a t t  W ITHIN  tr ee _ d o m a in )  {LAST)
FROM  $ e x t_ r e la t io n

WHERE {$ex t.a tt <  t r e e _ n o d e _ l W ITHIN tree-dom ain)
R E T U R N  n o d e s

PUB  A N C E S T O R (tr e e _ n o d e _ l)

DEFINE
SELECT  ( $ e x t_ a t t )  (* ) FROM  $ e x t_ r e la t io n  

WHERE  ( $ e x t_ a t t  >  tr e e _ n o d e _ l W ITHIN tree-dom m n)
R E T U R N  n o d e s

PU B  O F F S P R I N G  (tr e e _ n o d e _ l)

DEFINE
SELECT  ($ e x t_ a t t )  (* )  FROM  $ e x t_ r e la t io n  

WHERE  ($ e x t_ a t t  <  tr e e _ n o d e _ l W ITHIN tree-dom ain)
R E T U R N  n o d e s

PU B  C O M _ A N C E S T O R (tr e e _ n o d e _ l ,  tree_ n o d e_ 2 )

DEFINE
SELECT  ($ e x t_ a t t )  (* ) FROM  $ e x t_ r e la t io n  

WHERE  ( $ e x t_ a t t  >  tr e e _ n o d e _ l W ITHIN tree-dom ain)
AND  ($ e x t_ a t t  >  tr ee_ n o d e_ 2  W ITHIN  t r e e .d o m a in )

R E T U R N  n o d e s

PU B  L E A V E S O  

DEFINE
SELECT  ($ e x t_ a t t )  (* )  FRO M  $ e x t_ r e la t io n  

WHERE  N O D E _ C O U N T (C H I L D R E N ($ e x t_ a t t ) )  =  0  

R E T U R N  n o d e s

P U B R O G T Q  

DEFINE
SELECT  ($ e x t_ a t t )  (1 )  D E SC  FROM  $ext-re\ation  

R E T U R N  n o d e s
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PUB L E V E L (tr e e _ n o d e _ l)

REL: T R E E X E V E L  

DEFINE
SELECT (L E V E L _ N U M B E R ) (* )  FROM T R E E X E V E L  

WHERE N O D E  =  tr e e _ n o d e _ l  

RETURN  n o d e - le v e l

PUB S W A P (tr e e _ n o d e _ l,  tree_ n o d e_ 2 )

D E F I N E  A S  P R O G  tr e e .s w a p

1. R e p la c e  tree_ n o d e_ 2  in  tr e e -d o m a in  b y  t r e e -n o d e -3  w h ic h  is  d is t in c t  fro m  

o th e r  n o d e s  in  th e  tr e e -d o m a in .

2. R e p la c e  t r e e -n o d e -1  in  tr e e -d o m a in  b y  tr e e _ n o d e -2 .

3. R e p la c e  t r e e -n o d e -3  in  tr e e -d o m a in  b y  t r e e j n o d e - l .

RETURN

V E R I F Y  ( tr e e -d o m a in )

DEFINE AS PROG tr e e .v e r ify

1. D e fin e  t h e  b o o le a n  r o u t in e  C H E C K  (d o m a in )  a s  fo llo w s .

1 .1  R e m o v e  t h e  r o o t  fro m  th e  g iv e n  d o m a in .

1 .2  P a r t i t io n  t h e  r e m a in in g  tr e e -n o d e s  in to  n  > =  0  d is jo in t  o r d e re d  s e t s ,  T i , . . .  ,T „ ,  

in  w h ic h  a ll n o d e s  a re  c o n n e c te d .

1 .3  F or e a c h  T*, p e r fo rm  th e  r o u t in e  C H E C K (T j)  r ec u r siv e ly .

2 . C H E C K  (tr e e -d o m a in ) .

RETURN hoo\-V3l

FUNCTION N O D E - C O U N T ( n o d e s )

DEFINE
SELECT {CO\JNT{*)) (* ) F R O M  n o d e s  

RETURN  c o u n t -n o d e s

E N F O R C E J N I T O

DEFINE AS PROG tr e e .e n fo r c e J n it

1. I f  th e r e  e x is t s  a  d o m a in  c a lle d  T R E E , th e n  I D E N T I F Y ( T R E E ) ,  e ls e  p r o m p t  

fo r  a  t r e e  d o m a in .

END

E N F O R C E J D E N T I F Y O

DEFINE AS PROG tr e e .e n fo r c e J d e n t ify

1 . I f  t h e  fu n c t io n  I D E N T I F Y  is  c a lle d , th e n  g o  t o  a n  error  s t a t u s  i f  

V E R I F Y  ( tr e e -d o m a in )  =  fa lse .

END

E N F O R C E  JS W A P  0

DEFINE AS PROG tr ee .e n fo r ce _ sw a p

1. I f  t h e  fu n c t io n  S W A P  is  c a lle d , t h e n  g o  t o  a n  error  s t a t u s  i f  

V E R I F Y  ( tr e e -d o m a in )  =  fa lse .

END
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B.2 OSQL_TIME Package and Its Operations

PACKAGE O S Q L _ T IM E  

PARAMETER:
VARCHAR: t im e .d o m a in ,  e x t  .r e la t io n , t im e J in s ta n t_ l ,  t im e J n s ta n t_ 2 ,  N O W  

n o n _ t im e .sc h e m a , e x t_ d o m a in  

INT: g r a n u la r ity , d u r a t io n  

BOOL: b o o L v a l  

REL: r e su lt  r e l a t io n  

FUNCTION:
PUB I D E N T I F Y ( e x t .d o m a in )

PUB C U R R E N T  (e x t  jr e la t io n )  RETURN lesultjcelation  
PUB H IS T O R Y  (e x t  jr e la t io n )  RETURN Tes\ûtJce\a,tion 
PUB C O A L E S C E (e x t jr e la t io n )  RETURN iesu\tj:e\a,tion  
PUB S U C C ( t i m e j n s t a n t - l )  RETURN tim eAnstantJl 
PUB P  R E D  ( t im e  J n s t a n t - l )  RETURN timeAnstant^2 
PUB D U R A ( t im e J n s t a n t - l ,  t im e J n s ta n t_ 2 )  RETURN duration  
PUB S N A P S H O T (e x t  jr e la t io n , t im e  J n s t a n t - l )  RETURN resultjcelation  
PUB E X P A N D  (e x t  jr e la t io n )  R E T U R Y  r e su lt  .r e la t io n  

PUB T IM E -R E S (g r a n u la r ity ,  e x t -d o m a in )  RETURN  
V E R I F Y (t im e -d o m a in )  RETURN  b o o L v a l  

S T R I P -T I M E (e x t -r e la t io n )  RETURN  n o n -t im e -s c h e m a  

ENFORCEMENT:
E N F O R C E J N I T O  

E N F O R C E J D E N T I F Y O  

END PACKAGE

PUB I D E N T I F Y  (e x t -d o m a in )

DEFINE
CREATE DOMAIN time-domain AS  e x t -d o m a in  

RETURN

PUB C U R R E N T (e x t -r e la t io n )

DEFINE
SELECT (S T R I P - T I M E ( e x t j r e la t io n ) )  (* )  F i2 0 M  e x t jr e la t io n  

WHERE T O -T I M E  =  N O W  

RETURN  r e s u lt  jr e la t io n

PUB H IS T O R Y  (e x t -r e la t io n )

DEFINE
SELECT (*) (*) FROM e x t -r e la t io n  

WHERE {TO-TIME <  N O W  W/THTAT t im e -d o m a in )  

RETURN  r e s u lt -r e la t io n

PUB S N A P S H O T (e x t j r e la t io n ,  t im e J n s t a n t - 1 )

DEFINE
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SELECT ( S T R I P _ T IM E (e x t_ r e la t io n ))  (* )  FROM e x t_ r e la t io n  

WHERE (F R O M _ T IM E  < =  t i m e J n s t a n t . l  WITHIN t im e -d o m a in )

AND (T O -T I M E  >  t im e  J n s t a n t - l  WITHIN time-domain)
RETURN  r e s u lt -r e la t io n

PUB S U C C ( t im e - in s t a n t - l )

REL: T IM E -D O M -R E L  

DEFINE
SELECT (T IM E -D A T A ) (1 )  F R O M  T I M E -D O M -R E L  

WHERE TIME S> ATA >  t im e  J n s t a n t - l  

RETURN  t im e  J n s t a n t - 2

PUB P R E D ( t im e J n s t a n t - l )

REL: T IM E -D O M -R E L  

DEFINE
SELECT (T IM E -D A T A ) {LAST) FROM T IM E -D O M -R E L  

WHERE T I M E -D A T A  <  t im e J n s t a n t - 1  

RETURN  t im e  J n s t a n t - 2

PUB D U R A  ( t im e J n s t a n t - l ,  t im e - in s ta n t -2 )

DEFINE AS PROG t im e .d u ra

1. C o n v er t t im e  J n s t a n t - l  t o  th e  n u m b e r  o f  c h r o n o n s , t e m p i .

2 . C o n v er t t im e  J n s t a n t - 2  t o  th e  n u m b e r  o f  c h r o n o n s , te m p 2 .

3 . R e tu r n  th e  r e su lt  o f  ( t e m p i  — te m p 2 ) .

RETURN  d u r a t io n

PUB E X P A N D  (e x t-r e la t io n )

REL: T IM E -D O M -R E L  

DEFINE
SELECT (S T R I P _ T I M E (e x t_ r e la t io n ) ,  T IM E -D A T A  F R O M -T I M E ,  

S U C C (T I M E -D A T A ) T O -T I M E )  (* ) F R O M  e x t -r e la t io n ,  T IM E -D O M -R E L  

W R F R F  (F R O M -T I M E  < =  T IM E -D A T A  I F /T /f / iV  t im e -d o m a in )

AND (T O -T I M E  >  T IM E _ D A T A  t im e -d o m a in )

RETURN  r e s u lt -r e la t io n

PUB C O A L E S C E (e x t -r e la t io n )

DEFINE
SELECT ( R .S T R I P - T I M E ( e x t - r e la t io n ) ,  R .F R O M -T I M E , M /iV (S .T O -T IM E )  

T O -T I M E ) (* )  F R O M  e x t -r e la t io n  R , e x t -r e la t io n  S  WHERE 
R .F R O M -T I M E  NOT IN {SELECT (T O -T I M E )  (* )  F R O M  e x t -r e la t io n )  

AND T O -T I M E  NOT IN {SELECT (F R O M -T I M E ) (* )  F R O M  e x t -r e la t io n )  

AND (R .F R O M -T I M E  <  S .T O .T I M E  W T i/Z A r  t im e -d o m a in )

AND R .S T R I P - T I M E ( e x t - r e la t io n )  =  S .S T R I P -T I M E (e x t -r e la t io n )

GROUP R F  (R .S T R I P - T I M E ( e x t - r e la t io n ) ,  R .F R O M -T I M E )

RETURN  r e s u lt -r e la t io n

PUB T I M E -R E S  (g r a n u la r ity , e x t -d o m a in )

DEFINE AS PROG t im e .r e s
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1. Create a relation to maintain the time domain.
2. Populate the relation from 0 to (granularity — 1).

RETURN

FUNCTION V E R IF Y (t im e _ d o m a in )

DEFINE AS PROG t im e .v e r ify

1. Check that the time.domain is finite and linearly ordered.
2. Check that all elements t in the time.domain satisfy that t <= NOW. 

RETURN booLval

PUB STRIP_TIME(ext_relation)
DEFINE AS PROG t im e .s tr ip

1. Obtain the relational schema of the ext_relation.
2. Project out the attributes FROM.TIME and TO-TIME from the schema.
3. R e tu r n  th e  r e m a in in g  a t tr ib u te s .

RETURN non_time_schema

ENFORCEJNITO
DEFINE AS PROG time.enforceJnit

1. IDENTIFY{T>kTE)
2. U s in g  th e  r e la t io n  T IM E _ D O M _ R E L  t o  m a in ta in  D A T E .

END

ENFORCEJDENTIFYO
DEFINE AS PROG t im e .e n fo r ce  J d e n t ify

1. I f  th e  fu n c t io n  I D E N T I F Y  is  c a lle d , th e n  g o  t o  a n  error  s t a t u s  if  

V E R I F Y  (t im e _ d o m a in )  =  fa lse .

2. If the given time.domain is not in { DATE, YEAR, MONTH, DAY, HOUR, 
MINUTE, SECOND }, then prompt for the definition of NOW.

3 . U p d a te  t h e  r e la t io n  T IM E _ D O M _ R E L  t o  m a in ta in  t h e  g iv e n  t im e  d o m a in .  

END

B.3 O SQ LJN C O M P Package and Its Operations

PACKAGE OSQLJNCOMP 
PARAMETER:

VARCHAR: ext_att, incomplete.domain, ext .relation, ext.val, predicate 
BOOL: booLval 
REL: result-relation
PUB C O M P L E T E _ V A L (e x t_ r e la t io n , e x t_ a tt )  RETURN result jcelaiion 
PUB P A R T IA L _ V A L (e x t_ r e la t io n , e x t_ a tt )  R E T  U R  AT r e s u lt  .r e la t io n  

PUB D N E _ V A L (e x t_ r e la t io n , e x t_ a tt )  R E T  U R #  r e su lt  .r e la t io n  

PUB N I_ V A L (e x t  jr e la t io n , e x t .a t t )  R E T U R #  r e s u lt  .r e la t io n  

PUB U N K _ V A L (e x t  jr e la t io n , e x t .a t t )  R E T U R #  r e su lt  jr e la t io n  

PUB M O R E J N F O ( e x t .a t t ,e x t .v a l )  R E T U R #  p r e d ic a te  

PUB L E S S J N F O ( e x t _ a t t ,e x t .v a l )  R E T U R #  p r e d ic a te  

I D E N T I F Y O  RETURN
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V E R I F Y (in c o m p le te _ d o m a in )  RETURN  b o o L v a l  

ENFORCEMENT:
E N F O R C E J N I T O  

END PACKAGE

PUB C O M P L E T E _ V A L (e x t_ r e la t io n , e x t_ a tt )

DEFINE
SELECT (*) (+) FROM e x t  .r e la t io n  

WHERE {ext.aXt >  ’U N K ’ WITHIN incomplete.domaan) 
RETURN  r e su lt  jr e la t io n

PUB P A R T I A L _ V A L (e x t j :e la t io n , e x t_ a tt )

DEFINE
SELECT (*) (*) FROM e x t  .r e la t io n

WHERE =  ’D N E ’O R  (e x t_ a t t  < =  ’U N K ’ WITHIN
in c o m p le te .d o m a in )

RETURN  r e s u lt  r e l a t io n

PUB D N E _ V A L (e x t  jr e la t io n , e x t_ a tt )

DEFINE
SELECT (*) (*) FROM e x t  jr e la t io n  

WHERE ext jait =  ’D N E ’

RETURN  r e s u lt  jr e la t io n

PUB N I_ V A L (e x t  j r e la t io n , e x t_ a tt )

DEFINE
SELECT (*) (*) FROM e x t  jr e la t io n  

WHERE ext JdXi =  ’N F  

RETURN  r e s u lt  jr e la t io n

PUB U N K _ V A L (e x t  jr e la t io n , e x t_ a tt )

DEFINE
SELECT (*) (*) FROM e x t  jr e la t io n  

WHERE ext-àtt =  ’U N K ’

RETURN  r e s u lt  jr e la t io n

PUB M O R E J N F O ( e x t _ a t t ,  e x t .v a l )

DEFINE
SELECT '{extrait >  e x t .v a l  in c o m p le t e .d o m a in ) ’

RETURN  p r e d ic a te

PUB L E S S  J N F O ( e x t .a t t ,  e x t .v a l )

DEFINE
SELECT '{ext-3itt <  e x t .v a l  lF 7 T / /7 iV in c o m p le te .d o m a in ) ’ 

RETURN  p r e d ic a te
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PUB I D E N T IF Y O  

DEFINE
CREATE DOMAIN incomplete-domain >15 IN C O M P  

RETURN

V E R IF Y O

DEFINE AS PROG in c o m p .v e r ify

1. C h eck  t h a t  t h e  n u ll v a lu e s  U N K , N I  a n d  D N E  a r e  in c lu d e d  in  th e  

in c o m p le t e .d o m a in .

2 . C h ec k  t h a t  N I  <  U N K , N I  <  D N E  a n d  U N K  <  a ll v a lu e s  e x c e p t  th o s e  n u ll  

v a lu e s .

RETURN  b o o L v a l

E N F O R C E J N I T O

DEFINE AS PROG in c o m p .e n fo r ce  J n i t

1. I D E N T I F Y O .

2 . I f  V E R I F Y  0  =  fa lse , th e n  g o  t o  a n  error  .s t a t u s .

END

B .4 OSQLJFUZZY Package and Its Operations

PACKAGE O S Q L J ’U Z Z Y  

PARAMETER:
VARCHAR: fu z z y  .d o m a in ,  e x t  .a t t ,  p r e d ic a te  

INT: ord er  

BOOL: b o o l .v a l  

REL : r e s u lt  jr e la t io n  

FUNCTION:
PUB I D E N T I F Y ( f u z z y .d o m a in )  RETURN
PUB IM P O S E  J ^ U Z Z Y ( e x t .a t t ,  fu z z y  .d o m a in )  RETURN pxedncate 
PUB O R D E R J ^ U Z Z Y (fu z z y .d o m a in , o rd er) RETURN  
PUB L I S T J I E Q O  R E T U R #  r e s u lt  jr e la t io n  

V E R I F Y  ( fu z z y  .d o m a in )  i t  R E T U R N  b o o l .v a l  

ENFORCEMENT:
E N F O R C E J N I T O  

E N F O R C E J D E N T I F Y O  

E N F O R C E J M P O S E O  

END PACKAGE

PUB I D E N T I F Y ( f u z z y .d o m a in )

REL: R E Q J D IC T  

DEFINE
INSERT INTO  K 4 L U E 5  ( fu z z y .d o m a in , 1)

RETURN

PUB IM P O S E  J ^ U Z Z Y  (e x t  . a t t ,  fu z z y  .d o m a in )
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REL: R E Q _ D IC T  

DEFINE
SELECT ’(e x t_ a t t  W T i ï / i V ’fu z z y  .d o m a in ) ’

RETURN  p r e d ic a te

PUB O R D E R -F U Z Z Y (fu z z y .d o m a in ,  o rd er)

REL: R E Q  J ) I C T  

DEFINE
UPDATE REQDICT SET PRIORITY =  o rd er  

WHERE F U Z Z Y .R E Q  =  fu z z y  .d o m a in  

RETURN

PUB L I S T .R E Q O  

REL: R E Q  J ) I C T  

DEFINE
SELECT (*) (*) FROM R E Q  JD IC T  

RETURN  r e su lt  jr e la t io n

V E R I F Y  (fu z z y  .d o m a in )

DEFINE AS PROG fu z z y .v e r ify

1. C h ec k  t h a t  R E Q -D I C T  d o e s  n o t  c o n ta in  th e  sa m e  n a m e  o f  t h e  g iv e n  fu z z y  

d o m a in .

2 . C h ec k  t h a t  t h e  v a lu e  o f  P R I O R I T Y  in  R E Q -D I C T  is  a  p o s it iv e  in te g e r .  

RETURN

E N F O R C E J N I T O

DEFINE
DELETE FROM R E Q  JD IC T  

END

E N F O R C E J D E N T I F Y O

DEFINE AS PROG fu z z y .e n fo r c e J d e n t ify

1. I f  t h e  fu n c t io n  I D E N T I F Y  is  c a lle d , th e n  g o  t o  a n  error s t a t u s  if  

V E R I F Y  (fu z z y  .d o m a in )  =  fa lse .

END

E N F O R C E J M P O S E O

DEFINE AS PROG fu z z y .e n fo r c e J m p o s e

1. I f  t h e  fu n c t io n  I M P O S E  is  c a lle d , th e n  sa v e  th e  r e s u lt  in  a  sp e c if ie d  l is t  a n d  

a s s ig n  a  n u m b e r  t o  i t  a c c o r d in g  t h e  p r io r it ie s  o f  th e  d e fin e d  fu z z y  d o m a in s .

2 . A r r a n g e  t h e  l is t  a c c o r d in g  t o  t h e  n u m b e r  a ss ig n e d .

3 . R e p la c e  t h e  e x is t in g  a t t r ib u te  l is t  w ith  th e  e x te n d e d  a t tr ib u te  l is t .

END

B.5 OSQL_SPACE Package and Its Operations

PACKAGE O S Q L .S P A C E  

PARAMETER:
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VARCHAR: sp a c e .d o m a in ,  e x t  .r e la t io n ,  r e g io n .p a r a m e te r ,  x .c o m p ,  y _ c o m p ,  

m in _ v e r te x _ l, m a x _ v e r te x _ l, m in _ v e rte x J 2 , m a x _ v e r te x .2 ,  

e x t_ d o m a in , d isp la y  .p r e d ic a te ,  t o p o lo g ic a l .p r e d ic a te  

INT: p e r im e te r , a r ea  

BOOL: b o o l .v a l  

REL: r e su lt  jr e la t io n  

FUNCTION:
PUB I D E N T I F Y ( e x t .d o m a in )  RETURN
PUB D IS  J O I N T  ( m in .v e r t e x . l ,  m a x .v e r t e x . l ,  m in .v e r te x J 2 , m a x .v e r t e x .2 )  

RETURN  to p o lo g ic a l .p r e d ic a te  

PUB O V E R L A P  ( m in .v e r t e x . l ,  m a x .v e r t e x . l ,  m in .v e r t e x .2 ,  m a x .v e r t e x .2 )  

RETURN  to p o lo g ic a l .p r e d ic a te  

PUB M E E T  ( m i n .v e r t e x . l , m a x .v e r t e x . l ,  m in _ v e r te x .2 , m a x .v e r t e x .2 )

RETURN  to p o lo g ic a l .p r e d ic a te  

PUB C O N T A IN  ( m in .v e r t e x . l ,  m a x .v e r t e x . l ,  m in .v e r te x J 2 , m a x .v e r te x J 2 )  

RETURN  to p o lo g ic a l .p r e d ic a te  

PUB E A S T ( e x t  jr e la t io n , m i n .v e r t e x . l ,  m a x .v e r t e x . l )  RETC/RAT r e s u lt  jr e la t io n  

PUB W E S T  (e x t  j r e la t io n , m i n .v e r t e x . l ,  m a x .v e r t e x . l )  RJETC/RAT r e su lt  jr e la t io n  

PUB N O R T H  (e x t  jr e la t io n , m i n .v e r t e x . l ,  m a x .v e r t e x . l )  RETC/RAT r e s u lt  jr e la t io n  

PUB S O U T H  (e x t  jr e la t io n , m i n .v e r t e x . l ,  m a x .v e r t e x . l )  R E T C /R iV  r e s u lt  jr e la t io n  

PUB P E R I ( m in .v e r t e x . l ,  m a x .v e r t e x . l )  RETURN perimeter 
PUB A R E A  ( m i n .v e r t e x . l ,  m a x .v e r t e x . l )  RETURN area 
PUB P IC K _ R E G IO N ()  RETURN regionjparameter 
PUB S E T -D I S P L A Y (c o lo u r , p a t te r n , m o d e )  RETURN  
PUB B O U N D A R Y (e x t jr e la t io n )  RETURN  
PUB W H O L E (e x t jr e la t io n )  RETURN  
X C 0 M P  ( m in .v e r t e x . l  ) RETURN yijcomp 
Y C O M P ( m in .v e r t e x . l )  RETURN y.comp 
V E R I F Y ( s p a c e .d o m a in )  RETURN  b o o l .v a l  

ENFORCEMENT:
E N F O R C E J N I T O

E N F O R C E J ) I S P L A Y ( )

END PACKAGE

PUB I D E N T I F Y ( e x t .d o m a in )

DEFINE
CREATE D O M A /V  s p a c e .d o m a in  AS  e x t .d o m a in  

RETURN

PUB D IS  J O I N T  ( m i n .v e r t e x . l ,  m a x .v e r t e x . l ,  m in .v e r te x _ 2 , m a x .v e r t e x .2 )  

DEFINE
SELECT ’X C O M P ( m a x .v e r t e x . l )  <  X C O M P (m in .v e r te x J 2 )  OR 
X C O M P  ( m a x .v e r t e x .2 )  <  X C O M P  ( m in .v e r t e x . l )  OR 
Y C O M P  ( m a x .v e r t e x . l )  <  Y C O M P  (m in .v e r te x J 2 )  OR 
Y C O M P  ( m a x .v e r t e x .2 )  <  Y C O M P ( m i n .v e r t e x . l ) ’
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RETURN topological.predicate

PUB O V E R L A P  ( m in .v e r t e x . l ,  m a x .v e r t e x . l ,  m in .v e r t e x .2 ,  m a x .v e r te x J 2 )  

DEFINE
SELECT ’X C O M P  ( m a x .v e r t e x . l )  >  X C O M P  (m in .v e r t e x .2 )  AND 
X C O M P (m a x .v e r t e x .2 )  >  X C O M P ( m in .v e r t e x . l )  AND 
Y C O M P  ( m a x .v e r t e x . l )  >  Y C 0 M P ( m in .v e r te x J 2 )  AND 
Y C O M P  ( m a x .v e r t e x .2 )  >  Y C O M P  ( m i n .v e r t e x . l ) ’

RETURN  t o p o lo g ic a l .p r e d ic a te

PUB M E E T  ( m i n .v e r t e x . l , m a x .v e r t e x . l ,  m in .v e r t e x .2 ,  m a x .v e r t e x .2 )  

DEFINE 
SELECT
’( (X C O M P  ( m a x .v e r t e x . l )  =  X C O M P  (m in .v e r t e x .2 )  OR 
X C O M P  ( m a x .v e r t e x .2 )  =  X C O M P  ( m i n .v e r t e x . l ) )  AND 
Y C O M P  ( m a x .v e r t e x . l )  >  Y C O M P  (m in .v e r te x  J2) AND 
Y C O M P  ( m a x .v e r t e x .2 )  >  Y C O M P  ( m in .v e r t e x . l ) )

OR
( ( Y C O M P ( m a x .v e r t e x . l )  =  Y C O M P  ( m in .v e r t e x .2 )  OR 
Y C O M P  ( m a x .v e r t e x .2 )  =  Y C O M P ( m in .v e r t e x . l ) )  AND 
X C O M P  ( m a x .v e r t e x . l )  >  X C O M P  (m in .v e r te x  J2) AND 
X C O M P  ( m a x .v e r t e x .2 )  >  X C O M P ( m in .v e r t e x . l ) ) ’

RETURN  to p o lo g ic a l .p r e d ic a te

PUB C O N T A I N ( m in .v e r t e x . l ,  m a x .v e r t e x . l ,  m in .v e r te x J 2 , m a x .v e r t e x .2 )  

DEFINE 
SELECT
’X C O M P  ( m a x .v e r t e x . l )  > =  X C O M P  ( m a x .v e r t e x .2 )  AND 
X C O M P  ( m i n .v e r t e x . l )  < =  X C O M P  ( m in .v e r t e x .2 )  AND 
Y C O M P ( m a x .v e r t e x . l )  > =  Y C O M P (m a x .v e r te x J 2 )  AND 
Y C O M P ( m in .v e r t e x . l )  < =  Y C O M P  ( m in .v e r t e x .2 )  ’

RETURN  to p o lo g ic a L p r e d ic a te

PUB E A S T ( e x t  jr e la t io n , m i n .v e r t e x . l ,  m a x .v e r t e x . l )

DEFINE
SELECT (* )  (*) FROM e x t  jr e la t io n

WHERE XCOMP (MAXMERTEX) < =  X C O M P  ( m in .v e r t e x . l )  

RETURN r e s u lt  j r e la t io n

PUB W E S T  (e x t  jr e la t io n , m i n .v e r t e x . l ,  m a x .v e r t e x . l )

DEFINE
SELECT (+) (*) FROM e x t  jr e la t io n

X C O M P  ( M I N .V E R T E X )  > =  X C O M P  ( m a x .v e r t e x . l )  

RETURN r e s u lt  jr e la t io n

PUB S O U T H ( e x t  jr e la t io n , m i n .v e r t e x . l ,  m a x .v e r t e x . l )

DEFINE
SELECT (*) (*) FROM e x t  jr e la t io n
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WHERE YCOUF{MAX.VERTEX) < =  Y C O M P  ( m in .v e r t e x . l )

RETURN  r esu lt  jr e la t io n

PUB N O R T H  (e x t  jr e la t io n , m i n .v e r t e x . l ,  m a x .v e r t e x . l )

DEFINE
SELECT (*) (*) FROM e x t  jr e la t io n

WHERE YCOMF{Mm.WEKTEX) > =  Y C O M P ( m a x .v e r t e x . l )

RETURN  r esu lt  jr e la t io n

PUB P E R I ( m in .v e r t e x . l ,  m a x .v e r t e x . l )

DEFINE
SELECT 2 X  (A B S  (X C O M P  ( m in .v e r t e x . l )  - X C O M P  ( m a x .v e r t e x . l  ) ) 4- 
A B S ( Y C O M P ( m in .v e r t e x . l )  - Y C O M P ( m a x .v e r t e x . l ) ) )

RETURN p e r im e te r

PUB A R E A  ( m in .v e r t e x . l ,  m a x .v e r t e x . l )  DEFINE
SELECT A B S ( X C O M P ( m in .v e r t e x . l )  - X C O M P ( m a x .v e r t e x . l ) )  x  

(Y C O M P ( m in .v e r t e x . l )  -  Y  C O M P  ( m a x .v e r t e x . l  ) ) )

RETURN a rea

PUB P I C K J I E G I O N O  

DEFINE AS PROG sp a c e .p ic k

1. C o m m u n ic a te  w ith  th e  m o u s e  d r iv er  t o  g e t  t h e  s p a t ia l  a t t r ib u te s  o f  th e  p o in te d  r eg io n .

2 . R e tu r n  th e  s p a t ia l  a t t r ib u te s  o f  t h e  r e g io n  in  t h e  c o rr ec t  fo r m a t.

RETURN r e g io n .p a r a m e te r

PUB S E T J D IS P L A Y (c o lo u r , p a t te r n , m o d e )

DEFINE AS PROG s p a c e .d isp la y

1. S e t  th e  v isu a l  v a r ia b le s  o f  th e  d isp la y  e n v ir o n m e n t  a c c o r d in g  

t o  th e  g iv e n  p a r a m e te r s  c o lo u r , p a t te r n  a n d  m o d e .

2 . R e -a c t iv a te  t h e  w in d o w  t o  d isp la y .

RETURN

PUB B O U N D A R Y  (e x t  jr e la t io n )

DEFINE AS PROG s p a c e .b o u n d a r y

1. D r a w  th e  h o r iz o n ta l l in e s  o n  th e  sc r e e n  w h o se  h o r iz o n ta l  r a n g e s  o f  p ix e l  are  t o  b e  

b o u n d e d  b y  X C O M P (M I N .V E R T E X )  a n d  X C O M P (M A X .V E R T E X )  a n d  th e  v e r t ic a l  

d is ta n c e s  o f  a ll p ix e l a r e  Y C O M P  (M IN  .V E R T E X )  or  Y C O M P  ( M A X .V E R T E X ) .

2. D r a w  th e  v e r t ic a l  l in e s  o n  th e  sc r e e n  w h o se  v e r t ic a l  r a n g e s  o f  p ix e l  a re  t o  b e

b o u n d e d  b y  Y C O M P  (M IN  .V E R T E X )  a n d  Y C O M P  (M A X .V E R T E X ))  a n d  th e  h o r iz o n ta l  

d is ta n c e s  o f  a ll p ix e l  a r e  X C O M P  (M I N .V E R T E X )  or  X C O M P  (M A X .V E R T E X ) .  

RETURN

PUB W H O L E (e x t jr e la t io n )

DEFINE AS PROG s p a c e .w h o le

1. D isp la y  a ll th e  p o in ts  o n  t h e  sc r e e n  w h o se  h o r iz o n ta l  r a n g e s  o f  p ix e l are  t o  b e  b o u n d e d  b y  

X C O M P  (M I N .V E R T E X ) a n d  X C O M P  ( M A X .V E R T E X )  a n d  w h o se  v e r t ic a l r a n g e s  o f  

p ix e l a re  t o  b e  b o u n d e d  b y  Y C O M P  (M I N .V E R T E X )  a n d  Y C O M P  (M A X .V E R T E X ) .  

RETURN
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X C O M P  ( m in .v e r t e x . l )

DEFINE AS FROG s p a c e .x c o m p

1. S tr ip  o f f  a ll s y m b o ls  e x c e p t  th e  X -c o o r d in a te  o f  t h e  s p a t ia l  a t t r ib u te  m in .v e r t e x . l .

2 . C o n v e r t  t h e  r e s u lt  in to  a n  in te g e r .

RETURN

Y C O M P ( m in .v e r t e x . l )

DEFINE AS PROG sp a c e .y c o m p

1. S tr ip  o f f  a ll s y m b o ls  e x c e p t  th e  Y -c o o r d in a te  o f  th e  s p a t ia l  a t t r ib u te  m in .v e r t e x . l .

2 . C o n v e r t  th e  r e s u lt  in to  a n  in te g e r .

RETURN

V E R I F Y  ( s p a c e .d o m a in )

DEFINE AS PROG sp a c e .v e r ify

1. C h ec k  t h a t  t h e  s p a c e .d o m a in  is  2 D S P A C E .

2 . C h ec k  t h a t  t h e  s p a c e .d o m a in  is  f in ite  a n d  X  a n d  Y  c o m p o n e n ts  o f  a ll e le m e n ts  in  a  

s p a c e .d o m a in  a re  l in e a r ly  o r d e re d .

RETURN  b o o l .v a l

E N F O R C E J N I T O

DEFINE AS PROG s p a c e .e n fo r c e J n it

1. I D E N T I F Y ( 2 D S P A C E ) .

2 . E N F O R C E J ) I S P L A Y ( ) .

END

E N F O R C E J D IS P L A Y O

DEFINE AS PROG s p a c e .e n fo r c e .d is p la y

1. S e t  a ll t h e  n e c e s s a r y  d e fa u lt  p a r a m e te r s  for  d isp la y  e n v ir o n m e n t  su c h  a s  th e  v isu a l  

v a r ia b le s  in  g r a p h ic a l  p r e s e n ta t io n , th e  s c a le  o f  t h e  d r a w in g  a n d  th e  r e s o lu t io n  le v e ls .

2 . A c t iv a te  t h e  d is p la y  w in d o w .

END
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A ppendix C

Survey D ocum ents

C .l A Mini-Manual for OSQL 

C . l . l  In tr o d u c tio n  to  O SQ L

Current relational database management systems (RDMSs) are based on the Codd’s rela­
tional data  model and their data languages are specified by the SQL standard. We extend 
SQL to be Ordered SQL (OSQL) in order to provide the facility of user-defined orderings 
over data domains in addition to the standard domain orderings such as alphabetical 
ordering over a domain of strings and numerical ordering over a domain of numbers. For 
example, the semantics of the comparison EMPLOYEE_NAME < ’Wilfred’ meaning the 
subordinates of Wilfred, can be captured in OSQL. Queries in OSQL are formulated in 
essentially the same way as using standard SQL.

Oracle

System

OSQL
Statem ents

Query

Result

OSQL
System

Unix 
Front end

C Precom piler 

Interface

ROM S 
Back end

Figure C .l: Architecture of the OSQL system

In Figure C .l, we show our design of the system architecture, which allows OSQL 
statements to be entered via the front end unix interface, and then the OSQL precompiler 
generates a corresponding program consisting of a sequence of Oracle statements, which 
is then piped into the back end Oracle server for execution.

C .1 .2  C o n n e c tin g  to  O SQ L  S y s te m  an d  D isc o n n e c t in g  from  it

Firstly, you must make sure th a t you have no problem in connecting to Oracle?, i.e. 
you have already got an Oracle account and have successfully logged on to the system.
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Secondly, you should type the following on your terminal (or add this in your .uclcs-csh- 
options file):

set path = ($path /cs/academic/phdO/violet/siuhungn/OSQL/)
This command set the path of the OSQL system. Now you can get into the OSQL 
interface by typing the command osql. You will be asked for your user name and then 
for the password of your O rac le  A cco u n t as follows.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* OSQL version 1 .0  designed by Mr Wilfred NG *
*  *

* Type ’quit’ if you vaut to exit. *
*  *

* IMPORTANT : ANY statement SHOULD be ended with ’;’ *
*  *  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Enter user-name: ??????
Enter password: ??????
Owing to some performance problem in our Oracle Server, there may be a noticeable 
pause after typing your password or your OSQL statement. Please be patient. A prompt 
tha t looks like the following will appear after your account details have been verified:

Connected to ORACLE as user ??????
OSQL>
To get out of OSQL system just type quit as in Oracle at any time when you have this 
prompt.

OSQL>quit
Bye! Bye I Have a good day, ??????.

C . l . 3 E d it in g  Q u er ies

You must remember to term inate the query with a semicolon. This tells the OSQL 
system to start evaluating the current query and ignore the old information in the query 
buffer (a useful tip if you want to get rid of any mistyped query in OSQL).

A typical query and its result might look like this:

OSQL>select (salary) (1) from staff ;

SALARY

10000

Query returned 1 row.
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You can use a source file to correct errors or modify your query statement. Having 
finished your modification, you can run the contents of your file by the OSQL command:

OSQL>stairt <some filename>
At the moment there are two limitations in our extension. The OSQL system does 

not accept nested queries and it assumes that all OSQL keywords are in lower case.

C . l . 4  U sin g  th e  O SQ L  S E L E C T  S ta te m e n t

In this section we introduce the select statement in OSQL. You are strongly encouraged 
to try the queries Q1 to Q15 while you are reading this section. As in Oracle SQL all 
data retrieval in OSQL is done with the select command. The extended form of the 
statement is:

select (attribute list) (tuple list) 
from relation list 
where (comparison clause)

Note that in the select statement, OSQL has three extensions as follows:

1. Extension of an attribute list: An attribute list in OSQL is a list of attributes similar 
to the usual one, except that it provides us with an option that an attribute can be 
associated within a semantic domain by the syntax attribute name within domain 
name. The purpose of declaring a within clause is to override the system ordering 
with the semantic ordering of the semantic domain specified by the domain name. 
When the within clause is missing then the system ordering will be assumed. Note 
also tha t the attribute  list should be enclosed within a pair of brackets. Let us 
examine at the following OSQL statements:

Ql. select (name, salary) (*) from staff ;
Q2. select (salary, name) (♦) from staff ;
Q3. select ((name within emp_exp), salary) (*) from staff ;

The attribu te list of the query Q l is (name, salary), and thus tuples in the output 
answer are ordered alphabetically by name first and then ordered numerically by 
salary. Therefore the ordering of tuples is, in general, different to that of query 
Q2, whose list is specified as (salary, name), since the output of Q2 is ordered by 
salary first and then by name. It will also be different from that of Q3 whose list 
is ((name within emp.exp), salary), where the ordering of name is given by the 
semantic domain emp_exp representing employee experience in a company. Check 
these queries for yourself in OSQL.

2. Extension of tuple list: A tuple level, which is a set of positive numbers, with the 
usual numerical ordering, can also be w ritten in some short forms. Since a set 
of tuples in a linearly ordered relation r = {f i , . . . , ^n} is isomorphic to a set of 
linearly ordered tuples, we interpret each number z in a tuple level as an index to 
the position of the tuple ti, where i = 1 , . . . ,  n  and <  • • • <  ^„. Let us consider 
the following example.
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Q4. select (salary) (4) from staff;
Q5. select (salary) (2..5) desc from staff ;

Query Q4 returns the fourth lowest salary and query Q5 returns the second to 
fifth highest salaries in the staff relation. The keyword desc is used to reverse the 
ordering (i.e. maximum first) of the relation You may try Q5 again without using 
the keyword desc to examine the difference fro yourself.

An interesting situation to consider is when the output of a relation is partially 
ordered as a tree, having levels {/ i , . . . ,  Im}- In such a case we choose to interpret 
each number j  in a tuple level as an index to a corresponding tree level Ij, where
j  = 1, . . .  , m  and h  < • • • < Im- Hence, a user can specify the retrieve of all the
tuples or any one of the tuples in a specified level Ij. We note that in the case of a 
linearly ordered relation, the choice of using all or any has the same effect on the 
output, since there is only one tuple in each level.

3. Extension of comparison: The meaning of the usual comparators < , > , < = , > =  is 
extended to include semantic comparison. A typical form of a semantic comparison 
is defined by the syntax attribute comparator attribute within semantic domain.

W ithout the optional within clause, the comparison is just the conventional one and 
is based on the relevant system ordering. As an example of a semantic ordering, the 
comparison (name > ’Bill’ within emp_rank) returns all names of staff members who 
are more senior Bill specified by the semantic domain emp_rank, and the comparison 
name > ’Bill’ returns all names of staff members alphabetically greater than Bill.

To summarise, the ordering of tuples in an output relation depends on two factors: 
firstly, on the ordering of domains of individual attributes, and secondly on the order of 
the attributes in an attribute list.

The following is a more detailed example using two semantic domains emp_rank and 
emp_exp as shown in Figure C.2. The first one represents the position of members of 
staff, for example Mark (at level 3) is more senior than Bill (at level 1), and the second 
one represents the experience of the staff, for example Bill is more experienced than 
Lee. Note that the domain emp_rank is tree-structured whereas the domain emp.exp is 
linearly ordered.

Lee John Simon

\ / \ /
Ethan Bill

Mark

(a)

Simon

Ethan

Figure C.2: The semantic domains (a) emp_rank and (b) emp.exp
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Q6. Find the first and the fourth lowest salaries in the staff relation, 
select (salary) (1,4) 
from staff ;

Q7. Find the highest salary in the staff relation, 
select (salary) (last) 
from staff ;

or equivalently,
select (salary) (1) desc 
from staff ;

Q8. Find 4 names of staff members with salary greater than 15000. 
select (name) (1..4) 
from staff where salary > 15000;

Q9. Find a staff member at the most senior level (note the brackets), 
select ((name within emp_rank)) (1) desc from staff ;

or equivalently,
select ((name within emp_rank)) (last) from staff ;

QIO. Find the name of a staff member at the most junior level, 
select ((name within emp_rsuik)) (1) from staff;

Qll. Find all the names of staff at the most junior level (compare 
this with QIO).

select ((name within emp_rank)) all (1) from staff ;

Q12. List the names aind salaries of all staff members in 
alphabetical order of names.

select (name, salary) (*) from staff ;

Q13. List the names and salaries of staff members in
order of their experiences (compare this with Q12).

select ((name within emp_exp), salary) (*) from staff ;

Q14. Find the record of all the staff members who are more senior than 
Ethan.

select (*) (*) 
from staff
where (name > ’Ethan’ within emp_rank);
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Q15. Find the record of all the staff members who aire more experienced than 
Ethan (compare this with Q14). 

select (*) (*) 
from staff
where (name > ’Ethan’ within emp_exp);

C . l . 5 L an gu age  S p ec if ica tio n

In this section we give the BNF notation for the OSQL select statement.

Conventions:

• Key words are indicated by lowercase italicized characters.

• Non-terminal symbols are enclosed with ” < >  ” .

• Alternatives are separated by ” If only one of the symbols is to be chosen out of 
several alternatives, then we enclose them with ”{

• Optional clauses are enclosed with ” [ ]” .

• Default keywords are underlined.

• A positive number begins with # .

• . . .  at the end if a subclause indicates that it may be repeated.

select <attribute-list>  [{any \ all}] < tuple-list>  [ { j^  | desc}] from  <relation-list> [where 
<condition>]

< attribu te-list>  :;= (extended-attribute [,extended-attribute]. . .)

<extended-attribute>
{attribute-name | (attribute-nam e within domain-name | *)}

<tuple-list>  ({ # n  [, #n]) | last | # n l . .# n 2  | *})

<comparison>
<attribute-nam e | value> < com parator> < (attribute-nam e | value} >  [within domain- 
name]

< com parator> ::= { < | > | > = | < = | < > }

C .1 .6 T h e  S ta ff  T ab le

NAME NI_NO SALARY

Bill 27891 12000
Ethan 32877 29000
John 10982 14000
Lee 34589 25000
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Mark 67001 30000
Paul 23789 23000
Simon 32112 10000

E nd-of-M anual
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c.2 Experim ent Sheet on OSQL

T ask  I: The required database is the frame.parts and stock as shown on the last page. 
Answer question 3 in the questionnaire while you are doing this task.

1. List all records in the table frame_parts sorted by part_name.

2. W hat is the cost of the cheapest part?

3. W hat is the cost of the most expensive part?

4. W hat is the cost of the third and fifth cheapest part?

5. List all records in the table frame_parts whose cost is under 200, sorted by cost.

6. Some part construction is dependent on the availability of other parts as shown in 
Figure C.3. For example, the part gizmo is dependent on the parts gear and also 
the part cam is dependent on the parts jack. I have created a semantic domain 
called partJiie  to represent the hierarchy of different parts.

gear

gizm o

f ra m m is

Figure C.3: Relationship amongst parts in frame.parts

List cities of the parts which are dependent on the part gear directly or indirectly 
(You cannot use any part name explicitly apart from gear in your query).

7. List the name of one part on which frammis is directly dependent (i.e. one level 
under).

8. List the names of all parts on which frammis are directly dependent.

9. Look into the stock table in which there is some missing information in records. 
We classify the missing information into three symbols of type UNKnown whose 
meaning is given as follows:

UNKl: No information is available for this value.
UNK2: Value does not exist.
UNK3: Value exists but is not disclosed for some reasons.

We use the notion of ’’more informative” as the following ordering:

UNKl <  UNK2 < UNK3 < other values

In other words, UNK3 is more informative than UNK2 and so on. I have already 
created a semantic domain called incomplete.domain to represent this ordering.

List the name and country of all items in which they must more informative than 
or equally informative to UNK3.
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T ask II: Now you can quit the OSQL system. Try and answer the questions 1 to 9 of 
Task I in Oracle SQL (type sqlplus). If you find it difficult, you have to explain why (in 
principle all queries can be formulated in SQL). Answer question 4 in the questionnaire 
while you are doing this task.

T ask III: Complete the questionnaire.

1. The table frame.parts:

CITY COST PART.NAME

Bath 1000 gizmo
Birmingham 3000 cam
Blackpool 100 screw C
London 20 plug B
London 50 screw A
London 50 screw B
London 100 plug A
London 5000 frammis
Manchester 500 jack
Paris 200 screw D
Sussex 100 plug C
York 150 nutl
York 150 nut 2
York 150 nuts
York 500 gear
York 1000 clip
2. The table stock:

ITEM.NAME COUNTRY COLOUR PRICE

TV_stand UNKl UNKl 200
book_case A China UNKl 200
book_case B China Black 200
buffet_unit UNK2 UNKl 2000
ooffee_table Italy White 1000
dining.table Japan Yellow 1500
dressing.table UNK3 UNK2 1000
filing.cabinet England Grey 1000
folding.chair A France UNKl 500
folding.chair B France Brown 200
folding.chair C China Yellow 400
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futon
soft_unit
wardrobe

Japan
UNK3
Englajid

UNK3
Black
Yellow

500
5000
3000

E nd-of-sheet
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c.3 Questionnaire on Using OSQL

Pleas tick the boxes or fill in the blanks in the following questions as appropriate.

1. W hat is your experience of using SQL?

□ I learned SQL on this course.
□ Less than 2 years.
□ 2 to 4 years.
□ more than 4 years.

2. W hat programming languages (including database query languages and packages) 
do you know apart from SQL?

3. Number of attem pts in formulating OSQL queries in order to obtain the expected 
query result for Task I of experiment sheet.

Questions Less than 3 times 3 to 6 times More than 6 times Unsuccessful
1
2
3
4
5
6
7
8
9

4. Number of attem pts in formulating equivalent SQL statements in order to obtain 
the expected query result for Task II of the experiment sheet.

Questions Less than 3 times 3 to 6 times More than 6 times Unsuccessful
1
2
3
4
5
6
7
8
9

5. There are three extensions in the select statement of OSQL, namely in the attribute 
list, tuple list and comparison clause as given below:

select (attribute list) (tuple list) 
from relation list 
where (comparison)

217



Plecise comment on the usefulness and the difficulties in using these extensions in 
the Tasks I and II of the experiment sheet (scale 1 means least and scale 5 means 
most).

Extension Usefulness Difficulty
1 2 3 4 5 1 2 3 4 5

A ttribute list
Tuple list

Comparison

6. Please give us your general comments on OSQL.

E nd-of-questionnaire  
Thank you very much!
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A ppendix D

Sample Code from the  
Im plem entation of OSQL

D .l  Part of the Code from Dynam ic.pc

1
2 #include <stdio.h>
3 #include <string.h>
4 #include <ctype.h>
5
6 #define MAX_ITEMS 40
7 #define MAX_VNAME_LEN 30
8 #define MAX_INAME_LEN 30
9 #define INPUTFILE "answer.sql"

10
11 EXEC SQL BEGIN DECLARE SECTION;
12 VARCHAR sql_statement[2048];
13 char ♦username;
14 char ♦password;
15 EXEC SQL END DECLARE SECTION;
16 EXEC SQL INCLUDE sqica;
17 EXEC SQL INCLUDE oraca;
18 EXEC SQL INCLUDE sqlda;
19 EXEC ORACLE OPTION (ORACA = YES);
20 EXEC ORACLE OPTION (RELEASE_CURSOR=YES);
21
22 SQLDA ♦select_dp;
23 extern char user_name[];
24 extern char user_password[];
25 extern SQLDA ♦sqlaldO ;
26 extern void sqIprcO;
27 extern void sqInulO;
28 FILE ♦sqlfile;
29
30 open_infiIe()
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31 {
32
33 sqlfile = fopen(INPUTFILE,"r+");
34 if (!sqlfile)
35 {
36 printf("Warning: file error! could not find euiswer.sql file");
37 exit(1);
38 }
39 return;
40 }
41
42 close_inf ileO
43 {
44
45 fcloseCsqlfile);
46
47 }
48
49 execute_sql()
50 {
51 EXEC SQL WHENEVER SQLERROR DO sql_error();
52 EXEC SQL PREPARE S FROM :sql_statement;
53 EXEC SQL DECLARE C CURSOR FOR S;
54 EXEC SQL OPEN C;
55 process_statement0  ;
56 EXEC SQL CLOSE C;
57 EXEC SQL COMMIT WORK;
58 return;
59 }
60
61 connect_oracle()
62 {
63 username = user_name;
64 password = user_password;
65 EXEC SQL WHENEVER SQLERROR DO connect_error();
66 EXEC SQL CONNECT :username IDENTIFIED BY :password;
67 printf("\nConnected to ORACLE as user %s\n".username);
68 return;
69 }
70
71 initialize_desp()
72 {
73 EXEC SQL WHENEVER SQLERROR DO sql_error();
74 select_dp =
75 sqlald (MAX.ITEMS, MAX_VNAME_LEN, MAX_INAME_LEN);
76 select_dp->N = MAX_ITEMS ;
77 return;
78 }
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D.2 Part of the Code from Osql.l

1 void yyerror(char *s);
2 %}
3 7.S OSQL
4
5
6

7.7.

7 %{
8 /* control command literals
9 <QSQL>~sql\n { BEGIN INITIAL; osql_flag = 0; printf("SQL>'

10 InitializationO; return PASS ;} ; */
11 %}
12
13 ~[ ]*quit\n { wrap_up();};
14
15 ~help\n 1
16 "?"\n {command_help0  ;};
17
18 <GSQL>start I
19 <OSQL>"@" { INFILE.MGDE ;};
20
21 %{
22 /* literals*/
23 %}
24
25
26 <GSQL>select {save_sql(yytext,"SELECT");
27 SELECT.MGDE; ATT.MGDE; return SELECT ;} ;
28 <GSQL>from TGK(FRGM) ;
29 <GSQL>where {save_sql(yytext,"WHERE"); CGND_MGDE; return 1
30 <OSQL>last TGK(LAST) ;
31
32 <GSQL>create {save_sql(yytext,"CREATE"); CREATE_MGDE;
33 return CREATE ;};
34 <OSQL>domain {save_sql(yytext,"DOMAIN");
35 DGMAIN_MGDE; return DOMAIN ;};
36 <OSQL>order {AGG_MODE; save_sql(yytext,"ORDER");
37 ORDER_MODE; return ORDER ;};
38 <OSQL>table {save_sql(yytext,"TABLE");
39 TABLE_MODE; return TABLE ;};
40 <GSQL>drop {save_sql(yytext,"DROP"); DROP_MODE;
4 1 return DROP ;};
4 2 <OSQL>group {AGG_MODE; GROUP_MODE; save_sql(yytext
4 3 return GROUP ;};
4 4 <GSQL>having {save.sql(yytext,"HAVING"); AGG_MODE;
45 return HAVING ;};
46 <GSQL>alter {save_sql(yytext,"ALTER"); ALTER_MODE;
47 return ALTER ;};
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48 <OSQL>tuple {save_sql(yytext,"TUPLE"); TUP_MODE;
49 return TUPLE ;};
50 <OSQL>other {if ((other_count += 2) >= 4)
51 yyerror("More than one ’other’");
52 save_sql(yytext,"OTHER"); return OTHER;};
53
54 <OSQL>UNO {save_sql(yytext,"UNO"); return UNO;};
55
56 <OSQL>ABO {save_sql(yytext,"ABO"); ++other_count; return ABO;};
57
58 <OSQL>modify {save_sql(yytext,"MODIFY"); return MODIFY;};
59

D.3 Part of the Code from Osql.y

1 %{
2 /* to recongnise the pattern of OSQL expression*/
3 #include<stdio.h>
4 %}
5 /.token SELECT FROM WHERE LAST NAME DOM INTNUMBER POSINTNUM ASC DESC
6 STRING ALL COMPARATOR WITHIN ANY TABLE OTHER ABO UNO
7 CREATE DOMAIN ORDER AS DATANUM DATACHAR TUPLE EVERY PASS
8 DROP CONJUNCTION BY GROUP HAVING ALTER ADD DELETE MODIFY
9

10 %%

11 pass_and_statement : pass.statement statement
12 I
13 pass.statement
14 I
15 statement
16 ;
17
18 statement : select_from_where_statement
19 I
20 create_domain_statement
21 I
22 create_table_statement
23 I
24 drop_table_statement
25 I
26 drop_domain_statement
27 I
28 alter_table_statement
29 I
30 alter_domain_statement
31 I
32 delete_from_where_statement
33 I
34 error PASS { YYABORT;}
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35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 
61 
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

select.from_where_statement: SELECT attributes_expression 
tuples_expression_order 
FROM tables_expression

I
SELECT attributes_expression tuples_expression_order 
FROM tables_expression 
WHERE conditionlist

attributes_expression; name_list 
EVERY O ’

tuples_expression_order: tuples_expression
I tuples_expression DESC
I tuples_expression ASC
I ALL tuples_expression
I ANY tuples_expression
I ALL tuples_expression DESC
I ANY tuples_expression DESC
I ALL tuples_expression ASC
I ANY tuples_expression ASC

tuples_expression: number_list
I POSINTNUM’ 'POSINTNUM ’)
I POSINTNUM’ 'LAST ’)’
I ’(’ EVERY ’)’
I ’(’LAST’)’

name_list: name_list ’,’ name_dom 
I name_dom

name_dom: NAME
I
’(’ NAME WITHIN NAME ’)
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