
An Extension of the Relational

D ata M odel to Incorporate

Ordered Dom ains

Wilfred Siu Hung Ng

A dissertation submitted in partial fulfillment

of the requirements for the degree of

D o c to r o f P h ilo so p h y

o f th e

U n iv e rs ity o f L ondon

Department of Computer Science

University College London

1, July 1997

ProQuest Number: 10055432

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10055432

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

In this thesis, we extend the relational data model to incorporate partial orderings

into data domains and present a comprehensive formalisation of the extended model.

The main contributions of the thesis are that we show how and why such an extension

can considerably improve the capabilities of capturing semantics in a wide spectrum

of advanced applications such as tree-structured information, temporal information, in­

complete information, fuzzy information and spatial information, whilst preserving the

elegance of the theoretical basis of the model.

W ithin the extended model, we extend the relational algebra to the Partially Or­

dered Relational Algebra (FORA) and the relational calculus to the Partially Ordered

Relational Calculus (PORC), respectively. These two languages are shown to be equiv­

alent. We then apply a generalized form of Paredaens’ and Bancilhon’s Theorem to

justify our claim that the PORA is adequately expressive, i.e., non-uniformly complete.

We also show that there is a one-to-one correspondence between three hierarchies of:

computable queries, ordered domains and PORAs, according to the inherent structures

of the underlying domains.

Moreover, we formally define Ordered Functional Dependencies (OFDs) and Ordered

INclusion Dependencies (OINDs) for the extended model. We then present a sound and

complete axiom system for OFDs and OINDs in the case of pointwise linear orderings.

In addition, we establish a set of sound and complete chase rules for OFDs in the case

of lexicographical linear orderings.

We extend SQL to OSQL as a query language for ordered databases. OSQL provides

users with the capability to define partial orderings over data domains. In order to

demonstrate the feasibility of OSQL, we have carried out an experimental implementation

of the new language using the Oracle DBMS for low level data management. We have

evaluated the implementation by conducting a user survey. From the results of the

survey, we confirm that the essential features of OSQL which we have designed are easy

to learn, understand and apply, and are useful in formulating queries involving order.

Furthermore, we demonstrate that a wide range of queries in many advanced applications

can be formualted in a unified manner by introducing the notion of an OSQL package.

Acknowledgem ents

Thanks to God. He allows me to possess the good health and the sound mind to

complete this piece of demanding work.

Thanks to my supervisor, Mark Levene. He has given me the full attention and

support since I started my Ph.D. programme three years ago. W ith his valuable advice

and guidance on my work, I could carry out my research persistently even in the most

difficult time. Also, I wish to express my gratitude to my second supervisor, Graham

Roberts. He has given me many useful feedback at different stages.

Thanks to a number of people who have provided many helpful comments on individ­

ual chapters of this thesis. I would like to show my appreciation of their help by stating

their names as follows, E than Collopy, Janet Mcdonnell, Nadav Zin, Tina Yu, Jonathan

Poole, Alberto Souza and Adam Fagin.

Thanks to my wife, Marianne. She has never made any complaints with my anti­

social working style during my thesis writing-up period. Furthermore, she contributed

her best possible support and provided encouragement when giving up seems to be the

best thing to do.

Thanks to the Department of Computer Science and the Graduate School at UCL.

They have provided me with financial assistance to attend various workshops/ conferences

for presenting my papers.

Contents

1 Introduction 11

1.1 Background and M otiva tion ... 11

1.2 Main Goals of the Research and the Thesis C ontribu tion 16

1.3 Outline of the T h e s is .. 17

2 T he Ordered R elational M odel 25

2.1 The Notion of O r d e r .. 26

2.1.1 Formal Definition of Partial O rd e rin g s .. 26

2.1.2 Extension of O rderings... 27

2.2 Orderings in Databases ... 31

2.3 Orderings and D ata In d ep en d e n ce .. 33

2.4 Relationship to the Conventional M o d e l .. 36

2.5 Other Related W o r k .. 38

2.5.1 Partial Order D a tab a se s .. 38

2.5.2 Multi-Resolution Data M o d e l.. 39

2.5.3 List or Sequenced D a t a .. 40

2.5.4 Other Unified M o d e ls .. 41

3 Q uery Languages for th e Ordered R elational M odel 43

3.1 Query Languages: the PORA and the P O R C ... 45

3.1.1 The PORA: an Algebraic Query Language .. 45

3.1.2 The PORC: a Calculus Query L anguage... 52

3.2 Equivalence between the PORA and the P O R C ... 56

3.3 Non-Uniform Completeness of the P O R A ... 62

3.3.1 Order-Preserving Database A utom orphism s.. 62

3.3.2 A Generalisation of Paredaens’ and Bancilhon’s T h e o re m 63

4

3.4 Hierarchy of Computable Queries with Ordered Domains 66

3.5 Updating Ordered D a ta b a s e s ... 71

3.6 D iscussion... 76

4 D a ta D ependencies and D atabase D esign Issues for th e Ordered R ela­

tion al M odel 78

4.1 Functional Dependencies (FDs) in Ordered D a ta b a s e s 81

4.2 Ordered Functional Dependencies (O F D s) ... 85

4.2.1 OFDs Arising from Pointw ise-O rderings... 86

4.2.2 OFDs Arising from Lexicographical O rderings..................................... 89

4.3 Ordered Inclusion Dependencies (O IN D s) .. 100

4.3.1 OINDs Arising from Poin tw ise-O rderings... 103

4.3.2 OINDs Arising from Lexicographical O rd e rin g s 104

4.3.3 Interactions between OFDs and O I N D s .. 106

4.4 Database Design Issues with respect to OFDs and O IN D s 108

4.5 D iscussion... 112

5 A n E xtension o f SQL to th e Ordered R elational M odel 114

5.1 Comparing OSQL with the SQL S ta n d a rd .. 115

5.2 OSQL Specification... 118

5.2.1 Data Manipulation L an g u a g e ..118

5.2.2 D ata Definition L an g u a g e .. 120

5.3 Implementation of OSQL ..122

5.3.1 The System Architecture .. 122

5.3.2 The Implementation M e th o d .. 125

5.4 Application Examples of O S Q L .. 127

5.4.1 Tree-Structured Inform ation... 128

5.4.2 Incomplete In fo rm a tio n ..129

5.4.3 Fuzzy In fo rm a tio n ..131

5.4.4 Temporal In fo rm a tio n ... 132

6 A U ser Survey on OSQL 135

6.1 The User S u r v e y .. 136

6.2 Questionnaire D esign ..139

6.3 Summary of R e s u l t s ..141

6.3.1 Knowledge Profile of the Subjects ...141

6.3.2 The Result of Formulating the Survey Queries 142

6.3.3 The Subjects’ A ttitudes to the Extended F e a tu r e s144

6.4 Evaluation of OSQL as a Result of the Survey ..146

7 T he D evelopm ent o f OSQL Packages for M odelling A dvanced A pplica­

tions 148

7.1 The Syntax of OSQL P a c k a g e s ..150

7.2 Example OSQL Packages I: Tree-Structured In form ation153

7.3 Example OSQL Packages II: Temporal In fo rm ation157

7.4 Example OSQL Packages III: Incomplete In fo rm a t io n 161

7.5 Example OSQL Package IV: Fuzzy In fo rm atio n ..164

7.6 Example OSQL Package V: Spatial Inform ation ..167

7.7 C onclusions..175

8 C onclusions and Further Research 177

8.1 Summary of the Thesis C o n trib u tio n ..177

8.2 Problems for Further In v es tig a tio n ... 179

B ibliography 182

A A G ram m ar o f OSQL 192

A .l D ata Definition L a n g u a g e ..192

A.2 D ata Manipulation L a n g u a g e ... 192

A.3 Package Definition L a n g u a g e ... 193

B A D eta iled D escrip tion o f B u ilt-In OSQL Packages 194

B .l OSQL-TREE Package and Its O peration ..194

B.2 OSQL-TIME Package and Its O p e ra tio n s ...197

B.3 OSQLJNCOM P Package and Its O p e ra t io n s ..199

B.4 OSQL_FUZZY Package and Its Operations ... 201

B.5 OSQL_SPACE Package and Its Operations ... 202

C Survey D ocum ents 207

C .l A Mini-Manual for O S Q L ..207

6

C.1.1 Introduction to O S Q L ...207

C .1.2 Connecting to OSQL System and Disconnecting from i t 207

C.1.3 Editing Q ueries..208

C .l.4 Using the OSQL SELECT Statement ..209

C.1.5 Language Specification..212

C.1.6 The Staff T a b le .. 212

C.2 Experiment Sheet on O S Q L ... 214

C.3 Questionnaire on Using OSQL ... 217

D Sam ple C ode from th e Im plem entation o f OSQL 219

D .l Part of the Code from D y n am ic .p c ...219

D.2 Part of the Code from Osql.l ...221

D.3 Part of the Code from O s q l .y ...222

List of Figures

1.1 Application areas with respect to extended relational d a ta b a se s 15

1.2 Using domains to capture the semantics in various in fo rm a tio n 18

1.3 An employee relation EM P_D E TA IL ... 19

2.1 Examples of Hoare, Smyth and Plotkin o rd e rin g s .. 30

2.2 Examples of precedence and containment o rderings....................................... 31

2.3 Comparison between conventional relations and ordered re la tio n s 32

2.4 Six possible system orderings of tuples in r .. 33

2.5 Orderings at different DBMS le v e ls .. 34

2.6 Two possible domain orderings of tuples on r ... 35

3.1 Two possible internal hierarchies for a relation r .. 60

3.2 Hasse diagrams of ordered d o m ain s .. 67

3.3 A correspondence between hierarchies of queries, domains and languages . 70

3.4 Various modes of deleting an element a from V ... 74

3.5 Inserting an element / into V .. 76

3.6 A counter example of Theorem 3.24 arising from Definition 3 .24 77

4.1 OFDs and OINDs arising from different extensions of domain orderings . 79

4.2 An object relation r showing tha t r X —̂ Y 84

4.3 An employee relation SALARYJRECORD... 85

4.4 A relation r showing that r ^ X 88

4.5 Relations r\ and r 2 showing tha t POFDs and LOFDs are incomparable. . 90

4.6 An example of using the equate and swap o p era tio n s 91

4.7 An example showing that the chase procedure never te rm in a te s 91

4.8 The chase procedure terminates in Example 4.3 with a fixed ordering . . . 92

4.9 An example of obtaining C H A SE {r ,¥) ... 94

4.10 Template relations for a L O F D ... 96

4.11 An example showing the application of a valuation m ap p in g 97

4.12 A counterexample for the augmentation rule for L O F D s 99

4.13 Relations CURRENT_RECORD and HISTORY ..102

4.14 A database shows that the pullback rule is unsound for OFDs and OINDs. 107

4.15 A database shows that the collection rule is unsound for OFDs and POINDsl07

4.16 Satisfaction of various OFDs and OINDs in d a ta b a s e s 108

4.17 A decomposition of r into r\ and r 2 ...110

5.1 Relationship between employees in an o rg an isa tio n ...119

5.2 An employee relation EMPLOYEE with different o rd erin g120

5.3 Architecture of the OSQL sy s te m ... 123

5.4 An internal relation to maintain the semantic domain EMP.RANK 124

5.5 Using a transitive closure to maintain the semantic domain EMP_RANK . 124

5.6 Brief description of the modules in the implementation of the OSQL system 126

5.7 The implementation of the OSQL s y s t e m ... 127

5.8 The stages of on-line running of the OSQL s y s t e m ...127

5.9 An employee relation E M P l ... 129

5.10 An employee relation E M P 2 ... 130

5.11 A partial ordering on a data d o m a in ... 131

5.12 An employee relation E M P 3 ... 133

6.1 Experience of SQL of the subjects .. 141

6.2 Computing knowledge and experience of the su b je c ts 141

6.3 A bar chart to compare the correct solution of the survey q u e rie s142

6.4 Attempts of survey queries formulating in OSQL and S Q L143

6.5 Users’ attitudes on using the extended f e a tu r e s ... 145

7.1 Brief description of the OSQL packages .. 148

7.2 The description of the operations in O S Q L _ T R E E ...154

7.3 The package declaration for O S Q L .T R E E ... 155

7.4 An employee relation EM P.TREE and the tree d o m a i n156

7.5 The description of the operations in O SQ L.TIM E..159

7.6 The package declaration for O S Q L .T IM E ... 160

7.7 An employee relation EM P.TIM E stamping with time in te rv a ls161

7.8 The description of the operations in O SQ L JN C O M P....................................... 162

7.9 The package declaration for O S Q L JN C O M P .. 163

7.10 An employee relation EM PJNCO M P ..163

7.11 The description of the operations in OSQLJFUZZY...165

7.12 The package declaration for OSQLT’U Z Z Y ..166

7.13 An employee relation E M P J’U ZZY .. 166

7.14 A relation returned by LISTJIEQ () ...167

7.15 The eight binary topological relationships between rectangular regions . . 168

7.16 A CIS relation DESERT to analyse d ese rtif ic a tio n ...168

7.17 Using two vertices to specify a rectangular re g io n ..170

7.18 The description of the operations in OSQL_SPACE...172

7.19 The package declaration for OSQL_SPACE ..173

7.20 A spatial relation FLO O R J^LA N ... 174

7.21 A graphical representation of the relation FL O O R T *L A N175

7.22 Architecture of the OSQL sy s te m .. 176

C .l Architecture of the OSQL sy s te m .. 207

C.2 The semantic domains (a) emp_rank and (b) e m p .e x p 210

C.3 Relationship amongst parts in fram e_parts...214

10

Chapter 1

Introduction

This thesis describes an extension of the relational data model to incorporate partial

orderings into data domains. The basic aim of the extension is to improve the capabil­

ities of the model in capturing semantics of data. The thesis presents the theoretical

investigation of the ordered relational model and the implementation of a minimal ex­

tension of SQL, called OSQL, which allows querying over ordered relational databases.

We demonstrate that with such an extension and a package discipline, which allows a

set of generic operations associated with a specific application to be grouped within

a module, relational databcises can considerably widen their applicability in the areas

of tree-structured information [15], incomplete information [38], fuzzy information [17],

temporal information [144] and spatial information[50].

In Section 1.1 we give some background material and motivation for defining the

ordered relational model. In Section 1.2 we explain the goals of our research and the

major contributions of the thesis. In Section 1.3 we briefiy outline the main results

obtained in the individual chapters of this thesis.

1.1 Background and M otivation

The development of DataBase Management Systems (DBMSs) has been a major re­

search topic in computer science for nearly four decades. One of the most fundamental

components in any information system is the database. In order to provide various fa­

cilities for users in an efficient manner, a database should be built according to a formal

database model (or simply a data model) which defines its data structures, query lan­

guages and integrity constraints. Several data models have been proposed since the 1960s

11

[31, 10, 33, 30]. The most influential one is Codd’s proposal for the relational data model

[34]. Since then, database products have been developed in order to conform with this

model and relational DBMSs have gradually come to dominate the commercial market.

Relational database theory has been comprehensively developed during the past 27 years.

The relational data model is unquestionably the most successful data model to date.

What factors make the relational model so successful ?

In our view, the above question could be answered by considering several different

facets related to DBMSs. For example, the model provides a sharp and clear boundary

between the logical and physical levels of DBMSs [7, 147]. Moreover, the relational

data model offers the advantage of physical data independence to users, that is, changing

the physical organisation of a database does not require alteration of its logical data

structures. Other crucial factors to its success can be justified from three perspectives

as follows:

1. Prom the point of view of usability, the model is natural and has a simple interpre­

tation in terms of real world concepts. The essential data structure of the model

is a relation, which can be visualised in a tabular format. Due to this simplicity,

relational databases have gained acceptance from a broad range of users.

2. From the point of view of applicability, the model is flexible and general and can be

used in many applications, especially in business-oriented ones such cis accounting

and payroll processing. As a result, the model has the advantage that it has gained

popularity and credibility in a variety of application areas.

3. From the point of view of formalism, the model is elegant enough to support ex­

tensive research and analysis. Since the framework of the model is based on the

well-established set-theoretic formalism, it facilitates better database theory re­

search. Actually, it has inspired the development of many vital theoretical issues in

databases such as query language and dependency theory, which have had a major

impact on DBMS development.

As computing technology has been making steady progress, in the early 1980s there

were new demands to apply database technology to handle different areas of applica­

12

tions such as computer aided design (CAD), image-processing, text retrieval, statistical

databases and geographical analyses [2, 103]. Unfortunately, the relational data model

is inadequate to meet these new demands since they usually require more structure in

the data domains in order to capture their semantics than that provided in the standard

model. Moreover, it is apparent that relational databases cannot be easily applied to

the areas of tree-structured information, temporal information, incomplete information,

fuzzy information and spatial information. The shortcomings of the relational data model

resulted in two main trends of data model development in order to facilitate the better

use of database technology.

One main trend in the development of data models, which began around 1986, was

the attem pt to combine the notion of an object into the data model [47, 102, 138],

obviously as a result of the success of object-oriented programming in the 1980s. Object-

oriented programming is commonly recognised as a powerful methodology to support

the development and the maintenance of very large and complex applications. The

use of the notion of objects in database systems seems interesting and promising, and

thus following this direction, database researchers at that time opened a new realm of

research concerning object-oriented databases. However, the research in the past decade

involving the issues of incorporating objects into the data model indicated tha t it may

be too optimistic regarding the success of the combination of objects and databases. For

example, the commercial market for object-oriented databases has grown very slowly in

terms of venture capitals and revenues ratio [140]. Some of the potential consumers of

object-oriented databases such as CAD vendors have been slower than anticipated in

using object database technology.

One difficulty for the object-oriented database paradigm is that the formalisation of

object-orientation in the context of databases (c.f., see the interview of C.J. Date by Data

Base Newsletter recorded in [44]) is not clearly understood and thus it is difficult to reach

consensus. There are many interpretations of some fundamental concepts such as object

identity and object class [25]. Although there are draft standards for an object language

and a programming interface for object databases called ODMG-93 Release 1.2, which

was released in 1996 [24], most object-oriented database vendors do not actually support

all the features defined by the draft standard. There are still major differences between

many claimed object-oriented databases in terms of query languages and programming

interfaces. Moreover, there are many ways of allowing vendors to incorporate objects

13

into database systems. Objects can be added to databases via an approach of radical

transformation such as the systems Orion and O2 [78, 46], which attem pt to address all

the features of objects, or a mild reform to the relational data model such as ADT-Ingres

[139], which mainly extends the relational data model with user-defined abstract data

types.

Another main trend is to develop specialised databases to cater for an individual class

of application such as temporal and spatial databases. In contrast to object-oriented ex­

tensions, this approach does not maintain the spirit of finding an application independent

data model as does the original relational data model. Some researchers even make fur­

ther specialisation within the scope of a particular application. For example, in the area

of spatial applications, some researchers have proposed a model for one kind of spatial in­

formation having two spatial dimensions and two temporal dimensions [153], whilst other

researchers have proposed a model for another kind of spatial information having polyg­

onal regions [71]. There are similar trends in the area of temporal databases [145, 98].

Prom the point of view of usability, this approach may quickly gain acceptance by the

experts in the related discipline because they can easily understand the operations of the

specialised database. In addition, the approach facilitates better understanding of the

needs of the communities concerned. However, from the point of view of applicability,

the disadvantage of this approach is tha t it loses the flexibility in adapting the model to

other applications needing other specialised facilities.

We agree tha t some ideas from the object-oriented formalism such as abstract data

types and object encapsulation can be very useful in the enhancement of the relational

data model. However, we think that in the first place it is still necessary to clarify some

fundamental concepts. We also recognise that the research into specialised databases can

give deeper insights into the needs of the communities concerned. However, we think

that the search for a unified model is necessary because it provides generic operations

allowing the discovery of new possibilities in a wide variety of specialised areas. In this

thesis we propose an extension of the relational model, in which we strive for a balance

between these somewhat conflicting demands. On the one hand, our extended model

unifies significant classes of different specialised applications. As a result, it provides a

basis for the investigation of new possible applications. Moreover, it provides robustness

and efficiency of the implemented generic operations. On the other hand, the extension

we propose is as minimal as possible with respect to the relational data model, which

14

may help to clarify the fundamental issue of user-defined data types in object-oriented

databases, a key issue in the development of object-relational databases [140].

We bear in mind the successful factors of the relational data model that we have

mentioned above. In our extension of the relational model we incorporate partial order­

ings into the data domains of the data model. There are several other reasons which

motivate our extension. Firstly, there is strong evidence that ordering is inherent to the

underlying structure of data in many database applications [20, 103, 130, 92, 129]. Fur­

thermore, in many applications incomparability of data is a prominent phenomenon that

must be captured explicitly. Secondly, the semantics of partial orderings is simple and

well understood. A partially ordered domain serves as a bridge between an unordered

domain and a linearly ordered domain. Thirdly, with this minimal extension we preserve

the formal basis of the relational model which can be employed to study the effect of

partial orderings on many well-known theoretical issues such as the expressiveness of

(piery languages and the axiomatisation of new classes of data dependencies arising from

the extension.

tree-structured inform ation
tem poral inform ation
incom plete inform ation
fuzzy inform ation
spatial inform ation

applications involving

m ore general types

business
applications

R elational databases

O rdered relational databases

O bject-relational databases

Figure 1.1: Application areas with respect to extended relational databases

We use a highly simplified diagram that is shown in Figure 1.1 to illustrate how our

extension relates to the current development of relational databases. On the one hand,

the ordered relational data model is much stronger than the conventional model, since it

is capable of capturing semantics in a wide spectrum of advanced applications. On the

15

other hand, it captures an im portant part of object-relational databases, since ordered

domains can be viewed as a general kind of type.

1.2 Main Goals of the Research and the Thesis Contribu­

tion

The main goal of this research is to investigate the effect of partial orderings on the data

structures, query languages and integrity constraints of the relational data model. The

scope of our investigation includes the examination of existing advanced applications

related to partial orderings under the framework of ordered relational databases.

The main contribution of the thesis is to show how and why the extension of the re­

lational data model to incorporate partial orderings into data domains can considerably

improve the applicability of a DBMS. The ordered relational model is demonstrated to

have the capability of capturing the semantics in a wide spectrum of advanced applica­

tions such as tree-structured information, temporal information, incomplete information,

fuzzy information and spatial information, whilst preserving the elegance and simplicity

of the conventional relational data model.

The potential benefits of the extension are threefold from the point of view of the

development of relational databases.

1. The extension provides a viable alternative to other extensions of the relational

data model. In practice, it can also be the optimised solution to an organisation

somewhere between a specialised database, which may be too narrow a solution,

and an object-oriented database, which may be too complex a solution.

2. As most major database vendors such as IBM, Informix and Oracle are putting

their efforts in the direction of object-relational databases, our work on ordered

domains serves as a good reference point for the development of the abstract data

type facility for the object-relational database model.

3. We notice that in reality many large enterprises which use relational databases

have just recently adapted to relational technology, and thus they may not be will­

ing to take large commercial risks and shift to the paradigm of object-oriented

databases. On the other hand, as long as object-relational databases are upwards

16

compatible they may accept such an extension. Our approach is a minimal exten­

sion of the relational model, which can reduce the risks of vendors in shifting to

object-orientation and most im portant of all, there is convincing evidence of the

benefits in our approach. Therefore, our work can provide significant impetus for

the acceptance of object-relational database technology.

1.3 Outline of the Thesis

The thesis is divided into eight chapters, designated in the text by Chapter 1 to Chapter

8 . We now give an overview of the thesis.

In this chapter we introduce the background and the overview of the extension of

the relational model. The motivation, the objectives and the main contribution of the

research have already been explained.

In Chapter 2 we formalise the ordered relational data model as an extension of the

conventional relational data model to include partial orderings as an integral part of data

domains. From the point of view of the standard three-level architecture of a DBMS,

physical data independence includes the requirement that the physical ordering of data

on a storage device cannot be accessed by users’ application programs [34]. This can be

achieved by the standard domain orderings at the logical level such as numerical orderings

and alphabetical orderings provided by DBMSs. One im portant notion introduced here

is tha t given a domain then, apart from the standard domain orderings, we can also

declare new semantic orderings at the external level above the logical level, which override

the standard domain orderings. The following example illustrates the use of semantic

orderings in various domains.

E x am p le 1 .1 In Figure 1.2(a) we have the semantic domain EMP_RANK consisting

of three employee names describing a hierarchy in a company of the employees Mark,

E than and Nadav. The semantics are tha t both Ethan and Nadav are the subordinates

of Mark. In Figure 1.2(b) we have the semantic domain SALARY_TIME consisting of

four calendar years which simply follow the chronological ordering provided by a DBMS.

Note that in this case we can use the standard system ordering. In Figure 1.2(c) we

have the semantic domain INCOMPLETE which captures the semantics of different null

values in a database which models various types of incomplete information. The known

data value “programmer” is more informative than the null symbol UNK (UNKnown),

17

and the null symbols UNK and DNE (Does Not Exist) are more informative than the

null symbol NI (No Information), meaning either the data value does not exist or the

data value exists but is not known. In Figure 1.2(d) we have another semantic domain

called QUALIFY which captures the semantics of the fuzzy requirement “good science

background” defined in a company.

M ark

Ethan N adav

1996

1995

1994

1990

E M P .R A N K

(a)

SALARY _T1M E

(b)

P rogram m er

IN C O M PL E T E

(c)

M BA

Q UA LIFY

(d)

Figure 1.2: Using domains to capture the semantics in various information

In Chapter 3 we extend the relational algebra to the Partially Ordered Relational

Algebra (the PORA) by allowing the ordering predicate , Ç, to be used in the formu­

lae of the selection operator (cr). Thereafter the relational calculus is extended to the

Partially Ordered Relational Calculus (the PORC) in a similar manner. The PORA

and the PORC are shown to be equivalent. This preserves the classical result of Codd’s

completeness, which is an im portant notion regarding the expressiveness of query lan­

guages proposed by Codd [35]. We then show that the PORA expresses exactly the

set of all possible relations which are invariant under order-preserving automorphisms

over databases. Informally, an order-preserving automorphism is a permutation of the

values in the active domain of a database instance that does not alter the database and

also preserves the ordering of the active domain. This preserves non-uniform complete­

ness, which is an im portant notion concerning the expressiveness of query languages, also

known as Paredaens’ and Bancilhon’s Theorem [123, 12]. Moreover, we investigate three

hierarchies of: (1) computable queries, (2) query languages and (3) ordered domains, and

show that there is a one-to-one correspondence between them. The implication of this

result is that if the underlying data domains of an ordered database have more inherent

structure, then a wider scope of queries is possible. In other words, the ordered relational

model can provide more expressive query languages than those of the conventional one.

18

and in this sense we can say that more meaningful queries are possible with respect to

an ordered relational database.

In Chapter 4 we extend the notions of Functional Dependencies (FDs) [147, 9] and

INclusion Dependencies (INDs) [109, 22] to be satisfied in an ordered databa.se and call

them Ordered Functional Dependencies (OFDs) and Ordered INclusion Dependencies

(OINDs), respectively. FDs and INDs are commonly recognised as the most fundamental

data dependencies that arise in practice. Informally speaking, OFDs can capture a

monotonicity property between two set of attributes, and OINDs can capture the notion

of a Hoare ordering [20] between two sets of tuples. For example, the Hoare ordering

can represent the semantics that a relation is more informative than another relation.

In the special case of an unordered set, the Hoare ordering simply reduces to a set

inclusion. As an illustration of the new data dependencies we have mentioned, the

OFD SALARY <—>• SALARY_TIME over the relation EMPJDETAIL shown in Figure

1.3 states the fact that the SALARY of an employee increases with the SALARY.TIME.

The OIND MANAGER[NAME, SALARY] t EMP_DETAIL[NAME, SALARY] states

tha t the (complete or incomplete) information of the name and salary of a manager,

represented by a relation MANAGER, should be consistent with and upper bounded

by the information given by the relation EMPJDETAIL. For example, assuming the

said OIND holds, then the tuple {Mark, U N K) is allowed in MANAGER, because it is

consistent with and contains less information than the tuple {Mark, \^ K) or the tuple

{M ark,H)K) in EMPJDETAIL. However, we can check tha t the tuple {B il l ,U N K) is

not allowed in MANAGER because it is not consistent with any tuple in EMPJDETAIL.

NAME SALARY PREVIOUS_WORK EDUCATION SALARY.TIME

Ethan 12K UNK MSc 1994

Mark lOK NI MBA 1990

Mark 18K NI MBA 1996

Nadav 15K Programmer BA 1995

Figure 1.3: An employee relation EMPJDETAIL

We further classify OFDs and OINDs with respect to two kinds of orderings, namely,

lexicographical and pointwise-orderings. Lexicographical orderings resemble the way in

19

which words are arranged in a dictionary and pointwise-orderings require each component

of a data value to be greater than its predecessors. For example, the tuple (rri,. . .

is less than another tuple (?/i,. . . ,^n) according to a lexicographical ordering if there is

an index j > I such that Xj < yj and for each i < j , xi = yi. The tuple (x i , . . . ,

is less than another tuple (yi , . . . , ?/n) according to a pointwise-ordering if for all 1 <

i < n, Xi < yi. We present sound and complete axiom systems for OFDs and OINDs,

respectively, in the case of pointwise-orderings. In relational database theory, the chase

is a fundamental theorem proving tool, whose main uses have been testing implication

of data dependencies [101] and testing consistency of a relational database with respect

to a set of data dependencies [61, 8 6 , 87]. The intuitive idea behind the chase is that

we start with the hypothesis tha t a relation in a generalised form satisfies a set of data

dependencies F. Suppose we want to test whether a data dependency / follows from

F. We then apply the chase rules with respect to F to “chase it down” for all the

consequences of F that occur in this relation. If we can finally reach a state of the

relation tha t represents the conclusion of / , then we have a proof tha t / follows from

F. If we fail to draw the desired conclusion, the relation that results when we finish

the chase is a counter example, i.e., it satisfies F but not / . We present a set of sound

and complete chase rules for OFDs in the case of lexicographical orderings. The chase

rules are also im portant for studying OINDs in the case of lexicographical orderings.

The axiom systems we present provide us with a useful tool to infer additional data

dependencies from a given set of OFDs or OINDs and the chase rules form the basis of

both a theorem prover and an inference engine for OFDs and OINDs.

In Chapter 5 we describe OSQL, which is an extension of SQL for the ordered re­

lational model, and show that OSQL combines the capabilities of standard SQL with

the power of semantic ordering. Using OSQL users have the ability to define partial

orderings over data domains which are implied by the underlying semantics of the data

of an application. We also discuss the issues concerning the implementation of OSQL,

which has been prototyped using Oracle for low level data management. The following

running example demonstrates how OSQL can be applied to solve various problems that

arise in DBMSs involving applications having tree-structured information, incomplete

information, fuzzy information and temporal information under the unifying framework

of the ordered relational model.

20

E x am p le 1.2 Let us consider the relation EMPJDETAIL again shown in Figure 1.3.

• Tree-structured Information:

Using the semantic domain EMP_RANK shown in Figure 1.2(a) for the attribute

NAME, we can formulate the query of finding the name and salary of the common

bosses of Nadav and Ethan as follows.

(Q i.i) SELECT {*) (*)

FROM EMPJDETAIL

WHERE {NAME > ’Nadav’ W ITHIN EMFJRANK)

AND (NAME > ’E than’ W ITHIN EMP J iA N K) .

W ith some knowledge of standard SQL, one can understand the meaning of the

query Qi.i quite easily. The first clause (*) after SELECT means tha t all attributes

are selected and the second clause (*) means tha t all tuples are selected. The

keyword W ITHIN specifies that the comparison NAME > ’Nadav’ is interpreted

according to the semantic ordering of the domain EMP JIANK.

• Temporal Information:

We assume that SALARY.TIME is a time attribute whose values are timestamps

of the tuples in the relation EMPJDETAIL (for simplicity in presentation, we also

assume tha t the time_stamping denotes valid time [145]). For instance, we can see

that Mark has salary lOK in 1990 and his salary increased in 1996. Note that

we do not record Mark’s salary if there had been no change since the year it was

last updated. We can use the keyword LAST to find the last time the tuple was

updated, since the domain of the attribute SALARY.TIME is linearly ordered cis

is shown in Figure 1.2(b). W ith the following query, we show how to find M ark’s

salary in 1993.

(Q 1.2) SELEC T (SALARY.TIME, SALARY) {LAST)

FROM EMPJDETAIL

WHERE NAME = ’Mark’

AND SALARY.TIME < = 1993.

• Incomplete Information:

Using the domain INCOMPLETE as shown in Figure 1.2(c) for the attribute PREÎ-

VIOUS.WORK, we can formulate the query which finds the name and previous

21

work of those employees whose previous work is more informative than NI, as fol­

lows.

(Q1.3) SELECT (NAME, PREVIOUS_WORK) (*)

FROM EMPJDETAIL

WHERE {PREYIOUS.W ORK > ’NP WTLT/iV INCOMPLETE).

• Fuzzy Information:

Using the semantic domain QUALIFY shown in Figure 1.2(d), we can formulate

the query of finding the name of an employee with “good science background” by

way of academic qualification as follows.

(Q1.4) SELECT {{EDUCATION WITHIN QUALIFY), NAME) DESC {1)

FROM EMPJDETAIL.

The keyword DESC specifies that the employees in EMP .DETAIL are sorted ac­

cording to the semantic ordering of the domain QUALIFY with the suitable ones

put first.

In Chapter 6 we report on a survey that we have carried out in the Department of

Computer Science at University College London. The main objective of the survey was

to gain more insights into the usages and the acceptance of the extended features of the

attribute list, the tuple list and the comparison clause of the OSQL SELECT command.

We invited 70 students and 10 computer professionals to participate in an experiment to

compare their performance between using OSQL and SQL in formulating a set of queries

involving order. We also requested them to fill in a questionnaire for feedback purposes.

From the attitudes of the subjects towards the use of OSQL, we can determine whether

the various proposed features of OSQL are appropriate for database programmers to

learn and apply. Our first finding is that the subjects in the OSQL survey formulated

difficult queries involving order in an easier manner than in SQL. Our second finding

is tha t the subjects confirmed that the extended features are easy to learn, understand

and apply. From the subjects’ feedback in the questionnaire, we also realise that a more

comprehensive implementation of OSQL, which includes a custom built user interface, is

needed so that further experiments can be carried out to test the viability of the OSQL

extension to SQL.

22

In Chapter 7 we introduce the notion of an OSQL package, which informally is a

collection of generic operations over an ordered domain. The incorporation of a package

discipline into OSQL enhances the expressiveness of OSQL by utilising the capabilities of

OSQL in a more systematic manner. We define in detail a variety of generic operations

with respect to the mentioned advanced applications and classify them into four OSQL

packages: OSQL.TREE, 0SQL_T1ME, OSQLJNCOM P and OSQL J ’UZZY. Using these

packages, we now demonstrate how the above mentioned queries can be formulated in

a simpler manner by embedding the generic operations of these OSQL packages into

OSQL.

Using the package OSQL_TREE, the query (Qi.i) can be simplified as follows:

(Qi.s) SELECT {*) (*) FROM EMP_DETA1L

WHERE NAM E /A COM_ANCESTOR(’Nadav’, ’E than’).

The operation COM_ANCESTOR in (Q1.5) returns the names of all common bosses

of Nadav and Ethan.

Using the package OSQL.TIME, the query (Q1.2) can be simplified as follows:

(Qi.e) SELECT {SALARY) (*) FROM SNAPSHOT(EM PJ)ETAlL, 1993)

WHERE NAM E = ’Mark’.

The operation SNAPSHOT in (Qi.e) returns the employee records in 1993.

Using the package OSQLJNCOMP, the query (Q1.3) can be simplified as follows:

(Q 1.7) SELECT {NAME, PREV10US_W0RK) FROM EMP.DETA1L

WHERE M 0R EJN F0(PR EV 10U S_W 0R K , ’NP).

The operation M OREJN FO in {Q1 .7) checks whether the previous work of an

employee is more informative than the null symbol ’NP.

Using the package O SQ L J’UZZY, the query (Q1.4) can be simplified as follows:

(Qi.s) RFFFOT(1MP0SE_FUZZY(EDUCAT10N, QUALIFY), NAME) (1) FROM

EMPJDETAIL.

The operation IMPOSE J ’UZZY in (Qi.s) returns the most appropriate tuple such

that it satisfies the imposed fuzzy requirement “good science background” by way

of academic qualification.

23

In addition to the four packages mentioned above, we also develop the package

OSQL_SPACE for handling spatial information for the special case of rectangular re­

gions, which is one of the fundamental geometric regions in developing spatial databases

[60, 98]. We assume that MIN.VERTEX and MAX.VERTEX are two spatial attributes

used to specify a rectangular region. The following query shows how to use OSQL_SPACE

to find Bill’s neighbours. The operation PICK_REGION in (Q1.9) is a graphical interface

operation which converts the mouse pointed region on the screen (we assume it is Bill’s

room) to its corresponding spatial attributes. The MEET operation is one of the eight

Egenhofer-Franzosa topological relationships [49].

(Q1.9) 5ETECT (OCCUPANT) (*) PROM FLOOR_PLAN

WHERE MEET(MIN_VERTEX, MAX.VERTEX, PICK_RECION()).

In Chapter 8 we conclude our work with some final remarks and discuss future work

resulting from the ordered relational model.

Four appendices which are relevant to OSQL are attached to the end of the thesis

for the purpose of reference. In Appendix A we present the full reference of the BNF

for OSQL. In Appendix B we give the declaration of all the OSQL packages discussed

in Chapter 7 and their operations. In Appendix C we include the full documentation of

the survey detailed in Chapter 6 . In Appendix D we give a sample of the C code which

implements OSQL.

24

Chapter 2

The Ordered R elational M odel

In this chapter, we extend the conventional relational model and give the background

and preliminary material needed throughout the thesis. In particular, the relational data

model is extended to incorporate partial orderings into data domains.

In Section 2.1 we clarify the notions of order [65, 59, 133] and its relevance to the

data domains used in existing information systems. In Section 2.2 we formally extend the

relational data model [34] to include partial orderings into the structure of the model. In

Section 2.3 we discuss the effect of orderings on the three DBMS levels of the conventional

model [7, 147, 4]. In Section 2.4 we compare the features of our extension with the

conventional relational data model. In Section 2.5 we review related work tha t has

recognised the importance of ordering as a fundamental property in data modelling.

In the sequel, we employ the following mathematical notation for sets. Let S and

T be sets, then | S | denotes the cardinality of S', S' Ç T denotes set inclusion, S C T

denotes proper set inclusion and V{S) denotes the finite powerset of S'. We denote the k

term Cartesian product S x S ■ • • x S hy , and the singleton {.4} simply by A when no

ambiguity arises. We also let id be the identity mapping on any set. A partially ordered

set is depicted by a Hasse diagram [59] which is a graph where each node is an element

of the base set, and each edge connects two distinct comparable elements such tha t one

element is either an immediate successor or immediate predecessor [65] of another.

25

2.1 The N otion of Order

In this section we present the basic concepts and terminology of partial orderings. In

Subsection 2 .1.1, we define partial orderings and some im portant special cases. In Sub­

section 2.1.2, we introduce the extensions of orderings to a Cartesian product and a

powerset, which are fundamental in the orderings of data domains.

2 .1 .1 F orm al D e fin it io n o f P a r tia l O rderin gs

D efin ition 2.1 (P artial Ordering) A partial ordering of the set 5 is a binary relation

on 5, denoted by Ç, satisfying the following conditions.

For all x , y , z e S,

1. Reflexivity: x Ç. x.

2 . Anti-symmetry: If x Q y and y Q x, then x = y.

3. Transitivity: If x Q y and then %C z .

There are two im portant special cases of partial orderings in our context, linear

orderings and unordering. Informally, given a set S related by a partial ordering, in the

former case all elements are related in a chain and in the latter case no two distinct

elements are related. We formally define these two extreme cases as follows.

D efin ition 2.2 (Linear Ordering and U nordering) A linear ordering of the set S

is a partial ordering Ç , if it satisfies the l inearity condition as follows, for all x , y Ç: S,

X C. y or y Ç. X . We denote this special case by <. An unordering of the set «S' is a partial

ordering Ç , if it satisfies the incomparability condition as follows, for all x , y E S / i f x y ,

then neither x Ç. y nor y Ç: x. In other words, when each element is only comparable

with itself, S is unordered. We denote this special case by = , since Ç is just the equality

predicate =.

We denote that x and y are incomparable by a: || y and that x Ç. y but x ^ y hy

X [Z y . Note that for any elements x and y in S , i f x ^ y , then exactly one of the following

holds: X Q y, y C. X, OT X \\ y. Furthermore, there is a very interesting case of linear

orderings, dense linear orderings, which are very often used in topological spaces [122].

For example, a point object in a two Euclidean dimensional space can be represented as

a pair of real values whose domains are densely linearly ordered.

26

D efin ition 2.3 (D ense Linear Ordering) A linear ordering < is said to be dense, if

for any two distinct elements x ,y E S such tha t x < y, there is an element z G S which

is distinct from x and y such that x < z and z < y.

A partially ordered set (or simply an ordered set), denoted as S, is a structure (5, Ç).

It consists of a set S which is partially ordered (or simply ordered) by the relation Ç. In

particular, the structure {S, <) is called a linearly ordered set and the structure {S, =)

is called an unordered se t From now on, the term ordered will mean partially ordered,

unless explicitly stated to the contrary.

D efin ition 2.4 (Subordering) For two ordered sets (T, and {S, Qs) satisfying

T Ç S and for all ui,a2 G T, a\ Ç t «2 if and only if a\ Cg 02, we call T a subordering

of S. In this case we may write (T, Qt) as (T, Ç5).

E xam ple 2.1 Let N and R be the set of natural numbers and real numbers, respectively.

{N, <) and {R, <) with their usual ordering < are typical examples of linearly ordered

sets, in which R is à dense linear ordering. The orderings of natural numbers and real

numbers are collectively called numerical orderings, which is an essential property of the

primitive domains in existing database systems. A set of object names is an unordered

set (assuming we choose to interpret alphabets without lexicographical orderings). The

finite powerset {V{S), Ç) is a partially ordered set.

2 .1 .2 E x te n s io n o f O rd erin gs

It is very desirable to define two extensions of the orderings of data domains in order to

capture the semantics of data. One extension is on the Cartesian product of ordered sets.

Another extension is on the powerset of an ordered set. We first discuss lexicographical

ordering and pointwise-ordering, which are two common kinds of orderings on the Carte­

sian product of ordered sets. Then we discuss various kinds of orderings arising from the

powerset of an ordered set.

Let Si , . . . , Sn be n ordered sets, t be an element in the Cartesian product S =

Si X ■ • • X Sn and t[i] be the zth coordinate of t. We now define lexicographical orderings

on the Cartesian product of ordered sets.

D efin ition 2.5 (Lexicographical O rdering) For all ti, t 2 E S, t\ Ç t 2 if either

27

1. there exists k with 1 < k < n such tha t ti[k] [Zs ̂ 2̂^ , and for all 1 < i < k, ii[z]

= t 2 [i], or

2 . for all 1 < 2 < n, = t 2 [i].

For example, we can construct the lexicographical ordering on iV” , which is an infinite

lexicographical ordering. Another im portant example is the lexicographical ordering on

alphabets. Let A be a linearly ordered set over a finite alphabet. Then we can easily

construct a finite lexicographical ordering on A” in the same way as iV", which we call a

dictionary ordering or an alphabetical ordering, since it resembles the ordering of words

in a dictionary. Note that A” is just a subset of the set of possible strings formed over

A (those string of length n). The usual meaning of the domain C H AR{n) in a DBMS

should be interpreted by C H AR{n) = IJiLi and the lexicographical ordering on

C H AR{n) should be extended as follows, for any x ,y E C H AR{n), x < y i î and only if

either rr is a prefix of y or x and y have a longest common prefix u such that x = uv,

y = uw and head{v) < head{w), where the operator head{u) returns the first character

of a given string u.

E x am p le 2.2 Let A = {a < b}, then CHAR{2) forms the following ordering:

a < aa < ab < b < ba < bb.

Another common way to form an ordering on C H AR{n), which we denote by <q, is to

use a combination of length and the lexicographical ordering of a string. The ordering <a

is defined such tha t for any x ,y E C H AR{n), x <a y 'A and only if either length{x) <

length{y), or length{x) = length{y) and x < y. The operator length{u) returns the

number of occurrences of characters in a given string u. We use the set CHAR{2) in

Example 2.2 to illustrate this ordering as follows:

a <Q b <a aa <a ab <q ba <a bb.

We note tha t the ordering of the domain DATE, called chronological orderings, can

be viewed as the lexicographical ordering of the domains Y E A R , M O N T H and D A Y , if

(1) the domain M O N T H has the ordering as { J A N < F E B < < D E C } and (2) the

Cartesian product of the domains are taken in the following order: Y E A R x M O N T H x

D A Y .

28

We next define another kind of ordering, pointwise-ordering^ on the Cartesian product

of ordered sets.

D efin ition 2.6 (P o in tw ise -O rd erin g) For all ti , ^2 G 5, ti Cg Î2 if for all 1 < i < n,

ii[*] Esi <2[*].

For example, assume that a domain of constants, denoted as Dom, contains a distin­

guished symbol UNK, which means the data value exists but is UNKnown. We define

a partial ordering in D a m as follows, for all x, y G D a m , x Ç. y if x = y ot x = UNK.

Then we can extend Ç to be a pointwise-ordering in a relation r over {A, B } as follows,

for all t i , t 2 Ç. r , ti Ç ^2 if ti[A] Ç t 2 [A] and ti[B] Ç t 2 [B]. This extension natu­

rally captures the meaning of t\ being less informative than (2, or alternatively t 2 being

more informative than t\. Actually, the relationship between incompleteness and order­

ings has been commonly used in studying the issues concerning incomplete information

[154, 91, 84, 87, 88].

It is apparent that the notion of less informative can be further extended from tuples

to relations in a similar manner. However, Buneman in [20] recognises that there are

three possible extensions to the powerset of an ordered set, namely, Hoare orderings

[62], Smyth orderings [142] and Plotkin orderings [126], all of which are essential to the

semantics of incomplete information in databases. The notion of one relation ri being

less informative than another relation r 2 can be captured by these three orderings given

in Definition 2.7.

D efin itio n 2.7 (H o are , S m y th an d P lo tk in O rd erin g s) Let X , Y G V{S).

1. A Hoare ordering, denoted by X C** Y , is defined as for all x G X , there exists

y G Y such that x Ç5 y.

2. A Smyth ordering, denoted by X Y , is defined as for all y G Y , there exists

X G X such that x Ç 5 y.

3. A Plotkin ordering, denoted by X Y , is defined as % K and X Y .

In the special case of unordered sets, Hoare and Smyth orderings become subsets

and supersets, respectively. Thus, we can view a Hoare ordering as a generalised subset

ordering and a Smyth ordering as a generalised superset ordering. Informally speaking.

29

Hoare orderings can capture the concept that one relation contains more information

than another. For example, the number of tuples in a temporal relation increases as time

passes or the union of two relations carries the resulting relation to a “higher” order. On

the other hand, Smyth orderings can capture the intuition tha t a relation in a “higher”

order is a more precise description of a set of real world objects. For example, when

querying a database, the answer obtained from the operations natural join and selection

[147], obtains a more precise description than in the database. Let us give an example

to illustrate Definition 2.7.

E x am p le 2.3 In Figure 2.1, we show examples of Hoare, Smyth and Plotkin orderings.

Obviously, all the tuples in r i are also in V2 and thus we have vi r 2- Moreover, all

the tuples in r i are more informative than the tuple {UNK, CS, 30K) in rg. So we have

r-g r\. Finally, we have rg r 2, since it satisfies tha t rg and rg

r\ =

NAME DEPT SALARY

NAME D EPT SALARY Bill CS 30K

Bill CS 30K r-2 = Mark CS 30K

Mark CS 30K Ethan EE 26K

Nadav EE 26K

(a)

rg =

(b)

NAME DEPT SALARY

UNK CS 30K

UNK EE 26K

(c)

Figure 2.1: Examples of Hoare, Smyth and Plotkin orderings

There are two extensions of ordering on the powerset of a linearly ordered set, which

are especially useful in temporal domains. Let 5 be a linearly ordered set. We denote

an interval 1 as [a, b) where a < b and define I by I = { t Ç i S \ a < t < b } . Let Int be

the collection of all finite intervals over S. We give the definition of precedence orderings

and containment orderings as follows:

30

D efin ition 2.8 (P reced en c e an d C o n ta in m e n t O rd erin g s) Let I\ = [a i,6i), I 2 =

[tt2 , 62) G In t.

1. A precedence ordering, denoted as I\ Qprec h i is defined as a\ < 02 and b\ < 62.

2 . A containment ordering, denoted as h Qcont h i is defined cis 02 < ai and b\ < 62.

In temporal databases, we commonly use a time interval to time-stamp a tuple in a

temporal relation and thus each interval can be used for specifying the period of an event

in a temporal database. In Figure 2.2(a), we show the fact tha t the period of an event Ei

being specified by the interval Iei precedes the period of another event E 2 being specified

by the interval I e 2 can be captured by Iei Qprec I e 2 ' Similarly, in Figure 2.2(b), we show

that the fact that the period of an event E\ is within the period of another E 2 can be

captured by Q c o n t I e 2-

 Hfc. . he—H;.
futureai ^ ----- ^ b j . ^past # Ÿ ^ future past

«2 • " ' 1 ̂ \ 1I
b2

' ^ E.^ 2

(a) Precedence ordering (b) Containment ordering

Figure 2.2: Examples of precedence and containment orderings

2.2 Orderings in Databases

In this section we extend the relational data model to incorporate ordered domains.

W ithin the extended model, we define ordered databases.

Let D be a countably infinite set of constant values and C/j be an ordering on D.

W ithout loss of generality, we assume tha t all attributes share the same domain D. We

now give the definition of an ordered database.

D efin itio n 2.9 (A ttr ib u te s an d O rd e re d D om ains) We assume a countably infinite

linearly ordered set of attribute names, {U, <u)- For all attributes AÇ: U, the domain of

A is {D,E-e). We call the domain ordering of D.

D efin itio n 2.10 (R e la tio n S chem a a n d D a ta b a se S chem a) A relation schema (or

simply a schema) R, is a subset of U consisting of a finite set of attributes {Ai , . . . , Am}

31

for some m > 1. A database schema is a finite set R = { Ri , . . . , Rn} of relation schemas,

for some n > 1.

D efin ition 2.11 (T up le an d T up le P ro je c tio n) Let X = { A i , . .. ,Am} be a finite

subset of U where Ai ^ Aj for i ^ j and A \ <u • • • <u Am- A tuple t over X is a

member of D ^ . We let t[Ai] denote the zth coordinate of t. The projection of a tuple t

onto a set of attributes Y = {Ai^, . . . , where 1 < < • • • < z/t < m, is the tuple

t[Y] = J , . . . ,

D efin ition 2.12 (Ordered R elation and Ordered D atabase) An ordered relation

(or simply a relation) r defined over a schema R is a finite set of tuples over R. An ordered

database (or simply a database) over R = { R i , . . . , R„} is a finite set d = { r i , . . . ,r„}

such that each ri is a relation over R%. We call r and d an unordered relation and an

unordered database^ respectively, if the underlying domain {D, Qd) is unordered, i.e., it

is {D,=). Similarly, we call r and d a linearly ordered relation and a linearly ordered

database, respectively, if the underlying domain is linearly ordered.

Therefore, we can view a conventional database as a special case of ordered databases

with unordered domains. We compare the similarities and differences between various

essential properties of conventional relations and ordered relations in the table given in

Figure 2.3.

C o n v e n tio n a l R e la t io n s O rd ered R e la t io n s

No duplicate tuples are allowed. Same as left.

Tuples are unordered. Tuples are ordered according to the ex­

tension of the domain ordering.

Attributes in a schema are unordered. Attributes in a schema are linearly

ordered.

All domain elements are atomic. Same as left but note the correct inter­

pretation of such a phrase in Section 2.4.

Figure 2.3: Comparison between conventional relations and ordered relations

32

2.3 Orderings and D ata Independence

Although ordering is a fundamental property of almost all primitive data types, existing

database theory usually makes an implicit assumption that domains are either linearly

ordered or unordered and thus the former case allows the less than predicate, <, to be

used in selection formulae [147, 9]. In practice, all relational database systems support

only the following three kinds of domain orderings considered to be essential in practical

utilisation: (1) the alphabetical ordering over the domain of strings, (2) the numerical

ordering over the domain of numbers, and (3) the chronological ordering over the domain

of dates [41]. Let us call these orderings the standard domain orderings. There is strong

evidence tha t ordering is inherent to the underlying structure of data in many database

applications [20, 103, 130, 92, 129, 115, 116] and therefore the limited support of domain

orderings results in loss of semantics of data. We call the ordering semantics in the

context of a specific application semantic orderings, which will be addressed in detail in

Chapter 5.

The ordering of tuples in a relation is useful information needed by the aggregate

function ORDER BY, and thus in practice should be provided by the DBMS. We let

a system ordering, denoted by <sys, on a relation r be a linear ordering on r tha t is

generated by a DBMS. Note that the concept of system orderings and domain orderings

are different. The ordering <sys may or may not follow the extension of domain orderings

on tuples due to the fact that different DBMSs have their own storage and retrieval

strategy. The following example helps further to clarify this concept.

E x am p le 2.4 Let r over {A} be the relation {a, 6 , c} (having 3 tuples) and the domain

of A be alphabetically ordered. A system ordering, which is dependent on a particular

DBMS, can take one of the six ways to arrange the tuples over r given in Figure 2.4.

A A A A A A

a a b b c c

b c a c a b

c b c a b a

Figure 2.4: Six possible system orderings of tuples in r

33

Although in most cases the choice of the ordering of r in the above example is done

according to standard domain orderings (i.e., the first one in Figure 2.4), the ordering of

tuples cannot be guaranteed to be alphabetically ordered if r is the answer to a complex

query over the DBMS. This is because the choice of ordering of r is dependent on the

implementation of a particular DBMS. It is worthwhile to consider how <sys affects the

use of cursors in an embedded SQL statement [43]. For example, the result of selecting

the nth tuple of r is dependent on the ordering of tuples in r. In such case there will be a

risk of losing physical data independence^ due to the fact tha t the returned tuples depend

on <sysi which in tu rn depends on the implementation of the system. This is rather

undesirable and thus the current remedy is that we need to use the function ORDER

B Y to help “position” tuples when declaring a cursor (c.f., see chapter 10 in [43]). In

other words, we need domain orderings to achieve physical data independence. We show

in Figure 2.5 the differences between the various notion of orderings introduced so far.

Orderings DBMS level

semantic orderings

domain orderings

system orderings

EXTERNAL

CONCEPTUAL

INTERNAL

Figure 2.5: Orderings at different DBMS levels

We now define an operator called a domain ordering operator whose aim is to help

present the relationship between domain orderings and data dependencies.

D efin itio n 2.13 (D o m ain O rd e rin g O p e ra to r) Let r be a relation over R and X

be a sequence of attributes which is a subset of R. Then a domain ordering operator

over r, denoted by is defined as the set of linear orderings C on r such that for each

<rG £ and for any tuples ^1,^2 G r, if ti[X] < x t 2[%], then t\ <r ^2 (recall that < x is a

lexicographical ordering on the Cartesian products of data domains associated with X).

34

Furthermore, we call SOI (System Ordering Independent) if £ is a singleton.

E x am p le 2.5 Let D\ = {1,2} and D 2 = {a, 6, c} and a given relation r = {(2, a), (1, c),

(1 , 6)}. Then the following ordered relations given in Figure 2.6 exhibit two different

domain orderings in cja^ (r), because there are two choices of ordering for the tuples (1, 6)

and (l,c) by the system.

^ 2

1 b

1 c

2 a

v4i A2

1 c

1 b

2 a

Figure 2.6: Two possible domain orderings of tuples on r

Thus we can understand from the above example that the ordering of r is still partially

system dependent although it is ordered according to the domain ordering of A\ only.

It is also clear that if X is equal to the schema of r, then should be SOI. If X is

a proper subset of the schema of r, then it is desirable for ujx to be SOI, since we can

save some computation resources of the system to achieve the independence of system

orderings. This is because the system does not have to perform the sorting over every

attribute in the relational schema in order to maintain ordered relations (recall that we

assume that in an ordered relation tuples are ordered).

We conclude this subsection by the following Lemma describing an interesting re­

lationship between Functional Dependencies (FDs) and SOL The detailed study of the

impact of order on FDs will be given in Chapter 4.

L em m a 2.1 Let r be a relation over R, X , X ' Ç R and 7r%(r) be the projection of the

tuples in r onto X .

1 . A relation r satisfies a FD X —>■ T if and only if w%7rxy (r) is SOL

2. X is a superkey of a relation r if and only if w x(r) is SOL

3. X is key of a relation r if and only if X is a superkey and for no proper subset

X ' cX ,u jx> {r) is SOI. □

35

2.4 Relationship to the Conventional M odel

As we have discussed in Chapter 1, the relational data model was introduced by E.F.

Codd in 1970 [34], resulting in the development of relational DBMSs. His work is solidly

founded on the concept of a relation in set theory. The set-oriented model offers three

main advantages. Firstly, it provides the tabular format of a relation which is simple

enough to be understood by all users including non-programmers. Secondly, it is flexible

enough to be useful in a wide spectrum of applications, especially in the area of com­

mercial applications. Thirdly, it is elegant enough to support the development of many

theoretical issues such as query languages and dependency theory.

These three essential ingredients of the relational data model have made it the most

successful data model to date and should serve as guidelines for any further extensions

of the relational data model. Partial orderings, which are binary relations on a set, are

based on the set-theoretic formalism. We consider the effects on the following three

components of the conventional model of incorporating partial orderings.

1. Structural. The structure of the relational data model represents information at

three different levels stated below.

(a) D ata elements in a domain.

(b) Tuples in a relation.

(c) Relations in a database.

We impose a partial ordering on all data domains of attributes. There follows an

induced lexicographical ordering on tuples as the relation schema is assumed to

be linearly ordered. This serves as a minimal extended model which incorporates

orderings.

2. Operational We extend the relational algebra and the relational calculus to the

Partially Ordered Relational Algebra (which we call the PORA) and the Partially

Ordered Relational Calculus (which we call the PORC), respectively, by allow­

ing the use of the ordering predicate Ç in both languages. We apply Paredaens’

and Bancilhon’s Theorem [12, 123] to examine the expressiveness of the PORA.

Paredaens’ and Bancilhon’s Theorem is a fundamental result in query language

theory, which characterises the expressiveness of the Relational Algebra (which we

36

call the RA) in terms of automorphisms. An automorphism is a renaming of the

occurrences of data values in a database such that it leaves the database invariant.

Informally, the theorem states that a conventional relation can be obtained as the

result of a RA expression on a database if and only if it is invariant by every au­

tomorphism of the database. Based on the PORA (or equivalently, the PORC) we

extend SQL to Ordered SQL (which we call OSQL) which combines the capabilities

of SQL with the power of semantic orderings.

3. Constraints: We consider Ordered Functional Dependencies (which we call OFDs)

and Ordered Inclusion Dependencies (which we call OINDs) which are generalized

forms of Functional Dependencies (which we call FDs) and inclusion dependencies

(which we call INDs), respectively.

Therefore, the ordered relational data model is designed in an upwards compatible

manner and ordered domains are the fundamental structure in our extension. Note

that the notion of a domain in our model still obeys the principle of atomicity and an

ordered relation satisfies the so-called first normal form criterion [147]. We note that

such a restriction does not necessarily mean that a domain must be as simple as numbers

or strings. The principle of atomicity should be interpreted as the restriction tha t the

internal structure of a domain element is not decomposable as far as the DBMS concerned

[37, 41]. Using the terminology of objects, a domain element is encapsulated [155].

For example, the data type DATE obviously has three components, year, month and

day, but can still be considered as an atomic domain. It may seem that a user could

use the functions associated with D A T E such as Y E A R to violate the encapsulation

principle. For instance, y E A R (‘T-July-1997”) returns the year 1997. This apparent

paradox has been explained by Date in [41]. The internal structure of a domain element

is not accessible by users, but it is perfectly permissible to access its internal structure

through the standard functions associated with the domain. We would like to point out

that the advantage in adopting this view of atomicity is that a domain can capture more

complex data types. A domain can be a simple data type such as Int or a compound

data type such as the temporal domain D ATE as we have mentioned. If the domain

support is fully implemented to include more data types, relational databases can meet

the demand of many advanced applications such as multimedia without violating the

first normal form criterion.

37

2.5 Other Related Work

In this section we discuss some related research work tha t has recognised the importance

of ordering in information systems. However, we know of no similar attem pt to incor­

porate partial orderings into the data domains of the relational data model as we have

done.

2 .5 .1 P a r tia l O rder D a ta b a ses

A recent proposal which notes the lack of awareness of partial ordering in data modelling

models can be found in [129]. Raymond proposes tha t partial orderings should be a basic

component in a database model and illustrates the potential of using partial orderings

with some application examples such as textual information and software information.

The conclusion of Raymond’s thesis is endorsed in this research that partial orderings are

a fundamental property of data that needs to be captured in a data model. Moreover, it

also aims at defining a unified data model in order to widen the applicability of databases.

However, there are three basic differences between his work and in this thesis. First,

the idea of generalisation in Raymond’s work is based on the idea of object-oriented

inheritance. As a result, a more generalized class does not necessarily support all the

operations of its specialised classes. In contrast, our notion of generalization is based on

the idea of upwards compatibility: a conventional database is a special case of ordered

databases and the ordered relational data model generalises the structures, operations

and integrity constraints of the conventional relational data model. Second, Raymond’s

partial order model is defined to be a collection of algebraic operators for manipulating

partially ordered sets. However, we present a thorough investigation of the impact of

partial orderings on all the fundamental components of the conventional relational data

model including the extensions of data dependencies and SQL. Third, our work is justified

by the capability of unifying a wide spectrum of applications, the result of a survey result

carried out to evaluate the prototype of the extension, and some theoretical metrics

reported herein such as the soundness and completeness of the axiom systems for data

dependencies, none of them being considered in Raymond’s work.

Ginsburg and Hull [55] have introduced the term order dependencies and examined

the issue of the extension of functional dependencies to incorporate information involving

order. Their work mainly focuses on the implication problem of order dependencies and

38

the application of such dependencies in the area of physical implementation of relational

databases. On the theoretical issues, the authors establish a formalism which is analogous

to propositional calculus for analysing order dependencies. Moreover, they exhibit a

sound and complete set of inference rules for order dependencies, whose implication

problem is shown to be co-NP complete [54]. The central notion of order dependencies is

similar to that of our definition of ordered functional dependencies arising from pointwise-

orderings (POFDs), except that the involved domain orderings in order dependencies

are further divided into total order, empty order and general partial-order. This finer

classification of a partial ordering requires more sophisticated mathematical tools to

explore the axiom systems for order dependencies. On the practical issues, the authors

show that indexing space can be reduced substantially if order dependencies are present.

For example, given a check account database and an order dependency stating that the

check number of checks increases as the date that the check was written, a file which

holds the check data will be automatically sorted by date if the file is sorted by the

check number. This allows a substantial savings in storage space because without the

knowledge of the order dependency, a dense index would have to be used.

2 .5 .2 M u lt i-R e so lu tio n D a ta M o d e l

The notion of a multi-resolution set adopted in [130] is equivalent to a special case of

a partially ordered domain which can be defined as follows, a multi-resolution set is an

ordered set with a unique minimal element and some maximal elements. It has been

shown in this work that multi-resolution domains have very strong connections with

the notion of approximation such as incompleteness or impreciseness of data. Actually,

resolution is a necessary means of managing a very large amount of data transmission,

since it is generally true tha t lower resolution data needs less space than higher resolution

data, and thus takes less time to retrieve. For example, in the case of hypermedia

information it normally consists of a very large amount of image data and thus resolution

is an effective means of managing the size of data domain elements. Let us illustrate this

concept with the following simplified multi-resolution domain:

{ ’Null’< ’Black and white icon’< ’Black and white raster’< ’8-bit Colour raster’< ’24-bit

Colour raster’ }.

39

In the above domain we have five distinct levels of resolution so tha t the users can

select the appropriate level to save the transmission time for downloading a hypermedia

document.

Based on the assumption of multi-resolution sets, the author extends the relational

data model to support a construct tha t is called a sandbag, which essentially combines

cardinality constraints of the scope of approximation into a multi-resolution set. For

example, the sandbag “1(Ferrari, Red)3” means tha t there are one to three red Ferrari

cars. A sandbag is a powerful construct to model incomplete or imprecise information,

which can be viewed as a generalised form of histograms. The main result of this work is

tha t it provides a formal framework to study the concept of multi-resolution data retrieval

and presents some useful algorithms to implement sandbags. Moreover, it extends the

conventional relational algebra to incorporate the notion of sandbags so that a relational

DBMS can progressively refine the answer to a query. Overall speaking, a sandbag

is a complex structure developed from the notion of sandwiches in [19], which has a

rather complex definition. Although it is, to our knowledge, a novel attem pt to unify

incomplete information and multimedia information, it is basically a tailor-made model

for manipulating incomplete information. In most real life situations, the exact bounds of

cardinalities will be unknown when the information is incomplete. Any artificial estimates

would cause unnecessary burden upon the DBMS.

2 .5 .3 L ist or S eq u en ced D a ta

There has been a fair amount of research to extend the relational data model to include

lists or sequences as data types [63, 149, 57, 136]. A list can arrange objects in some

pre-defined order. Thus it can be defined as a mapping between a collection of similarly

structured real world objects and a linearly ordered domain. From this point of view, a

linearly ordered set can be regarded as a non-repeating list. However, an ordered set is

not allowed to contain duplicates. A list cannot, in general, represent a partial ordering

and thus in this sense a list (or a sequence) and an ordered set are two incomparable

entities. Richardson in [131] describes a way to incorporate lists into a data model and

defines a collection of operators to manipulate a list. However, the expressive power

of such operations is not clear and there is a lack of theoretical justification of such

extensions.

40

Wang [152] proposes two useful operators, called rs-operations, which are based on

regular languages [54] and which define a family of list merging and extracting operations.

Each operator takes a regular expression as an argument, and the words generated by

the expression serve as patterns that direct how lists should be shuffled together or

picked apart. A simple example is tha t the regular expression {x\XiX2 X\X2) merges

the lists abd and ce and then generates abode. Another example is that by using the

symbol *, the regular expression Q = {x\X2)^ can generate the set of word patterns

{xiX 2 iXiX2 X\X2 -, • ■ In a merge operation, Q can be used for producing the perfect

shuffle of two equal-length lists, meaning tha t the two lists are evenly and maximally

shufiled. For example, the perfect shuffle of two lists ac and bd is abed. In an extraction,

Q can be used for producing the sublist of elements in odd (or even) numbered positions.

These operators add considerable power to the user’s ability to manipulate lists.

2 .5 .4 O th er U n ified M o d e ls

A related approach is to extend the relational data model to incorporate abstract data

types in domains, which have their associated operations as an integral part of each

data type [138, 121]. As discussed in Chapter 1 , this approach is basically an object-

oriented extension of the relational model (which is usually called the object-relational

data model), resulting from the strong trend of object-oriented programming in the 1980s.

Although research into the object-relational data model is still on-going, the abstract data

type is an extremely powerful and established facility to have in a DBMS. In principle,

we can use this facility to simulate ordered domains. The ordered relational model is

related to this approach in two main areas. Firstly, our work helps to explore ordered

data types, which is a fundamental but relatively unexplored territory of abstract data

types in the object-relational data model. Secondly, our work provides some impetus for

the acceptance of object-relational databases, since the current relational DBMSs can

much more easily be upgraded to conform to our extension.

There is an attem pt in [83] to extend the relational data model in order to unify

various kinds of incomplete information, fuzzy information and temporal information.

Although the approach is based on fuzzy theory rather than orderings, it brings out the

im portant fact that these different types of information systems have some fundamental

common property which can be unified in the relational data model. It also brings

out another im portant fact tha t in practice, fuzziness is usually embedded in temporal

41

information. However, the author does not attem pt to develop a complete fuzzy temporal

data model in his work. It is also interesting to mention the work in [153] which illustrates

that spatial information is closely associated with temporal information in many real life

applications. All these observations indicate that there is an essential need to adopt

a uniform approach in order to handle these three kinds of information in an efficient

manner.

Buneman and his colleagues have extensively investigated the generalisation of rela­

tional databases in the context of domain theory [20, 90, 72]. As discussed in Definition

2.7, Buneman has studied three possible orderings on powerdomains (i.e., the powersets

of domains) considered to be useful in incomplete information. His work on this gen­

eralisation utilises the Smyth orderings to provide a method of representing databases

as typed objects in programming languages. He demonstrates that the proposed frame­

work can be used for generalising the two useful operators natural join and projection

[20]. Moreover, he also characterises many im portant concepts such aa that of relational

schema in databases, FDs and nested relations in terms of powerdomains. Although it

was very convenient to use the Smyth orderings to obtain these fruitful results, it may lead

to some counter-intuitive observations in actual databases. For example, a conventional

relation is of a lower order than its subsets according to Smyth orderings. In fact, Hoare

orderings also play an im portant role in in the theory of incomplete databases. Many

database researchers still use Hoare orderings to capture the semantics of incompleteness

in studying different issues concerning incomplete information [154, 89, 87, 88]. Libkin

[91] presents an update semantics in incomplete information and proposes that Hoare or­

derings correspond to the natural orderings of sets, whereas Smyth orderings lead to the

orderings of or-sets, which are basically sets of disjunctive facts (c.f., [6 8 , 134]). There

are still many interesting extensions of the notion of orderings in powerdomains such

as mixes, sandwiches, snacks and scones [90]. They are all used for providing different

semantics of approximations.

42

Chapter 3

Query Languages for the Ordered

Relational M odel

In this chapter we extend the relational algebra (the RA) to the partially ordered relational

algebra (the PORA) by allowing the ordering predicate Ç to be used in the formulae of

the selection operator (cr). Thereafter the relational calculus (the RC) is extended to the

partially ordered relational calculus (the PORC) in a similar manner. The extension is

justified by the following four different facets related to query language theory. Firstly, it

preserves the robustness of the PORA and the PORC, since these two languages can be

shown to be equivalent. Secondly, it is consistent with the two im portant extreme cases

of unordered and linearly ordered domains. In one special case of unordered domains

(i.e., where each data element is only comparable with itself under ordering), the PORA

reduces to the standard RA and gives the same result as Paredaens’ and Bancilhon’s

Theorem [123, 12]. In another special case of linearly ordered domains (i.e., where any

two data elements are comparable under ordering), the PORA expresses exactly the

countably infinite set of all possible ordered relations on the active domain of a given

ordered database. Thirdly, we show that the PORA is non-uniform complete, since it

expresses exactly the set of ordered relations which are invariant under order-preserving

automorphisms over databases. Fourthly, we demonstrate that there is a one-to-one

correspondence between three well-defined hierarchies of: (1) computable queries, (2)

query languages and (3) ordered domains.

As an illustration of the usefulness of the PORA, consider a partially ordered do­

main consisting of three names where Nadav Ç Mark and E than Ç Mark, capturing the

43

semantics of both Nadav and Ethan being under the supervision of Mark. Suppose we

would like to find the names of all members in Mark’s research group. This query can

be formulated in the PORA as cr/yryiMEC'MarA:'(STAFF), where STAFF is a relation over

{ N A M E } . We note that such semantics cannot easily be captured without imposing an

order on the underlying domain.

In Section 3.1 we give the definitions of the PORA and the PORC. We also present two

useful operators, initial segment (7) and horizontal projection (r), in order to manipulate

tuples in linearly ordered relations more effectively. We show that the expressive power

are equivalent for the three languages of: (1) RAu{7 }, (2) RAU{r}, and (3) RAu{<}

under the assumption that the cardinalities of relations are smaller than or equal to a

fixed natural number. In Section 3.2 we demonstrate that the PORA and the PORC are

equivalent and discuss some effects of this equivalence on the design of Ordered SQL,

which extends SQL to the context of ordered databases. In Section 3.3 we investigate

the expressive power of the PORA and show that it is complete in the sense that it

satisfies a generalised Paredaens’ and Bancilhon’s Theorem [12, 123] (which we call BP-

complete). In Section 3.4 we investigate three hierarchies of: (1) computable queries,

(2) query languages and (3) ordered domains, and demonstrate tha t there is a one-to-

one correspondence between them. In Section 3.5 we investigate the issues concerning

updating ordered domains and ordered databases. In Section 3.6 we briefly discuss an

open problem of finding a syntactical characterisation of the concept of more ordered

domains.

Throughout this chapter we use the term active domain.^ denoted by adorn(d), to

represent the set containing those values that appear in a database instance d. Thus,

(adom(d), Ç) is a subordering of the underlying domain of d (recall Definition 2.4 for

subordering).

D efin itio n 3.1 (A ctive D o m ain) The active domain of a relation r over R, denoted

as adom{r), is defined by adom{r) = {u | 3A G R, G r such tha t t[A] = v}. The active

domain of a database instance d = { r i , . . . , } over R is defined by

n

adorn (d) = [J adorn (r*).
Z=1

44

3.1 Query Languages: the PO RA and the PORC

In this section we introduce an extension of the conventional relational algebra (RA) and

the conventional relational calculus (RC) [34, 147], which are called the partially ordered

relational algebra (PORA) and the partially ordered relational calculus (PORC), respec­

tively. These two languages are essentially those conventional ones with the ordering

predicate added to deal with ordered domains.

3 .1 .1 T h e P O R A : an A lg eb ra ic Q u ery L an gu age

The PORA consists of a collection of six operators, each of which takes as input a set

of relations and returns as output the relation resulting from applying the operator to

them.

D efin ition 3.2 (P artia lly Ordered R elational A lgebra). The PORA is a collection

of the following six operators.

1. Union (U).

2. Cartesian product (x).

3. Difference (—).

4. Vertical projection {nx), where X Ç U is a finite set of attributes.

5. Renaming (p%_>y), where A —>■ T is a bijective function from a finite set of a t­

tributes X Ç U to a finite set of attributes Y Ç.U.

6. Extended selection (ctjp), where the selection formula F is restricted to be one of

the forms: A = B, A ^ A Q B or A % B , where A E [/, and either B E U oi B

is a constant.

The six operators given in Definition 3.2 are the standard ones (see [147, 9] for their

formal definitions and semantics) and the meaning of the selection over the formula

A C. B is also as expected, i.e., given a relation r, cryiçg(r) = E r | t[A] Ç t[B]}.

We choose to interpret the union compatibility as follows, the union is applicable only

to two relations with the same schema and the orderings of the domains of the corre­

sponding attributes are the same. Let X = {Ai , . . . ,A„} and Y = {J5i , . . . ,R„} be

finite subsets of U. We use the shorthand notations <r%=y(r) to represent the expression

45

(yAi=Bi (• • • {(^An=Br, W) • • '), and crx^y(r) to represent the expression (r) U • • • U

aAni^Bni"^) 1 respectively. As discussed in Chapter 2 , the ordering of a relation r is the

lexicographical ordering defined over r, which is an extension of domain orderings. We

use CTxcvi'^) to mean the comparison according to lexicographical orderings, which is

also a short hand notation representing the expression (JAicBii'f') U {<JAi=Bi{(^A2 nB2 {'^)))

U • • • U {(7Ai=Bi • • • An-l=Bn-l{(^AnCBni"^))) ' '

We now define PORA expressions using the six operators mentioned.

D efin itio n 3.3 (P a r tia lly O rd e re d R e la tio n a l A lg eb ra E x p ressio n) A PORA ex­

pression is a well-formed expression composed of a finite number of operators in the

PORA whose operands are relation schemas. We denote by E p o r a the set of all PORA

expressions. For the sake of clarity, when no ambiguity arises we may omit some paren­

theses in EpoRA expressions.

A query over an ordered database is formulated by means of a PORA expression and

the answer to an expression is dependent on a database instance.

D efin ition 3.4 (A nsw er to an E x p ress io n) Let d = { r \ , . . . , r„} be a database over

R = { R i , . . . , Rn}- The answer to an expression e E E r q r a with respect to an ordered

database d over R is obtained by substituting the relation for every occurrence of Ri

in e and computing the result by invoking the operators present in e. The answer is

undefined, if there is some operand R of an expression which is not in R . We denote the

answer to e with respect to d by e{d).

An expression represents a query over a database. We need the notion of equivalence

of expressions in order to compare the expressiveness of different queries.

D efin itio n 3.5 (E qu ivalence o f E x p ressio n s) Let D B{H) denote the set of all data­

bases over R . Two expressions e\ and 62 are said to be equivalent^ denoted by ei = 62,

if for all d E DB(R.), ei{d) — 6 2 (d) . Two sets of expressions E i and E 2 are said to be

equivalent, denoted by E i = E 2 if

1. V 6 i G E l, 3 62 G F?2 such that 61 = 62, and

2. V 62 G E 2 , 3 e\ E E l such that 61 = 62.

46

Informally, two sets of expressions being equivalent means tha t they represent the

same set of queries. Using this concept we say an operator op is uniformly simulated by

an expression e, if op is equivalent to e. If op is a PORA operator and e is a PORA expres­

sion which does not contain op, then the op is not primitive with respect to the PORA. In

such cases it does not add any extra expressiveness into the PORA, except that it would

help to simplify PORA expressions. One example is tha t we do not include the operator

intersection (fl) in the PORA, since we can uniformly simulate it as the following expres­

sion: r \ r ir2 = r i ~ (ri — r 2). Another good example is tha t we do not include the operator

natural join (m) in the PORA, since we can also uniformly simulate it as the following ex­

pression: r i CXI T2 = 7TR^_Ai,...,Ri.Am,Bu...,Bn {(^Ri.Ai=R2 .Ai ' ' ' {<7Ri.Am^R2.Ami''^l X ^2)) ' '

where r\ and r 2 are over R i and R 2 , respectively, A i , . . . ,Am are the common attributes

of R i and R 2 , and , . . . , are the attributes in either R \ or R 2 except those common

attributes.

A weaker notion of simulation of operators called non-uniform simulation requires

only that for any given database there exists a PORA expression equal to the result

of the PORA operator on the database. A typical example is the difference operator

(—), which can be non-uniformly simulated by the other operators in the PORA for

given relations r\ and T2 as will be shown in Lemma 3.1. However, this refers to given

instances of r\ and T2 only; the difference operator cannot be uniformly simulated by a

PORA expression that involves only the other five operators of the PORA. Therefore,

the difference operator is still primitive, which we should include in Definition 3.2.

L em m a 3.1 For every pair of relations r\ and T2 over kP, the relation (ri — 7-2) can be

obtained as the result of a PORA expression whose operands are r\ and r 2 .

P ro o f. Let w — r iC \r 2 contain k tuples {U, . . . , defined over W . First, we con­

struct a relation that is essentially the Cartesian product of w with itself k times with

suitable renaming as follows: = p w -^ T iM x ••• x pw^Tki'^) times). Now con­

sider the expression e = ctti^T2 {' ' ' • {(^Tk-i^Tk (w^)) • ' •)) ' ") for all distinct

G which returns a relation with k factorial tuples; each of them is a

juxtaposition of the k tuples in w up to renaming of the attributes. We now have

r\ — r 2 = • • • {crw^Tki’’̂ X e)) • • •) since ti will be eliminated by (Jw^Ti for

i G { ! , . . . , A:}. Thus, the remaining tuples are in the relation r\ — r 2 after taking the

projection onto W . □

47

The following example can help to clarify the above lemma.

E xam ple 3.1 Let r\ = {a, 6, c} and r2 = {6, c, d} be the relations over {A}. Thus

r i n r 2 = PB^A{T^B{(^B=c{pA-^B{ri) X pA-^c{r2)))). So we have w = r i f] r 2 = {b,c}

over A. Now e = <yBj^c{pA-^B{w) x p A -^ c M) = {bc^cb} over {B, C). Finally, r\ — r2 =

X e))) = {(%} as expected.

We observe that cr= is not primitive, since for any relation r it can be uniformly

simulated as the following expression: cr^=B(r) = cra ^ b {(^B'OA{f'))• Similarly, cr^^fî(r)

can be simulated as follows, cr^^s(r) = cfâ b {'^)^ <̂ B%A{f')- In the extreme case of

unordered domain crç becomes (j=, i.e., for any given relation r, cr>içfi(r) = (%^=g(r).

Therefore, our definition of the PORA is consistent with the standard relational algebra

used in [123]. Let UORA = (p, x, —, U, vr,cr=,cr^} be the unordered relational algebra

and LORA = {p, x, —, U, tt, cr<, cr^} be the linearly ordered relational algebra for a given

linear ordering of D. We formalise our observations as follows.

P roposition 3.2 Let (D, C,d) be the underlying domain. Then

EpoRA = E u o r a if (D, Qd) is unordered, and

E p o R A = E l o r a if {D, Qd) is linearly ordered. □

Note that those relations which can be generated by E po r a involve only relations in

d and contain values solely in adom{d). We denote by ead{d) the PORA expression that

generates adom{d). The following proposition will be repeatedly used in many formal

proofs subsequently in this chapter.

P roposition 3.3 Let ead{d) = UijT^Ajiri), VA ̂ G Ri where Ri G R, and Vrf G d. Then

adom{d) = ead{d). □

The possible information of d is the countably infinite set of all relations that can be

derived from the adom{d).

D efin ition 3.6 (Possib le Inform ation) The possible information of d, denoted by

Poss{d), is defined by
oo

Poss{d) = [JV{adom{dy).
i=0

48

Although the selection operator cr< in the LORA can be employed to make comparison

of tuples in linearly ordered relations, it is still not clear whether it has sufficient power to

retrieve tuples according to their orderings. For example, we would like to know whether

the LORA can express some common queries involving order, such as retrieving the first

three lowest sales figures in a sales record. We now introduce an operator called initial

segment (7), which should help to manipulate tuples in a linearly ordered relation r over

schema R. This operator allows us to select the first n tuples according to the linear

ordering <^, where n is a positive integer.

D efin ition 3.7 (Initial Segm ent) The initial segment of a linearly ordered relation r

over R, denoted by 7 ^ whose parameter n is an integer, is defined by 7 n(r) = | t G r

and t is the A:th tuple t according to the linear ordering with 1 < < n} if 1 < n;

otherwise, 7 n(r) is defined to be 0 .

We note tha t 7 n(r) = r if and only if n > | r |. We give the following simple example

to illustrate the usefulness of the initial segment operator.

E xam ple 3.2 Consider a linearly ordered relation r = {111,212,221} (3 tuples). Then

7 i(r) = {111}, 72 (7-) = {111,212}, 7 n(r) = r for n > 3 and 7 ^(7") = 0 for n < 0.

An interesting fact of jn is that a weaker operator 71 (i.e., returning a first tuple)

together with the UORA is sufficient to uniformly simulate the effect of 7„ in a linearly

ordered relation r. For instance, 7 3 (r) = 7 i (r —7 i (r — 7 i (r)))U7 i (r —7 i (r))U7 i(r). The

following proposition can be easily proved by using induction on the parameter n of 7 .

P roposition 3.4 7n(7’) = e for some expression e defined over {71 , U, —}. □

It is clear that the operator 7 ̂ is not equivalent to any UORA expression, since there

is no operator in the UORA to be defined over linearly ordered relations. We now make

a simple extension of the UORA as follows, UORA^ = UORA U {7^} and assume that

7 n(7’) is undefined over unordered relations. Then the expressive power of the UORA^

is equivalent to that of the UORA if the domains are unordered, since in this case no

extra power can be gained by 7 „. On the other hand, UORA^ can be applied to linearly

ordered relations due to the fact that in general, all operators in the UORA can be applied

to ordered databases. We now define a similar operator called horizontal projection (r),

which allows us to select a particular tuple by specifying its position according to the

ordering of a linearly ordered relation.

49

D efin ition 3.8 (H orizontal P rojection). The horizontal projection of a linearly or­

dered relation r over R, denoted by Tn whose parameter n is an integer, is defined by

T n i r) = {t \ t E r and t is the n th tuple according to <^} if 1 < n; otherwise, r„(r) is

defined to be 0 .

Note that r„(r) is a singleton if and only if 1 < n < | r |, otherwise r„(r} = 0. The

horizontal projection operator r has the similar property as stated in Proposition 3.4.

P roposition 3.5 r„(r) = e for some expression e defined over { ti, U, —}. □

We now let UORA^ = UORA U {r„} and denote by the set of all UORA^ ex­

pressions. Similarly, we denote by E uqra the set of all UORA^ expressions. The simple

relationships between 7 ^, r„, and EJjqj^̂ ̂ can be formally stated as follows.

Lem m a 3.6 The following statements over linearly ordered relations are true.

1. The operator can be uniformly simulated by an expression.

2. The operator 7 ^ can be uniformly simulated by an expression.

Proof. Let r be a linearly ordered relation over R.

1. We claim that r i (r) = 71 (r) and for n > 2, r„(r) = 7 n(’’) — 7n-i(7’)- This claim

can be easily proven by using induction on n. Thus, it follows tha t Tn{r) can be

expressed in E ^ qj^^.

2. This part can be easily established by noting that 7 n(?') can be expressed as r i(r) U

. . . Ur „ (r) . □

We impose a restriction on the cardinalities of r over R in order to define a subclass

of linearly ordered relations called bounded relations as follows, a relation r is said to be

bounded i f | r | < A; for some fixed natural number k. Furthermore, we call a database a

bounded database if all relations in the database are bounded. Note tha t if r satisfies the

condition that | 7r>i(r) | < A: for A E R, then r is bounded. The restriction of | 7Tyi(r) | <

k is known as a domain constraint [74, 51, 32], which is also a basic kind of constraint in

conventional databases. The assumption tha t a relation is bounded is certainly practical,

since it is necessary to restrict the cardinalities of a relation in the implementation of a

DBMS due to the limited space resources of a platform environment.

50

Lem m a 3.7 T h e f o l lo w in g s t a t e m e n t s o v e r b o u n d e d a n d l in e a r l y o r d e r e d r e l a t io n s a r e

t r u e :

1. T h e o p e r a t o r c a n b e u n i f o r m ly s i m u l a t e d b y a n E l q r a e x p r e s s io n .

2 . T h e o p e r a t o r (t a < b c a n b e u n i f o r m ly s i m u l a t e d b y a n e x p r e s s io n .

Proof.

L e t Ri = { R i . A i , . . . , R i . A m } fo r i G { 1 , 2 } .

1. B y P r o p o s i t i o n 3 .5 , i t s u f f ic e s t o s h o w t h a t r i (r) i s e q u i v a l e n t ly t o a n E l q r a

e x p r e s s io n . I t c a n b e c h e c k e d t h a t r i (r) = s U {r — w) , w h e r e s =

pRi^R{'^Ri{(^R^<R2 i‘r X r))) - 0)) and w =

((T A i< R 2 (^ X r))) X r))) , r e s p e c t iv e ly . W e r e c a l l

t h a t t h e n o t a t i o n U {GR..Ai=^R^.AMRi.A2 <Rj.A2 {f')))

u • • • U {(JR^.Ai=Rj.Ai • " {(^Ri.Am-i=Rj.Am-i{^Ri.Am<Rj.Am{'^))) • • •)• N o t o t h a t t h o

s u b e x p r e s s i o n (r — w) in t h e a b o v e f o r m u la i s n e c e s s a r y t o c a t e r fo r t h e c a s e o f r

b e i n g a s i n g l e t o n , s i n c e in t h i s c a s e (^R^^R^if x r) = 0 .

2 . N o t e t h a t t h e r e a r e a t m o s t km {k t u p le s x m a t t r i b u t e s) d i s t i n c t e l e m e n t s in r.

T h e s e l e c t i o n o p e r a t o r {(7a < b) i s e q u i v a l e n t ly t o t h e f o l lo w in g e x p r e s s io n : (JA<B{f')

= 7TRi(^AB=CD{r X s)) , w h e r e s i s a r e l a t io n o v e r { C , D } , w h ic h i s d e f in e d b y s =

U 5 (r . i eadir)) x r , (e , , { r))) . □

T h e f o l lo w in g e x a m p l e h e l p s t o c la r i f y L e m m a 3 .7 .

E xam ple 3.3 W e u s e t h e s a m e r e l a t io n r a s g i v e n in E x a m p l e 3 .2 , w h o s e s c h e m a is

R = { A , B , C } . L e t R i = { R i . A ^ R i . B , R i . C } fo r i G { 1 , 2 , 3 } . I t c a n b e c h e c k e d t h a t

T i (r) = s = (r X r))) (r x r))) . (W e ig n o r e { r - w)

fo r t h e s a k e o f c la r i t y b u t i t c a n b e c h e c k e d t h a t r — w = ^ s i n c e r i s n o t a s i n g l e t o n .)

W e s h o w b e l o w t h e p r o c e s s o f e v a lu a t in g t h i s e x p r e s s i o n b y s t e p w is e c o m p u t a t i o n .

1 . L e t S i = r X r o v e r { R i . A , R i . B , R i . C , R 2 A , R 2 .B , R 2 . C } .

T h e n w e h a v e s i = (1 1 1 1 1 1 , 1 1 1 2 1 2 , 1 1 1 2 2 1 , 2 1 2 1 1 1 , 2 1 2 2 1 2 , 2 1 2 2 2 1 , 2 2 1 1 1 1 ,

2 2 1 2 1 2 , 2 2 1 2 2 1 } (9 t u p l e s) .

2 . L e t S2 =

T h e n w e h a v e S2 = ctr^^a<R2 .a { s i) U {(JRi.a=R2 .a{(^Ri.b<R 2 . b { s i))) U

51

{(yRi.A=R2 .A{(^Ri.B=R2 .B{(^Ri.c<R2 .c{si)))). Now S2 over R u which consists of three

tuples as given by {111212 , 111221 , 212221}.

3. Let s = Pr^-^r{'ïïr^{s2)) - Pr2 -^r{'^R2 {s2)) = {111,212} - {212,221}. Then we

have s = {111} over R as the required answer.

As an illustration of part 2 of Lemma 3.7, the selection operator (t a < b can be uni­

formly simulated as follows, (7y^<g(r) = t^r{cfab=cd{t x s))? where s = (ri(ead(r)) x

T i { e a d { r))) U (T i (e g d (r)) x T 2 { e a d { r))) U { r 2 { e a d { r)) x T 2 { e a d { r))) = {11,12,22}. (We do

not show Tn for n < 3 since it is equal to 0.) Then we have 7TR{aAB=CD{'f' x s)) =

{ 111, 221}.

We now summarise the expressiveness of ^ u o r a E r o r a as the following

theorem.

T heorem 3.8 and E r o r a are equivalent over bounded and linearly

ordered databases.

Proof.

The result follows by Definition 3.5, Lemma 3.6 and Lemma 3.7. □

3 .1 .2 T h e P O R C : a C a lcu lu s Q u ery L an gu age

In this subsection we make a simple extension of the conventional tuple relational calculus

[147, 9] called the partially ordered relational calculus (PORC). We first define the set of

symbols which are allowed in formulas of the PORC.

D efin ition 3.9 (Sym bols o f th e P O R C) The symbols of the PORC have the following

six items:

1. Constant values (or simply constants) are a, a i , 02 , . . . , which are elements of the

domain D .

2. Tuple variables (or simply variables) are t , t i , t 2 , ^ , which are members of a count-

ably infinite set of variables V such that V D D = 0.

3. Relational symbols are R^ R \, R 2 , . . . , which are drawn from a countably infinite set

of variables 71 such tha t 7?. fl V fl D = 0.

52

4. The operators are = and Ç.

5. The logical connectives are 3, V and -i.

6 . Delimiters are () (parentheses), and ,(comma).

Note tha t we consider the negation, disjunction and existential quantifier only since

they are sufficient to generate other connectives such as V {universal quantifier), A (con­

junction), => (implication) and ^ (equivalence). For example, R i A R 2 = ->((->Ri) V

(- 1̂ 2)) and VjR = ->3(->R). Although x = y can be represented 8iS (x Ç. y A y Ç. x), we

include the equality predicate = for the sake of clarity in expressions. We denote by t[i]

the 2th component of a tuple t. We now define atomic formulas over symbols, which are

the basic components of a PORC expression.

D efinition 3.10 (A tom ic Formulas) The atomic formulas of the PORC have the

following two forms.

1. R(t), where R is a relation symbol and f is a variable.

2 . xOy, where 6 6 {=, Ç}, a: is a component reference of a variable of the form t[i],

where f is a variable and i is an index, and y is either a component reference or a

constant.

We write rr ^ ^ as an abbreviation ->(x Qy) .

D efin ition 3.11 (W ell-form ed Form ulas) The well-formed formulas (or simply for­

mulas) are defined recursively as follows.

1. An atomic formula is a formula.

2. If F is a formula, then so are -iF and (F).

3. If F i and F2 are formulas, then so is F i V Fg.

4. If F is a formula, then so is 3t : R (F) (or simply 3t(F) if no ambiguity arises),

where Ms a variable and R is a set of attributes.

5. No other formulas are formulas.

53

We omit parentheses in formulas if no ambiguity arises as to the meaning of a formula.

In addition, we assume tha t all the relation schemas corresponding to the relation symbols

tha t are mentioned in F are included in a database schema R. We call a variable defined

by item (4) of Definition 3.11 a bound variable, otherwise we call a variable a. free variable.

We write for a formula F to indicate that are the free variables

occurring in F.

We now define PORC expressions using well-formed formulas and free variables.

D efin ition 3.12 (P artially Ordered R elational C alculus Expression) A PORC

expression, consisting of a free variable t, a bijective function g from a finite set of

attributes R Ç Î7 to a finite set of attributes S C U, and a well-formed formula F, is

defined as {t : g{R) | F (t)} .

Note that in the above definition there can be only one free variable in F. If g is an

identity, i.e., no renaming of attributes is required, we just omit g and write the PORC

expression as {t : R | F{t)}. We denote by E po rc the set of all PORC expressions, and

by E lorc and EpoRC the set of those PORC expressions for the cases of linearly ordered

domains and unordered domains, respectively (c.f., E lqra and E uqra in Proposition

3.2). We now define the semantics of PORC expressions.

D efin ition 3.13 (Satisfaction o f a Formula by a Tuple) Let d = {r i , . . . , rn}

be a database over the schema R = { R i , . . . , R^} and consider the PORC expression

{t : R I F{t)}. A tuple u = {a \ , . . . ,am) satisfies the formula F with respect to d, if

u 6 D ^ , and one of the following conditions is satisfied:

1. If F is the atomic formula R{t), then R G R and the tuple u satisfies u E r, where

r G d which is over R.

2. If F is the atomic formula xOy, then aiOaj is satisfied, where substitutes x and

either y = t\j] and aj substitutes y, or î/ is a constant and Oj = y.

3. If F is the formula (Fi), then u satisfies the formula F if u satisfies F\.

4. If F takes on one of the forms: -iFi, Fi A F2 , Fi V F2, then u satisfies F is defined

according to the semantics of the corresponding Boolean connectives on the tru th

values of F\ and F2 [53].

54

5. If F is the formula, 3t\ : Ri{F i{ t ,t i)) , where the arities of t and t\ are m and m i,

respectively, then u satisfies F if there exists a tuple (61, . . . , bmi) G such that

when (61, . . . , bmi) is substituted for t\ , u satisfies Fi{t).

Informally, an answer to a PORC expression with respect to a database d is the set

of all tuples satisfying F.

D efin ition 3.14 (A nsw er to a PO R C expression) The answer to a PORC expres­

sion : R I F{t)} with respect to a database d over R, denoted as {t : R | F(t)}(d), is

a relation r over schema R, which is defined hy r = {t \ t satisfies F}. The answer is

undefined if there is some relation symbol R of an expression which is not in R.

An im portant detail to be considered is that the answer to a PORC expression is

supposed to be finite and is dependent only on a given database d. However, PORC

expressions allow us to define the formulas as shown in the following example, whose

result is an infinite set of tuples [147].

E xam ple 3.4 Consider the following two PORC expressions.

1. { t : R \ ^R{t)}.

2 . { t : R \ A (i[l] = ti[l])) V (R ii t i) A (([2] = ii[2])))}.

It is clear that the answer to the first expression in the above example depends, not

only on the database instance d, but also on the domain D. Let us call such formulas

domain-dependent formulas. If D is infinite, then the first expression results in an infinite

relation as an answer, which is undesirable, since we can only have a finite number of

tuples in relations. As the second example shows, a domain-dependent formula does not

necessarily have negation. It can be checked that the answer to this expression depends

on D and thus results in an infinite number of tuples as an answer. So it is not trivial to

deduce from the syntax of the formula whether it is domain-dependent or not. In fact, it

has been shown that this problem in the context of the conventional RC is undecidable

[148], i.e., the following problem is undecidable;

Is the formula in an E uorc expression a domain-dependent formula?

Therefore, it follows that the problem of domain-dependence of EpoRC is also unde­

cidable, due to the fact tha t E uorc is just the special case of E pq rc (i.e., when D is

unordered). We formalise our discussion by the following proposition.

55

P ro p o s itio n 3.9 Given a formula F in a PORC expression, the problem of whether F

is domain-dependent is undecidable. □

There are two possible approaches to tackle this problem.

The first approach is to impose certain restrictions on the syntax of all subformulas

to ensure tha t a PORC expression is safe [147], in the sense that the answer of the

expression depends on d only. (By a subformula of a formula F we mean a substring F

tha t is also a formula.) For example, one restriction is that we only allow the negation

operator to apply to a formula which is in a conjunction with some safe formulas. Another

restriction is that we do not allow different free variables occurring in Fi and F2 when

they are connected by disjunction. It is clear tha t the first and the second expressions in

Example 3.4 violate these two restrictions respectively.

The second approach is to impose a restriction on the semantics of PORC expressions.

Note that a PORC expression is domain-dependent mainly because the variables in the

expression are allowed to vary freely over the domain. Therefore, we can resolve this

problem by assuming that all substitutions of variables are chosen from a subset of

adom{d). For example, we can assume tha t each variable in a well-formed formula is

associated with a declaration of range [9], and thus the answer of a PORC expression

cannot contain any new values apart from those in the declared ranges. We adopt this

approach and from now on assume that all the constants in the first item in Definition 3.9

should be chosen from adom{d), and that the set of all constants appearing in a PORC

expression is a subset of adom{d).

3.2 Equivalence between the PO R A and the PORC

In this section we compare the expressive power of the PORA and the PORC. We show

that they are actually equivalent. The equivalence can be established by the next two

lemmas. The method that we use is standard (c.f., see Chapter 3 in [147]), whose

basic idea is to carry out induction on the number of occurrences of operators in PORA

expressions (or PORC expressions in the reverse direction).

L em m a 3.10 For every PORC expression Cc, there is an equivalent PORA expression

P ro o f. We prove it by induction on the number of occurrences of the connectives and

56

the quantifiers in F. Assume an Cc expression to be of the form {t : R | F{t)}.

{Basis). There are two cases of atomic formulas.

1. The formula is Ri{t)] the corresponding PORA expression is Ca = r i , where r\ is a

relation over the schema R\.

2. The formula is x 6 y; the corresponding PORA expression is Ca = cFAiOAji^ad)^ if

X = t[i] and y = t\j], or Ca = (^AiSai^ad)^ if ^ = n, where Cad is the expression to

generate the active domain of the relation r (see Proposition 3.3 for the definition

of Cad)-

{Induction). We consider the negation, disjunction and existential quantifier as follows.

1. Negation: F = ->Fi.

Gg = (cad)” — e^i, where e^i is the corresponding PORA expression for F i.

2. Disjunction: F = {F\) V (F2).

6 a = epi U 6 f 2 , where and ep2 are the corresponding PORA expressions for Fi

and F2, respectively.

3. Existential quantifier: F = 3t\ : Ri{F\).

6g = 7TRi{eFi), where e^i is the corresponding PORA expression for F\.

This completes the induction. □

L em m a 3.11 For every PORA expression eg, there is an equivalent PORC expression

6c-

P ro o f. We use similar method as the previous lemma. The proof is by induction on the

number of occurrences of the six operators that are defined in Definition 3.2.

{Basis). There are two cases of relations.

1. For the case of a constant relation, without loss of generality, we assume tha t it is

a unary relation which has only one tuple, eg = {(a)}; Cg = : F | t[l] = a} where

R = {A}.

2 . For the case of a relation r E d, over R = { A \ , . . . , A„}; 6 c = [t : R \ R{t)}.

{Induction). We consider various primitive operators, op 6 PORA, at the top level of

the algebraic expression. Let Cg, 6^ ,61,62 £ E r o r a - For the cases of unary operators of

57

projection, selection and renaming, we let the corresponding calculus expression for e'̂

be e'̂ = {t : R \ F{t)}, where R = { ^ i , . . . , An}. Thus we have = op{e'a). For the cases

of binary operators of Cartesian product, union and difference, we let the corresponding

calculus expressions for ei be {t : R \ \ Fi{t)} and 62 be {t : R 2 \ F2(t)}, respectively.

Thus we have = (ei)op(e2).

1. Projection; without loss of generality, we assume tha t only the attribute An is

projected out: Ca = 7rAi,...,An-i{^'a)'i the calculus expression is Cc = {t : R \ 3ti :

Ri{F{t) A (t[l] = ^i[l]) A • • • A {t[n - 1] = ti[n — 1]))}, where R i = R — {A„}.

2 . Selection: = (^AidB{^a)'i then the calculus expression is given hy Cc = {t : R \

F{t) A {t[i]6t[j])} if B = Aj, oi 6c = {t : R \ F{t) A {t[i]6a)] if B = a.

3. Renaming: Ca = px^Yie'a) with X = { A i , . . . ,A m } and Y = { B \ , . .. ,Bm},

respectively. Let p be a bijective function from X to Y”, which is defined by

g{Ai) = Bi. Then the calculus expression is given by Cc = {t : g{R) | F{t)}

where p(R) = {^(A i),...,p (v l^)} .

4. Cartesian product: e\ x 62; we let R = R \ U R 2 . Then the calculus expression

is given by Cc = : R | 3ti3t2{Fi{ti) A ^ 2 (^2) A {t[l] = ti[l]) A - - A {t[m] =

ti[m]) A • • • A {t[m + 1] = ^2[1]) A • ■ • A {t[n] = t2 [n — m]))}.

5. Union: ei U 62; the calculus expression is given by 6c = : R | Fi{t) V F2 (^)}.

6 . Difference: the proof is similar to the case of union except we replace the formula

in the calculus expression Cc by {Fi{t) A ->F2 {t)).

This completes the induction. □

We now give the main theorem in this section.

T h e o re m 3.12 E p q r a and E p o r c are equivalent.

P ro o f. By Definition 3.5, Lemma 3.10 and Lemma 3.11, we can readily establish the

equivalence. □

The above theorem shows that the PORA and the PORC actually express the same

set of queries. It also shows the robustness of these two languages and thus they can

be adopted as a benchmark for evaluating expressiveness of a query language in ordered

58

databases. From this point of view, we can say that the PORA (or the PORC) is Codd-

complete [35], since Codd suggests that the RC is adopted to be the standard to measure

completeness of a query language in conventional databases. Moreover, SQL, which is

the most common query language for commercial DBMSs, is developed to conform to the

standard of the RC. We adopt the conventional approach in developing SQL and extend

SQL to Ordered SQL (OSQL). Our extension is also based upon the essential features of

PORC. For example, we extend the WHERE predicate in OSQL to implement the atomic

formula t[i] Qd t[j] in the PORC as follows. Ai < Aj WITHIN D, where the keyword

RTTiLTiV specifies the ordered domain D, and A{ and Aj are attributes corresponding to

the tuple components t[z] and t[j], respectively.

An im portant feature of OSQL is the implementation of a tuple list, which is basically

the listing of different levels of an internal hierarchy of a relation. We can view an internal

hierarchy as a generalisation of the position of a tuple in a linearly ordered relation. We

need some terminology to explain the underlying idea of this extension. Let (r, Çr) be an

ordered relation. We denote by part{r) a partition of r, which is a set of pairwise disjoint

non-empty subsets of r such that U repart(r)^ = r, and call an element T 6 part{r)

a tuple level of r. An internal hierarchy of a relation r is a linearly ordered partition

induced by

D efin itio n 3.15 (In te rn a l H ie ra rch y o f a R e la tio n) An internal hierarchy of r is a

linearly ordered set {part{r), <), such tha t

1. VT G part{r), V^i,t2 G T, either = t 2 or t\ || t 2 (i.e., T is unordered).

2. MTi,Tj G part{r), Ti < Tj V î G Ti,Vf2 G T j, t 2 %r ^i-

3. y X i ,T j G part[r), Ti < Tj => 3ti G Ti, 3t2 G Tj such that t\ Cr ̂ 2-

A tuple u G s is said to be minimal, where s Ç r, if for any t Ç: s, t C.j. u implies that

t = u. We remark that s may have more than one minimal tuple. In the special case of

linearly ordered relations, s has a unique minimal tuple. In the other extreme case of an

unordered relation, all tuples in s are minimal.

E x am p le 3.5 Consider a unary relation having 5 tuples, (r, <r) = {{a ,h ,c ,d ,e] ,{a Ç

c, 6 Ç c, c Ç e ,d Ç e}) (5 tuples). We show two possible internal hierarchies part{r) =

{T i,7 2 , 7 3 } given in Figure 3.1.

59

(a) (b)

Figure 3.1: Two possible internal hierarchies for a relation r

The following lemma shows that by successively collecting the sets of minimal tuples in

the subsets of a relation we can construct an internal hierarchy as illustrated in Figure

3.1(b).

Lem m a 3.13 Every relation contains an internal hierarchy.

P roo f.

Let r be a given relation. We use the following algorithm to generate a partition.

A lg o rith m 3.1

1 . b eg in

2 . ro = r and Tq = 0 ;

3. do u n til n _ i = 0

4. Ti is the set of minimal tuples of — Tj_i;

5. r e tu r n Result = { T i,. . . ,T/};

6 . end.

It is trivial tha t the above algorithm will term inate for a finite relation r. Let the Icist

tuple level generated by the algorithm be T/ and {T\ < Tg < - - < T)} be a collection of

subsets obtained by the above algorithm, where the linear ordering is according to the

order of generation of Tj in the steps 3 and 4. Clearly, it is a partition of r such that

for all t i , t 2 G Ti, if t\ and ^2 are distinct, then we have t\ || t 2 , since they are both the

minimal tuples of r*. So it satisfies part 1 in Definition 3.15. Now, we assume to the

contrary that G Ti,3t2 G Tj such that t 2 Er h and Ti < Tj. Then it follows that

t 2 = t\ , since t\ is a minimal tuple and is less than 2̂- However, this is impossible because

60

Ti and Tj are disjoint. Hence part 2 is also satisfied. Finally, part 3 can be established

by noting that Ti is the set of all minimal elements of some superset of Tj. It follows

that for any element t 2 G Tj, there is an element t\ G Ti such tha t ti Cr 2̂- O

The next lemma is immediately followed by the definition of Algorithm 3.1.

Lem m a 3.14 The internal hierarchy generated by Algorithm 3.1 is unique.

Proof.

This can be easily established by using induction on Ti and the fact tha t Ti is the unique

set of all minimal tuples of r*. □

The following lemma can be regarded as a generalisation of part 1 of Lemma 3.7

to partially ordered relations. It shows that the tuple levels of the internal hierarchy

generated by Algorithm 3.1 can be expressed by the PORA (or equivalently, the PORC)

for a relation r over R.

Lem m a 3.15 Any tuple level of the internal hierarchy generated by Algorithm 3.1 can

be expressed by the PORA.

Proof.

We can generate Tj, where 1 < i < n, recursively as follows.

2 = 1: Ti = s U (r — w) , where s =

X r))) - x r))), and w =

PR,^R{TTR,{aR^^ji^{r X r))) U pR^^R{7TR^{aji^^ji^{r x r))), respectively.

2 > 1: Ti = sU (ri — w), where n = (■ ■ ■ ((r — Ti) — Tg) • • • — Ti_i), s =

PRi^R(^Ri((^RiCR2(^i ^ n))) - PR2^R(^R2((^RiCR2(^i X n))), and w =

PRi-^R('^Ri(crR,cR2(^i X n))) u pR2-,R(7TR^((7ji^^jiJri X n))), respectively. □

Lemmas 3.13, 3.14 and 3.15 have practical significance as they indicate that a unique

internal hierarchy can be generated by collecting the minimal tuples of a relation (or its

subset) and in addition, using the PORA we can express a tuple level of such hierarchy for

a given relation. The concept of tuple levels is very natural and easy to understand. In

the special case of linearly ordered relations, Ti is the singleton containing the 2th tuple.

Thus, our choice of the SELEC T statement in OSQL to include a tuple list specifying

tuple levels in a relation can be justified by this formalism. (We will discuss OSQL in

detail in Chapter 6 .)

61

3.3 Non-Uniform Com pleteness of the PO RA

In this section we present our result of a generalisation of Paredaens’ and Bancilhon’s

Theorem [123, 12] to ordered databases. We begin this section by discussing the concept

of order-preserving database automorphism and then we examine the expressive power

of the PORA by Paredaens’ and Bancilhon’s Theorem.

3 .3 .1 O rd er-P reserv in g D a ta b a se A u to m o r p h ism s

We generalise the notion of automorphism [9] to the context of ordered databases. Infor­

mally, an ordering automorphism of an ordered set is a permutation of its elements such

tha t the ordering of the set is preserved.

D efin itio n 3.16 (O rd e rin g Iso m o rp h ism an d O rd e rin g A u to m o rp h ism) Let

{S, Ç5) and (T, be ordered sets. The function / : S — > T is an ordering iso­

morphism if / is bijective and / satisfies the condition tha t a\ Qs 0-2 if and only if / (a i)

E t f{o>2)\ («S', E 5) and (T, are ordering isomorphic if there exists an ordering iso­

morphism / : S — > T. In particular, if T = 5 and Ç,t = Eg, then we call / an ordering

automorphism of (5, Cg). If the set {a 6 S' | f{a) ^ a} is finite, then we call / a finite

ordering automorphism. We denote the set of all finite ordering automorphisms of an

ordered set (S, Cg) by Aut{S, Cg), or simply Aut{S) when Cg is clear from the context.

We now define an order-preserving automorphism of a database. Informally, this is

a permutation of the values in the active domain of a database instance that does not

alter the database and also preserves the ordering of the active domain.

D efin itio n 3.17 (O rd e r-p re se rv in g D a ta b a se A u to m o rp h ism) Let h be a partial

function from D to D such that it is an ordering automorphism of {adom{d), Ç). The

extension of h to tuples t, relations r and databases d is defined recursively as follows:

1 . h(i) = (h((%i) , . . . , h((2j7j)), if t = (u i, . . . , Um)'

2 . h{r) = {h { ti) , . . . , h{tk)}, if r = { t i , . . . ,

3. h{d) = { /i(r i) ,...,h (rn } } , i i d = { n , . . . , r ^ } .

We call h an order-preserving database automorphism if its extension to d satisfies h{d) =

d] by this we mean that h (r j = n for 1 < z < n. Furthermore, h can be regarded as

62

an identity on {D — adom{d)) unless further specified. We denote the set of all order-

preserving database automorphisms of database d by Aut{C.,d), or simply Aut{d) when

Ç is clear from the context.

The following example should help to clarify the meaning of Aut{d).

E x am p le 3.6 Let d contain just a single relation having 4 tuples, r = { x z ,y z ,x w ,y w } ,

and let (adom(d),C) = { { w ,x ,y , z } ,{ x Ç: y , x Ç. z , x Q w}). We define functions: h\ by

hi{x) = y, hi{y) = x, hi{z) = z and hi{w) = w; h 2 by h2 {x) = x, h 2 {y) = z, h2 {z) = y

and h 2 {w) = w\ and fig by hz{x) = x, ^ 3(1/) = y, h^(z) = w and hs{w) = z. Then

h\ 0 Aut{d) because, although it preserves the database instance, it does not preserve

the ordering; and /i2 0 Aut{d) because, although it preserves the ordering, it does not

preserve the database instance; however, fig G Aut{d) because it preserves both the

ordering and the database instance.

It follows from Definition 3.17 that, for all partial orderings Ç, id G Aut{Q^d) Ç

Aut{=,d). Moreover, id is the only element of Aut{<,d) for any linear ordering < It

also follows that Aut{C.,d) = Aut{=,d)r\Aut{adom{d), Ç).

3 .3 .2 A G e n e ra lisa tio n o f P a r e d a e n s ’ an d B a n c ilh o n ’s T h eo rem

We now present our result of the generalisation of Paredaens’ and Bancilhon’s theorem in

this subsection. The underlying principle in our approach is to view an ordered database

as an unordered database together with a binary relation s representing {adom{d), Qd)-

An ordered relation r derived from d is regarded as an unordered relation over r x s,

where s is a binary relation representing {adom{r), Qd)- We assume from now on tha t (1)

adom{r) Ç adom{d) (we note tha t this is equivalent to assuming r G Poss{d)), and (2)

the set of constants using in selection formulas (7 = 0. We need the following technical

lemmas to establish our main theorem. The proofs of the next two lemmas follow from

the definition of order-preserving automorphism.

Lem m a 3.16 Let d = { r i , . . . , r„} be a database over { i? i,. . . , Rn}-, s be the unordered

relation over S given by s = {(a, 6) \ aC .b and a, 6 G adom(d)}, and let d' = { r \ , , r„, s}

considered as an unordered database over { i? i,. . . , i?„, 5}. Then Aut{=, d') = d).

Proof.

We show Aut(d') = Aut{d) by the following two parts.

63

{Aut[d!) Ç Aut{d)). Let h G Aut{d'). It follows tha t h{s) = s and thus (a, 6) G s if and

only if (/i(a), h{b)) G s. Hence, we have Va, b G adom{d), a Ç 6 if and only if h{a) Ç h{b).

So h G Aut[d).

{Aut{d) Ç Aut{d')). Let h G Aut{d). It follows from Definition 3.17 that h preserves

the ordering of adom{d) and h{d) = d. Thus, Va, 6 G adom{d), a Ç 6 if and only if

h{a) Ç h{b). Hence, we have h{s) = s and thus h{d') = d!. So h G Aut{d'). □

For a relation r, we define Aut{r) = Aut{{r}).

Lem m a 3.17 Let r be a relation over R, s be the unordered relation over S defined by

s = { (a ,6) I a Ç 6 and a, 6 G adom{r)}, and let r ' = r x s considered as an unordered

relation over RS. Then Aut{=,r ') = Aut{C.,r).

Proof.

We show Aut{r) = Aut{r') by the following two parts.

{Aut{r) Ç Aut{r')). Let h G Aut{r) and t G r ' . By the definition of r ', it follows that

3^1 G r and t 2 E. s such tha t t\ = t[R] and t 2 = t[5]. By the definition of Aut{r), we have

h{ti) G r and h{t2) G s. It follows that 3 / G r' such that t [i?i] = h{ti) and / [S'] = h{t2)-

Thus, h{t) G r'.

{Aut{r') C Aut{r)). Let h G Aut{r') and G r and t 2 E s. Then 3t G r' such that

[̂jR] = ti and t[S] = 2̂* By the definition of Aut{r'), we have h{t) G r ' . It follows that

h{t\) G r and h[t2) E s . □

Defining d' and r' as the above two lemmas, the following result can be proved using

induction on the number of relational operators together with some algebraic manipula­

tion.

The next lemma follows from the previous two lemmas, where d' and r' are defined

above.

L em m a 3.18 Let d be a database over R and r a relation over R. Then e'[d') = r' for

some e' E E uqra if and only if e(d) = r for some e E E p q r a -

Proof.

IF: Let e^{d) be the answer to an expression in E r qra with respect to d having k

operators. We show by induction on the number of operators in e tha t e(d') = r' for

some e G E u q r a - Let e{d) be some relation r over R.

(Basis). We have d = {r} and d' = {r, s} where s is defined as in Lemma 3.16, it is

64

trivial that r' = r x s with s = s.

{Induction). Assume that e^{d) = r and e'(d') = r ', where k > l. For any operator

op G PORA —{cr^çfî}, we have e'(d') = (op(7r; ((/))) xs if op is unary and e'(d') =

(((7T/î(rJ))op ((7riî(r2)))x s if op is binary. For the operator cr^çs, we have e'(d') =

{'^r{o'ab=cd{'>^')))^s, where {C ,D } is the schema of s. We note tha t s can be expressed

by an UORA expression in all the above cases. W ithout loss of generality, assume op

is unary, we have s = 7rcD(^AB=CD{ead{op{7rR{r'))) x ead(op(7Ti?(r'))) x s) (recall the

definition of Cad in Proposition 3.3).

ONLY IF: Similarly, we prove this part by induction.

{Basis). We have d' = {s} and d = 0. Thus, r and s = 0. It is trivial that e{d) = r.

{Induction). Assume that (e')^(d') = r' and e{d) = r , where A: > 1. We first show

tha t s and s can be expressed by the PORA expressions, s = cr^izB(ead(d) x Cad{d)) and

s = cTACB{ead{r) X Cad{r)), respectively. For any operator op G U O R A — {cta=b}, we

have e{d) = 7rR{op{rxs)) if op is unary and e{d) = ^ ^) ^ P (^ 2 X 5)) if op is binary,

where R \ and R 2 are the schemas of r\ and r 2, respectively. For the operator g a = B i we

have e{d) = 'k r { g a ^ b { (^ b ^ a { t x s))) . □

In order to compare Aut{d) and A ut(r), we interpret Aut{d) Ç Aut{r) as follows, for

all h G Aut{d), h{r) = r and h is a permutation of the elements in {adom{d) — adom{r)).

Note that this interpretation is consistent with the usual meaning of set inclusion Ç

when adom{d) = adom{r). Using our notation, we can state Paredaens’ and Bancilhon’s

theorem in [123] as follows.

Lem m a 3.19 Let d be an unordered database. Then e{d) = r for some e G E u q ra if

and only if Aut{=, d) Ç Aut{=, r). □

We now show that this can be generalised to ordered databases.

T heorem 3.20 Let d be an ordered database over R and r an ordered relation over R.

Then e{d) = r for some e G E p q r a if and only if Aut{C.,d) Ç Aut{C.,r).

Proof.

From Lemma 3.16, Aut{=,d') = Aut{C.,d), and from Lemma 3.17, Aut{= ,r ') = Aut{C.

,r). The result then follows from Lemma 3.19, with d' substituted for d and r' for r,

together with Lemma 3.18. □

65

We note tha t Theorem 3.20 can be straightforwardly extended to data domains having

any specified binary relation, but in this case a - may be primitive. Moreover, our result

can be easily generalised to the case of C ^ 0 by replacing Aut{d) in Theorem 3.20 by

the so-called C-fixed Aut{d) (see section 2.3 in [9]), which is defined as {h E Aut{d) | h

is an identity on C}.

We close this section with the following corollary, which is an interesting result that

follows from Theorem 3.20. Informally, in the case of linearly ordered domains, the

LORA expresses exactly the countably infinite set of all possible relations generated by

the active domain of a given database.

C o ro lla ry 3.21 Let d be a linearly ordered database. Then e{d) = r for some e E E lqra

if and only if r E Poss{d).

P ro o f.

IF: As we have observed, Aut{d) = {id}. Now, since id E Aut{r)., the statement Aut{d) Ç

Aut{r) holds for all relations r in Poss{d). Furthermore, LORA = PORA for linearly

ordered databases. By Theorem 3.20, it follows that there exists e E E l q r a such that

e{d) = r.

ONLY IF: It is trivial tha t for all e E E l q r a i ^(d) E Poss{d). □

3.4 Hierarchy of Computable Queries w ith Ordered D o­

mains

In this section we investigate the relationship between computable queries, ordered do­

mains and partially ordered relational algebras. We first define a hierarchy for each of

them and then we show tha t there exists a one-to-one correspondence between these

three hierarchies.

We now use an index subscript to denote different orderings over D, i.e., T>i = (D, C j

where i is a positive integer. We also use Aut{T>i) and PO RAi to represent the set of

ordering automorphisms and the PORA in which is crç., respectively. The semantics

of “more ordered” domains can be defined in terms of ordering automorphisms of the

subsets of domains.

D efin itio n 3.18 (M ore O rd e re d D o m ain) A domain V 2 is said to be more ordered

than another domain D i, denoted by V \ ■< V 2 , if for all T Ç D, Aut{T, Ç2) Q Aut{T, Çi).

66

The informal reason for allowing T Ç. D m. the above definition is that we take into

account the fact an active domain of a database can be defined on any subset of D.

As a consequence of the definition, Aut{d) would not be affected by the automorphisms

induced from outside the active domain. Let us consider the following example.

E x am p le 3.7 In Figure 3.2(a) we use Hasse diagrams representing ordered domains.

Obviously, we have for all T Ç Z) = {a, 6, c}, Aut(T, Ç3) Ç Aut(T, Ç2) Q

and thus the relationship X>i < X>2 < 7^3 can be captured by Definition 3.18 in a natural

manner.

Figure 3.2: Hasse diagrams of ordered domains

Now we consider the expressiveness of the PORA for different orderings. Let the set

of relations generated from the information contained in a given database d, denoted by

G en(Çi,d), be defined as {r | r = e{d) for some e G E p o R A i } -

D efin ition 3.19 (M ore P ow erfu l R e la tio n a l A lg eb ra) A relational algebra PORA2

is more powerful than another P O R A i, denoted by P O R A \ ■< PORA2, if for all databases

d, Gen{n.i,d) Ç Gen{Q2 ,d)-

If PORA2 is a more powerful language than P O R A i, then we can retrieve more rela­

tions from a given database instance using P O R A 2 . We still need to make an extension

of the notion of computable query for ordered databases, but we take a different approach

from [28]. The motivation for our definition is to include those queries which are mean­

ingful with respect to the ordered domain concerned. The criteria for being meaningful

over an ordered database d is that the query must be invariant under all order-preserving

database automorphisms over d.

Let D B{H) be the countably infinite set of all databases defined over a database

scheme R and let % = U ^o RiD^). (Recall tha t we assume tha t D is a common domain

for all attributes.)

67

D efin ition 3.20 (M eaningful C om putable Query) A meaningful computable query

with respect to a given domain denoted by 6, is a partial recursive function from

Z)B(R) to X such that for all d E DB{H),

1. if 6{d) is defined, then S{d) E Poss{d), and

2. for all h E Aut{C.i,d), h{0{d)) = 0{d).

We denote the set of all meaningful computable queries by Qi.

Note that our definition of a meaningful computable query is the same as the con­

ventional one if we restrict ourselves to unordered domains. Now we state two technical

lemmas and then present our main theorem. The first lemma follows easily from The­

orem 3.20 and Lemma 3.17. It can be regarded as a generalisation of Lemma 3.17 to

databases. The second lemma is useful when we compare different ordered databases.

Basically it allows us to consider ordering automorphisms on the underlying domain

instead of automorphisms on databases.

Lem m a 3.22 Let d = { r i , . . . , r„} be a database over { R \ , . . . , s be the unordered

relation over S given by s = {(a, 6) | a Ç 6 and o, 6 E adom(d)}, and let r = r i x •• - x r„ x s ,

considered as an unordered relation over R \ - ■ ■ RnS. Then Aut{Q, d) = Aut{=, r).

Proof.

We show Aut{C.,d) = Aut{= ,r) by the following two parts.

{Aut{C., d) Ç Aut{=, r)). We let r ' = r i x • • • x r„ , which is an ordered relation obtained by

the PORA expression as shown. By Theorem 3.20, it follows tha t Aut{C.,d) Ç Aut{n.,r')

and also by Lemma 3.17, it follows that Aut{C.,r') Ç Aut{=,r). So we have Aut{C.,d) Ç

Aut{=,r).

{Aut{=,r) Ç Aut{Q,d)). Let h E Aut{=^r). We claim tha t h{vi) = r* and h(s) = s.

Assume to the contrary tha t this claim does not hold. Then we have either h{vi) ^ r* or

h{s) ^ s. Assume that h{vi) ^ n , then 3t E ri such that h{t) 0 r^. Let t' E r such that

t'[Ri] = t. Thus it follows tha t h{t') 0 r, which leads to contradiction, since we assume

h E Aut{=,r). The argument is similar to the case of h{s) ^ s. We now have h E Aut{=

, d'), where d' = { r i , . . . , s}. By Lemma 3.16, it follows tha t Aut(=, d') = Aut{C., d).

Thus, h e Aut{C,D,d). □

68

L em m a 3.23 V \ ■< V 2 if and only if Aut{Q 2 id) Q Aut{C.i,d) for all databases d over

R.

P ro o f.

IF: Consider any h 6 Aut{T, Ç2) with T C D. Let X = {a Ç: T \ a ^ h{a)} and, since

h is a finite automorphism, suppose X — { o i, . . . , 0 ^}. Define a database d over R as

follows, for all r E d, r consists of exactly k tuples { h , . .. ,tk} for some finite natural

number fc, where U = (&%,..., for 1 < % < A;. Obviously, we have tha t h G Aut{Ç.2 ,d).

By hypothesis, this implies h G Aut{C.i,d) and thus h G Aut{T, Ç i).

ONLY IF: This follows easily by using the fact tha t = Aut{=^d)r[Aut (T,

for any database d, where T = adom{d). □

We now present our main result stating the association between domains, queries and

languages. This allows us to establish hierarchies for these entities.

T h e o re m 3.24

1 . T>i :< T>2 if and only if Qi C Q2 ,

2. V i :< T>2 if and only if P O R A \ ■< P O R A 2 .

P ro o f.

(1) IF: Assume V \ T>2 i by Definition 3.18 and Lemma 3.23, this implies that there

exists a database d' such that /i2 0 Aut{C.i^d') for some h2 G Aut{Ç.2 ^df). Let d' =

{ r i , . . . ,rn}. We now construct an instance of a query that is in Qi but not in Q 2 . We

substitute d = d' and r = r' in Lemma 3.22. Then we have that for all h G Aut{Ç.i,d'),

h{r') = r'. On the other hand, h2 {r') 7̂ r' since h 2 0 Aut{Q\^d'). We define a query ô as

follows: 6{d) = r' when d = d' and 0{d) is equal to 0 otherwise. By part (2) of Definition

3.20, Ô E Qi but S 0 Q2 -

ONLY IF: Let Ô E Qi and d G D B (R) . From part (1) of Definition 3.20, 6 (d) G Poss{d)

and from p a rt(2) of Definition 3.20, for all h E Aut{Ç,i,d), h{S{d)) = 6{h{d)). By the

assumption V \ :< V 2 and Lemma 3.23, Aut{U,2 ^d) Ç A ut(Ç i,d). Therefore, for all

h E Aut{C,2 ,d), h{6{d)) = 6{h{d)) and thus 6 G Q 2 -

(2) IF: Assume T>i X>2? by Definition 3.18 and Lemma 3.23, there exists a database

d' = { r i , . . . , r „ } such that Aut{Ç-2 ^d') ^ A ut(Ç i,d '). It suffices to exhibit a database

d and a relation r such tha t r E (jen (Ç i,d) but r 0 Gen{C.2 ,d). We let d = d' and

69

r = r i X • • • X X s and s = {(a, 6) | a Çi 6 and a, 6 G adom(d')}, respectively. Clearly, s

can be derived from d by some e G P O R A \ and thus r G G en(E i, d). It remains to show

r 0 G en(Ç2, d). Suppose r G Gen(Ç2, d). By Theorem 3.20, Aut{Ç,2 ,d') Ç A ut(Ç 2 ,r) =

Aut{=^r)r\Aut{adom{r)^^ 2)- It follows that A u t{ ^ 2 id') Ç Aut{=,r). By Lemma 3.22

it follows tha t Aut{C.2 ,d') Ç A ut(Ç i,d '), which leads to a contradiction.

ONLY IF: Let r G G en(Ç i,d). We need to show tha t r G Gen{Ç.2 ,d). By Theorem 3.20,

Aut{n.i,d) Ç Aut{Q i,r) . Thus Aut{adom{d), Ç.2) fl Aut{C.i,d) Ç Aut{adom{d),C.2) fl

Aut{C.i,r). Moreover, we have Aut{n.i,d) = Aut{adom{d),C,i) n Aut{—^d) and Aut{\I.i

,r) = Aut{adom{d), Ç i) D Aut{=,r). It follows tha t Aut{adom{d), Ç2) C Aut{adom{d), Çi

) n Aut{=^d) Ç Aut{adom{d), Ç2) C Aut{adom{d), Ç i) H Aut{=,r). By the assumption

of T>i :< T>2 and by Definition 3.18, we have Aut{adom{d), Ç2) Q Aut{adom{d), Ç i). It

follows that Aut{adom{d), Ç.2) H Aut{=,d) Ç Aut{adom{d),C.2) H Aut{=,r). Hence we

have Aut{C.2 ,d) C Aut{C.2 î)̂- By Theorem 3.20 again, we have r G Gen{C.2 -,d). □

The following corollary states that there is a correspondence between the set of mean­

ingful computable queries and the relational algebra. Informally the relational algebra

P O RAi (non-uniformly) expresses the result of Qi on a fixed database instance. There­

fore in this sense we can say that the language PO R A i is non-uniformly complete.

Corollary 3.25 Q\ Ç Q2 if and only if P O R A i :< P O R A 2 .

Q ueries Q= Ç Ç Qi Ç Ç Q<

t

D om ains (D ,=)X . ■ ■

I t

A lg eb ras P O R A ^ d • ■ X PO RAi X • ■ X PORA<

Figure 3.3: A correspondence between hierarchies of queries, domains and languages

70

We present the diagram in Figure 3.3, which summarises the relationship between the

hierarchies of (1) meaningful computable queries, (2) partially ordered domains, and (3)

partially ordered relational algebras we have discussed. The implications of this result are

that if the underlying data domains of an ordered database have more inherent structure,

then a wider scope of queries are possible. In other words, the ordered relational model

can provide more expressive query languages than those of the conventional one, and in

this sense we can say tha t more meaningful queries are possible with respect to an ordered

relational database. There is still an open problem to find a syntactic characterisation

tha t is equivalent to the definition of a more ordered domain.

3.5 U pdating Ordered Databases

There has been a fair amount of research on the topic of updates in conventional databases

[4]. The problem of updating databases can be further partitioned by considering three

perspectives related to the relational data model, which are listed as follows.

1. Updating views at the external level of a DBMS.

2 . Updating relations at the conceptual level of a DBMS.

3. Updating the underlying domain of attributes.

Each of these three kinds of updates is related to the others. The first category of

updates is still an on-going research issue, which concerns achieving logical data indepen­

dence of conventional databases or their extensions such as incomplete databases [58].

Basically, a view in a database tailors the database to different requirements of a vari­

ety of database users. For example, using the view facilities provided by a DBMS, the

DataBase Administrator (DBA) can choose to hide certain information in a database for

some security reasons, or to materialise a view so as to facilitate the very recent strategy

of data warehousing used in the commercial sector [69, 107]. However, the relational

data model does not provide the users with full support of logical data independence.

For example, if a view is obtained by projection on a relation r, then deleting a tuple

from the view may lead to ambiguity in deleting the corresponding tuple in r, since a

projected tuple may come from many possible tuples in r. Thus it results in the so-called

view update problem as follows, given a view and an update against this view, how to

71

translate the given update into an appropriate update against its underlying relational

database without causing unnecessary loss of information.

The view update problem occurs similarly in ordered databases. There is no difference

in the ordered relational model in this case of updating unless it affects the underlying

domain. One approach to solve this problem is to restrict view updates in certain types

[27] in order to prevent an inconsistent database occurring at the conceptual level. An­

other approach is to provide users with a universal relation interface [147], which can

achieve logical database independence by allowing users to view the database as if it were

composed of a single relation.

The problem of updating relations in the context of ordered databases is related to a

more fundamental question of updating domains. Suppose a tuple involving a value which

is associated with some new semantics of its domain is inserted into an ordered relation,

then the semantic domain may need to be updated. For example, when a new manager

is employed in a company, the boss/subordinate relationship may be changed and in

such a case the domain EMP_NAME should be updated to reflect the new hierarchy

of employees. It is interesting to note that some semantic domains are relatively static

and they can be regarded as intensional data [9] such as relation schemas. For example,

the semantic domain of the post ranks in a university, {lecturer < senior lecturer <

professor} is invariant with respect to database instances. Suppose a tuple involving a

value which associates with some semantics of its domain is deleted from a relation, then

this value may need to be deleted from the semantic domains. For example, when a

manager has left a company, the boss/subordinate relationship may be changed and the

domain EMP_NAME should be updated accordingly.

We now address the issue of updating ordered domains. By updating we mean a

sequence of delete or insert operations. Let us begin with two basic assumptions regarding

ordered domains. First, we assume that the domain V we intend to update is finite.

Second, we assume the uniqueness name axiom, i.e., each domain value is required to

have a unique name which is distinguishable from other names of values.

We first consider the special case of V being unordered. Suppose we want to delete

an element a from V. If this value does not occur in r (i.e., a 0 adom{r)), then in

principle, there should be no restriction on such a delete on %), since it does not affect

r. Otherwise, a delete operation should be carried out on the affected tuple (i.e., those

72

tuples containing a) in r prior to the delete being carried out on V. In such a case there

are three approaches we can use to eliminate the occurrences of a from r.

1. To replace the occurrence of a with null values in the affected tuples if null symbols

such as U N K are provided (i.e., an incomplete relation is defined).

2. To remove all the affected tuples from r.

3. To reject such a delete operation on V.

We believe that all the above approaches are reasonable in practice. Thus the seman­

tics of deleting an element from a domain should be further clarified. For example, an

employee record (Jose, junior-programmer^ \2 K) in a relation EMPJRECORD over

the schema {EMPJMAME, POST_TITLE, SALARY} represents the fact that the em­

ployee Jose, who is a junior programmer, has salary 12K. Then there are several possible

semantics for deleting the value “junior programmer” in the corresponding domain of

POST_TITLE. One scenario is that the post title is being changed but the company

has not yet formerly approved a new title. Then the first approach is appropriate. An­

other scenario is that all junior programmers have left their jobs and thus the company

changes its management structure and decides that this post title will not be used in

future. Then the second approach is appropriate. The third scenario is that the DBA

wants to delete the post title only if there is no employee still possessing such a post

title in the EMP_RECORD. It is reasonable to expect that the DBMS should provide

the users with further guidance to carry out this process.

The issue of maintenance of the partial ordering in a domain is also essential when up­

dating a domain. The strategy we adopt is to keep the change to be minimal with respect

to the ordering on the domain. We formalise this concept as the following definition.

D efin itio n 3.21 (O rd e r-P re se rv in g U p d a te s) Let V — (D, □/)) be a domain such

tha t after it has been updated becomes V \ = (D i, Edi)- We call the update an order-

preserving update if a Qd b implies that a b for any pair of elements a,b E Di.

We observe that when deleting an element a from T> the ordering between its successor

and predecessor should also be removed. If a is a minimal element in then the delete

is an order-preserving update; otherwise, we have many possible ways to define the new

ordering of the elements tha t are previously connected to a in D and the delete may not

be an order-preserving update.

73

D efin itio n 3.22 (D e le te O p e ra to r) Let del[a) denote the deletion of the element a

from a domain V. We call the process of invoking del {a) on V the delete operation. The

delete operator can be classified into the following three modes of a-del, P~del and 7 -deZ,

respectively.

1. The delete operator in a mode, denoted as a-del {a), represents the process of

deleting an element a from V and then promoting one of its successors to its original

position.

2. The delete operator in (3 mode, denoted as (3-del{a), represents the process of delet­

ing an element a from V and then connecting all its successors to all of its prede­

cessors (if they exist).

3. The delete operator in 7 mode, denoted as 'y-del{a), represents the process of delet­

ing an element a from V without adjusting the ordering of its successors and pre­

decessors, i.e., only removing x Qd y whenever x = a or y = a.

The following example illustrates the delete of an element a from domain V via a-del,

P-del and 7 -deZ to become T>i, V 2 and P 3 , respectively.

E x am p le 3.8 Figure 3.4(a) shows the domain T> before the delete operation del{a).

Figure 3.4(b) shows tha t the domain T>\, which is the result of a-del{a). Note tha t the

choice of a successor (elements d or e) is system dependent. Figure 3.4(c) shows tha t the

domain V 2 , which is the result of (3-del{a). Again, the choice of a successor is system

dependent. Figure 3.4(d) shows that the domain V 3 , which is the result of 'y-del{a).

Thus, the domain is more fragmented than the mentioned ones.

b b

aO P

(a) before delete (b) a-del{a) (c) f3-del{a) (d) 'y-del{a)

Figure 3.4: Various modes of deleting an element a from V

74

The choice of deletion modes depends on the underlying semantics of the delete oper­

ation. For example, if D is a semantic domain representing the hierarchy in a company,

then the operator a-del may be used to promote an employee to replace a retired man­

ager. The operator (3-del may be used when a manager is retired, and his subordinates

are all assigned to report to his bosses. The last operator j-del may be used to represent

a step prior to the process of re-defining all ranks of employees. It is reasonable to expect

that a DBMS should provide the users with further guidance to carry out this process.

We now consider inserting an element into T>. When an element a is added into V, we

should define the new ordering relationships between a and the existing elements in 2),

which can be either a successor or a predecessor relationship. We formalise this concept

as follows.

D efin ition 3.23 (In se r t O p e ra to r) Let x be an element m V = {D C/j) and a be a

new element which after adding it to T> becomes T>i = {Di Edi)- The successor operator,

denoted as succ{x,a), creates an ordering x a. The predecessor operator, denoted as

pred{a,x), creates an ordering a Qdi The insert operator, denoted as ins{a), consists

of a finite set of operations succ{x, a) and pred{a, x), such tha t if X\ Çd X2 Qd • • • Qd ^n-,

then either pred{a,X\) 0 ins{a) or succ{xn,a) ^ ins{a). We call the process of invoking

the insert operator on V the insert operation.

Note that the restriction pred{a,x\) 0 ins(a) or succ{xn,a) 0 ins{a) in the above

definition is to prevent a “cyclic ordering” occurring in X>i, for example if b Cp c, then

ins{a) = {pred{a,b),succ{c,a)} results in a Qdi b Qdi c Qdi a, which violates the anti­

symmetric criteria of a partial ordering (see Definition 2.1). Moreover, it can be checked

tha t EjD Ç Thus the original ordering of V is preserved by the insert operation.

We state this fact as the following observation.

O b se rv a tio n 3.1: The operator ins is an ordering-preserving update.

E x am p le 3.9 Let us consider an element f inserted into the domain V as given in

Figure 3.5(a). The following are three possible insert operations: in s i{ f) = {pred{f,d)},

%ns2(/) = {succ{c,f)} a n d m s 3(/) = {succ{d, f) ,p red { f ,c)} , which result in the domains

V i, T>2 , and V 3 , as given in Figure 3.5(b), Figure 3.5(c) and Figure 3.5(d), respectively.

We recall that updating is considered to be a sequence of insert and delete operations.

From this point of view, we can first use the delete operator 'y-del repeatedly to remove all

75

(a) Before insert (b) in s i{ f) (c) in s 2 {f) (d) m s3(/)

Figure 3.5: Inserting an element / into T>

the existing elements in T>. Thereafter we use the insert operator ins to form an arbitrary

new domain X>2 by successively inserting elements to V 2 with the desired ordering defined

by an appropriate set of the succ and pred operators. The expressiveness of insert

and delete operations in updating a domain can be informally stated as the following

observation.

O b se rv a tio n 3.2: The two operators ins{a) and 'y-del{a) are sufficient to transform

an ordered domain V = {D ,Q d) into another ordered domain T>i = (D i, EDi), where

Di = D\J {a}.

Note that if V is infinite, then the operator ins may not be capable of defining the

new ordering of T>i, since it is a finite set of prec and succ. In such a case the above

observation is not applicable. For example, if V is unordered, we cannot have an insert

operation to obtain a new domain T>\ such that V i = 7) Li {a} and b Qdi cl for all b E D.

3.6 Discussion

In this section we briefly discuss the open problem of finding a syntactic characterisation

of “more ordered” that is equivalent to Definition 3.18. Recall tha t V i = {D, Çi) and V 2

= (-D, ^ 2)- We first state the problem as follows, given two domains T>i and V 2 , is there a

characterisation of their structures such that V i :< V 2 if and only if Aut{T>2) Ç Aut{T>i)?

A possible attem pt of defining “more ordered domains” , which corresponds to the

intuitive view of “more ordered” can be described as follows, if V 2 is more ordered than

T>i, then those pairs of elements ordered by Çi are also ordered by Ç2. From this point

of view, we now give the following definition.

76

D efin itio n 3.24 (M ore O rd e re d D o m ain s) T>i X V 2 if for all elements 01,02 G D,

if oi Çi 02 , then oi Ç2 02 .

Although this definition seems to be very natural, it is far too simple to be a complete

solution to the problem. There are many cases happening that T>i V 2 according to

Definition 3.24 but Aut{V 2) G Aut{V\). The following is one of the counter examples.

E x am p le 3.10 In Figure 3.6, the component 6 Çi o in V \ but 6 ^ 2 a in thus T>i

T>2 . However, we still have that Aut{V 2) Ç Aut{T>i) because A ut{V 2) = {%d, h}, where h

is an automorphism defined by h{a) = o, h{b) = 6, h{c) = d and h{d) = c, which is equal

to Aut{Vi).

o o o o

Figure 3.6: A counter example of Theorem 3.24 arising from Definition 3.24

From our further investigation, we find tha t there may be a dichotomy between

the notion of automorphism and ordering of domains. Informally speaking, if we focus

ourselves mainly on the ordering structures of domains as stated in Definition 3.24, we

cannot establish a simple relationship between automorphisms of two domains.

77

Chapter 4

D ata D ependencies and D atabase

D esign Issues for the Ordered

Relational M odel

Functional dependencies (FDs) [147, 9] and inclusion dependencies (INDs) [109, 22] are

commonly recognised as the most fundamental data dependencies tha t arise in practice

in conventional relational databases. In this chapter we examine these data dependencies

in the context of ordered relational databases.

We extend the notions of FDs and INDs to hold in an ordered database and call them

ordered functional dependencies (OFDs) and ordered inclusion dependencies (OINDs),

respectively. Informally speaking, OFDs can capture a monotonicity property between

two sets of values projected onto some attributes in a relation, and OINDs can capture

the notion of a Hoare ordering (recall Definition 2.7) between two sets of values projected

onto some attributes in a database. We also discuss the interactions between OFDs and

OINDs.

The semantics of OFDs and OINDs are defined by means of two possible extensions of

the domain orderings: pointwise-orderings and lexicographical orderings, whose semantics

have been discussed in Chapter 2. We classify OFDs and OINDs according to whether

we use pointwise-orderings or lexicographical orderings in their definitions. Altogether

there are four categories of data dependencies, whose short forms are written as POFDs,

LOFDs, POINDs and LOINDs, respectively. A summary of our classification of OFDs

and OINDs with examples of their notations is given as the table in Figure 4.1

78

D a ta D ep en d en c ies Po in tw ise- O rd e rin g s L ex icog raph ica l O rd erin g s

Ordered Functional POFD LOFD

Dependencies (OFDs) X ^ Y

Ordered Inclusion POIND LOIND

Dependencies (OINDs) Ê R[X] £ 5[y]

Figure 4.1: OFDs and OINDs arising from different extensions of domain orderings

In the relational database literature, the implication problem is an im portant issue

arising from investigating data dependencies, which we now state as follows: given a

relation r which satisfies a set of data dependencies F, is it also true that r satisfies

a data dependency / ? If the answer to the above question is positive, then we say F

logically implies / and denote this fact by F \= f . There are two approaches to tackle this

problem.

One approach is to establish a set of inference rules which constitutes the axiom

system A. Hence, we can use the rules of A to derive f from F and denote this process

by F h / . We call A sound and complete, if we can prove that F h / if and only if F

1= / . A sound and complete axiom system for F is very desirable, since it guarantees

the implication problem for F is recursively enumerable. This is due to the fact tha t in

principle, we can exhaustively apply the rules of A to generate all data dependencies that

can be logically implied by F. In addition, the axiom system A provides us with a basis

to find a more efficient algorithm for solving the implication problem.

Another approach is to develop a chase procedure which consists of a set of chase rules

as a theorem proving tool. We choose an appropriate chase rule to apply to a relation r

until a fixpoint is attained in order to test whether r satisfies F [101, 9, 87]. Moreover,

the chase procedure operates on a relation containing variables as data values, known as

a tableau [5, 9], which is basically the template for those relations that could possibly

violate / . Suppose we can prove that using the chase procedure we can transform a

tableau that satisfies F into a tableau that also satisfies / , and this holds if and only if F

\= f . Then we are able to use the chase procedure to confirm or refute that F logically

79

implies / . We call the chase procedure possessing this properly sound and complete.

We assume that the domains are linearly ordered in discussing the issues of OFDs and

OINDs. In Section 4.1 we present FDs in the context of ordered databases. In Section

4.2 we adopt the first mentioned approach to show that the axiom system comprising the

inference rules for POFDs, which is a superset of Armstrong’s axiom system for FDs, are

sound and complete. We adopt the second mentioned approach to extend the chase rules

for the case of LOFDs. We investigate the properties of a relation r being chased with

respect to a set of LOFDs F (which we denote as C H A S E {r .^)) and then show that the

procedure CH ASE{r^¥) terminates and satisfies F. Moreover, using an extended notion

of tableaux for LOFDs, we show that the chase is sound and complete for LOFDs. Hence,

the implication problems for POFDs and LOFDs are decidable and it is linear time for

POFDs. We also present a set of inference rules for LOFDs, which are shown to be sound

but we do not know if they are complete. In Section 4.3 we generalise the definition of

conventional inclusion dependencies to Ordered INclusion Dependencies (which we call

OINDs). We present a set of inference rules for POINDs and LOINDs, respectively, which

are both shown to be sound. We show that the axiom system comprising the inference

rules for POINDs is also complete. The interaction between OINDs and OFDs is also

discussed. In Section 4.4 we discuss some database design issues for ordered databases

in the presence of OFDs and OINDs. In Section 4.5 we give our concluding remarks for

this chapter.

Throughout this Chapter we refer to a sequence of attributes as a short hand for a

sequence of distinct attributes. (In other words, we assume tha t sequences of attributes

do not contain any repeated attributes.) We use the common notation for both sequences

and sets, i.e., X and Y are used to denote sequences of attributes, whereas A and B are

used to denote single attributes. When no ambiguity arises we refer to a sequence of

attributes as a set of attributes. However, we remark tha t the sequence A B and B A

are different, whereas the sets A B and B A are the same. We take A G (Ai , . . . , A„)

to mean A G {Ai , . . . , A„} and (Ai , . . . , A„) Ç (B i , . . . , By^) where n < m, to mean

{Ai , . . . , An} Ç { B i , . . . , Bm}- We may also write Ai • • • A„ instead of (Ai , . . . , A„) to

describe a sequence when convenient.

Let X = (A i , . . . , Am) and Y = (B i , . . . , B„). We denote the fact tha t two sequences

have the same elements, i.e., {Ai , . . . , Am} = { Bi , . . . , B„}, by A ~ T . The difference

80

between two sequences of attributes, denoted as X — y , is defined by the sequence

resulting from removing all the common attributes in X and Y from X while maintaining

the original order of the remaining attributes in X . Y is said to be a subsequence of X if

Y Ç X and the attributes of Y maintain the original order of X . We also denote by X Y

the concatenation of two sequences X and Y, where X and Y are disjoint, i.e., they have

no common attributes. If X and Y are not disjoint, then X Y is defined to be X (Y — X).

A prefix of X , denoted by pre{X), is a sequence of the form (Ai , . . . ,Ami) where 1 <

m i < m. A shuffle of X and Y , denoted by shu{X, Y) , is defined as a sequence of the form

(C l , . . . , Cm+n), where there exists two subsequences of attributes . . . , C%)̂ = X

and {Cj^,. . . ,Cj^) = Y . For example, let X = {a,b,c) and Y = (1,2,3). Then both

(a, 1,2,3,6, c) and (1, a, 2,6, c, 3) are sh u {X ,Y) . However, (6, c, a, 1,2,3) is not because

the ordering of X is not maintained.

4.1 Functional Dependencies (FDs) in Ordered Databases

Bearing in mind that the implication problem is an im portant issue arising in developing

the theory of data dependencies and FDs are the most natural data dependencies arising

in practice, we first formalise the notion of logical implication and an axiom system, and

then review Armstrong’s axiom system for FDs, which is a classical example of axiom

systems in the literature of relational database theory [147, 9].

D efin itio n 4.1 (Logical Im p lic a tio n a n d A xiom S ystem) We say that a set of data

dependencies F logically implies a data dependency / over R, written F [= / , whenever

for all relations r over R, if for all / ' G F, r |= / ' holds, then r [= / also holds. An axiom

system A for F is a set of inference rules (or simply rules) that can be used to derive

data dependencies from F over R. We say that / is derivable from F by A, if there is

a finite sequence of data dependencies over R, whose last element is f , and where each

data dependency in the said sequence is either in F or follows from a finite number of

previous data dependencies in the sequence by one of the inference rules. We denote by

F h / the fact that / is derivable from F by a specified axiom system.

We remark tha t Definition 4.1 will be repeatedly used in different contexts of data

dependencies. For example, in this section the set of data dependencies F is restricted

to the scope of FDs. However, when discussing OFDs in the next section, we will use F

81

h / to mean tha t a set of OFDs F logically implies an OFD / . Similarly, we will also

use F h / to mean that a set of OINDs F logically implies an OIND / when discussing

OINDs in Section 4.3.

Armstrong’s axiom system provides a set of inference rules which can infer new FDs

from given ones. It is also well-known tha t Armstrong’s axiom system is sound and

complete for FDs being satisfied in conventional relations. This result is very significant

in database design, since using this axiom system we can derive some efficient algorithms

to confirm whether or not a given FD holds in a relation schema [9]. Moreover, it provides

us with a basis to further develop FDs in the context of other advanced applications which

have fuzzy, incomplete or imprecise information [128, 8 6 , 87].

D efin itio n 4.2 (A rm s tro n g ’s A x iom S y stem) Let X , Y, Z be subsets of R, A E R

and F be a set of FDs. Armstrong’s axiom system constitutes the following inference

rules for FDs.

(F D l) Reflexivity: if Y Ç %, then F \~ X ^ Y .

(F D 2) Augmentation-. If F h A —> V, then F h X A - ^ Y A .

(F D 3) Transitivity-, if F h A —>■ T and F \- Y ^ Z, then F h X —>■ Z.

There are two possible views of FDs in the context of ordered databases. The first

one is straightforward, that is, a FD in conventional relational databases can be viewed

as a special case of an OFD when a database is unordered.

Another view of FDs in the context of ordering is more interesting. We recall that

we have discussed the notion of SOI (System Ordering Independence) in Chapter 2,

which basically means tha t the ordering of tuples in a relation is not affected by the

implementation of the system. We have also defined the domain ordering operator ljx

which governs the ordering of a relation r over R by imposing the lexicographical ordering

over X C R. The operator ujx is a useful tool to study the relationship between domain

orderings and data dependencies. When combining with projection we have the

following interesting properties.

P ro p o s itio n 4.1 Let X ,Y , Z Ç R and r be a relation over R. The following statements

are true.

1. ujR{r) is SOL

82

2. if wx7r%y(r) is SOI, then ujxz'^xri'f') is SOL

3. if cüxT^XYz{r) is SOI, then cj%7rxy(r) is SOI.

4. if w x7Txy(r) is SOI, then o;xz7rxyz(?^) is SOI.

5. if w x7Txy(r) is SOI and cjyTry^(r) is SOI, then ujx^^xzir) is SOI. □

We can now use u x to define FDs via the notion of SOI as follows.

D efin ition 4.3 (A lte rn a tiv e D efin ition o f F D in O rd e re d R e la tio n s) An ordered

relation r over R satisfies a functional dependency X ^ Y ii ujx'^xri'f') is SOI.

The operator ivx can be further used to define a subclass of relations called object

relations [14, 85]. We need the following definition to illustrate this concept.

D efin itio n 4.4 (M e ta -a t t r ib u te in O rd e re d R e la tio n s) An attribute M G R is said

to be a meta-attribute for an ordered relation r over R, if it satisfies that ujMxi"^) = ^ for

all X C R, where X can be empty.

We call a relation schema R an object relational schema if it contains a distinguished

attribute being a meta attribute. Furthermore, we call a subclass of relations object

relations, if it consists of relations that are defined over object relational schemas. Meta­

attributes in object relational schemas are maintained by the system only, and thus they

can be hidden from users. The definition of m eta-attributes formalises the use of tuple

identifiers. For example, the relational DBMS Oracle employs an attribute called ROWID

(ROW IDentifier) to manipulate tuples but this attribu te is normally hidden from users

[82]. The following proposition states tha t m eta-attributes possess the desirable property

of SOI.

P ro p o s itio n 4.2 is SOI.

We now extend Armstrong’s axiom system for FDs to the class of object relations by

adding the following inference rule.

(F D 4) Meta-attribute: F h M —>• R.

We need the following inference rule, which can be derivable from FD l to FD3, to

prove next theorem.

(F D 5) Union: if F h A ^ T and F h AT —> Z, then F h AT -y Y Z .

83

The closure of a set of attributes, X C R, with respect to a given set of FDs F,

denoted as X"*", is given by = {A | F h X —>■ A}. We now show that the axiom

system comprising inference rules from FD l to FD4 is also sound and complete for FDs,

holding in the class of object relations. The method tha t we use is standard (c.f., see

Chapter 7.3 in [147]), whose idea is first assuming that X —>■ T cannot be inferred from

the axiom system, and then presenting a relation as a counterexample in which all the

dependencies of F hold except X —>• T . In other words, we obtain the result tha t F does

not logically imply X —̂ Y .

T h e o re m 4.3 The axiom system comprising inference rules from F D l to FD4 is sound

and complete for a set of FDs F, holding in the class of object relations.

P ro o f.

By Proposition 4.1, it follows that the inference rules from FD l to FD3 are sound. FD4

is also sound by Definition 4.4 and Proposition 4.2. We prove completeness by showing

tha t if F t/ X -> y , then F ^ X -> T . Equivalently for the latter, it is sufficient to

exhibit a relation r such that r |= F but r X —> Y . Let r be the relation shown in

Figure 4.2, where M, X""" and Z denote pairwise disjoint sets of attributes such that

Z = R — M X +. Note that M 0 X"'", otherwise, it is trivial tha t X —> T by FD4.

M X+ z

1 1 . . . 1 1 . . . 1

0 1 . . . 1 0 . . . 0

Figure 4.2: An object relation r showing tha t r ^ X ^ Y

We first show that r |= F. Suppose to the contrary tha t r ^ F and thus there exists a

FD, C ^ D E F such tha t r ^ C D. It follows by the construction of r tha t C Ç X"*"

and there exists A E {D C\ Z M) such tha t A 0 X"*". Suppose A E Z. By FD l, it follows

tha t C ^ A and by FD3 again, it follows tha t X A. This leads to contradiction, since

it follows that A E X+. Suppose A = M . By FD4, it follows that M —)> 72, by FD l,

it follows that M —)■ T , by FD3, it follows that X -> M , and finally by FD3 again, it

follows that X -> y . This leads to contradiction, since we have derived F h X —>■ y .

We conclude the proof by showing that r ^ X -> y . Suppose to the contrary that

r f= X -4- y ; by the construction of r, y Ç X"*" since M 0 X"^. It implies that for all

84

A e Y \= X A. Therefore, for all A G Y , F \~ X A. By FD5, it follows that F h

X Y . This leads to contradiction, since we have derived F t- % —> T . □

4.2 Ordered Functional Dependencies (OFDs)

An OFD in the ordered relational data model involves comparing the orderings between

two sets of data items. We find that OFDs arise naturally in many applications, especially

in those that consist of temporal data. A typical example is that an OFD can capture the

constraint tha t the salary of an employee increases every year. Another good example

(c.f., see [55]) is the constraint tha t in a bank account the chronological ordering of

date increases as does the numerical ordering of check numbers. Moreover, OFDs can

be applied to maintain the “sum of data values” relative to a set of attributes. For

instance, the total production for a manufacturing plant should increase every month or

the commission earned by an insurance salesperson should increase as the total number

of policies he can make from his/her customers.

The semantics of an OFD with two or more attributes on either the left hand side or

right hand side are defined according to lexicographical orderings and pointwise-ordering

on the Cartesian product of the underlying domains of the attributes in the OFD, which

gives rise to POFDs and LOFDs, respectively. From now on, OFDs means either POFDs

or LOFDs. We remark also that they are exactly the same data dependencies in the

special case of unary attributes, which means tha t only one attribute is allowed on both

the left and right hand sides of an OFD.

To illustrate the usage of OFDs, we show in Figure 4.3 a relation called EMP_RECORD

over the set of attributes {EMP, POST.TITLE, YEARS, SALARY}. The semantics of

SALARY .RECORD are: an EMPloyee with a given POST TITLE, who has been working

in a company for some YEARS, has the present SALARY.

EMP POST.TITLE YEARS SALARY

Mark Senior Programmer 15 35K

Nadav Junior Programmer 7 25K

Ethan Junior Programmer 6 22K

Figure 4.3: An employee relation SALARY-RECORD

85

We assume there is a semantic ordering in POST-TITLE as represented by the

following domain {’Junior Programmer’ < ’Senior Programmer’}. Then the relation

SALARY -RECORD given in Figure 4.3 satisfies the POFD, (POST-TITLE, YEARS}

SALARY, which states the fact that the SALARY of an employee is greater than

other employees with junior post titles and less experience in the company, and the

LOFD, (POST-TITLE, YEARS} SALARY, which states the fact the SALARY of

an employee is greater than other employees with junior post titles, or with the same

post title but less experience in the company. Note that the semantics of the POFD

and the LOFD mentioned above are different. For instance, in the former case, an em­

ployee has higher salary than another one only if he/she has both a senior post title and

more experience than another, whereas in the latter case, it requires only that he/she

has a senior post title than another. Furthermore, if Mark leaves his post and the pro­

motion of Ethan to replace Mark’s position is carried out by updating his record to be

{Ethan, Senior Programmer, Q,26K) (i.e., updating the third tuple), then this updat­

ing violates neither the POFD nor the LOFD. However, if his record is updated to be

{Ethan, Senior Programmer, 6 , 2AK), then it violates the LOFD, since Ethan now has a

more senior title but less salary than Nadav. On the other hand, the POFD still holds in

this updating, since Nadav still has more experience than Ethan. The appropriateness

for the choice between the POFD or the LOFD in this case depends entirely on the

semantics of the promotion policy adopted by the company.

We let X be { A i , . . . ,Am) and, without loss of generality, assume that D is the

underlying domain of all the attributes in X . We recall tha t the pointwise-ordering

C-x h means that for all Ai G X , ti[Ai] Qd 2̂ [^i], and the lexicographical ordering

E x ^2 means tha t either (1) there exists k with 1 < A: < m such that ti[Aj] = 2̂[^j]

with 1 < i < A: and ti[Ak] E d or (2) ti[Ai] = t 2 [Ai] for all Ai G X . We use the

common notation, Ç, for both pointwise-ordering and lexicographical ordering whenever

the meaning is understood from context. We first discuss OFDs having domains with

pointwise-orderings and then OFDs having domains with lexicographical orderings.

4 .2 .1 O F D s A r is in g from P o in tw ise -O rd er in g s

We give the definition of a POFD as follows.

86

D efin ition 4.5 (O rd e re d F u n c tio n a l D ep en d en cy A ris in g fro m P o in tw ise -O rd er

ings) An ordered functional dependency arising from pointwise-orderings (or simply a

POFD) over a relation schema i?, is a statement of the form R : X Y (or simply

X Y whenever R is understood from the context), where X , Y Ç R are sequences of

attributes. The POFD X <—> T is said to be standard if X 7 ̂ 0.

Hereinafter we will assume that all POFDs are standard. We now give the definition

of the semantics of a POFD.

D efin ition 4.6 (S a tisfac tio n o f a P O F D) A POFD, R : X Y , is satisfied in a

relation r over B, denoted by r |= X Y, if for all t i , t 2 G r, ti[X] Qx t 2 [X] implies

that ti[Y] Cy t 2 [Y], where and Cy are pointwise-orderings on the Cartesian products

of the domains of X and Y , respectively.

We next give a set of inference rules for POFDs and show that Armstrong’s axiom

system carries over to ordered relations with respect to POFDs.

D efin itio n 4.7 (In fe ren ce R u les for P O F D s) Let X, Y, Z, W be subsets of R and F

be a set of POFDs over R. The inference rules for POFDs are defined as follows:

(P O F D l) Reflexivity: if Y Ç X , then F h X '-7 F .

(P O F D 2) Augmentation: if F h X T and Z Q R, then ¥ \~ X Z ^ Y Z .

(P O F D S) Transitivity: if F h X T and F h T Z, then ¥ \~ X Z.

(P O F D 4) Permutation: i f F h X ' ^ y ’, W ~ X and Z ^ Y , then ¥ \- W Z.

We remark that P0F D 4 is introduced because we are dealing with sequences of

attributes rather than the usual sets of attributes in FDs. The following lemma can be

readily proved by induction on the number of steps in the inference of X T from a

set of POFDs.

L em m a 4.4 Let F be a set of POFDs, f = X Y he a POFD and /* = X —>• T be

a FD corresponding to / . We define F* = {f* \ f E F}. Then /* is derivable from F*

using Armstrong’s axiom if and only if F h / . □

87

The above lemma is useful because it suggests that we can apply existing algorithms

for FDs to determine whether a POFD / can be inferred from a given set of POFDs

using the inference rules from PO FD l to P0FD 4. For example, Beeri and Bernstein’s

algorithm [13] can be used to compute the closure of a set of attributes with respect to

a set of POFDs. We need the following rules derivable from Definition 4.7 to establish

the soundness and completeness of the axiom system for POFDs.

L em m a 4.5 The following inference rules can be derived from the inference rules in

Definition 4.7.

(P O F D S) Decomposition: if F h X T , then F \- X Z, where Z C Y .

(P O F D 6) Union: if F h X T and F h X Z, then F h X Y Z . □

The closure of a set of attributes X""" in the context of POFDs is given by X'*' = {A

I F F X A }. We now show in the following theorem that the above axiom system is

sound and complete for POFDs, holding in ordered databases. The underlying idea in

this proof is standard [147] and similar to Theorem 4.3. Moreover, we need to assume

tha t each domain has at least two named elements. We believe tha t this eissumption is

reasonable in practice.

T h e o re m 4.6 The axiom system comprising from PO FD l to P0F D 4 is sound and com­

plete for POFDs.

P ro o f.

It is easy to show tha t the inference rules from PO FD l to P 0FD 4 are sound. We prove

completeness by showing that if F 1/ X T , then F ^ X ^ Y . Equivalently for the

latter, it is sufficient to exhibit a relation, say r, such tha t r |= F but r ^ X T . Let r

be the relation consisting of two tuples and Î2 shown in Figure 4.4, where Z = R — X'^.

X + z

^1 1 . . . 1 1 . . . 1

h 1 . . . 1 0 • • • 0

Figure 4.4: A relation r showing that r ^ X Y

Assuming tha t 0 Cl 1, we have 1 g 0 (i.e. t\[Z] ^ t 2 [Z]). We first show tha t r |= F.

Suppose to the contrary tha t r ^ F and thus there exists a POFD, C D € F such

that r C D. It follows by the construction of r and by POFD-5 tha t C Ç X~^ and

that 3A G Z such tha t A 0 By PO FD l and by P0FD 5, it follows that C A,

and by P0FD 3, it follows that X <—> A. This leads to contradiction, since it follows that

A G We conclude the proof by showing that r X Y . Suppose to the contrary

that r X Y . By the construction of r, T Ç X+. This leads to contradiction, since

by P0FD 6 we have X Y' , where Y ' ~ Y. Then by P 0FD 4 we have derived F h

X ^ Y . □

4 .2 .2 O F D s A r is in g from L ex ico g ra p h ica l O rd erin gs

We give the definition of a LOFD as follows.

D efin ition 4.8 (O rd e re d F u n c tio n a l D e p en d en cy A ris in g fro m L ex icog raph i­

cal O rd e rin g s) An ordered functional dependency arising from lexicographical orderings

(or simply a LOFD) over a relation schema R, is a statement of the form R : X Y (or

simply X Y whenever R is understood from the context), X ^ Y C R are sequences of

attributes.

Similar to POFDs, we assume that all LOFDs are standard. We now give the defini­

tion of the semantics of a LOFD.

D efin itio n 4.9 (S a tisfac tio n o f a L O F D) A LOFD, R : X Y , is satisfied in a

relation r over B, denoted by r X F , if for all f i , f2 G r, ii[X] Q x 2̂[AT] implies

that ti[Y] Qy 2̂ [F], where C,x and Qy are the lexicographical orderings on the Cartesian

product of the domains of X and F , respectively.

We observe that the concept of POFDs and LOFDs are incomparable. A relation sat­

isfying the POFD X F may not necessarily satisfy the LOFD X Y and conversely,

a relation satisfies the LOFD X F may not necessarily satisfy the POFD X F .

The following example helps to illustrate this point.

E x am p le 4.1 Consider the relations ri and r 2 over R = {A, B, C} shown in Figure 4.5.

It is clear tha t in (a) r\ \= A E C but r i ^ A EC. On the other hand, in (b)

t’2 1= A E C but r 2 ^ A E C.

The chase is a fundamental theorem proving tool in relational database theory. The

main uses of the chase have been testing implications of data dependencies [101] and

89

r i =

A B C A B C

1 3 6 r2 = 1 4 6

2 4 5 2 3 5

(a) (b)

Figure 4.5: Relations r i and r 2 showing that POFDs and LOFDs are incomparable.

testing consistency of a relational database with respect to a set of data dependencies

[61, 86]. We now extend the classical chase defined over conventional relations with

respect to FDs [101, 9] to ordered relations with respect to LOFDs. The extended chase

will be used as a sound and complete inference tool for LOFDs in Theorem 4.9. We

need two operations equate and swap to manipulate values in ordered domains before

presenting our chase rules.

D efin ition 4.10 (E q u a te a n d Sw ap O p e ra tio n s) We denote m m (a, b) and max{a, b)

the minimum and maximum of the values a and 6, respectively. For any two distinct

tuples ^1,^2 E r over R and some A G R, the equate of t\ and t 2 on A, denoted as

equate{ti[A], t 2 [A]), is defined by replacing both ti[A] and ^ 2 ^ by min{ti[A]^t2 [A])] the

swap of ti and t 2 on A, denoted as swap{ti[A], 2̂[^]), is defined by replacing ti[A] by

min{ti[A], t 2 [A]) and t 2 [A] by max{ti[A]^t2 [A]), respectively.

We demonstrate how to use the equate and swap operations with the following ex­

ample.

E x am p le 4.2 Consider a relation r shown in Figure 4.6 (a), which consists of two tuples

= (2) and <2 = (1), respectively. We apply the equate operation of ti and (2 on A

resulting in the relation shown in Figure 4.6 (b). We apply the swap operation of t\ and

t 2 on A resulting in the relation shown in Figure 4.6 (c).

We now give the chase rules, which are applied to two tuples in a relation with respect

to a set of LOFDs.

D efin itio n 4.11 (C h ase R u le s for L O F D s) Let t\ and (2 be two tuples in r such that

ti[%] Qx h [^] but ti[Y] g y t 2 [y], A be the first attribu te in X such that ti[A] 7 ̂ t 2 [A],

90

A

tl 2

t2 1

A

1̂ 1

t2 1

A

1̂ 1

t2 2

(a) r = (b) equate(ti[A],t2 [A]) (c) swap{ti[A],t2 [A])

Figure 4.6: An example of using the equate and swap operations

if such an attribute exists, and B be the first attribute in Y such tha t ^ t 2 [B] ̂ then

the chase rules for the LOFD % Y, is defined by the following two rules:

E q u a te ru le : if t\[X] = t2 [X] but ti[B] ^ t 2 [B], then equate{ti[B],t2 [B])]

Sw ap ru le : if^i[A] C t 2 [A] but t2 [B] C h[B]^ then swap{ti[B],t2 [B]), or if (2[A] C ti[A]

but ti[B] C 2̂(^ 1, then swap{tilA]^t2 [A]).

The said chase rules cater for all the possible cases when there are two tuples in a

relation violating X Y . We note tha t in applying the chase rules we need a fixed

ordering on the tuples t\ and 2̂- If we choose different orderings on t\ and t2 in differ­

ent applications of the rules, then the chase procedure may result in a non-terminating

process. We further clarify this point by the following example.

E x a m p le 4.3 Let F = {A B , C B } and the tuples tp = (146) and tq = (235),

respectively, as shown in Figure 4.7 (a). First we let t i = tp and ^2 = tq-, then apply the

A B C

tp (as tl) 1 4 6

tq (as t 2) 2 3 5

A B C

tp (as t 2) 1 3 6

tq (as tl) 2 4 5

A B C

tp 1 4 6

tq 2 3 5

(a) before the chase (b) chase {oi A B on (a) (c) chase ioi C B on (b)

Figure 4.7: An example showing tha t the chase procedure never terminates

swap rule with respect io A B and thus obtain the result as shown in Figure 4.7 (b).

Now we let t\ = tq and t 2 = tp (i.e., change the ordering of tp and tq). Then we apply

the swap rule with respect to C ^ B and thus obtain the result as shown in Figure 4.7

(c), which is the beginning relation that we have shown in Figure 4.7 (a).

91

Fortunately, this undesirable property can be removed if we impose a fixed linear

ordering on r and assign t\ to be the smaller tuple and t 2 to be the larger tuple with

respect to this ordering. We will show in Lemma 4.7 that under such a condition the

chase procedure always terminates. Therefore, in Example 4.3 if we assume the ordering

of tp and tq is fixed as given in Figure 4.7 (a) throughout the chase procedure, then the

process terminates and it can be checked that the final relation is obtained as shown in

Figure 4.8.

A B C

tp (as 4) 1 3 5

tq (as 2̂) 2 4 6

Figure 4.8: The chase procedure terminates in Example 4.3 with a fixed ordering

Let r = {^1, . . . ,tji} be an ordered relation over R and F be a set of LOFDs with

\ R \= m. We now give the pseudo-code of an algorithm designated, CHASE{r ,F) ,

which applies the chase rules given in Definition 4.11 to i? cis long as possible and returns

the resulting relation r over R, also denoted as CHASE{r ,F).

A lgorithm 4.1 {CHASE{r , F))

1. begin

2. Result := r = { t l , . . . ,tn) ;

3. Tm p:= 0;

4. w hile Tmp Result do

5. Tm p := Result;

6. if 3 X E F, 3 tp,tq E Result such tha t

tp[^] E x tq[X] but tp[Y] g y t 2 [Y] then

7. Apply the appropriate chase rule to Result with

1̂ ~ ^min{p,q) 2̂ ^max{p,q) 'i

8. end w hile

9. return Result;

10. end.

92

Lem m a 4.7 CHASE{r^F) in Algorithm 4.1 terminates and satisfies F.

Proof.

Let Pj with 1 < j < m be the sequence (a i j , . . . , a„j), where aij = ti[Aj] (i.e., Pj =

TTAj (Result)), be the minimum value in Pj, and pp'^'^ be the sequence . . . ,

(a sequence of n identical values). Suppose an application of a chase rule changes Pj to

Pj = (a'lj, . . . Since the chase rules neither change the value nor introduce

any new values into the variable Result, pp^'^ is unchanged throughout the process of

the chase. In order to prove that CH ASE(r ,F) terminates, it suffices to show that

pmin p f p.^ where <iex is a lexicographical ordering. There are two cases to

consider.

In the first case the change to Pj is due to an application of the equate rule. Then by

Algorithm 4.1 we have Upj ^ Uqj. It follows that a' ĵ = min(apj, Ugj), aP = min(apj,aqj)

and a[j = aij for i 0 {p,q}. Thus, Pj <iex Pj-

In the second case the change to Pj is due to an application of the swap rule. W ithout

loss of generality we assume p < q. Then by Algorithm 4.1 Uqj < Upj. It follows that

a'pj = min(apj,aqj), aP = max(apj,aqj) and a\j = aij for i 0 {p,q}- Thus, P j </ex Pj-

It is also trivial that in both cases P j”*"̂ P j, since the minimum of any two values

in Pj is greater than or equal to the minimum of all values in Pj.

Due to the consideration above, it follows tha t C H ASE(r ,F) satisfies F, otherwise,

we can apply one of the chase rules given in Definition 4.I I to CH ASE(r ,F) , thus leading

to contradiction, since CH ASE(r ,F) has not yet terminated. □

Lem m a 4.8 CH ASE(r ,F) in Algorithm 4.1 can be computed in time polynomial in the

size of r and F.

Proof.

By Definition 4.II , we observe that the lines 6 to 7 in Algorithm 4.1 can be executed

at most 0 (m) times for a LOFD in F, where m is the number of distinct symbols in r.

Thus, there is at most 0 (m) application of chase rules to r. So each execution of the

while loop beginning in line 4 and ending at line 8 can be computed in polynomial time

in the size of r and F. □

E xam ple 4.4 Let F = {A B , B C} and a relation r consisting of three tuples

tl = (332), t 2 = (221) and t^ = (313), respectively, as shown in Figure 4.9 (a). First,

we carry out the chase rules to eliminate the violation of A P as follows, apply the

93

chase rule swap{t2 [B],t^[B]) since t 2 [A] C ts[A] but ts[B] C t 2 [B], and then apply the

chase rule equate{ti[B],t3 [B]) since ti[A] = ts[A] but t\[B] ^ 3̂[-B]. We thus obtain

the intermediate result as shown in Figure 4.9 (b), which satisfies A B. Second, we

carry out the chase rules to eliminate the violation of 5 C as follows, apply the chase

rule equate{ti[C],ts[C]) since h[B] = ts[B] but ti[C] ^ ts[C]. The chase procedure now

terminates and the final result CHASE{r^F) is given in Figure 4.9 (c), which satisfies F.

A B C

3 3 2

h 2 2 1

h 3 1 3

A B C

1̂ 3 2 2

2̂ 2 1 1

3̂ 3 2 3

A B C

1̂ 3 2 2

h 2 1 1

h 3 2 2

(a) r prior to the chase (b) chase î o t A B on (a) (c) chase for 5 (7 on (b)

Figure 4.9: An example of obtaining CHASE{r ,F)

We note tha t the result of the chase is not necessarily unique. For instance, in the

above example we can apply equate{t\[B], first to eliminate the violation of A ' ^ B,

then we have at least two ‘I ’s under the column of attribute B, this leads to a final result

different from tha t given in Figure 4.9 (c). Although the final result of the chase may

not be unique, we still can apply it in tackling the implication problem of LOFDs. This

point is illustrated by the results shown in next theorem and Theorem 4.12.

T h e o re m 4.9 Let r be a relation over R and F be a set of LOFDs over R. Then r |= F

if and only if r = CHASE{r ,F).

P ro o f.

{IF:) Assume to the contrary that r ^ F and thus there exists a LOFD, A T G F

such tha t r ^ X Y. It follows tha t there must be two rows, t \ , t 2 G r, such that

ti[X] Q x 2̂[A"] but ti[T] g y t 2 [Y]] so the chase rule îoy X Y can be applied to r

resulting in a different relation. Hence r ^ CH ASE{r , F).

{ONLY IF:) It follows from Definition 4.11 that a chase rule for F can be carried out

only if r violates some LOFD in F. □

Lemma 4.7 and Theorem 4.9 are fundamental because they allow the chase procedure

to be employed in order to test the satisfaction of r with respect to a set of F in a finite

94

number of steps; many similar results for different kinds of data dependencies such as

FDs, INDs and JDs (Join Dependencies) can be found in [101, 73, 104]. These results

provide us with a theorem proving tool to test consistency of a database with respect

to a set of LOFDs. Furthermore, the chase can be used for maintaining consistency by

applying the rules in Definition 4.11 to fix the violation of a LOFD in relations. This is

also found to be im portant in the case of fuzzy or imprecise relations [86]. For example,

assuming tha t a relation r is updated with information obtained from several different

sources in a mobile computing environment [11], it may be the case that at any given

time the relation violates some LOFDs. Thus we can modify the relation by using the

chase rules.

In order to provide a proof procedure for LOFDs, we now define the notion of ordered

variables. Such variables afford us the ability to infer orderings between attribute values

and to set up a set of templates for relations.^ which are essentially the same concept as

tableaux used in [101, 9, 87].

D efin ition 4.12 (O rdered Variables and V ariable D om ain) The variable domain

of a relation schema R, denoted by vdom{R), is the finite set { / i , . . . , /m, ? • • •,

where m = | 72 |. The variables and hi with i 6 {1, . . . ,m} are called low ordered vari­

ables and high ordered variables., respectively. We call them collectively ordered variables,

whose ordering is given by l{ \Z h{.

We now define a set of relations defined over variable domains with respect to a

given LOFD, which basically enumerate all the possible cases for two tuples violating the

LOFD.

D efin ition 4.13 (T em plate R elations for a L O FD) Let / be the LOFD X Y

over R with \ X \= n and \ R \— m. We use two short hand symbols ui and Vi to

represent one of the following three cases: (1) Ui = li and Vi = k, (2) U{ = li and Vi = hi

or (3) Ui = hi and Vi = li. A template relation (or simply a template) with respect to / ,

denoted as ry, is a relation consisting of two tuples, t\ and t 2 , whose underlying domain

is vdom{R), such that it is equal to either Tq or 7%, where Pre{X) = (aji,. . . ,Xk) for

1 < k < n.

We remark tha t in Definition 4.13 the symbols Ui and Vi represent three possibilities

of combinations of li and hi. Therefore, it is easy to verify that there are templates

95

To =

A R - X

1̂ h ' " f"n '^n+l ‘ ■ ■ '^m

2̂ h ' " I n 'ï̂ n+1 ■ ■ ■ '^m

Tk =

Xi • •Xk-l Xk R - P re(A)

tl h - • h-1 k '^n+l ' ’ '

t2 h - • h - i hk ^n+1■''

Figure 4.10: Template relations for a LOFD

defined by Tq and templates defined by for each k. Altogether there are +

(STu-n _|-------|_3m-i^ _ gm-Ti_|_3’̂ -3 ’̂ _ 3{2+3^ templates. Note that there are some

redundant templates in both Tq and Tjfc, if we take into account the fact that there are

two possible orderings for ti and 2̂ , but it does not affect the order of the upper bound

of the number of templates, which is shown to be 0 (3 ”^).

We apply the chase rules to a template relation using the ordering defined on a

variable domain vdom{R). The following proposition gives the result corresponding to

Theorem 4.9.

P roposition 4.10 Let ry be a template relation over R and F be a set of LOFDs over

R. Then ry |= F if and only if ry = CHASE{r f , F) . □

A template relation can be viewed as a relation instance consisting of two tuples by

using an ordering isomorphism mapping values in D to low ordered variables and high

ordered variables, respectively. We formalise this idea by the following definition.

D efin ition 4.14 (V aluation M apping) Let R = { Ai , . . . ,Am} and vdom{R) = {/i,

. . . , lmi hi, • • •, hm, }• A valuation mapping p is a mapping from vdom{R) to D such that

p{li) < p{hi) for all 1 < Î < m. We extend p to a tuple t by p{t) = {p{t[Ai]),. . . ,p{t[Am]))-

Furthermore, we extend p to a template relations ry by p(ry) = {p{ti), p{t2)}.

The next proposition states that if there is a valuation mapping relating a template

relation to a relation having two tuples, then they satisfy the same set of LOFDs.

P roposition 4.11 Let p(ry) = r, where r is a relation over R having two tuples. Then

ry 1= A y if and only if r |= A T.

Proof.

The result immediately follows by Definition 4.14 since ry is isomorphic to r and the

ordering of data values in the zth column of r corresponds to the ordering of the ordered

variables L and hj. □

96

The following example shows how to apply a valuation mapping to a template relation.

E x am p le 4.5 Consider the template relation ry over { A , B , C } with respect to the

LOFD / , A BC, which is shown in Figure 4.11 (a). We define the valuation mapping

p by p{li) = 1, p{l2) = 2, p(/i2) = 3, p(/3) = 4 and pih^) = 5. Then we have p(ry) shown

in Figure 4.11 (b). Note tha t in this example ry is one of the templates defined by Tq in

Definition 4.13.

ry =

A B C A B C

h h h3 p{rf) = 1 2 5

h h2 h 1 3 4

(a) (b)

Figure 4.11: An example showing the application of a valuation mapping

We now extend the notion of tableaux for a LOFD / to be a set of templates. The

tableaux in our Ccise is different from that for FDs, which just requires a single template

for FDs (see Theorem 4.2 in [9]). We define tableaux, denoted by T y, to be the set of all

template relations in Definition 4.13.

D efin ition 4.15 (Satisfaction and a V aluation M apping o f Tableaux) The chase

of T y , denoted as CHASE{Tf ,F) , is defined by CHASE{ Tf , F) = {CHASE{ r f , F) |

ry G T y } . CHASE{Tf , F) satisfies X Y , denoted by CHASE{ Tj , F) \= X ^ Y , if

for all ry G T y , CHAS E(r f ,F) \= X ^ Y . Furthermore, CHASE{Tf , F) satisfies F,

denoted by CHASE{Tf , F) |= F, if for all % ^ Y G F, CHASE{Tf , F) \= X Y . A

valuation mapping of T y is a valuation mapping of some ry in T y.

The following theorem shows that the chase rules can be also viewed as a sound and

complete inference procedure for LOFDs.

T heorem 4.12 Let F be a set of LOFDs over R and / be a LOFD X Y . Then

CHASE{Tf , F) \ = f if and only if F ^ / .

Proof.

IF: Assume CHASE{Tf , F) ^ / . By Definition 4.15, there exists ry G Ty such that

CHA S E { r j ,F) ^ / but C HASE{ r f , F) |= F. Note tha t CHASE{ r f , F) is a template

97

which can be viewed as an instance. Therefore, we have a valuation mapping p to generate

a relation instance p{CHASE{rf^F)) and by Proposition 4.11, p{CHASE{rf , F)) |= F

but p{CHASE{rf^F)) ^ / . This leads to contradiction.

ONLY IF: We let wi,W2 be any two tuples in a relation r such tha t w\ W2. We

claim w\ Cy W2 - Let Sf G Ty be the template relation such tha t p{t\) = w\ and

p{t2) = W2 - We can always find such an sy because Ty exhausts all possibilities of

two tuples which satisfy the condition wi Q x W2. Thus we have p{sf) = {w\ ,W2}

and p{sf) \= F. By Proposition 4.11, we have sy [= F. It follows by Proposition 4.10

tha t Sy = CHASE{s f , F) . Since we have assumed that CHASE{Tf , F) |= / , we have

CHA S E { s f , F) \= / . Thus, p{CHASE{Tf ,F)) = p{sf) = {wi ,W2}, which implies that

wi Cy W2 as required. □

The following corollary is an immediate result of Theorem 4.12.

C o ro lla ry 4.13 Let F be a set of LOFDs over R. The chase procedure is a decidable,

sound and complete inference algorithm for LOFDs.

The above corollary shows that the chase rules together with tableaux can be used to

provide a systematic way to solve the implication problem for LOFDs. Furthermore, it

provides a basis for further investigation in examining the completeness of the following

axiom system for LOFDs [87].

D efin itio n 4.16 (In ference R u les fo r L O FD s) Let F be a set of LOFDs over R. The

inference rules for LOFDs are defined as follows:

(L O F D l) Prefix Decomposition: if F h X T , then F h X pre{Y).

(L O F D 2) Right Augmentation: if F h X T and Z Ç R^ then F X Z Y .

(L O FD S) Pseudo Transitivity: if F h X W Y and F h T Z, then F \- X W Z .

(L O F D 4) Right Union and Shuffle: if F h X T and F l- X Z, then

F I- X shu{Y,pre{Z)).

(L O FD S) Left Union and Shuffle: i f F F X ' ^ Z and F h F Z, then

F h shu{X,pre{Y)) Z.

(L O F D 6) Right Contraction /: if F h Wi W 2 and F I- X Y s h u { W i ,W 2)Z, then

F h X ' ^ Y W i Z .

98

(L O FD 7) Right Contraction II: if F h Wi W 2 and F h X Y W 1 Z 1 W 2 V, then

F h X ' ^ Y W i Z V .

(L O FD S) Left Contraction /: if F h Wi W 2 and F h Y shu{Wi, W 2)Z X , then

F h Y W i Z ' s ^ X .

(L O FD 9) Left Contraction II: if F h Wi W 2 and F h Y W 1 Z W 2 V X , then

F h Y W i Z V ' - ^ X .

The following lemma can be easily obtained from Definition 4.16.

L em m a 4.14 The axiom system comprising the inference rules shown in Definition 4.16

is sound for LOFDs. □

We remark that the refiexivity rule is just a special case of LOFDl. In addition, we

note that the augmentation rule (this should not be confused with L0FD 2), which is

sound for POFDs, is not sound as an inference rule for LOFDs. Consider the counterex­

ample, where r is the ordered relation shown in Figure 4.12; it is clear that r \= A B

but r ^ EC.

A B C

1 3 5

2 3 4

Figure 4.12: A counterexample for the augmentation rule for LOFDs

The next lemma shows the interesting result tha t the converse of rules of L0FD 6 to

L0FD 9 can be derived from Definition 4.16.

L em m a 4.15 The following rules can be derived from the inferences rule LOFDl to

L0FD9.

(L O F D 10) Right Expansion I: if F \~ X Y W \ Z and F h Wi W 2 , then

FhX'^Yshu(Wi ,W2)Z.

(L O F D ll) Right Expansion 77: if F b % Y W \ Z V and F h W\ W2, then

F F X - ^ Y W i ZW2V.

99

(LO FD 12) Left Expansion /: if F h Y W \ Z ^ X and F h W\ ^ W 21 then

Y s h u { W i , W 2) Z ' ^ X .

(LO FD13) Left Expansion II: if F h Y W i Z V X and F h Wi W 2 , then

F \ - Y W i Z W 2 V ' ^ X . □

The following lemma proves the inference rules defined in Definition 4.16 are sound

for LOFDs.

Lem m a 4.16 The axiom system comprising rules from LOFDl to L0FD 9 is sound for

LOFDs holding in ordered databases. □

The following proposition summarises the relationships between the satisfaction of

POFDs, LOFDs and FDs in a relation r.

P roposition 4.17 Let r be a relation.

1. \ i r \= X '—̂ Y^ then r \= X ^ Y .

2. \{ r \= X ' ^ Y ^ then r X Y . □

From the above proposition, we can deduce tha t the set of relations which satisfy a

set of POFDs (or LOFDs) is a subset of relations which satisfy the corresponding set of

FDs F * , where F* is defined as { X —)■ Y \ X ^ Y E F (or % T E F)}.

4.3 Ordered Inclusion Dependencies (OINDs)

In this section we continue our investigation of data dependencies in the ordered relational

model by introducing ordered inclusion dependencies. Inclusion dependencies (INDs) are

fundamental data dependencies that arise in practice, which can express the set inclusion

between the projections of two relations. A well-known example is that an IND can

capture the fact that the set of managers’ names is contained in the set of employees’

names of a company.

D efin ition 4 .17 (Inclusion D ependency) An inclusion dependency (or simply an

IND) over a database schema R is a statement of the form R[A] Ç S[Y], where R , S e

R and X C R, Y Ç S are sequences of distinct attributes such that | A | = | T |. An

IND is said to be trivial, if it is of the form R[A] Ç R[A]. An IND R[A] Ç S[Y] over R

100

is satisfied in d, denoted by d |= R[X] Ç 5[y], whenever 7r%(r) Ç 7ry(s), where r, s G d

are the relations over R and 5, respectively.

We first review the inference rules constituting an axiom system which was shown to

be sound and complete for INDs by Casanova, Fagin and Papadimitrious [22]. For the

sake of simplicity, we call this axiom system Casanova’s axiom system. This result will

be useful in proving our OINDs axiom systems.

D efinition 4.18 (C asanova’s A xiom System) Let I be a set of INDs over R and

R, R i, ^ 2 ,^ 3 G R. Casanova’s axiom system constitutes the following inference rules for

INDs.

(IN D l) Reflexivity: if A Ç R, then I h R[X] Ç R[X],

(IN D 2) Projection and Permutation: if I h R 2[^] G Ri[X], where X = (Ai , . . . ,

Ç Ri, y = {Bi , . . . , Bm) Q R 2 and z i , ...,%& is a sequence of distinct integers from

(1 , . . . , then I H R 2 [R%̂ ? • • • ? Rik\ — [-^û ? • • • ?]■

(IN D 3) Transitivity: if I h Rz[Z] Ç R2M and I h R2M Q Ri[X], then I h Rs[Z] Ç

Ri[X].

An OIND in the ordered relational model can capture the notion of Hoare orderings

between two sets of values projected onto some attributes of two relations in a database,

which arise naturally in those applications that consist of incomplete information, which

we have discussed in Chapter 2. Similar to OFDs, the semantics of an OIND with two or

more attributes on each side are also defined according to lexicographical orderings and

pointwise-orderings on the Cartesian products of the underlying domains of the attributes

in the OIND, which give rise to POINDs and LOINDs, respectively. Thus, from now on

OINDs means either POINDs or LOINDs. We note that POINDs and LOINDs are

exactly the same data dependencies in the special case of unary attribute on the left and

right hand sides.

To illustrate the usage of POINDs and LOINDs, we show in Figure 4.13 tha t a

database consisting of two relations, called CURRENT JRECORD and HISTORY, which

are both over the set of attributes {EMP, SALARY, YEAR, MONTH}. We allow the

null value symbol UNK, which means “value at present unknown” , to be used in the

101

EMP SALARY YEAR MONTH

Mark 35K 1997 May

Nadav UNK 1996 Dec

UNK 24K 1995 Oct

EMP SALARY YEAR MONTH

Mark 30K 1996 Sep

Mark 35K 1997 May

Nadav 25K 1996 Dec

Ethan 24K 1995 Oct

(a) CURRENT_RECORD (b) HISTORY

Figure 4.13: Relations CURRENT .RECORD and HISTORY

attributes EMP and SALARY only (recall that all data values are assumed to be larger

than UNK).

The semantics of this database are: in CURRENT_RECORD an EMPloyee has the

most recently updated SALARY starting from the date specified by the YEAR and the

MONTH, and in HISTORY an EMPloyee has had the given SALARY starting from the

date specified by the YEAR and the MONTH. If we assume that each EMP in CUR-

RENT_RECORD is included in the set of EMP of HISTORY and each SALARY in CUR­

RENT JRECORD is included in the set of SALARY in HISTORY, then this semantics can

be captured by the POIND, CURRENT_RECORD[EMP, SALARY] Ù HISTORY[EMP,

SALARY]. As these relations are time-stamped by the attributes YEAR and MONTH,

we can use the LOIND, HISTORY[YEAR, MONTH] Ç CURRENT_RECORD[YEAR,

MONTH] to state the fact tha t CURRENT_RECORD contains the most recently up­

dated record in HISTORY.

We note tha t the POIND and the LOIND in this case have different implications in

updating. For example, if we want to update Mark’s record to be {Mark, 40AT, 1997, Oct),

then assuming the POIND, we should insert this tuple into HISTORY prior to updating

CURRENT-RECORD. On the other hand, when assuming the LOIND we should up­

date CU RRENTRECORD prior to inserting the tuple in HISTORY. Note also that we

cannot use the POIND, HISTORY[YEAR, MONTH] Ç CU RREN TRECO RD [YEAR,

MONTH] to capture this semantics of the mentioned LOIND (recall tha t DATE is a

lexicographical ordering).

We first discuss OINDs having domains with pointwise-orderings and then OINDs

having domains with lexicographical orderings.

102

4 .3 .1 O IN D s A r is in g from P o in t w ise -O rd er in g s

We now give the definition of a POIND as follows.

D efin itio n 4.19 (A n O rd e re d In c lu sio n D ep en d en cy A ris in g fro m Po in tw ise-

O rd e rin g s) An ordered inclusion dependency arising from pointwise-orderings (or simply

a POIND) over a database schema R , is a statement of the form R[A] Ç 5[y], where

R, 5 G R and X Ç. R, Y C S are sequences of attributes such tha t | A | = | F [.

We now give the definition of the semantics of a POIND.

D efin itio n 4.20 (S a tisfac tio n o f a P O IN D) A POIND, R[X] Ê S[Y], over R is

satisfied in an ordered database d over R , denoted by d |= R[X] Ç 5[F], if Vti G r,

3^2 G 5 such that ti[X] Ç t 2 [Y], where Ç is a pointwise-ordering, r G d is the relation

over R G R and s G d is the relation over S' G R.

Prom now on we will assume that when R[X] Ù S[F] G I and d is a database over R ,

then r G d is the relation over R G R and 5 G d is the relation over S G R.

We observe that an IND in conventional relational databases can be viewed as a

POIND in the special case of unordered databases. The following proposition gives a

simple relationship between POINDs and INDs.

P ro p o s itio n 4.18 If d h Ç S[F], then d f- R[X] Ç S[F]. □

We note that the converse of the above proposition does not hold as shown in the

following counterexample.

E x a m p le 4.6 Let d = {r} be a database over R = {R, R} where r = {0} (1 tuple)

and 8 = {1} (1 tuple) are the relations over R and S, respectively, with R = {A} and

S = {R}. Then d R[A] t R[R] but d ^ R[A] Ç R[R].

We note that Casanova’s axiom system [22] can be carried over to be the set of

inference rules for POINDs, simply by replacing the symbols Ç in an IND as Ù in

an POIND for the inference rules given in Definition 4.18. The following lemma is

immediately followed by the inference rules for POINDs (c.f., see the similar result in

Lemma 4.4).

103

Lem m a 4.19 Let I be a set of POINDs, a = R[X] Ê 5[y] be a POIND, a* = R[X] Ç

5'[y] be an IND corresponding to a and I* = {a* | a G I}. Then I* h a* if and only if I

h a . □

We now show Casanova’s axiom system is also sound and complete for POINDs.

T heorem 4.20 The axiom system comprising from INDl to IND3 is sound and complete

for POINDs.

Proof.

It is easy to show that the inference rules from INDl to IND3 are sound for POINDs. Let

a = R[X] Ç S[Y] with X = (Ai , . . . , An) and Y = (B i , . . . , Bn). We prove completeness

by showing tha t if I 1/ a , then I ^ a . Thus, we need to exhibit a database d such that

d t= I but d ^ a.

By the assumption tha t I 1/ a and thus by Lemma 4.19, we have I* \/ a*. From the

completeness of the axiom system for INDs, it follows that I* ^ a*. So there exists a

database d* such that d* |= I* but d* ^ a*. By Proposition 4.18, we now have d* \= I. If

d* ^ a , then the result is immediately followed, since d* is the required database d. So

assume that d* |= a. Since d* ^ a*, we have a tuple t G r such that t[X] G 7r%(r) but

t[X] 0 7Ty(s).

We now let = (a i , . . . , an) and be any one of the maximal values in Trg. (s).

Now we claim tha t there must be some i such tha t ai C Otherwise, it leads to

contradiction as follows, (a i , . . . , a „) = (6^®^,. . . , 6^®^) since we assume d* |= a . So

there must be a tuple ts £ s such that t[X] Ç ts[Y]. Since all ai in t[X] are maximal

values, it follows that ts[Y] = t[X] and thus t[X] G 7ry(s).

We define a permutation h on adom{d*) to swap the elements a{ and in d*

as follows, h{ai) = h{b^^^) = a{ and h is an identity for others. We apply h to

exchange the occurrences of o* and 6^“ ̂ in d*. Let the resulting database be d', the tuple

t become t' and s become s'. Clearly, d' ^ a , since for all values bi G 7TBi{s'), t'[Ai] % hi.

It remains to show that d' \= I and then d' is the required database d. Since d' and d*

are identical to each other up to the renaming of u* and 6^“® only, i.e., d' is isomorphic

to d*. Thus, d' \= I* and it follows by Proposition 4.18 again, d' \= I. □

4 .3 .2 O IN D s A r is in g from L ex ico g ra p h ica l O rderin gs

We now give the definition of a LOIND as follows.

104

D efin ition 4.21 (A n Ordered Inclusion D ep en dency A rising from Lexicograph­

ical O rderings) An ordered inclusion dependency arising from lexicographical orderings

(or simply a LOIND) over a database schema R, is a statement of the form R[A] Ç S[Y],

where R, 5 G R and X Ç Y C S are sequences of attributes such that | % |= | Y |.

We now give the definition of the semantics of a LOIND.

D efin ition 4.22 (Satisfaction o f a L O IN D) A LOIND, R[X] Ê S[Y], over R is

satisfied in an ordered database d over R, denoted by d |= R[X] Ç 5[Y], if Vti G r,

3^2 G s such tha t ti[X] Ç t 2 [Y], where Ç is a lexicographical ordering, r G d is the

relation over R G R and s G d is the relation over 5 G R.

Similar to POINDs, we observe that an IND in conventional relational databases

can be viewed as a LOIND in the special case of unordered databases. The following

proposition gives a simple relationship between LOINDs and INDs (c.f., see Proposition

4.18).

P roposition 4.21 If d |= R[X] Ç S'[Y], then d |= R[X] Ç S[Y]. □

We note that the converse of the above proposition does not hold. The counterex­

ample can be shown by using the same database d given in Example 4.6; we then have

d h R[A] £ S[B] but d ^ R[A] Ç ^[R].

We now give a set of inference rules for LOINDs.

D efin ition 4.23 (Inference R ules o f LO IN D s) Let I be a set of LOINDs. The

inference rules for LOINDs are defined as follows:

(L O IN D 1) Reflexivity: ïî X C R, then I h Ri[A] £ Ri[A].

(L O IN D 2) Prefix Projection: if I h R2\X\ £ Ri[A] where | Pre{X) |= | Pre{Y) |, then

I h R 2 \pre{Y)] £ Ri\pre{X)].

(L O IN D S) Transitivity: if I h R 2 [Y] £ Ri[X] and I h R^lZ] £ R 2 [Y], then

I h Rs[Z] £ Ri[A].

It is easy to check that the above inference rules are sound for LOINDs.

Lem m a 4.22 The axiom system comprising from LOINDl to LOINDS is sound for

LOINDs. □

105

The following proposition shows that there is a simple relationship between POINDs

and LOINDs.

P roposition 4.23 If d |= R[X] Ù S'[y], then d \= R[X] £ <S'[y]. □

We note that the converse of the above proposition does not hold. For example, let

d = {r, a} be a database over R = { R ,S } where r = {01} (1 tuple) and s = {10} (1

tuple) are the relations over R and S, respectively, with R = {A B } and S = {CD}.

Then d \= R[AB] £ S[CD] but d ^ R[AB] £ S[CD].

We have not been able to establish the completeness for the axiom system comprising

from LOINDl to LOINDS. A further approach to tackle this problem is to establish a

chase procedure similar to that of LOFDs; in such case Definition 4.11 may be useful.

4 .3 .3 In te r a c tio n s b e tw e e n O F D s an d O IN D s

There are two im portant interaction rules between FDs and INDs [109] in conventional

databases: (1) the pullback rule, which derives a new FD from a FD and an IND, and

(2) the collection rule, which derives an IND from two INDs and a FD. We first review

these two rules and then examine their semantics in the context of OFDs and OINDs.

D efin ition 4.24 (Pullback R ule and C ollection R ule for F D s and IN D s) Let S

be a set of INDs and FDs.

(Pullback): if S h R[WZ] Ç S[XY], with | X |=1 y |, and S h 5 : X y , then

E \- R : W ^ Z.

(C ollection): if E h R[UV] Ç S[XY], R[UW] Ç S[XZ] and E h 5 : X ^ y , then

R[UVW] Ç S[XYZ].

As the next example illustrates, in ordered databases the pullback rule is unsound

for OFDs and OINDs.

E xam ple 4.7 Consider the database d given in Figure 4.14. Let E = [R[AB] £

S[CD],S : C D}. Then it can be checked tha t d \= T, but d ^ S : A ^ B.

Note that this result still holds even we replace R[AB] £ S[CD] by R[AB] £ S[CD],

C ^ D hy C D and S : A B hy S : A B , respectively.

106

r =

A B

0 0

0 1

s =
C D

1 1

Figure 4.14; A database shows that the pullback rule is unsound for OFDs and OINDs.

We next show that there also exists a counterexample to the soundness of the collec­

tion rule for POINDs and OFDs. However, in contrast to the pullback rule in the case

of LOINDs, the collection rule is sound for LOINDs and OFDs.

E x am p le 4.8 Consider the database d given in Figure 4.15. Let S = {R[AB] Ç

S[DE], R[AC] Ç S[DF], S : D ^ E}. Then it can be checked that d j= E but

d ^ R[ABC] Ç S[DEF]. Note that this result still holds even we replace S : D ^ E hy

S : D ^ E .

r =
A B C

0 1 1

D E F

1 1 0

0 0 1

Figure 4.15: A database shows tha t the collection rule is unsound for OFDs and POINDs

We now give a formal proof of the soundness of the collection rules for LOINDs when

interacting with OFDs.

L em m a 4.24 Let S be a set of LOINDs and OFDs. The following inference rules are

sound for LOINDs and OFDs.

(P O F D -L O IN D) Collection 7: if E h R[UV] £ S[XY], E h R[UW] £ S[XZ] and

E h 5 : a: y , then E h R[UVW] £ S[XYZ].

(L O F D -L O IN D) Collection II: if E h R[UV] £ S[XY], E h R[UW] £ S[XZ] and

^ \ - S i X ' ^ Y , then E h R[UVW] £ S[XYZ].

P ro o f. We show that \/t G r, 3t' G s such that t[UVW] Ç t '[XYZ], where Ç is a

lexicographical ordering. Let t E r. By R[UV] £ S'fA’F], we have G s such that

107

t[UV] ç t i[XY]. If t[UV] C t i[XY], then the result immediately follows, since we have

t[UVW] C t i [X YZ] and thus t is the required t ' . Otherwise, t\UV\ = t \[XY] and then

we have t\U] = ti[X] and t[V] =

By R[UW] Ç S[XZ], we have t 2 E s such that t[UV] Ç t 2 [XY] {t\ and t 2 may not be

distinct). If t[U] C t 2 [X], then the result immediately follows, since we have t[UVW] C

t 2 [XYZ]. Otherwise, t[U] = t 2 [X] and t[W] Ç t 2 [Z]. So we have t 2 [X] = ti[X]. By S:

X Y (or S: X y) , we have t 2 [Y] = ti[y]. Thus, t[V] = t 2 [Y]. Then the result also

follows, since t[UVW] Ç t 2 [XYZ] and t 2 is the required t'. □

Figure 4.16: Satisfaction of various OFDs and OINDs in databases

We compare the satisfaction of an OFD and an OIND in ordered databases introduced

so far as the diagram given in Figure 4.16 (the scale here is irrelevant). We let S A T { f)

be a set of database instances that satisfy a data dependency / , and f \ = X Y ,

f 2 = X ^ Y , h = X ' ^ Y , g i = R[X] £ 5[Y], 9 2 = R[X] t 5[T] and ^3 = R[X] Ç ^[y].

We remark that in the special case of unordered domains, there are no differences

between FDs, POFDs and LOFDs, and between INDs, LOINDs and POINDs. In such a

case we have SA T { f i) = S A T (f 2) = SA T { fs) and SAT{gi) = SAT{g 2) = SAT{g 3).

Besides, if X and Y are unary, then in general we have S A T { f 2) = SAT{fs) and

SAT{gi) = S A T { 9 2).

4.4 Database Design Issues w ith respect to OFDs and OINDs

Relational database design plays an im portant role in relational database theory and

thus it is extensively covered in most database textbooks [147, 105, 9, 44]. Relational

database design can be viewed as the process of replacing a relation schema R, together

108

with a set of data dependencies over R h y â set of relational schemas R , which we call a

decomposition of R.

D efin itio n 4.25 (D ecom position) A set R = {-Ri, • • •, Rn} is said to be a decomposi­

tion of a relational schema R (or simply a decomposition whenever R is understood from

the context) if (JILi Ri = R and Ri Q R for all Ri E R

The motivations behind the process of a decomposition are twofold. First, an ap­

propriate decomposition can remove the redundancy of data in a relation over R [150].

Second, an appropriate decomposition can remove the problem caused by insertion and

deletion anomalies [36]. There are many criteria suggested in the literature to capture

the notion of appropriateness in conventional databases [105].

One desirable property is that a decomposition possesses the property of lossless join

(or simply is lossless) [5]. This is because in practice a query usually involves the join of

many relations and thus this property guarantees tha t a relation can be recovered from

its projections. We next give the formal definition of this concept.

D efin itio n 4.26 (Lossless Jo in) Let R be a decomposition of R. The project-join

mapping with respect to R is a mapping of relations r over R, denoted by mR, is defined

by m a (r) = (r) x • • • ex 7TR^{r). This decomposition is a lossless join with respect

to a set of OFDs F, if for every ordered relation r over R tha t satisfies these OFDs, then

the condition r = m R (r) holds.

Two other desirable properties which leads to good database design are BCNF and

key-based INDs. These properties take into consideration the importance of FDs and

INDs in conventional databases. FDs generalise the notion of entity integrity and keys

[37] and INDs generalise the notions of referential integrity and foreign keys [37, 41].

We now extend the definitions of key, superkey and Boyce-Codd normal form into the

context of ordered databases [147, 9].

D efin itio n 4 .27 (K ey a n d S u perkey) Let F be a set of POFDs (or LOFDs) over R

and let R 6 R . A sequence of attributes AT Ç R is a superkey for R with respect to F

(or simply a superkey for R if F is understood from the context) if F |= R : A R (or

F 1= R ; X R). A sequence of attributes X G R is a key for R with respect to F (or

correspondingly simply a key for R if F is understood from the context) if X is a superkey

for R and there does not exist a proper subset T of X such that T is a superkey for R.

109

D efin itio n 4.28 (B oyce-C odd N o rm a l F o rm) A database schema R is in Boyce-

Codd normal form (BCNF) with respect to a set of OFDs F over R (or simply in BCNF

if F is understood from context) if for every OFD, X is a superkey for R.

We now examine a basic result in database design in ordered databases, which states

that if a FD y —> X holds in a database over a schema R = { X Y Z } ^ then the decompo­

sition R = {X y, y%} of R is lossless [147]. This property of FDs forms the basis of an

algorithm to obtain a BCNF database schema for obtaining the lossless join of a decom­

position having two components. We present the similar result of lossless decomposition

for OFDs as follows:

T h e o re m 4.25 Given a relation scheme R = [X Y Z] with an OFD, either y X or

y X, then the relation scheme R has a lossless decomposition into two components

Ri = { X Y } and Eg = {Y Z } .

P ro o f.

By Proposition 4.17, we have y X or y X implies Y X . Thus it is a lossless

join. □

The converse of the above theorem holds [132] in the context of conventional FDs.

However, we observe that a similar result does not hold for OFDs, even when we consider

unary OFDs. Let us consider the following counterexample.

E x am p le 4.9 Consider a relation r over R = {A B C } decomposed into r i over R =

{ A B } and rg over Rg = {RC}, all of which are given in Figure 4.17. It is clear that

neither of the following holds in r: B"—̂ A, B ^ C , B ' ^ A or B ' ^ C .

r =

A B C

1 4 5

2 3 6

r\

A B B C

1 4 rg = 4 5

2 3 3 6

Figure 4.17: A decomposition of r into r i and rg

We now extend the definition of of key-based INDs [104, 105] for OINDs in ordered

databases as follows.

110

D efin itio n 4.29 (K ey -B ased O IN D s) An OIND, R[X] £ S[Y] (or R[X] t 5[y]),

over R is key-based if Y is a key for S. If R[X] £ S[Y] is a key-based OIND, then the set

of attributes X is called a foreign key of R with respect to S (or simply a foreign key of

R ii S is understood from context). A set I of OINDs is key-based if every OIND in I is

key-based.

The concept of key-based OINDs is closely related to tha t of referential integrity

[37, 41]. Assume that for each relation schema in R we designate one of its keys as being

a primary key [37]. Then a referential constraint can be defined as a key based OIND of

the form R[Y] £ S[Y] (or R[X] £ -S'[y]), where Y is the primary key of S.

We show another desirable property in tha t the interactions between OFDs and

LOINDs are reduced by showing that F and I have no interaction with respect to the

collection rule if R is in BCNF and I is key-based.

L em m a 4.26 Let a be R[%] £ 5'[y] derivable from the inference rules for LOINDs and

OFDs, F be a set of POFDs (or LOFDs) such that R is in BCNF and I be a set of

key-based LOINDs. Then the collection rule POFD-LOIND (or LOFD-LOIND) is not

used in any proof of a from F U I.

P ro o f.

We use induction on the number of inference rules, k, used to derive a from F U I.

(Basis): If /c = 0, the result follows since a € I. So I h a.

(Induction): Assume the result holds when the number of inferences rules used to

derive I h a is A:, where A; > 0. We then prove tha t the result of the number of inferences

rule used to derive a from F U I.

By inductive hypothesis, it follows that the collection rule must have been the last

inference rule used in the proof of F U I h a . Let a be the LOIND R\UVW] £ S[XYZ].

Thus, it must be the case tha t a follows from R[UV] £ S[XY]^ R[UW] £ S[XZ] and

S : X Y (ov S : X ^ Y) . By assumption we have the keys X Y , X Z and X. Suppose

V Ç.U and W ÇU . Then it is clear that R[UVW] £ S[XYZ] can be obtained without

using S : X Y . So we have either V % U oi W ^ U. W ithout loss of generality

we assume V ^ U . By the assumption that R[UV] £ S'[XY] is key-based, we have X Y

is a proper superset of X . It follows that X is not a super key of 5, which violates the

assumption tha t R is in BCNF. □

111

As a consequence of above Lemma 4.26 we can see tha t by assuming key-based

LOINDs we can reduce the interactions arising from the collection rule. This is desirable

because the implication problem for LOINDs and OFDs reduces to separate implication

problems for LOINDs and OFDs. The result is consistent with the suggestion [105] for

conventional databases tha t a good design principle in the presence of FDs and INDs is

to obtain a BCNF database schema together with a set of key-based INDs.

4.5 Discussion

We have introduced OFDs and OINDs in ordered databases and studied their implica­

tion problems. Moreover, we have also investigated the interactions between OFDs and

OINDs by examining the pullback rule and the collection rule. We classify OFDs and

OINDs into two categories according to whether they arise from lexicographical orderings

or pointwise-orderings on the Cartesian products of underlying domains. In the special

cases of unary OFDs and OINDs, these two categories are identical. We have presented a

sound and complete axiom system for POFDs. We have also presented a set of sound and

complete chase rules for LOFDs, which can be employed as a theorem proving tool for

LOFDs. Our results suggest tha t a good design principle is to obtain a BCNF databcise

schema together with a set of key-based OINDs, since it gives rise to no interactions

between OFDs and OINDs with respect to the pullback rule and collection rule.

The chase procedure given in Definition 4.11 can be further utilised to prove the

completeness (or otherwise) of the axiom system comprising the inference rules for LOFDs

given in Definition 4.16, which is a more refined axiom system for LOFDs. Specifically,

we need to show that given a set of LOFDs F and a LOFD / , C H A SE {r,F) implies that

F h / . The main techniques we use in the proof is to carry out induction on the number

of chase steps in CH ASE{r,F). If the result can be obtained, then by Theorem 4.12, we

have F 1= / implies that C H ASE{r,F). Hence we can conclude tha t F |= / implies that

F h / , which is the completeness of the axiom system. The proof is rather complex since

it involves the technicalities in examining many possible cases arising in the inductive

step (c.f., see Theorem 5.7 in [87]).

There is an open problem to find a chase procedure for LOINDs, tha t is, CHASE{d,l)-,

where d is a database and I is a set of LOINDs. Our preliminary idea is that a chase rule

for LOINDs can be defined as follows, if R[X] Ç S[Y] G I and 3ti G r such that ^ t 2 6 s

112

with ti[X] Ç t 2 [Y], then add a tuple t 2 over S to s, with t 2 [Y] = ti[X] and VA £ S — Y ,

2̂[A] = min, where m in is a minimal value in adom{d) (recall that the active domain

adom{d) is defined in Chapter 3). The appropriateness of this definition needs to be

further examined. Moreover, we still have to investigate the computational complexity

of the implication problems for LOFDs, LOINDs, and mixed OFDs and OINDs.

Finally, we have examined the collection rule and the pullback rule. A further problem

following this line is to study the issue concerning the completeness of the axiomatisation

of a mixed set of OFDs and OINDs. In other words, we still need to research whether

there are any new rules for the interactions of OFDs and OINDs. An intuitive approach

is to combine both the chase procedures for OFDs and OINDs in order to build the chase

procedure CHASE{d^FX) (c.f., [9, 87]), which is then used to test whether a database

satisfies a set of OFDs and OINDs. Meanwhile, the chase procedure CHASE{d^FX) can

provide insight into the detailed mechanism of the interactions of OFDs and OINDs.

113

Chapter 5

An Extension of SQL to the

Ordered Relational M odel

In this chapter we describe OSQL, which is an extension of SQL for the ordered relational

model, and show that OSQL combines the capabilities of standard SQL with the power of

semantic ordering. By using OSQL users have the ability to define partial orderings over

data domains which are implied by the underlying semantic of the data of an application.

The syntax of OSQL is a minimal extension of SQL and thus it should be easy for

current SQL users to adapt to OSQL. Although it is a minimal extension, OSQL allows

the users to formulate a wide range of queries, such as fuzzy or temporal, which are

either very awkward or impossible to formulate in standard SQL. We also discuss the

experimental implementation of OSQL that we have carried out using Oracle for low

level data management.

We emphasise that OSQL is not just an ad-hoc extension of SQL solely to remedy a

few problems with conventional SQL queries. It has a very wide range of applicability

which can assist in coping with the recent growing demand of support for advanced

database applications such as tree-structured information, incomplete information, fuzzy

information and temporal information.

The remainder of this chapter is organized aa follows. In Section 1 we discuss the

relationship between OSQL and SQL and the motivation for the extension to SQL. In

Section 2 we describe the OSQL syntax. In Section 3 we outline the architecture of the

implementation of OSQL over Oracle, which is one of the popular relational DBMSs.

The prototype, which can be easily adapted to other relational DBMSs, provides us with

114

the platform for gaining feedback from users. In Section 4 we demonstrate the benefits

of OSQL through examples of how it can be used to support advanced applications hav­

ing tree-structured information, incomplete information, fuzzy information and temporal

information.

5.1 Comparing OSQL with the SQL Standard

Current relational Database Management Systems (DBMSs) are based on Codd’s rela­

tional data model and their query languages are specified by the SQL2 standard [43]

which is an extension of the relational algebra to incorporate some useful features such

as aggregate functions and arithmetic capability [147].

We now demonstrate some of the inadequacies of SQL2 for certain types of fairly

common queries. Let us consider the following three queries in the example below:

E xam ple 5.1

1. Obtain the third and sixth lowest rainfalls from a rainfall record.

2 . Obtain exactly five vacant seats from a theatre booking system.

3. Obtain the names of all John’s bosses.

None of the queries in the above example can be written as a simple SQL statement.

The first query shows a common problem that both naive and m ature SQL users have.

There is no straightforward way to answer this query in SQL. The best way to do this,

is to formulate it into a nested query aided with the aggregrate functions COUNT and

M A X (see section 25.1 in [27]). Moreover, it is not easy to avoid mistakes in formulating

such SQL statements. It was also discovered in the survey reported in [99] that proper

use of aggregate functions and nesting in SQL is difficult for many SQL users.

The second query cannot be answered satisfactorily due to the lack of output control

of the number of tuples returned by SQL. As for the last query, in Oracle’s SQL we may

use the CONNECT B Y clause to answer it but the same problem as before arises again.

The use of this clause is non-trivial and, in addition, we must have the boss/ subordinate

relationship of each person explicitly stored in the database.

Another option in solving the above problems is to use a database programming

approach. The common solutions are: embedded SQL programming such as Oracle’s

115

Pro*C and a procedural language extension to SQL such as PL/SQL. But there are at

least three drawbacks in the programming solution. Firstly, this approach requires a very

competent level of programming skill, which is definitely a hindrance to the majority of

users who are not professional programmers. Secondly, most queries do not need the

full power of a fully-fledged programming language and, in fact, we will have to pay

the performance penalty if there are too many calls from the programming level to the

relational level. Thirdly, ordering is a fundamental property of information. It would be

extremely inefficient to embed this property into an application program rather than to

capture it in a database model.

SQL3, the most recent version of SQL, has the provision for new data types such

as the list type [81, 108], which involves the notion of ordering. In addition, SQL3 has

some powerful capabilities for defining abstract data types such as user-defined functions,

which can simulate partial ordering of domains. However, as we have discussed in chapter

2.5.3, lists and ordered sets are two incomparable concepts and in addition, the issue

of ordering abstract data type instances in SQL3 is a non-trivial issue [108]. Overall,

SQL3 is much more complex than SQL2, and the process of adding to SQL3 the facility

of managing objects has proved to be extremely difficult. Some design problems have

already been found in SQL3 due to incompatible features arising from the integration

of object orientation into SQL [106]. In any case the publication of SQL3 as an official

standard which will replace SQL2 is predicted to be no sooner than 1998. It is then

reasonable to anticipate, from the size of the proposed SQL3 standard documents, that

the process of upgrading existing relational database systems in order to comply with

the SQL3 standard will take even a longer time.

Based on the above consideration, we suggest OSQL as a suitable intermediate lan­

guage to fill in the gap between SQL2 and SQL3. There are still two good reasons for

the desirability of OSQL. First, due to the relative simplicity of the OSQL extension we

do not anticipate many problems in upgrading SQL2 to comply with OSQL’s ordering

mechanism. Second, OSQL’s notion of ordering on domains has the advantage of being

easier to comprehend by users than the corresponding notion in SQL3.

We now show how the queries in Example 5.1 can be formulated in a simpler manner

in OSQL:

(Qs.i) SELECT {RAINJFALL) (3,6) FiüOM RAINJlECORD.TABLE.

116

(Q5.2) SELECT {SEATJNUMBER) (1..5) Fi^OM THEATRE_BOOKING_TABLE

WHERE STATUS = ’vacant’.

(Q 5.3) (EMPLOYEE JSf AME) (*) FROM EM PLO YEE.TABLE WHERE EM­

PLOYEE AME > ’John’ W TF/iV EMP_RANK.

Although we have not yet formally introduced OSQL, the meaning of the above

statements is quite easy to understand, assuming that the reader has some knowledge

of standard SQL. For instance, the clause (3,6) in the query (Q5.1) means that the

third and sixth tuples, according to the order of RAIN_FALL, are output and the clause

(1..5) in the query (Q5 .2) means tha t the first to fifth tuples, according to the order of

SEAT-NUMBER, are output. The keyword W ITHIN in the query (Q5.3) specifies that

the comparison EMPLOYEEJMAME > ’John’ is interpreted according to the semantic

ordering of the domain EMP-RANK.

We conclude this section by summarising the features of OSQL below:

1. OSQL is based on the PORC (or equivalently, the PORA), which was formally

defined in Chapter 3. The PORC is an extension of the relational calculus in the

context of the ordered relational model. The expressiveness of the PORA has also

been investigated in Chapter 3 and has been shown to be BP-complete [123, 12].

2. OSQL needs few syntactical modifications to the basic form of SQL2 and can also

be interfaced to existing relational DBMSs to enhance their expressive power and

usability.

3. OSQL incorporates some of the suggestions put forward by Date to improve SQL-

type query languages, mainly concerning the support of the wider use of the “< ”

operator (see chapter 2 in [41]).

4. OSQL can be used to support the modelling and querying of hierarchical data

domains such as tree-structured data, which we refer to from now on simply as

tree-structured information. OSQL can also be widely applied to areas demanding

advanced applications such as the querying of incomplete and temporal databases.

5. OSQL provides an easy way to control the number of output tuples without having

to do low level programming. This facility is both necessary and convenient for

117

database users, especially for those who are non-programmers, when querying over

large relational databases.

5.2 OSQL Specification.

In this section, we describe the extensions of OSQL to the Data Manipulation Language

(DML) and D ata Definition Language (DDL) of the standard SQL. In addition to the

extended DML and DDL, OSQL provides a package definition language (PDL), which is

detailed in Chapter 7. The full reference of the syntax of OSQL in Backus-Naur Form

(BNF) can be consulted in Appendix A.

5 .2 .1 D a ta M a n ip u la tio n L an gu age

Simple queries in OSQL have their general form as:

SELECT { lists of attributes) [ANY | ALL] { levels of tuples) [ASC \ DESC]

FROM (lists of ordered relations)

WHERE (comparison clause)

Here an attribute list is a list of attributes similar to the usual one, except that it

provides us with an option that an attribute can be associated with a semantic domain by

the syntax attribute name W ITHIN domain name. The purpose of declaring a WITHIN

clause is to override the system ordering with the semantic ordering of the semantic

domain specified by the domain name. When the WITHIN clause is missing then the

system ordering will be assumed.

A tuple level., which is a set of positive numbers, with the usual numerical ordering,

can also be w ritten in some short forms (see Appendix A.2). As a set of tuples in a

linearly ordered relation r = { t i , . .. ,tn} is isomorphic to a set of linearly ordered tuples,

we interpret each number i in a tuple level as an index to the position of the tuple ti,

where i = 1, . . . , n and t\ < ■ ' - < tn- In the case of a partially ordered relation, we

generalise the notion of a tuple level, meaning tha t a tuple level is the set of all minimal

tuples of (or a subset of) a relation. Recall tha t we have proved in Chapter 3 how

an internal hierarchy can be generated by a successive extracting of tuple levels from a

relation.

An interesting situation of an internal hierarchy to consider is when the output of a

118

relation is partially ordered as a tree, having tuple levels { / i , . . . ,lm}- In such a case we

choose to interpret each number j in a tuple level as an index to a corresponding tree

level Ij, where j = 1, . . . , m and li < ' • • < Im- Hence, a user can specify the retrieve of

ALL the tuples or A N Y one of the tuples in a specified level Ij. We note that in the case

of a linearly ordered relation, the choice of using ALL or ANYha,s the same effect on the

output since there is only one tuple in each level.

Let us examine the following example of an employees relationship of an organisation

as shown in Figure 5.1.

John Sim on — Level 1

f f
Bill Ethan N adav Level 2

M ark < — Level 3

Figure 5.1: Relationship between employees in an organisation

E x am p le 5.2 We can see from this figure that if a user specifies ALL{1) in the tuple

list, the system returns ’Simon’ and ’John’. Alternatively, if a user specifies A A y(l) or

simply (1) in the tuple list, the system returns only ’John’ (the system uses alphabetical

ordering to choose the first tuple in this level).

A comparison clause follows the FROM keyword and a list of all relations used in

a query. The meaning of the usual comparators < , > , < = , > = is extended to include

semantic comparison as we have mentioned earlier. A typical form of a semantic com­

parison is:

(attribute) (comparator) (attribute) W ITH IN (semantic domain)

W ithout the optional W ITHIN clause, the comparison is just the conventional one and

is based on the relevant system ordering.

The following examples help further to clarify the semantic of the SELECT command.

E x am p le 5.3 Let us examine at the following OSQL statements:

(Q 5 .4) SELECT (NAME, SALARY) (*) FROM EMPLOYEE.

(Q 5 .5) SELECT {SALARY, NAME) (*) FROM EMPLOYEE.

119

(Qs.e) SELECT {{NAME WITHIN EMPJRANK), SALARY) (+)

FROM EMPLOYEE.

Note that the ordering of tuples in an output relation depends on two factors. Firstly,

on the ordering of domains of individual attributes and secondly on the order of the

attributes in an attribute list. The attribute list of the query (Q5.4) is (NAME, SALARY),

and thus tuples in the output answer are ordered by NAME first and only then by

SALARY (see Figure 5.2(a)). Therefore the ordering of tuples is, in general, different to

tha t of query (Q5.5), whose list is specified as (SALARY, NAME), since the output of

{Q5.5) is ordered by SALARY first and then by NAME (see Figure 5.2(b)). It will also be

different from tha t of (Qs.e) whose list is ((NAME W ITHIN EMPJRANK)^ SALARY),

where the ordering of NAME is given by the semantic domain EMP_RANK shown in

Figure 5.1 (see Figure 5.2(c)). The standard aggregate functions [80] such as COUNT,

MIN, MAX, AVG, SUM still apply to ordered relations.

NAME SALARY

Bill 12K

Ethan 28K

John 14K

Mark 30K

Nadav 28K

Simon 12K

SALARY NAME

12K Simon

14K Bill

14K John

28K Ethan

28K Nadav

30K Mark

NAME SALARY

John 14K

Simon 12K

Bill 14K

Ethan 28K

Nadav 28K

Mark 30K

(a) (b) (c)

Figure 5.2: An employee relation EMPLOYEE with different ordering

5 .2 .2 D a ta D e fin it io n L an gu age

The syntax of OSQL allows users to define semantic domains using the CREATE DO­

M A IN command as follows:

CREATE D OM AIN (domain name) (data types)

ORDER A S { ordering specification)

120

The first part of the command is similar to the SQL standard statement that declares

a domain. Following the ORDER A S keywords is a specification of the ordering of a

semantic domain. The basic syntax of the ordering-specification is: ((data-pair), (data-

pa ir),...) where data-pair is of the form, data-item B < data-item A, if and only if data-

item A is greater than data-item B in the semantic domain. For example the definition

of the semantic domain shown in Figure 5.1 can be written as follows:

(Q5.7) CREATE D OM AIN EMP JRAISIK CHAR{5) ORDER A S

(’Simon’< ’E than’, ’John’< ’BiU’, ’E than’< ’Mark’, ’Bill’< ’M ark’, ’Nadav’< ’Mark’).

For a large and complex domain, this syntax may be tedious. Thus OSQL provides two

useful short forms to make the task of formulating queries easier. First we allow the

use of set notation, {}, to represent a set of data items with common predecessor (or

successor). So the previous example can be rewritten as follows:

(Qs.s) CREATE DOMAIN EMFJRANK CHAR{5) ORDER A S

({’Bill’,’Nadav’,’E than’} < ’M ark’, ’John’< ’Bill’, ’Simon’< ’E than’)

Second we allow the use of the keyword OTHER for those data items not mentioned

explicitly, with two options OTHER SYO and OTHER UNO meaning that those data

values not mentioned are treated as SYstem Ordered or UNOrdered. Note that by default

we assume other data items are unordered unless there is an explicit declaration that

orders these items. We will see more examples later which demonstrate how this keyword

can be useful in some applications.

To conclude this section, we show examples of using OSQL in formulating some

queries over ordered databases. The reader may refer to the relation EM Pl in Figure

5.9.

(Q5.9) Find four names of employees whose salaries are greater than 10,000.

SELECT (NAME) (1..4) FROM E M Pl WHERE SALARY > lOK.

(Os.10) Find the first and the fourth lowest salaries.

SELECT (SALARY) (1,4) FROM EM PL

(Q5.11) Find the highest salary.

SELECT (SALARY) (LAST) FROM EM Pl,

or equivalently,

121

{Q5 .12) SELECT {SALARY) (1) DESC FR OM E U P l .

5.3 Im plem entation of OSQL

In this section we present an overview of the design of the system architecture and

the implementation strategy of OSQL. The implementation of OSQL provides us the

following benefits.

1. It allows us to experiment with the capabilities of OSQL. Hence, we obtain a better

insight into the actual benefit of ordering, allowing us to explore further research

topics concerning ordered databases.

2. It provides us with a prototype which has enabled us to carry out a user survey,

whose findings and feedback are reported in Chapter 6.

3. It offers a basis for us to build packages of different applications in order to enhance

the utilities of ordered databases. The use of different packages in many advanced

applications is detailed in Chapter 7.

We have implemented OSQL by building a layer on top of the Oracle DBMS. The ad­

vantage of this approach is that the prototype of the OSQL system could be implemented

fairly quickly by making use of the existing database functionality of Oracle such as stor­

age and transaction management. Moreover, using such a strategy, the OSQL system

is very flexible in the sense that it could be easily transported to other platforms. The

disadvantage of this approach is tha t the potential of OSQL cannot be fully analysed.

For example, the actual performance of queries over ordered databases is not known to

us, since we do not have access to the working of the query optimiser. Nevertheless,

further research is needed at the physical level to investigate how best it can support

ordered databases. Such an investigation is beyond the scope of this thesis.

5 .3 .1 T h e S y s te m A r c h ite c tu r e

The query language OSQL which operates over ordered relational databases has been pro­

totyped on a SUN machine Unix platform, using Oracle for low level data management.

Oracle was chosen since it is both a typical and the world’s most popular relational

DBMS, which is readily available at UCL. The system allows the user to enter both

122

OSQL and SQL statements via the front end of a Unix interface. Thereafter, the OSQL

precompiler generates a corresponding program consisting of a sequence of Oracle SQL

statements and calls a dynamic SQL handling routine. This routine pipes the program

into the back end Oracle server for execution. The overview of the system architecture

is depicted in Figure 5.3.

Oracle

System

Query

Result

OSQL or SQL
Statem ents

OSQL
System

Unix
Front end

C Precom piler

Interface
DBM S

Back end

Figure 5.3: Architecture of the OSQL system

The current implementation does not take up many additional resources from the

back end relational DBMS. The information about a semantic domain can be realised in

a standard relation and thus it can be maintained by the Oracle DBMS. We illustrate

tha t how the semantic domain EMP_RANK described in Figure 5.1 can be easily main­

tained by using a relation called ORDERINGJEMP_RANK created in a database. After

executing the CREATE DOMA/iV statement w ritten as (Q5 .7), the OSQL system gen­

erate an internal relation ORDERING_EMP_RANK to represent the semantic domain

EMP_RANK. There are two approaches to construct this internal relation.

One approach is to use transitive reduction as the representation of the semantic

domain, which is shown in Figure 5.4.

In this approach, the binary relation ORDERING_EMP_RANK, consisting of two

attributes over ORDERING-SMALL and ORDERING-LARGE, implements the order­

ings between pairs of elements. For example, the first tuple in the relation, which is

{Bill^ M ark), means tha t Bill is under Mark in the organisation. Note that the relation

ORDERING-EMP-RANK is a transitive reduction in the sense tha t it contains no tuple

derivable from transitive closure. This approach caters for space reduction, i.e., we use

the minimal numbers of tuples describing the semantic ordering of a given domain. The

transitive closure can be easily obtained by the command CONNECT B Y m Oracle,

123

ORDERING-SMALL ORDERING-LARGE

Bill Mark

Ethan Mark

Nadav Mark

John Bill

Simon Ethan

O R D E R IN G J ^ M P J i A N K

Figure 5.4: An internal relation to maintain the semantic domain EMP_RANK

which essentially performs a closure operation.

Another possible approach which uses the transitive closure as the representation of

semantic ordering shown in Figure 5.5. This approach has the advantage of minimising

the cost of query execution time. Let us consider the following semantic comparison in

OSQL: STAFF < ’Mark’ WITHIN EMP_RANK. In such case the semantic comparison

can be done in a linear time if we use the transitive closure of ORDERING_EMP_RANK.

ORDERING-SMALL ORDERING-LARGE

Bill Mark

Ethan Mark

Nadav Mark

John Bill

Simon Ethan

John Mark

Simon Mark

ORDERING_EMP_RANK

Figure 5.5: Using a transitive closure to maintain the semantic domain EMP_RANK

Although these two approaches, the transitive reduction representation and the tran­

sitive closure representation, are equivalent in the sense that they represent the same

partial ordering of a semantic domain, they have different implications in updating se­

124

mantic domains. If we delete the tuple {John^ Bill) of ORDERING_EMP_RANK in

Figure 5.4 (i.e., the transitive reduction representation), then in the meantime it implic­

itly removes the ordering relationship between John and Mark. We also note that in

this approach we have freedom to delete any tuple. In contrast, if we delete the same

tuple {John, Bill) of ORDERING_EMP_RANK in Figure 5.5 (i.e., the transitive closure

representation), it preserves the semantics of orderings of other elements in the domain.

However, it may not possible to delete a particular tuple in such approach. For example,

we cannot delete the tuple {John, M ark) only, otherwise the relation would be an invalid

representation of a partial ordering, since we have John Ç Bill and Bill Ç M ark but

John 2 M ark, which violates the transitivity criteria of a partial ordering (see Definition

2 . 1).

We remark that in most cases it is not necessary that all the values in a semantic

domain be explicitly stored in the database because many of these values are unordered

relative to each other (recall the keyword OTHER to represent those values which are not

mentioned). Moreover, we use the Oracle SQL command CREATE VIEW to form the

necessary intermediate relations, and thus should not burden the system with large space

usage overheads. Moreover, the dynamic SQL routine guarantees tha t the translated SQL

program runs efficiently.

5 .3 .2 T h e I m p le m e n ta tio n M e th o d

The implementation of the OSQL system is divided into four main modules as follows:

Tokens Checker, Syntax Checker, SQL Handler and SQL Translator. We describe their

functions in the table given in Figure 5.6.

We use Lex, Yacc and Pro*C (Oracle’s C compiler allowing embedded SQL state­

ments) to implement the OSQL system. This system is complied and linked together

to perform the translation of OSQL statements into SQL statements. The diagram in

Figure 5.7 illustrates the implementation of the system with respect to its modules.

The on-line running of the system performs four basic processes: (1) OSQL lexical

and syntax checking, (2) Translating from OSQL into SQL, (3) Interacting with Oracle,

(4) Exception Handling of the different stages. Firstly, the system check the correctness

of an input OSQL statement (see Appendix A for the formal syntax of OSQL) and sep­

arate it from system control commands such as “quit” . This process includes checking

whether the symbols (or tokens) and the syntactical structure of an input statement are

125

M o d u les F u n ctio n s

1. Token Checker Checking for the correctness of symbols (or

tokens) of an input statement or command

2. Syntax Checker Checking the correctness of the syntactical

structure of an input statement

3. SQL Handler Communicating between the OSQL interface

and Oracle

4. SQL Translator Translating a valid OSQL statement into a

SQL program

Figure 5.6: Brief description of the modules in the implementation of the OSQL system

valid. We invoke the module tokens checker and the module syntax checker to perform

the tasks, which are implemented by the programs called osql.l and osql.y, respectively.

Secondly, the module OSQL translator, which is implemented by the program trans­

lation, c, translates a valid OSQL statement into a SQL program, i.e., a sequence of

standard SQL statements. Another common implementation approach is to combine the

process of lexical and syntax checking and code generation. However, we find that in our

case the separation of these modules is easier to manage in practice. Thirdly, the mod­

ule SQL handler, which is implemented by the program dynamic.pc, communicates with

Oracle in order to execute the translated SQL program. The communication between

the C programs and Oracle is done by embedded Pro*C calls, which is the Oracle C

programming interface. In our case, the SQL program is not fully known until runtime.

For example, the tables or columns to be referenced in a SELEC T statement may only

be known as a result of data itself retrieved when the system is running. Therefore, we

use dynamic SQL Method 4 (i.e., SQL Descriptor Areas) [119], which can handle such

statements with an unknown number of select-list items or input host variables to be

constructed at run time and then executed dynamically. Fourthly, at different stages

there are many possible kinds of errors occurring, which are dealt by the SQL Handler

during the exception handling process. The rollback mechanisms becomes very complex

126

Modules Preprocessing

Compiling
and linking

Yacc

Token Checker

SQL handler

Syntax Checker

OSQL Translator

OSQL

Figure 5.7: The implementation of the OSQL system

and our system is still immature in this respect. Thus, there is much room for improving

in the exception handling process. As we discuss in Chapter 6, one common feedback

from the user survey is tha t the system can be improved by providing them with more

error diagnosis and on-line help.

The implementation was achieved using Oracle SQL statements and is currently oper­

ational; all the OSQL statements mentioned in this Chapter have been successfully tested

on the system. Some sample code for the mentioned programs are listed in Appendix D.

The diagram given in Figure 5.8 illustrates the stages in the on-line running of the system.

Error
Messages

Input
Query

Output ^

Syntax Checking
Token Checking

OSQL Translating SQL handling Oracle

Exception Handling

Answers

Figure 5.8: The stages of on-line running of the OSQL system

5.4 Application Examples of OSQL

There is a growing demand for support in relational DBMSs of applications involving

tree-structured information [15], incomplete information [38], fuzzy information [17] and

127

temporal information [144]. There has already been a fair amount of research on how to

incorporate such applications into the framework of the relational model; see for instance

[37, 145, 111]. The drawback of the solutions tha t have been proposed so far is that

they do not provide a unified treatm ent for all the above mentioned applications. In this

section, we demonstrate how OSQL can be applied to solve various problems that arise

in all of these applications under the unifying framework of the ordered relational model.

We remark that many tailor-made systems have been developed for specific appli­

cations [16], representing an approach which is quite different from what we suggest.

This can arise from a perceived need to support specialised domains. For example, some

temporal researchers [145] claim tha t the time domain is fundamentally different from

other relational model domains. One even claims that his particular time domain is

fundamentally different from other temporal domains [75].

Unquestionably, a system tailored to a particular application has the advantage of

making it easier for users of that application to understand the operations supported.

However, a tailor-made system lacking a general algebraic query capability may be less

powerful than one based on the unified approach we present. Furthermore, such spe­

cialised approaches either make substantial changes to standard SQL or extend the con­

ventional relational model, this forming a barrier to their widespread adoption.

5 .4 .1 T ree -S tr u c tu re d In fo rm a tio n

Tree data is very common in practice, for example, the manager/ subordinate relation­

ship and the parent/child relationship. In standard SQL the support for tree-structured

information is poor due to the fact that there is no trivial way to handle tree like struc­

tures when the data elements are unordered [27]. We now consider the following relation

E M Pl as shown in Figure 5.9.

Suppose tha t the hierarchy of the employees in EM Pl is as in the diagram shown in

Figure 5.1 and that the domain EMP_RANK is declared as by the statement (Q5 .7) (or

equivalently the statement (Qs.g)). We consider the following queries over the relation

E M Pl.

(Q 5 .1 3) Find the most senior staff member.

SELECT ((NAME W ITHIN EM P.RANK)) (1) DESC FROM EM Pl.

128

NAME SALARY

Bill 12K

Ethan 29K

John 14K

Mark 30K

Nadav 28K

Simon lOK

Figure 5.9: An employee relation EM Pl

(Q 5 .1 4) Find a member of staff at the most junior level.

SELECT {{NAME WITHIN EMFJRANK)) (1) FROM EMPl.

(Q5.15) Find all the members of staff at the most junior level.

SELECT ((NAME W ITHIN EMPJRANK)) ALL{1) FROM EMPl.

(Qs.ie) Find the name and salary of all the bosses of “John”.

SELECT {*) (*) F R O M E M P l WHERE {NAME > ’John’ tF/T^/iVEMP_RANK).

(Q5.17) Find the name and salary of the common bosses of “John” and “Simon” .

SELECT {*) (*) FR O M E M P l WHERE {NAME > ’John’ lF/ra/iVEM P_RAN K)

AND (NAME > ’Simon’ WITHIN EMP J lA N K) .

Various semantic domains could be defined on employees, which depend on the needs

of specific applications. For example, in a typical organisation we can define a domain

EMP_QUALIFICATION or EMP_CONNECTION which orders the names of employees

according to their academic qualifications and community connections, respectively.

5 .4 .2 In c o m p le te In fo rm a tio n

In reality, we do not expect a database containing large volumes of data to have perfect

information on the enterprise it is modelling, due to the fact tha t information may be

missing or imprecise. We call the former type of information incomplete information

[38] and the la tter type of information fuzzy information [17]. We expect an upgraded

relational DBMS to handle incomplete and fuzzy information and provide reasonable

answer for queries over them.

129

Consider the relation EMP2, shown in Figure 5.10, which contains some records with

incomplete information. We classify the incompleteness into three unmarked null symbols

whose semantics is given in [154, 38, 37], respectively:

UNK: Value exists but is UNKnown at the present time, for example some employees

do not want to disclose their ages, this kind of incompleteness is presented as the

symbol “UNK”.

DNE: Value Does Not Exist, for example a fresh graduate does not have any previous

work experience.

NX: No Information is available for the value, for example we may not have any infor­

mation available as to whether an employee has previous working experience. The

employee either has no previous working experience or it is unknown at the present

time.

NAME SALARY PREVIOUS-WORK ACADEMIC-ATTAINMENT

Mark 30K UNK PhD

Ethan 29K DNE MSc

Nadav 28K administrator MBA

Bill 20K programmer MSc

John 14K NI BSc

Simon lOK NI A Level

Figure 5.10: An employee relation EMP2

We now introduce the notion of more informative values, which allows us to deduce

useful information available from the relation having incomplete data. The diagram in

Figure 5.11 shows a partial ordering, say < , based upon the relative information content

in a domain augmented with the three null values we have introduced. We can extend

this partial order to tuples by defining a tuple ti to be less informative than another

tuple t 2 if for all attributes A in the relational schema, ti[A] < t 2 [A].

In other words, UNK and DNE are more informative than NI, and any values which

are not unmarked null symbols are more informative then UNK. Let us define a semantic

domain called INCOMPLETEJDOMAIN for the attribute PREVIOUS-WORK:

130

O TH ER

D NEU NK

Figure 5.11: A partial ordering on a data domain

(Qs.is) CREATE D OM AIN m C O M P LE TE JD O M A m CHAR{10) ORDER A S

(’N F < ’DNE’,’N r < ’UNK’< OTHER).

Now we can query the relation EMP2 as follows:

(Q5.19) Find the name and previous work of those employees whose previous work is

more informative than or equal to UNK.

SELECT (NAME, PREVIOUS-WORK) (*) F R 0 M E U P 2

(PREVIOUS-WORK > = ’UNK’ WITHIN INCOMPLETE JDOMAIN).

5 .4 .3 F u zzy In fo rm a tio n

There is a strong correspondence between ordering and fuzziness. Assuming that the

comparison, <, indicates linear ordering, the semantic comparison x \ < X2 can be used

to represent the fact that the data value x \ is fuzzier than the data value X2 [29]. The

smaller the value is with respect to an ordered domain, the fuzzier the value is relative to

a given fuzzy requirement. For example, the more junior an employee is with respect to

the ordered domain EMP-RANK, the “better chance” for this employee to be promoted.

The advantage of using such associations is that we do not need to define a membership

function for a fuzzy set of data values as adopted by the traditional approach in fuzzy

set theory [76]. Therefore, we can avoid measuring the fuzziness of data in terms of an

exact number, which is in practice difficult and sometimes unnatural.

As a more detailed illustration, suppose tha t there is a project which requires an

employee with a good science background and academic qualification. We can declare

a semantic domain called PREFERRED-QUALIFICATION to capture the semantics of

the requirement “good science background” as follows:

(Q5.20) CREATE EDM A/APREFERRED-QUALIFICATION CHAR{10)

ORDER A S {{OTHER UiV(9}<’BSc’, ’BSc’< { ’P hd’, ’MSc’}) .

131

We demonstrate our idea by a typical example of a fuzzy query.

{Q5.21) Find three names of those employees with good science background and academic

qualification preferred.

SELEC T ((ACADEMIC-ATTAINTMENT W ITHIN

PREFERRED_QUALIFICATION), NAME) (1..3) DESC FROM EMP2.

Another advantage of the above approach is that, as pointed out by Chang in [29],

the output will be a sorted list of tuples arranged in a manner so that the first will be the

“most appropriate” one with respect to the fuzzy requirement “good science background

and academic qualification” . As a result, it supports a decision based on a fuzzy criterion.

5 .4 .4 T em p o ra l In fo rm a tio n

There is already a substantial amount of research on incorporating time into the frame­

work of the relational model (see the collection of papers in [145]). This research is

motivated by the many applications tha t need to make reference to past and/or future

data. For example, storing historical data allows this data to be reviewed for forecasting

purposes. One of the approaches to manipulating temporal data is to use an attribute,

which we call a time attribute and to timestamp the attribute values of this attribute with

time-points [144]. For simplicity, we assume tha t the timestamping denotes valid time

[145]. Let us consider the example shown in Figure 5.12, where we make use of the time

attribute SALARY_TIME to timestamp the attribute SALARY with the time-points of

years. For instance, we can see that Mark had salary 20K in 1990 and his salary increased

to 25K in 1992.

In contract to [144] we do not use an ordered pair such as {SALARY^ S A L A R Y FT I M E)

as a data item to represent temporal information, since it gives a Non-First Normal Form

relation resulting in an added degree of complexity.

The following temporal queries are typical for a temporal database.

(Q5.22) W hat was the salary of Bill in 1990?

SELECT (SALARY.TIME, SALARY) (LAST) FR 0M E M P3 WHERE

NAME = ’Bill’ AND SALARY.TIME < = 1990.

(Q5.23) W hat is the salary of Mark now (assume the current year is 1996)?

(SALARY.TIME, SALARY) (LAST) FR 0M E M P3 WHERE

132

NAME SALARY SALARY TIME

Mark 20K 1990

Mark 25K 1992

Mark 30K 1995

Ethan 21K 1994

Ethan 29K 1996

Nadav 28K 1995

Bill lOK 1988

Bill 15K 1991

Bill 18K 1995

Bill 20K 1996

John 14K 1996

Simon lOK 1996

Figure 5.12: An employee relation EMP3

NAME = ’Mark’ AND SALARY_TIME < = 1996.

(Q5.24) W hat was the starting salary of Mark and when was it?

(SALARY.TIME, SALARY) (1) FROM EMP3 WHERE

NAME = ’Mark’.

(Q5.25) W hat is the salary history of Ethan?

5 F L F 0 T (SALARY.TIME, SALARY) (*) FROM EMP3 WHERE

NAME = ’E than’.

(Q5.26) W hat are the names of employees who earned more than 20K during the period

1992-1995 inclusive?

SELECT (NAME) (*) FROM EMP3 WHERE

SALARY > 20K AND SALARY.TIME < = 1995 AND SALARY.TIME > = 1992.

Note tha t the relation EMP3 does not necessarily contain a tuple for every year, for

example there is no change in salary for Bill in 1990. Thus, in the query (Q5.22) OSQL

will select the “most recently updated” tuple before 1990. This can be done by using

the keyword L A S T together with the comparison SALARY.TIME < = 1990 as shown in

133

(Q5.22). A similar remark also applies to query (Q5 .23)-

134

Chapter 6

A User Survey on OSQL

In Chapter 5 we discussed OSQL, which is the extension of SQL for the ordered relational

data model, OSQL provides the facilities of semantic orderings over domains in addition

to the standard ones. From the point of view of usability, we believe that the human

factors are im portant measures in order to justify our implementation of OSQL. In order

to gain further insight into the usage and the acceptance of the semantic orderings pro­

vided by the OSQL SELECT command, we invited 70 students (or simply the students

sample), who were studying a relational databases course, and 10 computer professionals

(or simply the professionals sample) to participate in our user survey (or simply the sur­

vey). We call the students sample and the professionals sample collectively, the subjects.

The subjects were asked to apply the OSQL SELECT statement to formulate a set of

queries in the experiment designed for the survey (or simply the survey queries), which

was done using our prototype of OSQL as detailed in Chapter 5. The survey queries are

very common queries when using order in databases, and represent different degrees of

difficulty involving the notion of order. The subjects were then requested to hand in the

solution to the survey queries and to comment on the difficulty and the usefulness of the

OSQL SELECT statement.

We present the results of the experiment as part of the report on the survey. From

the attitudes of the subjects towards the use of OSQL, we have determined whether the

various proposed features of OSQL are really easy to learn, understand and apply in

practice. Furthermore, from our observations throughout the process of the survey and

the communication with the subjects via different channels (e.g., email), we have obtained

many valuable suggestions which should help to improve OSQL and convert the current

135

OSQL prototype into a fully-fledged product in the future. Amongst our conclusions we

identify tha t (1) the subjects in the survey formulated difficult queries involving order

in an easier manner than in SQL, and (2) the extended features in the OSQL SELECT

statement were easy for the subjects to learn, understand and apply. The survey may

also provide beneficial pointers to the teaching, presentation and evolution of OSQL and

SQL in general.

The specific objectives of the study include the following five aspects.

1. To access the subjects’ attitudes on the usefulness of the three extended features

of OSQL which are (1) the attribute list, (2) the tuple list, and (3) the comparison

clause of the OSQL SELECT command (explained in detail in Section 6.2).

2. To determine whether the said features of the OSQL SELECT command are easy

to apply in formulating the survey queries.

3. To compare the accuracy of the solutions to the survey queries being formulated in

OSQL and SQL, respectively.

4. To identify ways of improving the syntax of the OSQL SELECT command and the

current implementation of OSQL from the feedback of the subjects.

5. To identify the related areas tha t can be helpful in the development of more prac­

tical and effective training courses for current and potential OSQL users.

In Section 6.1 we describe the method used in carrying out the survey and the general

issues relating to the survey queries. In Section 6.2 we discuss the underlying ideas in

designing the questionnaire of the survey. In Section 6.3 we present the results of the

survey. The analysis is grouped under the following categories: (1) the knowledge profile

of the subjects, (2) the result of the subjects’ attem pts in formulating the survey queries,

and (3) the subjects’ attitudes on the extended features of the OSQL SELECT command.

In Section 6.4 we discuss the implications of the survey for the issues concerning the usages

and development of OSQL.

6.1 The User Survey

The students sample (70 people) were all full-time students of which 39 were undertaking

the conversion MSc in Information Technology or Computer Science at University College

136

London (or UCL). The other 31 students were final year undergraduates. They had

completed the first 8 weeks (out of 11 weeks) lectures of a database management course

and had just finished a piece of coursework on using SQL prior to the survey. Most of

the students had not used Oracle before the course. However, a majority of them had

other computer science knowledge and experience such as C + + programming.

The professionals sample (10 people) consisted of 5 computer science researchers and

5 experienced practitioners. The researchers were doing research on some areas related

to database systems in the Department of Computer Science of UCL. The 5 experienced

practitioners had been exposed to a relational database environment for at least 2 years

and had been using SQL.

There were only very few unanswered questionnaires (5 people in the students sample

and 1 person in the professionals sample), which were treated as invalid questionnaires,

and were not taken into account in our survey. As a result, 74 questionnaires were

completed totalling a response rate of 92.5%.

We targeted the extended features of the OSQL SELECT statement, which were clas­

sified into the following three aspects: the attribute list, the tuple list and the comparison

clause. We presented the OSQL SELECT statement in the format as given below to the

subjects in order to facilitate better comprehension.

SELECT { a ttribute list) (tuple list)

relation list

WHERE (comparison clause)

The survey queries were designed to involve the use of the mentioned features. The

subjects were required to attem pt the survey queries listed in the experiment sheet (see

the survey documents in Appendix C). There were a total nine queries which retrieved

information from an Oracle database provided by the Department of Computer Science

in UCL. The database consisted of two ordered relations containing the information that

might be used by a frame company and a furniture company, respectively. The structure

and content of these relations were straightforward enough to be easily understood. The

subjects were required to use OSQL (as Task I in the experiment) and SQL (as Task II

in the experiment), respectively, to formulate these queries over the given database.

Prior to the experiment, there was one meeting with students, which lasted up to

60 minutes. Before the meeting we had prepared the following documents the subjects

137

needed to complete the survey (which we will refer to as the documents).

1. An OSQL mini-manual (or simply the manual) described the essential features of

OSQL, the overall architecture of the system and the technical details to connect

to the system.

2. An experiment sheet listed the survey queries and included the necessary instruc­

tions for returning their solutions.

3. A questionnaire consisting of 6 questions.

At the beginning of the meeting, we issued the manual, the experiment work sheet

and the questionnaire to the subjects. Thereafter the meeting was devoted to introducing

OSQL and the demonstration of the example queries in the manual (see Appendix C .l

for Queries 1 to 15 given in the manual). The subjects were requested to return within

one month, their solutions to the survey queries and their output from these queries, and

also the filled in questionnaires. Finally, we had approximately ten minutes to allow the

subjects to ask questions about the survey.

In order to motivate the students sample to complete the survey queries, we notified

the students tha t their work for the experiment sheet would contribute part of the marks

for their coursework. On the other hand, for the sake of objectivity, we also told them

tha t their questionnaire would not count towards their final mark but tha t its completion

was compulsory. Finally, we assured the students that the questionnaire would be treated

in an anonymous fashion. The aim of the said measures was to encourage the students

sample to be honest when filling in their questionnaires.

We adopted a binary grading method, correct or incorrect., to simplify the process of

deciding the correctness of the subjects’ work on the survey queries. These two grades

were classified according to the criteria as stated below.

1. A correct solution meant tha t one of the following three conditions was satisfied:

(a) The solution to a query was completely correct.

(b) The solution to a query had a minor error such as a missing attribu te in an

attribu te list. This error was able to be corrected fairly easily and the solution

yielded a reasonable result.

138

(c) The solution to a query was correct with respect to another possible interpre­

tation of the query and this alternative interpretation was reasonable.

2. An incorrect solution meant that one of the following three conditions was satisfied:

(a) The query was unattempted.

(b) The solution to a query had a major error.

(c) The solution was correct with respect to another possible interpretation of the

query. However, this alternative interpretation was unreasonable.

If several errors in both categories were found in the solution of a query, the solution

was treated as an incorrect solution. The order of queries in the experiment sheet was

roughly based on our beliefs of their difficulty. Thus, Query 1 was assumed to be the

easiest one and Query 9 the hardest one.

We used simple statistical analysis on the results of Task I and Task II of the ex­

periment such as the percentage of correct answers to each query. We were cautious in

comparing the solutions of SQL and OSQL because for some simple queries their results

were remarkably close. The details of the statistics of correct solutions to the survey

queries formulated in OSQL and SQL are summarised in tabular format and will be

discussed in Section 6.4.

6.2 Questionnaire Design

The survey questionnaire, which was designed to be as concise as possible for the conve­

nience of the subjects, contained six main questions (some questions had several parts).

As we already stated before, the majority of the subjects were students in the Depart­

ment of Computer Science at UCL. The background information most interesting to us

was their experience of using SQL or having other related computer experience. Based

on these considerations, we decided that Questions 1 and 2 of the questionnaire would so­

licit information about the profile of respondents’ SQL knowledge and the programming

languages known to them.

Question 3 collected the data about the OSQL experiment in a table, which recorded

the number of attem pts for each query in Task I of the experiment. The number of

attem pts to complete a query reflected the difficulty encountered by subjects when using

OSQL to formulate it. We classified the number of attem pts into four categories as below.

139

1. Less than three times.

2. Three to six times.

3. More than six times.

4. Unsuccessful.

We decided that the first category of the above classification was a reasonable range to

show that the query was relatively easy to users. The next category implied that there

were minor problems for the users when using OSQL. The subjects might experience

minor frustration but making three to six times attem pt did not seem to discourage them

very much. The third category indicated that the subjects had problems in formulating

a query using OSQL. The fourth category is self-explanatory, which implied that the

subjects failed to formulate a query in OSQL.

Question 4 was another part (Task II) of the experiment which recorded the number

of attem pts at using standard SQL to formulate the survey queries, which were the same

set of queries as in Task I. We used them as a reference to compare with the result of

the corresponding queries formulated in OSQL.

Question 5 was the evaluation of the extended features of OSQL SELECT command

given by the subjects. We adopted the five-point Likert scale, which is the most commonly

used attitude scale type in Psychology [93], to seek comments on the usefulness and the

difficulty of the OSQL statement. This question reflected the attitudes of the subject

towards the OSQL SELECT commands. In order to evaluate the command in more

detail, we specifically asked the subjects in this question for the usefulness of the three

extended features of OSQL, i.e., the attribute list, the tuple list and the comparison clause

cis well cis the difficulty they had encountered while using them (see the instructions to

the subjects and the format of this question in Appendix C.3).

Finally, question 6 is designed to be divergent so tha t we can gain feedback on OSQL

in a more open manner.

140

6.3 Summary of Results

6 .3 .1 K n o w led g e P ro file o f th e S u b je c ts

The following table summarises the general information of the subjects’ experience of

using SQL.

Experience of SQL Percentage

Learned SQL on the course 85.00

Less than 2 years 6.25

2 to 4 years 6.25

More than 4 years 2.50

Figure 6.1: Experience of SQL of the subjects

The majority of the subjects (85%) were first exposed to SQL through the course

in our department as shown in Figure 6.1. This is a reasonable result because most of

the subjects are students. It could be argued that if the questionnaire was distributed

more widely to include more SQL professionals in the subjects, the result would be more

representative. However, in our case we have an advantage tha t the subjects acquired

similar exposure to both SQL and OSQL, and thus the comparison of these languages

can be achieved in a fairer manner. Furthermore, any negative responses found in the

survey signify that they should be recognised at an early stage in the training of both

using OSQL or SQL.

Other Programming Languages Percentage

C or CH—h 92.50

M iranda 58.75

Microsoft software 37.50

HTML 25.00

Java, Basic and others 26.25

Figure 6.2: Computing knowledge and experience of the subjects

As for the computing knowledge and experience of the subjects, we find that they had

141

a certain degree of exposure to other programming languages as shown in Figure 6.2. The

most popular ones were C, C + + and Miranda, which were the languages the students

sample learned from the basic courses provided by our department. However, it was very

rare for the subjects to have knowledge and experience in other database programming

languages such as those offered by Sybase or Informix. The Microsoft software here,

refers to word processing software and similar packages.

6 .3 .2 T h e R e su lt o f F orm u la tin g th e S u rv ey Q ueries

In order to compare the performance of using OSQL and SQL, we aggregate the results

of the number of the correct solutions and the attem pts for all queries in Tasks 1 and 11.

We compare the result of Question 3 and 4 from two perspectives. Firstly, in Figure 6.3

we present a bar chart of the percentage of the total number of correct solutions obtained

using OSQL and that of using SQL. Secondly, we present a table in Figure 6.4 showing

the aggregated result for the number of attem pts for each query recorded in Question

3 and Question 4 of the questionnaires. It seems reasonable to view both the number

of correct solutions obtained and the number of attem pts as pointers which indicate the

difficulty of either using OSQL or SQL to formulate a query.

a 100% o

o
U

D£«

£

50%

0%

Correct Attempts of the Survey Queries

Q1 Q2 Q3

c
Q4 Q5 Q6

OSQL correctness

Q7 Q8 Q9 Survey Queries

SQL correctness

Figure 6.3: A bar chart to compare the correct solution of the survey queries

Figure 6.3 shows that over 90% of subjects formulated Query 1, 2 and 3 correctly

both in OSQL and SQL. It is not difficult to verify that the subjects showed less than

142

P e r c e n ta g e
Q u e r ie s L a n g u a g e s L ess th a n 3 t im e s 3 t o 6 t im e s M o re th a n 6 t im e s U n su c c e s s fu l

1 O S Q L 9 2 .3 1 4 .6 2 3 .0 8 0.00
S Q L 9 6 .9 2 3 .0 8 0.00 0.00

2 O S Q L 9 2 .3 1 6 .1 5 1 .5 4 0.00
S Q L 9 6 .9 2 3 .0 8 0.00 0.00

3 O S Q L 8 9 .2 0 1 0 .7 7 0.00 0.00
S Q L 9 3 .8 5 4 .6 2 1 .5 4 0.00

4 O S Q L 8 3 .0 7 1 6 .9 2 0.00 0.00
S Q L 7 .6 9 3 5 .3 8 3 3 .8 5 2 3 .0 8

5 O S Q L 7 6 .9 2 20.00 3 .0 7 0.00
S Q L 7 5 .3 8 1 8 .4 6 4 .6 2 1 .5 3

6 O S Q L 4 4 .6 1 4 4 .6 1 9 .2 3 1 .5 3
S Q L 6 .1 5 4 3 .0 8 2 7 .6 9 2 3 .0 8

7 O S Q L 5 3 .8 5 3 6 .9 2 7 .6 9 1 .5 3
S Q L 1 8 .4 6 4 0 .0 0 1 5 .3 8 2 6 .1 5

8 O S Q L 4 3 .0 8 4 3 .0 8 1 3 .8 5 0.00
S Q L 3 3 .8 5 3 2 .3 1 1 0 .7 7 2 3 .0 8

9 O S Q L 3 6 .9 2 4 4 .6 1 1 5 .3 8 3 .0 8
S Q L 1 5 .3 8 4 0 .0 0 2 3 .0 8 2 1 .5 4

Figure 6.4: Attempts of survey queries formulating in OSQL and SQL

5% difference in the correctness of formulating these queries, which were considered to

be easy queries. It is also consistently shown in Figure 6.4 that over 90% subjects were

able to finish these queries in less than 3 attem pts. One further interesting point which

can be deduced from Figures 6.3 and 6.4 is tha t there is a strong correlation between

the number of attem pts in formulating the survey queries and the percentage of correct

solutions obtained for the survey queries. Thus, it implies the obvious conclusion that

the less the number of attem pts that are required to formulate a query, the higher the

chance that the query is correct. It is also interesting to note that the performance of

using SQL is slightly better than that use of OSQL in these three simple queries. This

can be attributed to the simpler syntactical structure of the SQL SELECT statement

and thus the subjects could formulate these queries more accurately.

A substantial difference in the performance of formulating queries in OSQL and SQL

is found in Query 4 given as below.

What is the cost of the third and fifth cheapest part?

The query above involves the uses of many levels of nesting in SQL and it was a much

harder query for the subjects as many researchers have already anticipated [39, 99]. Under

143

this circumstance, the merits of using the tuple list in the OSQL SELECT command is

fairly evident as indicated in Figure 6.4. It shows tha t over 80% of the subjects finished

this query in less than three attem pts when using OSQL whereas less than 10% finished

within three attem pts when using SQL to do it. Moreover, the unsuccessful attem pts

using SQL are up to 23%, which indicates some inadequacies of SQL in handling this

type of query.

The performance in Query 5 using SQL gives a much better result than Query 4

because this query just requires the subjects to use the standard orderings provided by

Oracle using comparison and sorting. However, when it comes to the queries requiring

more semantics of data (a parts hierarchy and incomplete information) as in Queries 6 ,

7, 8 and 9, the result shows clear differences between using OSQL and SQL. In this case

the number of attem pts using SQL is significantly greater than that of OSQL. Also more

subjects, between 20% to 50% more, managed to work out the correct solution when

using OSQL. It shows tha t OSQL is very useful in the area of semantic comparison and

confirms that our extension on semantic domains is helpful.

Considered above, the superiority of OSQL has been demonstrated in the survey

queries because using it required less query attem pts and also more accurate results were

obtained in formulating the survey queries using OSQL. Moreover, OSQL is also a viable

extension to SQL in practice if we take account into the fact that we just used one hour

to introduce OSQL to the subjects for the experiment of the survey. Note that standard

SQL queries will execute in the OSQL system, since the system is designed to be upwards

compatible.

6 .3 .3 T h e S u b je c ts ’ A tt itu d e s to th e E x te n d e d F ea tu res

We summarise the results of Question 5 by aggregating the results into percentages and

then summarising the data into the table shown in Figure 6.5. The majority of the

subjects, which is well over 80%, chose the scales 4 and 5, to rate the usefulness of

the extended features. In particular, the subjects expressed their strong support for

usefulness of the tuple list, in which over 50% of the subjects gave the scale 5. As for

the difficulty of using the attribute list and the tuple list, more than 90% of the subjects’

responses were spread fairly evenly amongst the scales 1 to 3. This indicates tha t these

two features are basically not difficult for the subjects although they are not overly easy.

Relatively speaking, the use of semantic domains in the comparison clause seems to be

144

E x te n s io n U s e fu ln e s s D if f ic u lty
1 2 3 4 5 1 2 3 4 5

A ttr ib u te l is t (%) 0.00 4 .6 2 2 3 .0 8 3 5 .3 8 3 6 .9 2 3 5 .3 8 3 5 .3 8 2 3 .0 8 3 .0 8 3 .0 8
T u p le l is t (%) 0.00 4 .6 2 9 .2 3 3 0 .7 7 5 5 .3 8 3 5 .3 8 2 7 .6 9 3 2 .3 1 4 .6 2 0.00

C o m p a r iso n (%) 3 .0 8 3 .0 8 1 3 .8 5 4 4 .6 2 3 5 .3 8 1 6 .9 2 2 9 .2 3 4 1 .5 4 7 .6 9 4 .6 2

Figure 6.5: Users’ attitudes on using the extended features

more difficult than the attribute list and the tuple list, as less subjects (approximately

20% less than other features) chose the scales 1 and 2 for the difficulty of this feature.

As for Question 6 , we summarise below the useful comments in three areas.

1. In general, the subjects showed appreciation of the extended features of the OSQL

SELECT command. Many of their comments in this question expressed their sup­

port for our extension. They agreed that OSQL provided many benefits for them

to formulate the survey queries. The tuple list was the most positive feature that

the subjects frequently mentioned.

2. As far as the OSQL syntax is concerned, the subjects commented that the OSQL

SELECT command was quite easy to use as it syntactically resembled the SQL

SELECT statement. However, some pointed out that the use of brackets in seman­

tic orderings such as the attribute list ((NAME W ITH INEM PJRANK), SALARY)

wcis best avoided as too many brackets would easily cause typing errors.

3. As far as the implementation of OSQL is concerned, many subjects were dissatisfied

with the inadequacy of the error recovery mechanism, the on-line help manual and

the system facilities provided by our implementation. For example, the subjects

expected more editing commands to be available to correct their queries.

There were also some interesting points raised by a few subjects. Some mentioned

that the attribute list had imposed some restrictions on the format of the presentation of

the query result. Also, some suggested that in the attribu te list, more use of the asterisk

symbol to specify other attributes was necessary. An example raised by one of the

subjects was tha t the attribu te list (COST *) might mean that the tuples were sorted by

the attribu te COST in the first place but that the orderings of other attributes would be

immaterial.

145

6.4 Evaluation of OSQL as a Result of the Survey

Assuming that our results are in fact representative, we find tha t there are many im­

plications obtained from this survey for the extended features of the OSQL SELECT

command as follows.

• W ith respect to the attributes list we should provide further optional facilities in

the attribute list to aid the users when using semantic domains. In particular, it

would be helpful to provide the users with the asterisk symbol when they want

to specify other attributes whose orderings are irrelevant.

• W ith respect to the tuple list, it has proved to be a powerful mechanism and a

user-friendly facility for users to manipulate orderings. We should preserve this

good feature in further design.

• W ith respect to the comparison clause, the semantic orderings are useful features

but they may not be so trivial to some inexperienced users. More elaborations

should be given for OSQL beginners in order to help them to acquire the use of the

concept of semantic orderings.

We admit tha t there are not enough on-line facilities, such as a good user interface, for

the present OSQL prototype. It affects the users’ attitudes towards the extended features.

Therefore, a more comprehensive implementation of OSQL, which includes more error

diagnosis and a custom-built user interface, is needed so that further experiments can

be carried out to test the viability of the OSQL extension to SQL. One method is to

incorporate the SELECT command into a graphical user interface, for example, instead

of typing the name of a semantic domain in the comparison, users may make their choices

from a drop down menu in a window environment, which presents a series of available

semantic domains. In fact, OSQL can also provide the facility to develop a library of

custom-built semantic domains together with their relevant operations via the notion of

package. We will discuss in Chapter 7 the full detail of the package facility in OSQL.

We have identified possible biases to our data, which may limit the findings in the

survey. Firstly, the samples should not, in general, be restricted to students and com­

puter professionals. People in other organisations may yield different results. However,

in our case the students sample is more readily available. It is also convenient for us to

146

manage the process of the survey within the time constraints. Secondly, the students

collective viewpoint may be biased by perceiving OSQL as an obstacle to overcome to

obtain a good mark for the coursework rather than as a means to assist SQL develop­

ment. Despite the fact that we have taken some precautions to avoid this happening

(recall tha t the measures were stated in Section 6.2), one still could argue that their

opinions are, to some extent, guided by us or by the OSQL manual rather than their

own experience. Thirdly, the survey queries adopted in the experiment sheet involve no

nestings in OSQL statements. Thus, the full capabilities of OSQL over SQL have not

yet been fully illustrated in the survey.

We have three short-term objectives and a long-term goal in order to continue and

evolve the survey in future. Firstly, we plan to extend the scope of the survey outside

of the current sample groups to include more computer professionals. Secondly, we plan

to improve the interface of the OSQL system and the error diagnosis facilities as we

mentioned before so that OSQL can be more fairly evaluated. Thirdly, we plan in the

next experiment to include queries that involve more complex ordered domains and nested

OSQL statements. As a more long-term goal, we are interested to know how much the

performance of the survey queries also applies to SQL3, which is estimated to be released

in 1998.

147

Chapter 7

The D evelopm ent o f OSQL
Packages for M odelling Advanced
Applications

In this chapter we demonstrate that OSQL aided with a package discipline is extremely

powerful and has a very wide range of applicability. In particular we demonstrate

that OSQL is very useful in managing the five advanced database applications of tree-

structured information, temporal information, incomplete information, fuzzy information

and spatial information, which are described in more detail in the table given in Figure

7.1.

P ack age N a m e B r ie f D e sc r ip tio n

OSQL_TREE Provides support for tree-structured information in or­
dered databases. For example, finding the common an­
cestors between two nodes.

OSQL_TIME Provides support for temporal information in ordered
databases. For example, finding the historical informa­
tion pertaining to a relation for a given year.

OSQLJNCOM P Provides support for incomplete information in ordered
databases. For example, comparing two tuples in order to
decide which one contains more information than another.

OSQL_FUZZY Provides support for fuzzy requirement in ordered
databases. For example, finding the most suitable tuples
in a relation according to a given fuzzy requirement.

OSQL_SPACE Provides support for spatial information in ordered
databases. For example, finding all spatial objects on the
left side of a selected region.

Figure 7.1: Brief description of the OSQL packages

148

The use of packages is very popular and successful in many existing software systems

such as Mathematica [146], PL/SQL in Oracle [52] and most recently in DK%X2g: [66] and

Java [8]. Similar to the usage of packages in other systems, OSQL packages, supported by

OSQL language constructs, enjoy many of the benefits of using modularisation techniques

as a management tool.

A related approach is to use abstract data types to define domains and their associated

operations, which can be treated as an integral part of the data type. This approach was

initiated by the ADT-Ingres project at Berkeley [118]. There followed many projects to

further this line of development, such as Postgres [138], the EXODUS project [26] and

the Starburst project [94]. Examples of commercial products which are now available

are Illustrais DataBlades and IBM’s Database Extenders. Following our analysis of the

development of the relational model in Chapter 1, this approach is basically an object-

oriented extension of the conventional model, resulting from the strong trend of object-

oriented programming in the 80s. For instance, the system RAD [121] provides a language

which enhances the relational algebra operations with external programs which allow the

database programmer to introduce arbitrary new data types to a relational DBMS. As

a result, RAD is computationally query complete [28]. However, optimisation of RAD

programs would be rather difficult due to the fact tha t they can only be introduced to

the execution engine at run time.

We emphasise that our approach is novel in the sense tha t we regard partial ordering

as a fundamental property of data which is captured explicitly in the ordered relational

model. Furthermore, our approach adheres to the principle of upwards compatibility,

since OSQL packages are provided as additional utilities to be used rather than replacing

any standard features of a relational DBMS. Thus, our approach provides maximum

flexibility for users and allows the design of optimisation strategies for the execution

engine of a relational DBMS.

We summarise other features of OSQL packages as below;

1. A top-down design approach is adopted for the grouping of related operations in

an OSQL package where the semantics of the package follow from a set of core

operations specified by the pre-deflned requirements of the package.

2. Constraints within an OSQL package can be enforced and supported by a lan­

guage construct called enforcement and thus operations in an OSQL package can

149

be controlled in a more coherent manner.

3. OSQL packages can hide the implementation details of the code of their operations.

The database adm inistrator has the flexibility to decide whether an operation is

public or private.

The remainder of this chapter is organised as follows. In Section 7.1 we present the

syntax of an OSQL package. From Section 7.2 to Section 7.6, we define the generic

operations arising from tree-structured information, temporal information, incomplete

information, fuzzy information and spatial information, respectively, in the form of five

OSQL packages shown in Figure 7.1.

7.1 The Syntax of OSQL Packages

In this section we introduce the Package Definition Language (PDL), which defines the

building blocks of an OSQL package; the full syntax of the PDL is given in Appendix

A.3.

An OSQL package is defined by the following statement.

PACKAGE (package name)

(package body)

END PACKAGE

where the package body consists of a parameter component, a function component

and an enforcement component. These three components are specified by the following

six basic PDL language constructs:

1. Parameter constructs.

2. Function constructs.

3. OSQL constructs.

4. Program constructs.

5. Enforcement constructs.

The parameter component in an OSQL package is organized as a sequence of param­

eter constructs followed by the keyword PARAM ETER as follows:

150

PARAM ETER: parameter construct [parameter construct].,.

where a parameter construct is of the form package data type: variable names^ declar­

ing the global variables used in the function and enforcement components. For example,

VARCHAR, INT and BOOL are package data types representing characters, integers

and boolean values, respectively. After each package data type declaration there follows

one or more variable names of the package data type. We use the symbol “$” to specify

those variable names that are known to the system at compile time.

The function component in a package is organized as a sequence of function constructs

followed by the keyword FUNCTION. A function construct is a block structure which is

defined as follows:

(function name) (input variables)

(param eter list)

DEFINE

(function body)

R E TU R N [(output variables)]

where parameter list is a sequence of parameter constructs and where the variables are

local to the function. The function body describes the operation of the function consisting

of an OSQL construct or a program construct. An OSQL construct is simply an OSQL

statem ent such that its variables have been declared either within a function (i.e., local

variables) or in the parameter component at the beginning of the package (i.e., global

variables). A function in a package returns a list of zero or more values.

As the expressive power of OSQL is limited [112], we enhance OSQL with a pro­

gram construct in OSQL, which is of the form A S PROG program name. The program

name is the path location and the name of a program, which is written in the C pro­

gramming language, which allows SQL statements to be embedded in it. This program

performs the operation of the function. For example, the program construct “AS PROG

\usr\P rog \tree .rooC in a function body specifies tha t the C program tree.root found

in the directory \u s r \P r o g \ implements the function.

The enforcement component in a package is organized as a sequence of enforcement

constructs followed by the keyword ENFORCEMENT. An enforcement construct, which

is similar to a function construct, is also a block structure as follows:

151

(enforcement name)

DEFINE

(enforcement body)

END

where the body of an enforcement construct is formulated by a program construct

which implements some constraints over the functions of an OSQL package. For example

an enforcement construct can be implemented to ensure that the identified domain is

indeed tree-structured. We reserve the enforcement, ENFORCE JN IT , to be used by the

system for the initialization of an OSQL package.

We refer to all functions and enforcements collectively as operations. There are two

categories of operations, which are also common in some programming languages: one is

that of public operations, which are available to the users, and another is that of private

operations, which are only accessible by calling them from other operations within the

package tha t they belong to. We use the keywords PUB and P R Ito label the operations as

public and private, respectively. By default, whenever there is no such keyword labelling,

we treat an operation as private. The public operations comprise the interface of a

package to the database users, whilst the private operations are encapsulated and thus

hidden from the users. For example, all enforcements are private because they are used

by the system to ensure the integrity of the domain and the consistency of the functions

in a package.

Note tha t there is an im portant difference between using an OSQL construct and a

program construct in a function. The OSQL statement in an OSQL construct can be

decomposed and restructured by the query execution engine of a relational DBMS for

optimisation purposes. For instance, the query {Q7.1) below, which uses the package

function COM_ANCESTOR,

{Q7.1) SELEC T (*) (*) FROM EMP_DETAIL

WHERE NAM E /AT COM_ANCESTOR(’Nadav’, ’E than’),

i s e q u i v a l e n t t o t h e q u e r y (Q 7 .2) b e lo w ,

(Q 7 .2) SE LE C T {*) (*) FROM EMP.DETAIL

WHERE (NAME > ’Nadav’ W/TR/iV EMP.RANK)

AND (NAME > ’E than’ W/TR/iV EM PJIA N K),

152

which is an ordinary OSQL statement not using any functions. On the other hand,

an external program specified in a program construct is “opaque” with respect to a

relational DBMS, in the sense that its code can only be integrated into its associated

OSQL statement at run time and thus allows no possibility of optimisation at compile

time. As a result, operations defined by OSQL constructs are, in general, more efficient

to implement than those defined by program constructs.

7.2 Example OSQL Packages I: Tree-Structured Informa­
tion

OSQL-TREE provides support for queries having tree-structured information such as

finding the root and the parent of a node [27]. The terminology concerning trees used

in the OSQL package are the usual ones [6]. We restrict the term tree to mean a rooted

tree and, without loss of generality, consider only the case of having one tree in a tree

domain. We also ignore those operations that involve updating nodes and consider only

the operations needed for data retrieval.

D efin ition 7.1 R equirem ents and Core O perations o f OSQL_TREE

ri : for each node, there is an operation ci which finds its parent.

r 2 ‘ for each node, there is an operation C2 which finds its children.

rg: for each tree, there is an operation cg which finds its root.

for each node, there is an operation C4 which finds all its leaf nodes.

r^: for each node, there is an operation C5 which finds all its ancestors.

re', for each node, there is an operation cq which finds all the nodes in the subtree rooted
at the node.

A requirement ri is said to be realised by the core operation Ci (or c% is the realisation

of ri), where i G { 1 ,... , 6 }. We call the set of all core operations of OSQL.TREE the

core set of OSQL.TREE and denote it by C O R E {O SQ LJTR E E).

Note that it is not necessary tha t for every c* in C O R E {O SQ LJTR E E), there exists

exactly one corresponding operation in OSQL.TREE such tha t it has the same effect as

Ci", a similar remark also applies to other packages. We now present the description of

the operations in OSQL.TREE in the table given in Figure 7.2.

153

O p era tio n s B r ie f D e sc r ip tio n

I D E N T I F Y fu n c t io n T o I D E N T I F Y a g iv e n d o m a in a s th e tr e e d o m a in
u se d in O S Q L .T R E E .

P A R E N T fu n c t io n T o fin d th e P A R E N T o f a n o d e w ith in th e tr e e d o m a in
u se d in O S Q L .T R E E .

C H IL D R E N fu n c t io n T o fin d a ll C H IL D R E N o f a n o d e w ith in t h e tr e e d o ­
m a in u se d in O S Q L .T R E E .

A N C E S T O R fu n c t io n T o fin d a ll th e n o d e s p r io r t o a n o d e w ith in th e tr e e
d o m a in u s e d in O S Q L .T R E E .

C O M .A N C E S T O R fu n c t io n T o fin d a ll th e C O M m o n A N C E S T O R S o f tw o g iv e n
n o d e s w ith in th e tr e e d o m a in u s e d in O S Q L .T R E E .

O F F S P R I N G fu n c t io n T o fin d t h e n o d e s in t h e su b tr e e o f a g iv e n n o d e .

L E A V E S fu n c t io n T o f in d a ll th e le a f n o d e s o f th e tr e e d o m a in u se d in
O S Q L .T R E E .

R O O T fu n c t io n T o fin d th e R O O T o f th e tr e e d o m a in u se d in
O S Q L .T R E E .

L E V E L fu n c t io n T o fin d th e L E V E L o f a n o d e w ith in th e tr e e d o m a in
u se d in O S Q L .T R E E .

S W A P fu n c t io n T o S W A P tw o n o d e s in th e tr e e d o m a in u se d in
O S Q L .T R E E .

V E R I F Y fu n c t io n T o V E R I F Y th a t th e id e n t if ie d tr e e d o m a in sa t is f ie s
th e s e m a n t ic s o f a tr e e d o m a in .

N O D E -C O U N T fu n c t io n T o c o u n t th e n u m b e r o f n o d e s in a g iv e n s u b s e t o f th e
tr e e d o m a in u se d in O S Q L .T R E E .

E N F O R C E J N I T e n fo r c e m e n t T o e n fo r c e th e in it ia l iz a t io n w h ic h id e n t if ie s th e d o ­
m a in T R E E t o b e u s e d a s th e tr e e d o m a in o f
O S Q L .T R E E .

E N F O R C E J D E N T I F Y
e n fo r c e m e n t

T o e n fo r ce t h e v e r if ic a t io n o v e r t h e id e n t if ie d d o m a in
g iv e n b y t h e fu n c t io n I D E N T I F Y .

E N F O R C E J S W A P
e n fo r c e m e n t

T o e n fo r c e t h e v e r if ic a t io n o v e r th e tr e e d o m a in a fter
p e r fo r m in g th e fu n c t io n S W A P .

Figure 7.2: The description of the operations in OSQL.TREE

The reader can consult Appendix B for the full reference of the code of the operations.

A similar remark also applies to other OSQL packages.

We assume that when OSQL.TREE is loaded into the system, there is a tree do­

main in the database. To enforce this assumption, the enforcement ENFORCEJNIT

will search for the domain that is called TREE as the underlying domain to be used in

the OSQL package. However, the users can still use the function IDENTIFY to declare

other tree domains for the OSQL package. We use a relation called TREE_LEVEL,

whose relational schema consists of two attributes LEVEL_NUMBER and NODE, to

maintain the information of node levels in the tree domain. The function LEVEL can be

used to access the relation TREE_LEVEL to find out the level of a node. The functions

NODE-COUNT and VERIFY are private functions, which are only used by other opera-

154

tions in OSQL.TREE. The function SWAPJ^ODE is necessary so tha t we do not have to

create a new tree domain in case some changes are required in the ordering of the nodes

in the tree domain that is currently used. The declarations pertaining to OSQL.TREE

are given in Figure 7.3.

PACKAGE O S Q L .T R E E
PARAMETER:

VARCHAR: t r e e j i o d e . l , t r e e j io d e _ 2 , e x t .d o m a in ,
tr e e .d o m a in , $ e x t j : e la t io n , $ e x t .a t t

BOOL: b o o l .v a l ,
INT: n o d e J e v e l , c o u n t m o d e s
REL: n o d e s

FUNCTION:
PUB I D E N T I F Y (e x t .d o m a in) RETURN
PUB P A R E N T (t r e e j i o d e . l) RETURN nodes
PUB C H I L D R E N (t r e e m o d e . l) RETURN nodes
PUB A N C E S T O R (t r e e m o d e . l) RETURN nodes
PUB C O M .A N C E S T O R (t r e e m o d e . l , t r e e m o d e .2) RETURN nodes
PUB O F F S P R I N G (t r e e m o d e . l) RETURN nodes
PUB L E A V E S O RETURN nodes
PUB R O O T () RETURN nodes
PUB L E V E L (t r e e j io d e . l) RETURN nodedevel
PUB S W A P (t r e e m o d e . l , t r e e j io d e .2) RETURN
V E R I F Y (t r e e .d o m a in) RETURN b o o l .v a l
N O D E .C O U N T (n o d e s) RETURN c o u n t m o d e s

ENFORCEMENT:
E N F O R C E J N I T O
E N F O R C E J D E N T I F Y O
E N F O R C E D W A P 0

END PACKAGE

Figure 7.3: The package declaration for OSQL.TREE

E x a m p le 7.1 In this example, we present some typical tree-structured information

queries on the relation EM P.TREE shown in Figure 7.4(a) in order to demonstrate

how to apply the package operations within OSQL statements. The domain of employee

names is depicted as a tree in Figure 7.4(b).

155

NAME SALARY

Bill I2K

Ethan 29K

John 14K

Lee 25K

Mark 30K

Paul 23K

Simon lOK

Paul John Simon ^ ------------- Level 1 (leaf nodes)Lee

\ /
Ethan

Mark

Level 2

Level 3 (root)

(a) (b)

Figure 7.4: An employee relation EM P.TREE and the tree domain

1. The function IDENTIFY(EM P.RANK) will identify EMP_RANK to be the tree

domain concerned instead of the default domain TREE; NODE.COUNT is a pri­

vate function for internal use, for example NODE_COUNT(CHILD(’E than’)) = 2;

the function SWAP('M ark% ’Bill’) changes the ordering of the tree in Figure 7.4(b)

as follows:
Paul John Simon

\ / \ /
Lee

Ethan Mark

2 . Find the most senior staff member.

(Q 7.3) SELEC T {^) (*) FROM EM P.TREE WHERE /A R O O T ().

3. Find the name and salary of the immediate boss of Bill.

(Q 7.4) SELEC T (^) (*) FROM EM P.TREE WHERE NAM E IN

PARENT(’Bill’).

4. Find the name and salary of the immediate subordinates of Bill.

(Q 7.5) SELEC T (*) (*) FROM EM P.TREE W ^FR F NAME IN

CHILDREN(’BiH’).

5. Find the name and salary of the common bosses of David and Bill.

(Q 7.6) SELEC T {*) (*) FROM EM P.TREE W ^FR F NAME IN

156

COM_ANCESTOR(’B iir,’David’).

6 . Find the name and salary of all the subordinates of Bill.

(Q 7.7) SELEC T {^) (*) FROM EM P.TREE WHERE IN

OFFSPRING(’Biir).

7. Find the name and salary of all the bosses of Bill.

(Qt.s) s e l e c t {*) (*) FROM EM P.TREE W HERE NAM E IN

ANCESTOR(’B iir).

8 . Find the name of the staff members who are in the same level as Bill.

(Q 7.9) SELEC T ((NAME WITHIN EM PJIAN K)) (LEVEL(’Bill’))

FROM EM P.TREE.

7.3 Example OSQL Packages II: Temporal Information

The underlying semantics of time used in this OSQL package is that time is considered

to be linearly ordered [97]. In our implementation an ordered relation is employed to

maintain the data elements of a time domain, which are non-empty, finite, linearly or­

dered, and of the same data type. This relation can only be accessed by the operations

of the package and the comparison of temporal data can be applied only over the time

domain.

One of the many approaches [145] in the literature to manipulating temporal data

is to use an attribute, which we call a time attribute, and to timestamp the attribute

values of this attribute with either time instants or time intervals [144, 98]. We assume

temporal data is timestamped with the time interval during which it is valid.

Let us consider the relation EM P.TIM E in Figure 7.7, which uses the attributes

FROM .TIM E and TO .TIM E to denote time intervals. We can see that, for instance,

Mark had salary 20K in the time interval 1992 < YEAR < 1995 (note tha t in our

formalism the year 1995 is not included in the time interval).

The advantage of using time intervals in modelling time data is that it can save

storage space. However, there are some complications arising from using time intervals

in modelling time data. For example, they cannot directly support the update or retrieval

of tuples at a particular time instant and some useful operations such as the snapshot

157

operation obtaining the temporal relation in a particular year, cannot be carried out in

a direct manner. To solve this problem, two operations EXTEND and COALESCE hdiwe

been suggested in the literature [145]. It can be shown that these two operations can

be formulated in OSQL, with the assumption tha t an ordered relation is maintained for

the time domain used in OSQL_TIME. Therefore, in this sense, we can claim that the

expressive power of OSQL.TIME is temporally complete (see Chapter 4 in [145]). We

now introduce the following design requirements for OSQL.TIME, in which we use the

terminology of [145].

D efin ition 7.2 R equirem ents and Core O perations o f OSQL_TIM E

r\'. for a given temporal relation, there is an operation c\ which returns the snapshot

relation for a given time instant of the current time domain.

r 2 ' there is an operation C2 which provides a standard time domain to model the Grego­

rian calendar system (i.e. DAY-MONTH-YEAR).

rg: there is an operation cg which allows users to define the time resolution of a certain

granularity up to the unit time interval.

Similar to Definition 7.1, we call the set tha t consists of all the core operations of

OSQL_TIME the core set of OSQL.TIME and denote it by CORE(OSQL-TIME).

Note tha t we have not required that the set of core operations contain some of the

common temporal operators [135], such as overlaps and contains (see Chapters 4, 5 and

6 in [145]), which can be explicitly defined in order to compare time intervals, since they

can be quite easily formulated in OSQL comparison predicates. For instance, given two

time intervals l\ and I2 specified by { fro m i,to i) and { fro m 2 ,to 2) respectively, h over­

laps with I2 can be written as the predicate ((̂ o% > fr o m 2 W ITH IN time-dom ain) AND

{to2 > fr o m i W ITH IN tim e-dom ain)) and I2 contains li can be written as the predicate

{{from i > fr o m 2 W ITH IN time-dom ain) AND {to2 > to\ W ITH IN tim e-dom ain)).

Nevertheless, one can still argue that it would be useful to have the mentioned opera­

tions in the OSQL package, but that is another m atter. We now present the following

description of the operations in OSQL.TIME in the table given in Figure 7.5.

We assume tha t DATE (i.e. DAY-MONTH-YEAR) is the default domain to be used

in the package unless the function IDENTIFY is used to specify another time domain.

158

O p er a tio n s B r ie f D e sc r ip tio n

I D E N T I F Y fu n c t io n T o I D E N T I F Y a g iv e n d o m a in a s th e t im e d o m a in
u se d in O S Q L .T I M E .

C U R R E N T fu n c t io n T o r e tu r n a ll th e C U R R E N T tu p le s in a t e m p o r a l
r e la t io n .

H IS T O R Y fu n c t io n T o r e tu r n a ll tu p le s w h ic h a re n o t v a lid a t p r e se n t .
S N A P S H O T fu n c t io n T o r e tu r n a ll tu p le s w h ic h w ere v a lid a t a g iv e n t im e

in s ta n t .
S U C C fu n c t io n T o r e tu r n th e S U C C e ss o r o f a g iv e n t im e in s ta n t in

th e t im e d o m a in u se d in O S Q L .T I M E .
P R E D fu n c t io n T o r e tu r n th e P R E D e c e s s o r o f a g iv e n t im e in s ta n t in

th e t im e d o m a in u se d in O S Q L .T I M E .

D U R A fu n c t io n T o c a lc u la te th e D U R A t io n b e tw e e n tw o t im e in s ta n ts
in th e t im e d o m a in u s e d in O S Q L .T I M E .

E X P A N D fu n c t io n T o c o n v e r t in te r v a l- s ta m p e d t u p le s in a g iv e n r e la t io n
in to in s ta n t - s ta m p e d tu p le s .

C O A L E S C E fu n c t io n T o c o n v e r t in s ta n t - s ta m p e d tu p le s in a g iv e n r e la t io n
in to in te r v a l- s ta m p e d tu p le s , i .e . t h e r e v e r se o f th e
E X P A N D fu n c t io n .

T I M E J I E S fu n c t io n T o c r e a te a t im e d o m a in w h o se t im e sc a le is d e fin e d
b y th e u ser s .

V E R I F Y fu n c t io n T o V E R I F Y t h a t t h e id e n tif ie d t im e d o m a in sa t is f ie s
th e s e m a n t ic s o f a t im e d o m a in .

S T R I P .T I M E fu n c t io n T o p r o je c t o u t th e t im e a t tr ib u te s F R O M .T I M E a n d
T O .T I M E fro m th e r e la t io n a l s c h e m a for a g iv e n re­
la t io n a n d r e tu rn t h e r e m a in in g a t tr ib u te s .

E N F O R C E J N I T
e n fo r c e m e n t

T o e n fo r c e th e in it ia l iz a t io n w h ic h id e n t if ie s th e d o ­
m a in D A T E t o b e u s e d a s t h e t im e d o m a in o f
O S Q L .T I M E .

E N F O R C E J D E N T I F Y
e n fo r c e m e n t

T o e n fo r ce t h e v e r if ic a t io n o v e r t h e id e n t if ie d d o m a in
g iv e n b y t h e fu n c t io n I D E N T I F Y .

Figure 7.5: The description of the operations in OSQL.TIME

Other standard domains available in OSQL.TIME include YEAR, MONTH, DAY,

HOUR, MINUTE, SECOND. Furthermore, a user-defined time domain of an arbitrary

resolution can be defined by the function TIME_RES. We use a relation called

TIME_DOM_REL, whose relational schema consists of the attribute TIMEJDATA, to

maintain the standard time domains. If the time domain is user-defined, the package

will prompt the user for the definition of the NOW variable. The function STRIP.TIM E

can be used to remove the time attributes of the schema of a temporal relation. The

EXPAND function would be useful if users want to update a temporal relation. If we

want to add a tuple into the relation EM P.TIM E, then we have to first EXPAND the

relation and then COALESCE the updated relation. We now show the declaration part

159

of OSQL.TIME in Figure 7.6.

PACKAGE O S Q L .T I M E
PARAMETER:

VARCHAR: t im e .d o m a in , e x t jr e la t io n , t i m e J n s t a n t . l , t im e j n s t a n t .2 , N O W
n o n _ t im e .sc h e m a , e x t .d o m a in

INT: g r a n u la r ity , d u r a t io n
BOOL: b o o l .v a l
REL: r e su lt r e l a t io n

FUNCTION:
PUB I D E N T I F Y (e x t .d o m a in)
PUB C U R R E N T (e x t^ r e la t io n) RETURN ves\i\t-re\ation
PUB H IS T O R Y (e x tjr e la t io n) RETURN Tesultjcelation
PUB C O A L E S C E (e x t jr e la t io n) RETURN lesnltjcelation
PUB S U C C (t im e d n s t a n t . l) RETURN tim eAnstant-2
PUB P R E D (t im e J n s t a n t . l) RETURN timeAnstantJ2
PUB D U R A (t im e _ in s t a n t . l , t im e .in s ta n tJ 2) RETURN duration
PUB S N A P S H O T (e x t j : e la t io n , t i m e J n s t a n t . l) RETURN result jceiation
PUB E X P A N D (e x tjr e la t io n) RETURN result jcelation
PUB T I M E J I E S (g r a n u la r ity , e x t .d o m a in) RETURN
V E R I F Y (t im e .d o m a in) RETURN b o o l .v a l
S T R I P .T I M E (e x t j r e la t io n) RETURN n o n .t im e .s c h e m a

ENFORCEMENT:
E N F O R C E J N I T O
E N F O R C E J D E N T I F Y O

END PACKAGE

Figure 7.6: The package declaration for OSQL.TIME

E x a m p le 7.2 We use the relation EM P.TIM E shown in Figure 7.7 whenever it is nec­

essary.

1. IDENTIFY (YEAR) identifies the standard domain YEAR, which specifies the

ordered set {1900 < < 2050} and IDENTIFY (MONTH) identifies another

standard domain { J A N < < D E C }. If the user has used the function

T IM E JIE S(100, HUNDRED) to create a domain HUNDRED, then IDENTIFY

(HUNDRED) identifies this user-defined domain, which specifies the ordered set

{0 < - < 99}.

2. Find the current salaries of all employees.

(Qy.io) SELEC T {NAME, SALARY) (*) FROM CURRENT (EM P.TIM E).

3. Find the salary history of Mark.

(Q7.11) SELEC T {*) (*) FROM HISTORY(EMP.TIME).

WHERE NAME = ’M ark’

160

4. Find the salary of Bill in 1994.

(Q7.12) SELEC T {SALARY) (*) SNAPSHOT(EMP_TIME, 1994)

WHERE NAME = ’Bill’.

5. Find the names of those employees who have been worked for more than two years.

(Q7.13) SELEC T {NAME) (*) FROM EU R .TIM E

WHERE D \]RA{FROM .TlM E, TO.TIM E) > 2.

NAME SALARY FROM .TIM E TO.TIM E

Bill 15K 1991 1995

Bill ISK 1995 1996

Bill 20K 1996 1997

Mark 25K 1992 1995

Mark 30K 1995 1997

Figure 7.7: An employee relation EM P.TIM E stamping with time intervals

7.4 Example OSQL Packages III: Incom plete Information

In this OSQL package, we classify the incompleteness into three unmarked null symbols,

UNK, DNE and NI, whose semantics has already been discussed in Subsection 5.4.2.

Recall tha t we use the notion of more informative values, which allows us to deduce

useful information available from a relation having incomplete data.

The ordering of null values is captured by the standard incomplete domain called

INCOMP provided by OSQL JNCOM P. Recall tha t the domain can be formulated by the

OSQL statement in {Qs.is) in Chapter 5. As we would like to make the domain INCOMP

standard, we do not allow any user-defined incomplete domains in OSQL JNCOM P. The

description of the operations is shown in the table in Figure 7.8 and the declaration part

of OSQL JN C O M P is shown in Figure 7.9.

D efin ition 7.3 R equirem ents and Core O perations o f OSQL J N C O M P

r\: there is an operation ci which defines the standard domain describing the semantics

of incompleteness such as the null values as shown in Figure 5.11 in Chapter 5.

161

r 2t for a given incomplete relation, there is an operation C2 which returns all the tuples

containing only known values.

rg: for a given incomplete relation, there is an operation cg which returns tuples contain­

ing various degree of incompleteness.

r^: there is an operation C4 which checks whether one tuple is more informative than

another with respect to some attributes.

Similar to Definition 7.1, we call the set that consists of all core operations of OSQL JNCO M P

the core set of OSQL JN CO M P and denote it by CORE(OSQL-INCOMP).

O p era tio n s B r ie f D e sc r ip tio n

C O M P L E T E _ V A L
fu n c t io n

T o r e tu rn a ll tu p le s w h ic h c o n ta in o n ly k n o w n v a lu e s
o f a n a t tr ib u te in a n in c o m p le te r e la t io n .

P A R T I A L .V A L fu n c t io n T o r e tu rn a ll tu p le s w h ic h c o n ta in a n u ll v a lu e o f a n
a t tr ib u te in a n in c o m p le te r e la t io n .

D N E .V A L fu n c t io n T o r e tu rn a ll tu p le s w h ic h c o n ta in th e D N E v a lu e o f
a n a t tr ib u te in a n in c o m p le te r e la t io n .

N I .V A L fu n c t io n T o r e tu rn a ll tu p le s w h ic h c o n ta in th e N I v a lu e o f a n
a t tr ib u te in a n in c o m p le te r e la t io n .

U N K .V A L fu n c t io n T o r e tu r n a ll tu p le s w h ic h c o n ta in th e U N K v a lu e o f
a n a t tr ib u te in a n in c o m p le te r e la t io n .

M O R E J N F O fu n c t io n T o ch eck w h e th e r tu p le s a re m o r e in fo r m a tiv e th a n a
g iv e n a t tr ib u te v a lu e .

L E S S J N F O fu n c t io n T o ch eck w h e th e r tu p le s a re le s s in fo r m a tiv e th a n a
g iv e n a t tr ib u te v a lu e .

I D E N T I F Y fu n c t io n T o I D E N T I F Y th e d o m a in I N C O M P a s th e in c o m ­
p le te d o m a in u se d in O S Q L J N C O M P .

V E R I F Y fu n c t io n T o V E R I F Y t h a t t h e d o m a in IN C O M P sa t is f ie s th e
s e m a n t ic s o f a n in c o m p le te d o m a in .

E N F O R C E J N I T
e n fo r c e m e n t

T o e n fo r ce t h e in it ia l iz a t io n w h ic h id e n t if ie s th e d o ­
m a in IN C O M P a s t h e in c o m p le te d o m a in u s e d in th e
p a ck a g e .

Figure 7.8: The description of the operations in OSQL JNCOM P

Note that the function IDENTIFY in this OSQL package is private, since the users are

not allowed to change the meaning of various null symbols. This shows that the pack­

age approach is very fiexible in modelling versatile information. The functions COM-

PLETE_VAL, PARTIAL.VAL, DNE.VAL, NI.VAL and UNK.VAL provide users with

the ability to manipulate various types of incomplete information based on the notion of

162

being “more informative” . The functions M OREJNFO and LESS JN FO provide users

with the ability to semantically compare tuples in incomplete databases.

PACKAGE OSQL JNCOMP
PARAMETER:

VARCHAR: ext_att, incomplete.domain, ext .relation, ext.val, predicate
BOOL: booLval
REL: result relation
PUB COMPLETE_VAL(extj:elation, ext_att) RETURN vesnltjcelation
PUB PARTIAL_VAL(extj:elation, ext_att) RETURN result Jcelation
PUB DNE_VAL(extjrelation, ext_att) RETURN result jcelation
PUB NI_VAL(extrelation, ext_att) RETURN result-relation
PUB UNK.VAL (extjrelation, ext_att) RETURN result jcelation
PUB MOREJNFO(ext.att,ext.val) RETURN predicate
PUB LESSJNFO(ext.att,ext.val) RETURN predicate
IDENTIFYO RETURN
VERIFY(incomplete.domain) RETURN bool.val

ENFORCEMENT:
ENFORCEJNITO

END PACKAGE

Figure 7.9: The package declaration for OSQL JN CO M P

E xam ple 7.3 We use the relation EMP JN CO M P in Figure 7.10 whenever it is neces­

sary.

NAME PREVIOUS.W ORK

Mark UNK

Ethan DNE

Nadav adm inistrator

Bill programmer

John NI

Simon NI

Figure 7.10: An employee relation EMP JN CO M P

1. Find the name and previous work of those employees whose previous work is less

informative than unknown (i.e., UNK).

(Q7.14) SELECT (NAME, PREVIOUS.WORK) (*) FROM EMP JNCO M P

W HERE LESS JNFO(PREVIOUS_WORK, ’UNK’).

163

2. Find the name and previous work of those employees whose information of previous

work is not complete.

(Q7.15) SELEC T (NAME, PREVIOUS.WORK) (*) FROM

PARTIAL_VAL(EMP JNCOM P, PREVIOUS.W ORK).

3. Find the name and previous work of those employees whose previous work does not

exist (i.e., DNE).

(Q7.16) SELEC T (NAME, PREVIOUS.WORK) (*) FROM

DNE.VAL(EMPJNCOMP, PREVIOUS.WORK).

7.5 Example OSQL Package IV: Fuzzy Information

In OSQL J^UZZY we provide functions for users to impose fuzzy requirements on a rela­

tion. Users can obtain the most suitable information based on the defined requirements

in the OSQL package. We assume that for each fuzzy requirement, there is a domain

called fuzzy domain, which captures the semantics of the requirement, for example as

we have shown in (Q5.20) given in Chapter 5, that the fuzzy requirement “good science

background and academic qualification” can be captured by the fuzzy domain QUAL­

IFY. Therefore, the requirement can be referred to by the name of its corresponding fuzzy

domain. If there are several fuzzy requirements to be imposed on a relation, then their

priorities can be defined by the function ORDER J'U ZZY and tuples can be ordered and

then retrieved according to the priorities of fuzzy requirements.

D efin ition 7.4 R equirem ents and Core O perations o f OSQLJFUZZY

r\: for each fuzzy requirement, there is an operation c\ which identifies a unique fuzzy

domain associated with it.

r 2: there is an operation C2 which specifies the relative priorities of different requirements.

r^: there is an operation cg which retrieves tuples in a sorted list, in which the most

suitable one is the first, from a relation according to a set of fuzzy requirements.

Similar to Definition 7.1, we call the set that consists of all core operations of OSQLJFUZZY

the core set of OSQLJFUZZY and denote it by CORE(OSQL-FUZZY).

We now present the description of the operations in the table in Figure 7.11.

164

O p era tio n s B r ie f D e sc r ip tio n

I D E N T I F Y fu n c t io n T o I D E N T I F Y a fu z z y d o m a in t o b e u se d t o c a p tu r e
th e s e m a n t ic o f a fu z z y r eq u ire m en t.

I M P O S E T U Z Z Y fu n c t io n T o I M P O S E a F U Z Z Y r eq u ire m en t o n a n a t tr ib u te .
O R D E R J 'U Z Z Y fu n c t io n T o o rd er t h e r e la t iv e p r io r it ie s o f a s e t o f

fu z z y r e q u ir e m e n ts w h ic h a re c u r r e n tly u s e d in
O S Q L J U Z Z Y .

L I S T J I E Q fu n c t io n T o l is t a ll th e fu z z y r e q u ir e m e n ts u s e d in
O S Q L J U Z Z Y .

V E R I F Y fu n c t io n T o v e r ify t h a t th e g iv e n d o m a in sa t is f ie s t h e s e m a n t ic s
o f a fu z z y d o m a in .

E N F O R C E J N I T
e n fo r c e m e n t

T o e n fo r ce th e in it ia l iz a t io n w h ic h p r e p a r es a n e m p ty
r e la t io n c a lle d F U Z Z Y J) I C T t o m a in ta in t h e fu z z y
r e q u ir e m e n ts .

E N F O R C E J D E N T I F Y
e n fo r c e m e n t

T o e n fo r c e th e v e r if ic a t io n o v er t h e id e n t if ie d fu z z y
d o m a in g iv e n b y t h e fu n c t io n I D E N T I F Y .

E N F O R C E J M P O S E
e n fo r c e m e n t

T o e n fo r c e th e p r io r it ie s o f th e id e n t if ie d fu z z y
r e q u ir e m e n ts .

Figure 7.11: The description of the operations in OSQL_FUZZY

The priorities of a set of fuzzy requirements are system defined (system ordered) if they

are not specified. The function ORDER_FUZZY can be used to arrange the priorities of

requirements. There is a param eter called order, which is a natural number describing the

relative priority of the requirement defined in the second param eter fuzzy .domain. The

information about the priorities is maintained by the relation called FUZZYJDICT, whose

relational schema consists of the attributes FUZZY_REQ and PRIORITY, containing all

the name information of the fuzzy requirements and their priorities. The users can use the

function LIST_REQ, which returns the relation FUZZYJDICT, to check for the priorities

of all fuzzy requirements. The declaration part of OSQLJFUZZY is shown in Figure 7.12.

E x a m p le 7.4 Let us consider the relation EMPJFUZZY in Figure 7.13 whenever it

is necessary, and suppose tha t there is a project which requires an employee with a

good science background in his/her academic qualification and strong connections in the

research community. We use two fuzzy domains called QUALIFY and CONNECT to

capture these semantics of the requirements. The fuzzy domain QUALIFY has been

formulated in (Q5.20) in Chapter 5 and the fuzzy domain CONNECT is given as the

statem ent (Q 7 .1 7) below.

165

PACKAGE O S Q L _ F U Z Z Y
PARAMETER:

VARCHAR: fu z z y .d o m a in , e x t_ a tt , p r e d ic a te
INT: o rd er
BOOL: b o o l .v a l
REL: r e s u lt jr e la t io n

FUNCTION:
PUB I D E N T I F Y (fu z z y .d o m a in) RETURN
PUB I M P O S E J U Z Z Y (e x t .a t t , fu z z y .d o m a in) RETURN predicâte
PUB O R D E R _ F U Z Z Y (fu z z y .d o m a in , o rd er) RETURN
PUB L IS T _ R E Q () RETURN result jcelation
V E R I F Y (fu z z y .d o m a in) i t R E T U R N b o o l .v a l

ENFORCEMENT:
E N F O R C E J N I T O
E N F O R C E J D E N T I F Y O
E N F O R C E J M P O S E O

END PACKAGE

Figure 7J2: The package declaration for OSQLJFUZZY

NAME EDUCATION

Bill MSc

Ethan MSc

John BSc

Mark PhD

Nadav MBA

Simon A-Level

Figure 7J3: An employee relation EMP J ’UZZY

1. {Q7.17) CREATE D OM AIN CON]<lECT CHAR{10)

ORDER A S {OTHER < ’Mark’ < ’E than’).

2. Find the names of those employees with good science background in academic qual­

ification and strong connection in the research community.

(Q7.18) SELEC T (IM PO SE J’UZZY(NAME, CONNECT), IMPOSEJfUZZY

(EDUCATION, QUALIFY) (1) EMP J ’UZZY.

The employee Mark will be returned for this query.

3. We now use the function ORDERJUZZY(CONNECT, 1) and ORDER.

FUZZY (QUALIFY, 2) to change the priorities of the requirements, i.e., the re­

quirement CONNECT should be considered first and then QUALIFY the second.

166

Then the employee E than will be returned for the query (Qz.is)-

4. Finally the fuzzy requirements can be listed as below by the function

LISTJFIEQO given in Figure 7.14.

FUZZY_REQ PRIORITY

CONNECT 1

QUALIFY 2

Figure 7.14: A relation returned by LIST_REQ()

7.6 Exam ple OSQL Package V: Spatial Information

In the past few years, applications that involve in computing geometric and pictorial

objects are easier to implement due to the progress in processing capabilities and the

computation of bitm ap graphics. As a result, there are increasing demands in han­

dling spatial data in many applications such as sophisticated user-interfaces. Computer

Assisted Design (CAD), image processing. Geographical Information Systems (CIS) and

the usages of pattern recognition in the areas of medicine, cartography and robot control.

Spatial data domains share many common features with time domains. Firstly, the

underlying semantics of each dimension in space is considered to be linearly ordered. Sec­

ondly, the eight Egenhofer-Franzosa topological relationships (or simply EF-relationships)

[49], of spatial data: disjoint^ meet, overlap, covers, covered by, inside, contains and

equal, [48, 122] are inherent to the generic operations on spatial data. Note tha t EF-

relationships are also applicable in temporal data [145] (recall the operations overlap

and contains in Section 7.2). Thirdly, spatial data needs a high level of abstraction to

capture its semantics. For example, in temporal information we need a time interval to

timestamp an event and in spatial information we need a rectangular region to model a

room in the floor plane of a building. It has already been pointed out by [153] tha t in

practice, many queries over CIS are related to both temporal and spatial concepts. Let

us consider a simplifled CIS relation in Example 7.5.

E xam ple 7.5 The relation DESERT shown below records the snapshot of remotely

sensed data captured by a satellite for a desert at a particular place and time. The

167

A disjoint B

A
B

A equal B

A

A meet B

A

A overlap B

A

A inside B

A covered by B

A contain B

A covers B

Figure 7.15: The eight binary topological relationships between rectangular regions

attribute LOCATION refers to a specific flight path of the satellite. The attribute

FROM.TIM E represents the receiving date when the data was captured by the remote

sensing device. The accepting or rejecting of the CLASSIFICATION is determined by

the image quality of satellite’s photo.

LOCATION FROM.TIM E TO.TIM E CLASSIFICATION DESERT J^REA

001-007 9-1-92 1-12-93 Accepted 1000

001-007 1-12-93 23-1-94 Rejected UNK

001-007 23-1-94 30-4-96 Rejected UNK

001-007 30-4-96 30-4-97 Accepted 1100

001-007 30-4-97 NOW Accepted 1150

Figure 7.16: A CIS relation DESERT to analyse desertification

The following queries over DESERT are typical. They are all easily formulated by

making use of the package OSQL.TIME we presented in Section 7.2.

1. How big is the desert area in the region 001-007 now?

{Q7.19) SELEC T {DESERT J iR E A) (*) FROM CURRENT(DESERT).

2. W hat are the failed classification (i.e., rejected) histories of 001-007?

(Q7.20) SELEC T {FROUJTIME, TO.TIM E) (*) FROM HISTORY(DESERT).

WHERE CLASSIFICATION = ’Rejected’

3. Find the desert growth information from 9-1-92 to 30-4-96.

168

(Q7.2i) 5Æ;L^(7T (FROM.TIME, TO.TIM E, DESERT.AREA) (*)

FROM COALESCE(DESERT) IFFFR F FROM.TIME < = ’9-1-92’

AND TO.TIM E > = ’30-4-96’.

The above queries show tha t temporal dimension plays an im portant role in a spatial

information system. However, spatial data is much more complicated than temporal data

in the following aspects.

1. Spatial data can be zero (e.g., a point), one (e.g., a line), two (e.g., an area) or three

(e.g., a volume) dimensional and thus their interactions become very complex. In

contrast, temporal data is just one dimensional if we consider time intervals as the

timestamps for the data.

2. W ithin a fixed dimensional space, spatial data has lots of primitive regions, which

require different parameters to characterise them. For example, in the special case

of two dimensional spaces, we may have rectangular regions (being characterised

by the four vertices), circular regions (being characterised by the centre and the

radius) or algebraic curve regions (being characterised by the polynomial function)

[122].

3. In order to manipulate spatial data more easily in practice, we normally employ

a graphical environment to represent the data. The coupling of the language for

spatial data queries and the language for the display control has been strongly

advocated by many spatial database researchers (a good summary can be found

in Table 1 of [50]). Therefore, it is vital to consider some appropriate graphical

display facilitates, which should be included in any spatial extension of SQL.

In our opinion, the research on the issues of the expressiveness tha t a spatial query

should possess and the essential operations tha t a spatial information system requires are

still not resolved [124, 125]. Moreover, a definitive formalism of the semantics for spatial

data representation is not yet available. Therefore, we only demonstrate some interesting

operations that OSQLJSPACE can provide for handling two dimensional spatial objects.

By no means does this package provide a comprehensive coverage of all the generic

operations tha t are required in manipulating spatial information.

169

D efin ition 7.5 R equirem ents and Core O perations o f OSQL_SPACE

ri'. for each EF relationship, there is an operation c\ which specifies the relationship

between spatial objects.

r 2: for each dimension in space, there is an operation C2 which specifies the relative

spatial order between spatial objects.

rg: there is an operation cg which returns the area of a two dimensional spatial object.

r4 '. there is an operation to represent a spatial object graphically by using its spatial

attributes.

rs: there is an operation to convert a selected object in a display interface into its spatial

attributes.

Similar to Definition 7.1, we call the set tha t consists of all core operations of

OSQL_SPACE the core set of OSQLJSPACE and denote it by CO RE(O SQLSPACE).

The focus of this package will be exclusively on the operations tha t manipulate rect­

angular regions being parallel to X and Y axes of a two dimensional coordinates plan. We

choose such a kind of primitive region because it is a very typical two dimensional spatial

object. One example is the map of a city showing all buildings and roads. Moreover,

in spatial database systems it is quite common to use multiple rectangles to approxi­

mate real spatial data [120, 60]. We need only two spatial attributes M IN -VER TE X and

M A X^VE RTEX to specify a rectangular region. These two attributes describe respec­

tively the left lowest and right highest vertices of a rectangle. The advantage of using

two vertices instead of using four vertices in modelling a rectangle is tha t it saves storage

space. Let us illustrate this point with the diagram of the coordinates plane shown in

Figure 7.17.

B(W) C (4,3)

A (1,1) D (4,1)

MIN VERTEX = A

MAX VERTEX = C

Figure 7.17: Using two vertices to specify a rectangular region

170

The rectangle on this plane has four vertices {A :(l,l), B;(l,3), C:(4,3), D:(4,l)},

which can be specified by MIN.VERTEX = (1,1) (i.e., point A) and MAX.VERTEX =

(4,3) (i.e., point C).

We now present the description of the operations in OSQL_SPACE in the table given

in Figure 7.18. Broadly speaking, there are four categories of operations in this package,

which are classified according to the following concepts.

1. Topological relationships describe the different cases of intersections between two

rectangular regions in space. They are DISJOINT, OVERLAP, MEET and CON­

TAIN, which represent the corresponding EF-relationships. Note that we have

not required tha t OSQL_SPACE contain operations for the other EF-relationships

equals inside and covers^ covered.hy, since they can be quite easily formulated by

using CONTAIN and AREA. For instance, the relationship equal between two rect­

angular regions recti and rect2 can be stated as recti CONTAINS rect2 and the

AREA of recti is equal to that of reef2-

2. Orientation relationships describe the relative spatial order between rectangular

regions in space. They are WEST, EAST, SOUTH and NORTH.

3. Display facilities provide the necessary operations to control the graphical environ­

ment. They are SET_DISPLAY, PICK_REGION, BOUNDARY and WHOLE.

4. Arithmetic parameters involve the measurement of regions such as AREA and

PERL Note tha t we may need a different set of arithmetic parameters for other

primitive regions. For example, we may include some operations to calculate a

sector area or an arc length in the case of circular regions.

We assume tha t the coordinates on a two dimensional space are captured by the

standard domain 2DSPACE. In other words, 2DSPACE is a set of coordinates of points

which are specified in the usual format of “(X-coordinate, Y-coordinate)” , where the

X-coordinate and the Y-coordinate are elements of an integer domain with the numerical

ordering. To simplify the presentation of OSQL_SPACE, we do not consider three dimen­

sional spatial domains. However, some operations in OSQL_SPACE can be generalised

171

O p era tio n s B r ie f D e sc r ip tio n

IDENTIFY function To IDENTIFY a given domain as the spatial domain
used in OSQL_SPACE.

DISJOINT function To check whether two rectangular regions satisfy the
topological relationship DISJOINT.

OVERLAP function To check whether two rectangular regions satisfy the
topological relationship OVERLAP.

MEET function To check whether two rectangular regions satisfy the
topological relationship MEET.

CONTAIN function To check whether two rectangular regions satisfy the
topological relationship CONTAIN according to the
convention that the first region in the parameter list
of the function contains the second one.

EAST function To return all tuples whose regions are on the EAST
side of a given rectangular region.

WEST function To return all tuples whose regions are on the WEST
side of a given rectangular region.

SOUTH function To return all tuples whose regions are on the SOUTH
side of a given rectangular region.

NORTH function To return all tuples whose regions are on the NORTH
side of a given rectangular region.

PERI function To calculate the PERIMETER of a given rectangular
region.

AREA function To calculate the AREA of a given rectangular region.
PICK_REGION function To convert a REGION on the screen PICKed by

a mouse to the corresponding spatial attributes
MIN.VERTEX and MAX.VERTEX.

SET_DISPLAY function To set the specification of a display environment to
handle the spatial attributes of an object.

BOUNDARY function To outline the boundary of all given rectangular re­
gions specified by a spatial attribute.

WHOLE function To display the whole region of all given rectangular
regions specified by a spatial attribute.

XCOMP function To extract the X-components of a given spatial
attribute.

YCOMP function To extract the Y-components of a given spatial
attribute.

VERIFY function To VERIFY that the identified spatial domain satis­
fies the semantics of a spatial domain.

ENFORCEJNIT
enforcement

To enforce the initialization which identifies the do­
main 2DSPACE to be used as the space domain of
OSQLJSPACE.

ENFORCEJDISPLAY
enforcement

To activate the display environment for representing
spatial data.

Figure 7.18: The description of the operations in OSQL_SPACE

172

or extended to the case of three dimensional space. For example, all the topological rela­

tionships can be generalised by incorporating one more coordinate (i.e., Z-coordinate) in

their corresponding operations. The orientation relationships can be extended by adding

the operations ABOVE/BELOW to handle the orientation in the extra dimension. We

do not consider a user-defined arbitrary resolution in space domain because it relates

to some technical details of the display environment such as the resolution power of the

display. We now show the declaration part of OSQL_SPACE in Figure 7.19.

PACKAGE OSQLJSPACE
PARAMETER:

VARCHAR: space.domain, ext .relation, region_parameter, x.comp, y.comp,
min_vertex_l, max_vertex_l, min_vertex.2, max_vertex.2,
ext.domain, display .predicate, topological.predicate

INT: perimeter, area
BOOL: bool.val
REL: result ̂ relation

FUNCTION:
PUB IDENTIFY(ext.domain) RETURN
PUB DISJOINT(min.vertex.l, max.vertex.I, min.vertex.2, max.vertex.2)

RETURN topological.predicate
PUB OVERLAP (min.vertex.l, max.vertex.I, min_vertex.2, max.vertex.2)

RETURN topological.predicate
PUB MEET (min.vertex.l, max.vertex.I, min_vertexJ2, max.vertex.2)

RETURN topological.predicate
PUB CONTAIN(min.vertex.l, max.vertex.I, min.vertex.2, max.vertex.2)

RETURN topological.predicate
PUB EAST (extjrelation, min.vertex.l, max.vertex.I) TZETfTRA result jrelation
PUB WEST (extjrelation, min.vertex.l, max.vertex.I) result jrelation
PUB NORTH(extjrelation, min.vertex.l, max.vertex.I) RETURN resultjcelation
PUB SOUTH(ext jrelation, min.vertex.l, max.vertex.I) RETfTRA result jrelation
PUB PERI(min.vertex.I, max.vertex.I) RETURN penmetei
PUB AREA (min.vertex.l, max.vertex.I) RETURN area
PUB PICK_REGION() RETURN legionjparameteT
PUB SETT)ISPLAY(colour, pattern, mode) RETURN
PUB BOUNDARY(extj-elation) RETURN
PUB WHOLE(extjrelation) RETURN
XCOMP(min.vertex.I) RETURN xjcomp
YCOMP (min.vertex.l) RETURN y-comp
VERIFY(space.domain) RETURN bool.val

ENFORCEMENT:
ENFORCEJNITO
ENFORCET)ISPLAY()

END PACKAGE

Figure 7.19: The package declaration for OSQL.SPACE

E x am p le 7.6 We use the spatial relation FLOORJPLAN shown in Figure 7.20 when­

ever it is necessary. The queries (Q 7.22) , {Q7.23) , (Q7.24) and (Q7.27) are about spatial

173

properties only. Other queries combine spatial and non-spatial properties.

PURPOSE OCCUPANT MIN.VERTEX MAX.VERTEX

Staff room Bill (14,6) (17,9)

Staff room Lee (17,6) (19,9)

Staff room Ethan (19,6) (22,9)

Staff room Mark (1,0) (3,3)

Seminar room DNE (0,6) (12,9)

Lift DNE (12,8) (13,9)

Staircase A DNE (13,6) (14,9)

Stairccise B DNE (0,0) (1,3)
Lecture room DNE (3,0) (16,3)

Phd lab DNE (16,0) (22,3)

Printing room DNE (18,0) (22,3)

Figure 7.20: A spatial relation FLOORJPLAN

1. (Q7.22) Show the floor plan described by the relation FLOOR-PLAN.

WHOLE(5'ELECT (MIN.VERTEX, MAX_VERTEX) (*) FROMFLOOR_PLAN.

The result is the desired map shown in Figure 7.21. Further features are also shown

on the map due to the effect of the queries (Q7.23 and Q7.27).

2. Highlight the location of Bill’s office with a shaded pattern.

(Q7.23) SET_DISPLAY(default, default, shaded).

W RO LE{SELEC T (MIN_VERTEX, MAX_VERTEX) (*) FROM FLOOR_PLAN

W HERE OCCUPANT = ’Bill’).

3. W hat are the purposes of the space on the opposite side to Bill’s office?

(Q7.24) SELECT (PURPOSE) (*) FROMSOUTH(FLOOR_PLAN, PICK_DISPLAY()).

Then the purpose “Lecture room” will be returned for this query.

4. Show if there is a lift on the left side of Bill’s office?

(Q7.25) SELECT{M 1N.YERTEX, MAX.VERTEX) (*) FROMEAST(FLOOR_PLAN,

MIN_VERTEX, MAX.VERTEX) PURPOSE = ’Lift’.

Then the spatial attributes of Lift will be returned for this query.

174

5. Who are Bill’s neighbours?

(Q7.26) (OCCUPANT) (*) FLOOR_PLAN

WHERE MEET(MIN_VERTEX, MAX_VERTEX,PICK_DISPLAY()).

Then “Lee” will be returned because his office is on the right side of Bill’s.

6. Outline the partitions of the PhD laboratory by dotted lines.

(Q7.27) SET .DISPLAY (default, default, dotted line).

BOUNDARY {SELECT {MIN .VERTEX , MAX_VERTEX) (*) FROMFLOOR_PLAN

WHERE PURPOSE = ’Printing room’).

7. Find the names of the staff whose rooms have area greater than 10 square units.

(Q7.28) 5ELECT (OCCUPANT) (*) Fi?(9M FLOOR_PLAN

IFZfERE AREA(MIN_VERTEX, MAX.VERTEX > 10)

AND PURPOSE = ’Staff room’.

S em in a r L ift
E th an

C o rr id o r

M ark L ec tu re room
PhD L ab o ra to ry

: P rin tin g Room

S ta ircase B

Figure 7.21: A graphical representation of the relation FLOORJPLAN

7.7 Conclusions

We have presented a modularisation package discipline based on OSQL which supports

a wide spectrum of applications. An OSQL package has the advantage that it integrates

all of the useful operations with respect to a particular application in a more coherent

and systematic way. OSQL provides us with new facilities to support the development of

a package as well as to compare attributes according to semantic orderings, in addition

to the usual system orderings. Thus, it allows us to capture the needed richer data

semantics in advanced applications and it improves the expressive power of the standard

SQL.

We are still in the process of implementing the PDL of OSQL using Oracle PL/SQL

in order to define the mentioned OSQL packages and to make them available as built-in

175

Queries
in

various

applications

Result

- >

O SQL_TREE tree dom ain '

O SQL_TIM E tim e dom ain |

O S Q L JN C O M P incom p dom ain '

OSQL_FU ZZY fuzzy dom ain [

O SQL_SPACE spatial dom ain '

OSQL
System

Oracle

U nix
Front end

Packages
Interface

C Precom piler
Interface

DBM S
Back end

Figure 7.22: Architecture of the OSQL system

facilities. Our design of the system architecture is shown in Figure 7.22, which is built on

top of OSQL system. We anticipate tha t it is possible to load more than one package into

the system at the same time. All the functions of the loaded packages, which are qualified

by their corresponding package names, can be applied directly in formulating a query.

For example, the following query which involves the application having tree-structured

information, temporal information and incomplete information can be formulated in a

unified manner by using three OSQL packages. The relation EMPJDETAIL is shown in

Figure 1.3 in Chapter 1.

(Q7.29) Find the name and salary of the common bosses of Nadav and Ethan in 1996,

whose work is less informative than ’UNK’.

SELEC T (NAME, SALARY) (*)

FROM OSQL_TIME.SNAPSHOT(EMP_DETAIL, 1996)

WHERE OSQL_TREE.COM_ANCESTOR(Nadav, Ethan)

AND OSQLJNCOMP.LESSJNFO(PREV_W ORK, ’UNK’).

176

Chapter 8

Conclusions and Further Research

In this thesis we have presented the ordered relational model, which is a minimal extension

of the relational data model. We have shown throughout the thesis that partial orderings

in data domains have an im portant part to play in modelling data. The ordered relational

model suggests tha t it is possible to unify a very large class of advanced real world

applications in an efficient way. In Section 8.1 we review the main contributions of

the thesis and evaluate our work from the points of view of usability, applicability and

formalism. Finally, we discuss ongoing and further research in Section 8.2.

8.1 Summary of the Thesis Contribution

We have demonstrated that the extension of the relational data model to incorporate par­

tial orderings into data domains can considerably improve the applicability of a relational

DBMS. We now briefly recall the impact of partial orderings on the three fundamental

components of the conventional relational data model.

W ith respect to its data structures, the relational data model is extended to incorpo­

rate partial orderings into data domains. Hence, it provides the flexibility to manipulate

tuples in an ordered database according to the the semantics of underlying domains.

We have shown th a t this extension serves as a good foundation to investigate the issues

concerning query languages and data dependencies.

W ith respect to its query languages, we have extended the relational algebra and the

relational calculus to the PORA and the PORC, respectively, by allowing the use of the

ordering predicate, Ç, in both languages. The PORA and the PORC are shown to be

177

equivalent. Based on the PORA (or its counterpart the PORC), we have extended SQL

to OSQL, which combines the capabilities of SQL with the power of semantic orderings.

In order to gain more insights into the viability of OSQL, we have built a prototyped

system of OSQL over the Oracle DBMS. The prototype was employed to perform a user

survey in the department of computer science at UCL. From the survey we can confirm

tha t the various extended features of the OSQL SELECT command are easy to learn,

understand and apply, and are useful in formulating queries involving order.

W ith respect to its data dependencies, we have formally defined OFDs and OINDs,

and have studied their semantics with respect to two categories of orderings: lexico­

graphical orderings and pointwise orderings. In the Ccise of pointwise orderings, we have

presented sound and complete axiom systems for OFDs and OINDs. In the case of lex­

icographical orderings, we have presented a set of novel chase rules to OFDs, which are

used to tackle the implication problem of OFDs. This set of chase rules is a useful tool

for investigating other kind of data dependencies tha t require order.

Our work is best evaluated in the context of the three successful factors of the rela­

tional model, which we have discussed in Chapter 1.

1. From the point of view of usability, the ordered relational model is as natural and

simple as the conventional relational model. Ordered domains are easily understood

by non-specialist users due to the fact that partial orderings are structural truths

about many types of data organisation in the real world. Our extension is done in

a minimal and disciplined manner. The ordered database model we have defined

is easily compatible with the syntax and semantics of the conventional relational

database model.

2. From the point of view of applicability, the ordered relational model has been

demonstrated to have the capabilities of capturing semantics in a wide spectrum of

advanced applications such as tree-structured information, temporal information,

incomplete information, fuzzy information and spatial information. In each of the

above cases, the ordered relational model solves many interesting and common

queries in a satisfactory manner. Moreover, it is the only data model known to us

tha t combines all the above application capabilities under a single unified model.

3. From the point of view of formalism, the ordered relational model is elegant enough

to support theoretical research in the areas of: data dependencies such as OFDs

178

and OINDs, the expressiveness of the ORA and the generic properties of queries

over ordered databases. Moreover, we can build upon the rich mathematical re­

search into the notion of order to investigate many im portant issues such as query

completeness and axiomatisation of data dependencies.

8.2 Problem s for Further Investigation

There is still a wide range of research issues that can be carried out on both the theoretical

and the implementational aspects of the ordered relational model. We now discuss several

areas that deserve our attention in further research.

1. Extension and specialisation of ordered domains:

An interesting area for extension is to define some operators so tha t powerdomains

can be derived from ordered domains (c.f., [20]). A useful ordering introduced by

this extension is the containment ordering of a powerdomain. Apart from what

we have discussed in textual databases, the concept of containment is closely as­

sociated with the object-oriented extension, since inheritance can be viewed as a

containment ordering, in the sense that a derived type contains all the features of

a base type. Containment is also related to the Entity-Relationship approach [30]

because the ISA relationship can be viewed as a containment ordering. In addition

to containment orderings, Hoare orderings and Smyth orderings [62, 143] are also

im portant kinds of orderings arising from powerdomains since they generalise the

notions of superset and subset, respectively.

In contrast to the extension of domains to powerdomains, we may examine in more

depth some restricted classes of partially ordered domains such as lattices and

pre-orderings (or quasi-orderings) [59]. The restricted aspect of these extensions

may bring out some interesting theoretical properties and provide more insights in

optimisation of OSQL queries in practice.

2. OSQL implementation of packages and further user surveys:

Although it is not our goal at this stage to develop a commercial version of the

OSQL packages defined in Chapter 7, there are still many ways to employ our OSQL

system as a basis to prototype certain package operations. One approach is to use

Oracle PL/SQL facilitates to define functions tha t implement some operations,

179

for example as SNAPSHOT and HISTORY in OSQL_TIME. Another approach is

to use the C precompiler available under Oracle to deploy a package interfacing

with OSQL. The prototype can serve as a basis to gain feedback from users as

we did in the OSQL survey. The advantage of using precompiling C programs to

develop the prototype of OSQL packages is that we can design and build a user

interface more easily. A viable technique is to use embedded calls to the X windows

system for creating and controlling an X-window interface (cf., [127]). W ith such

an implementation we can extend the scope of our user survey by including a more

comprehensive set of queries to verify the findings reported in Chapter 5.

3. Automorphisms and orderings:

As we have pointed out in Chapter 3, there is an open problem to find a suitable

syntactic definition of the notion “more ordered” in terms of the ordering automor­

phisms of an ordered domain. In a broader context, an ongoing research problem

can be informally rephrased as follows, given the special class of abstract data types

that are restricted to have generic binary relationships on data elements, is there

a syntactic characterisation of the structure in terms of some generalised notion of

automorphism. As the idea of automorphism represents some kinds of symmetry in

domains, our intuitive feeling is that we may need to introduce some notion related

to group theory in order to achieve a more general result.

4. Ordered data dependencies:

We have developed the chase for LOFDs in Chapter 4 as a theorem proving tool,

however, the maximal potential of this tool has not been fully developed. We are

currently using the chase to prove the completeness of the set of inference rules of

LOFDs proposed in Chapter 4. If we succeed in the proof, then the set of inference

rules provide a more elegant axiom system for LOFDs. Otherwise, it implies that

there may be some missing inference rules and in this case, the use of the chase in the

proof may provide some insights to discover the missing inference rules. The chase

is also a good reference point to design new inference procedures for LOINDs or

for investigating the interaction of OFDs and OINDs. Besides, the chase supports

the future work concerning the issues of time and space complexity of enforcing

the data dependencies in ordered databases. Another im portant issue relevant to

ordered data dependencies is the issue concerning database design. Although we

180

have investigated the relationship between lossless join property [5] and OFDs in

Chapter 4, we think tha t the effect of order on database design is not clearly known.

For example, one question is how ordered data dependencies affect the dependency

preservation property [13], and a more general question is whether there are any

desirable properties of ordered data dependencies, or some useful special classes of

them, in the context of relational database design.

5. Updating ordered databases:

We have briefly discussed the issue of updating ordered domains in Chapter 3 but

the problem of updating ordered databases has not been discussed in detail. It can

be further investigated in terms of the algorithms and formal semantics of updating

ordered domains, ordered databases and data dependencies. In particular, it is also

im portant to consider how to enforce data dependencies to ensure tha t updates do

not cause inconsistencies of data with respect to a set of OFDs or OINDs.

6. Notion of package completeness:

As we know that OSQL packages, SQL3 and most SQL extensions are computa­

tionally complete, we feel that there is a need to establish a new framework to

compare and contrast the operational completeness of different OSQL packages. In

any case this problem also relates to the completeness of SQL3 and, in general,

object-relational query languages.

To close this thesis, we would like to mention another large research area, tha t is,

how to integrate the facilitates of user-defined orderings into the kernel of DBMSs at the

physical level of a DBMS. A possible starting point is to examine a data structure called

an Ordered B-tree [100, 139], which may serve as a basis to implement ordered relations.

Roughly speaking, an Ordered B-tree stores data, for example tuple identifiers, in its leaf

pages and a multi-level index is provided in each subtree to access data. In order to find

a tuple identifier, the system is designed so tha t a scan can be performed from the root

of the tree until a leaf page is encountered.

181

Bibliography

[1] S. Abiteboul and S. Ginsburg. Tuple Sequences and Lexicographical Indexes. Journal
of the Association for Computing Machinery 33(3), pp. 409-422, (1986).

[2] S. Abiteboul et al. Towards DBMSs for Supporting New Applications. In Proceedings
of the 3rd IEEE Conference on Data Engineering^ Los Angeles, pp. 580-589, (1987).

[3] S. Abiteboul and V. Vianu. Expressive Power of Query Languages. In J.D. Ullman
(editor). Theoretical Studies in Computer Science. Academic Press, pp. 207-252,
(1992).

[4] S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison-Wesley,
(1995).

[5] A.V. Aho and J.D. Ullman. Universality of D ata Retrieval Languages. In Proceedings
of ACM Symposium on Principles of Programming Languages.^ pp. 110-120, (1979).

[6] A.V. Aho, J.E. Hopcroft and J.D. Ullman. Data Structures and Algorithms. Addison-
Wesley, (1983).

[7] ANSI/X3/SPARC Study Group on Database Management Systems, Interim, Re­
port. FD T Bulletin of ACM SIG FIDET 7, (1975).

[8] E. Anuff. The Java Sourcebook. Wiley Gomputer Publishing John Wiley & Sons,
Inc., (1996).

[9] P. Atzeni and V. De Antonellis. Relational Database Theory. Benjam in/Gummings
Publishing Company, Inc., (1993).

[10] G.W. Bachman. D ata Structure Diagrams. Data Base 1(2), pp. 4-10, (1969).

[11] B.R. Badrinath and T. Imielinski. Replication and Mobility. In Proceedings of the
2nd IEEE Workshop on Management of Replicated Data, (1992).

[12] F. Bancilhon. On the Completeness of Query Languages for Relational Databases.
In LNCS 64'- Mathematical Foundations of Computer Science, Springer-Verlag, pp.
112-124, (1978).

[13] C. Beeri and P.A. Bernstein. Computational Problems Related to the Design of
Normal Form Relational Schemas. ACM Transactions on Database Systems 4(1),
pp. 30-59, (1979).

[14] J. Biskup. Boyce-Codd Normal Form and Object Normal Forms. Information pro­
cessing Letters 32, pp. 29-33, (1989).

182

15] J. Biskup. An Extension of SQL for Querying Graph Relations. Computing Language
15(2), pp. 65-82, (1990).

16] M.L. Brodie. On the Development of Data Models. In On Conceptual Modelling:
Perspectives from Artificial Intelligence, Databases, and Programming languages,
Springier-Verlag, pp. 19-47, (1984).

17] B.P. Buckles and F.E. Petry. A Fuzzy Representation of D ata for Relational
Databases. Fuzzy Sets and Systems 7, pp. 213-226, (1982).

18] F. Buckley and F. Harary. Distance in Graphs. Redwood City, Ca.: Addison-Wesley,
(1990).

19] P. Buneman, S. Davidson and A. Watter. A Semantics for Complex Objects and
Approximate Queries. In 7th Symposium on the Principle of Database Systems, pp.
305-314, (1988).

20] P. Buneman, A. Jung and A. Ohori. Using Powerdomains to Generalise Relational
Databases. Theoretical Computer Science 91, pp. 23-55, (1991).

21] P. Buneman, S. Davidson, M. Fernandez and D. Suciu. Adding Structure to Un­
structured Data. Technical Report MS-CIS 96-21, CIS Department, University of
Pennsylvania, United States, (1996).

22] M.A. Casanova, R. Fagin and C.H. Papadimitrious. Inclusion Dependencies and
their Interaction with Functional Dependencies. Journal of Computer and System
Science 28, pp. 29-59, (1984).

23] M.A. Casanova, A.L. Furtado and L. Tucherman. A Software Tool for Modular
Database Design. AC M Transactions on Database Systems 2, pp. 209-234, (1991).

24] R. Cattell (editor). The Object Database Standard: ODMG-93 (Release 1.2). Morgan
Kaufaman Publishers, (1996).

25] M. Carey and D.J. DeW itt. Of Objects and Databases: A Decade of Turmoil. In
Proceedings of the 22nd VLDB Conference, Mumbai, India, (1996).

26] M. Carey et al. Storage Management in EXODUS. In Object-Oriented Concepts,
Databases, and Applications. ACM Press and Addison-Wesley, pp. 341-369, (1989).

27] J. Celko. SQL For Smarties: Advanced SQL Programming. Morgan Kaufmann Pub­
lishers, (1995).

28] A.K. Chandra and D. Harel. Computable Queries for Relational Databases. Journal
of Computer System Science 21, pp. 156-178, (1980).

29] C.L. Chang. Decision Support in an Imperfect World. IBM Research Report RJ3421,
IBM, San Jose, Dec, (1982).

30] P.P. Chen. The Entity-Relationship Model: Towards a Unified View of Data. ACM
Transactions on Database Systems 1(1), pp. 9-36, (1976).

31] D.L. Child. Feasibility of a Set-Theoretical D ata Structure — a General Structure
Based on a Reconstitued Definition of Relation. Proceeding IFIP Congress, pp. 162-
172, Amsterland, (1968).

183

[32] P. Ciaccia and D. Maio. On the Complexity of Finding Bounds for Projection Car­
dinalities in Relational Databases. Information Systems 17(6), pp. 511-515, (1992).

CODASYL Data Base Task Group April 71 Report, ACM, New York (1971).

E.F. Codd. A Relational Model of D ata for Large Shared D ata Banks. Communica­
tions of the ACM 13(6), pp. 377-387, (1970).

E.F. Codd. Relational Completeness of D ata Base Sublanguages, In R. Rustin (ed­
itor). Database Systems. Prentice-Hall, Englewood Cliffs, NJ, pp. 65-98, (1972).

E.F. Codd. Further Normalisation of the D ata Base Relational Model. In R. Rustin
(editor). DataBase Systems, Prentice-Hall, Englewood Cliffs, NJ, pp. 33-64, (1972).

E.F. Codd. Extending Database Relational Model to Capture More Meaning. ACM
Transactions on Database Systems 4, pp. 397-434, (1979).

E.F. Codd. Missing Information (Applicable and Inapplicable) in Relational
Databases. ACM SIGMOD record 15, pp. 53-78, (1987).

E.F. Codd. The Relational Model for Database Management, Addison-Wesley,
(1990).

J. Conklin. Hypertext: An introduction and Survey. IEEE Computer 20, pp. 17-41,
(1987).

C.J. Date. Relational Database Writings 1985-1989. Addison-Wesley, (1990).

C.J. Date. Relational Database Writings 1989-1991. Addison-Wesley, (1992).

C.J. Date. A Guide to the SQL Standard. Addison-Wesley, 3rd ed., (1993).

C.J. Date. Relational Database Writings 1991-1994- Addison-Wesley, (1995).

D. Denning et al. A Multilevel Relational D ata Model. In Proceedings of IEEE
Symposium on Security and Privacy, pp. 220-234, Oakland, Califonia, (1987).

O. Deux et al. The O2 system. Communications of the ACM, 34(10), pp. 34-49,
(1991).

K. Dittrich and U. Dayal (editors). In Proceedings of the 1st International Workshop
on Object-Oriented Database Systems, Pacific Grove, CA, (1986).

M.J. Egenhofer. A Formal Definition of Binary Topological Relationships. In LNCS
367: Foundations of Data Organization and Algorithms, 3rd International Confer­
ence, Proceedings, Springer-Verlag, pp. 457-472, (1989).

M.J. Egenhofer. Reasoning about Binary Topological Relations. In LNCS 525: Ad­
vances in Spatial Databases, Second International Symposium, SSD ’91, Springer-
Verlag, pp. 143-160, (1991).

M.J. Egenhofer. Spatial SQL: A Query and Presentation Language. IEEE Transac­
tion on Knowledge and Data Engineering 6(1), pp. 86-95, (1994).

R. Fagin. A Normal Form for Relational Databases that is Based on Domain and
Keys. ACM Transactions on Database Systems 6(3), pp. 310-319, (1981).

184

s. Feuerstein. Oracle PL/SQ L. O’Reilly & Associates, Inc., (1995).

M. Fitting. First-order Logic and Automated Theorem Proving. Springer-Verlag,
(1990)

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co., New York, (1979).

S. Ginsburg and R. Hull. Order Dependency in the Relational Model. Theoretical
Computer Science 26, pp. 129-195, (1983).

S. Ginsburg and R. Hull. Sort Sets in the Relational Model. Journal of the Associ­
ation for Computing Machinery, 33(3), pp. 465-488, (1986).

S. Ginsburg and K. Tanaka. Computation-Tuple Sequences and Object Histories.
A C M Transactions on Database Systems 11(2), pp. 186-212, (1986).

M. Gray. Views and Imprecise information in Databases. Technical Report No. 38,
University of Cambridge, England, (1982).

G. Gratzer. General Lattice Theory. New York : Academic Press, (1978).

V. Gaede. Optimal Redundancy in Spatial Database Systems. In LNCS 951: Pro­
ceedings of the 4ih International Symposium in Advances in Spatial Databases
SSD ’95, Springer-Verlag, pp. 96-116, (1995).

G. Grahne. Dependency Satisfaction in Databases with Incomplete Information. In
Proceedings of the International Conference on Very Large Data Bases, Singapore,
pp. 37-45, (1984).

G. Gunter. The Mixed Power Domain. Theoretical Computer Science 103, pp. 311-
334, (1992).

R.H. Guting, R. Zicari and D.M. Choy. An Algebra for Structured Office Documents.
A C M Transactions on Office Information Systems 7(4), pp. 123-157, (1989).

J. Haigh et al. The LDV Secure Relational DBMS Model. In S. Jajodia and C.
Landwehr (editors). Database Security, IV: Status and Prospects, North-Holland,
Amsterdam, pp. 265-279, (1991).

P. Halmos. Naive Set Theory. Springer-Verlag, New York, (1974).

H. Kopka and P. W. Daly. A Guide to DTpfN2s. Addion-Wesley Publishing Company,
Inc., (1995)

E. Horowitz and S. Sahni. Fundamental of Data Structures. Computer Science Press,
Inc., (1976)

T. Imielinski, S. Naqvi and K. Vadaparty. Incomplete Objects - a D ata Model for
Design and Planning Applications. In Proceedings of ACM-SIGMOD, Denver, Col­
orado, pp. 288-297, (1991).

W.H. Inmon. Building the Data Warehouse. John Wiley & Sons. Inc., (1996)

185

s. Jajodia and R. Sandhu. A Novel Decomposition of Multilevel Relations into
Single-Level Relations. Proceedings of IEEE Symposium on Security and Privacy,
pp. 300-313, Oakland, Califonia, (1987).

C.B. Jones, D.B. Kidner and J.M. Ware. The implicit Tringulated Irregular Network
and Multiscale Spatial Databases. The Computer Journal 37(1), pp. 43-57, (1994).

A. Jung, L. Libkin and H. Puhlmann. Decomposition of Domains. In LNCS
598: Proceedings of the Conference on Mathematical Foundations of Programming
Semantics-91, Springer-Verlag, pp. 235-258, (1992).

D.S. Johnson and A. King. Testing Containment of Conjunctive Queries under Func­
tional and Inclusion Dependencies. Journal of Computer and System Sciences 28,
pp. 167-189, (1984).

P C. Kanellakis. On the Computational Complexity of Cardinality Constraints in
Relational Databases. Information Processing Letters 11(2), pp. 98-101, (1980).

R.H. Katz. Towards a Unified Framework for Version Modeling in Engineering
Databases. Computing Surveys 22(4), pp. 375-408, (1990).

G. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Application. Prentice-
Hall Inc., (1995).

S. Kelly. Data Warehousing: The route to Mass Customisation. John Wiley & Sons.
Inc., (1996)

W. Kim, J.F. Garza, N. Ballou and D. Woelk. Architecture of Orion Next-Generation
Database System. IEEE Transactions on Knowledge and Data Engineering 2(1), pp.
109-124, (1990).

W. Kim (editor). Modern Database Systems: The Object Model, Interperability, and
Beyond, ACM Press, (1995).

A. Klug. Equivalence of Relational Algebra and Relational Calculus Query Lan­
guages Having Aggregate Functions, Journal of the Association for Computing Ma­
chinery, 29(3), pp. 699-717, (1982).

K.G. Kulkarni. Object-Orientation and the SQL standard. Computer Standards and
Interfaces 15, pp. 287-300, (1993).

G. Koch and K. Loney. Oracle: The Complete Reference, Third Edition. Osborne
McGraw-Hill, (1995).

W. Kurutach. Analysis and Modelling of Aspects of Imperfection and Time in
Databases. Ph.D. Thesis, University of New South Wales, Australia, (1996).

M. Levene and G. Loizou. Database Design of Incomplete Relations, Research Note
RN/95/18, Department of Computer Science, University College London, United
Kingdom, (1995).

M. Levene and G. Loizou. A Corrspondence Between Variable Relations and Three­
valued Propositional Logic. International Journal Computer Mathematics 55, pp.
29-38, (1995).

186

[86] M. Levene and G. Loizou. Maintaining consistency of imprecise relations. The Com­
puter Journal 39, pp. 114-123, (1996).

[87] M. Levene and G. Loizou. Null Inclusion Dependencies in Relational Databases. To
appear in Information and Computation, (1997).

[88] M. Levene and G. Loizou. The Additivity Problem for Functional Dependencies in
Incomplete Relations. Acta Informatica 34, pp. 135-149, (1997).

[89] L. Libkin. A Relational Algebra for Complex Objects Based on Partial Informa­
tion. In LNCS 495: Proceedings of Symposium on Mathematical Fundamentals of
Database Systems-91, Rostock, Springer-Verlag, pp. 36-41, (1992).

[90] L. Libkin. Algebraic Characterisation of Edible Powerdomains. Technical Report
MS-CIS-93-70, University of Pennsylvania, United States, (1993).

[91] L. Libkin. Aspects of Partial Information in Databases. Ph.D. Thesis, University of
Pennsylvania, United States, (1996).

[92] L. Libkin. A Semantics-based Approach to Design of Query Languages for Partial
Information. In Proceedings of the Workshop on Semantics in Databases, pp. 63-80,
(1995).

[93] R. Likert. A Technique for The Measurement of Attitudes. Architecture Psychology
1 4 0 , p p . 1-55, N . Y . , (1932).

[94] B.C. Lindsay and L.M. Hass. Extensibility in the Staxburst Experimental Database
System. In LNCS 466: Database Systems of the 90s, International Symposium, Pro­
ceedings, pp. 217-248, Springer-Verlag, (1990).

[95] A. Loeffen. Text Databases: A Survey of Text Models and Systems. SIGMOD Record
23(1), pp. 97-106, (1994).

[96] D. Lomet and E. Moss (Editors). Special Issue on Integration Text Retrieval and
Database. Bulletin of the Technical Committe on Data Engineering 19(1), (1996).

[97] N.A. Lorentzos. DBMS Support for Time and Totally Ordered Compound Data
Types. Information Systems 17(5), pp. 347-358, (1992).

[98] N.A. Lorentzos, A. Poulovassilis and C. Small. Manipulation Operations for an
Interval-Extended Relational Model. Data and Knowledge Engineering 17(1), pp.
1-29, (1995).

[99] H. Lu, H.C. Chan and K.K. Wei. A Survey on Usage of SQL. SIGMOD Record
22(4), pp. 60-65, (1993).

[100] N. Lynn. Implementation of Ordered Relations in a Data Base System, Master
Thesis, Department of Electrical Engineering and Computer Science, University of
California, United States, (1982).

[101] D. Maier, A.O. Mendelzon and Y. Sagiv. Testing Implication of D ata Dependencies.
AC M Transactions on Database Systems 4 , pp. 455-469, (1979).

[102] D. Maier. Development of an Object-Oriented DBMS. Proceedings ACM OOPSLA
Conference, Portland, OR, (1986).

187

[103] D. Maier and B. Vance. A Call to Order. In Proceedings of the 12th ACM Sympo­
sium on Principles of Databases Systems, pp. 1-16, (1993).

[104] H. Mannila and K-J Raiha. Generating Armstrong Databases for Sets of Functional
and Inclusion Dependencies. Research Report A-1988-7, University of Tampere, Fin­
land, (1988).

[105] H. Mannila and K-J Raiha. The Design of Relational Databases. Addision-Wesley,
(1992).

[106] N. Mattos and L.G. DeMichiel. Recent Design Trade-offs in SQL3. ACM SIGMOD
Record 23(4), pp. 84-89, (1994).

[107] M.C. McCabe and D. Grossman. The Role of Tools in Development of a Data
Warehouse. In Proceedings of the 4th International Symposium on Assessment of
Software Tools, pp. 139-145, (1996).

[108] J. Melton. An SQL3 Snapshot. In Proceedings of the International Conference on
Data Engineering, pp. 666-672, (1996).

[109] J.C. Mitchell. The Implication Problem for Functional and Inclusion Dependencies.
Information and Control 56, pp. 154-173, (1983).

[110] P. Mishra and M. Eich. Functional Completeness in Object-Oriented Databases.
ACM SIGMOD Record 21(1), pp. 71-83, (1992).

[111] H. Nakajima. Fuzzy Database Language and Library — Fuzzy Extension to SQL.
2nd IEEE International Conference Fuzzy Systems, pp. 477-482, (1993).

[112] W. Ng and M. Levene. On the Expressive Power of the Relational Algebra with
Partially Ordered Domains. Research Note RN/95/77, Department of Computer
Science, University College London, United Kingdom, (1995).

[113] W. Ng and M. Levene. OSQL: An Extension to OSQL to Manipulate Ordered Re­
lational Databases. In Proceedings of the 3rd International Workshop on Next Gen­
eration Information Technologies and Systems, Jerusalem, Israel, pp. 77-88, (1997).

[114] W. Ng and M. Levene. An Extension of OSQL to Support Ordered Domains in Re­
lational Databases. In IE E E Proceedings of the International Database Engineering
and Applications Symposium, Montreal, Canada, pp.358-367, (1997).

[115] W. Ng and M. Levene. The Development of Ordered SQL Packages for Modelling
Advanced Applications. In LNCS 1308: Database and Expert Systems Application,
8th International Conference, D EXA ’97, Proceedings, Springer-Verlag, Toulouse,
France, pp. 529-538, (1997).

[116] W. Ng and M. Levene. The Development of Ordered SQL Packages to Support
D ata Warehousing. Research Note RN/97/27, Department of Computer Science,
University College London. Proceedings of the 8th International Database Workshop,
Hong Kong, pp. 208-235, (1997).

[117] W. Ng and M. Levene. A User Survey on Ordered SQL. Research Note RN/97/38,
Department of Computer Science, University College London, United Kingdom,
(1997).

188

1181 J. Ong, D. Fogg and M. Stonebraker. Implementation of D ata Abstraction in the
Relational Database System Ingres. SIGMOD Record 14(1), pp. 1-14, (1984).

1191 Programmer’s Guide to the Oracle Precompilers Release 1.8. Oracle Corporation,
(1996).

1201 J. Orenstein and T.H. Merrett. A Class of D ata Structures for Associative Search­
ing. In Proceedings of the 3rd AG M SIGACT-SIGM OD Symposium on Principles of
Database Systems, pp. 181-196, (1984).

1211 S.L. Osborn and T.E. Heaven. The Design of a Relational Database System with
Abstract D ata Types for Domains. AG M Transactions on Database Systems 11, pp.
357-373, (1986).

1221 C.H. Papadimitriou, D. Suciu and V. Viamu. Topological Queries in Spatial
Databases. In Proceedings of PO D s’96, pp. 81-92, (1996).

1231 J. Paredaens. On the Expressive Power of the Relational Algebra. Information
Processing Letters 7(2), pp. 107-111, (1978).

1241 J. Paredaens, J. Bussche and D. Gucht. Towards a Theory of Spatial Database
Queries. In Proceedings of the 13th AG M symposium on Principles of Databases, pp.
279-287, (1994).

1251 J. Paredaens. Spatial Databases, The Final Frontier. In Proceedings of the 5th
International Gonference on Database Theory, pp. 14-32, (1995).

1261 J. Plotkin. A Powerdomain Construction. SIA M Journal of Computing 5, pp. 452-
487, (1976).

1271 J. Poole. A Graphical Oracle Database Browser. Master Thesis, Department
of Computer Science, Birkbeck College, University of London, United Kingdom,
(1991).

1281 K.V.S.V.N. Raju and A.K. M ajum dar Fuzzy Functional Dependencies and Lossless
Join Decomposition of Fuzzy Relational Database Systems. AGM Transactions on
Database Systems 13(2), pp. 129-166, (1988).

1291 D. Raymond. Partial Order Databases. Ph.D. Thesis, University of Waterloo,
Canada, (1996).

1301 R. Read. Towards Multiresolution Data Retrieval via the Sandbag. Ph.D. Thesis,
University of Texas at Austin, United States, (1995).

1311 J. Richardson. Supporting Lists in a D ata Model. Proceedings of the 18th VLDB
Conference, Vancouver, Canada, (1992).

1321 J. Rissanen. Independent Components of Relations. AG M Transactions on
Database Systems 2(4), pp. 317-325, (1977).

133] J. Rosenstein. Linear orderings. New York: Academic Press, (1982).

1341 B. Rounds. Situations-Theoretic Aspects of Databases. In Proceedings of Confer­
ence on Situation Theory and Applications, CSLI 26, pp. 229-256, (1991).

189

1351 N.L. Sardra. Algebra and Query Language for a Historical D ata Model. The Com­
puter Journal 33(1), pp. 11-18, (1990).

1361 P. Seshadri, M. Livny and R. Ramakrishnan. The Design and Implementation of
a Sequence Database System. Proceedings of the 22nd VLDB Conference, Mumbai,
India, (1996).

13?1 I. Sommerville. Software Engineering. Addison-Wesley, (1992).

1381 M. Stonebraker. Inclusion of New Types in Relational Data Base Systems. In Pro­
ceedings of the 2nd IEEE Data Engineering Conference, Los Angeles, CA, (1986).

1391 M. Stonebraker (editor). The ING RES Papers, Reading, Mass, Addision Wesley,
(1996).

1401 M. Stonebraker. Interviewd by DBM S online, URL Address;
http://www.dbm sm ag.com, (1994).

1411 M. Stonebraker. Object Relational DBMSs: The Next Great Wave. Morgan Kauf­
mann Publishers, Inc., (1996).

1421 M.B. Smyth. Effectively Given Domains. Theoretical Computer Science 5, pp. 257-
274, (1977).

1431 M.B. Smyth. Power Domains. Journal of Computer and System Sciences 16, pp.
23-36, (1978).

1441 A. Tansel. Adding Time Dimension to Relational Model and Extending Relational
Algebra. Information Systems 11(4), pp. 343-355, (1986).

1451 A. Tansel et al. (editors). Temporal Databases: Theory, Design and Implementa­
tion. The Benjamin/Cummings Publishing Company, Inc., (1993)

1461 Trott. Mathematica: A Detailed Introduction. TELOS, Springer-Verlag, (1994).

1471 J.D. Ullman. Principles of Database and Knowledge-Base Systems, Vol. I.
Rockville, MD., Computer Science Press, (1988).

1481 M.Y. Vardi. The Decision Problem for Database Dependencies. Information Pro­
cessing Letters 12(5), pp. 251-154, (1981).

1491 S.L. Vandenberg and D.J. DeWitt. Algebraic Support for Complex Objects with
Arrays, Identity, and Inheritance. In Proceedings of AC M SIGMOD Conference, pp.
158-168, Denver, CO, (1991).

1501 M. Vincent. The Semantic Justification for Normal Forms in Relational Database
Design. Ph.D. Thesis, Monash University, Australia, (1994).

1511 M. W inslett, K. Smith and X. Qian. Formal Query Languages for Secure Relational
Databases. A C M Transactions on Database Systems 19(4), pp. 626-662, (1994).

1521 X. Wang. Pattern Matching by Rs-operations: Towards a Unified Approach to
Querying Sequenced Data. Ph.D. Thesis, University of Southern California, United
States, (1992).

190

http://www.dbmsmag.com

[153] M.F. Worboys. A Unified Model for Spatial and Temporal Information. The Com­
puter Journal 37(1), pp. 26-34, (1994).

[154] C. Zaniolo. Database Relations with Null Values. Journal of Computer and System
Science 28, pp. 142-166, (1984).

[155] Z. Zdonik and D. Maier (editors). Readings in Object-Oriented Database Systems.
Morgan Kaufamann Publisher, (1990)

191

A ppendix A

A Grammar of OSQL

Conventions:

• Key words are indicated by uppercase italicized characters.

• Non-terminal symbols are enclosed with

• Alternatives are separated by If only one of the symbols is to be chosen out of several
alternatives, then we enclose them with In order not to cause confusion, we use “{{”
and “}}” to represent the terminal symbols and respectively.

• Optional clauses are enclosed with “[]”.

• “0 ” are just terminal symbols.

• Default keywords are underlined.

• A positive number begins with # .

• . . . at the end if a subclause indicates that it may be repeated.

A .l D ata D efinition Language

1. CREATE DOMAIN { domain-name) (data-type) [ORDER AS
(ordering-specification)]
(ordering-specification) ((data-pair)[, (data-pair)]...)
(data-pair) [data-item | {{data-item,...}}] < [data-item | {{data-item,...}}]

2. CREATE DOMAIN { domain-name) A5 (domain-name)

3. CREATE TABLE { table-name)
((column-specification) [,(column-specification)]...) [ORDER AS
(attribute-list)]
(column specification) ::= (attribute-name { data-type))
(data-type)::= {C'iL4i2(integer) | NUMBER{integer)}

A .2 D ata M anipulation Language

1. SELECT { attribute-list) [{A N Y | ALL}] (tuple-list) [{ASC | DESC}] FROM { relation-
list) [WHERE { condition)]

192

(a t t r ib u te - l is t) ((e x te n d e d - a t t r ib u t e) [,(e x t e n d e d -a t tr ib u te)] . . .)

(e x t e n d e d -a t tr ib u te) { a t t r ib u te -n a m e | (a t tr ib u te -n a m e WITHIN
{ d o m a in -n a m e) | *) }

(tu p le - l is t) ({ # n [, # n]) | LAST \ # n l . . . # n 2 | * })

(c o n d it io n) : := (a t t r ib u te -n a m e | v a lu e) (c o m p a r a to r)

({ a t tr ib u te -n a m e | v a lu e }) [WITHIN (d o m a in -n a m e)]

(c o m p a r a to r) { < | > | > = | < = | < > }

2 . DELETE FROM { t a b le -n a m e) [{ WHERE { c o n d it io n) | TUPLE
{ tu p le - l is t)}]

3 . DELETE FROM (ta b le -n a m e) [{ WHERE { c o n d it io n) | TUPLE
{ tu p le - l is t)}]

4 . ALTER TABLE (ta b le -n a m e) {ADD ((c o lu m n - lis t)) | MODIFY
((c o lu m n - l is t)) | ORDER AS ((a t t r ib u te - l is t)) }

A .3 Package Definition Language

1. PACKAGE { p a c k a g e -n a m e)

p a c k a g e -b o d y)

END PACKAGE
p a c k a g e -b o d y) :: = { PARAMETER: (p a r a m e te r - lis t)

FUNCTION:{ fu n c t io n - l is t) ENFORCEMENT:{ e n fo r c e m e n t- lis t) }

p a r a m e te r - lis t) : : = { (p a r a m e te r -c o n s tr u c t) [(p a r a m e te r -c o n s tr u c t)] . . .}

p a r a m e te r -c o n s tr u c t) :: = (p a c k a g e -d a ta - ty p e): v a r ia b le -n a m e [,v a r ia b le -n a m e]

p a c k a g e -d a ta - ty p e);: = { VARCH AR \ IN T | BOOL | REL }

3.

4.

function-list) :: = { (function-construct) [(function-construct)]...}
function-construct) :: =

{P R II PUB}] { function-name) variable-names (parameter-list)
DEFINE

function-body)
RETURN variable-names

function-body) : : = [(program-construct) | (OSQL-construct)]
program-construct) :: = AS PROG program-name pseudocode
OSQL-construct) :: = [DDL statements | DML statements]

enforcement-list) :: = { (enforcement-construct) [(enforcement-
construct)]...}

enforcement-construct) :: =
enforcement-name)

DEFINE
{ program-construct)
END

193

A ppendix B

A D etailed D escription of Built-In
OSQL Packages

B .l OSQL.TREE Package and Its Operation

PACKAGE O S Q L _ T R E E

PARAMETER:
VARCHAR: tr e e _ n o d e _ l , tree_ n o d e_ 2 , e x t -d o m a in ,

tr e e .d o m a in , $ e x t -r e la t io n , $ e x t -a t t

BOOL: b o o l-v a l ,

INT: n o d e J e v e l , c o u n t-n o d e s

REL: n o d e s

FUNCTION:
PUB I D E N T I F Y (e x t - d o m a in) RETURN
PUB P A R E N T (t r e e _ n o d e - l) RETURN nodes
PUB C H I L D R E N (tr e e _ n o d e - l) RETURN nodes
PUB A N C E S T O R (t r e e _ n o d e - l) RETURN nodes
PUB C O M - A N C E S T O R (t r e e - n o d e - l , t r e e -n o d e -2) RETURN nodes
PUB O F F S P R I N G (t r e e - n o d e - l) RETURN nodes
PUB L E A V E S O RETURN nodes
PUB R O O T () RETURN nodes
PUB L E V E L (t r e e j io d e - l) R E T f /R A n o d e J e v e l

PUB S W A P (t r e e - n o d e - 1 , tr e e -n o d e -2) RETURN
V E R I F Y (tr e e -d o m a in) RETURN b o o L v a l

N O D E - C O U N T (n o d e s) RETURN c o u n t -n o d e s

ENFORCEMENT:
E N F O R C E J N I T O

E N F O R C E J D E N T I F Y O

E N F O R C E D W A P 0

END PACKAGE

PUB I D E N T I F Y (e x t - d o m a in)

194

DEFINE
CREATE D O M A IN tieejdom am ylS* e x t_ d o m a in

R E T U R N

PU B P A R E N T (tr e e _ n o d e _ l)

DEFINE
SELECT [$ext-a tt W ITHIN treeA om am) (1) FRO M $extJce\ation
WHERE {$ext-a tt > t r e e _ n o d e _ l tr e e _ d o m a in)

R E T U R N n o d e s

PU B C H IL D R E N (tr e e _ n o d e _ l)

DEFINE
SELECT ($ e x t_ a t t W ITHIN tr ee _ d o m a in) {LAST)
FROM $ e x t_ r e la t io n

WHERE {$ex t.a tt < t r e e _ n o d e _ l W ITHIN tree-dom ain)
R E T U R N n o d e s

PUB A N C E S T O R (tr e e _ n o d e _ l)

DEFINE
SELECT ($ e x t_ a t t) (*) FROM $ e x t_ r e la t io n

WHERE ($ e x t_ a t t > tr e e _ n o d e _ l W ITHIN tree-dom m n)
R E T U R N n o d e s

PU B O F F S P R I N G (tr e e _ n o d e _ l)

DEFINE
SELECT ($ e x t_ a t t) (*) FROM $ e x t_ r e la t io n

WHERE ($ e x t_ a t t < tr e e _ n o d e _ l W ITHIN tree-dom ain)
R E T U R N n o d e s

PU B C O M _ A N C E S T O R (tr e e _ n o d e _ l , tree_ n o d e_ 2)

DEFINE
SELECT ($ e x t_ a t t) (*) FROM $ e x t_ r e la t io n

WHERE ($ e x t_ a t t > tr e e _ n o d e _ l W ITHIN tree-dom ain)
AND ($ e x t_ a t t > tr ee_ n o d e_ 2 W ITHIN t r e e .d o m a in)

R E T U R N n o d e s

PU B L E A V E S O

DEFINE
SELECT ($ e x t_ a t t) (*) FRO M $ e x t_ r e la t io n

WHERE N O D E _ C O U N T (C H I L D R E N ($ e x t_ a t t)) = 0

R E T U R N n o d e s

P U B R O G T Q

DEFINE
SELECT ($ e x t_ a t t) (1) D E SC FROM $ext-re\ation

R E T U R N n o d e s

195

PUB L E V E L (tr e e _ n o d e _ l)

REL: T R E E X E V E L

DEFINE
SELECT (L E V E L _ N U M B E R) (*) FROM T R E E X E V E L

WHERE N O D E = tr e e _ n o d e _ l

RETURN n o d e - le v e l

PUB S W A P (tr e e _ n o d e _ l, tree_ n o d e_ 2)

D E F I N E A S P R O G tr e e .s w a p

1. R e p la c e tree_ n o d e_ 2 in tr e e -d o m a in b y t r e e -n o d e -3 w h ic h is d is t in c t fro m

o th e r n o d e s in th e tr e e -d o m a in .

2. R e p la c e t r e e -n o d e -1 in tr e e -d o m a in b y tr e e _ n o d e -2 .

3. R e p la c e t r e e -n o d e -3 in tr e e -d o m a in b y t r e e j n o d e - l .

RETURN

V E R I F Y (tr e e -d o m a in)

DEFINE AS PROG tr e e .v e r ify

1. D e fin e t h e b o o le a n r o u t in e C H E C K (d o m a in) a s fo llo w s .

1 .1 R e m o v e t h e r o o t fro m th e g iv e n d o m a in .

1 .2 P a r t i t io n t h e r e m a in in g tr e e -n o d e s in to n > = 0 d is jo in t o r d e re d s e t s , T i , . . . ,T „ ,

in w h ic h a ll n o d e s a re c o n n e c te d .

1 .3 F or e a c h T*, p e r fo rm th e r o u t in e C H E C K (T j) r ec u r siv e ly .

2 . C H E C K (tr e e -d o m a in) .

RETURN hoo\-V3l

FUNCTION N O D E - C O U N T (n o d e s)

DEFINE
SELECT {CO\JNT{*)) (*) F R O M n o d e s

RETURN c o u n t -n o d e s

E N F O R C E J N I T O

DEFINE AS PROG tr e e .e n fo r c e J n it

1. I f th e r e e x is t s a d o m a in c a lle d T R E E , th e n I D E N T I F Y (T R E E) , e ls e p r o m p t

fo r a t r e e d o m a in .

END

E N F O R C E J D E N T I F Y O

DEFINE AS PROG tr e e .e n fo r c e J d e n t ify

1 . I f t h e fu n c t io n I D E N T I F Y is c a lle d , th e n g o t o a n error s t a t u s i f

V E R I F Y (tr e e -d o m a in) = fa lse .

END

E N F O R C E JS W A P 0

DEFINE AS PROG tr ee .e n fo r ce _ sw a p

1. I f t h e fu n c t io n S W A P is c a lle d , t h e n g o t o a n error s t a t u s i f

V E R I F Y (tr e e -d o m a in) = fa lse .

END

196

B.2 OSQL_TIME Package and Its Operations

PACKAGE O S Q L _ T IM E

PARAMETER:
VARCHAR: t im e .d o m a in , e x t .r e la t io n , t im e J in s ta n t_ l , t im e J n s ta n t_ 2 , N O W

n o n _ t im e .sc h e m a , e x t_ d o m a in

INT: g r a n u la r ity , d u r a t io n

BOOL: b o o L v a l

REL: r e su lt r e l a t io n

FUNCTION:
PUB I D E N T I F Y (e x t .d o m a in)

PUB C U R R E N T (e x t jr e la t io n) RETURN lesultjcelation
PUB H IS T O R Y (e x t jr e la t io n) RETURN Tes\ûtJce\a,tion
PUB C O A L E S C E (e x t jr e la t io n) RETURN iesu\tj:e\a,tion
PUB S U C C (t i m e j n s t a n t - l) RETURN tim eAnstantJl
PUB P R E D (t im e J n s t a n t - l) RETURN timeAnstant^2
PUB D U R A (t im e J n s t a n t - l , t im e J n s ta n t_ 2) RETURN duration
PUB S N A P S H O T (e x t jr e la t io n , t im e J n s t a n t - l) RETURN resultjcelation
PUB E X P A N D (e x t jr e la t io n) R E T U R Y r e su lt .r e la t io n

PUB T IM E -R E S (g r a n u la r ity , e x t -d o m a in) RETURN
V E R I F Y (t im e -d o m a in) RETURN b o o L v a l

S T R I P -T I M E (e x t -r e la t io n) RETURN n o n -t im e -s c h e m a

ENFORCEMENT:
E N F O R C E J N I T O

E N F O R C E J D E N T I F Y O

END PACKAGE

PUB I D E N T I F Y (e x t -d o m a in)

DEFINE
CREATE DOMAIN time-domain AS e x t -d o m a in

RETURN

PUB C U R R E N T (e x t -r e la t io n)

DEFINE
SELECT (S T R I P - T I M E (e x t j r e la t io n)) (*) F i2 0 M e x t jr e la t io n

WHERE T O -T I M E = N O W

RETURN r e s u lt jr e la t io n

PUB H IS T O R Y (e x t -r e la t io n)

DEFINE
SELECT (*) (*) FROM e x t -r e la t io n

WHERE {TO-TIME < N O W W/THTAT t im e -d o m a in)

RETURN r e s u lt -r e la t io n

PUB S N A P S H O T (e x t j r e la t io n , t im e J n s t a n t - 1)

DEFINE

197

SELECT (S T R I P _ T IM E (e x t_ r e la t io n)) (*) FROM e x t_ r e la t io n

WHERE (F R O M _ T IM E < = t i m e J n s t a n t . l WITHIN t im e -d o m a in)

AND (T O -T I M E > t im e J n s t a n t - l WITHIN time-domain)
RETURN r e s u lt -r e la t io n

PUB S U C C (t im e - in s t a n t - l)

REL: T IM E -D O M -R E L

DEFINE
SELECT (T IM E -D A T A) (1) F R O M T I M E -D O M -R E L

WHERE TIME S> ATA > t im e J n s t a n t - l

RETURN t im e J n s t a n t - 2

PUB P R E D (t im e J n s t a n t - l)

REL: T IM E -D O M -R E L

DEFINE
SELECT (T IM E -D A T A) {LAST) FROM T IM E -D O M -R E L

WHERE T I M E -D A T A < t im e J n s t a n t - 1

RETURN t im e J n s t a n t - 2

PUB D U R A (t im e J n s t a n t - l , t im e - in s ta n t -2)

DEFINE AS PROG t im e .d u ra

1. C o n v er t t im e J n s t a n t - l t o th e n u m b e r o f c h r o n o n s , t e m p i .

2 . C o n v er t t im e J n s t a n t - 2 t o th e n u m b e r o f c h r o n o n s , te m p 2 .

3 . R e tu r n th e r e su lt o f (t e m p i — te m p 2) .

RETURN d u r a t io n

PUB E X P A N D (e x t-r e la t io n)

REL: T IM E -D O M -R E L

DEFINE
SELECT (S T R I P _ T I M E (e x t_ r e la t io n) , T IM E -D A T A F R O M -T I M E ,

S U C C (T I M E -D A T A) T O -T I M E) (*) F R O M e x t -r e la t io n , T IM E -D O M -R E L

W R F R F (F R O M -T I M E < = T IM E -D A T A I F /T /f / iV t im e -d o m a in)

AND (T O -T I M E > T IM E _ D A T A t im e -d o m a in)

RETURN r e s u lt -r e la t io n

PUB C O A L E S C E (e x t -r e la t io n)

DEFINE
SELECT (R .S T R I P - T I M E (e x t - r e la t io n) , R .F R O M -T I M E , M /iV (S .T O -T IM E)

T O -T I M E) (*) F R O M e x t -r e la t io n R , e x t -r e la t io n S WHERE
R .F R O M -T I M E NOT IN {SELECT (T O -T I M E) (*) F R O M e x t -r e la t io n)

AND T O -T I M E NOT IN {SELECT (F R O M -T I M E) (*) F R O M e x t -r e la t io n)

AND (R .F R O M -T I M E < S .T O .T I M E W T i/Z A r t im e -d o m a in)

AND R .S T R I P - T I M E (e x t - r e la t io n) = S .S T R I P -T I M E (e x t -r e la t io n)

GROUP R F (R .S T R I P - T I M E (e x t - r e la t io n) , R .F R O M -T I M E)

RETURN r e s u lt -r e la t io n

PUB T I M E -R E S (g r a n u la r ity , e x t -d o m a in)

DEFINE AS PROG t im e .r e s

198

1. Create a relation to maintain the time domain.
2. Populate the relation from 0 to (granularity — 1).

RETURN

FUNCTION V E R IF Y (t im e _ d o m a in)

DEFINE AS PROG t im e .v e r ify

1. Check that the time.domain is finite and linearly ordered.
2. Check that all elements t in the time.domain satisfy that t <= NOW.

RETURN booLval

PUB STRIP_TIME(ext_relation)
DEFINE AS PROG t im e .s tr ip

1. Obtain the relational schema of the ext_relation.
2. Project out the attributes FROM.TIME and TO-TIME from the schema.
3. R e tu r n th e r e m a in in g a t tr ib u te s .

RETURN non_time_schema

ENFORCEJNITO
DEFINE AS PROG time.enforceJnit

1. IDENTIFY{T>kTE)
2. U s in g th e r e la t io n T IM E _ D O M _ R E L t o m a in ta in D A T E .

END

ENFORCEJDENTIFYO
DEFINE AS PROG t im e .e n fo r ce J d e n t ify

1. I f th e fu n c t io n I D E N T I F Y is c a lle d , th e n g o t o a n error s t a t u s if

V E R I F Y (t im e _ d o m a in) = fa lse .

2. If the given time.domain is not in { DATE, YEAR, MONTH, DAY, HOUR,
MINUTE, SECOND }, then prompt for the definition of NOW.

3 . U p d a te t h e r e la t io n T IM E _ D O M _ R E L t o m a in ta in t h e g iv e n t im e d o m a in .

END

B.3 O SQ LJN C O M P Package and Its Operations

PACKAGE OSQLJNCOMP
PARAMETER:

VARCHAR: ext_att, incomplete.domain, ext .relation, ext.val, predicate
BOOL: booLval
REL: result-relation
PUB C O M P L E T E _ V A L (e x t_ r e la t io n , e x t_ a tt) RETURN result jcelaiion
PUB P A R T IA L _ V A L (e x t_ r e la t io n , e x t_ a tt) R E T U R AT r e s u lt .r e la t io n

PUB D N E _ V A L (e x t_ r e la t io n , e x t_ a tt) R E T U R # r e su lt .r e la t io n

PUB N I_ V A L (e x t jr e la t io n , e x t .a t t) R E T U R # r e s u lt .r e la t io n

PUB U N K _ V A L (e x t jr e la t io n , e x t .a t t) R E T U R # r e su lt jr e la t io n

PUB M O R E J N F O (e x t .a t t ,e x t .v a l) R E T U R # p r e d ic a te

PUB L E S S J N F O (e x t _ a t t ,e x t .v a l) R E T U R # p r e d ic a te

I D E N T I F Y O RETURN

199

V E R I F Y (in c o m p le te _ d o m a in) RETURN b o o L v a l

ENFORCEMENT:
E N F O R C E J N I T O

END PACKAGE

PUB C O M P L E T E _ V A L (e x t_ r e la t io n , e x t_ a tt)

DEFINE
SELECT (*) (+) FROM e x t .r e la t io n

WHERE {ext.aXt > ’U N K ’ WITHIN incomplete.domaan)
RETURN r e su lt jr e la t io n

PUB P A R T I A L _ V A L (e x t j :e la t io n , e x t_ a tt)

DEFINE
SELECT (*) (*) FROM e x t .r e la t io n

WHERE = ’D N E ’O R (e x t_ a t t < = ’U N K ’ WITHIN
in c o m p le te .d o m a in)

RETURN r e s u lt r e l a t io n

PUB D N E _ V A L (e x t jr e la t io n , e x t_ a tt)

DEFINE
SELECT (*) (*) FROM e x t jr e la t io n

WHERE ext jait = ’D N E ’

RETURN r e s u lt jr e la t io n

PUB N I_ V A L (e x t j r e la t io n , e x t_ a tt)

DEFINE
SELECT (*) (*) FROM e x t jr e la t io n

WHERE ext JdXi = ’N F

RETURN r e s u lt jr e la t io n

PUB U N K _ V A L (e x t jr e la t io n , e x t_ a tt)

DEFINE
SELECT (*) (*) FROM e x t jr e la t io n

WHERE ext-àtt = ’U N K ’

RETURN r e s u lt jr e la t io n

PUB M O R E J N F O (e x t _ a t t , e x t .v a l)

DEFINE
SELECT '{extrait > e x t .v a l in c o m p le t e .d o m a in) ’

RETURN p r e d ic a te

PUB L E S S J N F O (e x t .a t t , e x t .v a l)

DEFINE
SELECT '{ext-3itt < e x t .v a l lF 7 T / /7 iV in c o m p le te .d o m a in) ’

RETURN p r e d ic a te

200

PUB I D E N T IF Y O

DEFINE
CREATE DOMAIN incomplete-domain >15 IN C O M P

RETURN

V E R IF Y O

DEFINE AS PROG in c o m p .v e r ify

1. C h eck t h a t t h e n u ll v a lu e s U N K , N I a n d D N E a r e in c lu d e d in th e

in c o m p le t e .d o m a in .

2 . C h ec k t h a t N I < U N K , N I < D N E a n d U N K < a ll v a lu e s e x c e p t th o s e n u ll

v a lu e s .

RETURN b o o L v a l

E N F O R C E J N I T O

DEFINE AS PROG in c o m p .e n fo r ce J n i t

1. I D E N T I F Y O .

2 . I f V E R I F Y 0 = fa lse , th e n g o t o a n error .s t a t u s .

END

B .4 OSQLJFUZZY Package and Its Operations

PACKAGE O S Q L J ’U Z Z Y

PARAMETER:
VARCHAR: fu z z y .d o m a in , e x t .a t t , p r e d ic a te

INT: ord er

BOOL: b o o l .v a l

REL : r e s u lt jr e la t io n

FUNCTION:
PUB I D E N T I F Y (f u z z y .d o m a in) RETURN
PUB IM P O S E J ^ U Z Z Y (e x t .a t t , fu z z y .d o m a in) RETURN pxedncate
PUB O R D E R J ^ U Z Z Y (fu z z y .d o m a in , o rd er) RETURN
PUB L I S T J I E Q O R E T U R # r e s u lt jr e la t io n

V E R I F Y (fu z z y .d o m a in) i t R E T U R N b o o l .v a l

ENFORCEMENT:
E N F O R C E J N I T O

E N F O R C E J D E N T I F Y O

E N F O R C E J M P O S E O

END PACKAGE

PUB I D E N T I F Y (f u z z y .d o m a in)

REL: R E Q J D IC T

DEFINE
INSERT INTO K 4 L U E 5 (fu z z y .d o m a in , 1)

RETURN

PUB IM P O S E J ^ U Z Z Y (e x t . a t t , fu z z y .d o m a in)

201

REL: R E Q _ D IC T

DEFINE
SELECT ’(e x t_ a t t W T i ï / i V ’fu z z y .d o m a in) ’

RETURN p r e d ic a te

PUB O R D E R -F U Z Z Y (fu z z y .d o m a in , o rd er)

REL: R E Q J) I C T

DEFINE
UPDATE REQDICT SET PRIORITY = o rd er

WHERE F U Z Z Y .R E Q = fu z z y .d o m a in

RETURN

PUB L I S T .R E Q O

REL: R E Q J) I C T

DEFINE
SELECT (*) (*) FROM R E Q JD IC T

RETURN r e su lt jr e la t io n

V E R I F Y (fu z z y .d o m a in)

DEFINE AS PROG fu z z y .v e r ify

1. C h ec k t h a t R E Q -D I C T d o e s n o t c o n ta in th e sa m e n a m e o f t h e g iv e n fu z z y

d o m a in .

2 . C h ec k t h a t t h e v a lu e o f P R I O R I T Y in R E Q -D I C T is a p o s it iv e in te g e r .

RETURN

E N F O R C E J N I T O

DEFINE
DELETE FROM R E Q JD IC T

END

E N F O R C E J D E N T I F Y O

DEFINE AS PROG fu z z y .e n fo r c e J d e n t ify

1. I f t h e fu n c t io n I D E N T I F Y is c a lle d , th e n g o t o a n error s t a t u s if

V E R I F Y (fu z z y .d o m a in) = fa lse .

END

E N F O R C E J M P O S E O

DEFINE AS PROG fu z z y .e n fo r c e J m p o s e

1. I f t h e fu n c t io n I M P O S E is c a lle d , th e n sa v e th e r e s u lt in a sp e c if ie d l is t a n d

a s s ig n a n u m b e r t o i t a c c o r d in g t h e p r io r it ie s o f th e d e fin e d fu z z y d o m a in s .

2 . A r r a n g e t h e l is t a c c o r d in g t o t h e n u m b e r a ss ig n e d .

3 . R e p la c e t h e e x is t in g a t t r ib u te l is t w ith th e e x te n d e d a t tr ib u te l is t .

END

B.5 OSQL_SPACE Package and Its Operations

PACKAGE O S Q L .S P A C E

PARAMETER:

202

VARCHAR: sp a c e .d o m a in , e x t .r e la t io n , r e g io n .p a r a m e te r , x .c o m p , y _ c o m p ,

m in _ v e r te x _ l, m a x _ v e r te x _ l, m in _ v e rte x J 2 , m a x _ v e r te x .2 ,

e x t_ d o m a in , d isp la y .p r e d ic a te , t o p o lo g ic a l .p r e d ic a te

INT: p e r im e te r , a r ea

BOOL: b o o l .v a l

REL: r e su lt jr e la t io n

FUNCTION:
PUB I D E N T I F Y (e x t .d o m a in) RETURN
PUB D IS J O I N T (m in .v e r t e x . l , m a x .v e r t e x . l , m in .v e r te x J 2 , m a x .v e r t e x .2)

RETURN to p o lo g ic a l .p r e d ic a te

PUB O V E R L A P (m in .v e r t e x . l , m a x .v e r t e x . l , m in .v e r t e x .2 , m a x .v e r t e x .2)

RETURN to p o lo g ic a l .p r e d ic a te

PUB M E E T (m i n .v e r t e x . l , m a x .v e r t e x . l , m in _ v e r te x .2 , m a x .v e r t e x .2)

RETURN to p o lo g ic a l .p r e d ic a te

PUB C O N T A IN (m in .v e r t e x . l , m a x .v e r t e x . l , m in .v e r te x J 2 , m a x .v e r te x J 2)

RETURN to p o lo g ic a l .p r e d ic a te

PUB E A S T (e x t jr e la t io n , m i n .v e r t e x . l , m a x .v e r t e x . l) RETC/RAT r e s u lt jr e la t io n

PUB W E S T (e x t j r e la t io n , m i n .v e r t e x . l , m a x .v e r t e x . l) RJETC/RAT r e su lt jr e la t io n

PUB N O R T H (e x t jr e la t io n , m i n .v e r t e x . l , m a x .v e r t e x . l) RETC/RAT r e s u lt jr e la t io n

PUB S O U T H (e x t jr e la t io n , m i n .v e r t e x . l , m a x .v e r t e x . l) R E T C /R iV r e s u lt jr e la t io n

PUB P E R I (m in .v e r t e x . l , m a x .v e r t e x . l) RETURN perimeter
PUB A R E A (m i n .v e r t e x . l , m a x .v e r t e x . l) RETURN area
PUB P IC K _ R E G IO N () RETURN regionjparameter
PUB S E T -D I S P L A Y (c o lo u r , p a t te r n , m o d e) RETURN
PUB B O U N D A R Y (e x t jr e la t io n) RETURN
PUB W H O L E (e x t jr e la t io n) RETURN
X C 0 M P (m in .v e r t e x . l) RETURN yijcomp
Y C O M P (m in .v e r t e x . l) RETURN y.comp
V E R I F Y (s p a c e .d o m a in) RETURN b o o l .v a l

ENFORCEMENT:
E N F O R C E J N I T O

E N F O R C E J) I S P L A Y ()

END PACKAGE

PUB I D E N T I F Y (e x t .d o m a in)

DEFINE
CREATE D O M A /V s p a c e .d o m a in AS e x t .d o m a in

RETURN

PUB D IS J O I N T (m i n .v e r t e x . l , m a x .v e r t e x . l , m in .v e r te x _ 2 , m a x .v e r t e x .2)

DEFINE
SELECT ’X C O M P (m a x .v e r t e x . l) < X C O M P (m in .v e r te x J 2) OR
X C O M P (m a x .v e r t e x .2) < X C O M P (m in .v e r t e x . l) OR
Y C O M P (m a x .v e r t e x . l) < Y C O M P (m in .v e r te x J 2) OR
Y C O M P (m a x .v e r t e x .2) < Y C O M P (m i n .v e r t e x . l) ’

203

RETURN topological.predicate

PUB O V E R L A P (m in .v e r t e x . l , m a x .v e r t e x . l , m in .v e r t e x .2 , m a x .v e r te x J 2)

DEFINE
SELECT ’X C O M P (m a x .v e r t e x . l) > X C O M P (m in .v e r t e x .2) AND
X C O M P (m a x .v e r t e x .2) > X C O M P (m in .v e r t e x . l) AND
Y C O M P (m a x .v e r t e x . l) > Y C 0 M P (m in .v e r te x J 2) AND
Y C O M P (m a x .v e r t e x .2) > Y C O M P (m i n .v e r t e x . l) ’

RETURN t o p o lo g ic a l .p r e d ic a te

PUB M E E T (m i n .v e r t e x . l , m a x .v e r t e x . l , m in .v e r t e x .2 , m a x .v e r t e x .2)

DEFINE
SELECT
’((X C O M P (m a x .v e r t e x . l) = X C O M P (m in .v e r t e x .2) OR
X C O M P (m a x .v e r t e x .2) = X C O M P (m i n .v e r t e x . l)) AND
Y C O M P (m a x .v e r t e x . l) > Y C O M P (m in .v e r te x J2) AND
Y C O M P (m a x .v e r t e x .2) > Y C O M P (m in .v e r t e x . l))

OR
((Y C O M P (m a x .v e r t e x . l) = Y C O M P (m in .v e r t e x .2) OR
Y C O M P (m a x .v e r t e x .2) = Y C O M P (m in .v e r t e x . l)) AND
X C O M P (m a x .v e r t e x . l) > X C O M P (m in .v e r te x J2) AND
X C O M P (m a x .v e r t e x .2) > X C O M P (m in .v e r t e x . l)) ’

RETURN to p o lo g ic a l .p r e d ic a te

PUB C O N T A I N (m in .v e r t e x . l , m a x .v e r t e x . l , m in .v e r te x J 2 , m a x .v e r t e x .2)

DEFINE
SELECT
’X C O M P (m a x .v e r t e x . l) > = X C O M P (m a x .v e r t e x .2) AND
X C O M P (m i n .v e r t e x . l) < = X C O M P (m in .v e r t e x .2) AND
Y C O M P (m a x .v e r t e x . l) > = Y C O M P (m a x .v e r te x J 2) AND
Y C O M P (m in .v e r t e x . l) < = Y C O M P (m in .v e r t e x .2) ’

RETURN to p o lo g ic a L p r e d ic a te

PUB E A S T (e x t jr e la t io n , m i n .v e r t e x . l , m a x .v e r t e x . l)

DEFINE
SELECT (*) (*) FROM e x t jr e la t io n

WHERE XCOMP (MAXMERTEX) < = X C O M P (m in .v e r t e x . l)

RETURN r e s u lt j r e la t io n

PUB W E S T (e x t jr e la t io n , m i n .v e r t e x . l , m a x .v e r t e x . l)

DEFINE
SELECT (+) (*) FROM e x t jr e la t io n

X C O M P (M I N .V E R T E X) > = X C O M P (m a x .v e r t e x . l)

RETURN r e s u lt jr e la t io n

PUB S O U T H (e x t jr e la t io n , m i n .v e r t e x . l , m a x .v e r t e x . l)

DEFINE
SELECT (*) (*) FROM e x t jr e la t io n

204

WHERE YCOUF{MAX.VERTEX) < = Y C O M P (m in .v e r t e x . l)

RETURN r esu lt jr e la t io n

PUB N O R T H (e x t jr e la t io n , m i n .v e r t e x . l , m a x .v e r t e x . l)

DEFINE
SELECT (*) (*) FROM e x t jr e la t io n

WHERE YCOMF{Mm.WEKTEX) > = Y C O M P (m a x .v e r t e x . l)

RETURN r esu lt jr e la t io n

PUB P E R I (m in .v e r t e x . l , m a x .v e r t e x . l)

DEFINE
SELECT 2 X (A B S (X C O M P (m in .v e r t e x . l) - X C O M P (m a x .v e r t e x . l)) 4-
A B S (Y C O M P (m in .v e r t e x . l) - Y C O M P (m a x .v e r t e x . l)))

RETURN p e r im e te r

PUB A R E A (m in .v e r t e x . l , m a x .v e r t e x . l) DEFINE
SELECT A B S (X C O M P (m in .v e r t e x . l) - X C O M P (m a x .v e r t e x . l)) x

(Y C O M P (m in .v e r t e x . l) - Y C O M P (m a x .v e r t e x . l)))

RETURN a rea

PUB P I C K J I E G I O N O

DEFINE AS PROG sp a c e .p ic k

1. C o m m u n ic a te w ith th e m o u s e d r iv er t o g e t t h e s p a t ia l a t t r ib u te s o f th e p o in te d r eg io n .

2 . R e tu r n th e s p a t ia l a t t r ib u te s o f t h e r e g io n in t h e c o rr ec t fo r m a t.

RETURN r e g io n .p a r a m e te r

PUB S E T J D IS P L A Y (c o lo u r , p a t te r n , m o d e)

DEFINE AS PROG s p a c e .d isp la y

1. S e t th e v isu a l v a r ia b le s o f th e d isp la y e n v ir o n m e n t a c c o r d in g

t o th e g iv e n p a r a m e te r s c o lo u r , p a t te r n a n d m o d e .

2 . R e -a c t iv a te t h e w in d o w t o d isp la y .

RETURN

PUB B O U N D A R Y (e x t jr e la t io n)

DEFINE AS PROG s p a c e .b o u n d a r y

1. D r a w th e h o r iz o n ta l l in e s o n th e sc r e e n w h o se h o r iz o n ta l r a n g e s o f p ix e l are t o b e

b o u n d e d b y X C O M P (M I N .V E R T E X) a n d X C O M P (M A X .V E R T E X) a n d th e v e r t ic a l

d is ta n c e s o f a ll p ix e l a r e Y C O M P (M IN .V E R T E X) or Y C O M P (M A X .V E R T E X) .

2. D r a w th e v e r t ic a l l in e s o n th e sc r e e n w h o se v e r t ic a l r a n g e s o f p ix e l a re t o b e

b o u n d e d b y Y C O M P (M IN .V E R T E X) a n d Y C O M P (M A X .V E R T E X)) a n d th e h o r iz o n ta l

d is ta n c e s o f a ll p ix e l a r e X C O M P (M I N .V E R T E X) or X C O M P (M A X .V E R T E X) .

RETURN

PUB W H O L E (e x t jr e la t io n)

DEFINE AS PROG s p a c e .w h o le

1. D isp la y a ll th e p o in ts o n t h e sc r e e n w h o se h o r iz o n ta l r a n g e s o f p ix e l are t o b e b o u n d e d b y

X C O M P (M I N .V E R T E X) a n d X C O M P (M A X .V E R T E X) a n d w h o se v e r t ic a l r a n g e s o f

p ix e l a re t o b e b o u n d e d b y Y C O M P (M I N .V E R T E X) a n d Y C O M P (M A X .V E R T E X) .

RETURN

205

X C O M P (m in .v e r t e x . l)

DEFINE AS FROG s p a c e .x c o m p

1. S tr ip o f f a ll s y m b o ls e x c e p t th e X -c o o r d in a te o f t h e s p a t ia l a t t r ib u te m in .v e r t e x . l .

2 . C o n v e r t t h e r e s u lt in to a n in te g e r .

RETURN

Y C O M P (m in .v e r t e x . l)

DEFINE AS PROG sp a c e .y c o m p

1. S tr ip o f f a ll s y m b o ls e x c e p t th e Y -c o o r d in a te o f th e s p a t ia l a t t r ib u te m in .v e r t e x . l .

2 . C o n v e r t th e r e s u lt in to a n in te g e r .

RETURN

V E R I F Y (s p a c e .d o m a in)

DEFINE AS PROG sp a c e .v e r ify

1. C h ec k t h a t t h e s p a c e .d o m a in is 2 D S P A C E .

2 . C h ec k t h a t t h e s p a c e .d o m a in is f in ite a n d X a n d Y c o m p o n e n ts o f a ll e le m e n ts in a

s p a c e .d o m a in a re l in e a r ly o r d e re d .

RETURN b o o l .v a l

E N F O R C E J N I T O

DEFINE AS PROG s p a c e .e n fo r c e J n it

1. I D E N T I F Y (2 D S P A C E) .

2 . E N F O R C E J) I S P L A Y () .

END

E N F O R C E J D IS P L A Y O

DEFINE AS PROG s p a c e .e n fo r c e .d is p la y

1. S e t a ll t h e n e c e s s a r y d e fa u lt p a r a m e te r s for d isp la y e n v ir o n m e n t su c h a s th e v isu a l

v a r ia b le s in g r a p h ic a l p r e s e n ta t io n , th e s c a le o f t h e d r a w in g a n d th e r e s o lu t io n le v e ls .

2 . A c t iv a te t h e d is p la y w in d o w .

END

206

A ppendix C

Survey D ocum ents

C .l A Mini-Manual for OSQL

C . l . l In tr o d u c tio n to O SQ L

Current relational database management systems (RDMSs) are based on the Codd’s rela­
tional data model and their data languages are specified by the SQL standard. We extend
SQL to be Ordered SQL (OSQL) in order to provide the facility of user-defined orderings
over data domains in addition to the standard domain orderings such as alphabetical
ordering over a domain of strings and numerical ordering over a domain of numbers. For
example, the semantics of the comparison EMPLOYEE_NAME < ’Wilfred’ meaning the
subordinates of Wilfred, can be captured in OSQL. Queries in OSQL are formulated in
essentially the same way as using standard SQL.

Oracle

System

OSQL
Statem ents

Query

Result

OSQL
System

Unix
Front end

C Precom piler

Interface

ROM S
Back end

Figure C .l: Architecture of the OSQL system

In Figure C .l, we show our design of the system architecture, which allows OSQL
statements to be entered via the front end unix interface, and then the OSQL precompiler
generates a corresponding program consisting of a sequence of Oracle statements, which
is then piped into the back end Oracle server for execution.

C .1 .2 C o n n e c tin g to O SQ L S y s te m an d D isc o n n e c t in g from it

Firstly, you must make sure th a t you have no problem in connecting to Oracle?, i.e.
you have already got an Oracle account and have successfully logged on to the system.

207

Secondly, you should type the following on your terminal (or add this in your .uclcs-csh-
options file):

set path = ($path /cs/academic/phdO/violet/siuhungn/OSQL/)
This command set the path of the OSQL system. Now you can get into the OSQL
interface by typing the command osql. You will be asked for your user name and then
for the password of your O rac le A cco u n t as follows.

* *

* OSQL version 1 .0 designed by Mr Wilfred NG *
* *

* Type ’quit’ if you vaut to exit. *
* *

* IMPORTANT : ANY statement SHOULD be ended with ’;’ *
* *

* *

Enter user-name: ??????
Enter password: ??????
Owing to some performance problem in our Oracle Server, there may be a noticeable
pause after typing your password or your OSQL statement. Please be patient. A prompt
tha t looks like the following will appear after your account details have been verified:

Connected to ORACLE as user ??????
OSQL>
To get out of OSQL system just type quit as in Oracle at any time when you have this
prompt.

OSQL>quit
Bye! Bye I Have a good day, ??????.

C . l . 3 E d it in g Q u er ies

You must remember to term inate the query with a semicolon. This tells the OSQL
system to start evaluating the current query and ignore the old information in the query
buffer (a useful tip if you want to get rid of any mistyped query in OSQL).

A typical query and its result might look like this:

OSQL>select (salary) (1) from staff ;

SALARY

10000

Query returned 1 row.

208

You can use a source file to correct errors or modify your query statement. Having
finished your modification, you can run the contents of your file by the OSQL command:

OSQL>stairt <some filename>
At the moment there are two limitations in our extension. The OSQL system does

not accept nested queries and it assumes that all OSQL keywords are in lower case.

C . l . 4 U sin g th e O SQ L S E L E C T S ta te m e n t

In this section we introduce the select statement in OSQL. You are strongly encouraged
to try the queries Q1 to Q15 while you are reading this section. As in Oracle SQL all
data retrieval in OSQL is done with the select command. The extended form of the
statement is:

select (attribute list) (tuple list)
from relation list
where (comparison clause)

Note that in the select statement, OSQL has three extensions as follows:

1. Extension of an attribute list: An attribute list in OSQL is a list of attributes similar
to the usual one, except that it provides us with an option that an attribute can be
associated within a semantic domain by the syntax attribute name within domain
name. The purpose of declaring a within clause is to override the system ordering
with the semantic ordering of the semantic domain specified by the domain name.
When the within clause is missing then the system ordering will be assumed. Note
also tha t the attribute list should be enclosed within a pair of brackets. Let us
examine at the following OSQL statements:

Ql. select (name, salary) (*) from staff ;
Q2. select (salary, name) (♦) from staff ;
Q3. select ((name within emp_exp), salary) (*) from staff ;

The attribu te list of the query Q l is (name, salary), and thus tuples in the output
answer are ordered alphabetically by name first and then ordered numerically by
salary. Therefore the ordering of tuples is, in general, different to that of query
Q2, whose list is specified as (salary, name), since the output of Q2 is ordered by
salary first and then by name. It will also be different from that of Q3 whose list
is ((name within emp.exp), salary), where the ordering of name is given by the
semantic domain emp_exp representing employee experience in a company. Check
these queries for yourself in OSQL.

2. Extension of tuple list: A tuple level, which is a set of positive numbers, with the
usual numerical ordering, can also be w ritten in some short forms. Since a set
of tuples in a linearly ordered relation r = {f i , . . . , ^n} is isomorphic to a set of
linearly ordered tuples, we interpret each number z in a tuple level as an index to
the position of the tuple ti, where i = 1 , . . . , n and < • • • < ^„. Let us consider
the following example.

209

Q4. select (salary) (4) from staff;
Q5. select (salary) (2..5) desc from staff ;

Query Q4 returns the fourth lowest salary and query Q5 returns the second to
fifth highest salaries in the staff relation. The keyword desc is used to reverse the
ordering (i.e. maximum first) of the relation You may try Q5 again without using
the keyword desc to examine the difference fro yourself.

An interesting situation to consider is when the output of a relation is partially
ordered as a tree, having levels {/ i , . . . , Im}- In such a case we choose to interpret
each number j in a tuple level as an index to a corresponding tree level Ij, where
j = 1, . . . , m and h < • • • < Im- Hence, a user can specify the retrieve of all the
tuples or any one of the tuples in a specified level Ij. We note that in the case of a
linearly ordered relation, the choice of using all or any has the same effect on the
output, since there is only one tuple in each level.

3. Extension of comparison: The meaning of the usual comparators < , > , < = , > = is
extended to include semantic comparison. A typical form of a semantic comparison
is defined by the syntax attribute comparator attribute within semantic domain.

W ithout the optional within clause, the comparison is just the conventional one and
is based on the relevant system ordering. As an example of a semantic ordering, the
comparison (name > ’Bill’ within emp_rank) returns all names of staff members who
are more senior Bill specified by the semantic domain emp_rank, and the comparison
name > ’Bill’ returns all names of staff members alphabetically greater than Bill.

To summarise, the ordering of tuples in an output relation depends on two factors:
firstly, on the ordering of domains of individual attributes, and secondly on the order of
the attributes in an attribute list.

The following is a more detailed example using two semantic domains emp_rank and
emp_exp as shown in Figure C.2. The first one represents the position of members of
staff, for example Mark (at level 3) is more senior than Bill (at level 1), and the second
one represents the experience of the staff, for example Bill is more experienced than
Lee. Note that the domain emp_rank is tree-structured whereas the domain emp.exp is
linearly ordered.

Lee John Simon

\ / \ /
Ethan Bill

Mark

(a)

Simon

Ethan

Figure C.2: The semantic domains (a) emp_rank and (b) emp.exp

210

Q6. Find the first and the fourth lowest salaries in the staff relation,
select (salary) (1,4)
from staff ;

Q7. Find the highest salary in the staff relation,
select (salary) (last)
from staff ;

or equivalently,
select (salary) (1) desc
from staff ;

Q8. Find 4 names of staff members with salary greater than 15000.
select (name) (1..4)
from staff where salary > 15000;

Q9. Find a staff member at the most senior level (note the brackets),
select ((name within emp_rank)) (1) desc from staff ;

or equivalently,
select ((name within emp_rank)) (last) from staff ;

QIO. Find the name of a staff member at the most junior level,
select ((name within emp_rsuik)) (1) from staff;

Qll. Find all the names of staff at the most junior level (compare
this with QIO).

select ((name within emp_rank)) all (1) from staff ;

Q12. List the names aind salaries of all staff members in
alphabetical order of names.

select (name, salary) (*) from staff ;

Q13. List the names and salaries of staff members in
order of their experiences (compare this with Q12).

select ((name within emp_exp), salary) (*) from staff ;

Q14. Find the record of all the staff members who are more senior than
Ethan.

select (*) (*)
from staff
where (name > ’Ethan’ within emp_rank);

211

Q15. Find the record of all the staff members who aire more experienced than
Ethan (compare this with Q14).

select (*) (*)
from staff
where (name > ’Ethan’ within emp_exp);

C . l . 5 L an gu age S p ec if ica tio n

In this section we give the BNF notation for the OSQL select statement.

Conventions:

• Key words are indicated by lowercase italicized characters.

• Non-terminal symbols are enclosed with ” < > ” .

• Alternatives are separated by ” If only one of the symbols is to be chosen out of
several alternatives, then we enclose them with ”{

• Optional clauses are enclosed with ” []” .

• Default keywords are underlined.

• A positive number begins with # .

• . . . at the end if a subclause indicates that it may be repeated.

select <attribute-list> [{any \ all}] < tuple-list> [{ j^ | desc}] from <relation-list> [where
<condition>]

< attribu te-list> :;= (extended-attribute [,extended-attribute]. . .)

<extended-attribute>
{attribute-name | (attribute-nam e within domain-name | *)}

<tuple-list> ({ # n [, #n]) | last | # n l . .# n 2 | *})

<comparison>
<attribute-nam e | value> < com parator> < (attribute-nam e | value} > [within domain-
name]

< com parator> ::= { < | > | > = | < = | < > }

C .1 .6 T h e S ta ff T ab le

NAME NI_NO SALARY

Bill 27891 12000
Ethan 32877 29000
John 10982 14000
Lee 34589 25000

212

Mark 67001 30000
Paul 23789 23000
Simon 32112 10000

E nd-of-M anual

213

c.2 Experim ent Sheet on OSQL

T ask I: The required database is the frame.parts and stock as shown on the last page.
Answer question 3 in the questionnaire while you are doing this task.

1. List all records in the table frame_parts sorted by part_name.

2. W hat is the cost of the cheapest part?

3. W hat is the cost of the most expensive part?

4. W hat is the cost of the third and fifth cheapest part?

5. List all records in the table frame_parts whose cost is under 200, sorted by cost.

6. Some part construction is dependent on the availability of other parts as shown in
Figure C.3. For example, the part gizmo is dependent on the parts gear and also
the part cam is dependent on the parts jack. I have created a semantic domain
called partJiie to represent the hierarchy of different parts.

gear

gizm o

f ra m m is

Figure C.3: Relationship amongst parts in frame.parts

List cities of the parts which are dependent on the part gear directly or indirectly
(You cannot use any part name explicitly apart from gear in your query).

7. List the name of one part on which frammis is directly dependent (i.e. one level
under).

8. List the names of all parts on which frammis are directly dependent.

9. Look into the stock table in which there is some missing information in records.
We classify the missing information into three symbols of type UNKnown whose
meaning is given as follows:

UNKl: No information is available for this value.
UNK2: Value does not exist.
UNK3: Value exists but is not disclosed for some reasons.

We use the notion of ’’more informative” as the following ordering:

UNKl < UNK2 < UNK3 < other values

In other words, UNK3 is more informative than UNK2 and so on. I have already
created a semantic domain called incomplete.domain to represent this ordering.

List the name and country of all items in which they must more informative than
or equally informative to UNK3.

214

T ask II: Now you can quit the OSQL system. Try and answer the questions 1 to 9 of
Task I in Oracle SQL (type sqlplus). If you find it difficult, you have to explain why (in
principle all queries can be formulated in SQL). Answer question 4 in the questionnaire
while you are doing this task.

T ask III: Complete the questionnaire.

1. The table frame.parts:

CITY COST PART.NAME

Bath 1000 gizmo
Birmingham 3000 cam
Blackpool 100 screw C
London 20 plug B
London 50 screw A
London 50 screw B
London 100 plug A
London 5000 frammis
Manchester 500 jack
Paris 200 screw D
Sussex 100 plug C
York 150 nutl
York 150 nut 2
York 150 nuts
York 500 gear
York 1000 clip
2. The table stock:

ITEM.NAME COUNTRY COLOUR PRICE

TV_stand UNKl UNKl 200
book_case A China UNKl 200
book_case B China Black 200
buffet_unit UNK2 UNKl 2000
ooffee_table Italy White 1000
dining.table Japan Yellow 1500
dressing.table UNK3 UNK2 1000
filing.cabinet England Grey 1000
folding.chair A France UNKl 500
folding.chair B France Brown 200
folding.chair C China Yellow 400

215

futon
soft_unit
wardrobe

Japan
UNK3
Englajid

UNK3
Black
Yellow

500
5000
3000

E nd-of-sheet

216

c.3 Questionnaire on Using OSQL

Pleas tick the boxes or fill in the blanks in the following questions as appropriate.

1. W hat is your experience of using SQL?

□ I learned SQL on this course.
□ Less than 2 years.
□ 2 to 4 years.
□ more than 4 years.

2. W hat programming languages (including database query languages and packages)
do you know apart from SQL?

3. Number of attem pts in formulating OSQL queries in order to obtain the expected
query result for Task I of experiment sheet.

Questions Less than 3 times 3 to 6 times More than 6 times Unsuccessful
1
2
3
4
5
6
7
8
9

4. Number of attem pts in formulating equivalent SQL statements in order to obtain
the expected query result for Task II of the experiment sheet.

Questions Less than 3 times 3 to 6 times More than 6 times Unsuccessful
1
2
3
4
5
6
7
8
9

5. There are three extensions in the select statement of OSQL, namely in the attribute
list, tuple list and comparison clause as given below:

select (attribute list) (tuple list)
from relation list
where (comparison)

217

Plecise comment on the usefulness and the difficulties in using these extensions in
the Tasks I and II of the experiment sheet (scale 1 means least and scale 5 means
most).

Extension Usefulness Difficulty
1 2 3 4 5 1 2 3 4 5

A ttribute list
Tuple list

Comparison

6. Please give us your general comments on OSQL.

E nd-of-questionnaire
Thank you very much!

218

A ppendix D

Sample Code from the
Im plem entation of OSQL

D .l Part of the Code from Dynam ic.pc

1
2 #include <stdio.h>
3 #include <string.h>
4 #include <ctype.h>
5
6 #define MAX_ITEMS 40
7 #define MAX_VNAME_LEN 30
8 #define MAX_INAME_LEN 30
9 #define INPUTFILE "answer.sql"

10
11 EXEC SQL BEGIN DECLARE SECTION;
12 VARCHAR sql_statement[2048];
13 char ♦username;
14 char ♦password;
15 EXEC SQL END DECLARE SECTION;
16 EXEC SQL INCLUDE sqica;
17 EXEC SQL INCLUDE oraca;
18 EXEC SQL INCLUDE sqlda;
19 EXEC ORACLE OPTION (ORACA = YES);
20 EXEC ORACLE OPTION (RELEASE_CURSOR=YES);
21
22 SQLDA ♦select_dp;
23 extern char user_name[];
24 extern char user_password[];
25 extern SQLDA ♦sqlaldO ;
26 extern void sqIprcO;
27 extern void sqInulO;
28 FILE ♦sqlfile;
29
30 open_infiIe()

219

31 {
32
33 sqlfile = fopen(INPUTFILE,"r+");
34 if (!sqlfile)
35 {
36 printf("Warning: file error! could not find euiswer.sql file");
37 exit(1);
38 }
39 return;
40 }
41
42 close_inf ileO
43 {
44
45 fcloseCsqlfile);
46
47 }
48
49 execute_sql()
50 {
51 EXEC SQL WHENEVER SQLERROR DO sql_error();
52 EXEC SQL PREPARE S FROM :sql_statement;
53 EXEC SQL DECLARE C CURSOR FOR S;
54 EXEC SQL OPEN C;
55 process_statement0 ;
56 EXEC SQL CLOSE C;
57 EXEC SQL COMMIT WORK;
58 return;
59 }
60
61 connect_oracle()
62 {
63 username = user_name;
64 password = user_password;
65 EXEC SQL WHENEVER SQLERROR DO connect_error();
66 EXEC SQL CONNECT :username IDENTIFIED BY :password;
67 printf("\nConnected to ORACLE as user %s\n".username);
68 return;
69 }
70
71 initialize_desp()
72 {
73 EXEC SQL WHENEVER SQLERROR DO sql_error();
74 select_dp =
75 sqlald (MAX.ITEMS, MAX_VNAME_LEN, MAX_INAME_LEN);
76 select_dp->N = MAX_ITEMS ;
77 return;
78 }

220

D.2 Part of the Code from Osql.l

1 void yyerror(char *s);
2 %}
3 7.S OSQL
4
5
6

7.7.

7 %{
8 /* control command literals
9 <QSQL>~sql\n { BEGIN INITIAL; osql_flag = 0; printf("SQL>'

10 InitializationO; return PASS ;} ; */
11 %}
12
13 ~[]*quit\n { wrap_up();};
14
15 ~help\n 1
16 "?"\n {command_help0 ;};
17
18 <GSQL>start I
19 <OSQL>"@" { INFILE.MGDE ;};
20
21 %{
22 /* literals*/
23 %}
24
25
26 <GSQL>select {save_sql(yytext,"SELECT");
27 SELECT.MGDE; ATT.MGDE; return SELECT ;} ;
28 <GSQL>from TGK(FRGM) ;
29 <GSQL>where {save_sql(yytext,"WHERE"); CGND_MGDE; return 1
30 <OSQL>last TGK(LAST) ;
31
32 <GSQL>create {save_sql(yytext,"CREATE"); CREATE_MGDE;
33 return CREATE ;};
34 <OSQL>domain {save_sql(yytext,"DOMAIN");
35 DGMAIN_MGDE; return DOMAIN ;};
36 <OSQL>order {AGG_MODE; save_sql(yytext,"ORDER");
37 ORDER_MODE; return ORDER ;};
38 <OSQL>table {save_sql(yytext,"TABLE");
39 TABLE_MODE; return TABLE ;};
40 <GSQL>drop {save_sql(yytext,"DROP"); DROP_MODE;
4 1 return DROP ;};
4 2 <OSQL>group {AGG_MODE; GROUP_MODE; save_sql(yytext
4 3 return GROUP ;};
4 4 <GSQL>having {save.sql(yytext,"HAVING"); AGG_MODE;
45 return HAVING ;};
46 <GSQL>alter {save_sql(yytext,"ALTER"); ALTER_MODE;
47 return ALTER ;};

221

48 <OSQL>tuple {save_sql(yytext,"TUPLE"); TUP_MODE;
49 return TUPLE ;};
50 <OSQL>other {if ((other_count += 2) >= 4)
51 yyerror("More than one ’other’");
52 save_sql(yytext,"OTHER"); return OTHER;};
53
54 <OSQL>UNO {save_sql(yytext,"UNO"); return UNO;};
55
56 <OSQL>ABO {save_sql(yytext,"ABO"); ++other_count; return ABO;};
57
58 <OSQL>modify {save_sql(yytext,"MODIFY"); return MODIFY;};
59

D.3 Part of the Code from Osql.y

1 %{
2 /* to recongnise the pattern of OSQL expression*/
3 #include<stdio.h>
4 %}
5 /.token SELECT FROM WHERE LAST NAME DOM INTNUMBER POSINTNUM ASC DESC
6 STRING ALL COMPARATOR WITHIN ANY TABLE OTHER ABO UNO
7 CREATE DOMAIN ORDER AS DATANUM DATACHAR TUPLE EVERY PASS
8 DROP CONJUNCTION BY GROUP HAVING ALTER ADD DELETE MODIFY
9

10 %%

11 pass_and_statement : pass.statement statement
12 I
13 pass.statement
14 I
15 statement
16 ;
17
18 statement : select_from_where_statement
19 I
20 create_domain_statement
21 I
22 create_table_statement
23 I
24 drop_table_statement
25 I
26 drop_domain_statement
27 I
28 alter_table_statement
29 I
30 alter_domain_statement
31 I
32 delete_from_where_statement
33 I
34 error PASS { YYABORT;}

222

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

select.from_where_statement: SELECT attributes_expression
tuples_expression_order
FROM tables_expression

I
SELECT attributes_expression tuples_expression_order
FROM tables_expression
WHERE conditionlist

attributes_expression; name_list
EVERY O ’

tuples_expression_order: tuples_expression
I tuples_expression DESC
I tuples_expression ASC
I ALL tuples_expression
I ANY tuples_expression
I ALL tuples_expression DESC
I ANY tuples_expression DESC
I ALL tuples_expression ASC
I ANY tuples_expression ASC

tuples_expression: number_list
I POSINTNUM’ 'POSINTNUM ’)
I POSINTNUM’ 'LAST ’)’
I ’(’ EVERY ’)’
I ’(’LAST’)’

name_list: name_list ’,’ name_dom
I name_dom

name_dom: NAME
I
’(’ NAME WITHIN NAME ’)

223

