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Abstract—In computer science, especially when dealing with
quantum computing or other non-standard models of computa-
tion, basic notions in probability theory like “a predicate” vary
wildly. There seems to be one constant: the only useful example
of an algebra of probabilities is the real unit interval. In this
paper we try to explain this phenomenon. We will show that the
structure of the real unit interval naturally arises from a few
reasonable assumptions. We do this by studying effect monoids,
an abstraction of the algebraic structure of the real unit interval:
it has an addition x + y which is only defined when x + y ≤ 1

and an involution x 7→ 1 − x which make it an effect algebra,
in combination with an associative (possibly non-commutative)
multiplication. Examples include the unit intervals of ordered
rings and Boolean algebras.

We present a structure theory for effect monoids that are ω-
complete, i.e. where every increasing sequence has a supremum.

We show that any ω-complete effect monoid embeds into
the direct sum of a Boolean algebra and the unit interval
of a commutative unital C∗-algebra. This gives us from first
principles a dichotomy between sharp logic, represented by the
Boolean algebra part of the effect monoid, and probabilistic logic,
represented by the commutative C∗-algebra. Some consequences
of this characterisation are that the multiplication must always
be commutative, and that the unique ω-complete effect monoid
without zero divisors and more than 2 elements must be the real
unit interval. Our results give an algebraic characterisation and
motivation for why any physical or logical theory would represent
probabilities by real numbers.

I. INTRODUCTION

Probability theory in the quantum realm is different in

important ways from that of the classical world. Nevertheless,

they both crucially rely on real numbers to represent proba-

bilities of events. This makes sense as observations of quan-

tum systems must still be interpreted trough classical means.

However, in principle one can imagine a world governed

by different physical laws where even the standard notion

of a probability is different, or wish to study probabilistic

models where one does not care about the specifics of their

probabilities; such an approach can for instance be found in

categorical quantum mechanics [1], [2], [3]. In this paper

we study a reasonable class of alternatives to the real unit

interval as the set of allowed probabilities. We will establish

that this quite general seeming class actually only contains

(continuous products of) the real unit interval. This shows that

any ‘reasonable’ enough physical theory must necessarily be

based on probabilities represented by real numbers.

In order to determine the right set of alternatives to the real

unit interval we must first find out what structure is crucial

for abstract probabilities. There are a variety of operations

on the real unit interval that are used in their interpretation

as probabilities. First of all, to be able to talk about coarse-

graining the probabilities of mutually exclusive events, we

must be able to take the sum x + y of two probabilities

x, y ∈ [0, 1] as long as x + y ≤ 1. Second, in order to

represent the complement of an event we require the involution

given by x⊥ ≡ 1 − x. The probability x⊥ is the unique

number such that x + x⊥ = 1. Axiomatising this structure

of a partially defined addition combined with an involution

defines an effect algebra [4]. The unit interval of course also

has a multiplication x · y. This operation is needed in order to

talk about, for instance, joint distributions. An effect monoid

is an effect algebra with an associative distributive (possibly

non-commutative) multiplication, and hence axiomatises these

three interacting algebraic structures (addition, involution and

multiplication) present in the unit interval.

In order to define an analogue to Bayes’ theorem we would

also need the division operation that is available in the unit

interval: when x ≤ y, then there is a probability z such that

y · z = x (namely z = x/y). We actually will not require the

existence of such a division operation, as it turns out to follow

(non-trivially) from our final requirement:

A property that sets the unit interval [0, 1] apart from, for

instance, the rational numbers between 0 and 1, is that [0, 1]
is closed under taking limits. In particular, each ascending

chain of probabilities x1 ≤ x2 ≤ . . . has a supremum. In

other words: the unit interval is ω-complete. We have then

arrived at our candidate for an abstract notion of the set of

probabilities: an ω-complete effect monoid.

Further motivation for the use of this structure as a natural

candidate for the set of probabilities is its prevalence in effectus

theory. This is a recent approach to categorical logic [5] and a

general framework to deal with notions such as states, predi-

cates, measurement and probability in deterministic, (classical)

probabilistic and quantum settings [6], [7]. The set of proba-

bilities in an effectus have the structure of an effect monoid.

Examples of effectuses include any generalised probabilistic

theory [8], where the probabilities are the unit interval, but also

any topos (and in fact any extensive category with final object),

where the probabilities are the Boolean values {0, 1} [6].

An effectus defines the sum of some morphisms. In a ω-

effectus, this is strengthened to the existence of some count-

able sums (making it a partially additive category [9]). In

such an effectus the probabilities form an ω-complete effect

monoid [6].

Effect monoids are of broader interest than only to study
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effectuses: examples of effect monoids include all Boolean

algebras and unit intervals of partially ordered rings. Further-

more any effect monoid can be used to define a generalised

notion of convex set and convex effect algebra (by replacing

the usual unit interval by elements of the effect monoid, see [7,

179 & 192] or [10]).

This now raises the question of how close a probability

theory based on an ω-complete effect monoid is to regular

probability theory.

Our main result is that ω-complete effect monoids can al-

ways be embedded into a direct sum of an ω-complete Boolean

algebra and the unit interval of a bounded-ω-complete commu-

tative unital C∗-algebra. The latter is isomorphic to C(X) for

some basically disconnected compact Hausdorff space X . If

the effect monoid is directed complete, such thay any directed

set has a supremum, then it is even isomorphic to the direct

sum of a complete Boolean algebra and the unit interval of a

monotone complete commutative C∗-algebra.

This result basically states that any ω-complete effect

monoid can be split up into a sharp part (the Boolean algebra),

and a convex probabilistic part (the commutative C*-algebra).

This then gives us from basic algebraic and order-theoretic

considerations a dichotomy between sharp and fuzzy logic.

As part of the proof of this embedding theorem we find

an assortment of additional structure present in ω-complete

effect monoids: it has a partially defined division operation,

it is a lattice, and multiplication must necessarily be normal

(i.e. preserve suprema).

The classification also has some further non-trivial conse-

quences. In particular, it shows that any ω-complete effect

monoid must necessarily be commutative.

Finally, we use the classification to show that an ω-complete

effect monoid without zero divisors must either be trivial,

{0}, the two-element Boolean algebra, {0, 1}, or the unit

interval, [0, 1]. This gives a new characterisation of the real

unit interval as the unique ω-complete effect monoid without

zero divisors and more than two elements, and could be seen

as a generalisation of the well-known result that the set of

real numbers is the unique Dedekind-complete Archimedian

ordered field.

In so far as the structure of an ω-complete effect monoid is

required for common actions involving probabilities, (coarse-

graining, negations, joint distributions, limits) our results mo-

tivate the usage of real numbers in any hypothetical alternative

physical theory.

II. PRELIMINARIES

Before we state the main results of this paper technically,

we recall the definitions of the structures involved.

Definition 1. An effect algebra (EA) (E,>, 0, ( )⊥) is a set E
with distinguished element 0 ∈ E, partial binary operation >

(called sum) and (total) unary operation x 7→ x⊥ (called

complement), satisfying the following axioms, writing x ⊥ y
whenever x > y is defined and 1 ≡ 0⊥.

• Commutativity: if x ⊥ y, then y ⊥ x and x> y = y > x.

• Zero: x ⊥ 0 and x > 0 = x.

• Associativity: if x ⊥ y and (x > y) ⊥ z, then y ⊥ z,

x ⊥ (y > z), and (x > y) > z = x > (y > z).
• For any x ∈ E, the complement x⊥ is the unique element

with x > x⊥ = 1.

• If x ⊥ 1 for some x ∈ E, then x = 0.

For x, y ∈ E we write x ≤ y whenever there is a z ∈ E
with x>z = y. This turns E into a poset with minimum 0 and

maximum 1. The map x 7→ x⊥ is an order anti-isomorphism.

Furthermore x ⊥ y if and only if x ≤ y⊥. If x ≤ y, then the

element z with x>z = y is unique and is denoted by y⊖x [4].

A morphism f : E → F between effect algebras is a map

such that f(1) = 1 and f(x) ⊥ f(y) whenever x ⊥ y,

and then f(x > y) = f(x) > f(y). A morphism necessarily

preserves the complement, f(x⊥) = f(x)⊥, and the order:

x ≤ y =⇒ f(x) ≤ f(y). A morphism is an embedding

when it is also order reflecting: if f(x) ≤ f(y) then x ≤ y.

Observe that an embedding is automatically injective. We say

E and F are isomorphic and write E ∼= F when there exists

an isomorphism (i.e. a bijective morphism whose inverse is a

morphism too) from E to F . Note that an isomorphism is the

same as a surjective embedding.

Example 2. Let (B, 0, 1,∧,∨, ( )⊥) be an orthomodular

lattice. Then B is an effect algebra with the partial addition

defined by x ⊥ y ⇐⇒ x∧y = 0 and in that case x>y = x∨y.

The complement, ( )⊥, is given by the orthocomplement,

( )⊥. The lattice order coincides with the effect algebra order

(defined above). See e.g. [11, Prop. 27].

Example 3. Let G be an ordered abelian group (such as the

self-adjoint part of a C∗-algebra). Then any interval [0, u]G ≡
{a ∈ G ; 0 ≤ a ≤ u} where u is a positive element of G forms

an effect algebra, with addition given by a ⊥ b ⇐⇒ a+b ≤ u
and in that case a > b = a + b. The complement is defined

by a⊥ = u− a. The effect algebra order on [0, u]G coincides

with the regular order on G.

In particular, the set of effects [0, 1]C of a unital C∗-

algebra C forms an effect algebra with a ⊥ b ⇐⇒ a+b ≤ 1,

and a⊥ = 1− a.

Effect algebras have been studied extensively (to name a

few: [12], [13], [14], [15], [16], [17], [18]) and even found

surprising applications in quantum contextuality [19], [20] and

the study of Lebesque integration [21]. The following remark

gives some categorical motivation to the definition of effect

algebras.

Remark 4. An effect algebra is a bounded poset: a partially

ordered set with a minimal and maximal element. In [22] it

is shown that any bounded poset P can be embedded into an

orthomodular poset K(P ). This is known as the Kalmbach

extension [23]. This extends to a functor from the category

of bounded posets to the category of orthomodular posets,

and this functor is in fact left adjoint to the forgetful functor

going in the opposite direction [24]. This adjunction gives rise

to the Kalmbach monad on the category of bounded posets.

The Eilenberg–Moore category for the Kalmbach monad is



isomorphic to the category of effect algebras, and hence effect

algebras are in fact algebras over bounded posets [25].

The category of effect algebras is both complete and co-

complete. There is also an algebraic tensor product of effect

algebras that makes the category of effect algebras symmetric

monoidal [26]. The monoids in the category of effect algebras

resulting from this tensor product are called effect monoids,

and they can be explicitly defined as follows:

Definition 5. An effect monoid (EM) is an effect algebra

(M,>, 0,⊥ , · ) with an additional (total) binary operation · ,

such that the following conditions hold for all a, b, c ∈ M .

• Unit: a · 1 = a = 1 · a.

• Distributivity: if b ⊥ c, then a · b ⊥ a · c, b · a ⊥ c · a,

a·(b>c) = (a·b)>(a·c), and (b>c)·a = (b·a)>(c·a).
Or, in other words, the operation · is bi-additive.

• Associativity: a · (b · c) = (a · b) · c.
We call an effect monoid M commutative if a · b = b · a for

all a, b ∈ M ; an element p of M idempotent whenever p2 ≡
p·p = p; elements a, b of M orthogonal when a·b = b·a = 0;

and we denote the set of idempotents of M by P (M).

Example 6. Any Boolean algebra (B, 0, 1,∧,∨, ( )⊥), being

an orthomodular lattice, is an effect algebra by Example 2, and,

moreover, a commutative effect monoid with multiplication

defined by x · y = x∧ y. Conversely, any orthomodular lattice

for which ∧ distributes over > (and thus ∨) is a Boolean

algebra.

Example 7. The unit interval [0, 1]R of any (partially) ordered

unital ring R (in which the sum a + b and product a · b
of positive elements a and b are again positive) is an effect

monoid.

Let, for example, X be a compact Hausdorff space. We

denote its space of continuous functions into the complex

numbers by C(X) ≡ {f : X → C ; f continuous}. This

is a commutative unital C∗-algebra (and conversely by the

Gel’fand theorem, any commutative C∗-algebra with unit is

of this form) and hence its unit interval [0, 1]C(X) = {f :
X → [0, 1]} is a commutative effect monoid.

In [6, Ex. 4.3.9] and [11, Cor. 51] two different non-

commutative effect monoids are constructed.

Definition 8. Let M and N be effect monoids. A morphism

from M to N is a morphism of effect algebras with the added

condition that f(a · b) = f(a) · f(b) for all a, b ∈ M . Similar

to the case of effect algebras, an embedding M → N is a

morphism that is order reflecting. Also here an isomorphism

of effect monoids is the same thing as a surjective embedding

of effect monoids.

Example 9. It is well-known that any Boolean algebra B is

isomorphic to the set of clopens of its Stone space XB . This

yields an effect monoid embedding from B into [0, 1]C(XB).

Remark 10. A physical or logical theory which has proba-

bilities of the form [0, 1]C(X) can be seen as a theory with

a natural notion of space, where probabilities are allowed to

vary continuously over the space X . Such a spatial theory is

considered in for instance Ref. [27].

Example 11. Given two effect algebras/monoids E1 and

E2 we define their direct sum E1 ⊕ E2 as the Cartesian

product with pointwise operations. This is again an effect

algebra/monoid.

Example 12. Let M be an effect monoid and let p ∈ M be

some idempotent. The subset pM ≡ {p · a; a ∈ M} is called

the left corner by p and is an effect monoid with (p · a)⊥ ≡
p ·a⊥ and all other operations inherited from M . Later we will

see that a 7→ (p·a, p⊥·a) is an isomorphism M ∼= pM⊕p⊥M .

Analogous facts hold for the right corner Mp ≡ {a · p; a ∈
M}.

Definition 13. Let E be an effect algebra. A directed set

S ⊆ E is a non-empty set such that for all a, b ∈ S there exists

a c ∈ S such that a, b ≤ c. E is directed complete when for

any directed set S there is a supremum
∨

S. It is ω-complete

if directed suprema of countable sets exist, or equivalently if

any increasing sequence a1 ≤ a2 ≤ . . . in E has a supremum.

Remark 14. A directed complete partially ordered set is often

referred to by the shorthand dcpo. These structures lie at

the basis of domain theory and are often encountered when

studying denotational semantics of programming languages

as they allow for a natural way to talk about fix points of

recursion. Note that being ω-complete is strictly weaker. For

effect algebras we could have equivalently defined directed

completeness with respect to downwards directed sets, as the

complement is an order anti-isomorphism.

Example 15. Let B be a ω-complete Boolean algebra. Then B
is a ω-complete effect monoid. If B is complete as a Boolean

algebra, then B is directed-complete as effect monoid.

Example 16. Let X be an extremally disconnected compact

Hausdorff space, i.e. where the closure of every open set is

open. Then [0, 1]C(X) is a directed-complete effect monoid.

If X is a basically disconnected [28, 1H] compact Haus-

dorff space, i.e. where every cozero set has open closure,

then [0, 1]C(X) is an ω-complete effect monoid [28, 3N.5].

III. OVERVIEW

The main results of the paper are the following theorems:

Theorem. Let M be an ω-complete effect monoid. Then

M embeds into M1 ⊕ M2, where M1 is an ω-complete

Boolean algebra, and M2 = [0, 1]C(X), where X is a basically

disconnected compact Hausdorff space (see Theorem 68).

Theorem. Let M be a directed-complete effect monoid. Then

M ∼= M1⊕M2 where M1 is a complete Boolean algebra and

M2 = [0, 1]C(X) for some extremally-disconnected compact

Hausdorff space X (see Theorem 69).

By Example 9, the Boolean algebra M1 also embeds into

a [0, 1]C(XM1
), and hence we could ‘coarse-grain’ the direct



sums above and say that any ω-complete effect monoid

embeds into the unit interval of C(XM1
+ X), where + is

the disjoint union of the topological spaces. This observation

suggests a Stone-type duality that we discuss in more detail

in the conclusion.

Other results for an ω-complete effect monoid M that either

follow directly from the above theorems, or are proven along

the way are the following:

• M is a lattice.

• M is an effect divisoid [7].

• The multiplication in M is normal: a ·∨S =
∨

a · S.

• If M is convex (as an effect algebra), then scalar multi-

plication is homogeneous: λ(a · b) = (λa) · b = a · (λb)
for any λ ∈ [0, 1] and a, b ∈ M .

• M is commutative.

• If M has no non-trivial zero-divisors (i.e. a·b = 0, implies

a = 0 or b = 0), then M is isomorphic to [0, 1], {0, 1}
or {0}.

It should be noted that the scalars in a ω-effectus satisfying

normalisation have no non-trivial zero-divisors [6] and hence

using the last point above, we have completely characterised

the scalars in such ω-effectuses, splitting them up into trivial,

Boolean and convex effectuses.

The paper is structured as follows. In Section IV we

recover and prove some basic results regarding effect alge-

bras/monoids. Then in Section V we will show that in any

ω-complete effect monoid M , we can define a kind of partial

division operation which turns it into a effect divisoid. Using

this division we show that the multiplication must be normal.

Then in Section VI we study idempotents that are either

Boolean, meaning that all elements below p must also be

idempotents, or halvable, meaning that there is an a ∈ M
such that p = a > a. We establish that an ω-complete effect

monoid where 1 is Boolean must be a Boolean algebra, while

if 1 is halvable then it must be convex. In Section VII we show

that a maximal collection of orthogonal idempotents of M
can be found that consists of a mix of halvable and Boolean

idempotents. The corner pM associated to such an idempotent

will either be convex (if p is halvable) or Boolean (if p is

Boolean). Using normality of multiplication we show that M
embeds into the direct sum of the corners associated to these

idempotents. Letting M1 be the direct sum of the Boolean

corners, and M2 be the direct sum of the convex corners, we

see that M embeds into M1 ⊕ M2, where M1 is Boolean

and M2 is convex. In Section VIII, we recall some results

regarding order unit spaces and use Yosida’s representation

theorem to show that a convex ω-complete effect monoid

must be isomorphic to the unit interval of a C(X). Then

in Section IX we collect all the results and prove our main

theorems. Finally in Section X we conclude and discuss some

future work and open questions.

IV. BASIC RESULTS

We do not assume any commutativity of the product in an

effect monoid. Nevertheless, some commutativity comes for

free.

Lemma 17. For any a ∈ M in an effect monoid M , we

have a · a⊥ = a⊥ · a.

Proof. a2 > (a⊥ · a) = (a > a⊥) · a = 1 · a = a = a · 1 =
a · (a>a⊥) = a2 > (a ·a⊥). Cancelling a2 on both sides gives

the desired equality.

Lemma 18. An element p ∈ M is an idempotent if and only

if p · p⊥ = 0.

Proof. p = p · 1 = p · (p > p⊥) = p2 > p · p⊥. Hence p = p2

if and only if p · p⊥ = 0.

Lemma 19. For a, p ∈ M with p2 = p, we have

p · a = a ⇐⇒ a · p = a ⇐⇒ a ≤ p.

Proof. Assume a ≤ p. Then a·p⊥ ≤ p·p⊥ = 0, so that a·p⊥ =
0. Similarly p⊥ · a = 0. Hence a = a · 1 = a · (p > p⊥) =
a · p > a · p⊥ = a · p. Similarly p · a = a.

Now assume p ·a = a. Then immediately a = p ·a ≤ p ·1 =
p. The final implication (that a · p = a =⇒ a ≤ p) is proven

similarly.

Lemma 20. Let M be an effect monoid with idempotent p ∈
M . Then p · a = a · p for any a ∈ M .

Proof. Clearly p · a ≤ p · 1 = p and so by Lemma 19 p ·
a · p = a · p. Similarly a · p ≤ p and so p · a · p = p · a.

Thus p · a = p · a · p = a · p, as desired.

Corollary 21. Let M be an effect monoid with idempo-

tent p ∈ M . The map e 7→ (p·e, p⊥·e) is an isomorphism M ∼=
pM ⊕ p⊥M .

The following two lemmas are simple observations that will

be used several times.

Lemma 22. Let a ≤ b be elements of an effect algebra E.

If b > b′ ≤ a > a′ for some a′ ≤ b′ from E, then a = b
(and a′ = b′).

Proof. Since a ≤ a′ and b ≤ b′, we have a > a′ ≤ b > b′,
and so a > a′ = b > b′. Then 0 = (b > b′) ⊖ (a > a′) =
(b ⊖ a) > (b′ ⊖ a′), yielding b ⊖ a = 0 and b′ ⊖ a′ = 0,

so b = a and b′ = a′.

Lemma 23. Let p be an idempotent from an effect monoid M ,

and let a, b ≤ p be elements below p. If a> b exists, then a>

b ≤ p.

Proof. Since a ≤ p, we have a·p⊥ = 0, and similarly, b·p⊥ =
0. But then (a > b) · p⊥ = 0, and hence (a > b) · p = a > b.
By Lemma 19 we then have a > b ≤ p.

We defined directed set to mean upwards directed. Using

the fact that a 7→ a⊥ is an order anti-isomorphism, a directed-

complete effect algebra also has all infima of downwards

directed (or ‘filtered’) sets (and similarly for countable infima

in a ω-complete effect algebra).

Recall that given an element a of an ordered group G
a subset S of G has a supremum

∨

S in G if and only

if
∨

s∈S a + s exists, which follows immediately from the



observation that a + ( ): G → G is an order isomorphism.

For effect algebras the situation is a bit more complicated,

and we only have the implications mentioned in the lemma

below. We will see in Corollary 39 that the situation improves

somewhat for ω-complete effect monoids.

Lemma 24. Let x be an element and S a non-empty subset

of an effect algebra E. If S ⊆ [0, x⊥]E , then
∨

S exists =⇒ x >

∨

S =
∨

x > S, and
∧

x > S exists =⇒ x >

∧

S =
∧

x > S.

Here “=” means also that the sums, suprema and infima on

either side exist. Similarly, if S ⊆ [x, 1]E , then
∧

s∈S

s⊖ x exists =⇒
(

∨

S
)

⊖ x =
∨

s∈S

s⊖ x, and

∧

S exists =⇒
(

∧

S
)

⊖ x =
∧

s∈S

s⊖ x.

Moreover, if S ⊆ [0, x]E , then
∨

S exists =⇒ x⊖
∨

S =
∧

x⊖ S, and
∨

x⊖ S exists =⇒ x⊖
∧

S =
∨

x⊖ S.

Proof. Note that a 7→ x > a gives an order isomor-

phism [0, x⊥]E → [x, 1]E with inverse a 7→ a ⊖ x.

Whence x> ( ) preserves and reflects all infima and suprema

restricted to [0, x⊥]E and [x, 1]E . Surely, given elements a ≤ b
from E, and a subset S of the interval [a, b]E , it is clear that

any supremum (infimum) of S in E will be the supremum

(infimum) of S in [a, b]E too (using here that S is non-

empty). The converse does not always hold, but when S has a

supremum in [a, 1]E , then this is the supremum in E too (and

when S has an infimum in [0, b]E , then this is the infimum

in E too). These considerations yield the first four equations.

For the latter two we just add the observation that x⊖( ) gives

an order reversing isomorphism [0, x]E → [0, x]E .

We can now prove a few basic yet useful facts of ω-complete

effect monoids. These lemmas deal with elements that are

summable with themselves: elements a such that a ⊥ a which

means that a>a is defined. For n ∈ N we will use the notation

na = a> . . .> a for the n-fold sum of a with itself (when it

is defined). We study these self-summable elements to be able

to define a “ 1
2” in some effect monoids later on.

Lemma 25. For any a ∈ M in some effect monoid M , the

element a · a⊥ is summable with itself.

Proof. Since 1 = 1 ·1 = (a>a⊥) · (a>a⊥) = a ·a>a ·a⊥ >

a⊥ · a > a⊥ · a⊥, and a · a⊥ = a⊥ · a by Lemma 17, we see

that a · a⊥ > a · a⊥ indeed exists.

Lemma 26. Let a be an element of an ω-complete effect

monoid M .

1) If na exists for all n then a = 0.

2) If a2 = 0 then a = 0.

3) If a ⊥ a then
∧

n a
n = 0.

Proof. For point 1, we have a >
∨

n na =
∨

n a > na =
∨

n(n+ 1)a =
∨

n na, and so a = 0.

For point 2, since a2 = 0 we have a = a ·1 = a ·(a>a⊥) =
a · a⊥, and hence (because of Lemma 25) a is summable

with itself. But furthermore (a > a)2 = 4a2 = 0, and so

(a > a)2 = 0. Continuing in this fashion, we see that 2na
exists for every n ∈ N and (2na)2 = 0. Hence, for any m ∈ N

the sum ma exists so that by the previous point a = 0.

For point 3, write b ≡ ∧

n a
n. As (2a)n = 2nan and b ≤ an

we see that 2nb is defined. But this is true for all n, and so

again by the point 1, b = 0.

V. FLOORS, CEILINGS AND DIVISION

In this section we will see that any ω-complete effect

monoid has floors and ceilings. These are respectively the

largest idempotent below an element and the smallest idem-

potent above an element. We will also construct a “division”:

for a ≤ b we will find an element a/b such that (a/b) · b = a.

Then using ceilings and this division we will show that

multiplication in a ω-complete effect monoid is always normal,

i.e. that b·∨S =
∨

b·S for non-empty S for which
∨

S exists.

This technical result will be frequently used in the remaining

sections.

Definition 27. Let (xi)i∈I be a (potentially infinite) family

of elements from an effect algebra E. We say that the

sum >i∈I xi exists if for every finite subset S ⊆ I the

sum >i∈S xi exists and the supremum
∨

finite S⊆I >i∈S xi

exists as well. In that case we write >i∈I xi ≡
∨

finite S⊆I >i∈S xi.

Lemma 28. Given a ∈ M for an effect monoid M , we have

(aN )⊥ = a⊥ > a⊥ · a > a⊥ · a2 > · · · > a⊥ · aN−1

for every natural number N .

Proof. From the computation

1 = a⊥ > a

= a⊥ > (a⊥ > a) · a
≡ a⊥ > a⊥ · a > a2

= a⊥ > a⊥ · a > (a⊥ > a) · a2

≡ a⊥ > a⊥ · a > a⊥ · a2 > a3

...

=
(

N−1

>
n=0

a⊥ · an
)

> aN

the result follows immediately.

Corollary 29. The sum >
∞

n=0 a
⊥ ·an exists for any element a

from an ω-complete effect monoid M .

Definition 30. Given an element a of an ω-complete effect

monoid M

⌈a⌉ ≡
∞

>
n=0

a · (a⊥)n and ⌊a⌋ ≡
∞
∧

n=0

an



are called the ceiling of a and the floor of a, respectively.

We list some basic properties of ⌈a⌉ and ⌊a⌋ in Propo-

sition 35, after we have made the observations necessary to

establish them.

Lemma 31. Given an element a of an ω-complete effect

monoid M , we have
∧

n a
⊥ · an = 0.

Proof. Write b ≡ ∧

n a
⊥ · an. Since a and a⊥ commute by

Lemma 17, we compute

1 = 1n = (a⊥ > a)n =
n

>
k=0

(

n

k

)

(

(a⊥)k · an−k
)

,

and in particular see that the sum
(

n

1

)

(a⊥ · an−1) ≡ n(a⊥ ·
an−1) exists. Because b ≤ a⊥ ·an−1, the n-fold sum nb exists

too and hence b = 0 by Lemma 26.

Lemma 32. We have ⌊a⌋ = ⌊a⌋·a = a ·⌊a⌋ for any element a
of an ω-complete effect monoid M .

Proof. Using Lemmas 17 and 31 we compute ⌊a⌋ · a⊥ =
(
∧

n a
n) ·a⊥ ≤ ∧

n a
n ·a⊥ =

∧

n a
⊥ ·an = 0, and so ⌊a⌋ ·a =

⌊a⌋. The other identity has a similar proof.

Lemma 33. Given elements a, b1, b2, . . . of a ω-complete

effect monoid M such that >n bn exists, and a · bn = 0
for all n ∈ N, we have a ·>n bn = 0.

Proof. Writing sN ≡ >
N

n=1 bn, we have s1 ≤ s2 ≤ · · ·
and a · sn = 0 for all n. Since sn = (a > a⊥) · sn = a · sn >

a⊥ · sn = a⊥ · sn for all n ∈ N, we have
∨

n sn =
∨

n a
⊥ · sn ≤ a⊥ ·∨n sn ≤ ∨

n sn,

which implies that a⊥ ·∨n sn =
∨

n sn, and thus a ·>n bn ≡
a ·∨n sn = 0.

Proposition 34. Given elements a and b of an ω-complete

effect monoid M ,

a · b = 0 =⇒ a · ⌈b⌉ = 0.

Proof. If a · b = 0, then also a · b · (b⊥)n = 0 for all n. Hence

by Lemma 33 a · ⌈b⌉ ≡ a ·>∞

n=1 b · (b⊥)n = 0.

Proposition 35. Let a be an element of an ω-complete effect

monoid M .

1) The floor ⌊a⌋ of a is an idempotent with ⌊a⌋ ≤ a. In

fact, ⌊a⌋ is the greatest idempotent below a.

2) The ceiling ⌈a⌉ of a is the least idempotent above a.

3) We have ⌈a⌉⊥ = ⌊a⊥⌋ and ⌊a⌋⊥ = ⌈a⊥⌉.

Proof. Point 3 follows from Lemma 28. Concerning point 1:

Since ⌊a⌋ ·a⊥ = 0 (by Lemma 32) we have ⌊a⌋ ·⌈a⊥⌉ = 0 by

Proposition 34, and so ⌊a⌋·⌊a⌋⊥ = 0 because ⌊a⌋⊥ = ⌈a⊥⌉ by

point 3. Hence ⌊a⌋ is an idempotent. Also, since ⌊a⌋ = ∧

n a
n,

we clearly have ⌊a⌋ ≤ a. Now, if s is an idempotent in M
with s ≤ a, then s = sn ≤ an, and so s ≤ ∧

n a
n ≡ ⌊a⌋.

Whence ⌊a⌋ is the greatest idempotent below a. Point 2 now

follows easily from 1, since ⌈ · ⌉ is the dual of ⌊ · ⌋ under the

order anti-isomorphism ( · )⊥.

Lemma 36. ⌈a > b⌉ = ⌈a⌉ ∨ ⌈b⌉ for all summable elements

a and b of an ω-complete effect monoid M (that is, ⌈a > b⌉
is the supremum of ⌈a⌉ and ⌈b⌉).

Proof. Since ⌈a > b⌉ ≥ a > b ≥ a, we have ⌈a > b⌉ ≥ ⌈a⌉,

and similarly, ⌈a> b⌉ ≥ ⌈b⌉. Let u be an upper bound of ⌈a⌉
and ⌈b⌉; we claim that ⌈a> b⌉ ≤ u. Since ⌈a⌉ ≤ u and ⌈b⌉ ≤
u, we have a ≤ ⌈a⌉ ≤ ⌊u⌋ and b ≤ ⌈b⌉ ≤ ⌊u⌋, and so a>b ≤
⌊u⌋ by Lemma 23. Whence ⌈a > b⌉ ≤ ⌊u⌋ ≤ u.

Any ω-complete effect monoid is a lattice effect alge-

bra [29]:

Theorem 37. Any pair of elements a and b from an ω-

complete effect monoid M has an infimum, a ∧ b, given by

a ∧ b =

∞

>
n=1

an · bn where

[

a1 = a an+1 = an · b⊥n
b1 = b bn+1 = a⊥n · bn

.

Consequently, any pair also has a supremum given by a∨ b =
(a⊥ ∧ b⊥)⊥.

Proof. First order of business is showing that the

sum >
N

n=1 an · bn exists for every N . In fact, we’ll

show that a⊖>
N

n=1 an · bn = aN+1 for all N , by induction.

Indeed, for N = 1, we have a ⊖ a · b = a · b⊥ = a2,

and if a ⊖ >
N

n=1 an · bn = aN+1 for some N ,

then aN+2 = aN+1 · b⊥N+1 = aN+1 ⊖ aN+1 · bN+1 =

(a ⊖>
N

n=1 an · bn) ⊖ aN+1 · bN+1 = a ⊖>
N+1
n=1 an · bn. In

particular, >
∞

n=1 an · bn exists, and, moreover,

a =
∞
∧

m=1

am >

∞

>
n=1

an · bn.

By a similar reasoning, we get

b =
∞
∧

m=1

bm >

∞

>
n=1

an · bn.

Already writing a∧ b ≡ >
∞

n=1 an · bn, we know at this point

that a∧ b ≤ a and a∧ b ≤ b. It remains to be shown that a∧ b
defined above is the greatest lower bound of a and b. So let ℓ ∈
M with ℓ ≤ a and ℓ ≤ b be given; we must show that ℓ ≤ a∧b.

As an intermezzo, we observe that
(
∧

n an
)

·
(
∧

m bm
)

=
0. Indeed, we have

(
∧

n an
)

·
(
∧

m bm
)

≤ ∧

n an · bn, and
∧

n an · bn = 0, because >
∞

n=1 an · bn exists (see Lemma 26).

By Proposition 34 it follows that
(
∧

n an
)

· ⌈∧m bm⌉ = 0.

Whence writing p ≡ ⌈∧m bm⌉, we have p·∧n an ≡
(
∧

n an
)

·
p = 0 using Lemma 20. Observing that

∧

n bn ≤ p and using

Lemma 19 we also have p⊥ · ∧n bn = 0. We then calculate

p · a = p ·
(
∧

n an > a ∧ b
)

= p · (a ∧ b) and similarly

p⊥ · b = p⊥ · (a ∧ b).

Returning to the problem of whether ℓ ≤ a ∧ b, we have

ℓ = p · ℓ > p⊥ · ℓ ≤ p · a > p⊥ · b
= p · (a ∧ b) > p⊥ · (a ∧ b) = a ∧ b.

Whence a ∧ b is the infimum of a and b.



The presence of finite infima and suprema in ω-complete

effect monoids prevents certain subtleties around the existence

of arbitrary suprema and infima.

Corollary 38. Let a ≤ b be elements of an ω-complete effect

monoid M , and let S be a non-empty subset of [a, b]M .

Then S has a supremum (infimum) in M if and only if S has

a supremum (infimum) in [a, b]M , and these suprema (infima)

coincide.

Proof. It is clear that if S has a supremum in M , then this

is also the supremum in [a, b]M . For the converse, suppose

that S has a supremum
∨

S in [a, b]M , and let u be an upper

bound for S in M ; in order to show that
∨

S is the supremum

of S in M too, we must prove that
∨

S ≤ u. Note that b ∧ u
is an upper bound for S. Indeed, given s ∈ S ⊆ [a, b]M we

have s ≤ b, and s ≤ u, so s ≤ b ∧ u. Moreover, one easily

sees that b ∧ u ∈ [a, b]M using the fact that S is non-empty.

Whence b ∧ u is an upper bound for S in [a, b]M , and so
∨

S ≤ b ∧ u ≤ u, making
∨

S the supremum of S in M .

Similar reasoning applies to infima of S.

Corollary 39. Given an element a and a non-empty subset S
of an ω-complete effect monoid M such that a> s exists for

all s ∈ S,

1) the supremum
∨

S exists iff
∨

a > S exists, and in that

case a >
∨

S =
∨

a > S;

2) the infimum
∧

S exists iff
∧

a > S exists, and in that

case a >
∧

S =
∧

a > S.

Proof. The map a > ( ) : [0, a⊥]M → [a, 1]M , being an order

isomorphism, preserves and reflects suprema and infima. Now

apply Corollary 38.

Now that we know more about the existence of suprema

and infima, we set our sights on proving that multiplication

interacts with suprema and infima as desired, namely that it

preserves them. To do this we introduce a partial division

operation.

Definition 40. Given elements a ≤ b of an ω-complete effect

monoid, set

a/b ≡
∞

>
n=0

a · (b⊥)n.

Note that the sum exists, because >
N

n=0 a · (b⊥)n ≤
>

∞

n=0 b · (b⊥)n ≡ ⌈b⌉ for all N .

Lemma 41. Let b be an element of an ω-complete effect

monoid M .

1) b/b = ⌈b⌉.

2) (a1 >a2)/b = a1/b >a2/b for all summable a1, a2 ∈ M
with a1 > a2 ≤ b.

3) (a · b)/b = a · ⌈b⌉ for all a ∈ M .

4) (a/b) · b = a for all a ∈ M with a ≤ b.
5) {a · b; a ∈ M} ≡ Mb = [0, b]M ≡ {a; a ∈ M ; a ≤ b}.

6) The maps a 7→ a · b, b · a : M⌈b⌉ → Mb are order

isomorphisms.

Proof. Points 1 and 2 are easy, and left to the reader. Con-

cerning 3, first note that

(a · b)/b ≡
∞

>
n=0

a · b · (b⊥)n ≤ a ·
∞

>
n=0

b · (b⊥)n = a · ⌈b⌉.

Thus (a · b)/b ≤ a · ⌈b⌉. Since similarly (a⊥ · b)/b ≤ a⊥ · ⌈b⌉,
we get, using 2,

⌈b⌉ = b/b = (a·b)/b> (a⊥·b)/b ≤ a·⌈b⌉> a⊥·⌈b⌉ = ⌈b⌉,
forcing (a · b)/b = a · ⌈b⌉ (see Lemma 22). For point 4, note

that given a, b ∈ M with a ≤ b we have a = a · ⌈b⌉ (by

Lemma 19, since a ≤ b ≤ ⌈b⌉,) and so

a = a · ⌈b⌉ = (a · b)/b by point 3

≡
∞

>
n=0

a · b · (b⊥)n

=

∞

>
n=0

a · (b⊥)n · b by Lemma 17

≤
(

∞

>
n=0

a · (b⊥)n
)

· b

= (a/b) · b.
Since similarly b⊖ a ≤ ((b ⊖ a)/b) · b, we get

b = a > (b⊖ a) ≤ (a/b) · b > ((b ⊖ a)/b) · b
= (b/b) · b = ⌈b⌉ · b = b,

which forces a = (a/b) · b. For point 5, note that Mb, bM ⊆
[0, b]M since b · a, a · b ≤ b for all a ∈ M , and [0, b]M ⊆ Mb,
because a = (a/b) · b for any a ∈ [0, b]M by point 4.

Finally, concerning point 6: the maps a 7→ a · b : M⌈b⌉ →
Mb and a 7→ a/b : Mb → M⌈b⌉ are clearly order preserving,

and each other’s inverse by points 3 and 4, and thus order

isomorphisms. The proof that a 7→ b · a : M⌈b⌉ → Mb is

an order isomorphism follows along entirely similar lines, but

involves b\a defined by b\a ≡ >n(b
⊥)n · a and uses the fact

that bM = [0, b]M = Mb.

Remark 42. From the previous lemma it follows that any ω-

complete effect monoid is a so called effect divisoid [7, §195].

The converse is false: later on we will show that any ω-

complete effect monoid is commutative, but there exists a non-

commutative effect divisoid. [6, Ex. 4.3.9]1.

Finally, we can prove that multiplication is indeed normal:

Theorem 43. Let b and b′ be elements of an ω-complete effect

monoid M , and let S ⊆ M be any (potentially uncountable

or non-directed) non-empty subset.

1) If
∨

S exists, then so does
∨

s∈S b·s·b′, and b·(∨S)·b′ =
∨

s∈S b · s · b′.
2) If

∧

S exists, then so does
∧

s∈S b·s·b′, and b·(∧S)·b′ =
∧

s∈S b · s · b′.
1Cho shows that there is a non-commutative division effect monoid. Any

division effect monoid is an effect divisoid as well.



Proof. Suppose that
∨

S exists. We will prove that b ·∨S =
∨

s∈S b · s, and leave the remainder to the reader. Note that

b · ( ) : [0, ⌈b⌉]M → [0, b]M , being an order isomorphism

by Lemma 41(6), preserves suprema and infima. The set S
need, however, not be part of [0, ⌈b⌉]M , so we consider

instead of b the element b′ ≡ b > ⌈b⌉⊥, for which ⌈b′⌉ =
⌈b⌉ ∨ ⌈b⌉⊥ = 1 by Lemma 36. We then get an order iso-

morphism b′ · ( ) : M → [0, b′]M , which preserves suprema,

so that b′ · ∨S is the supremum of b′ · S in [0, b′]M , and

hence in M , by Corollary 38. Then

(b > ⌈b⌉⊥) ·
∨

S =
∨

s∈S

(b > ⌈b⌉⊥) · s

≤
∨

s∈S

b · s >

∨

s′∈S

⌈b⌉⊥ · s′

≤ b ·
∨

S > ⌈b⌉⊥ ·
∨

S

= (b > ⌈b⌉⊥) ·
∨

S

forces
∨

s∈S b · s = b ·∨S (see Lemma 22).

VI. BOOLEAN ALGEBRAS, HALVES AND CONVEXITY

We are ready to study the two important types of idempo-

tents in an effect monoid: those that are Boolean and those

that are halvable.

Definition 44. We say that an element a of an effect

monoid M is Boolean when each b ≤ a is idempotent. We

say an effect monoid is Boolean when 1 is Boolean.

Proposition 45. The set of idempotents P (M) of an effect

monoid M is a Boolean algebra. Thus an effect monoid is

Boolean iff it is a Boolean algebra.

Proof. First we will show that in fact p · q = p ∧ q for p, q ∈
P (M), where the infimum ∧ is taken in M . Using Lemma 20,

we see (p · q)2 = p · q · p · q = p · p · q · q = p · q and so p · q
is an idempotent. Let r ≤ p, q. Then r · p = r and r · q = r
so that r · p · q = r, and hence r ≤ p · q by Lemma 19, which

shows p · q = p ∧ q. As the complement is an order anti-

isomorphism, we find p ∨ q = (p⊥ ∧ q⊥)⊥ and hence P (M)
is a complemented lattice. It remains to show that it satisfies

distributivity: p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r). By uniqueness

of complements, it is easily shown that p∨ q = p> (p⊥ · q) =
q > (p · q⊥). The remainder is a straightforward exercise in

writing out the expressions p ∧ (q ∨ r) and (p ∧ q) ∨ (p ∧ r)
and noting that they are equal.

Proposition 46. If M is ω-complete, then the Boolean algebra

of projections P (M) is ω-complete.

Proof. Let A ⊆ P (M) be a countable subset. Pick an

enumeration of its elements p1, p2, . . .. Let qn be iteratively

defined as q1 ≡ p1 and qn ≡ qn−1 ∨ pn. Then the qn form an

increasing sequence and hence it has a supremum q. We claim

that q is also the supremum of A. Of course q ≥ qn ≥ pn
and hence q is an upper bound. Suppose that r ≥ pn for

all n. Then r ≥ q1, and hence by induction if r ≥ qn then

r ≥ qn ∨ pn = qn+1. Hence also r ≥ q.

Proposition 47. Let M be an ω-complete Boolean effect

monoid. Then M is an ω-complete Boolean algebra.

Proof. By Propositions 45 and 46 P (M) is an ω-complete

Boolean algebra. But by assumption every element of M is

an idempotent, and hence M = P (M).

The counterpart to the Boolean effect monoids, are the

halvable effect monoids

Definition 48. We say that an element a of an effect algebra E
is halvable when a = b> b for some b ∈ E. We say an effect

algebra is halvable when 1 is halvable.

A halvable effect monoid actually has much more structure

then might be apparent:

Definition 49. Let E be an effect algebra. We say E is convex

if there exists an action · : [0, 1]×E → E, where [0, 1] is the

standard real unit interval, satisfying the following axioms for

all a, b ∈ E and λ, µ ∈ [0, 1]:

• λ · (µ · a) = (λµ) · a.

• If λ+µ ≤ 1, then λ·a ⊥ µ·a and λ·a>µ·a = (λ+µ)·a.

• If a ⊥ b, then λ · a ⊥ λ · b and λ · (a> b) = λ · a> λ · b.
• 1 · a = a.

In a convex effect monoid we will usually write the convex

action without any symbol in order to distinguish it from the

multiplication coming from the monoid structure. So if λ ∈
[0, 1] is a real number and a, b ∈ M is a convex effect monoid,

then we write λ(a ·b). Note that a priori it is not clear whether

λ(a · b) = (λa) · b = a · (λb).
Proposition 50. Let M be a halvable ω-complete effect

monoid. Then M is convex.

Proof. Pick any a ∈ M with a > a = 1. Let q = m
2n be

a dyadic rational number with 0 ≤ m ≤ 2n. We define a

corresponding element q ∈ M by q = man, which is easily

seen to be independent of the choice of m and n. This yield an

action (q, s) 7→ q · s that satisfies all axioms of Definition 49

restricted to dyadic rationals.

Assume λ ∈ (0, 1]. Pick a strictly increasing se-

quence 0 ≤ q1 < q2 < . . . of dyadic rationals with sup qi = λ.

We will define λ ∈ M by
∨

i qi, but first we have to show

that it is independent of the choice of the sequence and that

it coincides with the definition just given for dyadic rationals.

So assume 0 ≤ p1 < p2 < . . . is any other sequence of

dyadic rationals with sup pi = λ. For any pi we can find

a qj with pi ≤ qj , so pi ≤ qj , hence
∨

i pi ≤ ∨

j qj . As

the situation is symmetric between the sequences, we also

have
∨

j qj ≤ ∨

i pi and so
∨

j qj =
∨

i pi. Hence λ is

independent of the choice of sequence. Next, assume λ ≡ q
is a non-zero dyadic rational. Pick m with 2−m ≤ q.

Then qn ≡ q − 2−(m+n) is a sequence of dyadic ratio-

nals with sup qn = q. We have
∨

n q − 2−(m+n) = q ⊖
∧

n 2
−(m+n) = q ⊖∧

n a
m+n = q, (where in the last step we

used Lemma 26) so both definitions of q coincide. As a result

we are indeed justified to define λ =
∨

i qi. We can then define



an action by (λ, s) 7→ λ·s. As both addition and multiplication

preserve suprema by Theorem 43, it is straightforward to show

that this action indeed satisfies all the axioms of a convex

action.

VII. EMBEDDING THEOREMS

We now have what we need to show that any ω-complete

effect monoid embeds into a direct sum of a Boolean effect

monoid and a halvable one, which lies at the heart of our

results.

Lemma 51. Let M be an ω-complete effect monoid, and let

a be a halvable element. Then the ceiling ⌈a⌉ is halvable as

well.

Proof. Write a ≡ b > b. We compute

⌈a⌉ ≡ >n a · (a⊥)n = >n(b > b) · (a⊥)n

=
(

>n b · (a⊥)n
)

>
(

>n b · (a⊥)n
)

,

and hence it is indeed halvable.

Proposition 52. Each ω-complete effect monoid M has a

subset E ⊆ M

1) that is a maximal collection of non-zero orthogonal

idempotents, and

2) such that each element of E is either halvable or Boolean.

Proof. Let H be a maximal collection of non-zero orthogonal

halvable idempotents of M , and let E be a maximal collection

of non-zero orthogonal idempotents of M that extends H .

(Such sets E and H exist by Zorn’s Lemma). By definition,

E is a maximal collection of non-zero orthogonal idempotents

of M , so the only thing to prove is that each e ∈ E\H is

Boolean. Hence, let a be an element of M below some e ∈
E\H ; we must show that a is an idempotent. Note that 2(a⊥ ·
a) ≡ a⊥·a>a⊥·a (which exists by e.g. Lemma 25) is halvable,

and 2(a⊥·a) ≤ e, because 2(a⊥·a)·e = 2(a⊥·a·e) = 2(a⊥·a).
Then the idempotent ⌈2a · a⊥⌉ ≤ e, which is halvable by

Lemma 51, is orthogonal to all h ∈ H (since it is below e)

and must therefore be zero lest it contradict the maximality

of H . In particular, a⊥ ·a = 0 since a⊥ ·a ≤ ⌈2a⊥ ·a⌉ = 0, and

so a is an idempotent by Lemma 18. Whence e is Boolean.

Note that the only idempotent that is both Boolean and

halvable is zero, and hence each element in the above set is

either Boolean or halvable.

Proposition 53. Given a maximal orthogonal collection of

non-zero idempotents E of an ω-complete effect monoid M ,

the map

a 7→ (a · e)e : M −→
⊕

e∈E

Me

is an embedding of effect monoids.

Proof. The map obviously maps 1 to 1, and preserves addition.

Hence it also preserves the complement and the order. By

Lemma 20 we have (a·e)·(b·e) = (a·b)·(e·e) = (a·b)·e, and so

the map also preserves the multiplication. It remains to show

that the map is order reflecting. Note that if we had >E = 1,

then for any a by Theorem 43 a = a · 1 = a · >e∈E e =

>e∈E a · e, and hence if a · e ≤ b · e for all e ∈ E we have

a = >e∈E a · e ≤ >e∈E b · e = b, which proves that it is

indeed order reflecting.

So let us prove that >E = 1. Suppose u is an upper bound

for E; we must show that u = 1. Note that ⌊u⌋ is an upper

bound for E too, since E contains only idempotents. It follows

that the idempotent ⌊u⌋⊥ = ⌈u⊥⌉ is orthogonal to all e ∈ E,

which is impossible (by maximality of E) unless ⌈u⊥⌉ = 0.

Hence ⌈u⊥⌉ = 0, and thus u⊥ = 0.

Theorem 54. Let M be an ω-complete effect monoid. Then

there exist ω-complete effect monoids M1 and M2 where M1

is convex, and M2 is an ω-complete Boolean algebra such that

M embeds into M1 ⊕M2.

Proof. Let E = H ∪ B be a maximal collection of non-

zero orthogonal idempotents of Proposition 52 such that the

idempotents p ∈ H are halvable, while the q ∈ B are Boolean.

Let M1 ≡ ⊕

p∈H pM and M2 ≡ ⊕

q∈B qM . It is easy

to see that M1 is then again halvable and M2 is Boolean.

By Propositions 50 and 47 M1 is convex while M2 is an

ω-complete Boolean algebra. By the previous proposition M
embeds into

⊕

p∈E pM ∼= M1 ⊕M2.

One might be tempted to think that the above result could

be strengthened to an isomorphism. The following example

shows that this is not the case:

Example 55. Let X1 and X2 be uncountably infinite sets, and

let A be the set of all pairs of functions

A ≡ {(f1 : X1 → [0, 1], f2 : X2 → {0, 1})}.

Let S0, S1 ⊆ A be subsets where both functions are unequal

to 0 respectively 1 only at a countable number of spots:

S0 ≡
{

(f1, f2) ; both

[

{x1 ∈ X1 ; f1(x1) 6= 0}
{x2 ∈ X2 ; f2(x2) 6= 0} countable

}

S1 ≡
{

(f1, f2) ; both

[

{x1 ∈ X1 ; f1(x1) 6= 1}
{x2 ∈ X2 ; f2(x2) 6= 1} countable

}

Finally, define M = S0∪S1. It is then straightforward to check

that M is a ω-complete effect monoid. It is easy to see that

M has no maximal halvable idempotent, and hence for any

M1 halvable and M2 Boolean, necessarily M 6= M1 ⊕M2.

Though the embedding is not an isomorphism for ω-

complete effect monoids, when we assume full directed-

completeness, we can derive a stronger result.

Lemma 56. Let M be a directed-complete effect monoid.

Then there is a maximal element that is summable with itself.

That is: there is an a ∈ M such that a ⊥ a and for any other

b ≥ a such that b ⊥ b, we have b = a. Furthermore,

1) a > a is an idempotent and

2) if s ≤ (a > a)⊥, then s is idempotent for any s ∈ M .



Proof. Write A ≡ {s ∈ M ; s ⊥ s}. We will show that A
has a maximal element using Zorn’s Lemma. To this end,

suppose D ⊆ A is a chain. We have to show that it has

an upper bound in A. If D is empty, then 0 ∈ A is clearly

an upper bound, so we may assume that D is not empty.

Define s ≡ ∨

D. It is sufficient to show s ⊥ s as then s ∈ A.

Assume d, d′ ∈ D. We claim d ⊥ d′. Indeed, assuming

without loss of generality that d′ ≤ d, we see d′ ≤ d ≤ d⊥

and so d ⊥ d′.
So

∨

d′∈D d> d′ exists. As addition preserves suprema, we

have
∨

d′∈D d>d′ = d>
∨

d′∈D d′ = d>s. Hence
∨

d∈D d>s
exists and

∨

d∈D d>s =
(
∨

d∈D d
)

>s = s>s, so indeed s ∈
A. By Zorn’s Lemma we know there is a maximal element

of A. Pick such a maximal element a ∈ A.

Next we will show that a > a is idempotent. Define b ≡
(a> a)⊥. Note that b · b⊥ is summable with itself. As a result

b = b ·1 ≥ b · (b · b⊥> b · b⊥) = b2 · b⊥> b2 · b⊥. Now note that

1 = a> a> (a> a)⊥ = a> a> b ≥ a> a> b2 · b⊥ > b2 · b⊥,

and hence a > b2 · b⊥ is summable with itself. Since a is

maximal with this property we must have b2 · b⊥ = 0. But

then (b ·b⊥)2 = b2 ·b⊥b⊥ = 0 and so b ·b⊥ = 0 by Lemma 26.

Hence b⊥ = a > a is indeed idempotent.

Now let s ≤ (a > a)⊥ ≡ b. We have to show that s is

idempotent. By Lemma 25 s · s⊥ is summable with itself and

so s ·s⊥>s ·s⊥ ≤ b ≡ (a>a)⊥ by Lemma 23. Thus a>a ⊥
s · s⊥ > s · s⊥ and so a > s · s⊥ is summable with itself. By

maximality of a we must have s · s⊥ = 0, which shows that s
is indeed an idempotent.

Theorem 57. Let M be a directed-complete effect monoid.

Then there exists a convex directed-complete effect monoid

M1, and a complete Boolean algebra M2 such that M ∼= M1⊕
M2.

Proof. Let a be a maximal element that is summable to itself

from Lemma 56. It was shown that p = (a > a)⊥ is an

idempotent such that any s ≤ p is also an idempotent. Hence

by an adaptation of Proposition 47 to directed-complete effect

monoids, pM is a complete Boolean algebra.

But of course p⊥M is halvable and hence by Proposition 50

p⊥M is convex. Hence letting M = p⊥M ⊕ pM gives the

desired result.

VIII. ORDER UNIT SPACES

In this section we will see that a convex ω-complete effect

monoid M is isomorphic to the set of continuous functions

of some basically disconnected compact Hausdorff space X
to the real unit interval, or equivalently by Gel’fand duality,

isomorphic to the unit interval of an ω-complete commutative

C∗-algebra. We do this by using a known representation of

convex effect algebras as unit intervals of order unit spaces,

and then apply Yosida’s representation theorem for lattice-

ordered vector spaces.

Definition 58. An order unit space (OUS) is an ordered

vector space together with distinguished element 1 ∈ V , such

that for every v ∈ V , there is a n ∈ N such that −n · 1 ≤ v ≤

n · 1. An OUS is called Archimedean provided that v ≤ 1
n
· 1

for all n ∈ N, implies v ≤ 0.

Definition 59. Given an OUS V , its unit interval [0, 1]V ≡
{v ∈ V ; 0 ≤ v ≤ 1} is a convex effect algebra with a ⊥ b
iff a+b ≤ 1 and then a>b = a+b; a⊥ = 1−a; and the convex

structure being given by the obvious scalar multiplication. We

say V is ω-complete/directed complete whenever [0, 1]V is.

Lemma 60. Let V be an order unit space. It is directed

complete if and only if it is bounded directed complete;

that is if every directed subset of V with upper bound has

a supremum. Similarly V is ω-complete iff it is bounded ω-

complete.

Proof. Since any subset of the unit interval is obviously

bounded, any bounded ω-complete/directed-complete order

unit space is ω-complete/directed complete. For the other

direction, assume S ⊆ V is some (countable) directed subset

with upper bound b ∈ V . Pick any a ∈ S and define S′ ≡
{v; v ∈ S; a ≤ v}. It is sufficient to show that S′ has a

supremum. Pick any n ∈ N, n 6= 0 with −n · 1 ≤ a, b ≤ n · 1.

Then clearly { 1
n
(s − a); s ∈ S′} ⊆ [0, 1]V has a supremum

and so does S′ as v 7→ nv + a is an order isomorphism.

Lemma 61. A bounded ω-complete OUS is Archimedean.

Proof. Assume V is a bounded ω-complete OUS. Let v ∈ V
be given with v ≤ 1

n
1 for all n ∈ N. As a 7→ −a is an order

anti-isomorphism, all bounded directed subsets of V have an

infimum too, so v ≤ ∧

n
1
n
1 = (infn

1
n
)1 = 0 as desired.

Recall that the unit interval of an OUS is a convex effect

algebra. In fact, every convex effect algebra is of this form.

Theorem 62. Let M be a convex effect algebra. Then there

exists an order unit space V such that M ∼= [0, 1]V [30].

Proposition 63. Let M be an ω-complete convex effect

monoid. Then the multiplication is “bilinear”: λ(a · b) =
(λa) · b = a · (λb) for any a, b ∈ M and λ ∈ [0, 1].

Proof. Clearly n(a ·( 1
n
b)) = a ·b = n 1

n
(a ·b) and so a ·( 1

n
b) =

1
n
(a ·b). Hence m(a ·( 1

n
b)) = a ·(m

n
b) = m

n
(a ·b) for any m ≤

n. We have shown the second equality for rational λ. With a

similar argument one shows the first equality holds as well for

rational λ. To prove the general case, let a, b ∈ M and λ ∈
[0, 1] be given. Pick a sequence 0 ≤ q1 < q2 < . . . of rationals

with supn qn = λ. Let V be an OUS with M ∼= [0, 1]V (as

a convex effect algebra), which exists due to Theorem 62.

Note that the multiplication of M is only defined on [0, 1]V .

For a ∈ [0, 1]V we have a ≤ ‖a‖1 and so ‖a · b‖ ≤ ‖a‖‖b‖
for any b ∈ [0, 1]V . Hence

‖λ(a · b)− a · (λb)‖
= ‖(λ− qi)(a · b) + a · (qib)− a · (λb)‖
= ‖(λ− qi)(a · b)− a · ((λ− qi)b)‖
≤ (λ− qi)‖a · b‖+ (λ− qi)‖a‖‖b‖.

The right-hand side vanishes as i → ∞. Thus ‖λ(a · b) −
a · (λb) = 0‖. Since V is Archimedean by Lemma 61, ‖·‖



is a proper norm so that then λ(a · b) − a · (λb) = 0. That

λ(a · b) = (λa) · b follows similarly.

Theorem 64 (Yosida [31], cf. [32]). Let V be a norm-

complete lattice-ordered Archimedean OUS. Denote by Φ
the Yosida spectrum of V : the compact Hausdorff space of

real-valued finite-suprema-preserving unital linear functionals

on V with the induced pointwise topology of RV . Then the

map ϑ : V → C(Φ) given by ϑ(v)(ϕ) = ϕ(v) is an order

isomorphism.

Remark 65. In fact the category of compact Hausdorff spaces

with continuous maps between them is dually equivalent to the

category of lattice-ordered norm-complete Archimedean order

unit spaces with linear unital finite-supremum-preserving maps

between them. [32]

Theorem 66. Let M be a convex ω-complete effect monoid.

Then M ∼= [0, 1]C(X) for some basically disconnected Haus-

dorff space X . If M is even directed complete, then X is

extremally disconnected.

Proof. The effect monoid M is a lattice by Theorem 37. By

Theorem 62 there is an OUS V such that M ∼= [0, 1]V as a

convex effect algebra. It is easy to see that V is a lattice as

well as any supremum reduces to one in the interval [0, 1]V . V
is bounded ω-complete by Lemma 60 and hence Archimedean

by Lemma 61, and norm complete by [33, Lemma 1.2]. Then

by Theorem 64 we have V ∼= C(Φ), where Φ is the Yosida

spectrum of V . Note C(Φ) is bounded ω-complete iff Φ is

basically disconnected and C(Φ) is bounded directed complete

iff Φ is extremally disconnected. The multiplication of M
induces a multiplication on [0, 1]C(Φ), which we will denote

by f ∗g to distinguish it from the pointwise multiplication f ·g.

To prove the Theorem, it remains to be shown that f ∗g = f ·g.

Pick any ϕ ∈ Φ. It is sufficient to show that ϕ(f ∗ g) =
ϕ(f)ϕ(g) — indeed then (f ∗g)(ϕ) = ϕ(f ∗g) = ϕ(f)ϕ(g) =
f(ϕ)g(ϕ) = (f · g)(ϕ). The remainder of the proof is based

on [34, Lemma 5.26]. Write d(a, b) ≡ a ∨ b − a ∧ b for

either a, b ∈ [0, 1] or a, b ∈ [0, 1]C(Φ). Note f ∗ (g ∨ h) ≤
(f ∗ g) ∨ (f ∗ h) and f ∗ (g ∧ h) ≥ (f ∗ g) ∧ (f ∗ h),
hence d(f ∗ g, f ∗ h) ≤ f ∗ d(g, h) for f, g, h ∈ [0, 1]C(Φ).

So in particular d(f ∗ g, f ∗ (ϕ(g)1)) ≤ f ∗ d(g, ϕ(g)1) ≤
d(g, ϕ(g)1). The multiplication ∗ is “bilinear” by Proposi-

tion 63, so f ∗ (ϕ(g)1) = ϕ(g)f . By definition ϕ preserves

infima, suprema and 1 and so d(ϕ(f), ϕ(g)) = ϕ(d(f, g)) for

any f, g ∈ [0, 1]C(Φ). Combining the last three facts, we see

d(ϕ(f ∗ g) , ϕ(f)ϕ(g) ) = ϕ(d( f ∗ g , f ∗ (ϕ(g)1) ))
≤ ϕ(d(g, ϕ(g)1))

= d(ϕ(g), ϕ(g)) = 0.

So indeed ϕ(f ∗ g) = ϕ(f)ϕ(g), hence f ∗ g = f · g.

Remark 67. The previous theorem can also be proven using

Kadison’s representation Theorem [35], which states that any

norm-complete Archimedean OUS with a bilinear and positive

product is isomorphic to C(X). This requires one to show

that the product on [0, 1]V extends to a bilinear and positive

product on the entirety of V , which can be done, but is a bit

tedious (cf. [11, Theorem 46]).

IX. MAIN THEOREMS

We now collect our previous results and prove our main

theorems.

Theorem 68. Let M be an ω-complete effect monoid. Then

there exists a basically disconnected compact Hausdorff space

X , and an ω-complete Boolean algebra B such that M embeds

into [0, 1]C(X) ⊕B.

Proof. By Theorem 54 there exist ω-complete effect monoids

M1 and M2 such that M embeds into M1 ⊕M2, where M1

is convex and M2 is an ω-complete Boolean algebra. By

Theorem 66 M1 = [0, 1]C(X) for a basically disconnected

compact Hausdorff space X .

Theorem 69. Let M be a directed-complete effect monoid.

Then there exists an extremally-disconnected compact Haus-

dorff space X , and an complete Boolean algebra B such that

M ∼= [0, 1]C(X) ⊕B.

Proof. Same as previous theorem but using Theorem 57.

Corollary 70. Let M be an ω-complete effect monoid. Then

M is commutative.

Proof. M embeds into [0, 1]C(X) ⊕B where B is a Boolean

algebra and X is a basically disconnected compact Hausdorff

space. The multiplication in B is given by the join and hence

is commutative, while the multiplication in C(X) is given by

pointwise multiplication in the real numbers and hence is also

commutative. The multiplication of M is then necessarily also

commutative.

Theorem 71. Let M be an ω-complete effect monoid with no

non-trivial zero divisors. Then either M = {0}, M = {0, 1}
or M ∼= [0, 1].

Proof. Assume that M 6= {0, 1} and M 6= {0}. We remark

first that for any idempotent p ∈ M we have p · p⊥ = 0,

and hence by the lack of non-trivial zero divisors we must

have p = 0 or p = 1. Since M 6= {0, 1}, there is an s ∈ M
such that s 6= 0, 1, and hence we must have s · s⊥ 6= 0. By

Lemma 25 we then have an element 2(s · s⊥) that is halvable.

Hence by Lemma 51 ⌈2s ·s⊥⌉ is also halvable. As this ceiling

is an idempotent it must be equal to 1 or to 0. If it were zero

then 2s · s⊥ ≤ ⌈2s · s⊥⌉ = 0, which contradicts s · s⊥ 6= 0.

So 1 = ⌈2s · s⊥⌉ is halvable. By Proposition 50, M is then

convex. Hence, by Theorem 66 M = [0, 1]C(X) for some

basically disconnected X . We will show that X has a single

element, which will complete the proof.

As idempotents of [0, 1]C(X) correspond to clopens of X ,

there are only two clopens in X , namely X and ∅. Rea-

soning towards contradiction, assume there are x, y ∈ X
with x 6= y. By Urysohn’s lemma we can find f ∈ C(X)
with 0 ≤ f ≤ 1, f(x) = 0 and f(y) = 1. Ux ≡ f−1([0, 1

3 )
and Uy ≡ f−1((23 , 1]) are two open sets with disjoint closure.

Using Urysohn’s lemma again, we can find g ∈ C(X)



with g(Ux) = {0} and g(Uy) = {1}. As X is basi-

cally disconnected, we know supp g is clopen. We cannot

have supp g = ∅ as y ∈ Uy ⊆ supp g. Hence supp g = X . But

then x ∈ Ux ⊆ X\supp g = ∅. Contradiction. Apparently X
has only one point and so M ∼= [0, 1].

Remark 72. In [6] it is shown that any ω-effectus satisfying a

natural property called normalisation (basically, that any sub-

state can be normalised to a state) must have scalars without

zero divisors. We have hence also completely classified the

allowable scalars in a ω-effectus satisfying normalisation.

Remark 73. As noted in Example 7, the unit interval of any

partially ordered ring where the sum and product of positive

elements is again positive forms an effect monoid. Hence

the previous results can also be seen as, to our knowledge,

new results for σ-Dedekind-complete ordered rings. Although

it is not clear how our results for the unit interval can be

extended to results concerning the entire ring, our results might

eventually lead to a version of the characterisation of the

real numbers as the unique Dedekind-complete ordered field,

where the condition of being a field can be weakened to being

a domain (i.e. a ring without non-trivial zero-divisors).

X. CONCLUSION AND OUTLOOK

We have shown that any ω-complete effect monoid embeds

into a direct sum of a Boolean algebra and the set of con-

tinuous functions from a given Hausdorff space X into the

real unit interval [0, 1]. As a result, the only ω-complete effect

monoids without any zero divisors are either degenerate ({0}),

the Booleans ({0, 1}), or the real unit interval ([0, 1]), resulting

in a dichotomy of sharp logic and fuzzy probabilistic logic.

The structure of an ω-complete effect monoid; partial addi-

tion, involution, multiplication and directed limits; captures in

a sense the structure present in the real unit interval and hence

these results give a foundational underpinning to why the unit

interval should be the designated structure of the scalars in

any non-sharp physical or logical theory.

An interesting follow-up question is to consider whether

the ω-completeness can be weakened somehow. There exist

pathological (non-commutative) effect monoids ([6, Ex. 4.3.9]

and [11, Cor. 51]), but all the known ones are non-

Archimedean (i.e. they have infinitesimal elements). So

perhaps it is possible to embed any Archimedean effect

monoid into a directed-complete effect monoid, similar to the

Dedekind–MacNeille completion of a poset into a complete

lattice. If this is the case, then we can essentially get rid of

the assumption of ω-completeness.

Another matter that deserves further investigation is the cat-

egorical aspect of our results. It can be shown that Theorem 69

has the following consequence: the category of directed-

complete effect monoids with effect monoid homomorphisms

between them (which need not preserve suprema) is dually

equivalent to the category which has as objects pairs (X,S),
where S ⊆ X is a clopen subset of a extremally disconnected

compact Hausdorff space X , and morphisms (X,S) → (Y, T )
are continuous maps f : X → Y satisfying f(S) ⊆ T .

Obtaining a similar duality for ω-complete effect monoids

would in our estimation be rather non-trivial, but as it involves

ω-complete algebras, it can perhaps use results analogous to

those of Ref. [36].

We also aim to use our results regarding ω-complete effect

monoids to study ω-effectuses [6]. It seems possible to use

this framework in combination with our results to make a

“reconstruction of quantum theory” [37], [38] that does not

a priori refer to the structure of the real unit interval, 2 for

instance by adopting the effectus-based axioms of Ref. [39].

Finally, when the associative bilinear multiplication of an

effect monoid is replaced by a binary operation satisfying

axioms related to the Lüders product (a, b) 7→ √
ab
√
a for

positive a and b in a C∗-algebra, one gets a sequential effect

algebra. In forthcoming work [40] we use the techniques and

results of this paper to show that a spectral theorem holds

in any normal sequential effect algebra [41] and furthermore

that any such algebra is isomorphic to the direct sum of a

Boolean, convex and a “almost convex” normal sequential

effect algebra.
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