MODERN GREEK
PHONOLOGICAL VARIATION:
A
GOVERNMENT PHONOLOGY
APPROACH

Stamatia Pagoni

University College London
University of London

1993

Thesis submitted
to the University of London
for the degree of
Doctor of Philosophy
This thesis explores the phonological variation that may take place in Modern Greek when nasal and oral stops occur in strictly adjacent syllabic positions in a variety of syllabic structures. This analysis, based exclusively on more than 50 hours of tape-recorded speech, is formulated within the theoretical framework of Government Phonology. Its aim is to show that the phonological behaviour of Modern Greek nasal and oral stop sequences depends on the syllabic structure in which they occur.

I first introduce the Modern Greek variation data and their phonological behaviour. I then review the best-known accounts of this phenomenon. Their shortcomings and weaknesses (mainly in terms of inadequacy of the theoretical frameworks employed) lead me to adopt the highly restrictive theory of Government Phonology. I accordingly present its main theoretical principles and stipulations.

I subsequently discuss (i) the internal structure of nasal and oral stops and (ii) the lexical distinctiveness of their compositional elements. I show that lexically Modern Greek (i) possesses only neutral oral stops and (ii) always derives its voiced oral stops from the interactions that take place between strictly adjacent nasal and oral stops. Particular interactions are either optional or categorical, depending on the syllabic structure of a word.

I also investigate the syllabic structure of pt/kt, pn/kn, ps/ks (two onset heads separated by an empty nucleus) and ts (contour segment). As their initial segment is an oral stop, these sequences also participate in Modern Greek phonological variation processes.

I then present the realisations that underlying nasal and oral stop sequences have in different environments. I explain why these realisations depend on the syllabic structure in which the nasal and oral stop sequences occur. Finally, I examine and reject the existence of prenasalisation as a phonological phenomenon in Modern Greek.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>3</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>7</td>
</tr>
<tr>
<td>ABBREVIATIONS AND NOTATIONAL CONVENTIONS</td>
<td>9</td>
</tr>
<tr>
<td>PREFACE</td>
<td>11</td>
</tr>
</tbody>
</table>

CHAPTER ONE
MODERN GREEK PHONOLOGICAL VARIATION DATA
AND AN ASSESSMENT OF SOME PREVIOUS ACCOUNTS

1.0 Introduction 14
1.1 A presentation of the linguistic data 15
1.2 MG phonological variation: a brief literature review .. 32
 1.2.1 An outline of the problem 32
 1.2.2 A review of the literature 33
1.3 Summary ... 51

CHAPTER TWO
THE THEORY OF PHONOLOGICAL GOVERNMENT

2.0 Introduction 52
2.1 Some theoretical principles of GP 52
2.2 GP as a principles and parameters approach 54
2.3 Phonological operations in GP 54
2.4 GP as a theory of syllable structure 56
Contents

2.5 The Licensing Principle .. 60
2.6 Government and syllabification 61
2.7 Governing domains at the P_0 and P_1 level 62
 2.7.1 Government at the P_0 level: constituent and interconstituent 62
 2.7.2 Government at the P_1 level 64
2.8 Charm Theory .. 65
 2.8.1 The notion of charm .. 65
 2.8.2 The Complexity Condition 68
2.9 Segmental representations 71
 2.9.1 Empty positions in phonological strings 71
 2.9.2 The fusion of elements 73
 2.9.3 The cold vowel ... 75
 2.9.4 The MG vowel system 77
2.10 The elements .. 78
2.11 Some principles of grammar 81
 2.11.1 The well-formedness of phonological representations 81
 2.11.2 The Coda Licensing Principle 82
 2.11.3 The Empty Category Principle 83
 2.11.4 The Projection Principle 83
2.12 The Licensing Principle revisited 84
2.13 Summary .. 86

CHAPTER THREE

THE INTERNAL STRUCTURE
OF THE MODERN GREEK NASAL AND ORAL STOPS

3.0 Introduction ... 88
3.1 The nasal segments .. 89
 3.1.1 The internal structure of nasal segments 89
 3.1.2 The Complexity Condition and the internal representation of the nasal segments: a 'conflict' 90
 3.1.3 Lexical distinctiveness of the elements composing the MG nasal segments ... 91
 3.1.4 Government of nasals by other neutral segments 96
3.2 The oral stops ... 97
CHAPTER FOUR

THE SYLLABIC STRUCTURE
OF THE MODERN GREEK pt/kt AND pn/kn SEQUENCES

4.0 Introduction .. 125
4.1 The MG pt/kt sequences 126
 4.1.1 The arguments in favour of the
 interconstituent analysis 127
 4.1.2 The arguments in favour of an
 intervening empty nucleus 131
4.2 The MG pn/kn sequences 152
 4.2.1 pn/kn: the analysis offered by KLV (1990) 153
 4.2.2 The arguments in favour of an intervening
 empty nucleus 154
4.3 Summary ... 159

CHAPTER FIVE

THE SYLLABIC STRUCTURE
OF THE MODERN GREEK ts AND ps/ks SEQUENCES

5.0 Introduction .. 161
5.1 Presentation of the problem and of some existing
 analyses .. 162
 5.1.1 An outline of the problem 162
 5.1.2 A review of the literature on MG ts and
 ps/ks ... 163
5.2 The GP approach ... 171
 5.2.1 The analysis offered by KLV (1990) 172
 5.2.2 Possible syllabic structures for MG
 oral stops + s 173
 5.2.3 The distribution of low-toned [dz]
 and [bz/gz] 186
CHAPTER SIX

GOVERNMENT PHONOLOGY
AND MODERN GREEK PHONOLOGICAL VARIATION

6.0 Introduction .. 193

6.1 GP and the phonological behaviour of MG NC
sequences .. 194
 6.1.1 NC sequences in context 194
 6.1.2 How GP can explain the phonological
behaviour of the MG NC sequences 198

6.2 The MG 'prenasalisation' issue 220

6.3 Summary ... 228

CONCLUSION AND SUGGESTIONS FOR FURTHER WORK 230

APPENDIX A ... 235
APPENDIX B ... 238
APPENDIX C ... 244
WORKS CONSULTED ... 252
ACKNOWLEDGEMENTS

I would like to hereby acknowledge the debt I owe to all those who in some way or other have helped me see this thesis to its end.

The data on which this research is based were collected thanks to the generous assistance of The Hellenic Foundation. During the third year of my research I was supported by a Fellowship from The British Council for which I am most grateful.

Many warm thanks are due to my 17 informants who ungrudgingly allowed me to tape-record and use our long and often personal discussions. Their kindness, enthusiasm, and warmth of response made this the most pleasant period of my research.

I am happy to acknowledge a debt to my Linguistics lecturers of the University of Athens, especially Dr. Helen Antonopoulou, Dr. Bessie Dendrinos, Mrs. Maro Kakridi, Dr. Chryssoula Lascaratou and Dr. Sophia Marmaridou, not only for introducing me into the world of linguistics, but also for their concern and moral support throughout my research. All of them, as well as Prof. Costas Evangelides, have always been more than happy to supply me with references and to deal with administrative paperwork on my behalf. I would like to register here my particular debt and gratitude to Mrs. Maro Kakridi who unselfishly and with the greatest enthusiasm possible gave me all the data she had collected several years ago when she was researching the same subject. A special 'thanks' goes to Dr. Despina Markopoulou-Chila for bringing to my attention many an important document on Modern Greek phonology.

My sincere thanks are also due to Professor John Wells and Dr. John Harris, my two supervisors. I am grateful to Prof. John Wells not only for his helpful remarks on earlier drafts of this thesis in terms of both content and style, but, more importantly, for always being encouraging and patient, particularly during some long periods when progress seemed tardy. I am indebted to Dr. John Harris for the encouragement he gave me at the early stages of my research and for his advice throughout the writing up stage. His insight at times of resignation has been invaluable. I am also grateful for his comments on matters of content, argumentation and style and for the considerable amount of ink and time he spent on correcting misplaced commas in an earlier draft of this thesis.

My warmest thanks go to Dr. Wiebke Brockhaus for making time at what was for her a most inconvenient moment for the rigorous task of editing this thesis. Thanks to her meticulous
I am also grateful for the interesting phonological discussions she had with me; the encouragement and intellectual stimulation I got from sharing ideas with her was inestimable.

I would also like to record my gratitude to Dr. Ianthi Tsimpli who gave me the invaluable advice of adopting the theory of Government Phonology in my analysis of Modern Greek phonological variation. In this respect, I am greatly indebted to Professor Jonathan Kaye. His lively presentations and discussions on current issues in phonology and originality of ideas and analyses revived my interest in phonology and pulled me out of the impasse I had reached with the theories I had previously attempted to implement. I would also like to thank Dr. Monik Charette for allowing me access to manuscripts on Government Phonology at a time when no publications on this theory were readily available.

My sincerest thanks go to Dr. Julia Chrysostomides not only for the invaluable moral support she has consistently and unfailingly given me, but also for her constant faith in me. A particular thanks also goes to Lea Dery who nearly forced me to learn how to use the much-dreaded computer, to Dr. Cynthia Cohen who was always ready and eager to give me advice on the stylistics and intricacies of thesis-writing and to Mr. Terry Tetlow and Mrs. Barbara Tetlow who enthusiastically edited the greatest part of the present thesis.

My special thanks go to my husband, Dr. Philip Tetlow, for editing an earlier version of this thesis, helping me in numerous practical matters, guiding me in the printing process and for being the source of much sound advice and good cheer during the last stages of this thesis. Not only did he accept my priorities, but actually encouraged me not to abandon them at any a difficult moment; for his love, affection and patience I am most grateful.

Finally, my warmest thanks are reserved for 'The Pagonis Foundation', not only for the more than generous allowance they gave me throughout my stay in the United Kingdom, but also for the enormous amount of calculating and typing (mainly of scribbles) that they undertook with the greatest of pleasure and enthusiasm. Above all, my greatest gratitude is for the love and the moral and emotional support they always gave me. Their affection, patience, depth of understanding, sensitive advice and regular but discrete guidance ensured that this thesis was brought to completion. This work is dedicated to them.
ABBREVIATIONS AND NOTATIONAL CONVENTIONS

Abbreviations

α any audible or inaudible nuclear segment
acc. accusative
AG Ancient Greek
β any audible non-nuclear segment
C any neutral oral stop, unspecified for place of articulation element
D a low-toned oral stop, unspecified for point of articulation element
fem. feminine
gen. genitive
GP Government Phonology
ind. indicative
KLV Kaye, Lowenstamm & Vergnaud
LPL Licenser Projection Level
MajSB major syntactic boundary (plural form: MajSBs)
MG Modern Greek
MinSB minor syntactic boundary (plural form: MinSBs)
N nucleus
N a nasal segment, unspecified for point of articulation
NC an underlying sequence of strictly adjacent nasal and oral stop, both unspecified for point of articulation element
ND a sequence of nasal and low-toned oral stop, both unspecified for point of articulation element
nom. nominative
O onset
OCP Obligatory Contour Principle
part. participle
perf. perfect
pers. person
plur. plural
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>pres.</td>
<td>present</td>
</tr>
<tr>
<td>R</td>
<td>rime</td>
</tr>
<tr>
<td>sg.</td>
<td>singular</td>
</tr>
<tr>
<td>τ</td>
<td>any audible or inaudible nuclear or non-nuclear segment</td>
</tr>
<tr>
<td>UG</td>
<td>Universal Grammar</td>
</tr>
<tr>
<td>V</td>
<td>any audible nuclear segment</td>
</tr>
<tr>
<td>v</td>
<td>verb</td>
</tr>
<tr>
<td>v°</td>
<td>any inaudible nuclear segment (the 'cold vowel')</td>
</tr>
<tr>
<td>*</td>
<td>unattested form</td>
</tr>
<tr>
<td>≈</td>
<td>in free variation with</td>
</tr>
</tbody>
</table>

Notational conventions

Throughout this thesis, I italicise all transcriptions. I use double brackets (i.e. []) when I refer to the morphological structure of a word (e.g. [lämpv°si]) and single brackets (i.e. []) when I refer to its attested phonetic form (e.g. [lämpsi]). In morphological transcriptions, the symbol '+' denotes non-analytic (i.e. formative) boundaries (e.g. [eN+keniázo]). When I provide the transcription of a particular syllabic structure without reference to the morphology of the word, I do not use any brackets (e.g. eNkeniázo, lämpv°si). Spelling forms and glosses are not italicised. The former appear in angled brackets (i.e. < >) and the latter in single quotes (i.e. ' '), (e.g. <vai> 'yes').

The phonetic symbols I use throughout this thesis have their International Phonetic Association values. All transcriptions are broad and the stress of non-monosyllabic words is denoted by an accent on the vowel that bears it.
This thesis explores the phonological variation that may take place in Modern Greek when nasal and oral stops occur in strictly adjacent syllabic positions in a variety of syllabic structures. The theoretical framework I employ for this analysis is that of Government Phonology, as developed by Kaye, Lowenstamm & Vergnaud (1990). The non-arbitrary explanations that this highly restrictive framework provides allow me to demonstrate that, far from being random and unprincipled, Modern Greek phonological variation is in fact wholly predictable.

To the best of my knowledge, no phonological analysis of Modern Greek has so far examined all the environments where oral stops may appear in the strict adjacency of nasals. Neither has any analysis so far examined the phonological behaviour of the sequences of nasal and oral stops that appear in different environments. The contribution, then, of the present thesis is that it offers for the first time a unified and explanatory account of the phonological behaviour that sequences of nasal and oral stops display in Modern Greek, always subject to the syllabic structure within which these sequences appear.

So far at least, purely phonological analyses of Modern Greek have been few and far between. What is more, the references these analyses contain with respect to the variation that obtains between nasal and oral stops are scarce and, with few exceptions, of a phonetic and/or historical nature. Apart, then, from aiming at remedying this situation, this thesis also aims at showing that a significant number of other phonological phenomena attested in Modern Greek can be accounted for if analyses are carried out by means of a constrained theory of syllabic structure which, inter alia, rejects the existence of re-write rules.
The data on which the present thesis is based come exclusively from tape-recorded interviews with native speakers of Modern Greek. To my knowledge, this is the first time that Government Phonology has been employed to account for interview and spontaneous speech data. As will be seen, the results are highly satisfying.

This thesis is structured as follows. The first chapter introduces in a pre-theoretical way the data in which nasal and oral stops occur in the strict adjacency of each other, as well as the phonological behaviour of these data. This chapter also presents an up-to-date review and brief discussion of the best-known accounts of this phenomenon. The objective of this chapter is to (i) introduce the reader to the patterns of phonological behaviour of the Modern Greek nasal and oral stops and (ii) assemble and disentangle the conflicting views that exist on the subject of Modern Greek phonological variation.

The shortcomings and weaknesses of the existing accounts (mainly in terms of inadequacy of the theoretical frameworks within which these accounts are formulated) lead me to adopt the theory of Government Phonology. I present its main theoretical principles and stipulations in the second chapter.

Having adopted Government Phonology as my working framework, I discuss in the third chapter the internal structure of nasal and oral stops, as well as questions of lexical distinctiveness of the compositional elements of these segments in Modern Greek. My purpose here is to show that (i) Modern Greek lexically possesses only neutral oral stops and (ii) voiced oral stops are always derived from nasal and oral stops which occur in strictly adjacent positions. The interactions that give rise to the Modern Greek voiced stops involve the spreading of the place and occlusion elements from the oral stop to the nasal and the spreading of the laryngeal element L' (low tone) from the nasal onto the oral stop.
The fourth and fifth chapters investigate a set of Modern Greek non-nuclear sequences. Specifically, Chapter 4 deals with *pt/kt* and *pn/kn*, while Chapter 5 deals with *ts* and *ps/ks*. The postulation of the correct syllabic structure of these clusters is important for the analysis of Modern Greek phonological variation. Being an oral stop, their first segment participates in the phonological variation processes of the language. This chapter aims at showing that the syllabic structure of *pt/kt*, *pn/kn*, and *ps/ks* is that of two onset heads with an intervening empty nucleus; hence their identical phonological behaviour. In contrast, the syllabic structure of *ts* is that of a contour segment; hence (i) its different phonological behaviour vis-à-vis *pt/kt*, *pn/kn*, and *ps/ks* and (ii) its identical phonological behaviour vis-à-vis the Modern Greek neutral oral stops.

Based on the phonological behaviour of the data presented in Chapter 1 and on the analysis presented in Chapters 3 through 5, Chapter 6 assembles the Government Phonology explanations for the different patterns of phonological behaviour that underlying sequences of nasal and oral stops display in Modern Greek. The main objective of this chapter is to show that the spreading of the different elements that compose the Modern Greek nasal and oral stops depends exclusively on the syllabic structure in which these nasal and oral stops appear. In addition, the sixth chapter examines the question of the existence of prenasalisation in Modern Greek. The conclusion drawn with respect to this controversial issue is that prenasalisation does not exist as a phonological phenomenon in Modern Greek.
CHAPTER ONE

MODERN GREEK PHONOLOGICAL VARIATION DATA
AND
AN ASSESSMENT OF SOME PREVIOUS ACCOUNTS

1.0 Introduction

The purpose of this chapter is twofold. I firstly introduce the reader to the data which pertain to the phenomenon of phonological variation of Modern Greek nasal and oral stops. I secondly outline the most important treatments that have been proposed to date regarding this phenomenon.

To achieve these two aims, I have divided the chapter into two main sections. In Section 1.1, I present (i) the linguistic environments where the phenomenon of phonological variation is attested and (ii) the different phonetic variants that speakers may, subject to linguistic and social factors, use in each of these environments. This presentation is not bound to any particular theoretical framework.

In Section 1.2, I review as concisely as possible the most well-known accounts of Modern Greek phonological variation. These accounts follow either the Structuralist or an SPE-type framework. As the reader will observe, the disagreement between linguists working within even the same framework is considerable. The problems encountered in these accounts lead me to propose in the subsequent chapters an alternative analysis of Modern Greek phonological variation. This analysis is couched within the theoretical framework of Government Phonology.
1.1 A presentation of the linguistic data

The phenomenon I set out to investigate in the present thesis concerns the interactions that take place in Modern Greek (henceforth MG) when the oral stops of the language (i.e. p/t/k/ts) occur after a nasal segment (i.e. m/n). As my presentation will show, when nasal and oral stop sequences (hereafter NC sequences) occur in MG one, or a combination of two, or all three of the following interactions may take place:

(i) the nasal may be assimilated in terms of point of articulation to the following stop,
(ii) the oral stop may become voiced,
(iii) the nasal may not surface before the stop.

As I will be showing in this section, each of the above-mentioned interactions seems to be obligatory in certain sets of words, optional in others and disallowed in yet other words. Also, the combination of certain interactions seems to be allowed in some but not other sets of words. Lastly, in some word sets a particular interaction seems to be allowed only if some other interaction has taken place before. The same interaction seems to be disallowed if one of the other two interactions has not taken place before. My aim in this thesis is to investigate exactly what happens in the different word sets and to explain why interactions between nasal and oral stops take the particular form that they do in MG.

This section consists of a presentation of the data pertaining to the phenomenon of MG phonological variation, as manifested in the interactions that take place between nasal and oral stops. I present below a number of data sets in which NC sequences are attested. Each indented data set acts as a representative example of the particular syllabic structure in which an NC sequence may occur. For each data set, I present (i) its syllabic structure, (ii) the different variants that it may have and (iii) those variants which are
I have tried to keep the presentation of this section as detached from any particular theoretical framework as possible. Unfortunately, it is a well-known fact that the presentation of any data set is influenced by the framework that the researcher in question follows. The syllabic structures I present in this section all follow the theoretical framework of Government Phonology (henceforth GP). Although I neither discuss nor comment on them in this chapter, I consider their inclusion necessary for two reasons. First, their inclusion avoids the misunderstandings and confusion that could be caused by the display of homophonous phonetic variants for what in the next chapters will be shown to be widely different syllabic structures (e.g., (11a) and (11b)). Second, their inclusion will enable the reader to comprehend the GP analysis I provide in the succeeding chapters.

In my presentation, I take all MG 'voiced' stops to be derived from underlying NC sequences. I argue fully for this claim in Chapter 3. I also assume that no prenasalised variants ever occur in MG. I provide a fully argumented discussion of this controversial issue in Chapter 6. Lastly, the use I make of terms such as 'interaction', 'nasal reflex' and 'prenasalisation' is theoretically bound to a GP

1The reader is referred to Appendices A, B and C for information relevant to the data on which the present analysis is based. Specifically, in Appendix A I assemble all the data sets that I will be presenting in Chapter 1 and that I will be discussing in Chapters 3 through 6. These data sets consist of all the linguistic environments where MG NC sequences may be phonetically or phonologically adjacent. In Appendix B, I clarify issues regarding the sampling methodology I employed and the interview techniques I used in order to collect these data. Lastly, in Appendix C I provide a transcription of the reading passages and the word lists I used during my interviews.

2Their discussion follows in Chapter 6.
framework.

My discussion of the behaviour of MG NC sequences is structured as follows. I first examine the NC sequences which occur across and next to word boundaries. I differentiate between two sets of syntactic boundaries, namely what I call 'major syntactic boundary' (hereafter MajSB) and 'minor syntactic boundary' (hereafter MinSB). I then proceed to an investigation of the behaviour of NC sequences which occur in word-medial positions. Lastly, I present certain generalisations that follow from the presentation provided in this sub-section.

I start my discussion of the behaviour of MG NC sequences with word-initial position. As the reader can see in (1a) and (1b), assimilation and voicing are obligatory for NC sequences which occur after a pause. Variants such as *[npukála], *[nprávo], *[mpukála] and *[mprávo] are never encountered in MG. The main variant NC sequences give rise to in this position is that of a 'voiced' stop (henceforth D) (e.g. [brávo] 'well-done' (1a) and [bukála] 'bottle' (1b) for branching and non-branching onsets respectively). A variant where the nasal reflex surfaces before the 'voiced' stop (henceforth ND) occurs less frequently and is socially stigmatised (i.e. [mbrávo] and [mbukála]).

(1)a. Nprávo
[brávo] *[mprávo]
[mbrávo] *[nprávo]

b. Npukála
[bukála] *[mpukála]
[mbukála] *[npukála]

Let me now examine the behaviour of the NC sequences which occur across and/or next to a MajSB. I take the term MajSB to denote all syntactic boundaries except those formed between a clitic (i.e. articles, personal pronouns, prepositions, conjunctions and particles) and either another
clitic or a noun/verb).

I start my discussion of the behaviour of the NC sequences which occur across a MajSB with the configuration in (2), in which a vowel is the final segment of the first of two words which belong to two adjoined phrases and a 'voiced' stop (i.e. b/d/g/dz) is the initial segment of the second word (i.e. the second word begins with an NC sequence). In this configuration, the NC sequence of the content word behaves as if it occurs after a pause: ND variants appear only occasionally and when they do they carry social stigma (e.g. [tréxo mbas ke plóávo] 'I run just in case I can make it in time' (2)). Variants where the nasal does not surface are more frequent (e.g. [tréxo bas ke plóávo]).

(2) tréxo Npas
 [tréxo bas ke] *[tréxo mpas ke]
 [tréxo mbas ke] *[tréxo npas ke]

When the first of two words which occur across a MajSB ends in a nasal segment (as in 3), this nasal segment can never be dropped if the second word begins with a 'voiced' stop (i.e. an NC sequence) (e.g. [tréxun bas ke prolávun], *[tréxu bas ke prolávun] 'they run, just in case they can make it in time'(3a)). The requirement that the final nasal segment of the first word surfaces excludes the possibility of the second word which begins with an NC sequence ever displaying a variant where its own nasal reflex surfaces (e.g. *[tréxun mbas ke plóávun]). Recall from above that I take MG 'voiced' oral stops to be derived from underlying NC sequences. The same behaviour is attested when the final non-nuclear segment

3 Later in this section I examine the behaviour of the NC sequences that occur across and next to what I call a MinSB. This latter environment consists of exactly the configurations I excluded for the MajSB, namely a clitic and either another clitic, or a noun/verb.

4 As I show later in this section, certain words (proclitics) allow the optional surfacing of their final nasal reflex under specific circumstances.
of the first word is not a nasal (e.g. *[tréxis bas ke prolávis], *[tréxis mpas ke prolávis], *[tréxis mbas ke prolávis] 'you run just in case you can make it in time' (3b)). I discuss the behaviour of these configurations in more detail in Chapter 6.

(3)a. *tréxun Npas ke
 *[tréxun bas ke]
 *[tréxun mpas ke]
 *[tréxun mbas ke]
 *[tréxun npas ke]

b. *tréxis Npas ke
 *[tréxis bas ke]
 *[tréxis mpas ke]
 *[tréxis mbas ke]
 *[tréxis npas ke]

Again across MajSB, when the first word ends in a nasal segment and the following word begins with an oral stop which is not voiced (i.e. p/t/k/ts) ((4a) and (4b)), no assimilation, voicing or optional surfacing of the nasal reflex can ever take place. Forms such as *[oë milúsaŋ kias ita próta ksaõěifia], *[oë milúsa kias ita próta ksaõěifia], *[oë milúsa gias ita bróta ksaõěifia], *[oë milúsan gias itan bróta ksaõěifia], or *[oë milúsa gias ita bróta ksaõěifia] are ungrammatical in MG. The only possible form is *[oë milúsan kias itan próta ksaõěifia] 'although they were first cousins, they did not speak to each other'.

(4)a. *oëN milúsan kias
 *[oë milúsan kias]
 *[oë milúsaŋ gias]
 *[oë milúsa gias]
 *[oë milúsaŋ kias]
 *[oë milúsa kias]

b. itan próta
 *[ítan próta]
 *[ítam bróta]
 *[ítam próta]
 *[íta bróta]
 *[íta próta]

 Speakers of MG treat boundaries between (i) adjectives and nouns and (ii) verbs and adverbs/nouns as opaque to interactions between nasal-ending segments and initial

5The form *[õe milúsa] is attested, but it refers to the first person singular, and not to the third person plural that I discuss here.
'voiceless' stops. In (5) below, we see that we may have the variants [oréon peàiôn] 'pretty children (gen. plur)' (5a), [tréxun polî] 'they run a lot' (5b), [iroikôn prákson] 'heroic acts (gen.plur)' (5c) and [pérnun prosforê] 'they take bids' (5d), for non-branching ((5a) and (5b)) and branching oral-stop-initial onsets ((5c) and ((5d)) respectively. Forms where assimilation or voicing takes place, (i.e. *[oréom peôîn], *[oréon beôîn], *[tréxum polî], *[tréxun bolî], *[iroikóm prákson], *[iroikón brákson], *[iroikól prákson], *[pérnum prosforê], *[pérnu prosforê], *[pérnum brosforê]), or where the nasal reflex is suppressed (i.e. *[oréo peôîn], *[oréo beôîn], *[tréxu polî], *[tréxu bolî], *[iroikó prákson], *[iroikó brákson] or *[pérnu prosforê], *[pérnu brosforê]) are not attested in MG.

c. iroikón prákson \(v^6 \) [iroikón prákson] *[iroikóm brákson] *[iroikó brákson] *[iroikól prákson] *[iroikón brákson]
d. pérnun prosforê [pérnun prosforê] *[pérnum brosforê] *[pérnu brosforê] *[pérnum prosforê] *[pérnu brosforê]

If in the same syntactic context (i.e. adjective + noun, or verb + adverb/noun) the second word begins with an NC sequence, two variants are attested, provided that the first

\(^6 \)The symbol \(v^6 \) is used to denote what in Government Phonology is termed 'cold vowel'. I discuss fully this element in Chapter 2.
word ends in a nuclear segment (6). Specifically, words like [brostá] 'ahead' or [belás] 'trouble' ((6a) and (6b) respectively) show ND variants (e.g. [páne mbrostá] 'they go ahead' and [mikrí mbeláðes] 'small trouble') and D variants (e.g. [páne brostá] and [mikrí beláðes]). In this context, assimilation and voicing are obligatory (i.e. *[nprostá], *[mprostá] and *[npeláðes], *[mpeláðes]).

(6a) páne Nprostá [páne brostá] *[páne mprostá]
 [páne mbrostá] *[páne nprostá]

b. mikrí Npeláðes [mikrí beláðes] *[mikrí mpeláðes]
 [mikrí mbeláðes] *[mikrí npeláðes]

The variants these NC-initial adverbs and nouns show after verbs and adjectives which end in a non-nuclear segment ((7a) and (7b) respectively) are those that occur after any MajSB (i.e. [tréxun brostá] and [mikrón beláðon]; see also (3)). If the final segment of the verb/adjective is a nasal, it must surface obligatorily (i.e. *[tréxu brostá] and *[mikró beláðon]). Variants where the initial nasal reflex of the second word surfaces are not attested in this context (e.g. *[tréxun mbrostá], *[mikrón mbeláðon]). Assimilation and voicing of the nasal reflex of the content word are obligatory: no variants like *[tréxun mprostá], *[tréxun nprostá], or *[mikrón mpeláðon], *[mikrón npeláðon] are attested in MG.

(7a) tréxun Nprostá [tréxun brostá] *[tréxun mprostá]
 *[tréxun mbrostá] *[tréxun nprostá]

b. mikrón Npeláðon [mikrón beláðon] *[mikrón mpeláðon]
 *[mikrón mbeláðon] *[mikrón npeláðon]

Let me now examine another kind of syntactic boundary, the MinSB. This boundary is attested between a nasal-ending proclitic and either another clitic or a content word which begins with an oral stop. The nasal-ending proclitics consist of (i) the accusative singular of the definite masculine and
feminine articles (i.e. toN, tiN), (ii) the genitive plural of the definite article of all genders (i.e. toN), (iii) the negative particles ôeN and mlN and (iv) the conjunction saN. The clitics which, together with content words, may appear after a nasal-ending proclitic in a MinSB configuration and, as a result, trigger interactions are those definite articles which begin with an oral stop (i.e. toN, tiN, to, ta, tus, tis).

Speakers have a binary choice in the way they may treat this MinSB. On the one hand, they may treat this MinSB in exactly the same way as they treat the MajSB (i.e. treatment of the MinSB as major). In this case, the interactions they allow are identical to the ones we have seen in (1) through (7), depending on the configuration within which the NC sequence appears. The surfacing, for instance, of the nasal reflex of the first clitic (i.e. the proclitic) is obligatory before either the second clitic or the noun/verb when speakers treat this MinSB as major.

On the other hand, speakers may treat this MinSB differently from the way they treat MajSB configurations. In this case, the interactions allowed for the nasal and oral stop are different from the ones allowed in MajSB configurations. In the paragraphs that follow immediately below, I mainly concentrate on the interactions that take place when speakers treat the boundary between a proclitic and either another clitic or a noun/verb in this second way, i.e. the way that is characteristic of MinSB configurations.

In MinSB configurations, the surfacing of the nasal reflex of the proclitic is optional. When, before non-nuclear...
segments, the nasal reflex of the nasal-ending proclitics does not surface, the masculine article [ton] becomes homophonous to the neutral article [to] and the feminine article becomes [ti]. The negative particles become [Øe] and [mi] and the conjunction becomes [sa].

In those configurations where the nasal-ending proclitic is followed by a content word which has an initial NC sequence (i.e. a 'voiced' stop), the nasal reflex of the proclitic may surface optionally (i.e. [Øe bêno] ≈ [Øem bêno] for the verb Npéno 'enter' (8a) and [sa duvâri] ≈ [san duvâri] for the noun Ntuvâri 'wall' (8b)).

(8a) ØeN Npéno
 [Øem bêno] *[Øen mpéno]
 [Øe bêno] *[Øen mbêno]
 [Øe mbêno]
 [Øen bêno]

b. saN Ntuvâri
 [san duvâri] *[san ntuvâri]
 [sa duvâri] *[san nduvâri]
 [sa nduvâri]

At this point, I would like to emphasise the fact that, irrespective of whether the boundary between the nasal-ending proclitic and the voiced stop of the content word is treated as major or minor, the NC sequence of the content word undergoes assimilation and voicing just like after a pause (i.e. [bêno], [duvâri] and [bukâla]). No forms such as *[mpéno], *[npéno], *[ntuvâri], *[mtuvâri], *[mpukâla] or *[npukâla] are ever attested in MG.

When the nasal reflex of the proclitic is not overtly present, the nasal reflex of the content word may surface giving rise to variants such as [Øe mbêno], or [sa nduvâri]. Recall that, as in (3a) and (3b), if the nasal reflex of the proclitic surfaces, the nasal reflex of the content word is

Following our earlier discussion, in the configuration shown in (8), the nasal reflex of the proclitic surfaces obligatorily when the speaker treats this MinSB boundary as major (e.g. [tin bukâla], [Øen bêno] and [san duvâri]).
not allowed to be overtly present (e.g. *[δen mbéno] and *[san nduvári]). The difference between forms like [δem béno] and [δe mbéno] cannot be easily attested. I elaborate on this point in Chapter 6.

If the clitic ends in a non-nuclear segment which is, however, not nasal, the only variants that may occur for the content word which begins with a 'voiced' stop are the ones which do not allow the surfacing of its nasal reflex (e.g. *[tis bukálas], *[tis mbukálas] (9b)). The interactions between the strictly adjacent nasal and oral stop are, again, obligatory (e.g. *[tis mpukálas], *[tis npukálas]). By way of contrast, when the clitic ends in a nuclear segment, the NC sequence of the content word displays the same variants that appear after a pause, i.e. ND and D (e.g. [i mbukála] ≈ [i bukála] (9a)). As we know from (1b), we can never encounter forms such as *[i mpukála], *[i npukála].

(9)a. i Npukála
 [i bukála] *[i mpukála]
 [i mbukála] *[i npukála]

b. tis Npukálas
 [tis bukálas] *[tis mpukálas]
 *[tis npukálas]
 *[tis mbukálas]

When the initial segment of the content word or second clitic is a 'voiceless' oral stop, interactions take place only if the proclitic is nasal-ending and the boundary is treated as minor. When speakers treat the boundary between a nasal-ending proclitic and a content word or another clitic which begins with a 'voiceless' oral stop as major, no assimilation or voicing takes place. The surfacing of the nasal reflex of the proclitic is obligatory in these cases (e.g. [δen pernō], *[δe pernō] 'I do not pass' and [tin pórta], *[ti pórta] 'the door', (10)). The proclitic that receives the MajSB treatment most frequently is the genitive plural (i.e. [ton peôôn] 'of the children'). Overall, however, the MajSB treatment is quite rare. In over 50 hours of the tape-recorded conversation I collected, similar variants appeared rarely.
(i.e. with a frequency of less than 3%-5% of the potential tokens, depending on the speaker), unless informants were making a conscious effort to remain faithful to the spelling.

\[(10)\text{a}. \text{tiN pórta} \quad [\text{tin pórta}] \quad *[\text{ti pórta}] \\
[\text{tim bórta}] \\
[\text{ti bórta}]
\]

\[\text{b. ōen pernó} \quad [\text{ōen pernó}] \quad *[\text{ōe pernó}] \\
[\text{ōem bernó}] \\
[\text{ōe bernó}]
\]

\[\text{c. san táfos} \quad [\text{san táfos}] \quad *[\text{sa táfos}] \\
[\text{san dáfós}] \\
[\text{sa dáfós}]
\]

As (10) shows, when the same boundary (i.e. between a nasal-ending proclitic and a content word or another clitic which begins with a 'voiceless' oral stop) is treated as minor, the interactions that take place between these cross-boundary NC sequences are identical to those which take place when NC sequences occur within a word (as in (1a) and (1b)). Specifically, assimilation and voicing are obligatory and the nasal reflex surfaces optionally. The feminine noun pórta may have the variants \([\text{tim bórta}] \approx [\text{ti bórta}]\) (10a).

A branching onset structure, such as displayed in the word trop \text{'} turn' (11a) has, accordingly, the variant \([\text{tin tropi}]\) when it is pronounced as if the boundary between the nasal and oral stop of the NC sequence were major. Following the above analysis, the word tropi also has the variants \([\text{tin dropi}] \approx [\text{ti dropi}]\) when treated as occurring across a MinSB. At this point, it is interesting to note that, following the analysis of NC sequences which occur next to a syntactic boundary and after a non-nuclear segment, when the word Ntropi 'shame' (11b) receives the MinSB treatment, the nasal segment of the clitic is allowed to surface optionally (see (8a) and (8b)) yielding the variants \([\text{tin dropi}] \approx [\text{ti dropi}]\), i.e. identical variants with the ones we just saw for tin tropi.
Although their syllabic structures are quite different, these two words display two identical variants. I presently explain how this happens. The syllabic structure of the word 'shame' is Ntropi. As a result, its initial segment surfaces as a voiced stop (i.e. \([\text{dropi}], *[\text{ntropi}]\)). The syllabic structure of the word 'turn' is tropi, i.e. its initial segment is a 'voiceless' stop, phonetically realised as 'voiced' when it receives the MinSB treatment following a nasal-ending proclitic. In this and only this environment, the voiceless stop may become voiced (i.e. \([\text{dropi}]\)). Accordingly, if the nasal-ending proclitic allows its nasal reflex to surface, we have the variants \([\text{dropi}]\) for both \(\text{tropi}\) (11a) and \(\text{Ntropi}\) (11b). If the nasal reflex of the proclitic is not overtly present, we have the variant \([\text{dropi}]\), again for both (11a) and (11b).

However, although these two variants of the words Ntropi and tropi are homophonous (i.e. \([\text{dropi}]\) and \([\text{dropi}]\)), the difference of their syllabic structures results in each of them having a unique additional variant. The word tropi has the additional variant \([\text{tropi}]\). This variant results from the treatment of the cross-boundary NC sequence as major. The word Ntropi has the additional variant \([\text{ndropi}]\). In this variant, the nasal reflex of the proclitic is not overtly present, while the nasal reflex of the content word is allowed to surface. Recall that, as in (3a), (3b), (8a) and (8b), if the nasal reflex of the proclitic were overtly present, the nasal reflex of the content word Ntropi would be suppressed (i.e. *[\text{ndropi}]*).
Let me now turn to the NC sequences that occur in word-medial position. I begin my discussion with the data set in which the NC sequence occurs across a morpheme boundary which, as I show later in this thesis, is only etymological and, as such, of no interest to phonology. The first morpheme of the words of this data set consists of one of the prefixes \(\{eN-\}, \{siN-\}, \{paN-\}\) and the second morpheme starts with one of the voiceless oral stops \(p/t/k\) (12). The behaviour of the NC sequences that may occur across these etymological boundaries is identical to the behaviour of the NC sequences which occur within etymological boundaries. Specifically, the NC sequences of both configurations obligatorily undergo assimilation and voicing. The nasal reflex is allowed to surface optionally.

(12)a. \(eN+ken+I+azo\) \([engeni\dot{a}zo]\) \([egeni\dot{a}zo]\) \(*[eken\dot{a}zo]\) \(*[enken\dot{a}zo]\) \(*[emken\dot{a}zo]\)

b. \(siN+pr+ato\) \([simbr\dot{a}to]\) \([sibr\dot{a}to]\) \(*[sipr\dot{a}to]\) \(*[simpr\dot{a}to]\) \(*[sinpr\dot{a}to]\)

c. \(paN+pl+utos\) \([p\acute{a}mblutos]\) \([p\acute{a}blutos]\) \(*[p\acute{a}plutos]\) \(*[p\acute{a}mplutos]\) \(*[p\acute{a}nplutos]\)

As (12) above shows, the words \([siN+pr+ato]\) 'I co-operate', \([eN+ken+I+az+o]\) 'I inaugurate' and \([p\acute{a}N+pl+utos]\) 'extremely wealthy' give the variants \([simbr\dot{a}to]\) \(\approx [sibr\dot{a}to]\), \([engeni\dot{a}zo]\) \(\approx [egeni\dot{a}zo]\) and \([p\acute{a}mblutos]\) \(\approx [p\acute{a}blutos]\). Just as in the case of the cross-minor-boundary contexts, voicing and assimilation are in evidence, although the nasal is not overtly present. One never hears variants such as \(*[enken\dot{a}zo]\), or \(*[p\acute{a}mplutos]\). Neither does one hear variants such as \(*[sipr\dot{a}to]\), \(*[eken\dot{a}zo]\) or \(*[p\acute{a}plutos]\).

Let me now look into the behaviour of a data set in which the nasal-ending prefixes are adjacent to sequences of \(p/t/k\)

These words are traditionally referred to as 'learned'. I review the treatment these words have received in the literature in Section 1.2.2.
and ps/ks (but not ts). As I show in Chapters 4 and 5, this data set allows the optional voicing of the oral stop (e.g. [\textit{simpsi}fnzo] \approx [\textit{simbsi}fnzo] 'I off-set' (13). In these cases assimilation is obligatory (e.g. *[\textit{sinpsi}fnzo]) and the surfacing of the nasal reflex is optional if voicing is in evidence (i.e. [\textit{simbsi}fnzo] \approx [\textit{sibsifi}no]). If voicing is not in evidence, the surfacing of the nasal reflex is obligatory (i.e. *[\textit{sipsi}fnzo])\(^\text{10}\). In Chapter 6, I provide an explanation for this apparently 'exceptional' behaviour of sequences of nasals + ps/ks or pt/kt.

(13)a. \textit{siNpv}^0\textit{si}fnzo

\begin{align*}
\text{[simpsi}fnzo] & \quad *\text{[sinpsi}fnzo] \\
\text{[simbsi}fnzo] & \quad *\text{[sipsi}fnzo] \\
\text{[sibsifi}no] & \quad *\text{[sinpsi}fnzo] \\
\end{align*}

As I mentioned earlier in this section, when an NC sequence occurs within a morpheme, the two segments interact obligatorily and the nasal reflex which surfaces optionally is always homorganic to the voiced oral stop. The variants we have then are [\textit{kond}á] \approx [\textit{kod}á] 'near' (14), [\textit{kamb}úra] \approx [\textit{ka}búra] 'hunch' and [\textit{aŋg}úri] \approx [\textit{ag}úri] 'cucumber'. There are no variants such as *[\textit{kont}á], *[\textit{kom}tá], *[\textit{kamp}úra], *[\textit{kanp}úra], or *[\textit{aŋk}úri], *[\textit{amk}úri].

(14) \textit{koNt}á

\begin{align*}
\text{[kond}á] & \quad *\text{[kont}á] \\
\text{[kod}á] & \quad *\text{[kot}á] \\
\end{align*}

If the second morpheme of a compound noun which is itself composed of two free morphemes begins with an NC sequence (e.g. [\textit{mis}ó][\textit{Ntimêni}] 'half dressed' (15)), this NC sequence behaves in the same way as we saw it behaving after a pause: voicing and assimilation are obligatory. The surfacing of the

\(^{10}\text{The variants which display this optional voicing of the oral stop tend to occur not only word-medially (as in the above example) but also word-initially (i.e. the pt/kt and ps/ks sequences which occur after a nasal-ending proclitic, e.g. 5eN kaér 'I do not know').}
nasal reflex is optional. As a result, this configuration most often gives rise to the D variant (i.e. [misodiméni]). The ND variant (i.e. [misondiméni]) is socially stigmatised and rarer.

\[(15) \begin{array}{ll}
\text{[misó][Ntiméní]} & \text{[misodiméni]} \\
& \text{[misondiméni]} \\
& \text{*[misotiméni]} \\
& \text{*[misotiméni]} \\
\end{array}\]

Let me conclude this presentation with three most interesting word sets. The first word set consists of words such as [barbúni] 'red mullet' (16). In this word set, a non-nuclear segment seems to precede the voiced stop. In this configuration, voicing is obligatory and the surfacing of the nasal reflex is disallowed (i.e. the ND variant of the underlying NC sequence is disallowed before non-nuclear segments). As a result, variants such as *[mbarmbúni], or *[barmbúni] are never attested in MG. The only variants we may come across are [mbarbúni] and [barbúni]. I discuss the behaviour of this word set in Chapter 6.

\[(16) Nparv^{O}Npúni \quad \begin{array}{ll}
\text{[barbúni]} & \text{*[mbarmbúni]} \\
\text{[mbarbúni]} & \text{*[mparmpúni]} \\
\text{*[barmbúni]} & \text{*[parpúni]} \\
\end{array}\]

The second interesting word set consists of certain verbs in which the NC sequence appears to be phonetically adjacent to the $\{-sv\}$ ending in (i) the future and certain past tense forms and (ii) their derived feminine nouns (17). The behaviour of the NC sequences of these words differs from any similar NC sequences we have seen so far. Specifically, assimilation and the surfacing of the nasal reflex are obligatory; voicing never takes place in this set of words. The word $\text{[[lâmpv^{O}]si]}$ and $\text{[[lâmpv^{O}]so]}$ for 'shine (noun and verb, respectively)' may have the variants [lâmpsí] and [lâmpso] (17), but no variant such as *[lâmbzi], *[lâmbsí] (voicing), *[lâpsi], *[lâbsí] or *[lâbzi] (optional dropping of the nasal reflex). I examine the behaviour of this set of words in Chapters 5 and 6.
The final word set I present here consists of words like pëmpti 'Thursday' (18). Just like in the [lámsi] word set, assimilation and the surfacing of the nasal reflex are obligatory (i.e. [pëmpti], *[pënti], *[pëpti]). In contrast to all the other word sets I mentioned, the medial oral stop of these words does not always surface (i.e. [pëmpti] ~ [pémti]). Voicing also takes place optionally, but only when the medial oral stop does not surface (i.e. [pémdí] ~ [pémti], *[pëmbdí]). I discuss the syllabic structure of this word set in Chapter 4 and its behaviour in Chapter 6.

From the above presentation, I can make several generalisations. The first generalisation concerns the NC sequences which occur across MajSBs. No interactions ever take place here. Assimilation and voicing are not allowed. Furthermore, nasal reflexes can never be dropped.

The second generalisation concerns MinSBs. Speakers have a choice of treating a boundary between a proclitic and a content word (or second clitic) as either minor or major. If (i) the proclitic is nasal-ending, (ii) the initial oral stop of the content word (or second clitic) is voiceless and (iii) speakers treat this boundary as minor, all interactions (assimilation, voicing, optional surfacing of the nasal reflex) take place. We then have free variation between an ND and a D variant (e.g. [tom bíra] ~ [to bíra] for toN píra 'I took him'). When this syntactic boundary is treated as major, no interactions take place (i.e. the only variant we get for toN píra is [ton píra]). As with the truly MajSB, the nasal reflex
The third generalisation concerns the NC sequences which occur next to a MinSB. When preceded by a proclitic which ends in a nuclear segment, the NC sequence of the content word behaves in the same way as if it occurred word-initially. Specifically, the nasal reflex of the content word may surface (e.g. *imbukála 'bottle') giving rise to a socially stigmatised form. Alternatively, the nasal reflex of the content word may not surface (e.g. ibukála).

If preceded by a proclitic which ends in a non-nuclear segment, the nasal reflex of the content word can never surface, irrespective of the nature of the final non-nuclear segment of the proclitic (e.g. *[tis mbukálas], *[tim mbukálal]). If the proclitic is nasal-ending, its nasal reflex may surface optionally (i.e. [tim bukála] = [ti bukála]). When the nasal reflex of the proclitic is not overtly present, the nasal reflex of the content word may surface (e.g. [timbukála]). All other non-nuclear segments which are not nasal must surface obligatorily in the final position of a proclitic (i.e. [tis bukálas], *[ti bukálas] for tis Npukálas).

The fourth generalisation concerns word-medial positions. Assimilation and voicing are obligatory and the surfacing of the nasal reflex is optional. There are three exceptions to this behaviour, namely word sets such as [simpísízo], [lámpis] and [pémpti]. The first two word sets have obligatory assimilation and surfacing of the nasal reflex. However, voicing is optional in the first word set and disallowed in the second. When voicing takes place in the first word set, the surfacing of the nasal reflex is optional. The third word set has obligatory assimilation and surfacing of the nasal reflex and optional presence of the medial non-nuclear

11This form exists, but not with the meaning that I take it here (i.e. 'I took him'). This form means 'I took it'.
segment. Voicing is also optional in this word set, taking place only when the medial segment is not realised phonetically.

Finally, word-medial NC sequences which are preceded by a phonetically adjacent non-nuclear segment (e.g. [barbûni]) obligatorily undergo voicing. However, no nasal reflex ever occurs before these sequences (i.e. *[barmbûni]).

1.2 MG phonological variation: a brief literature review

In this section, I present the MG phonological variation problem as outlined in the work of various linguists. In Section 1.2.1, I give an outline of the different questions that linguists have attempted to examine in their investigation of MG phonological variation. In Section 1.2.2, I review some of the accounts that have so far been offered on the subject.

1.2.1 An outline of the problem

All the linguists who have so far investigated the problem of MG phonological variation have, within their respective frameworks, tried to explain the multitude of variants that appear in different but at times similar-looking environments. The questions these linguists have attempted to answer can be summarised as follows:

(i) Should what surface as MG b/d/g/dz be considered as autonomous phonemes? If not, should b/d/g/dz be derived from underlying mp/nt/ŋk/nts?
(ii) As, irrespective of underlying representation, b/d/g/dz are in free variation with, respectively, mb/nd/ŋg/ndz, why is this variation widespread in certain environments (e.g. [pênde] ≈ [pêde]), giving the impression of it being totally free, while in other environments both linguists and speakers
are reluctant to admit it exists (e.g. \([\text{domàta}] \approx [\text{ndomàta}]^{12}\))?

(iii) Is there any justification in the postulation of prenasalised variants in MG? What is the syllabic structure of these variants, where can they appear and in what sort of relationship are they with \(b/d/g/dz\), \(mb/nd/ŋg/ndz\) and \(mp/nt/ŋk/nts\)?

(iv) How, after the operations of different transformational rules, can the various underlying representations yield the attested phonetic forms? Are the \(mp\) of words like [sampânia], the \(b\) of words like [robôt], the \(nd \approx d\) of words like [pênde] \(\approx [pêde]\) and the \(mb\) of words like [kâmbos] related by being derived from a similar type of underlying representation? If yes, which phonological rules can generate each phonetic form, how are these rules ordered and are they all obligatory? If not, which underlying form should we adopt for each phonetic variant and which rules will generate these phonetic forms?

In the following sub-section, I present some of the answers that have so far been proposed to these questions. The answers that can be given to all of these questions within the framework of GP appear in Chapter 6, after a discussion (in the intervening chapters) of certain crucial MG syllabic structures.

1.2.2 A review of the literature

Of the many authors who have looked at the phonological variation that takes place between MG nasal and oral stops,

\(^{12}\) As I explain later in this section, the word-initial \(ND\) variant, being socially stigmatised, was thought to be 'wrong'. As a result, a considerable number of linguists did not consider the variation between the \(ND\) variant and the \(D\) variant as free. For these linguists, the \(ND\) variant was non-existent in word-initial position. By way of contrast, as no social stigma was attached to either of the word-medial \(ND\) or \(D\) variants, this word-medial variation was, on the whole, thought to be 'correct'. As a consequence, it was considered as 'free'. This being the case, most analyses are in effect confined to an investigation of the variation that occurs in the non-stigmatised word-medial positions.
none has as yet produced a comprehensive account and/or unifying explanation of the phonological behaviour of the NC sequences presented in Section 1.1. The distribution of b/d/g/dz, their underlying representations and their variants are some of the most thorny and controversial issues of MG phonology. In this sub-section, I do not examine dz, as I elaborate on its derivation and distribution in Chapter 5.

To the best of my knowledge, there does not as yet exist a non-arbitrary explanation of MG phonological variation. None of the existing accounts explain (i) why MG phonological variation takes place in the particular context that it does and no other, (ii) why it involves the particular segments it does and no others and (iii) why it takes the particular form that it does and no other. What is more, none of the existing accounts can explain why certain similar-looking syllabic structures undergo completely different processes, while other apparently dissimilar syllabic structures display the same behaviour with respect to some process(es).
The lack of a non-arbitrary explanation of MG phonological variation is due to several factors, foremost among which are the linearity of the two frameworks employed and their use of arbitrary re-write rules and phonemes or features. In Chapter 2, I explain why these characteristics of the Structuralist and SPE-type frameworks can only lead to arbitrary accounts. I also demonstrate how GP allows us to overcome the problems of arbitrariness in phonological analyses.

Returning to the literature review, let me point out that most of the Structuralists (e.g. Swanson (1958), Panara (1989a), Favis (1948), Kukules (1939), Bailly & Schmirl (1979) and Magoulas (1979)) and a few followers of an SPE-type approach (e.g. Setatos (1969, 1974), Malikouti (1970), Efthathiades (1974) and Newton (1972b)) trace the historical origin of MG b/d/g. This is an area of general consent. Greek and foreign origin words are almost invariably differentiated.

MG b/d/g are derived in words of Greek origin from:
(i) a nasal segment + Ancient Greek (henceforth AG) p, t, k (e.g. [é(m)boros], from AG éNporos 'merchant') (Favis (1948), Malikouti (1970), Efthathiades (1974), Bailly & Schmirl (1979) and Magoulas (1979)),
(ii) a nasal segment + AG ν, δ, χ (e.g. [dino] from AG enöio 'I dress') (Favis (1948), Bailly & Schmirl (1979) and Magoulas (1979)), or
(iii) a nasal segment + a vowel + p, t, k (this case is typically exemplified by the form [ká(n)de], from kánete 'do', through deletion of the intermediate vowel) (Kukules (1939) and Magoulas (1979)).

In foreign origin words, Swanson (1958), Bailly & Schmirl (1979), Magoulas (1979) and Panara (1989a) derive MG b/d/g from: (i) nasal + p/t/k (e.g. French <champagne> becoming MG [sa(m)bánia]), (ii) mb/nd/ŋ (French <jambon> becoming MG [za(m)bón]) and (iii) b/d/g (e.g. Italian <adio> becoming MG
As I show later in this sub-section, most of the existing analyses are based on dictionary-type data. Householder (1964), Kakridi (1979), Bailly & Schmirl (1979) and Tzivaki (1985) are some of the few linguists who provide accounts based on data acquired through interviews with native speakers. Their respective data sets differ from each other in some significant respect(s). Tzivaki (1985), Householder (1964) and Bailly & Schmirl (1979) choose to investigate only specific linguistic environments. Bailly & Schmirl (1979), Kakridi (1979) and Householder (1964) choose informants who use standard and not dialectal pronunciation.

With the exception of Kakridi (1979), the above-mentioned data sets do not include many spontaneous style variants. The ensuing analyses are, accordingly, based on the more formal styles (Bailly & Schmirl (1979) and Tzivaki (1985)). Householder (1964) uses both dictionary-type data and a 5-hour tape-recorded conversation. Newton (1972b) does not give much information as to the sources of his data.

A significant number of linguists, particularly those working with dictionary-type data, are influenced by the social evaluation of certain variants. They, accordingly, choose to only mention the more prestigious variants and remain silent on the stigmatised ones. This leads to numerous analyses being prescriptive to varying degrees.

In most cases where no dictionary-type data are used, interviews are often neither numerous (Householder (1964) and Kakridi (1979)) nor of sufficient length (Householder (1964) and Bailly & Schmirl (1979)) to ensure representation of all variants. As a result, certain spontaneous style variants are not mentioned in some analyses. In this case, the lack of
presentation of certain variants is not the result of conscious choice on the part of the linguists themselves. Rather, it occurs because these variants tend to appear, on the whole, in larger data sets which include spontaneous style speech.

The existing analyses of MG phonological variation focus on the issue of the underlying representation of b/d/g. Some linguists claim that b/d/g are independent phonemes, while others derive them from underlying NC sequences (i.e. mp/nt/nk).

As I mentioned earlier in this sub-section, some linguists express their opinion on this issue, even though their research is not directly related to this area. In this case, one of two things may happen. Either the expressed opinions are not supported by arguments (Panara (1989a:21) for instance, claims that 'b, d, g are ... phonemes in their own right as their distribution seems to suggest' without, however, discussing how their distribution leads her to this conclusion). Or the arguments offered are inconsequent and phonologically irrelevant (Swanson (1958), for example, incongruously argues that b/d/g are independent phonemes on the basis of their variation with mb/nd/njg). I do not review any similar analyses in this sub-section.

Those linguists who claim that b/d/g are reflexes of mp/nt/nk also recognise that the former are in free variation with mb/nd/njg. Their claim is based on the observation that b/d/g and mb/nd/njg are interchangeable in all positions. These linguists also claim that the application of specific phonological rules to the underlying representations mp/nt/nk produces the different variants that are encountered in the various MG dialects.

The best argumentation in favour of this view is found in Newton (1961, 1972b). Newton (1972b) claims that standard
MG pronunciation has evolved as a fusion of the dialects of the Peloponese and the Ionian Islands. Word-medially, Newton (1972b) argues, both dialects have obligatory postnasal voicing (e.g. \(kuNpi \rightarrow kuNbi \) 'button'). However, Peloponese assimilates the nasal in point of articulation to the following stop (e.g. \(kuNbi \rightarrow kumbi \)). In the Ionian Islands, assimilation is complete (i.e. it produces geminates) and it is followed by a degemination rule (e.g. \(kuNbi \rightarrow kubbi \rightarrow kubi \)) (Newton 1972b:93ff).

Newton (1972b) claims that a speaker who belongs to the Peloponese dialect group tends to allow the nasal reflex to surface, whereas a speaker who belongs to the Ionian Isles dialect group tends to forbid the surfacing of the nasal reflex. However, Newton (1972b:95) also points out that this should be considered more as a tendency than a rule, since 'it is often quite difficult to determine whether a given idiolect is to be treated as belonging to a [Peloponese] . . . or a[n Ionian Isles] . . . pronunciation'.

Across MinSBs, Newton (1972b:97) accounts for the optional surfacing of the nasal reflex (e.g. \([\text{ton d\text{n}o}] \approx [\text{to d\text{n}o}] \) 'I dress him') in terms of (i) the dialectal group to which a speaker belongs and (ii) whether a speaker will treat the \(NC \) sequence as occurring across a morpheme or a word boundary. If the speaker treats the \(NC \) sequence as occurring across a morphological boundary, the nasal reflex may not surface (i.e. \([\text{to d\text{n}o}]\)). If the same sequence is treated as occurring across a word boundary, the nasal reflex surfaces (i.e. \([\text{ton d\text{n}o}]\)).

Newton’s (1972b) account has many well-argued and accurate observations concerning the behaviour of MG \(NC \) sequences. In this respect, his analysis was a great advance on the previous accounts that existed for MG phonological variation. However, his analysis does not extend to all the relevant data (all the different data sets containing \(NC \)
sequences). In addition, due to framework limitations, Newton, as well as all linguists who work within an SPE-type framework are, as I mentioned earlier in this section, (i) able to generate unattested forms and (ii) unable to explain why this phenomenon takes the particular form that it does and no other.

Tzivaki (1985) adopts Newton's rules of postnasal voicing and nasal assimilation. However, instead of claiming (following Newton) that MG phonological variation is the result of a difference in the application of the nasal assimilation rule on each dialect, she claims that both the postnasal voicing and nasal assimilation rules apply in the same way in all dialects and are followed by an optional nasal deletion rule.

Tzivaki (1985) examines how each of these three rules correlates with style shifts. Her results show that style shifts are indicated only by the word-medial deletion of the nasal reflex in words which begin with a nasal-ending prefix (e.g. [siN+práto]). Another important finding is that across a MinSB the surfacing of the nasal reflex crucially depends on the speaker. Tzivaki's research suggests that the assimilation of the undeleted nasal is obligatory word-medially. Voicing is also obligatory\(^\text{13}\) within words and quite widespread across MinSBs.

Tzivaki's (1985) account is also subject to the same criticism as Newton's analysis, namely that (i) her analysis does not examine all the relevant data sets and (ii), due to the shortcomings of the SPE framework she employs, her account remains arbitrary and non-explanatory.

Householder (1964) puts forward an alternative analysis,

\(^{13}\)The only exception she reports is that of the word [símpi\text{tosi}] 'coincidence'. I explain fully the behaviour of this word in Chapters 4 through 6.
claiming that b/d/g are derived from two sources. The first source is mp/nt/ŋk. Those b/d/g which are derived from mp/nt/ŋk are the product of sandhi phenomena which occur across MinSBs, as in /ton píra/ —> [to bíra] 'I took him'). The surfacing voiced stop is in free variation with mb/nd/ŋg (i.e. [to bíra] ≈ [tom bíra]), as mb/nd/ŋg are also derived from underlying mp/nt/ŋk). There exist, however, another set of b/d/g which come from a different source: they are independent phonemes (i.e. they are not derived from mp/nt/ŋk). These independent b/d/g segments occur within words (i.e. they are not the product of sandhi rules) (e.g. [bukála], [éboros]).

For his examination of these independent b/d/g phonemes, Householder (1964) divides words into four classes. Class 1 consists of words where only b/d/g may occur (e.g. [robót]). This means that, according to Householder (1964), no variants such as *[rompót] or *[rombót] can ever exist in this class. Class 2 consists of words where only mp/nt/ŋk occur (e.g. [sampânia]). Again according to Householder (1964), no variants such as *[sapânia], *[sabânia] or *[sambânia] should ever exist in this class. Class 3 and class 4 consist of the same two sets of variants, namely b/d/g and mb/nd/ŋg. The difference between them seems to lie in the frequency with which the former variants alternate with the latter. Concretely, mb/nd/ŋg are the 'preferred realisations' of classes 3 and 4. However, in class 3, mb/nd/ŋg alternate freely with b/d/g (e.g. [akumbó] ≈ [akubó]). In class 4, such an alternation is rare, if it exists at all (e.g. [kámbo] ≈ [kábo]).

Householder (1964) admits that his categorisation is based on the 'intervocalic occurrence of the phones and sequences in question'. This means that his categorisation is phonetic rather than phonological. However, as the behaviour of the NC sequences that I presented in 1.1 shows, the realisations Householder allows for classes 1 and 2 do not fully depict the linguistic reality. His data sets exclude forms such as [rombót], [sambânia] and [sabânia] which are
nevertheless attested in MG.

To his credit, Householder (1964) suggests that 'individual speakers may differ in [the assignment of] particular words [to classes]'. He furthermore mentions that class 1 and 2 words may also respectively belong to classes 3 and 4 (e.g. [tsigünis] (class 1), [tsigünis] ≈ [tsigungünis] (class 3) 'stingy'; [dokuménto] (class 2), [dokuméndos] ≈ [dokumédo] (class 4) 'document'). However, Householder (1964) does not mention that some words may simultaneously belong to class 1 and 2, 1 and 4, 3 and 2 and 3 and 4. Most probably, these possibilities do not appear in his data.

The fact that his classification is not based on phonological criteria is not only reflected in Householder's own admission of the phonetic categorisation of words, but also in the contents of each of his classes. The words which, according to Householder (1964), belong to the same class share not only phonetic, but also historical/etymological characteristics. Specifically, classes 1 and 2 mainly consist of foreign origin words (some of them fully assimilated into Greek). Class 4 consists mostly of words of Greek origin which begin with one of the nasal-ending prefixes. Class 3 is the most numerous of the four classes, mainly consisting of Greek origin words; hence the terms 'regular' and 'normal' class.

Zeri (1984), Mackridge (1985), Setatos (1969, 1974) and Philippaki-Warburton (1970) adopt Householder's analysis. Setatos (1969:45) relates the lack of surfacing of the nasal reflex in classes 3 and 4 to the 'general tendency to open syllables in [MG]', as well as to factors such as the idiolect of a speaker, her social dialect and the origin of the word.

Philippaki-Warburton (1970) gives phonological basis to

As I also mentioned in 1.1, these are the so-called 'learned' words. I review their treatment later in this section and in Chapters 3 through 6.
Householder's analysis by proposing underlying representations for each class of words. Classes 1, 2 and 4 respectively have underlying b/d/g, mp/nt/nk and mb/nd/ng. Class 3 has underlying mp/nt/nk which undergo (i) postnasal voicing and (ii) optional nasal deletion (in that order). The latter rule applies to both classes 3 and 4. In this way, Philippaki-Warburton (1970) succeeds in capturing the variation that exists in these two classes. Nevertheless, this optional nasal deletion rule fails to capture the fact that the difference existing between words of class 3 and class 4 is, according to Householder (1964), one of frequency of alternation of mb/nd/ng with b/d/g.

Also, neither of these two rules can apply to class 1. As a result, the attested variation between forms such as [robōt] = [rombōt] cannot be accounted for. Finally, in her effort to differentiate and give some phonological basis to Householder's claim of the independent status and existence of classes 2 and 3, Philippaki-Warburton rightly excludes the application of postnasal voicing in class 2. This, however, results in the attested variation between forms such as [sampánia] ≈ [sambánía] ≈ [sabánía] remaining uncaptured.

So, despite Philippaki-Warburton's treatment, Householder's analysis remains 'phonetic' (if not historical) and his classification lacks phonological foundation. As a result, language learners still need to know (i) which words belong to each of Householder's classes, (ii) which words may belong to more than one class and (iii) which are the classes these multi-class words belong to. Besides, Householder's treatment does not reflect a most important fact, namely that speakers treat Greek and foreign origin and learned and non-learned words in exactly the same way. I will come back to this point later in this sub-section and in Chapter 6.

The controversy that exists over the underlying representations of b/d/g extends to the phonological relationships existing between p/t/k, mp/nt/nk, mb/nd/ng and
b/d/g, as well as their distribution in word-initial and word-medial positions and across MinSBs.

In their examination of the two latter positions, most linguists accept that b/d/g vary freely with mb/nd/ŋg (Mirambel (1933, 1959), Favis (1948), Kukules (1939), Newton (1961, 1972b), Tzivaki (1985), Walter (1979), Kakridi (1979), Bailly & Schmirl (1979), Householder (1964), Setatos (1969, 1974), Philippaki-Warburton (1970) and Malikouti (1970)).

Those who derive b/d/g from underlying mp/nt/nk (e.g. Favis (1948) and Kukules (1939)) claim that both word-medially and across MinSBs b/d/g do not contrast phonologically with mb/nd/ŋg; hence the free variation between them. Those who follow Householder’s claim that b/d/g are independent phonemes allow for free variation of b/d/g and mb/nd/ŋg across MinSBs (e.g. [ti bira] = [tim bira]). Word-medially, however, only class 3 and 4 words are allowed to vary. The segments b/d/g of class 1 show no variation, unless they also belong to class 3 (e.g. the word [tsigûnis] we saw earlier).

The only environment where all linguists agree that b/d/g are not allowed to vary freely with mb/nd/ŋg is after a non-nuclear segment. In this environment, Householder (1964), Magoulas (1979), Newton (1972b) and Hamp (1961) point out that only b/d/g may appear (e.g. [barbûni], *[barmbûni]).

Magoulas (1979) and Setatos (1969) are just two of the linguists who prescriptively claim that word-medially the nasal reflex should surface in words of foreign origin whose historical phonological shape has a nasal reflex (e.g. <jambon>). However, there is no obligation for the nasal reflex to surface. As I explain in more detail in 6.1, the surfacing of the nasal reflex in this word set is socially and stylistically motivated and, as such, it should not form the focus of an investigation of the linguistic aspect of MG phonological variation. What is important for the variation
process is the fact that speakers treat foreign words in the same way as Greek origin ones in terms of the variation pattern they allow them to display (e.g. [zambón] ≈ [zabón], just like [kondá] ≈ [kodá]). This means that what is important is the fact that the grammar of MG allows the same pattern of phonological behaviour to the NC sequences that occur in words of both Greek and foreign origin. I elaborate further on this issue in Chapter 6.

When linguists examined the MinSB, the possibility of its being treated as major is prescriptively silenced by all but Bailly & Schmir (1979), Newton (1972b) and Setatos (1969). Most linguists note that the same variants which appear within a word may also appear across a MinSB. Householder (1964) gives evidence in favour of the free variation of b/d/g and mb/nd/ng across MinSBs. Furthermore, he argues that the grammatical nature of the proclitic plays a significant role in determining the variant that an NC sequence may generate across a MinSB. This is another point I come back to in 6.1.

Newton (1961:283-4) observes that in word-initial position b/d/g 'are complementary to, or in free variation with, the cluster consisting of a homorganic nasal and themselves', i.e. mb/nd/ng. This statement raises the issue of whether prenasalisation exists in MG. Although this is a subject I examine in detail in 6.2, let me make here some preliminary remarks regarding its treatment in the existing literature.

Prenasalisation has traditionally been a most controversial issue of MG phonology. Linguists disagree on many points. Most of the linguists who accept its existence focus on word-initial position, where, in the absence of a preceding audible vowel, the overt presence of a nasal reflex before a 'voiced' stop is felt to be different from word-medial position. In the latter position, ND sequences occur much more frequently than word-initially.
Many linguists feel that word-initial ND variants which are rather infrequent and carry social stigma assume the same type of structure as an affricate. They call these variants 'prenasalised'. Newton (1972b), Magoulas (1979), Walter (1979) and Kakridi (1979) observe the rarity of occurrence of the ND variants in word-initial positions, Newton (1972b) claiming that their frequency of occurrence depends on the particular speaker.

Exactly because of the infrequency of occurrence of these ND variants and the social stigma they carry, other linguists avoid referring to their existence word-initially. They claim that only D variants may appear word-initially (e.g. Mirambel (1978:43), Householder (1964:22) and Malikouti (1970:23)). Magoulas (1979:24) is the only linguist to argue in favour of the assignment of phonemic status to these 'groups of nasal and oral stops'. This, most probably, happens because Magoulas (1979) focuses on word-medial position, where the ND variant is quite frequent and does not carry any stigma.

With the exception, then, of Magoulas (1979), those linguists who allow prenasalisation in MG claim that mb/nd/ng (rather than mb/nd/ng) are the segments which may appear word-initially. In this environment, mb/nd/ng and b/d/g are allegedly in free variation. Those linguists who do not allow prenasalisation in MG postulate that only b/d/g occur word-initially. Word-medially, b/d/g are in free variation with mb/nd/ng, i.e. with ND variants which, however, do not assume an affricate structure. Yet, even though mb/nd/ng do not assume an affricate structure, many linguists call them 'prenasalised' just because their nasal reflex surfaces.

It becomes clear, then, that the confusion that exists on the subject of prenasalisation is mainly due to the misuse of this term. Most linguists of both frameworks have followed the practice of calling all variants in which the nasal reflex surfaces 'prenasalised'. This means that the same term is used
for two different syllabic structures. On the one hand, we have the true prenasalised variant, a complex segment which occupies one skeletal point (19). On the other hand, we have a sequence of two segments, each occupying one skeletal position (20); there is no prenasalisation here, only the surfacing of the nasal reflex of an NC sequence.

\[
\begin{array}{c}
(19) & x \\
/ & \\
N & C
\end{array}
\quad \begin{array}{c}
(20) & x \\
\downarrow & \\
N & C
\end{array}
\]

Instead of differentiating between (19) and (20) in terms of syllabic structure, most linguists refer to word position, arbitrarily allowing the surfacing of the nasal reflex in certain positions (typically word-medial ones) and forbidding it in others (typically word-initial ones). Mirambel (1933:157) (who does not use the term 'prenasalisation' in his analysis) typically represents this tendency: 'le grec commun, qui a normalement \(mb, \ nd\) à l'intérieur, n'a au début du mot que \(b, \ d\); un group \(mb, \ ou \ nd\) doit s'appuyer sur un élément vocalique précédent . . . sinon l'implosion de la nasale se fait malaisément'.

The only remark that I would like to make at this point is that none of the linguists who have examined the issue of prenasalisation in MG seems to be concerned with the fact that, for some strange reason, this phenomenon appears to be confined to word-initial position in MG. As I show in Chapter 6, where I examine MG prenasalisation from a GP perspective, there exist no arguments in favour of the presence of this phenomenon in the language; in fact, there exist several arguments against it.

Let me return again to the issue of phonological contrast between \(b/d/g, \ mb/nd/ŋg, \ mp/nt/ŋk\) and \(p/t/k\). Kakridi (1979) claims that \(mp/nt/ŋk\) contrast phonologically with both \(b/d/g\) (e.g. [lâmps] 'shine (n.)' versus [ləmbe] 'shine (v. 3rd pers.pres. ind.)') and \(p/t/k\) (e.g. [pəmps] 'send' versus
[pépsi] 'Pepsi'). \(p/t/k\) are independent phonemes, while \(mp/nt/nk\) are clusters of phonemes.

With the exception of Newton (1972b) and Kakridi (1979), all other linguists who explore the subject of \(NC\) sequences report that no \(mp/nt/\eta k\) exist in MG. Mirambel (1978) reports that in a total of 17,239 tokens of MG phonemes he only found instances of (i) nasal + voiced stops and (ii) voiced stops (the latter being more numerous than the former). Mirambel reports that he found no nasal + voiceless stop sequences. However, he does not give any information as to the linguistic environments he examined or the way in which he established the pronunciation of these sequences. Panara (1989a:11) also claims that 'a nasal will always be followed by voiced plosive stops in Greek' and that \(mp/nt/nk\) are not permissible.

The above claims are not entirely true. The interested reader can see in Appendix C several instances of words which may possess \(mp/nt/\eta k\) variants (e.g. \(kóNtra, taNpón\)). I discuss in detail similar words in Chapter 6. Also, the postulation by Householder (1964) of a whole class of words where, according to his analysis, only \(mp/nt/\eta k\) appear shows that these lexical items are anything but scant.

Moreover, the claim that no \(mp/nt/\eta k\) occur in MG may be said to be true only for the sequence \(nt\) which occurs before \(s\). Unlike \(mp\) and \(\eta k\), \(nt\) obligatorily undergoes voicing in this specific environment (e.g. \[dzadži\), *[ntsantski\] for \(NtsaNtsíki ‘dzadžiki’, but \[lámpsi\] and \[eléŋksi\], not *[l\(\ddot{a}\)mbzi\] and *[el\(\ddot{e}\)ŋgzi\] for \(l\(\ddot{a}\)Np\(\ddot{e}\)si\) and \(el\(\ddot{e}\)N\(\ddot{e}\)n\(\ddot{e}\)si\), respectively). In Chapters 5 and 6, I explain why \(nt\) sequences cannot occur before \(s\) in MG. Also, although it is true that \(mp/nt/\eta k\) do not occur word-initially in MG (and I explain why in Chapter 6), both \(mp\) and \(\eta k\) may and do occur word-medially before a phonetically adjacent \(s\), as in the words \[lámpsi\], \[eléŋksi\] (17) and in the sequence \(mpt\), as in the word \[pěmpti\] (18).
Finally, regarding the phonological relationship between \(mp/nt/\eta k \) and \(mb/nd/\eta g \) there are, again, two views. On the one hand, those linguists who derive \(mb/nd/\eta g \) from underlying \(mp/nt/\eta k \) claim that these two sets of segments do not contrast phonologically. On the other hand, those linguists who reject \(mp/nt/\eta k \) as the underlying representations of intervocalic \(b/d/g \) claim that \(mp/nt/\eta k \) and \(mb/nd/\eta g \) contrast phonologically. For instance, Householder (1964:24) who follows the latter school of thought remarks that, even though the functional load of \(mp/nt/\eta k \) 'is so low' and there only exists one near-minimal pair (i.e. /andante/ 'andante' and /antant/ 'Entente'), 'still, it is foolish to pretend that the evidence is not there'.

As I mentioned earlier in this sub-section, some researchers claim that whether a nasal reflex surfaces within words or not depends upon its Greek versus foreign origin and the characterisation of a word as 'learned' or 'non-learned'. This distinction has so far been adopted, albeit tacitly at times, by practically all linguists who have investigated MG phonological variation.

The great majority of learned words seems to begin with one of the nasal-ending prefixes (e.g. \{siN\}, \{paN\}, as in \(\text{sínodos} \) 'synod' and \(\text{pandémonio} \) 'pandemonium'). The findings concerning the tendency of the nasal reflex to surface in learned words are nevertheless contradictory. Walter (1979), Kakridi (1979), Setatos (1969), Newton (1972b) and Householder (1964) claim that words of the 'learned' vocabulary show a greater tendency in allowing the nasal reflex to surface. Bailly & Schmirl (1979) find that the surfacing of the nasal reflex takes place equally frequently in allegedly learned and non-learned words.

The lack of large and stylistically varied data sets and the influence exerted by the prestige attached to the ND variants have, I believe, led linguists to support the former
view. The prestige involved here is so strong that Tsopanakis (1985) claims that the only correct pronunciation of a learned item is the ND one. The D pronunciation is, he asserts, ungrammatical.

Where studies have involved samples containing foreign words, linguists have, on the whole, adopted Newton's view according to which 'the practice of an individual will often depend on his knowledge of the donor language'. Newton (1972b) prescriptively points out that the correct pronunciation is the one which corresponds to the historical phonological shape of a word. Bailly & Schmirl (1979) have used in their research foreign origin words which are assimilated into MG in varying degrees; most of them are fully integrated into MG, while some are recent loans. Their results show that an ND variant is used in these foreign origin words 60% of the time. This indicates that speakers treat these words in approximately the same way as Greek origin words.

Finally, many linguists claim that the rapidity of speech influences the surfacing of the nasal reflex (Setatos (1969), Newton (1972b) and Kakridi (1979)). Kakridi (1979), for instance, suggests that in the more rapid styles speakers use word-medially a greater percentage of D variants. However, this claim cannot achieve any statistical significance, mainly because of the difficulties involved in defining what rate of speech should be considered as slow or fast.

The rapidity of speech (if this could indeed be measured with any degree of accuracy), the 'learned' or 'non-learned' characterisation of a word and its Greek or foreign origin may exert some influence on the surfacing of the nasal reflex in those word sets in which this surfacing is optional. However, the above-mentioned factors would certainly not affect the pattern of phonological behaviour of the NC sequences. These patterns remain identical, irrespective of the rate of speech. This is due to the fact that the patterns of phonological
behaviour displayed by MG NC sequences are specified by the phonological system itself and cannot be influenced by extragrammatical factors. As a result, a word which displays the variation pattern \(ND \approx D \) (e.g. koNTá) continues to display this pattern even when the utterance containing it is delivered at a faster speed and irrespective of (i) the 'learned' or 'non-learned' characterisation of a word and (ii) its Greek or foreign origin.

As I show in Chapters 4 through 6, the distinctions between learned and non-learned words, Greek and foreign origin words and slow and fast speech are laden with social prejudice. In terms of the variation process, speakers treat all NC sequences which appear in identical syllabic structures in an identical manner. The etymological boundaries and the historical origin of words are invisible to phonology. In 6.1, I explain in more detail that whenever the grammar allows a choice between an \(ND \) and a \(D \) variant, the variant that finally gets selected by particular speakers in specific moments in time does not depend on linguistic but on social and stylistic factors\(^{15}\). The surfacing of the nasal reflex in these environments where it is optional has no bearing on the variation process itself. As a result, it should not be part of a phonological investigation of the variation process but of an investigation of the social and stylistic values that may attach to it.

\(^{15}\)Foremost among the social factors determining the choice of variants are (i) the age and sex of each speaker, (ii) the social network a speaker belongs to and (iii) the identity a speaker wants to project at particular moments in time. Foremost among the stylistic factors are (i) the amount of attention payed to speech (i.e. careful versus spontaneous speech), (ii) the characterisation of the particular word where the NC sequence appears as learned/non-learned, (iii) the Greek versus foreign origin of the word and (iv) the rapidity of speech (Pagoni ((1989) and (in preparation)a).
1.3 Summary

In this chapter, I have presented the MG data which are susceptible to the phenomenon of phonological variation and which consist of sequences of phonetically or phonologically adjacent nasal and oral stops. I have introduced the relevant environments where variation may be attested (i.e. a variety of major and minor cross-syntactic boundaries and within word positions), the variants which may occur in each of these environments and the variants which are disallowed in each of these contexts.

I have also reviewed the analyses that various linguists have so far proposed in an effort to account for the behaviour of at least part of these data. In addition, I have briefly exposed the best-known views on (i) prenasalisation, (ii) the underlying representation and distribution of MG b/d/g and (iii) the factors allegedly determining the choice of particular variants for the different word sets that have been examined. Finally, I have presented an assessment of these accounts which are couched within either the Structuralist or SPE-type frameworks and have outlined their major problems and shortcomings. In the subsequent chapters I will present an alternative account of MG phonological variation, formulated within the theoretical framework of GP, the main theoretical stipulations of which I present in Chapter 2.
CHAPTER TWO

THE THEORY OF PHONOLOGICAL GOVERNMENT

2.0 Introduction

This chapter aims at outlining Government Phonology, the theoretical framework within which the present analysis of Modern Greek phonological variation is formulated. The account I present here does not depict all aspects of the theory in a complete and exhaustive way. Its purpose is only to acquaint the unfamiliar reader with the main theoretical stipulations of Government Phonology and with the implications some of these stipulations have for the phonological analysis of the languages of the world.

The present outline and brief discussion focus on the main points of those aspects of the theory of Government Phonology which are particularly relevant to an analysis of Modern Greek phonological variation. Most, if not all, of the notions I introduce in the following sections are taken up in the argumentation I put forth in the subsequent chapters of this thesis.

2.1 Some theoretical principles of GP

GP (as developed by Kaye, Lowenstamm & Vergnaud (henceforth KLV) 1990) is, inter alia, a heavily restrictive theory of syllable structure. This theory is characterised by a number

\[1\] As I show later in this chapter, GP rejects the existence of syllables as independent constituent nodes. By saying, then, that GP is a theory of syllabic structure, phonologists working within this framework indicate the fact that GP is 'a theory about phonological strings' (Kaye 1990:306), i.e. a theory which investigates how segments are
of principles. Some of these principles are meta-theoretical, while others are principles of grammar. I discuss fully the principles of grammar later in this chapter (2.11). For the moment, I would like to focus my attention on the following five meta-theoretical principles that characterise the theory of GP (KLV 1990:194).

To begin with, universality ensures a uniform interpretation of the same physical object across phonological systems. One consequence of this principle is that markedness conventions are universal. This happens because the set of available phonological processes behaves like a function mapping initial representations onto final ones.

In the second place, non-arbitrariness refers to the existence of a direct relation between a phonological process and the context in which it occurs. As I show in 2.3, in a GP framework all phonological processes occur freely in direct response to structural and segmental conditions which are locally present in a phonological representation.

In the third and fourth place, privativeness specifies that phonological oppositions are privative, while uniformity specifies that lexical representations remain privative at all levels. Contrasts do not get converted into equipollent ones in the course of a derivation.

Lastly, interpretability designates that phonological representations should be interpretable at any level. Lexical representations do not change in kind (although they may change in detail) in the course of a derivation, as they are neither underspecified nor partially specified. Lexical representations are interpretable, just as derived ones are: no default rules are required to 'fill in' missing values.

grouped together in given structures and what types of configurations are allowed or disallowed in the different languages of the world.
2.2 GP as a principles and parameters approach

Unlike other generative frameworks (e.g. SPE-type approaches), GP draws theoretical parallels between syntax and phonology. This is done in an attempt to examine if and how principles of Universal Grammar (UG) found in syntax can also apply in phonology.

In a GP framework, all human phonological systems are perceived to be defined by a set of universal principles. These are the principles of grammar I briefly outline in 2.11. However, while all languages follow these universal principles of grammar, they are also perceived to differ along well-defined lines called parameters.

A parameter may be thought of as a kind of a switch. Typically, this switch has two positions: on or off. A particular property, be it syntactic, morphological, or phonological, may be present or absent from a system, or it may take one of two possible forms. Language acquisition may . . . be defined as determining just what the particular settings are for the series of switches appropriate to what is being learned. . . . Going from English to Chinese . . . is simply a question of changing the setting of these switches (Kaye 1989:54).

2.3 Phonological operations in GP

In opting for the principles and parameters approach and contrary to other generative frameworks, GP rejects the notion that the appropriate way of formalising phonological processes is through the use of rules of the sort $A \rightarrow B / C \rightarrow D$ applied in order.
The reasoning behind this rejection is that re-write rules can only describe phonological events as a series of substitution operations, i.e. in an arbitrary way. Re-write rules can capture any process, including unattested ones. In addition, re-write rules often evaluate well-motivated and freely attested processes as equally simple, unmarked and natural as other, apparently unattested, processes. Frameworks which use re-write rules fall short of explaining why processes happen where they do and in the way they do.

The mechanism of autosegmental spreading allows non-linear frameworks to account in a non-arbitrary way for processes such as assimilation by providing a direct formal connection between an assimilating target and its conditioning trigger. Nevertheless, until recently non-linear phonology has failed to provide non-arbitrary explanations for a host of other phonological processes such as lenition or zero-vowel alternations.

GP maintains that non-arbitrary explanations should form an integral part of the analysis of the phonological behaviour of languages. The rejection of re-write rules by GP is not to be taken as a rejection of the notion of phonological processes. On the contrary, GP specifies that phonological events take place whenever the segmental and structural conditions for their occurrence are met in a phonological representation. Following the notion of phonological government to be outlined in the subsequent sections of this chapter, only two types of phonological operations are formally expressible in this extremely impoverished theory of phonological activity: (i) composition and (ii) decomposition. These two universal processes take place under specific circumstances (i.e. they are never arbitrary): they are conditioned by locality.

The relationship between a phonological event and the context in which it occurs is no longer an
arbitrary one. Phonological events are local (Kaye 1989:146; his emphasis).

Phonological government defines the conditions under which positions can be seen as adjacent in a phonological string. The relations of government which hold between positions in a phonological string connect phonological events and contexts in a non-arbitrary way (Harris & Kaye 1990:3). As a result, any random substitution operation of elements which are not already present in the representation of segments cannot be accommodated in this framework. GP has 'no formal means of expressing non-occurring processes of a sort that are quite easily accommodated within orthodox feature frameworks' (Harris 1990:268).

2.4 GP as a theory of syllable structure

Phonologists working within autosegmental frameworks have observed that a significant number of phonetic properties (e.g. length of segments, tone, etc.) are best thought not to be tied to segments, but to span, in fact, 'domains of varying sizes (. . . feet, words, etc.)' (Durand 1990:242). In an effort to account for the interface between syllabic structure and segmental structure, phonologists have posited the existence of a tier mediating between segmental material and syllabic constituents. This tier is called the skeletal tier (or, simply, the skeleton) and consists of a series of points (or skeletal positions) which are symbolised as x's and represent units in time. As I show in more detail in 2.6, GP postulates that skeletal points are organised and associated to constituents in terms of the governing relations they contract with each other.

GP maintains that all the skeletal points (making up the skeletal tier of lexical representations) along with their segments (making up the segmental tier of lexical
representations) are projected to constituents, as illustrated in (1). Constituents, in their turn, are grouped together to form successively larger domains (e.g. foot, word, etc.). The theory of GP recognises three constituents: (i) the onset (O), (ii) the nucleus (N) and (iii) the rime (R). The syllable and the coda are both denied constituent status.

(1) Syllabic tier: O N
 | |
Skeletal tier: x x
 | |
Segmental tier: β α

All skeletal points are related to each other in terms of binary asymmetric relations referred to as government. For a government relation to hold in a phonological string, the conditions of strict locality and strict directionality must be met. Strict locality applying to a governing domain specifies that the governor must be strictly adjacent to the governee at the so-called zero projection level (P_0). Strict directionality applying to a governing domain specifies that the head is initial. As I show in 2.7, directionality goes from left to right within a constituent and from right to left across constituents at the P_0 level.

From these two conditions, the binarity theorem follows. It states that syllabic constituents can be maximally binary branching (2b): 'all n-ary constituents, where n>2, are ill-formed' (KLV 1990:199), (2c). Constituents with single members are always well-formed (2a). Branching is parametrically defined in different languages, with the restriction that absence of branching rimes in a language implies absence of...
both branching onsets and branching nuclei. Throughout this thesis, t stands for any segment that may occupy the syllabic position under discussion.

(2a) Syll. const. (2b) Syll. const. (2c) *Syll. const.
\[
\begin{array}{c|c|c|c|c|c|c|c|c}
1 & / & _ & / & _ & / & _ & / & _ \\
_ & X & X & X & X & X & X & X & X \\
_ & t & t & t & t & t & t & t & t \\
\end{array}
\]

The left branch of a rime is always a nucleus (3). In syntactic terms, the rime is the projection of the nucleus. The right branch of a branching rime (rimal complement) has traditionally been referred to as 'coda' within those frameworks which, unlike GP, assign to it the status of a syllabic constituent. The rimal complement is, strictly speaking, 'not a complement of the rhyme, but rather its specifier' (Charette 1989:165). This position is syllabified directly under the rime. In what follows, the expression 'rimal complement position' is to be interpreted as the right branch of a rime which is always doubly governed (from within and outside the constituent). Concretely, this position is governed by both the strictly adjacent preceding nuclear head and the strictly adjacent following onset head (as shown by the arrows in (3)). Throughout this thesis, a stands for any nuclear and β for any non-nuclear segment that may respectively occupy a nuclear and a non-nuclear position.

(3) R 0
\[
\begin{array}{c|c}
N & _ \\
_ & X \\
_ & a \\
_ & _ \\
_ & _ \\
_ & _ \\
_ & _ \\
_ & _ \\
\end{array} \quad X \rightarrow X \leftarrow X \quad a \beta \beta
\]

Within the framework of GP a nucleus is always preceded by an onset. As a result, all lexical representations at the
syllabic (constituent) level are linear sequences of pairs of onset-rimes. This means that no nucleus can stand on its own without an onset preceding it. Also vowel-initial words are analysed as being obligatorily preceded by an onset. This onset is empty.

All skeletal points that enter into a governing relation display systematic phonotactic dependencies. As a result, co-occurrence restrictions appear between segments that are in a governing relation in both intra- and inter-constituent contexts. According to Harris (1992:18), in intraconstituent contexts 'the distributional latitude of the righthand position of branching onsets and nuclei is much more tightly constrained than that afforded the head position on the left'. In the interconstituent contexts formed by an onset head and the preceding rimal complement, 'the righthand position . . . enjoys a greater degree of distributional freedom than that on the left' (Harris 1992:18).

Following the above systematic phonotactic dependencies that exist between skeletal positions which are in a governing relation, we would expect similar dependencies to be exhibited in sequences of onset-rimes. This, however is not the case: 'onset-nucleus sequences do not display the sort of phonotactic dependencies that are evident in coda-onset clusters' (Harris 1992:19), i.e. no co-occurrence restrictions exist between onsets and rimes. This means that any well-formed onset can be followed by any well-formed rime. This property has been called the Principle of Free Co-occurrence (KLV 1990).

Recall from above that an onset always precedes a rime. As I show in 2.5 through 2.12, the onset is governed by the nucleus that follows it.
2.5 The Licensing Principle

GP is based on the notion of syllabic constituents which form governing domains. Skeletal positions are related to each other through binary, asymmetric relations referred to as government. The governing relations that exist in any well-formed phonological string (i.e. a domain) are an instance of the application of the Licensing Principle. This specifies that in any one domain every position must be licensed, apart from one, which is the head of the domain. This unlicensed head of the domain is itself licensed at some higher level of the prosodic hierarchy.

Domains can be as small as the melodic material which is attached to one skeletal position. Licensing of this domain is crucial as it determines whether the melodic material in question receives phonetic interpretation or not. According to Harris (1992:17), 'the phonetic interpretability of units within a representation depends on their being legitimised through integration into the phonological hierarchy'. This means that the phonetic interpretation of segments (i.e. the licensing of melodic material) depends on the association of segments with skeletal points (Autosegmental Licensing, Harris 1992).

The presence of skeletal positions, constituents and successively higher domains (i.e. foot, word and so on) within the different levels of projection is authorised by the mechanism of prosodic licensing (Harris 1992). This mechanism specifies that the head of a licensing domain sanctions the presence of any other unit that might occur in that domain. For example, within the domain of a branching onset, a branching nucleus or a branching rime, the lefthand position licenses its complement by virtue of the fact that it is the head of that particular domain. Once it licenses its complement, this head is projected to the next level of the prosodic hierarchy where only constituent heads are projected.
This is the so-called 'level of licenser projection' (LPL) which I discuss in 2.9.1. In that level, every onset is licensed by its following nucleus. This means that in the domain formed by an onset and a following nucleus, the nucleus is the head. These nuclei which are heads at the LPL are then projected to even higher levels of the prosodic hierarchy (i.e. foot, word, etc.) where, ultimately, all but one are licensed. The unlicensed nucleus is the head of the domain.

Every observed phonological event is tightly linked to the Licensing Principle which can rightfully be considered as the motor of phonology. Government is but an instance of licensing. In 2.12, I return to this fundamental principle of GP and I elaborate on some of its most important aspects.

2.6 Government and syllabification

The traditional and widely accepted view that words are sequences of syllables (where 'syllable' is treated as an independent constituent node) is rejected within the framework of GP. Instead, GP regards words as 'linear sequences of segments and of skeletal points which are syllabified into constituents determined by the governing relation they contract with each other' (Charette 1988:xii). This means that words are formed by sequences of constituents organised in terms of government. Syllabification here proceeds from the governing relations that skeletal points contract with each other.

It is important to note that the relation between syllabification and government is not bidirectional: government is not determined by the syllabification of skeletal points into constituents. As Charette (1989:165) points out, 'a relation of government is a relation between skeletal points . . . heads and complements (governors and
governees) are skeletal points and not constituents. Skeletal points receive their properties of governor/governee from the segments.

2.7 Governing domains at the \(P_0 \) and \(P_1 \) levels

Government does not only take place at the \(P_0 \) level, but also at the \(P_1 \) level. In Section 2.7.1, I deal with constituent governing domains at the \(P_0 \) level. In Section 2.7.2, I tackle governing domains at the \(P_1 \) level.

2.7.1 Government at the \(P_0 \) level: constituent and interconstituent domains

Government within a constituent (being universally strictly directional) goes from left to right, i.e. syllabic constituents are head-initial. Government is strictly local and strictly directional at the level of zero projection and constituent governing domains are defined by left-headedness (4). Throughout this thesis, heads are underlined in the illustrated representations.

(4) Constituent Governing Domain

```
/ \  
|   |
\ x -- X
```

\^ I follow KLV (1990:211) who specify that 'locality in the strict sense is to be defined on the skeletal tier'. This means that two skeletal points are strictly local iff they are adjacent at the skeletal tier and no other skeletal point intervenes between them.
Interconstituent government holds between either (i) a potentially branching onset and the preceding rimal complement ((5a) and (5b) for non-branching and branching onsets respectively), or (ii) contiguous nuclei (5c).

(5) Interconstituent Governing Domains

```
a. R O |
   | N |
   | X X X |
   | T T T |

b. R O |
   | N |
   | X X X X |
   | T T T T |

(c. N O N |
   | N |
   | X X |
   | T T |
```

Just like in constituent governing domains, strict locality is also enforced in interconstituent governing domains. However, the directionality of government is different. Interconstituent governing domains are right-headed.

A problematic point for the theory of GP concerns the interconstituent governing relationship that also holds between an optionally branching rime and its preceding onset (6). So long as the onset does not branch (as in (6b)) the conditions of strict locality and strict directionality between the nucleus (the governor) and the onset (the governee) are respected. However, when the onset is branching (as in (6a)), the only condition that is respected is that of strict directionality (government going from right to left). The condition of strict locality is not respected at the level of projection where all skeletal points are present as, at this level, the nuclear governor is strictly adjacent to the onset complement and not to the onset head which it must govern. To the best of my knowledge, GP has not as yet addressed the above problem.
The assumption of a different directionality of government prevents misidentifications of the constituent and interconstituent status of domains. If directionality of government were identical in both, always going, say, from left to right, it would be impossible to assign constituent or interconstituent status to the different sequences of segments. If such were the case, GP would be an incoherent theory.

2.7.2 Government at the P_i level

At the P_0 level of projection, all skeletal positions are present. At the so-called 'nuclear projection level' (P_i) (one of the levels of projection I introduced in 2.4), not all positions are present. The P_i level of projection consists entirely of projections of nuclear heads. Two nuclear positions (which at P_0 are separated from each other by non-nuclear points) become adjacent at the nuclear projection level and are, as a consequence, allowed to enter into governing relations. The governing relations that obtain between these nuclear heads account for phenomena such as vowel harmony, stress assignment, syncope and tone.

At the level of nuclear projection, government is local but not strictly so. As I explained in 2.7.1, this is due to the fact that strict locality is defined at the skeletal tier (KLV 1990:211). Onset heads and possibly onset and/or rimal complements which intervene between nuclei at the P_0 level of projection are not projected at the P_i level. As a result, the nuclear positions which enter into governing relations at the P_i level of projection are only contiguous. The directionality
of government at the P_1 projection level is evident in the prosodic phenomena of each language and is parametrically defined. In all the clear cases that we know so far, it seems that government applies from right to left at this level of nuclear projection. As I show in Chapter 6, it appears that MG also follows this right-to-left directionality of government at this level of projection.

2.8 Charm Theory

As I show in more detail in 2.9 below, GP denies the existence of features as the phonological units out of which segments are made. Instead, GP claims that all phonological segments are made out of elements.

All phonological segments are formed out of a pool of primitives called 'elements' . . . [which] may occur alone or in combination. Their combinatorial possibilities are defined in terms of a property called 'charm' (KLV 1990:202).

Charm has an impact on more than the combinatorial possibilities of elements. As Harris (1990:262) observes, it has 'an impact on the combinability [of elements], on their organisation into segmental systems and on the ability of segments to occupy particular positions in phonological strings'. These aspects will become obvious in the next two sub-sections, where I concentrate on the two properties that determine the governing capacity of a segment, namely charm (2.8.1) and complexity (2.8.2).

2.8.1 The notion of charm

As I pointed out in 2.6, a relation of government is a relation between skeletal points which receive their properties of governor or governor from the segments that
occupy them. This does not mean that governing relations are first established between skeletal positions and only then segments decide which skeletal positions they can attach themselves to: governing relations have no way of knowing between which skeletal positions they should establish themselves. Rather, depending on the segmental material that skeletal positions have, certain types of governing relations are established while other types of governing relations are not.

The directionality of government between adjacent segments is reflected in the charm values of the segments that can occupy these positions. The charm value of segments determines where a segment may occur in a particular structure. As I pointed out in 2.6, GP regards words as linear sequences of segments. The charm values of these segments determine the relation they contract with each other. In other words, segments are organised into constituents according to their charm values. A syllable position is well-formed only if it is associated with a segment which has the appropriate governing properties, mainly in terms of charm.

Charm is marked by a superscript at the right top of the element or segment it characterises. It can take one of three values: positive (\(^+\)), neutral (\(\^0\)) or negative (\(^-\)). Certain vowels are positively charmed (e.g. \(a^+\)), sonorants are in general neutrally charmed (e.g. \(\hat{\theta}, \hat{\rho}\)), while stops and non-strident fricatives are generally negatively charmed (e.g. \(d^-\)).

It is important to note that charm is not arbitrarily attributed to segments. Its value is determined by a calculus of the individual charm values of the elements out of which a particular segment is composed. The charm value of a segment should not be confused with that of one of its elements. It may well be that they are different, exactly because the global charm of a segment is based on a calculus of charm of
all the elements that compose the particular segment and not on the charm of only one element.

As I show in more detail in Chapter 3, the MG nasal segments \(n^0 \) and \(m^0 \) display neutral charm (like all sonorants) even though the \(N^+ \) and the \(L^- \) elements\(^8\) which figure in their representation are, respectively, positively and negatively charmed. What happens here is that the positive and negative charm of these two elements cancel each other out; thus, the resulting segment has neutral charm.

Charm also determines the way in which the compositional elements of a particular segment combine. Specifically, elements with different charm values are attracted and charmed elements with like values (both positively or both negatively charmed) are repelled. For example, both \(A^+ \) and \(I^+ \) are positively charmed; they repel each other. Therefore, they cannot combine. In this way, GP accounts for the lack of a low ATR vowel in any language of the world.

Finally, let me present the role of charm in the distribution of segments in skeletal positions. GP stipulates that charmed segments (either positively or negatively) may govern. They can only be associated to governing positions; they cannot be governed by other segments, nor can they occur in governed positions. Neutral segments (also called 'charmless') can be governed. Neutral segments can also govern other neutrally (and only neutrally) charmed segments. The conditions under which neutral segments can occur in governing positions and perform governing duties are discussed in

\(^8\) I fully discuss the elements \(N^+ \) and \(L^- \) in 2.9.

\(^9\) The symbols \(A^+ \) and \(I^+ \) represent two of the elements that GP postulates. I deal with the element \(A^+ \) in Section 2.9. The symbol \(I^+ \) refers to the ATR element. This element is not present in MG. Consequently, I refrain from discussing it in any detail in this thesis. The interested reader is referred to KLV (1985) for a detailed and thorough presentation of this element.
2.8.2 The Complexity Condition

Charmless segments may be governed: they can be associated to governed positions. This means that charmless segments may be associated to either rimal complement or onset complement positions. If charmless segments are associated to governing positions, they must be no less complex than their governees (Complexity Condition, KLV 1990:218, Harris 1990:73-4).

Complexity, measured in terms of the number of elements a segment has in its representation, is the criterion used in order to account for the distribution and governing relations amongst neutral segments. The hierarchy of complexity for the neutral segments is: \{glides, \(r\}\} \prec / \prec nasals (KLV 1990:218).

Originally, KLV (1990:203) postulated that in branching onset configurations a 'negatively charmed segment must be associated to the head position and a charmless segment must appear to its right. Any other combination is ill-formed'. KLV (1990:207) postulate similar charm configurations for branching nuclei, although they admit that several 'apparent counterexamples come to mind'.

Regarding interconstituent government, KLV (1990:216) allow for two configurations. In the first one, a negatively charmed segment governs its preceding strictly adjacent neutral governee. In the second one, a neutral segment governs
another neutral segment 'if [the governor] has a complexity
greater than its governee' (KLV 1990:218; my emphasis). KLV
(1990) also mention that, if the onset position which must
license the preceding rimal complement position has to also
govern a complement, this onset position must be negatively
charmed. An onset head position can govern a less complex
rimal complement position and still be neutral only if it has
no onset complement to govern.

Harris (1990:273ff) convincingly argues for a
reformulation of the Complexity Condition. Specifically, he
shows that, irrespective of charm value, a segment 'must
satisfy certain complexity requirements before it can occupy
a governing position'. Concretely, it must be no less complex
than its governee\(^0\). Within a branching constituent, Harris
(1990:277) claims that 'a zero complexity differential is
tolerated in branching nuclei. This is not true of branching
onsets in which a downward complexity slope between the
governor and its governee is universally enforced'. In
interconstituent domains, Harris (1990:280) claims that 'an
upward complexity slope is universally required'.

Harris (1990) bases his claims for a downward complexity
slope within a branching onset and an upward complexity slope
in interconstituent contexts on the directionality of
government in these two governing domains. For the latter
governing domains, he explicitly claims that there is no
necessity for the governor to be negatively charmed in order
for it to carry out its governing duties. The interconstituent
governor may be charmless, provided that its complexity is

\(^0\)Brockhaus (1992a:120) points out that Harris's
reformulation of the Complexity Condition is too strong in the
context of branching rimes, where 'a simplex segment such as
[a] (consisting only of the element A) . . . [can] govern a
segment which is more complex', e.g. a lateral as in álma
'jump', or a nasal as in ánthropos 'man'. As I show in more
detail in Chapter 3, MG laterals consist of two elements while
MG nasals consist of a minimum of two elements.
greater than that of its charmless governee.

However, Harris (1990) avoids making an equally explicit claim for constituent governing domains (branching onsets). He believes (p.c.) that even in these contexts the onset head does not necessarily have to include a negatively charmed element in its representation. As I show in Chapter 3, MG provides ample evidence in favour of Harris's suspicion that negative charm is not necessary for onset heads which have to govern onset complements (as KLV (1990) propose).

In the analysis of MG phonological variation I present in this thesis, I do not follow KLV (1990) who are in favour of exclusively negatively charmed heads for branching onsets. Based on the evidence I provide in Chapter 3, I allow heads of branching onsets to be neutrally charmed in both constituent and interconstituent contexts, so long as the required complexity differential is respected between the neutrally charmed governor and the also neutrally charmed governee. I also allow heads of non-branching onsets to be neutrally charmed in interconstituent contexts, provided that the required complexity differential is respected between the neutrally charmed governor and its also neutrally charmed interconstituent governee.

Lastly, going back to Harris's reformulation of the Complexity Condition, let me mention that when the governed position is empty11 (as in the long monophthong \textipa{[i:]}, or the geminate \textipa{[tt]}) any segment can govern it. Empty positions are always characterised by zero complexity (no segment occupies them). This implies that the slope between the governor and the empty governee will always be downward. Therefore any segment can act as the governor of these positions.

11For a brief discussion of the issue of empty positions in GP, see 2.9.1.
2.9 Segmental representations

As I mentioned in 2.8, GP rejects the view that segments are composed of a set of features. In fact, GP rejects the notion of features altogether. GP postulates the existence of elements which are characterised as univalent, individually pronounceable atoms. In this framework, then, it is elements (and not features) that make up the internal structure of segments.

In 2.10, I present the different elements. Before this presentation, however, I would like to briefly consider: (i) the issue of empty positions in GP (2.9.1), (ii) the fusion operations elements may undergo (2.9.2), (iii) the cold vowel, the only element that needs separate mention (2.9.3) and (iv) the compositional elements of the nuclear segments of MG (2.9.4).

2.9.1. Empty positions in phonological strings

In accordance with much recent theory (e.g. Dependency Phonology), GP accepts and makes crucial reference to the existence of empty positions. Although some phonologists consider that these empty onset and nuclear positions are truly contentless, KLV (1990) claim that only empty onsets can be truly contentless (as in vowel-initial words). Empty nuclear positions must always have content as, contrary to empty onset positions, empty nuclear positions always have governing/licensing duties to carry out (see 2.5). As I explain in 2.9.3, an empty nucleus is a position which dominates the cold vowel, v° (Charette 1991:75).

The distribution of these empty positions is determined by government relations (holding between adjacent segments).

\[^{12}\text{For argumentation in favour of this position, see Charette (1991).}\]
and proper government13 relations (holding between contiguous nuclear positions). It was originally thought that proper government applies at the P\textsubscript{1} level. However, Charette (1990) convincingly argues that the blocking of proper government when a governing domain intervenes between the empty nucleus and its potential governor indicates that proper government does not apply at the level of nuclear projection.

Charette (1990) shows that proper government operates at the level of representation which she calls 'licenser projection level' (LPL) and which intervenes between the P\textsubscript{0} and P\textsubscript{1} level, as shown in (7). At the LPL, only licensers are projected. Licensers are all the nuclei (as they have to license their preceding onset heads) and those onset heads which have to license a complement.

\begin{equation}
\text{P}\textsubscript{1}: \quad \begin{array}{c|c|c|c|c}
 & N_1 & N_2 & N_3 & N_4 \\
\end{array}
\end{equation}

\begin{equation}
\text{LPL:} \quad \begin{array}{c|c|c|c|c|c}
 & N_1 & N_2 & O_3 & N_3 & N_4 \\
\end{array}
\end{equation}

\begin{equation}
\text{P}\textsubscript{0}: \quad \begin{array}{c|c|c|c|c|c}
 O_1 & N_1 & O_2 & N_2 & O_3 & N_3 & O_4 & N_4 \\
\end{array}
\end{equation}

The way in which empty nuclear positions are licensed in a particular language depends on whether they occur domain-medially or domain-finally. As I show in more detail in 2.11, MG domain-final empty nuclei are parametrically licensed, while MG domain-medial empty nuclei are licensed through proper government relations.

For a proper government relation to hold, two conditions must be met. Firstly, the governor must itself be audible (unlicensed). Secondly, the domain of proper government in which governing relations hold should not include any other governing domains. This means that a proper government relation could not hold in (7) between N\textsubscript{2} and N\textsubscript{3}, if (i) N\textsubscript{2} and N\textsubscript{3} were

13 The term 'proper government' is used to refer to this stronger form of government which obtains between contiguous nuclei.
filled by, respectively, an empty and a filled nucleus and (ii) this configuration belonged to a language which allowed right to left directionality at the P_1 level. This would be due to the fact that, at the LPL, a governing domain (i.e. the onset head of the onset licenser (O_3)) intervenes between the domain of proper government involving N_2 and N_3.

By way of contrast, a proper government relation would hold in (7) between N_1 and N_2, if (i) N_1 and N_2 were filled by, respectively, an empty and a filled nucleus and (ii) this configuration belonged to a language which allowed right to left directionality at the P_1 level. A proper government relation would also hold in (7) between N_1 and N_2, if (i) N_1 and N_2 were filled by, respectively, a filled and an empty nucleus and (ii) this configuration belonged to a language which allowed left to right directionality at the P_1 level. This would be due to the fact that, at the LPL, no governing domain intervenes between the domain of proper government involving N_1 and N_2.

2.9.2 The fusion of elements

Every element consists of a number of attributes one of which is salient or marked (referred by KLV (1985) as its 'hot feature'). The other attributes an element has are unmarked. The phonetic identity of an element can only be heard when it occurs as the sole component of a segment. R^0, for instance, has the tapped articulation as one of its unmarked attributes and coronality as its salient property. Its phonetic identity is heard in the pronunciation of the segment $[\ell]$, in which it occurs as the sole component.

A^1, I^0 and U^0, are three elements. Their properties are presented in (8). Salient properties are set out in bold.
When elements combine with other elements they form compound segments. Compound segments involve at least two elements. In general, one element, defined as the operator, contributes its salient property (overriding that of the head). The other element, defined as the head, contributes its charm value and all the remaining unmarked properties to the fused expression. In (9) and (10) below, I respectively present the compound segments \aleph and ε. My aim is to show that the reversal of the operator/head role assumed by the same element crucially influences the identity of the resulting segment (i.e. $I^0 \cdot A^+ = \aleph$ (9) and $A^+ \cdot I^0 = \varepsilon$ (10)).

In representational terms, each element occupies its own
2 The Theory of Phonological Government

autosegmental line. Autosegmental lines can, subject to parametric variation, be fused. The result of such fusions is that certain segments are ruled out in a particular language. For instance, the fusion of the U^0 and I^0 lines in Greek accounts for the lack of a front labial vowel [y]. The independence of the same lines in French accounts for its presence in that language (e.g. <lune> 'moon').

2.9.3 The cold vowel

According to KLV (1985), the absence of an element is indicated by a maximally unmarked element. This element is called 'cold vowel' and is represented as v^0 (11). The cold vowel has no salient (or 'hot') property; hence, the term 'cold'.

(11) -round
 +back
 +high
 -ATR
 -low

(v^0)

The cold vowel only manifests itself when it occupies the head position of a particular configuration, as illustrated in (12). In the operator position, the cold vowel does not contribute anything to the segmental representations it is added to. As shown in (13), it simply represents 'the absence of [any] element in a given internal representation. In that sense, the cold element may be compared with the number zero (0) in mathematics' (Charette 1991:211).

(12) Operator	Head	Segment
-round | -round | -round
+back | +back | +back
-high | +high | -high
-ATR | -ATR | -ATR
+low | -low | -low

(A^i | v^0 | $[e]^0$)
Following the proposal set out in KLV (1985), an 'empty nucleus' is one that contains only the cold vowel, v^0 (see also 2.9.1). As Charette (1991:75) points out, 'the absence of an element in a nuclear position represents the presence of the cold element in this position. The phonetic interpretation of this matrix of features is the vowel $[i]$. The cold element is not phonetically interpretable in every language. Its phonetic realization is subject to parametric variation. In French, for example, the cold element cannot be realized phonetically. In contrast with French, the cold element is manifested in Moroccan Arabic. But in every language a nucleus dominating the cold element is different from a nucleus dominating any other segment. It is sometimes manifested phonetically and sometimes not. To be realized as zero a nucleus dominating the cold element must satisfy certain conditions. Specifically, it must be either parametrically licensed (in those languages which parametrically license their domain-final empty nuclei), or it must be properly governed. When a nucleus 'does not satisfy the conditions for being properly governed, it must receive a phonetic interpretation. In Moroccan Arabic, given that the cold element may be expressed phonetically, a vowel $[i]$ is realized. In French, where the cold element cannot be expressed phonetically, the strategy is to add the element A^t to the internal representation of the empty nucleus. . . . This results in a segment composed of the cold element as its head and the element A^t as its operator. Such a representation corresponds to the vocalic segment schwa' (Charette 1991:75), as illustrated in (14).

<table>
<thead>
<tr>
<th>Operator</th>
<th>Head</th>
<th>Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>-round</td>
<td>-round</td>
<td>-round</td>
</tr>
<tr>
<td>+back</td>
<td>-back</td>
<td>-back</td>
</tr>
<tr>
<td>+high</td>
<td>-high</td>
<td>-high</td>
</tr>
<tr>
<td>-ATR</td>
<td>-ATR</td>
<td>-ATR</td>
</tr>
<tr>
<td>-low</td>
<td>+low</td>
<td>+low</td>
</tr>
<tr>
<td>(v^0)</td>
<td>A^t</td>
<td>$[a]^t$</td>
</tr>
</tbody>
</table>
(14) $v^0 \, v^0$ Head
 \[
 \begin{array}{c}
 v^0 \\
 A^+ \\
 \end{array}
 \]
 Operator

Throughout this thesis, I follow Charette (1991:75) and consider an empty nucleus as a nuclear position dominating a nuclear skeletal point to which the cold element is attached. The configuration that can be used for this empty nucleus is shown in (15a) and is simplified in (15b). Both (15a) and (15b) designate the same object.

(15a) N
 \[
 \begin{array}{c}
 X \\
 v^0 \\
 \end{array}
 \]

Contrary to languages such as French and Moroccan Arabic, the cold element does not receive any phonetic exponence in MG. Nonetheless, the evidence of its presence in the syllabic structure of MG words is clear and unambiguous (see Chapters 4 and 5).

2.9.4 The MG vowel system

The MG vowel system consists of five phonetically expressed vowels, namely i, e, a, o and u15. In (16) below, I present the elements of which the five MG nuclear segments are composed. Heads are underlined in the representations that follow.

(16) i^0
 \[
 \begin{array}{c}
 i^0 \\
 v^0 \\
 A^+ \\
 \end{array}
 \]

e
 \[
 \begin{array}{c}
 \quad e \\
 v^0 \\
 A^+ \\
 \end{array}
 \]

a
 \[
 \begin{array}{c}
 a \\
 v^0 \\
 A^+ \\
 \end{array}
 \]

o
 \[
 \begin{array}{c}
 o \\
 v^0 \\
 A^+ \\
 \end{array}
 \]

u

15As I have just explained in 2.9.3, MG also possesses the cold vowel, which, however, does not have any phonetic exponence in the language. In Chapters 3 through 6, I provide ample evidence in favour of the existence of the cold vowel in MG and the influence it exerts on the phonological processes of the language.
2.10 The elements

Before proceeding to a presentation of the elements I use in my ensuing discussion of MG, I would like to outline the salient properties of those elements I present here for the first time. I would also like to define these elements not only in articulatory but also in acoustic terms. The definition of elements in acoustic terms is particularly important, as 'elementary phonological units map onto perceptual representations of the acoustic signal in a relatively direct manner' (Lindsey and Harris 1990:355).

The salient property of the occlusion element (?°) is 'a significant reduction in overall amplitude in the speech signal, such as is achieved by a radical constriction of the oral cavity' (Harris & Kaye 1990:5). The salient property of the coronal element (R°) is coronality. Nasality (N*) is defined by specifying a lowering of the velum. The narrowed element (h°) refers to the presence of high frequency aperiodic energy in the signal. In articulatory terms it signifies a narrowing in the vocal tract.

KLV (1990) propose two source elements: H' and L'. The low tone (L') is specified as the laryngeal activity which is manifested as a drop in the fundamental frequency of the signal and is related to a slackness of the vocal folds. When L' is associated with a nuclear position it is interpreted as a low tone. When it is associated with a non-nuclear position it is interpreted as full voicing. The high tone (H') is specified as the active laryngeal gesture which raises the fundamental frequency; in articulatory terms it signifies the stiffening of the vocal folds. The element H' is interpreted as a high tone when associated with a nuclear position and as voicelessness when associated with a non-nuclear position. As I pointed out in 2.9.2 (footnote 14), L' and H' contribute their negative charm to an expression both as heads and operators.
The elements I have so far discussed, together with their respective salient properties and phonetic realisations, are illustrated in (17).

(17) Element	Salient property	Phonetic realisation
U₀ | labiality | u
I₀ | palatality | i
η₀ | none | ɪ₁\(^{16}\)
R₀ | coronality | ɻ
?₀ | occlusion | ?
h₀ | narrowing | h
N_| nasality | n
L_| slackness of vocal folds | L/'voice'
H_| stiffness of vocal folds | H/'voicelessness'

Elements can spread and be added to in the representation of a particular segment so as to strengthen it when it has governing or licensing work to perform. This process is called composition (i.e. fusion of elements from neighbouring segments).

Apart from composition, GP recognises another phonological operation: decomposition. In decomposition

\(^{16}\)As I pointed out in 2.9, people working within a GP framework often use the symbol ɪ to designate the phonetic realisation of the cold vowel. The equivalent IPA symbol could be any of the ɪ, ʌ, ʊ, each of which represents a phonetically but not phonologically distinct segment. Phonological systems display a great variety of distinct front, low and round vowels. However, they do not seem to differentiate phonologically between segments which are characterised as being none of the front, or low, or labial. The symbol ɪ, then, is used here to denote a sound which is none of the front, or low, or labial.
processes, elements are taken away17 from the representation of a particular segment, so that the weakened segment can be governed by other (charmed, or more complex) segments which occur in adjacent governing positions.

Decomposition (i.e. the loss of elements) takes place in typically weakening environments. In English, for instance, \(t \) can decompose into its elements in internuclear positions18 (Harris & Kaye 1990). We are, then, able to observe that \(t \), the coronal stop, consists of (at least) an occlusion element, which acts as the operator and a coronal element, which acts as the head (18).

\[
\begin{array}{c}
18 & x \\
\uparrow & 0 \\
\uparrow & R0 \\
\uparrow & t
\end{array}
\]

17 Although still encountered in the literature, the term 'taken away' might be too strong. Harris (1992) and Brockhaus ((1992a) and (1992b)) seem more inclined to support the view that in decomposition processes elements become unlicensed. This means that elements are still present in a representation, but, as they are not licensed, they receive no phonetic exponence. They, therefore, behave as if they are absent. I come back to this point in Chapter 6.

18 This and the so-called 'word-final' position are the typical weakening environments. GP treats both positions identically. This happens because, according to the theory, word-final positions are also internuclear. This follows from the principle that every onset has to be followed by a nucleus so that licensing can take place (see also 2.11).

I deliberately use the term 'internuclear' here. The term 'intervocalic' is inadequate for two reasons. First, it does not have a definition in the theory. Second, it denotes an important context difference as it refers to a position between filled nuclei. In the so-called 'word-final' position, however, some languages, such as MG, have phonetically unrealised nuclei. The term 'internuclear' covers these cases as it also refers to empty nuclear positions.
2.11 Some principles of grammar

As I mentioned in 2.2, GP appeals to certain principles of grammar, some of them originally borrowed from syntax, in its effort to provide phonological explanations for the analyses of the languages of the world. Some of these principles are outlined below.

2.11.1 The well-formedness of phonological representations

Following the Licensing Principle (briefly presented in 2.5), every position in a domain must be licensed apart from one which is the head of the domain. As a result of the Licensing Principle, phonological representations are universally well-formed only if they consist of onset-rime pairs. Each onset must be licensed by a following nucleus (Onset Licensing Principle, Harris 1992:19) and each nucleus must be preceded by an onset. Phonological representations of words are, then, universally defined as onset-rime pairs.

As I mentioned in 2.4 and 2.9, one corollary of this principle is that vowel-initial words are always preceded by an empty onset and all words universally end with a nucleus. Whether or not this domain-final nucleus is empty is subject to parametric variation. Some languages (e.g. Greek, English, Arabic) license their domain-final empty nuclei, allowing words to phonetically end in a consonant. Other languages (e.g. Italian, Hawaiian, Swahili) do not license their domain-final empty nuclei. In these languages, all words end in a phonetically expressed nucleus.

Structures like (19a) for the accusative case of the MG masculine definitive article [ton] 'the' are universally ill-formed: a non-nuclear position (0

As I mentioned in 2.6, the syllable has no constituent status in GP.
correct structure is given in (19b), where an empty domain-final nucleus (N₂) licenses O₂.

(19a) *

<table>
<thead>
<tr>
<th>O₁</th>
<th>N₁</th>
<th>O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>t</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(19b) O₁ | N₁ | O₂ | N₂ |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>t</td>
<td>o</td>
<td>n</td>
<td>v₀</td>
</tr>
</tbody>
</table>

The other alternative structure, whereby the segment n is syllabified in the rimal complement position without an empty nucleus following it, is rejected by GP, as I show in 2.11.2. In frameworks which are less constricted than GP, this word-final consonant (n) would be syllabified in a coda position (i.e. in a rimal complement position) and licensed by a following empty nucleus. However, such a syllabification would be impossible in a GP framework, where, in accordance with the Coda Licensing Principle (see 2.11.2), internuclear consonants are universally syllabified within an onset and not in the preceding rimal complement position (i.e. ci-ty, *cit-y).

2.11.2 The Coda Licensing Principle

According to Kaye (1990a:311), the Coda Licensing Principle specifies that 'post-nuclear rhytmal positions must be licensed by a following onset'. This means that for those languages which allow branching rimes, the segment r of a word like vúrkosv₀ 'swamp' can only be syllabified into the rimal complement position. The segment k will, then, be syllabified into the onset head position (O₂). From the O₂ head position, k may license the neutrally charmed and less complex segment r (20).

(20) O₁ | R₁ | O₂ | R₂ | O₃ | R₃ |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
<td>\</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N₁</td>
<td></td>
<td>N₂</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>v</td>
<td>u</td>
<td>r</td>
<td>k</td>
<td>o</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>v₀</td>
</tr>
</tbody>
</table>
The word vûrkosv^ shows the application at the constituent level of projection of both the Coda Licensing and the Onset Licensing Principles: r is licensed by k (according to the Coda Licensing Principle) and s is licensed by the following empty nucleus (according to the Onset Licensing Principle). Following 2.9.2 and 2.11.1, the empty nucleus \(N_2 \) is parametrically licensed in MG by virtue of the fact that it occurs in domain-final position. The first nucleus \(N_1 \) licenses its preceding onset \(O_1 \) and governs its following complement \(r \). Finally, the second nucleus \(N_3 \) licenses its preceding onset \(k \).

2.11.3 The Empty Category Principle

The Empty Category Principle (ECP) specifies that 'a licensed empty nucleus has no phonetic realisation. An empty nucleus is licensed if (a) it is properly governed or (b) it is domain-final in languages which [parametrically] license domain-final empty nuclei' (Kaye 1990a:314). Empty nuclei are licensed in MG (see also Chapters 4 through 6), either through proper government (e.g. MG pv^o/s/kv^o/s/pv^o/t/kv^o/t), or by virtue of occurring domain-finally (e.g. vûrkosv^).

2.11.4 The Projection Principle

The Projection Principle states that governing relations 'are defined at the level of lexical representations and remain constant throughout a phonological derivation' (KLV 1990:221).

The postulation of the Projection Principle implies that the existing governing relations cannot be altered during the course of a derivation. As a result, resyllabification, which implies a restructuring of existing governing relations, is excluded as a possibility in the theory. This is a most important principle of GP.
2.12 The Licensing Principle revisited

In the preceding sections of this chapter, we have seen that, following Harris (1992), the phonetic interpretability of the units of a phonological representation crucially depends on their being legitimised through integration into the phonological hierarchy. As a result, the phonetic interpretability of a melody unit depends on whether this unit is associated to a skeletal position (Autosegmental Licensing). The presence of positions at the skeletal and higher levels of projection (constituent, foot, word and so on) is sanctioned by the mechanism of prosodic licensing.

The phonological licensing principle manifests itself as autosegmental licensing or prosodic licensing according to the domain in which it applies. According to the well-formedness condition of phonological representations, every onset must be followed by a nucleus. According to the Onset Licensing Principle, this nucleus is required to license its preceding onset. As Charette (1992) proposes, a non-nuclear head (i.e. an onset head position) can only govern a complement if it is government-licensed by its nucleus. This means that the nucleus ((N₂), as in (21) for the word 'astro 'star') can give the licensing power to its preceding onset ((O₂), as in (21)) to either govern its complement (as in branching onsets) or license its preceding rimal complement position (as in interconstituent governing contexts).

\[
\begin{array}{c}
(21) O_1 & R_1 & O_2 & R_2 \\
N_1 & \ \ N_2 \\
X & X & X & X \\
a & s & t & r & o
\end{array}
\]

When the nucleus that is required to government-license its preceding onset has phonetic content, there seems to be no problem: it can carry out its government-licensing duties without any problems or complications. However, when the
nucleus is empty, its strength in government-licensing depends on whether it is properly governed or parametrically licensed.

According to Charette (1992), if the parametrically licensed domain-final empty nuclei are government-licensors in a particular language, the properly governed empty nuclei of that language can either also be government-licensors (e.g. Polish) or not be government-licensors (e.g. Standard French). If in a language a properly governed empty nucleus is a government-licenser, its parametrically licensed domain-final empty nuclei must obligatorily also be government-licensors (e.g. Polish, German).

Brockhaus (1992b) takes this notion of government-licensing that Charette applies to skeletal positions and constituents even further. She proposes that, as licensing applies at all levels of representation, the segmental content of individual positions must be licensed too. Specifically, Brockhaus (1992b) argues in favour of the notion of element-licensing, i.e. the right for individual elements and combinations thereof to appear in skeletal positions. She points out that nuclei with phonetic content (i.e. unlicensed nuclei) are always strong licensers, while empty nuclei can be either strong or weak licensers, depending on whether they are parametrically licensed or properly governed.

Brockhaus's (1992a) research suggests that, in the Hochlautung Standard German pronunciation, only properly governed empty nuclei can be strong licensers. Her research of German final obstruent devoicing (Brockhaus 1992a, 1992b) suggests that parametrically licensed final empty nuclei are weak licensers. Specifically, when preceded by an obstruent, parametrically licensed final empty nuclei cannot license the element L' (hence the devoicing process of final obstruents in German).

As I show in Chapter 6, the present research suggests
that parametrically licensed final empty nuclei are weak licensors in MG too. Domain-internal properly governed empty nuclear positions seem to be able to be either strong or weak licensors. In German, the choice is determined by regionally defined dialectal differences. Specifically, properly governed empty nuclei are strong element licensors in Hochlautung but weak element licensors in Northern Standard German (Brockhaus 1992a, 1992b). In MG, the choice is determined by social factors. As I show in more detail in Chapter 6, properly governed empty nuclei are weak element-licensors in the dialect of a socially defined group of speakers and strong element-licensors in the dialect of another social group.

2.13 Summary

The purpose of this chapter was to outline the main theoretical stipulations of Government Phonology. This is a theory which places particular emphasis on both syllable structure and segmental structure. GP adopts a principles and parameters approach. It is characterised by the metatheoretical principles of privativeness, universality, non-arbitrariness, uniformity and interpretability. Locality underlies composition and decomposition, the only two phonological operations that GP recognises.

In this theory, governing relations obtain between adjacent skeletal positions. The correct syllable structure of words can be determined on the basis of the element(s) which compose the different segments, their complexity and (individual) charm and the universality of certain principles of grammar. Foremost among these principles of grammar are the Licensing Principle, the Coda Licensing Principle, the Projection Principle and the ECP.

Well-formed representations consist of onset-rime pairs. Government is an asymmetric relation holding between adjacent
positions in a phonological string. Locality and directionality are strict at the level of P_0; directionality is left-headed within a constituent and right-headed between adjacent constituents; at the P_1 level locality is not strict and directionality is parametrically defined in the different languages of the world.

This chapter also contained a discussion of (i) the salient properties of the elements out of which MG nuclear and non-nuclear segments are composed, (ii) the cold vowel and (iii) the place of empty positions in phonology. The issues I have briefly presented in this chapter are instrumental for the discussion of MG phonological variation which follows in the subsequent chapters.
CHAPTER THREE

THE INTERNAL STRUCTURE
OF THE MODERN GREEK NASAL AND ORAL STOPS

3.0 Introduction

In this chapter, I propose an analysis of the Modern Greek nasal and oral stops within the theoretical framework of Government Phonology. A comprehensive analysis of all Modern Greek nuclear and non-nuclear segments would undoubtedly give a more thorough picture of the language and all its aspects of phonological variation. However, as the aim of the present thesis is to investigate the phonological variation obtaining between nasal and oral stops, my discussion is confined only to these two sets of segments.

This chapter is divided into two sections. In Section 3.1, I deal with the internal structure of the nasal segments. In Section 3.2, I tackle the internal structure of the oral stops. In both sections, I discuss issues of lexical distinctiveness of the elements that make up the internal representation of these segments. I also elaborate on questions relating to the charm values of the different nasal and oral stops and to the possibility of each of these segments occurring in governing positions.

Throughout this chapter I draw heavily on a number of theoretical assumptions of Government Phonology which I introduced and briefly outlined in Chapter 2. The analysis I provide here is instrumental for two reasons. First, it provides a basis for the argumentation of Chapter 4 (the syllabic structure of the sequences pt/kt and pn/kn) and Chapter 5 (the syllabic structure of ts and ps/ks). Second, it forms the basis for Chapter 6, where I elaborate on the
3 The Internal Structure of the MG Nasal and Oral Stops

explanations Government Phonology provides for the behaviour of the MG NC sequences that I presented and briefly discussed in Chapter 1.

3.1 The nasal segments

In this section, I concentrate on the nasal segments. The segmental representations I provide below are in line with current thinking in the field and are derived from the distributional properties these segments display in MG and other languages of the world (e.g. Japanese, Yoshida (1991)).

In Section 3.1.1, I introduce the internal structure of the nasal segments. In particular, I present the compositional elements of the nasal segments and the charm value these elements attribute to the ensuing nasal segment. In Section 3.1.2, I deal with the possibility that exists for nasals to be governed by other neutral segments, an issue I come back to in 3.1.4. In 3.1.3, I explore the question of the lexical distinctiveness of the elements that make up the MG nasal segments.

3.1.1 The internal structure of nasal segments

KLV propose that the elements which combine to form the nasal segments are four, namely (i) \(N^i \) (indicating nasality), (ii) \(?^0 \) (indicating the presence of an occlusion in the oral cavity), (iii) place element (indicating the place of the occlusion) and (iv) \(L^- \) (indicating the slackness of the vocal folds during the production of nasal segments).

As I explained in 2.8.1, the interaction of the positive charm of the \(N^i \) element and the negative charm of the \(L^- \) element gives neutral charm value to any ensuing nasal segment. As I pointed out in 2.8.1 and 2.8.2, neutral charm is the property that allows nasal segments to occur in
governed positions such as the rimal complement position. In this position, the neutrally charmed nasal is governed not only by the nucleus that precedes it, but also by the non-nuclear onset head that follows it. The onset head position which governs the nasal can be filled by either a negatively charmed segment or by a more complex neutrally charmed non-nuclear segment. If, however, nasal segments occur in governing positions, the segments they can govern should meet two requirements. First, they should also be neutrally charmed. Second, they should be less complex than the nasals (Hierarchy of Complexity, 2.8.2).

3.1.2 The Complexity Condition and the internal representation of the nasal segments: a 'conflict'

According to the Complexity Condition (2.8.2), non-nuclear neutral segments which occur in governing positions can govern other neutral segments through interconstituent government, provided that the governed non-nuclear segments are less complex than their neutral non-nuclear governors. The typically governed neutral segments \(r \) and \(l \) consist of one and two elements respectively. In line with the Complexity Condition, it is stipulated that a neutral non-nuclear governor must be composed of at least one additional element.

This means that the minimum number of elements a neutral governor can consist of when it is required to govern a segment which is composed of only one element (e.g. \(r \)) is two. However, when required to govern a segment which consists of two elements (e.g. \(l \)), the minimum number of elements a neutral non-nuclear governor can be composed of is three.

As I show in 3.2.1, the minimum number of elements a neutral oral stop\(^1\) has when it occurs in a governing position

\(^1\)In 3.2.2, I provide several arguments in favour of the claim that the oral stop governing/licensing the strictly adjacent nasal is neutrally rather than negatively charmed.
is three. This allows neutral oral stops to govern the less complex segments \(r \) and \(l \). But what about nasals?

Nasals are the most complex of all neutral segments (Hierarchy of Complexity, 2.8.2). It is the four elements making up the internal representation of the nasals that render them so complex (3.1.1).

This means that GP is faced with a paradox. The contradiction is as follows. On the one hand, in interconstituent\(^2\) governing domains of nasal and oral stops (as in \(mp \) or \(nt \)) the neutral governed member appears to have four elements in its representation (following 3.1.1). On the other hand, in these interconstituent governing domains the neutral governor has only three elements (following 3.2.1). The question, then, is how the nasal, which has four elements in its representation, can be governed by a neutral oral stop which has only three elements in its representation?

In order to answer this question, I first need to examine the lexical distinctiveness of the elements which make up the nasal segments. In the following sub-section, I explore this issue. My aim is to demonstrate in 3.1.4 that the 'contradiction' mentioned above is only apparent. As Harris (1990) first suggested, nasal segments are composed of only two elements whenever they occur in positions adjacent to governing oral stops.

3.1.3 Lexical distinctiveness of the elements composing the MG nasal segments

In this account of the internal structure of MG nasals, the reader should note that not all four of the elements presented in 3.1.1 are lexically distinctive in all environments. The

\(^2\)In 3.2.2, I explain why I assume an interconstituent rather than a constituent governing domain here.
lexical distinctiveness of certain of these elements is determined by the internal structure of the segment that fills the strictly adjacent following position which belongs to the same governing domain. In particular, the elements that combine for the formation of the nasal segments crucially depend on the nuclear or non-nuclear nature of the following segment.

Let me first investigate pre-nuclear contexts. I would like to propose that when a nasal segment is followed by any of the five nuclear segments of MG all four elements mentioned in 3.1.1 (i.e. \(N^i \), \(L^i \), \(?^0 \) and place specification elements) combine to form its internal structure. In other words, all four elements are lexically distinctive in pre-nuclear contexts (1). Recall that throughout this thesis underlined elements in illustrated representations act as heads.

\[
\begin{array}{c}
X \\
\downarrow \\
N^i \\
\downarrow \\
L \\
\downarrow \\
R^0 \\
\downarrow \\
?^0 \\
\end{array} \\
\begin{array}{c}
X \\
\downarrow \\
A^i \\
\downarrow \\
?^0 \\
\end{array}
\]

\(n \quad e \quad 'yes' \)

In pre-nuclear contexts two lexically distinct nasal segments may appear: \(m \) and \(n \), as in the words \(ma \) 'but' and \(na \) 'to' respectively. The two nasal segments are differentiated by means of the place specification element. The internal structure of \(m \) (2) contains the labiality element \((U^0) \) and that of \(n \) (3) contains the coronal element \((R^0) \).

\[3\] Specifically, the occlusion and the place specification elements (see also 3.2.1).

\[4\] I follow KLV (1989) in the assignment of head/operator role to the compositional elements of nuclear and non-nuclear segments of MG.
Let me now turn to non-nuclear contexts. When a nasal segment is followed by a non-nuclear segment, the situation is somewhat different from the one we saw above. The lexical distinctiveness of some of the elements of the nasal segment crucially depends on the internal structure of the following strictly adjacent non-nuclear segment. As I pointed out at the beginning of this sub-section, the elements involved in questions of lexical distinctiveness are the place specification and occlusion elements.

With respect to the place specification element, I would like to suggest that before non-nuclear positions this element is never lexically distinctive for the MG nasals. Words such as [emfisima] 'emphysema', [en throne si] 'enthroning', [en xeo] 'instil', [la mbi] 'shines', [pen de] 'five' and [angelos] 'angel' demonstrate that the nasals always assume the place specification of the strictly adjacent non-nuclear segment that governs them. The place element spreads from the following segment, be it an oral stop (4) or a fricative (5), onto the nasal. No *mθ, *mδ, *mθ, *md, *nf, *ny, *my, *mk, *mg, *np, *nb, *nk, *ng sequences exist in MG.

5For more details on the governing relations that obtain between nasals and obstruents (with particular emphasis on oral stops), see 3.2.2 and Chapters 4 through 6.

6In Chapter 6, I deal with apparent counterexamples to this claim, and specifically with the sequences mt and md as they appear in the phonetic variants [pemti] = [pemdī] 'Thursday'.
With respect to the occlusion element $?^0$, Brockhaus (1992a:183) suggests that the $?^0$ element is lexically distinctive for nasals when the non-nuclear segment following them is a fricative (6). I have independently come to the same conclusion, i.e. that the $?^0$ element is included in the representation of the nasal segments when these are followed by fricatives. As no occlusion element is ever included in the representation of fricatives, the spreading of this element from a fricative onto a nasal segment is impossible.

Nevertheless, when nasal segments are followed by oral stops, the occlusion element $?^0$ (just like the place specification element) is not lexically distinctive for the nasal. As Harris (1990:280) shows, the occlusion element (which forms part of the internal structure of oral stops) can spread from the oral stop onto the nasal. In (7) through (10) below, I demonstrate the spreading of the occlusion element
which takes place when a nasal segment precedes any of the four MG oral stops.

(7) \[
\begin{array}{c}
N^{-} \\
L^{-} \\
I \\
U^{0} \\
\end{array}
\quad
\begin{array}{c}
N^{+} \\
L^{-} \\
I \\
V^{0} \\
\end{array}
\quad
\begin{array}{c}
N^{+} \\
L^{-} \\
I \\
R^{0} \\
\end{array}
\quad
\begin{array}{c}
N^{+} \\
L^{-} \\
I \\
R^{0} \\
\end{array}
\]

m p n t Ñ k n ts

As I discuss in more detail in 3.2.2, in this particular environment (i.e. before an oral stop), the occlusion and place specification elements are not the only elements that spread from one position to a strictly adjacent one. The L$^{−}$ element may also spread from the nasal onto the stop. This multiple spreading results in the turning of the so far neutrally charmed stop into a negatively charmed low-toned stop. This change is of great significance for the phonological processes I examine. I elaborate on it in 3.2.2 and Chapters 4 through 6.

In contrast, the L$^{−}$ element of the nasal segments does not spread onto strictly adjacent following fricatives as it does with strictly adjacent following oral stops (e.g. [emfísima] 'emphysema' versus [emvolí] 'embolism', [enθróniσi] 'enthroning' versus [énσia] 'poverty' and [énsimo] 'stamp' versus [énzimo] 'enzyme'). This may be indicative of the presence of a negative charm in MG fricatives (6). If this is indeed the case, the impossibility of fricatives becoming low-toned in the strict adjacency of a preceding nasal segment is actually predictable. (Recall the repellent tendencies between

\[\text{In Chapter 6, I examine the specific circumstances under which the L$^{−}$ element spreads from the nasal onto the stop.}\]
identically charmed elements (2.8.1).) Still, this is an issue in need of further investigation. I do not explore it in this thesis as it falls beyond the immediate concerns of the present analysis of MG phonological variation.

3.1.4 Government of nasals by other neutral segments

Let me now come back to the paradox mentioned in 3.1.2, namely that nasals which have four elements in their representation are required to be governed by neutral oral stops which have only three elements in their internal structure, i.e. oral stops which are made up of fewer elements than the nasals.

In 3.1.3, I showed that before certain non-nuclear segments, namely obstruents, the nasals do not consist of all four of their elements (as they do in pre-nuclear positions). In this thesis, I am mostly concerned with the pre-stop environment. So far, we have seen that NC sequences are always homorganic, with the nasal segment always assuming the place specification element of the oral stop. These NC sequences also share the $?^0$ element. The $?^0$ element is lexically distinctive for the stop (3.2.4) but not for the nasal (3.1.3). This implies that the occlusion and place specification elements of the NC sequences spread to the nasal from the governing position which is filled by the oral stop.

This means that the complexity differential is maintained between the two neutral segments. Concretely, the internal representation of the nasal segment appearing in the governed position before an oral stop consists of only the two elements which it does not share with the following stop, i.e. the N^\dagger and the L^\dagger elements. At the same time, the neutral stop is composed of three elements, i.e. the $?^0$, h^0 and place specification elements (((7) through (10))). The Complexity Condition, requiring a neutral non-nuclear governee to be less complex than its neutral non-nuclear governor, is respected. The government of MG nasals by strictly adjacent following
oral stops is not, as it first might have appeared, problematic for the theory.

3.2 The oral stops

In this section, I consider four main issues. I start with a brief presentation of the three varieties of oral stops recognised by KLV (3.2.1). Then, I discuss the question of the existence of each of the three series in MG (3.2.2). I place particular emphasis on the question of the existence of a negatively charmed series in the language. My aim in 3.2.2 is to show that MG possesses only the neutral series of stops. I then proceed to suggest a way in which GP may handle the fact that the empty nucleus which precedes the MG N/C sequences cannot be properly governed (3.2.3). I conclude this subsection by considering certain issues of lexical distinctiveness of the elements which make up the internal representation of the neutral oral stops (3.2.4).

3.2.1 The three series of oral stops

KLV (1990:216) recognise three varieties of stops, depending on the elements that make up their internal structure. I introduce each of them in turn.

The elements involved in the representations of the first series of oral stops are three, namely (i) ε^0 (indicating the presence of an occlusion in the oral cavity), (ii) place specification (indicating the place in the oral cavity where the occlusion is formed) and (iii) ε^0 (indicating the noise component of the stop). In this series of stops, the neutral charm of all three elements gives neutral charm to the ensuing segment; hence the term 'neutral' (KLV 1990).

Neutral charm enables these oral stops to occur in governed positions such as the rimal complement position. The
segment \(k \) of the English word \(\text{akt} \langle \text{act} \rangle \) and the segment \(p \) of the French word \(\text{adopte} \ 'adopt' \) exemplify this possibility, which exists for the neutral oral stops of some languages. As I show in 3.2.2, MG is not one of these languages. A governed position in which neutral oral stops can universally never occur is that of the onset complement. This 'governed position . . . is always occupied by a sonorant of some kind containing at most two elements' (Harris 1990:277). Obstruents are, accordingly, excluded from ever occurring in onset complement positions.

Following the Complexity Condition (2.8.2), neutral stops are complex enough to also occur in governing positions. When they occur in governing positions in MG, all three of their elements are lexically distinctive (see 3.2.4). As a result, neutral stops may govern in both constituent and interconstituent domains other non-nuclear neutral segments, provided that the latter are less complex than the stops.

The governed segments are typically \(r \) and \(l \) (composed of one and two elements, respectively). The segments \(r/l \) typically occur in rimal complement and onset complement positions (e.g. MG \(\text{arpazo} \ 'grab', \text{prôta} \ 'first', \text{artiha} \ 'artery', \text{trivo} \ 'rub', \text{élko} \ 'attract' and \(k\text{lino} \ 'shut' \)). Moreover, in contexts of interconstituent government, the neutral oral stops can, thanks to their complexity, also govern the nasals\(^{3}\) (Harris 1990:279-80). No negatively charmed element needs to be added to the representation of oral stops in order to enable them to govern nasal segments through interconstituent government. The neutral series of stops is complex enough (as it consists of three elements) to govern in interconstituent domains other less complex neutral segments such as the nasals. Recall that before stops MG nasals only have two elements in their representation (3.1.3 and 3.1.4).

\(^{3}\)The neutral oral stops can also govern geminates. As standard MG does not have gemination, I refrain from providing an analysis of gemination processes.
Apart from the neutral series, KLV (1990:216) propose the existence of another two series of oral stops. In each of these series, a source element is added to the three elements of the neutral stops (i.e. the $?, h^0$ and place specification elements). In one series, this additional element is H^-, indicating a stiffening of the vocal folds. In the other series, the additional element is L^-, indicating a slackening of the vocal folds.

As we know from 2.9.2 (footnote 14), H^- always contributes its negative charm to a segment, irrespective of whether it acts as the head or the operator of an expression. The presence of the H^- element in the internal structure of an oral stop creates one of the two negatively charmed series, the high-toned oral stop series. According to charm theory (2.8), this series can never be governed. Negatively charmed segments can only occur in non-nuclear governing positions. This means that GP excludes the possibility of a high-toned stop ever occurring in a rimal (or onset) complement position.

If, instead of the H^- element, we add the L^- element to the representation of the neutral oral stops, we create the second series of negatively charmed segments. This series, usually referred to as 'low-toned', involves slackening of the vocal folds. The low-toned series corresponds to what was traditionally called the 'voiced' series of stops. According to charm theory (2.8), low-toned stops can never be governed. Just like the high-toned stops, the low-toned ones can only occur in governing positions. This means that no low-toned stop can ever occur in a rimal (or onset) complement position.

Recall that the L^- element also contributes its negative charm either as head or operator (2.9.2, footnote 14).
3.2.2 MG and the three series of oral stops

In 3.2.1, I presented all three series of oral stops that can possibly exist in a language. Not every language obligatorily possesses all three series. Some languages have only two, or, indeed, only one series. In this sub-section, I explore the possibility of each of these three series existing in MG.

Let me begin with the neutral series of oral stops. I would like to propose that MG possesses the neutrally charmed series (i.e. $p^o/t^o/k^o$) in all positions, i.e. irrespective of the governing/licensing duties of the position in which the stop occurs. As MG is one of the languages that allow both branching rimes and branching onsets, neutral oral stops may occur in three positions. In the examples below, neutral oral stops are underlined.

The first position where neutral oral stops may occur is the non-branching onset head position which does not have to license any rimal complement (e.g. kápu 'somewhere', tímí 'honour' and pótámi 'river'). The second position where neutral oral stops may appear is the head position of a branching onset. There, they are required to govern their onset complement (e.g. práto 'make', trivo 'rub' and krató 'hold'). The third position that neutral oral stops may fill is that of an (optionally branching) onset head position which has to license a rimal complement position (e.g. elígós 'hope', artía 'artery', élkiro 'sleigh' and altruismos 'unselfishness').

The existence of a MG high-toned series of oral stops in the above positions can be excluded on the basis of comparative evidence coming from other languages. Specifically, there already seem to exist fairly clear indications of the presence of an H element in the oral stop series of English (J.Kaye:p.c.) and Korean (KLV 1990:216, J.Kaye:p.c.). These languages show evidence of possession of both the neutral and high-toned series of stops. The presence
of a series of stops which possesses the H^- element is signalled in those languages by means of the pronunciation differentiation of their oral stop segments. Concretely, English differentiates between aspirated (high-toned) and unaspirated (neutral) oral stops. Korean produces its so-called 'tense' series of stops by the addition of the H^- element to its neutral series.

Unlike English and Korean, MG does not display a two-way contrast between an aspirated/tensed and a neutral $p/t/k$ series. This indicates that only one series exists in MG. As $p/t/k$ are never either tensed or aspirated, I postulate that the existing MG series is neutrally charmed. This postulation is not arbitrary. Further to the above-mentioned evidence, the examination of the three environments where these segments may appear in MG (i.e. onset head without governing/licensing duties, onset head with governing duties and onset head with licensing duties) provides us with ample positive evidence that $p/t/k$ are indeed neutral and not high-toned. I present this evidence immediately below.

Let me begin with the onset head positions which are neither required to license any rimal complement, nor govern any onset complement (e.g. the segment p of the word $p\text{ira}$ 'experience'). The oral stop which occurs in these positions could, in principle, be either neutrally or negatively charmed.

The proof that it is neutrally charmed comes from the interactions this oral stop enters into in the strict adjacency of a nasal segment: the L^- element spreads from the nasal onto the oral stop, rendering the latter low-toned. For instance, when the word $p\text{ira}$ 'take' is placed in the strict adjacency of a non-analytic nasal-ending prefix such as $\{eN\}$, it immediately and obligatorily becomes low-toned (i.e. $[e(m)\text{biria}]$, $*[e\text{pinia}]$ 'experience'). This process occurs not only with p, but also with t and k (e.g. $t\text{imi}$ 'honour' yields
[é(n)dimi] 'honourable' and kiklos 'circle' yields [e(ŋ)giklios] 'circular letter')

If the oral stop which has no governing/licensing duties to perform had a lexical H' element in its internal structure (i.e. if it were lexically high-toned), the L' element spreading attested in the environment after a nasal would be impossible: both H' and L' are negatively charmed. Following 2.8.1, charmed elements with like values are repelled.

Moreover, as Brockhaus (1992a) convincingly argues, the L' and the H' autosegmental lines are universally fused. This is due to the fact that it is 'physically and logically impossible for the vocal folds to be stiff and lax at the same time' (Brockhaus 1992a:131). If, instead of being neutral, MG oral stops were high-toned, we would have to postulate that in the environment after a nasal they delink their lexical H' element and attach a L' element in a single move. This is a most arbitrary process: 'if an element is delinked, the affected segment must be in an environment where weakening has to take place. . . . It is unlikely - perhaps even impossible - for that particular environment to require strengthening . . . of the very same segment at the same time' (Brockhaus 1992a:153).

Let me now turn to branching onsets. In 3.2.1, I pointed out that oral stops can never occur in onset complement positions (Harris 1990:277). They can, however, occur in onset head positions. Following KLV (1990:218), only negatively charmed segments should fill the onset head position which has to govern a complement.

10 A notable exception to this compulsory L' element spreading concerns the NC sequences which occur in domain-final position, i.e. before a parametrically licensed domain-final empty nucleus. I elaborate on this structure in Chapter 6.
However, as I mentioned in 2.8.2, I adopt a relaxation of KLV's requirement that onset head positions which have to govern their complement be negatively charmed. Provided that a downward complexity differential is maintained between the constituent governor and governee, I allow governing onset heads to be neutrally charmed. This decision is not arbitrary. It is based on the evidence of the interactions that take place when \(p/t/k \) occur in head positions of branching onsets and in the strict adjacency of nasal segments.

Specifically, in the strict adjacency of a nasal segment, the MG oral stops which occur in the head positions of branching onsets (e.g. \(\text{pré.to} \) 'make', \(\text{krató} \) 'hold' and \(\text{trivo} \) 'rub') also become low-toned (e.g. \[\text{é(m)brakta}\] 'by deeds', \[\text{e(g)gréitia}\] 'restraint' and \[\text{e(n)driv}\] 'massage'). This implies that the oral stops assume in their internal structure the \(L^\prime \) element of the strictly adjacent nasal. If these oral stops were high-toned, rather than neutral, the negatively charmed \(H^\prime \) element of their internal structure would forbid the spreading of the also negatively charmed \(L^\prime \) element from the strictly adjacent nasal, as elements with identical charm repel each other. The fact that the oral stops allow the spreading of the \(L^\prime \) element from the nasal segment strongly indicates that these stops are neutral.

Again, as argued in Brockhaus (1992a), the universal fusion of the autosegmental lines of \(H^\prime \) and \(L^\prime \) excludes the possibility of the above oral stops being lexically high-toned. As I explained earlier in this sub-section, this is due to the fact that, in the environment after a nasal, the delinking of a lexical \(H^\prime \) element for the addition of a \(L^\prime \) element in a single move is arbitrary. The principle of non-arbitrariness inhibits GP from countenancing such contradictory phonological events.

Let me finally turn to interconstituent governing domains. Neutral oral stops can, in principle, occur in rimal
complement positions. There, they are governed by the strictly adjacent onset head position. Sequences like \textit{pt}/\textit{kt}, \textit{ps}/\textit{ks}, \textit{ts}, \textit{pn}/\textit{kn} and \textit{tn}/\textit{tm} provide ample evidence for an interconstituent structure in languages such as English and French. As it happens, MG does not possess any instances of oral stops which occur in a rimal complement position. In Chapters 4 and 5, I show that the structure the above sequences assume in MG is not that of an interconstituent governing domain (as the case seems to be in English or French), but of either a sequence of two onsets separated by an empty nucleus or a contour segment.

The oral stops which occur in the governing positions of genuine interconstituent structures, do not need an H' element in their representation in order to govern their preceding rimal complement. So long as an upward complexity differential is maintained between the non-nuclear governor and governor, neutral oral stops are perfectly capable of carrying out their licensing duties.

The requirement for an upward complexity differential between the non-nuclear governee and its governor is respected in MG. Recall from earlier in this sub-section that the only segments MG neutral oral stops are required to license are all less complex than the stops. Specifically, neutral oral stops (composed of three elements) are required to license either of the following segments: (i) a nasal, (ii) a neutral fricative, (iii) \textit{l} or \textit{s} (all three sets of segments being composed of only two elements) or (iv) \textit{r} (being composed of only one element). No negatively charmed element is needed to be added to the representation of the neutral oral stop in order to enable it to carry out its licensing duties.

The lack of contrast between neutral and high-toned oral stops indicates that only one series of stops is present in MG. When stops are strictly local to nasal segments, the interactions that take place between them always result in the
creation of low-toned stops. This fact allows me to conclude that the series of oral stops MG possesses is neutrally charmed. So far, then, I have not only excluded the possibility of a high-toned series of stops existing in MG, but I have also provided significant evidence in favour of the postulation of only a neutral series of stops in the language. I now turn my attention to the question of whether MG lexically possesses a series of low-toned stops. I present below a variety of theory-internal and theory-external arguments in favour of the claim that all MG low-toned stops are derived from underlying NC sequences.

Although at first sight a low-toned series of oral stops (i.e. $b/d/g/dz^{11}$) appears to exist in MG, a closer look and more careful analysis of the language reveals that $b/d/g/dz$ are all and always derived from the interactions taking place between strictly adjacent nasal and neutral oral stops. In 3.1.3 and earlier in this sub-section, I provided evidence for the non-arbitrary derivation of low-toned stops from underlying NC sequences. Specifically, I showed that when a nasal segment and an oral stop enter into a governing relationship, the nasal passes its L' element onto the stop, while the stop passes its $?^0$ and place specification elements onto the nasal (i.e. (11) through (14)).

\[
\begin{align*}
(11) & \quad m \quad p \quad n \quad t \quad d \quad k \quad n \quad ts \\
(12) & \quad s \quad n \quad t \quad d \quad k \quad n \quad ts \\
(13) & \quad s \quad n \quad t \quad d \quad k \quad n \quad ts \\
(14) & \quad s \quad n \quad t \quad d \quad k \quad n \quad ts
\end{align*}
\]

\[^{11}\text{I refer to } ts/dz \text{ in great detail in Chapter 5.}\]
The above multiple spreading processes are not at all unique to MG. They are, rather, quite common and widespread processes in many unrelated languages of the world, such as Japanese (Yoshida (1991)) and Zoque (Goldsmith (1990)). As a result of the spreading of the L' element from the nasal (occurring in the rimal complement position) onto the stop (occurring in the onset head position), many languages, including MG, obtain the various low-toned stop segments. In theory-internal terms, then, the derivation of the MG low-toned stops from strictly adjacent nasal and neutral oral stops is both possible and non-arbitrary. Note that the spreading of the elements takes place between segments which are (i) strictly adjacent and (ii) in a governing relation. No spreading is postulated across intervening segments or governing domains.

In theory-external terms, MG co-occurrence restrictions lend support to the derivation of the low-toned stop series from the interactions that take place between nasal and neutral oral stops. Specifically, the co-occurrence restrictions on which segment(s) can precede what surfaces as low-toned stops are heavy. The only segments that can precede b/d/g/dz in a strictly adjacent position are the nasals (e.g. [ándras] 'man', [émboros] 'merchant', [anglia] 'England' and [pandzári] 'beetroot'). None of the segments f, v, θ, δ, x, j, s, z, or p, t, k can ever precede a strictly adjacent low-toned stop (e.g. *[afdí], *[pakdí]).

A word should be said at this point about the segments r/l. They both may appear to precede b/d/g/dz, as in the words [albánis] 'quack', [álbum] 'album' and [barbúni] 'red mullet'. The existence of such words might at first sight lend support to the view that b/d/g/dz can be preceded by segments other than nasals. If such were the case and b/d/g/dz could indeed be preceded by strictly adjacent non-nuclear segments such as r/l, the binarity theorem (2.4) would oblige us to analyse b/d/g/dz as independent segments. Any claim for the derivation
of \(b/d/g/dz\) from underlying NC sequences would have to be rejected. This is due to the fact that if an \(r/l\) segment preceded an NC sequence in a strictly adjacent position (15), we would face a violation of the binarity theorem. The rime would have to consist of three segments: the compulsory nuclear head and two non-nuclear segments (i.e. \(r/l + N\)). Following 2.4, this structure is universally excluded.

(15) \[
\begin{array}{c}
| R \quad O \\
\downarrow & \downarrow \\
N & x \\
x & x \\
x & d \quad r/l \quad N \quad C \\
\end{array}
\]

The exclusion of (15) as a possible and well-formed structure and the existence of words such as [\(\text{albánis}\)], [álbum] and [\(\text{barbûni}\)] appear to support the independent existence of \(b/d/g\). However, there exists theory-external distributional evidence against such a conclusion.

Concretely, if \(b/d/g/dz\) were independent segments and formed authentic interconstituent structures with \(r/l\), they should behave like other true interconstituent sequences (e.g. \(st\)). Specifically, we should be able to find branching onset structures such as \(rbr, lbr, rbl\) or \(lbl\) (16), (just as we find \(str, ltr\) or \(skl\)).

(16) \[
\begin{array}{c}
| R \quad O \\
\downarrow & \downarrow \\
N & x \\
x & x \\
x & d \quad r/l \quad b/d/g \quad r/l \\
\end{array}
\]

MG shows a striking lack of any of these structures.

\(^{12}\) The reader is referred to KLV (1990), Kaye (1992) and Charette (1988) for a thorough discussion and argumentation of the universality of the interconstituent structure of s + oral stop sequences for those languages which allow branching rimes.
Specifically, a branching onset whose head is filled with a low-toned oral stop and whose onset complement position is filled by either of the non-nuclear segments which appear in this position can never be preceded by \(r / l \). This is true irrespective of whether the nuclear head preceding the rimal complement is empty or filled. The only non-nuclear segment that may precede a similar branching onset is a nasal. This fact lends support to the claim that \(r / l + b / d / g / dz \) sequences are not truly interconstituent.

The above distributional argument leads me to conclude that sequences of \(r / l + b / d / g / dz \) are not truly adjacent. This lack of adjacency is strange as MG allows all its other non-nuclear segments to follow \(r / l \) (e.g. \(\text{arpázo} 'grab', \text{arțină} 'artery', \text{arketă} 'enough', \text{érmoe} 'prey', \text{arxi} 'beginning', \text{arni} 'lamb', \text{ărțro} 'article', \text{ăslăni} 'sister', etc.). There is no reason why MG should forbid only its low-toned stops from occurring in strictly adjacent positions following \(r / l \), if these low-toned stops are indeed independent segments. However, if these low-toned stops are not independent segments, but are, instead, derived from underlying \(NC \) sequences, we immediately have an explanation of why \(r / l \) cannot be strictly adjacent to what surfaces as \(b / d / g / dz \): an \(r / l + NC \) structure would violate the binarity theorem (15).

The analysis whereby MG low-toned stops are derived from underlying \(NC \) sequences explains, then, why \(r / l + b / d / g / dz \) do not behave like true interconstituent sequences. This analysis also ensures an explanation of the strict co-occurrence restrictions I mentioned earlier in this sub-section for the segments \(b / d / g / dz \), namely that only nasals are allowed to occur before \(b / d / g / dz \).

If we want to avoid the violation of the binarity theorem and still retain the strict adjacency of the \(r / l \) segments and the \(NC \) sequences, we would have to analyse the \(NC \) sequences as assuming a branching onset structure. I exclude the
possibility of NC sequences ever adopting this structure on
the basis of six pieces of evidence I provide later in this
sub-section.

The only alternative syllabic structure for r/l + NC
sequences is set out in (17). In this structure, the segments
r/l belong to an onset head position (O$_2$). This onset head is
followed by a rime (Onset Licensing Principle, 2.5 and
2.11.1). An empty nucleus (N$_2$) fills the head position of the
second rime (R$_2$)13 and a nasal segment fills its rimal
complement position. The neutral oral stop fills the head
position of the following strictly adjacent licensing onset
(O$_3$). In (17) below and throughout this thesis, v0 stands for
an empty nucleus and V for a nucleus with phonetic content.

(17) O$_1$ R$_1$ O$_2$ R$_2$ O$_3$ R$_3$ O$_4$ R$_4$
| N$_1$ | N$_2$ \ | N$_3$ | N$_4$
- x x x x x x x
| a | r/l v0 N C V |

So far, then, I have shown that the only segments that
can precede b/d/g/dz in MG are the nasals. The postulation of
an underlying NC sequence for the MG b/d/g/dz segments explains
not only why these strict co-occurrence restrictions exist in
MG, but also why low-toned oral stops do not display a
behaviour typical of interconstituent structures when they
occur after the segments r/l. Let me now present two pieces of
evidence which lend support to the derivation of all MG low-
toned stops from underlying NC sequences.

In the first place, if, apart from the low-toned stops
which are derived from underlying NC sequences, there existed
a series of MG low-toned stops which were not derived in this

13The reader is referred to 3.2.3 for a discussion of the
proper government problem that arises for N$_2$.
the claim that MG possesses an independently existing series of low-toned oral stops. In contrast, the above evidence leads me to support the derivation of all $b/d/g/dz$ from the interactions taking place
For these interactions to take place, a governing domain must exist between the two segments. The co-occurrence restrictions I mentioned earlier in this sub-section lend support to such a postulation. If no governing domains existed, any segment would be allowed to precede what surfaces as a low-toned stop series in MG. The governing domain that exists between the nasal and neutral oral stops can, in principle, be of two kinds: constituent (i.e. branching onset) and interconstituent (i.e. rimal complement and onset head positions). As I mentioned earlier in this sub-section, I exclude the possibility of an NC sequence forming a constituent governing domain. I present the six arguments which support this claim immediately below.

To begin with, following a constraint derivable from the Complexity Condition, one may only expect 'the first position [of a branching onset to be] . . . always occupied by an obstruent, . . . the governed position, . . . always occupied by a sonorant of some kind' (Harris 1990:277). This constraint implies that (i) the first position can be filled by a plosive or a fricative and not by a glide, a nasal, or a liquid and that (ii) the second (governed) position cannot be filled by an obstruent such as an oral stop. As a result of the above stipulation, a sequence like nt or mp is universally excluded as a well-formed branching onset.\(^4\)

In the second place, nasal segments do not have the necessary complexity to govern oral stops. Recall that before

\(^4\) The only homorganic NC sequence in which the nasal is allowed to occur in an onset head position must obligatorily take the form of a prenasalised structure, i.e. a contour segment occupying only one skeletal position. In this structure, both the nasal and the oral stop occur in the head position of an optionally branching onset. I examine the issue of prenasalisation in MG in Chapter 6. For the moment, my discussion is confined to those NC sequences in which each of the two segments occurs in a separate skeletal point.
The internal structure of the MG nasal and oral stops

Plosives nasal segments are composed of only two lexically distinctive segments, namely L⁻ and N⁺. The oral stops consist of three elements in these positions (i.e. ʔ⁰, h⁰ and place specification elements). The nasals, then, cannot form a branching onset with the plosives as this would reverse the downward slope that is universally required to exist within a constituent between the non-nuclear governor and its non-nuclear gouvernee (Complexity Condition, 2.8.2).

In the third place, as the L⁻ element spreads from the nasal segment to the neutral oral stop, this second position becomes negatively charmed. However, negatively charmed oral stops cannot occur in governed positions. Recall that following 2.8.1, charmed segments can only be associated to governing positions. Consequently, the oral stops which are now negatively charmed can neither be governed by other segments (such as the nasals) nor occur in governed positions (such as the onset complement position).

In the fourth place, there exists a stipulation according to which segments within branching onsets can be bound for at most one element (Harris 1990:278, reinterpreting in terms of element theory Rice’s binding constraint on the amount of feature-geometric structure for which two positions can be bound[^15]). In 3.1.3, I showed that an NC sequence shares more than one element (ʔ⁰ and place specification elements). As a consequence, GP excludes such clusters as possible well-formed branching onsets.

In the fifth place, if NC sequences formed branching onsets, they should behave like authentic branching onsets, such as tr, pl, kr. These latter sequences may occur word-initially (e.g. trvo 'rub', plïno 'wash' and krio 'cold'), word-medially (e.g. xîtra 'pressure cooker', pâpîoma 'mattress')

The Internal Structure of the MG Nasal and Oral Stops

and ákri 'edge') and after a rimal complement like s (e.g. ástro 'star', spína 'spleen' and sklíró 'hard'). However, no NC sequences occur in similar syllabic structures in MG. Specifically, although mp/nt/ŋk/nts may occur word-medially under certain specific circumstances (on which I elaborate further in Chapter 6), not one of the above homorganic NC sequences may occur either word-initially or after s (e.g. *[mpukála], *[ntsantsiki], *[smplá] or *[snílos]). The attested forms of the above words are, respectively, [bukála] 'bottle', [dzadži] 'dzadziki', [bála] 'ball' and [stílos] 'pole'.

Lastly, authentic branching onset structures like tr, pl and kr do not allow any non-nuclear segment to follow them. This is due to the fact that any following non-nuclear segment would cause a violation of the binarity theorem (2.4). Nonetheless, NC sequences allow non-nuclear segments to follow them (e.g. [ándras] 'man', [emblek] 'fight' and [énļima] 'crime'). This behaviour, untypical of branching onset structures, is typical of interconstituent structures.

The above theory-internal and theory-external arguments exclude the possibility of an NC sequence forming a constituent governing domain. The only alternative, then, for homorganic NC sequences is to form an interconstituent governing domain. The directionality of government in these interconstituent governing domains is right (oral stop) to left (nasal) (2.7.1). The assumption of an interconstituent governing domain for the NC sequences is in line with the Complexity Condition which requires an upward complexity slope between interconstituent governee and governor (Harris 1990:280). The assumption of the interconstituent governing domain also explains why NC sequences (i) are never preceded by strictly adjacent non-nuclear segments and (ii) always allow non-nuclear segments to follow them.

The above analysis indicates that the derivation of all MG low-toned oral stops from underlying NC sequences is both
possible and non-arbitrary: the nasal and oral stop segments are able to interact as they are always strictly adjacent and in a governing relationship. The rejection of the postulation of an independent low-toned series in the language is mainly supported by distributional arguments and the heavy co-occurrence restrictions that exist for MG low-toned stops. This rejection leads to a simpler and more adequate description of the MG phonological system as it allows the construction of a simpler and more general grammar of MG. As I show in Chapter 6, such a grammar allows a non-arbitrary explanation of the phenomenon of MG phonological variation.

3.2.3 Proper government and MG NC sequences

The reader may have noticed that structure (17), reproduced below as (18) for reasons of convenience, posits a problem for GP. Specifically, in (18) the empty nucleus which governs the nasal segment of the NC sequence cannot be properly governed. This is due to the fact that although N₃ is audible (i.e. unlicensed), it cannot properly govern N₄ because an interconstituent governing domain, to wit NC, intervenes between N₂ and N₃.

\[(18)\]
\[
\begin{array}{c}
\text{LPL: } N₁ \rightarrow N₂ \rightarrow O₃ \rightarrow N₃ \rightarrow N₄ \\
\text{P₆: } O₁ \rightarrow R₁ \rightarrow O₂ \rightarrow R₂ \rightarrow O₃ \rightarrow R₃ \rightarrow O₄ \rightarrow R₄ \\
\text{a i v° N p u m v° 'album'}
\end{array}
\]

The same problem arises with the licensing of the empty nuclei that occur in word-initial position before an NC sequence. Specifically, in structures like (19) below, the empty nucleus N₁ cannot be properly governed by N₂. Although N₂ has phonetic content (i.e. is unlicensed) it cannot properly govern N₁ because of the intervening interconstituent governing domain involving the NC sequence.
A similar problem is reported in Kaye (1992), with respect not to NC but to s+C sequences. Specifically, Kaye (1992) observes that the empty nuclei preceding word-initial and word-medial s+C sequences cannot be licensed by proper government.

GP must somehow account for the fact that there exist empty nuclei that cannot be licensed either through proper government or through the parameter that refers to the licensing of domain-final empty nuclei. There are two ways in which GP can accommodate the above fact. I list them immediately below.

The first way involves a relaxation of the restriction on proper government across a governing domain. One could suggest, along these lines, that the claim against the intervention of a governing domain within the domain of proper government is in fact too strong for some languages. This would imply that the restriction against the crossing of a governing domain is not, as was originally thought, a universal requirement. Instead, this restriction could be perceived in terms of a parameter, with some languages allowing and other languages forbidding the intervention of a governing domain within the domain of proper government. As this suggestion would be an unwelcome weakening of the theory of GP, Kaye strongly argues against it.

In order to avoid this relaxation of proper government, Kaye (1992) suggests that s+C sequences have a 'magical'
property which allows them to prosodically license (p-license) their preceding empty nuclei. The term 'magic' is used 'as a constant reminder that it is a pure stipulation in need of explanation' (Kaye 1992:306).

Kaye admits that for the moment it 'is not obvious how these . . . empty nuclei are licensed' (Kaye 1992:306). He furthermore emphasises the fact that $s + C$ sequences serve as p-licensors in some languages and not in others. The fact that Magic Licensing is parameterised is reflected in the treatment of $s + C$ sequences by languages such as Italian and Spanish. Italian displays magical licensing (it possesses word-initial $s + C$ sequences, e.g. strâ':da 'street'), while Spanish does not display magical licensing (a prothetic vowel occurs before word-initial $s + C$ sequences, e.g. estâ:ñón).

Let us now go back to our discussion of the licensing of empty nuclei which precede MG NC sequences. It is no more obvious to me than it is to Kaye (1992) how these empty nuclei are licensed. It is also not clear to me whether the MG evidence should serve as an indication that the restriction on proper government across a governing domain should be parameterised. As such a move would considerably weaken the theory, I would be rather unwilling to adopt it until such time as more supporting evidence from a larger number of languages has been produced.

This means that, for the moment, all I can do is observe that NC sequences serve as p-licensors in MG, just like $s + C$ sequences serve as p-licensors in MG and Italian (as well as a host of other languages): irrespective of whether they occur word-initially or word-medially, MG NC sequences somehow manage to license their preceding nucleus, whenever this is empty.

In order to avoid any possible weakening of the theory at this stage, I will adopt Kaye's (1992) notion of Magic
Licensing in my analysis of MG NC sequences on the basis of the similarity NC and s+C sequences display in MG. I briefly outline below three pieces of evidence that lend support to this claim.

In the first place, both s+C and NC sequences display identical behaviour with respect to proper government. Both s+C and NC sequences manage to license their preceding empty nuclei in word-initial and word-medial positions. They both seem to do so not by means of proper government, but by means of a parameter that allows these empty nuclei to be realised as zero even though a governing domain intervenes between them and their potential governor (see (18) and (19) for, respectively, word-medial and word-initial NC sequences).

In the second place, both s+C and NC sequences assume an identical structure. Following my analysis of 3.2.2, NC sequences can only assume an interconstituent structure. As I already mentioned in footnote 12, KLV (1990), Kaye (1992) and Charette (1988) provide ample evidence in favour of an interconstituent structure for s+C sequences in all languages which allow branching rimes.

In the third place, both s+C and NC sequences display identical distribution patterns. For instance, both s+C and NC sequences allow strictly adjacent non-nuclear segments to follow them (e.g. stratos 'army' and Ntropi 'shame'). At the same time, both s+C and NC sequences forbid strictly adjacent non-nuclear segments to precede them (e.g. *arstoma, *rNpuka).

The above evidence lends support to a treatment of MG NC sequences in the same way as s+C sequences, i.e. to an adoption of Kaye's notion of Magic Licensing for the MG NC sequences. As a consequence, my ensuing analysis reflects the fact that in MG the parameter of Magic Licensing is ON, not only with respect to s+C but also to NC sequences.
It is to be hoped that further research will address the issue of licensing of empty nuclei before the interconstituent $s+C$ and NC sequences. In this way, these sequences will lose their 'magical' nature and 'join the ranks of those phenomena that are better understood' (Kaye 1992:309).

3.2.4 Lexical distinctiveness of the elements composing the MG neutral oral stops

In 3.2.2, I discussed the possibility of each of the three series of oral stops suggested by KLV (1990) existing in MG. In this sub-section, I explore some questions of lexical distinctiveness of the three elements that make up the internal structure of the neutral oral stop series. Following 3.2.2, this is the only stop series MG possesses.

The discussion of the lexical distinctiveness of the compositional elements of MG neutral oral stops is particularly important for the analysis of any phonological process in which these stops participate. The presentation of this section forms the background for the argumentation I put forward in Chapters 4 through 6.

I start my discussion with the place specification element. This element is lexically distinctive for the stops in all positions, i.e. before both nuclear and non-nuclear segments. The reader may recall that the place specification element was also distinctive for the nasal segments which occurred before nuclear segments (3.1.3). However, unlike nasals, oral stops have a lexically distinctive place specification element also in the strict adjacency of non-nuclear segments. This place specification element can even spread in certain interconstituent governing domains to the preceding adjacent segment which fills in the rimal complement position. The spreading of the place specification element of the oral stop depends on the internal structure of the segment that occurs in the rimal complement position.
Concretely, if the preceding rimal complement position is filled by, say, r or l, as in the word éikos 'ulcer', the place specification element of the governing oral stop will not spread to the rimal complement position. This is due to the fact that each of the non-nuclear segments has its own lexically distinctive place specification element (e.g. erminia 'interpretation', arnûme 'deny' and almirô 'salty').

However, if the preceding rimal complement position is filled by a nasal segment, the place specification element of the stop is not only lexically distinctive, but also spreads to the preceding governed position (3.1.3). This explains why MG nasal segments always become homorganic to their licensing oral stops (e.g. [pénde] 'five' and [émberos] 'merchant'). Recall from 3.1.3 that in this configuration (i.e. before a stop) nasals have no lexically distinctive place specification element.

Lastly, when the oral stops occur in the head position of branching onsets, their place specification element is also lexically distinctive. Recall that both r and l, the segments that typically fill the onset complement position, have their own lexically distinctive place specification element (e.g. apîô 'simple', akrivô 'expensive').

The labial element (U^0) is involved in the internal structure of p (20) and the v^0 element is involved in that of k (22). Both t and ts have the coronal element (R^0) in their representation. As they are composed of exactly the same elements, they are distinguished from each other only by means of their internal structure. The organisation of the elements that compose them is different: ts (23) is a contour segment,

16 I refer to ts, the contour stop, in great detail in Chapter 5. Specifically, I justify its affricate status and show that its phonological behaviour is (i) identical to that of the remaining oral stops (i.e. $p/t/k$) and (ii) different from that of the similar-looking ps/ks sequences.
Let me now turn my attention to the noise element. The presence of the h^0 element in the representation of MG oral stops is justified by the lenition facts of MG17. Without going here into the details of similar processes, p and k can, in certain contexts, respectively become f and x (see 5.1.2). In terms of the theory, what happens in these cases is the weakening of the internal representation of the stops by the loss of the occlusion element. This means that these stops were composed of three elements before the lenition process (i.e. $?^0$, h^0, and place specification elements). After the lenition process, these segments are composed of only two elements: the noise and place specification elements. The two latter elements typically combine to form the fricative series. In those cases, then, where both oral stops and fricatives display identical charm values, it is only the presence of an $?^0$ element that allows differentiation between them.

With respect to the lexical distinctiveness of the h^0 element, I would like to claim that in pre-nuclear positions the neutral stops contain a lexically distinctive h^0 element. This is so because an element which is absent from the

17The reader is referred to Harris (1990) for a thorough analysis of a wide range of phonological reduction phenomena and a detailed discussion of prime lenition sites. Harris's (1990) analysis is formulated within the theoretical framework of GP and forms the basis for my discussion of lenition in MG in this and the ensuing chapters.
internal representation of a segment cannot possibly spread to another strictly adjacent segment. Release of the oral stop is obligatory, irrespective of whether the following nucleus has audible content or not (24). This means that the h^0 element is lexically distinctive when the oral stop occurs before a phonetically realised nucleus (e.g. apáti 'fraud'). The h^0 element is also lexically distinctive when the oral stop occurs before an empty nucleus. As I argue in Chapters 4 and 5, this structure occurs when p/k appear before another phonetically adjacent oral stop, s, or nasal (e.g. ágv^0teros 'wingless', ágv^0sixi 'lifeless' and ágv^0nia 'stillness').

x	x	x	x	x	x	x	x
h^0	R^0						
p	v^0	t	e	r	o	s	v^0
a	p	v^0	s	i	x	i	
a	p	v^0	n	i	a		
a	p	a	t	i			

Before and after non-nuclear segments which are genuinely strictly adjacent to the oral stops and do not include h^0 in their representation (e.g. r and l), the neutral oral stops also contain a lexically distinctive h^0 element, as in the words akrivó 'expensive', arketó 'enough', apló 'simple' and elpiða 'hope' (25).

(25) O, N, N, O, N, N
x	x	x	x	x	x
a	k	r	i	v	o
a	p	l	o		
a	r	k	e	t	o
e	l	p	i	ð	a
Let me finally turn to the occlusion element. The reader may recall from 3.1.3 that the \(?^0 \) element was lexically distinctive for the MG nasal segments which occurred in pre-nuclear positions. I would like to suggest that in pre-nuclear positions the occlusion element is lexically distinctive also for the MG stops. This is true irrespective of whether the following nucleus has phonetic content or not. The occlusion element cannot spread from an adjacent nuclear position to the stop, as it does not form part of the segmental representation of any of the MG nuclear segments. As I mentioned earlier in this sub-section, the occlusion element \((?^0) \), always included in the internal structure of stops in these pre-nuclear positions, enables the differentiation between identically charmed stops and fricatives (e.g. \(\rho^0 \) (26) versus \(f^0 \) (27)).

\[
\begin{align*}
(26) & \quad h^0 \\
& \quad ?^0 \\
& \quad U^0 \\
& \quad p
\end{align*}
\]

\[
\begin{align*}
(27) & \quad h^0 \\
& \quad ?^0 \\
& \quad U^0 \\
& \quad f
\end{align*}
\]

The occlusion element is lexically distinctive in oral stops which occur after other non-nuclear segments. The occlusion element of the neutral oral stop which occurs in the head position of an onset which has to govern/license a preceding rimal complement is lexically distinctive in the stop, irrespective of whether the rimal complement position is filled with \(r, l, \) or a nasal. Recall that in the case of the nasals the \(?^0 \) element spreads from the licensing oral stop to the nasal segment (3.1.3).

When, finally, the oral stop appears in the head position of a branching onset, its occlusion element is lexically distinctive irrespective of the nature of its onset complement. The segments which typically occur in this onset complement position are \(r \) and \(l \). The former segment does not possess an occlusion element. The latter segment has to be lexically \(l, \) i.e. possess an occlusion element.
At this point, a word should be said concerning the sequence \(tl \). On the face of things, \(tl \) looks like a branching onset structure. However, the two segments that compose this sequence share more than one element (i.e. the \(?^0 \) and \(R^0 \) elements). Following KLV (1990:212) 'elements may not spread within an onset',\(^{18}\) This implies that \(tl \) sequences should be universally excluded as permissible branching onsets.

However, \(tl \) sequences appear in many languages, including MG (e.g. átlas 'atlas'). As KLV (1990) argue, there seems to exist sufficient evidence for the postulation of different syllabic structures for those languages which possess \(tl \) sequences. The two syllabic structures usually assumed are either that of a contour segment or that of two non-nuclear segments separated by an empty nucleus. As the details of the argumentation would lead me beyond the scope of this thesis, I only point out here that MG seems to possess evidence in favour of the second structure for \(tl \) sequences. As a result, the \(?^0 \) element of the \(t \) segment of the MG \(tl \) sequences is prenuclear. Following the analysis I provided earlier in this sub-section, in this position the \(?^0 \) element is lexically distinctive for the stop.

3.3 Summary

The focus of this chapter was on the internal structure of the MG nasal and oral stops and the lexical distinctiveness of the elements that respectively make up their representation. The analysis I have presented here was formulated within the framework of GP, as outlined in Chapter 2. In the present chapter, I have argued (i) in favour of the existence of a series of neutrally charmed oral stops in all syllabic

\(^{18}\)Recall from 3.2.2 that, inspired by Rice (1990), Harris (1990:278) expresses this stipulation in terms of a binding constraint, allowing segments within a branching onset to be bound for at most one element.
positions and (ii) against the postulation of a high-toned series in any syllabic position. Furthermore, I have provided evidence against an independently existing (i.e. lexical) low-toned series of stops in MG. I have shown that the co-occurrence restrictions that exist for the MG low-toned stops indicate that these segments are derived from the interactions that take place between nasal and neutral oral stops. Specifically, the nasal segments (which occur in rimal complement positions and which consist of only the two elements N' and L') allow their L' element to spread onto the strictly adjacent oral stop. The oral stops which occur in the onset head position and which consist of three elements (?°, h° and place specification elements) allow their place specification and ?° elements to spread to the nasal segment they license.

In this chapter, I have also considered the fact that the empty nucleus that precedes the MG NC sequences cannot be licensed through proper government. I have proposed that this empty nucleus is parametrically licensed by what Kaye (1992) calls 'Magic Licensing'.

Having established the derivational source of the MG low-toned stops in this chapter, I will now turn my attention to the pt/kt, pn/kn, ps/ks and ts sequences which also participate in phonological variation processes. In the following two chapters, I will endeavour to establish the syllabic structures of these stop-initial sequences.
4.0 Introduction

The present chapter offers an analysis of the syllabic structure of the MG pt/kt and pn/kn sequences within the framework of GP. The discussion of the syllabic structure of these sequences might at first appear irrelevant to the immediate concerns of a thesis investigating MG phonological variation. However, as the reader knows from 3.2.2, phonological variation processes in MG involve the interactions that take place when oral stops are in the strict adjacency of nasal segments. Their first segment being an oral stop, both pt/kt and pn/kn potentially occur in the alternating context. Through presentation of distributional data, I argue against an interconstituent structure and in favour of an analysis in which an empty nucleus intervenes between the two stops.

This chapter consists of two main sections. In Section 4.1, I examine the pt/kt sequences. In Section 4.2, I discuss the pn/kn sequences. I explain the reasons why I reject the interconstituent syllabic structure for both sequence types, adopting in its place the structure of two contiguous onsets separated by an intervening empty nucleus.

For the argumentation purposes of this chapter, I refer to certain issues I discussed in Chapters 2 and 3. Specifically, to the theoretical stipulations of GP (Chapter 2), to the internal structure of MG oral stops (3.2.4) and to the conditions under which low-toned stops are created in MG (3.2.2). The argumentation I use in this chapter is also taken
up in Chapter 5, where I discuss, inter alia, the syllabic structure of the similarly analysed \textit{ps/ks} sequences.

4.1 The MG \textit{pt/kt} sequences

The examination of the syllabic structure that MG attributes to its \textit{pt/kt} sequences is important for three reasons. Firstly, this investigation allows the postulation of the correct internal representation of these segments whenever they occur in these sequences. Secondly, this examination makes possible the extraction of the correct syllabic structure of the various words which contain these sequences. Thirdly, the postulation of the correct syllabic structure for \textit{pt/kt} allows us to explain the participation of \textit{pt/kt} in MG phonological variation events.

To the best of my knowledge, none of the linguists who examine issues of MG phonology has so far explored the syllabic structure of \textit{pt/kt} in any detail. The mention of \textit{pt/kt} in the literature is infrequent and only in relation to the 'free' variation their first segment displays in certain words. The words which allow variation in the realisation of their \textit{pt/kt} sequences display two variants. The first variant consists of a fricative (i.e. lenited segment) + stop (i.e. \textit{ft/xt}). The second variant consists of an oral stop (i.e. strong segment) + stop (i.e. \textit{pt/kt}).

KLV (1990:216) offer a brief analysis of the \textit{pt/kt} sequences in languages such as English and French. The distributional and other evidence that exists for these languages points to the adoption of an interconstituent structure (1). KLV (1990) extend this analysis to encompass MG. Their suggestion is that MG \textit{pt/kt} are also truly
interconstituent
\[(1) \]
\[
\begin{array}{c|c|c|c|c|}
R & X & X & X & a \\hline
N & X & X & & \\
O& & & & \end{array}
\]

However, the fact that the English and French \textit{pt/kt} sequences show clear evidence of interconstituent structure does not mean that all languages which possess these sequences should adopt this structure. Some languages may display a different syllabic structure, namely two onsets separated by an empty nucleus (2).
\[(2) \]
\[
\begin{array}{c|c|c|c|c|c|}
O & N & O & & & \\
X & X & X & & & \\
\text{p/k} & \text{v} & \text{t} & & & \end{array}
\]

There is no a-priori reason why MG should adopt structure (1), rather than structure (2). In the following two subsections, I examine each structure in turn. My aim is to show after the examination of distributional and other evidence that MG adopts structure (2). In Section 4.1.1, I present the reasons which led KLV to adopt an interconstituent structure for these sequences. In Section 4.1.2, I present the argumentation in favour of an empty nucleus intervening between \textit{p/k} and \textit{t}.

4.1.1 The arguments in favour of the interconstituent analysis

The interconstituent analysis that KLV (1990:215-6) support for MG \textit{pt/kt} is, at first glance, justified by several facts.

\[^1\text{KLV (1990:216) also observe that ps/ks have the same syllabic structure as pt/kt in English, French and MG. In Chapter 5, I show that this assumption too is erroneous for MG. The MG pt/kt, pn/kn and ps/ks sequences consist of two onsets separated by an empty nucleus.}\]
To begin with, KLV point out that there exist co-occurrence restrictions between \(p/k \) and \(t \). These restrictions indicate the existence of a governing relation between the two segments. Specifically, although \(pt/kt \) sequences obtain in MG, no \(*tp/*tk\) sequences are attested in the language. According to KLV (1990:216) the absence of \(*tp/*tk\) sequences implies that \(t \) is in a governing relation with \(p/k \).

In 2.7.1, we saw that at the \(P_0 \) level governing relations between non-nuclear segments can be of two kinds: constituent and interconstituent. Following Harris's (1990:277) stipulation that only sonorants consisting of a maximum of two elements may occur in the governed position of a branching onset, oral stops are universally excluded from ever occurring in these positions (3.2.1). \(l \) is apparently the most complex segment to occur there. This means that \(pt/kt \) can never form constituent governing domains (i.e. branching onsets) (3).

(3)
```
      * O  
      / \  
     /   \  
    x     
   /\      
  x   \     
 p/k t
```

The only alternative for two segments which are in a governing relation but do not form a constituent governing domain is to form an interconstituent governing domain (1). \(pt/kt \) are, then, interconstituent sequences.

Apart from the above-mentioned co-occurrence restriction, KLV do not point out more arguments in favour of the adoption of an interconstituent syllabic structure for the MG \(pt/kt \) sequences. Nevertheless, anyone supporting their analysis would have to exclude the only competing alternative syllabic structure for \(pt/kt \), i.e. that of two onsets separated by an intervening empty nucleus. On the face of things, the rejection of this structure seems possible. I present below four arguments which, at first sight, appear to exclude the
possibility of an empty nucleus intervening between p/k and t.

Firstly, there does not seem to exist any positive evidence for the postulation of a nucleus intervening between the two oral stops in MG (2). The morphological paradigm of those MG nouns and verbs where the pt/kt sequences occur does not show any case of an audible nucleus ever surfacing between the two oral stops.

Secondly, following Harris's (1990) reformulation of the Complexity Condition, neutrally charmed non-nuclear segments may be licensed by also neutrally charmed non-nuclear segments. However, for government to take place in such an interconstituent governing domain, there should exist an upward complexity differential between the interconstituent non-nuclear governee and its governor. If pt/kt are genuine interconstituent sequences, the neutral oral stop which occurs in the rimal complement position (i.e. p/k) and which consists of three elements (3.2.2) should receive pressure to lenite so that the oral stop which occurs in the onset head position (i.e. t) and which also consists of three elements (3.2.2) may govern it.

We do see indeed some evidence of this pressure to lenite in MG. Specifically, in this configuration p/k may lose the ?⁰ element from their representation and respectively become f/x (e.g. [pterō] ≈ [fterō] 'feather', [ktíma] ≈ [xtíma] 'land', [epta] ≈ [eftä] 'seven', [oktō] ≈ [oktō] 'eight'). The Complexity Condition is, then, respected. This evidence points to the existence of an interconstituent governing domain between p/k and t.

Thirdly, if pt/kt were analysed as sequences of two onsets

²I do not take into account here the existence of semantically related verbal and nominal forms, such as [ptisí] 'flight' and [petō] 'I fly' or [ptiró] 'foal' and [petinós] 'cock'.

separated by an empty nucleus, we would only be able to explain why lenition takes place word-medially (e.g. \[\text{pt} \text{\textalpha}\] \(\approx\) \[\text{eft} \text{\textalpha}\], \[\text{kt} \text{\textalpha}\] \(\approx\) \[\text{ot} \text{\textalpha}\]). Concretely, the syllabic structure of these words would be respectively \text{epv}^\text{O}\text{t}\text{\textalpha} and \text{okv}^\text{O}\text{t}\text{\textalpha}. The segments \(p/k\) would, then, occur in internuclear positions. As Harris & Kaye (1990) and Harris (1990) point out, the internuclear position is a prime lenition site. However, the postulation of a structure where \(p/k\) and \(t\) are separated by an empty nucleus would render impossible the explanation of why lenition takes place for \(p/k\) also word-initially, i.e. when \(p/k\) do not occur in internuclear positions (e.g. \[\text{pter} \text{\textalpha}\] \(\approx\) \[\text{fter} \text{\textalpha}\], \[\text{ktima}\] \(\approx\) \[\text{xtima}\]).

Lastly, in those words where \(p/k\) may lenite, \(t\) never does. If \(pt/kt\) are analysed as sequences of two onsets separated by an empty nucleus (i.e. \(pv^O/t/kv^O/t\)) we cannot explain how the only segment which is always internuclear (i.e. \(t\)) never lenites (e.g. \[\text{pter} \text{\textalpha}\] \(\approx\) \(\star[p\text{\texttheta}t\text{\textalpha}], [\text{ktima}] \approx \star[k\text{\texttheta}ima]\)). This lack of lenition indicates that the second segment of these sequences (\(t\)) does not occur in a typical lenition site. If, however, \(pt/kt\) are analysed as interconstituent sequences, \(t\) can never undergo lenition as it occurs in the governing position where it has to carry out interconstituent governing duties.

Overall, then, the adoption of an interconstituent syllabic structure seems to offer a plausible explanation of the phonological behaviour of the \(pt/kt\) sequences. The evidence which seems to indicate that both \(pt/kt\) are authentic interconstituent sequences is as follows. Firstly, there exist co-occurrence restrictions between \(p/k\) and \(t\) (the absence of \(\star\text{tp}/\star\text{tk\textalpha}\) sequences implies the existence of a governing relation between \(p/k\) and \(t\)). Secondly, no nuclear reflex ever surfaces between \(p/k\) and \(t\). Thirdly, lenition may take place for \(p/k\) both word-initially and word-medially. No such lenition processes are ever attested for \(t\). This fact seems to indicate that \(p/k\) occur in typical lenition sites (i.e. rimal
complement position), while *t* occurs in typical governing sites (i.e. strictly adjacent onset head position).

Despite the above arguments, careful and more detailed analysis of MG reveals that there exists substantial evidence against the interconstituent syllabic structure and in favour of an empty nucleus intervening between two onset heads (i.e. \(pv^O_t/kv^O_t\)). I present this evidence immediately below.

4.1.2 The arguments in favour of an intervening empty nucleus

I begin my argumentation with KLV's observation that the co-occurrence restrictions existing between \(p/k\) and \(t\) indicate the presence of a governing relation between these segments. These co-occurrence restrictions would be significant only if the sole non-nuclear segment capable of occurring with \(k/p\) was \(t\). This, however, is not the case in MG. Sequences like \(ps/ks\), \(pn/kn\), \(kp/kQ/kf\) are also widely attested in MG.

In the second place, \(pn/kn\) and \(ps/ks\) show clear evidence of an empty nucleus intervening between their two non-nuclear segments (see respectively 4.2.2 and 5.2.2). At the same time, \(pt/kt\) behave in exactly the same way as \(pn/kn\) and \(ps/ks\), in terms of both distribution and participation in the various phonological events of MG. This similarity of behaviour leads me to suggest that they all share the same syllabic structure, i.e. that \(pt/kt\) also assume an empty nucleus intervening between their two non-nuclear segments.

In the third place, if \(pt/kt\), \(ps/ks\) and \(pn/kn\) formed an interconstituent governing domain, \(t\) would be required to govern \(p/k\) in the \(pt/kt\) sequences, \(s\) would be required to govern \(p/k\) in the \(ps/ks\) sequences and \(n\) would be required to govern \(p/k\) in the \(pn/kn\) sequences. In 4.2.2 and 5.2.2, I present the arguments which lead me to reject the possibility of \(p/k\) being respectively governed by \(n\) and \(s\). In the following few paragraphs, I examine and, ultimately, reject
the possibility of \(p/k \) being governed by \(t \).

The postulation that \(t \) may govern \(p/k \) as a neutrally charmed segment runs into a major problem. Following 3.2.2, a neutrally charmed \(t \), made up of three lexically distinctive elements (i.e. \(\gamma^0 \), \(h^0 \) and place specification element), can license its immediately adjacent preceding rimal complement, provided that the latter is (i) also neutrally charmed and (ii) made up of a maximum of two elements. In this way, the upward complexity slope required to exist between a non-nuclear interconstituent governee (i.e. \(p/k \)) and its also non-nuclear governor (i.e. \(t \)) is respected.

The segments \(p/k \) do not meet both conditions. Although \(p/k \) are neutrally charmed, they consist of three, rather than two, lexically distinctive elements (i.e. \(h^0 \), \(\gamma^0 \) and place specification element) (3.2.4). The place specification element is lexically distinctive (distinguishes \(p \) from \(k \)). The \(h^0 \) element is also lexically distinctive as both \(p \) and \(k \) are always released before \(t \).

The \(\gamma^0 \) element may at first appear not to be lexically distinctive, as there seems to be free variation between \(pt \approx ft \) and \(kt \approx xt \) (4.1.1). Nonetheless, closer inspection reveals that this variation is not allowed in all words. As I show later in this sub-section, only some words allow variation (e.g. \([pterō] \approx [fterō])\), while other words forbid it (e.g. \([ápteros] \approx *[áfteros] 'wingless'). Although, then, all \(pt/kt \) sequences may be pronounced as \(pt/kt \), only certain words allow the lenition of \(pt/kt \) to \(ft/xt \). This fact seems to suggest that the \(\gamma^0 \) element is also lexically distinctive for \(p/k \).

The segments \(p/k \), then, possess three lexically distinctive elements. The place specification element distinguishes \(p \) from \(k \), the \(h^0 \) element ensures that \(p/k \) are always released and the \(\gamma^0 \) element distinguishes \(p \) from \(f \) and \(k \) from \(x \). As a result, the upward complexity slope required to
exist between the non-nuclear interconstituent governor (i.e. \(t\)) and its governor (i.e. \(p/k\)) is missing. Following Harris's stipulation (1990:280, 296), zero complexity differentials are only tolerated between nuclear segments and not between neutrally charmed non-nuclear segments. The above interconstituent configuration is, then, ill-formed. Theory-internally, at least, \(pt/kt\) cannot form interconstituent sequences as their allegedly strictly adjacent segments cannot enter into a governing relation.

An alternative analysis whereby \(pt/kt\) enter into an interconstituent governing relation is that \(t\) governs \(p/k\) not by virtue of greater complexity but by virtue of a negative charm. This implies that \(t\) is high-toned. However, the postulation of a high-toned \(t\) is not only unjustified by the phonetic facts of MG, but also seriously contradicted. The reader may recall from the analysis I presented in 3.2.2 that the postulation of a high-toned series of stops in MG fails, inter alia, to provide an explanation for the range of phonological phenomena oral stops give rise to in the strict adjacency of nasal segments.

As the Complexity Condition excludes the possibility of \(t\) governing \(p/k\) as a neutrally charmed segment and, at the same time, MG does not allow \(t\) to govern \(p/k\) as a negatively charmed segment, any claim for an interconstituent governing relation between the two segments must be rejected.

In the fourth place, the lack of \(*tp/*tk\) sequences that KLV point out is not a unique phenomenon of MG. This distributional gap is shared by many languages which allow branching rimes, irrespective of whether they adopt an interconstituent syllabic structure for \(pt/kt\), or an intervening empty nucleus. For some reason, which, for the moment at least, is not entirely clear, \(t\) often displays a peculiarity of behaviour with respect to the other oral stops that exist in a language. As I mention again later in this
The Syllabic Structure of the MG pt/kt and pn/kn sequences

sub-section, KLV attribute this peculiarity of behaviour to the coronal nature of t. However, they cannot yet offer an explanation as to why coronality is capable of exerting such an influence on the behaviour of t in so many languages. Further research into this matter is clearly needed.

Going now to the discussion of the theory-external arguments I provided in 4.1.4, let me begin by reviewing the lack of positive evidence for the presence of a nucleus between p/k and t. The fact that we have no positive evidence for a nucleus ever surfacing in between p/k and t cannot exclude the possibility of an empty nucleus existing there but never surfacing. In order to exclude this possibility, we need external evidence. This can come from a variety of sources.

One of these sources could be the lack of release of p/k before t. Concretely, an oral stop which is followed by a truly adjacent non-nuclear segment is universally pronounced unreleased. In this case, the noise release element (h°) of the stop is not lexically distinctive. By way of contrast, an oral stop which occurs in a pre-nuclear position is orally released. In this case, its h° element is lexically distinctive. The existence, then, of a lexically distinctive h° element in the representation of an oral stop suggests the presence of a nucleus following it. This nucleus can be either phonetically realised or empty. In the latter case, the two non-nuclear segments appear to be strictly adjacent and in a governing relation. The presence of the lexically distinct noise release element reveals that they are in fact separated by an empty nucleus.

3Recall that the h° element refers to the presence of high frequency aperiodic energy in the speech signal (2.10). This aperiodic energy, 'in the form of a noise burst, . . . characterises the release phase of genuine plosives (as opposed to unreleased stops)' (Harris 1990:263).
In languages such as English and French, p/k and t are indeed interconstituent. The segments p/k are, accordingly, unreleased (e.g. English <act>, <apt>; French <acteur>, <adopter>). In MG, the segments p and k are released, irrespective of whether the sequences pt/kt are initial or medial. Absence of oral release for p/k before t sounds strange and foreign in MG. As a matter of fact, one of the pronunciation problems Greek speakers face when they learn English is this lack of release of the first oral stop in words like <act> and <apt>. In view of the immediately preceding discussion, this fact lends support to the analysis whereby an empty nucleus intervenes between p/k and t.

In the second place, MG pt/kt do not behave like authentic interconstituent sequences whose segments are in a governing relation. Both pt and kt behave like sequences of segments which do not (i) display any governing relation between them and (ii) occur in the same governing domain. I provide two pieces of evidence for this claim immediately below.

Firstly, if pt/kt were indeed interconstituent sequences, we would have reason to expect a distribution comparable to that of other interconstituent sequences, such as s + oral stop (e.g. st, sp, sk)\(^4\), or nasal + oral stop (e.g. mp, nt, nk). In MG, there exist many sequences of s or n followed by a branching onset (e.g. str, Ntr). Assuming that pt/kt are also authentic interconstituent sequences, we should be able to find p/k occurring with branching onsets whose head is t. In other words, we should be able to find some ktr and ptr sequences.

\(^4\)As I already mentioned in 3.2.2, the reader is referred to KLV (1990), Kaye (1992), and Charette (1991) for an argumentation of the universality of the interconstituent syllabic structure for s + oral stop sequences in those languages which allow branching rimes.
This is indeed the case. MG has words such as [iktró] 'deplorable', [kátoptro] 'speculum' and [ðióptres] 'eye-glasses' (just like οstrako 'shell', āstro 'star' and āNtras 'man'). This appears at first glance to be consistent with the conclusion that the distribution of pt/kt is that of genuine interconstituent sequences.

However, this similarity of distribution is only partial. Careful analysis shows that there exists an important gap in the distribution of ptr/ktr in MG words. Concretely, ptr/ktr can only occur after a filled nucleus, i.e. in a word-medial position. Unlike str/Ntr, neither ptr nor ktr can ever occur after an empty nucleus. No MG word begins with a ktr/ptr sequence. So, although we have words like stratos 'army', stróma 'mattress' and Nprávo 'bravo', we have no words such as *[ktràtos], or *[ptrata].

This behaviour indicates that there is something amiss in the postulation of a branching onset structure (tr) being preceded by a strictly adjacent rimal complement position (p/k). We know that there is nothing wrong with tr, which always behaves like a branching onset. The only alternative, then, is that there is something wrong with the postulation that the p/k segments which precede t occur in the rimal complement position.

If p/k do not occur in the rimal complement position, the only position they may be attached to is that of an onset head. However, in this way p/k cannot be strictly adjacent to tr. According to the Onset Licensing Principle (2.11.1), an onset head must always be licensed by a following nucleus. A nuclear position, then, must intervene between p/k and the branching onset tr. This nuclear position is filled by the cold vowel (v°).

Secondly, if pt/kt are, as I propose, sequences of two onsets separated by an empty nucleus, we should be able to
find structures where \(p/k \) are preceded by a segment filling a rimal complement position. If, on the other hand, \(pt/kt \) were genuine interconstituent sequences, they should never allow a non-nuclear segment to precede them. This restriction results from the fact that the first member of an interconstituent sequence (in this instance \(p/k \)) must occur in the rimal complement position. If another non-nuclear segment (e.g. \(r/l \)) were to precede \(p/k \), the rime would end up consisting of three skeletal positions, as illustrated in (4).

Recall from 2.4 that the head of the rime is always a nucleus. All languages which, like MG, allow branching rimes, allow a maximum of only one second (nuclear or non-nuclear) member in the rime. Following the binarity theorem (2.4), configurations of a rimal complement position which consists of two non-nuclear segments are universally excluded as ill-formed.

(4) * r o
 \(N \) \(N \) \(N \)
 x x x x
 v r k t

The existence of words such as [arktikí] 'arctic', [árktos] 'bear' and [írktí] 'gaol' lend support to the latter claim. These words assume structure (5). The segment \(r \) occurs in the rimal complement position and \(k \) licenses \(r \) from the strictly adjacent onset head position (\(O_2 \)). An empty nucleus (\(N_2 \)) is required to follow \(k \) (2.11.1) and \(t \) occurs in the immediately following onset head position (\(O_3 \)).

(5) \(O_1 \) \(R_1 \) \(O_2 \) \(R_2 \) \(O_3 \) \(R_3 \) \(O_4 \) \(R_4 \)
 \(N \) \(N \) \(N \) \(N \)
 x x x x x x x
 a r k vo t o s vo

However, an objection might be raised concerning this analysis. Concretely, one might claim that instead of a
structure which adopts a nuclear position intervening between pt/kt (5), we should adopt structure (6a) in which pt/kt occur in interconstituent governing domains and the empty nucleus intervenes between r and p/k.

(6a)

\[
\begin{array}{cccccccc}
O_1 & R_1 & O_2 & R_2 & O_3 & R_3 & O_4 & R_4 \\
 N_1 & N_2 & N_3 & N_4 \\
 & x & x & xx & xx & x & x & \\
 & a & r & v^0 & k & t & o & s & v^0 \\
\end{array}
\]

In order to reject structure (6a) and adopt structure (5) as the only well-formed structure for MG rkt sequences, I need to bring in some lenition and proper government evidence. I do so immediately below, starting with the lenition evidence.

As I mentioned earlier in this sub-section, MG lenition involves the loss of the \(?^5 \) element from the representation of p/k in those words which allow variation between pt/kt and ft/xt. The lenited segment is, then, a fricative (e.g. [oktö] \(~\approx\) [okto] 'eight'). This process gives us a good test for the syllabic structure of the sequence rkt. Concretely, if structure (6a) is correct and k fills the rimal complement position, k should receive pressure to lenite. This is due to the fact that, being neutrally charmed (3.2.2), both p/k and t consist of three elements. Unless, then, k lenites by one element, t cannot govern k through interconstituent government: the upward complexity differential required to exist between the non-nuclear interconstituent governor (i.e. t) and its governee (i.e. p/k) is missing. If pt/kt indeed form interconstituent sequences, we should see the form [arktiki] being lenited to the form [arxtiki].

If, however, structure (5) is correct and k occurs in an onset head position which has licensing duties to perform

\(^5\)As the reader may recall from 3.2.2, this is the structure adopted by words such as álńoNpum and NparvōNpuni.
(i.e. \(k \) is required to license the segment \(r \) which occurs in the strictly adjacent preceding rimal complement position), \(k \) should never be lenited to \(x \).

In fact, the second behaviour is the one attested in MG. Neither of the \(p/k \) segments can ever lenite if the \(pt/kt \) sequences are preceded by \(r/l \). The above-mentioned words are always pronounced \([\text{arktiki}], [\text{árktos}], [\text{irki}]\). Pronunciations such as \(*[\text{arxtik}], *[\text{árxtos}], *[\text{irxti}]\) are all ungrammatical. This behaviour is very strange and cannot be explained unless we adopt a structure where \(p/k \) occur in a position where they have to carry out governing/licensing duties and cannot afford to lenite.

More evidence against the adoption of structure (6a) and in favour of the adoption of structure (5) comes from proper government.\(^6\) With the exception of the empty nuclei which precede \(s + C \) and \(NC \) sequences (3.2.3), the distribution of word-medial empty positions is determined by governing relations (holding between adjacent segments) and proper governing relations (holding between contiguous positions at the LPL). We know from 2.9.1 that for a proper government relation to hold the governor must be audible and the domain of proper government in which governing relations hold should not include any other governing domains.

In the configuration of (6a), reproduced below as (6b) so as to include the LPL, proper government cannot apply. In (6b) the domain within which a proper government relation should hold is that formed between \(N_2 \) and \(N_3 \). In this domain, \(N_3 \) is the governor and \(N_2 \) the governee.\(^7\) The nucleus that appears in the \(N_3 \) position (i.e. governor position) is audible

\(^6\)This argument was brought to my attention by Dr. Wiebke Brockhaus.

\(^7\)The reader may recall from 2.7.2 that MG adopts a right to left directionality of government at the \(P_1 \) level.
(i.e. unlicensed). The first of the two conditions for proper government to apply is met. However, the second condition is not met: a governing domain (involving the rimal complement of R_2 and the onset head of O_3) intervenes between N_2 and N_3.

$$
\begin{array}{c}
\text{LPL:} \\
N_1 \\
R_1 \\
N_1 \\
\text{P_0:} \\
O_1 \\
R_2 \\
N_2 \\
O_2 \\
R_3 \\
N_3 \\
O_3 \\
R_4 \\
N_4 \\
\text{a} \\
x \\
x \\
x \\
x \\
x \\
x \\
V^0 \\
K \\
t \\
o \\
V^0
\end{array}
$$

Proper government cannot take place in the above configuration. The notion of Magic Licensing that Kaye (1992) has proposed for the treatment of $s+C$ sequences and that I have extended to include the MG NC sequences (3.2.3) cannot be further extended so as to apply in the above configuration.

This is due to the dissimilarity that pt/kt and $s+C/NC$ sequences display in MG. My discussion earlier in this subsection suggests that pt/kt sequences do not display identical distribution patterns with either the $s+C$ or the NC sequences. For example, pt/kt can both be preceded by a strictly adjacent non-nuclear segment, while neither $s+C$ nor NC can (KLV (1990), Kaye (1992) and 3.2.2). There also exists a distribution gap in the occurrence of ptr/ktr sequences after an empty nucleus. This is not true of either the $s+C$ or the NC sequences of MG (e.g. *stratos* 'army', *Ntropi* 'shame'). Later in this section, I provide even further evidence of the dissimilarity of distribution of pt/kt versus $s+C$ and NC sequences.

As neither proper government nor Magic Licensing can apply in (6b), this structure must be rejected as ill-formed.

A third theory-external argument against the adoption of an interconstituent structure of pt/kt comes from the interactions that take place when pt/kt are in the strict
adjacency of nasal segments. We have just seen that *pt/kt* may be preceded by neutral segments such as *r/l*. These neutral segments must be analysed as occurring in the rimal complement position which is licensed by the following stop *p/k* (5). We have also seen that this licensing oral stop cannot lenite. The correctness of this analysis can be tested further by the possibility of another neutral segment such as a nasal occurring in this rimal complement position. Let me focus on words such as *sINpv^tosi* 'coincidence' and *sINpv^tiso* 'drawing tighter' (7).

(7) \[\begin{array}{cccccc}
 O_1 & R_1 & O_2 & R_2 & O_3 & R_3 & O_4 & R_4 \\
 N_1 & \backslash & N_2 & \backslash & N_3 & \backslash & N_4 \\
 x & x & x & x & x & x & x \\
 s & | & N & p & v^0 & t & o & s \\
 s & | & N & p & v^0 & t & i & s \\
\end{array}\]

Before proceeding to the closer investigation of these words, I would like to clarify that the segment *p* is not epenthetical in any of these non-analytic words which consist of the nasal-ending suffix {sIN-} and, respectively, the stop-initial nouns *pv^tosi* and *pv^tiso*.

The segment *p/k* of the sequences *pt/kt* can never lenite when preceded by a nasal segment. As in the case of the words *arkv^tiki*, *árkv^tos* and *irkv^thi*, this fact can only lead me to analyse *p/k* as occurring in an onset head position ((O₂), as in (7)) from which it is required to license the preceding rimal complement. In this position, *p/k* cannot afford to lose any of its elements. Again, as with the words *arkv^tiki*, *árkv^tos* and *irkv^thi*, *p/k* must be separated from *t* by an empty nucleus ((N₂), as in (7)) (2.11.1). The syllabic structure of the word *sINpv^tosi*, given in (7), seems to be identical to that of *arkv^tiki*, given in (5).

However, the *sINpv^tosi* and *arkv^tiki* types of words differ in one respect. Between the segments *m* and *p* of the word
There exists an etymological morpheme boundary. Such a boundary does not exist between the segments r and k of the word [arktiki]. The morphology of {sin-}-initial words being non-analytic, the word siNpv^tosî can be represented as [A+B], where {A} is the prefix {sin-} and {B} the stem {pv^tosî}.

The reader knows from 1.1 and 3.2 that apart from {sin-} MG has another two nasal-ending non-analytic prefixes, namely {eN-} and {paN-}. Neither of these prefixes retains its original analyticity when it occurs in morphologically complex non-analytic words. All three prefixes allow syllabification across the prefix-stem boundary. This means that in non-analytic morphology, the morphemes making up a word are not separated by any domain boundary. The last segment of morpheme {A} is strictly adjacent to the first segment of morpheme {B}. The morphological complexity of these words is invisible to the phonology.

As with the words [arktiki], [árktos] and [írktî], one of two structures can be assumed for the word siNpv^tosî. If one claims that pt/kt are not interconstituent sequences, but are separated by an empty nucleus, the structure assumed is that of (7), i.e. [sinNpv^tosî]. As I pointed out, we have reason to believe that this structure is correct on the basis of lack of lenition of the segment p. However, one could claim that before we adopt the contiguous onset heads analysis for pt/kt we need positive, rather than lack of negative evidence. This evidence should refer to (i) the lack of strict adjacency between p and k and (ii) the existence of strict adjacency between N and p.

A discussion of the morphology of the non-analytic case endings is beyond the purposes of the present thesis. I only elaborate on analytic case-endings (Chapters 5 and 6).

As I show in detail in Chapters 5 and 6, only the words which display analytic morphology (i.e. [[A][B]], [A[B]] or [[A][B]]) show traces of morphological operations within particular cycles.
If the analysis postulating the existence of an empty nucleus before \(t \) is correct, the etymological morpheme \(\{B\} \) (i.e. \(pv^{O}tôsi \)) should start with a filled onset position \((p) \) ((\(O_{g} \)), as in (7)). This onset head should license the preceding rimal complement position, which is filled with the nasal segment \(N \). If this structure is correct, we should expect to see some interaction taking place between the nasal which occurs in the rimal complement position and the oral stop which licenses it. Recall that interactions between nasal and neutral stops can take place only when the two are strictly adjacent and in a governing relation (3.2.2). These multiple interactions would give rise to forms such as \([\text{simptosi}] \) (i.e. homorganic nasal and oral stop) and \([\text{simbtos}i]^{10} \) (i.e. both homorganicity and spreading of the \(L^{-} \) element from nasal to stop).

If, however, an empty nucleus intervenes between the nasal and the oral stop, the interconstituent governing domain which would otherwise exist between these two segments is destroyed, as shown in (8a). The interconstituent governing domain will, in this case, exist only for \(p/k \) and \(t \). This implies that the nasal segment and the oral stop are no longer in a governing relation because of the intervention of an empty nucleus ((\(N_{g} \)), as in (8a)) occurring as the head of the rime in which \(p/k \) fill the complement position. As a consequence, the nasal segment should not interact with \(p/k \). This means that the nasal segment should retain its lexically distinctive place specification element. No \(L^{-} \) element should be added to the representation of the oral stop. The nasal segment would, then, be analysed as belonging to an onset head ((\(O_{g} \)), as in (8a)).

\[^{10}\]The segment \(t \) is neutral in the two latter forms. I elaborate on this issue in 5.2.3.
Recall that if we postulate that both the nasal segment and p/k belong to the rimal complement position we violate the binarity theorem. Following 2.4, a structure like (9) is universally excluded.

As a matter of fact, in MG we only have evidence for structure (7). Concretely, the place specification element spreads obligatorily for all speakers. Following 1.1, no form such as *[s\textit{iptosi}] or *[s\textit{iptiksi}] is ever attested in MG. The existing variants are [\textit{simpotis}] \approx [\textit{si(m)bosis}]. As I explain in Chapter 6, the spreading of the L$^-$ element from the nasal onto the stop is optional. The spreading of the place specification element of the stop proves not only their adjacency, but also the governing relation into which the two segments enter.

In addition, structure (8a) must be excluded on the basis of evidence coming from proper government. In (8b) below, I reproduce the configuration of (8a) to which I have added the LPL for reasons of convenience. We know from 2.9.1 and earlier in this sub-section that word-medial empty nuclear positions are licensed in MG through proper government. As government goes from right to left in MG at P_1, N_3 is required to govern N_2. This, however, is impossible. Although N_3 is audible (meeting the first of the two conditions required for a proper government relation to hold), it cannot properly govern N_2.
This is due to the fact that a governing domain involving O_3 and its preceding rimal complement intervenes between N_2 and N_3. A configuration like that of (8b), where a word-medial empty nuclear position is not properly governed is ill-formed.

(8b)

\[
\begin{array}{cccccccc}
LPL: & N_1 & N_2 & O_3 & N_3 & N_4 \\
O_1 & R_1 & O_2 & R_2 & O_3 & R_3 & O_4 & R_4 \\
| & N_1 & | & N_2 & | & N_3 & | & N_4 \\
| x & x & x & x & x & x & x & x \\
| s & i & m & v^0 & p & t & o & s \\
\end{array}
\]

Just like in (6b), the notion of Magic Licensing cannot apply in (8b). Again, this is due to the dissimilarity that pt/kt and $s+C/NC$ sequences display in MG. As I pointed out earlier in this sub-section, pt/kt sequences do not display identical distribution patterns with either the $s+C$ or the NC sequences. For instance, although pt/kt can be preceded by a strictly adjacent non-nuclear segment neither sC nor NC can. Moreover, no ptr/ktr sequences can occur after an empty nucleus. This is not true of either the sC or the NC sequences of MG (e.g. *stratôs 'army', *Ntropî 'shame*). The fact that neither proper government nor Magic Licensing can apply to (8b) lends support to the rejection of this structure.

A third alternative structure, whereby (i) the nasal belongs to the rime, (ii) the nasal and oral stop are strictly adjacent and (iii) the binarity theorem is not violated, involves the analysis of pt/kt as belonging to a branching onset (10).

(10) *

\[
\begin{array}{cccc}
* & R & O \\
N & | & | \\
x & x & x & x \\
v & n & p/k & t \\
\end{array}
\]
However, a structure like (10) is also universally excluded. The sequences \textit{pt/kt} can never form branching onsets, as oral stops cannot occur in onset complement positions (3.2.2). The only possible syllabic structure is for the nasal to be strictly adjacent to a licensing onset head (filled by \textit{p/k}) and for an empty nucleus to intervene between the latter and \textit{t} (7).

The final piece of evidence against the interconstituent syllabic structure of \textit{pt/kt} and in favour of the intervening empty nucleus comes from the process of reduplication. Before I proceed to the details of this evidence, I need to clarify that in all discussions of reduplication in this thesis I exclude two kinds of sequences. First, I exclude the onomatopoeic sequences (e.g. [\textit{titivízo}] 'twitter', [\textit{xaxanízo}] 'laugh loudly'). Second, I exclude sequences where a whole stem is reduplicated (i.e. [\textit{tsáka-tsáka}] 'in a jiffy', [\textit{pítsi-pítsi}] 'bla-bla').

Let me start the discussion of reduplication processes in Greek with an outline of the basic facts. To begin with, MG has reduplicated words from both its AG and MG vocabulary. The AG reduplicated forms differ in four respects from the MG ones.

Firstly, AG reduplication forms can only be of the verbal paradigm (i.e. present and/or present, past and future perfect tenses and participles, e.g. \textit{lé-lu-ka} 'loosen (pres.perf. first pers. sg.)' and \textit{lé-lukó:s} 'loosen (pres.perf.part. masc. nom. sg.)'). In MG, reduplicated forms are always nominal (i.e. \textit{lé-lék-i} 'very tall man'). This is why the reduplication forms that MG has retained from AG are all present perfect participles. Secondly, the AG non-reduplicate stem can stand on its own as an independent stem (e.g. \textit{lú-o}, \textit{lú-so}, \textit{lú-omai}, \textit{lú-somai}, etc.). In MG, it can never stand on its own (e.g. \textit{*lék-i}, \textit{*lék-ia}, \textit{*lék-ion}, etc.). Thirdly, the first nucleus of the reduplicated prefix (\textit{N_1}) is always filled by the segment \textit{e} in
AG (e.g. lé-luka). In MG, it is filled by a copy of whichever vowel appears in the N₁ of the base form (e.g. ku-kûla 'hood', pa-pára 'bread soaked in sauce').

The last important difference that exists between AG and MG concerns the treatment of complements that the O₁ of the base has to govern/license. Concretely, with the exception of the inherited AG reduplication forms, the MG reduplication processes do not allow the O₁ head of the base to ever govern or license any complement. No base forms whose O₁ is branching (e.g. *paprûra), or whose O₁ head licenses a strictly adjacent rimal complement (e.g. *paspára) can ever reduplicate in MG. This implies that only base forms whose O₁ position is non-branching can participate in reduplication processes in MG (e.g. papára).

By way of contrast, the AG reduplication process can take place irrespective of the governing/licensing duties of the O₁ of the stem. The O₁ head of the stem (underlined in the examples that follow) may be required to govern a complement (e.g. [dédraka] 'I have acted'), license a rimal complement position (e.g. [eétrisemai] 'I have served in the army') or may be non-branching (e.g. [pégeismai] 'I have been convinced').

All reduplicated prefixes of both AG and MG consist of an onset-nucleus pair. In AG only the head of the first onset (O₁) is reduplicated. The N₁ is filled with the nuclear segment e. No governed members are ever copied from the stem onto the prefix. This means that any rimal complement or any onset complement that may exist in the first onset-nucleus pair of the base is excluded from the reduplication process, as shown in (11). In the examples that follow, the subscripted numbers indicate the specific onset-rime pair to which each indexed segment belongs. The accented segments (τ₁', θ₁') indicate the segmental material that occurs in the governed positions of the first onset-rime pair. This material is never reduplicated.
The Syllabic Structure of the MG pt/kt and pn/kn sequences

The lack of reduplication of governed members is not a problem for MG. As I explained above, MG reduplicates only words whose O_1 of the base is both (i) non-branching and (ii) not preceded by a rimal complement, as illustrated in (12).

A crucial point for the present discussion is that the AG reduplication process treats the two kinds of non-nuclear governed members in a different way. I first tackle those verbs which have an initial branching onset. The reduplication prefix of these verbs consists of a copy of the O_1 head of the base and the nuclear segment e (13). Accordingly, the reduplicated prefix of the verb *drá-ô: (dró:)* is dé-draka, as shown in (13).

Let me now deal with words like *stratéuomai* 'to serve in the army', whose first filled onset head is preceded by a rimal complement. In these words, the filled onset head of the base is not reduplicated and only the N_1 of the prefix appears, i.e. *[e-stráteumai]*, as in (14). This leads me to analyse the empty onset of the base as O_1 and the first filled onset of the base as O_2. As the nuclear head of the stem (N_1) is empty, the N_1 of the prefix is filled by e, the default nuclear segment of AG reduplicated forms (14).
Based on this differential treatment of governed segments, we have a test whereby we may check whether AG treats pt/kt as interconstituent sequences or as sequences of two onsets separated by an empty nucleus. If pt/kt are interconstituent, we should expect them to behave like the interconstituent sequences of (14). In other words, a verb like ktízo: 'I build' would become \([\text{é-ktika}]\) and a verb like ktáomai 'I procure for myself' would become \([\text{é-kte:mai}]\), as shown in (15).

If, on the other hand, pt/kt belong to two different onset heads separated by an empty nucleus, we should expect the reduplicated form of the verb ktáomai to be \([\text{ké-kte:mai}]\) (16) and not \([\text{é-kte:mai}]\). The reduplicated form of the verb ktízo: would, in this case, be \([\text{kéktika}]\) and not \([\text{éktika}]\).

In fact, AG has both structures. Certain verbs choose the interconstituent structure and other verbs choose the structure with the intervening empty nucleus. So, alongside forms like \([\text{kekte:ménos}]\) and \([\text{kékte:mai}]\) 'I have procured for myself' (i.e. empty nucleus structure), we have forms like \([\text{é-}\)
ktika] 'I have built' and [ektisména] 'built (pres.perf.part.)' (i.e. interconstituent structure). This means that AG has both \(kv^O t \) and \(v^O kt \) structures. The \(kt \) sequence of the verb \(ktizo: \) is truly interconstituent (i.e. \(v^O kt \)) and the \(kt \) sequence of the verb \(kv^O t áomai \) shows evidence of an intervening empty nucleus (i.e. \(kv^O t \)). The form [kékte:mai] is one of the very few which reduplicate in this way in AG. Most \(kt \)-initial forms reduplicate in the way of the verb \(ktizo: \), i.e. as truly interconstituent sequences.

MG has retained in its vocabulary very few AG reduplicated forms. These do not only come from verbs which have a non-branching \(O^i \) in the stem. They also come from (i) verbs which have a branching onset \((O^b) \) in the stem and (ii) verbs whose \(O^i \) head is empty and which have the segmental material which occurs in the word-initial rimal complement position (the latter position follows the empty \(O^i \) licensed by a filled \(O^b \). Forms like [peproméno] 'destiny', [tetriména] 'cliché' and [keklisménon] 'shut' prove that MG retains reduplicated forms of verbs whose \(O^i \) is branching. In addition, forms like [espevzména] 'hurried', [estavroménos] 'crucified' and [eskeména] 'deliberately' show that MG retains reduplicated forms of verbs whose \(O^i \) of the stem is empty and the segmental material which fills the rimal complement position is licensed by the \(O^b \) head.

It would, then, be interesting to see whether MG has retained any reduplicated forms of \(pt/kt \)-initial verbs. If it did, it would be extremely revealing to see which of the two structures it retained. It is reasonable to assume that if MG allows interconstituent \(pt/kt \) structures (i.e. \(v^O pt/v^O kt \)), it should allow the retention of reduplicated forms like [ektizménos]. If, however, it only allows a structure where an empty nucleus intervenes between \(p/k \) and \(t \) (i.e. \(pv^O t/kv^O t \)), it should forbid reduplication forms like [ektizménos] and only allow forms like [kektiménos].
In fact, MG retains only the latter (i.e. \textit{[kektiméno]}). MG, then, has reduplication forms from the AG vocabulary whose stems uncontestably begin with (i) non-branching structures (e.g. \textit{[pepízméni]} 'convinced', \textit{[tetaméni]} 'tense', \textit{[kekorezméni]} 'saturated'), (ii) branching structures (e.g. \textit{[peproméno]} 'destiny', \textit{[tetriména]} 'cliché' and \textit{[kekilzménon]} 'shut') and (iii) rimal complement structures (e.g. \textit{[esteménos]} 'crowned'). Forms like \textit{[kektiméno]} only fit in the first category. The reduplication prefix shows the typical form of a non-branching onset in the stem. This structure can be allowed for the \textit{kt} sequence only if an empty nucleus intervenes between the two oral stops.

Quite significantly, the only \textit{pt/kt}-initial forms retained by MG are the ones in which the AG \textit{kt} reduplicates like a non-branching structure. As I mentioned above, this structure is, in AG, the least numerous of the two syllabic structures that the \textit{pt/kt} sequences may assume. I consider this behaviour of MG as indicative of the syllabic structure it assumes for \textit{pt/kt}.

Before rounding up this sub-section, let me point out that there exists a set of words in which \textit{p/k} are not separated from \textit{t} by an empty nucleus. The set I refer to is that of words like \textit{pémpti} 'Thursday'. Following my discussion of 1.1, in these words, the oral stop which intervenes between the nasal segment and \textit{t} (i.e. \textit{p}) is epenthetic and not lexical. The \textit{pt/kt} sequences in which \textit{p/k} are epenthetic rather than lexical are different from the \textit{pt/kt} sequences of the words I examined above. I do not elaborate on the epenthetic structure here. In Chapter 6, however, I provide proof for the epenthetic nature of \textit{p} in these sequences, I illustrate the syllabic structure these \textit{pt/kt} sequences assume and I discuss in detail their totally different phonological behaviour.

Let me now review the ten pieces of evidence in favour of the existence of an empty nucleus intervening between \textit{p/k}
and \(t \). First, \(pt/kt \) fail to show strict co-occurrence restrictions. Second, the lack of *tp/tk sequences is not a language-specific trait. Third, in sequences of what looks like strictly adjacent \(pt/kt \), the first of the two oral stops is released. Fourth, unlike the behaviour of other true interconstituent sequences, there exists a distribution gap in the occurrence of \(ptr/ktr \) sequences after an empty nucleus ([stratos], but *[ktratos]). Fifth, both \(pt/kt \) can be preceded by a r/l segment or by a nasal filling the strictly adjacent rimal complement position (arkv\^ti). Sixth, no lenition ever takes place when \(p/k \) have to license a rimal complement position ([arktiki] \(\approx \) *[arxiki]). Seventh, no lenition takes place in the first consonant of some of the \(pt/kt \) sequences ([ptosi] \(\approx \) *[ftosi]). Eighth, if a nasal segment precedes the \(pt/kt \) sequences it must be homorganic to the first of the two stops ([simptosi], *[sinptosi]). Ninth, subject to social variation, the \(L \) element of the nasal spreads onto the first stop of the \(pt/kt \) sequences ([simptosi] \(\approx \) [simpptosi]). Tenth, where MG has a choice of retaining from AG \(kt \)-initial structures which reduplicate either like interconstituent structures or as sequences of two onsets separated by an empty nucleus, it only retains the latter.

The above evidence leads me to reject the interconstituent syllabic status of \(pt/kt \) and adopt the structure where an empty nucleus intervenes between the two oral stops (i.e. \(p\overset{O}{\nu}/k\overset{O}{\nu}t \)).

4.2 The MG \(pn/\overset{O}{k}n \) sequences

The \(pn/\overset{O}{k}n \) sequences are not as frequent as the \(pt/kt \) or the \(ps/ks \) ones. To the best of my knowledge, they receive virtually no mention in the MG phonological literature. This is probably due to two reasons. Firstly, in contrast to \(pt/kt \), \(pn/\overset{O}{k}n \) do not directly participate in any variation process. Secondly, their identical behaviour regarding the various MG
phonological processes excludes the possibility of their each adopting a different syllabic structure. In this respect, they contrast with ts and ps/ks which, although similar-looking (i.e. stop + s), adopt two different syllabic structures (see 5.2.2).

The sequences pn/kn show signs of similar distribution and behaviour to pt/kt and, as I show in Chapter 5, to ps/ks. Their first segment being an oral stop, they participate in the phonological variation processes I investigate. In the next two sub-sections, I give some general information as to the treatment of the pn/kn sequences by KLV (4.2.1). I also provide some evidence against the assumption of an interconstituent syllabic structure for them and in favour of an intervening empty nucleus (4.2.2).

4.2.1 pn/kn: the analysis offered by KLV (1990)

KLV (1990:212) universally exclude homorganic stop-nasal clusters as well-formed onsets on the grounds that such sequences violate the constraint against spreading of elements within an onset. They also note that universally sequences of stop plus nasals are typically heterorganic.

In their examples which come from various languages, KLV also cite MG. They remark that in MG, as in other languages, pn/kn 'mirror the stop clusters' pt/kt (1990:229). They also point out that English stress placement treats the English pn/kn sequences as heterosyllabic, as in the example <arachnoid>, where stress is placed on the second rather than on the first nucleus of the word.

From these two remarks, I assume that KLV would treat the MG pn/kn sequences just as they treat the English ones, i.e. as interconstituent sequences. However, as with pt/kt, there is no a-priori reason why MG pn/kn should assume the syllabic structure they display in English. In the following sub-
section, I discuss the evidence that leads me to reject the analysis offered by KLV (1990) and adopt, in its place, an analysis whereby \(pn/kn \) consist of two onsets separated by an empty nucleus (i.e. \(pv^0n/kv^0n \)).

4.2.2 The arguments in favour of an intervening empty nucleus

The potential absence of any \(tn/tm/pm \) sequences in MG might suggest that co-occurrence restrictions exist between \(p/k \) and \(n \). Such a fact would provide evidence in favour of the existence of a governing domain between \(p/k \) and \(n \), and, hence, their interconstituent status. However, words like [f\'a\'tni] 'manger' and [at\'m\'s] 'steam', demonstrate the existence of \(tn \) and \(tm \) sequences. In MG, the gap exists only for \(*pm \). This gap is not language-specific but attested in many of the world’s languages. Furthermore, this gap does not necessarily imply the strict adjacency of \(p/k \) and \(n \). The existence of \(pt/kt \) and \(ps/ks \) sequences indicates that apart from \(n \), the segments \(p/k \) may occur with other non-nuclear segments. These facts shed serious doubts on the postulation of a governing relation between \(p/k \) and \(n \).

In MG, there exists abundant distributional evidence against the strict adjacency of \(p/k \) and \(n \). To begin with, if \(p/k \) and \(n \) were truly adjacent, both \(p \) and \(k \) should be nasally released in pre-nasal positions, i.e. their \(h^0 \) element should not be lexically distinctive. Recall from 3.2.4 that the existence of a lexically distinctive \(h^0 \) element in the representation of \(p/k \) before \(n \) would suggest the presence of an intervening nucleus (the \(h^0 \) element being lexically distinctive for the stops only in pre-nuclear positions). If, however, an empty nucleus intervenes between them, \(p/k \) should be orally released. In fact, MG chooses the second option: \(pn/kn \) are always pronounced with an orally released oral stop, i.e. their \(h^0 \) element is lexically distinctive. Nasal release for \(p/k \) before \(n \) sounds foreign and strange.
In the second place, if \(pn/kn \) are true interconstituent sequences, we should never be able to see them preceded by a rimal complement position: such a structure would violate the binarity theorem. Consequently, structures such as \(spn, skn, mpn, nkn \) should not exist in MG. Recall that \(sp \) and \(mp \) (see 4.1.2 and 3.2.2, respectively) are genuine interconstituent sequences.

This assumption is wrong. Although, just like in English, examples are hard to come by, words such as \([ispnɔi]\) 'inhalation' (17a), \([ðispnia]\) 'difficulty in breathing' and \([e(m)bnέo]\) 'I inspire' are widely used in MG. Also the example \([sknίpa]\) 'gnat', shows that there is no distributional gap for word-initial positions, as there was for the \(spt \) and \(skt \) sequences. The sequences \(spn/skn \) can occur after both filled and empty nuclei. Having excluded the possibility of \(pn/kn \) forming branching onsets (4.2.1), the adoption of an intervening nucleus is necessary if we are to explain the strict adjacency of \(s/n \) and \(p/k \) (17a).

\[
(17a) \quad \begin{array}{cccccccc}
O_1 & R_1 & O_2 & R_2 & O_3 & R_3 & O_4 & R_4 \\
N_1 & \backslash & N_2 & \backslash & N_3 & \backslash & N_4 \\
x & x & x & x & x & x & x \\
1 & s & p & v & n & o & 1 \\
\end{array}
\]

If we assign an interconstituent status to \(pn/kn \), the strict adjacency of \(s/n \) and \(p/k \) would mean that the rime consists of one nuclear head and two non-nuclear positions, contra the binarity theorem (2.4) (18). This structure is universally excluded.

\[
(18) \quad \begin{array}{cccccccc}
O & R & O & R & O & R \\
N & \backslash & N & N & N & N \\
x & x & x & x & x & x \\
1 & s & p & n & o & 1 \\
\end{array}
\]
In the third place, words such as \[e(m)bnéo\] provide additional proof of the intervening nucleus. These words consist of a non-analytic nasal-ending prefix (e.g. \{eN-\}) and a stem which has an initial oral stop (i.e. \{pv^o\生命的)). Again, the morphological complexity of these words is not visible to the phonology. Their syllabic structure is given in (19) below.

\[
(19) \hspace{1cm} O_1 \hspace{1cm} O_2 \hspace{1cm} O_3 \hspace{1cm} O_4 \hspace{1cm} R_1 \hspace{1cm} R_2 \hspace{1cm} R_3 \hspace{1cm} R_4
\]

\[
\begin{array}{cccc}
N_1 & N_2 & N_3 & N_4 \\
\frac{x}{1} & \frac{x}{s} & \frac{x}{p} & \frac{x}{n} \\
\frac{x}{m} & \frac{x}{p} & \frac{x}{v} & \frac{x}{e} \hspace{1cm} \frac{x}{o}
\end{array}
\]

The interactions that take place between strictly adjacent nasal and oral stops (3.2.2) provide a most reliable test for the correctness of the assumption that the oral stop is not adjacent to its following nasal segment. Specifically, if there exists some interaction between the nasal segment of the prefix \{eN-\} and the oral stop of the stem, we should assume a structure where these two are strictly adjacent, i.e. they form an interconstituent governing domain. This implies that the oral stop of the \(pn/\)kn sequences (i.e. \(p/k\)) and the nasal following it must conform to the general condition on the well-formedness of phonological strings (2.11.1) and allow an empty nucleus to intervene between them, as shown in (19). In such a configuration, the oral stop must be strictly adjacent to the preceding nasal segment and separated from the following, phonetically adjacent, nasal segment by an intervening empty nucleus. Recall that the branching onset structure has been excluded for \(pn/\)kn, as nasals cannot occur in onset complement positions (4.2.1).

If, on the other hand, \(pn/\)kn are interconstituent sequences, the oral stop should occur in the rimal complement position, as illustrated in (20a). This oral stop would, then, be governed by the following nasal. This governing nasal
should occur in the following onset head position \(((O_2)\), as in (20a)). The nucleus which would have to occur before the oral stop \(((N_2)\), as in (20a)) should be empty. This structure forbids any interaction between the nasal segment of the prefix \((O_2)\) and the oral stop.

(20a) \[
\begin{array}{cccccccc}
O_1 & R_1 & O_2 & R_2 & O_3 & R_3 & O_4 & R_4 \\
N_1 & \backslash & N_2 & \backslash & N_3 & \backslash & N_4 & \\
[& x & x & x & x & x & X & X] \\
e & N & V & p & n & e & o
\end{array}
\]

Recall that if we analyse the first nasal as also occurring in a rimal complement position next to the oral stop (21) we would violate the binarity theorem (2.4).

(21) \[
\begin{array}{cccccccc}
* & O & R & O & R & O & R \\
/ & \backslash & / & \backslash & / & \backslash & \\
N & N & N & N & N & N & \\
x & x & x & x & x & x & x \\
e & N & p & n & e & o
\end{array}
\]

In fact, MG opts for the first solution (19). We can only have forms such as \([eim\text{bn}eo]\) and \([si(m)b\text{nia}]\). We can never have forms such as \(*[\text{enbnf}si]\) or \(*[si\text{nb}n\text{ia}]\), where the place specification element does not spread from the oral stop to the preceding nasal segment. In addition, the \(L^-\) element spreads from the nasal segment of the prefix onto the stop (e.g. \([\text{en}m\text{bn}sf]i\) or \([si(m)b\text{nia}]\)). No interactions whatsoever take place between the oral stop and the nasal segment of the \(pn/kn\) sequences. This distributional evidence shows that the oral stop is strictly adjacent to its preceding nasal segment. We, then, have to postulate the intervention of an empty nucleus between the \(p/k\) and the following nasal segment.

Besides, proper government evidence allows us to reject structure (20a) as ill-formed. The word-medial empty nucleus which appears in the \(N_3\) position cannot be licensed through
proper government. This is due to the fact that a governing
domain consisting of O_3 and its preceding rimal complement
intervenes between the domain of proper government that is
formed between N_3 and N_2, as shown in (20b) below. (Recall from
2.7.2 and earlier in this sub-section that internuclear
government goes from right to left in MG.) Although N_3 is
unlicensed (i.e. audible), it is not contiguous to N_2 at the
LPL. This means that N_3 cannot properly license N_2.

(20b)

Magic Licensing can also not apply in (20b). This is due
to the dissimilarity of the MG pn/kn and s+C/NC sequences. As
I argued earlier in this sub-section, pn/kn sequences display
different distribution patterns from either s+C or NC
sequences. For example, pn/kn sequences can be preceded by a
strictly adjacent non-nuclear segment (e.g. [ðísptnía]
'difficulty in breathing'). Neither s+C nor NC can be preceded
by a strictly adjacent non-nuclear segment (i.e. *árstata,
*rNpála).

The fact that neither proper government nor Magic
Licensing can apply in (20b) lends support to the rejection
of the above-mentioned structure.

Let me now sum up the six arguments in favour of a
structure for pn/kn where each segment belongs to an onset
head with an empty nucleus separating them. First, the lack
of co-occurrence restrictions between p/k and n (there also
exist pt/kt, ps/ks, tn, and tm sequences) indicates the lack of
a governing relation between p/k and n. Second, the lack of
only *pm sequences is not a language-specific trait but is
shared by many of the world's languages. Third, \(p/k \) are always orally and never nasally released before the nasal segments. Fourth, both \(pn \) and \(kn \) allow strictly adjacent non-nuclear rimal complements to precede them. This distribution shows no gaps as it may take place both word-medially ([ispno]) and word-initially ([sknipa]). Fifth, when a nasal segment occurs in a strictly adjacent position preceding \(pn/kn \), it becomes homorganic to its licensing stop ([embró], *[embró]). Sixth, in these environments, the oral stop of the \(pn/kn \) sequences also becomes low-toned (embró).

4.3 Summary

In the present chapter, I discussed the syllabic structure of the MG \(pt/kt \) and \(pn/kn \) sequences. The assumption of the correct syllabic structure for these sequences is important to an analysis of MG phonological variation as the first segment of these sequences is an oral stop. For all four sequences I argued against the adoption of the interconstituent syllabic structure assumed by KLV (1990) and in favour of an intervening nucleus between \(p/k \) and \(t/n \). My arguments were chiefly theory-external and referred to the distribution and phonological behaviour of these sequences.

I have shown that (i) \(pt/kt \) and \(pn/kn \) fail to show strict co-occurrence restrictions and that (ii) the lack of \(*tp/tk \) and \(*pm \) sequences is not a language-specific trait. I have also argued that \(p/k \) is always orally released before either \(t \) or \(n \). I have demonstrated that there exists a distribution gap in the occurrence of \(ptr/ktr \) sequences after an empty nucleus and that \(pt/kt \) and \(pn/kn \) can be preceded by strictly adjacent non-nuclear segments. In addition, I have shown that no lenition ever takes place when \(p/k \) have to license the segmental material of their preceding rimal complement position. Furthermore, I have demonstrated that if a nasal segment precedes the \(pt/kt \) or \(pn/kn \) sequences it must be
homorganic to the initial stop of these sequences. Finally, I have produced evidence supporting the fact that where MG has a choice of retaining from AG kt-initial structures which reduplicate either like interconstituent structures or as sequences of two onsets separated by an empty nucleus, it only retains the latter.
CHAPTER FIVE

THE SYLLABIC STRUCTURE
OF MODERN GREEK ts AND ps/ks

5.0 Introduction

Having established in the previous chapter the syllabic structure of the MG pt/kt and pn/kn sequences, I turn, in this chapter, to an analysis of ts, ps and ks, three of the most problematic and widely discussed Modern Greek clusters. The analysis I propose is also couched within the framework of Government Phonology. Just as with pt/kt and pn/kn, the discussion of the syllabic structure of ts and ps/ks might at first appear irrelevant to the purposes of this thesis. Nevertheless, ts and ps/ks are also involved in MG phonological variation processes, their first sound unit being an oral stop. At the same time, however, the phonological behaviour of ts differs in some important respects from that of ps and ks. As I argue in this chapter, this difference is due to their dissimilar syllabic structure: ts is a contour segment, while ps/ks are, like pt/kt and pn/kn, sequences of two onsets separated by an intervening empty nucleus.

The analysis I provide of the syllabic structure of ts and ps/ks is organised as follows. In Section 5.1, I briefly present the most prominent accounts that exist of the syllabic structure and phonological behaviour primarily of ts, but occasionally also of ps and ks. In Section 5.2, I propose an analysis of ts and ps/ks within the framework of GP. I first discuss the analysis offered by KLV for ts and ps/ks. Then, I explain the reasons why I adopt their contour analysis for ts, but reject their interconstituent syllabic analysis for ps/ks.

In this chapter, I often refer to (i) the theoretical
The Syllabic Structure of the MG ts and ps/ks Sequences

stipulations of Government Phonology (Chapter 2), (ii) the interactions taking place between strictly adjacent nasal and oral stops (3.2.2) and (iii) some of the arguments I used in order to prove that the syllabic structure of pt/kt and pn/kn is that of two onsets separated by an intervening empty nucleus (Chapter 4). Most of the claims I make in this chapter also come up in Chapter 6, where they undergo further elaboration so that they provide additional supporting evidence for the analysis I present of the phenomenon of MG phonological variation.

5.1 Presentation of the problem and of some existing analyses

This section is divided in two sub-sections. In 5.1.1, I outline the questions different linguists have attempted to answer in their examination of the syllabic structure of ts and ps/ks in MG. In 5.1.2, I present the most well-known and recent analyses. The majority of these analyses are formulated within an SPE-type framework. It is mainly the older analyses that follow the Structuralist approach.

Throughout 5.1.2, I use the SPE terms the linguists themselves use in their accounts. For instance, I use terms like 'consonant', 'vowel' and 'affricate' (rather than, respectively, 'non-nuclear', 'nuclear' and 'contour' segments). I also use terms which have no standing in a GP framework (e.g. 'phoneme'). Lastly, for the sake of convenience and clarity of presentation, I use two sets of symbols: t̂/d̂ (referring to the unit-phonemic analysis) and ts/dz (referring to the cluster analysis). This conventional notation is in force only for this section. From 5.2 onwards, I use the symbols ts/dz.

5.1.1 An outline of the problem

Three questions recur in the literature on MG ts, ps and ks:
(i) Do all three sound sequences possess an identical syllabic structure or not?
(ii) If their syllabic structure is different, which structure should we assume for each sequence?
(iii) Is dz an independent cluster? If so, what is its syllabic structure and how does it relate to that of ts, ps and ks?

The attempts to answer these questions have, over the years, brought to light numerous and often quite diverse analyses. Most linguists deal only with ts. Some maintain that ts is a cluster, while others maintain that it is 'an affricate'. Moreover, the comparisons of ts with ps/ks are scant and, most of the time, haphazard. Finally, in very few analyses is dz systematically compared to ts, ps and ks. In the next sub-section, I review some of the existing accounts in an effort to show how different linguists have tackled the above issues.

5.1.2 A review of the literature on MG ts and ps/ks

Let me begin this review with ts. Most linguists seem to focus on the possibility of assigning phonemic status to ts. These linguists can be divided into two groups. On the one hand there are those who treat ts as a sequence of two segments (Mirambel (1946a, 1950, 1959), Newton (1961:284), Setatos (1969:46-51), Koutsoudas (1962), Swanson (1979), Magoulas (1979:22) and Philippaki-Warburton (1970:18)). On the other hand, there are those who treat ts as a unit phoneme (Triandaphyllides (1939), Mirambel (1946a, 1950, 1959), Householder (1964:17-9), Zeri (1984), Malikouti (1970:24-5) and Joseph (1986)).

A handful of linguists from both groups use the Structuralist approach (e.g. Mirambel, Triandaphyllides, Swanson and Magoulas). In their analyses, special emphasis is placed on the historical origins of ts. The remaining
linguists use an SPE-type framework (e.g. Newton, Householder, Zeri, Malikouti, Setatos, Koutsoudas and Philippaki-Warburton). In their analyses, less emphasis is placed on the historical origins of ts and more on its distribution in different syllabic positions.

Newton (1961), Magoulas (1979), Setatos (1969) and Philippaki-Warburton (1970) support the view that ts forms a cluster. In his attempt to reduce the phonemic inventory of MG and do without a series of sounds which most linguists consider as phonemes, Newton (1961) observes that ts can never be followed by another consonant: it can only be followed by a vowel. This, he claims, clearly indicates that ts behaves like a cluster and not like an affricate.

In addition, Newton (1961) claims that there does not exist any contrast between two kinds of ts, namely a ts which behaves like an affricate and a ts which behaves like a cluster (i.e. tₕ versus t + s)

Newton considers that the above fact proves that there only exists one syllabic structure for ts. He opts for the cluster structure in view of the simplicity this solution introduces in the description of the MG phonological system.

The last argument in favour of an analysis of ts as a cluster appears in Magoulas (1979). He argues that, although most linguists consider ts as an affricate, Martinet's criteria for the monophonemic status of sounds lead him to postulate that ts can only assume the structure of a cluster of two independent phonemes, namely t and s. Martinet's criteria specify that when each of the two sounds (here, t and s) can occur on its own replacing the original cluster in an

¹cf. Mirambel's (1946a, 1950) account later in this section.

²The reference Magoulas (1979:36) gives for these criteria is Martinet, A. 1956. La description phonologique avec application au parler francoprovençal d'Hautecourt (Savoie). Genève.
intelligible minimal pair, the original cluster can no longer be considered as a unit phoneme, but as two phonemes. Minimal pairs such as patáś 'a soup', patás 'you step on' and pasás 'pasha' can only point, Magoulas argues, to the adoption of the cluster solution.

Setatos (1969) presents impressive lists of words containing the sounds ts/dz. He creates these lists on the basis of the pronunciation of ts/dz, their origin, the variants they have, their distribution in the different positions in a word and the sandhi phenomena they participate in. Setatos (1969) does not propose any new arguments for his position. Nor does he oppose any of the ones favouring the affricate option. He simply sums up those already existing in the literature and stresses the more recent introduction of ts (as well as dz) into MG (see later in this sub-section). He finally claims that a more economical analysis of MG can be attained by avoiding the phonemicization of ts/dz; hence his adoption of the cluster option.

Finally, following Koutsoudas (1962), Philippaki-Warburton (1970) supports the cluster solution, albeit tentatively: 'On the basis of simplicity only we will follow the solution which treats the affricates /ts/ and /dz/ as clusters of a stop + the strident fricative' (Philippaki-Warburton 1970:18; my emphasis). However, Philippaki-Warburton (1970:18) recognises the need for further research in this area and refrains from expressing a categorical opinion on the issue: 'we cannot offer a responsible solution at present ... this proposal is only tentative'.

The linguists who support the unit-phonemic option are more numerous. The most convincing argumentation can be found in Householder (1964). Householder considers Newton's (1961) attempt to rephonemicize MG as a 'dream' and, accordingly, attacks it. Householder (1964) points out that ts can only occur as a morpheme-initial or morpheme-medial sequence (e.g.
respectively \([t^S\delta p^+\alpha]\) 'pocket' and \([k^S\delta t^+\alpha]\) 'ankle bone'), but never occur across what he calls 'morph-boundaries' (rather than 'morpheme boundaries')\(^3\), i.e. *\([k^S\delta t^+s]\). This, Householder claims, proves that \(t^S\) is one unit and cannot be broken down to further component parts (see also 5.2.2).

Furthermore, Householder (1964) observes that \(t^S\) can occur in reduplicative environments, i.e. as the initial consonant of the first and second syllables of a word followed by the same vowel (e.g. \(t^S\delta t^S\delta\) 'stark naked'). In this reduplicative environment, no clusters ever occur.

Malikouti (1970) also follows Householder (1964) in treating \(t^S\) as a unit-phoneme. Malikouti (1970) stresses the impossibility of \(t^S\) occurring across a morpheme boundary and points out that the voiced cognate of \(t^S\) has a different distribution than the voiced cognates of \(ps/ks^4\). This indicates that there exists a difference in the syllabic structure of \(ts\) versus \(ps/ks\).

Let me now turn to the analyses that contrast \(ts\) with \(ps/ks\). These are not numerous, mainly because most linguists do not enter into an examination of the syllabic structure(s) of \(ps/ks\). If they mention \(ps/ks\) at all, it is simply because they want to draw some parallel to, or distinction from, the syllabic structure of \(ts\). No one has so far ever argued that \(ps\) and/or \(ks\) are contour segments. This is one of the very few areas of MG phonology where linguists of all approaches seem to have a general consensus.

Those linguists who claim that \(ts\) is a cluster of two segments assume an identical syllabic structure for all three

\(^3\)His analysis is particularly confusing, as Householder (1964) does not differentiate between analytic and non-analytic 'morph'-boundaries.

\(^4\)For more details on this point, see 5.2.3.
The Syllabic Structure of the MG ts and ps/ks Sequences

5ts/ps/ks. Magoulas (1979), Newton (1961) and Setatos (1969) belong to this group. Magoulas does not explicitly draw any comparison between ts and ps/ks. Newton and Setatos, however, make short reference to ps/ks. Newton only mentions ps/ks in order to strengthen his argument that ts is not an affricate. Specifically, he says that if ts is to be treated as an affricate 'why not make the sequences [ps] and [ks] unit phonemes?' (1961:284). Setatos (1969) simply mentions the different distribution of ps/ks (as compared with that of ts) in the review he offers of the work of other linguists.

To my knowledge, it is only the linguists who assume an affricate structure for ts who enter into a comparison of ts and ps/ks. Their comparison aims at showing the difference in the phonological behaviour (and, hence, status) of ts vis-à-vis the similar-looking sequences ps/ks. Mirambel (1959), Householder (1964), Malikouti (1970) and Joseph (1982) are amongst this latter group. With the exception of Mirambel (1946a, 1950, 1959) who follows the Structuralist framework, the other two linguists use an SPE-type approach in their analyses. In their attempt to prove the different syllabic structure of ts as compared with ps/ks, Mirambel (1946a, 1950, 1959), Householder (1964) and Malikouti (1970) use phonological criteria, while Joseph (1982, 1986) uses semantic criteria.

Householder (1964) observes that the clusters ps/ks occur in much the same positions as ts. However, their distribution across morph-boundaries is different. ts can never occur across a 'morph'-boundary (e.g. [patas], *[patds]), while both ps and ks can (e.g. [[plék]sl], *[pléks+i] 'knitting'; [[réps]s], *[réps+i]) 'nourish' (see also 5.2.2).

Householder (1964) also observes an unmatched

As I show later in this section, Joseph's (1982, 1986) examination of the status of ts/dz differs from the ones I mention here, mainly because of its semantic orientation.
distribution for d^2, bz and gz. Specifically, Householder claims that bz/gz can only occur word-initially when ps/ks follow a nasal-ending proclitic (e.g. ton psíno \rightarrow [tom bzíno] 'I bake him', ton kséro \rightarrow [tog gzéro] 'I know him'). dz can likewise occur as the result of a similar process (ton tsákosa \rightarrow [ton dzákosa] 'I caught him'), but it can also exist independently. Specifically, Householder claims that dz can occur word-initially and word-medially without any nasal segment preceding it (e.g. [to dzáki] 'the fireplace' and [ton adzamí] 'the maladroit man'). This means that contrary to bz and gz, dz can occur as an independent phoneme. Recall that, following 1.2.2, Householder (1964) also adopts the existence of MG independent voiced stop phonemes (i.e. $b/d/g$): dz is, then, one of them.

Finally, Householder points out that unlike ps/ks, t^S can occur in MG as the initial consonant of the first and second syllables of a word followed by the same vowel (e.g. t^SitSí, *p^SiSí, *k^SiSí). In 5.1.2, I provide a fully detailed account of the behaviour of ts and ps/ks in reduplication environments.

Malikouiti (1970) also stresses the occurrence of ps/ks across morph-boundaries and the impossibility of t^S occurring in similar positions. This, she claims, is a clear indication of their different status and especially of the behaviour of t^S as one unbreakable unit.

Finally, in his semantically-oriented analysis, Joseph (1982, 1986) argues convincingly that ts/dz are unparalleled by all other MG sequences of oral stop + s. Without making an explicit claim as to the phonemic status of ts/dz, Joseph points out that, unlike ps/ks, ts/dz occupy a special place in the MG phonological system.

Let me now outline the analyses so far proposed for dz. These are not numerous. They mostly refer to the historical
The Syllabic Structure of the MG ts and ps/ks Sequences

origin of dz. Setatos (1969:46), for instance, stresses the more recent introduction of dz into the language: dz is 'an offspring of the evolution the Greek language underwent during the great span of time from postclassic to modern times (10th century) and of the foreign influences that came to act upon it'. He also points out (1969:46) the slower adaptation of dz (as compared with that of ts) into the MG phonological system: 'There is no doubt that their phonological adaptation (especially concerning [dz]) has not yet been concluded'.

Those linguists who support the cluster option for ts assume the same status for dz. Newton (1961:284), for example, considers that dz is made up of t + z (an underlying t being voiced in the adjacency of voiced segments). He points out that there are no minimal pairs of dz versus d + z, just as there are no minimal pairs of ts versus t + s. This fact, he believes, supports a cluster analysis for both ts and dz.

Those linguists who treat ts as an affricate (i.e. t_s) assume the same syllabic structure for d^z (Mirambel (1959), Householder (1964), Setatos (1969) and Joseph (1982)). None of these linguists derives d^z from a nasal segment + ts. They all recognise an independently existing voiced affricate (d^z), just as they recognise an independently existing MG voiced plosive series (i.e. b/d/g).

Malikouti (1970) is the only linguist who both adopts the affricate solution and derives d^z from the strict adjacency of a nasal segment to the affricate t_s (i.e. N + t_s). The reader may recall that Malikouti also derives the MG voiced plosives in exactly the same way, i.e. from underlying NC sequences (1.2.2).

Let me finally conclude this sub-section with Mirambel's (1946a, 1950) analysis of ts/dz and ps/ks. I outline his views separately because the account he provides is rather complicated and differs in most respects from the accounts I
have presented so far.

The emphasis Mirambel (1946a, 1950) places on the historical origin of ts, ps and ks and the spelling conventions of MG lead him to distinguish two kinds of ts sequences in 'grec commun' (as opposed to 'grec dialectal'). The first kind is a cluster (i.e. ts). The second kind is an affricate (i.e. t^s). His distinction is based solely on the historical processes which operated in MG. In order to decide on the syllabic status of ts, Mirambel takes into consideration the historical origin of the particular word in which ts appears. Specifically, if ts came about by a process whereby two consonants coalesced, the emerging ts is a cluster (e.g. ks > ts, as in [eksalapatō] > [tsalapatō] 'to tread over'). Alternatively, if ts came about by a process whereby one consonant turned into ts, this emerging t^s is an affricate (e.g. k > t^s, as in [kixla] > [t^s_ixla] 'thrush'). Both ts and t^s are spelt identically, i.e. as <ṭο>.

Mirambel (1950) also discusses the existence of a voiced cognate to ts, i.e. dz. He says that there should be two kinds of dz: a 'groupe' dz and an affricate d^z, just as there is a cluster ts and an affricate t^s. The 'groupe' dz should be the result of the coalescence of two consonants into dz (this dz being the voiced cognate of the cluster ts). The affricate d^z should come about through the change of one consonant into d^z (this d^z being the voiced cognate of the affricate t^s).

However, as Mirambel (1950) remarks, this is not exactly how MG works with respect to dz. MG does not possess a dz cluster: 'l'ancien ԍ (d) ne s'est maintenu qu'après nasale (vɔ>vurrets), et le d (noté υττ), en dehors de ce cas, est venu postérieurement (et par emprunt), de sorte que les conditions qui, historiquement, ont permis la constitution d'un groupe ts ne jouent pas pour le groupe dz' (1950:61). The affricate d^z exists as predicted. Mirambel obtains d^z from a historical change of one consonant into d^z (e.g. z > d^z, as in [zizifos] >
This last point is particularly important as it forms the basis for Mirambel (1946a) to carry out his contrast of ts versus ps/ks. Specifically, Mirambel claims that all three ts/ps/ks become voiced if a nasal segment precedes them. We can derive dz from N+ts (e.g. toN tsalapatô, being pronounced as [ton dzalapatô] 'I tread over him'), bz from N+ps (e.g. toN psomâ, being pronounced as [ton bzomâ] 'the baker') and gz from N+ks (e.g. toN kséno, being pronounced as [ton gzéno] 'the foreigner'). It is in this respect that dz and bz/gz are similar. These dz, bz and gz are all sequences of two phonemes and they are the product of cross-morpheme phonological phenomena.

However, Mirambel claims that 'à la différence de ks et de ps, ts admet un corrélatif sonore dz en dehors des conditions de sonorisation' (1950:63; his italics). By 'conditions de sonorisation' Mirambel denotes the nasal-adjacent environment. It is in this respect that bz/gz differ from dz: 'on ne rencontre jamais de groupes gz et bz en une position quelconque, autonomes et distincts de ks et ps' (1950:63). Following Mirambel, then, only ts may have a cognate which is not the product of the adjacency of ts to a nasal-ending morpheme. As we saw earlier, this d^Z results from the historical change of one consonant into d^Z. This d^Z is an independent phoneme: it has nothing to do with the d^Z which results from Mirambel's 'conditions de sonorisation'.

5.2 The GP approach

In this section, I present an analysis of the syllabic structure of MG ts and ps/ks based on the framework of GP. In 5.2.1, I review the analysis that KLV (1990) offer for the syllabic structure of ts and ps/ks. In 5.2.2, I consider the
different syllabic structure possibilities that an oral stop + s may have. Following a GP approach and using mainly distributional arguments, I show that the syllabic structure of ts is that of a contour segment, while the syllabic structure of ps/ks is that of a sequence of two onsets separated by an empty nucleus. In 5.2.3, I argue that, like the low-toned oral stops discussed in 3.2.2, dz is derived from the spreading of the L' element from a strictly adjacent nasal segment to ts. I also argue that the different syllabic structures of ts and ps/ks are reflected in their respective low-toned cognates and the distribution thereof.

5.2.1 The analysis offered by KLV (1990)

KLV (1990:216) suggest an analysis of the ps/ks sequences in languages such as English, French and Greek. According to this analysis, the syllabic structure of ps/ks is different from that of ts and similar to that of the pt/kt sequences. As I mentioned in Chapter 4, KLV mainly concentrate on evidence coming from the distribution of ps/ks (as well as pt/kt) in English and French. In these languages, clear evidence seems to exist that ps/ks are genuine inter constituent sequences (1). KLV (1990) assume that this structure is also shared by the MG ps/ks sequences.

\[
\begin{align*}
\text{(1)} & \quad \text{R} \quad \text{O} \\
\text{N} & \quad \text{|} \\
\text{X} & \quad \text{|} \\
\text{V} & \quad \text{p/k s}
\end{align*}
\]

Nevertheless, the fact that ps/ks show evidence for an inter constituent structure in English and French does not mean that all languages which possess these sequences necessarily adopt the same structure. Some languages may adopt a syllabic structure in which ps/ks are sequences of two onsets separated by an empty nucleus (2). MG is free to choose either (1) or (2).
5.2.2 Possible syllabic structures for MG oral stops + s

The syllabic structures we can assume for ts and ps/ks are, at least in principle, four. First, they may form a branching onset. Second, they may constitute a sequence of two onsets separated by an intervening empty nucleus. Third, they may form an interconstituent sequence of a rimal complement and an onset head. Fourth, they may constitute contour segments.

In this sub-section, I examine the fit between each of the above-mentioned syllabic structures and each of the ts and ps/ks sequences. Specifically, I first explore and exclude the possibility of ts/ps/ks forming a branching onset. I then deal
with the remaining three possibilities. I argue that on the basis of distributional and other evidence ps/ks can never be contour segments or interconstituent sequences; they can only be sequences of two onsets separated by an empty nucleus. I conclude this sub-section by showing that the structures of interconstituent sequences and intervening empty nucleus should be rejected for ts which shows clear evidence of a contour segment structure.

Let me begin with the branching onset structure. If any of the MG ts/ps/ks formed a branching onset, it would assume structure (3).

(3) * O
 / \
 x x
 p/t/k s

A structure like (3) is universally excluded for languages allowing branching onsets. According to Harris (1990:277), 'the governed position [within an onset] is always occupied by a sonorant of some kind'. This stipulation, which hopefully will soon be derivable from some more primitive theoretical notion, clearly excludes sibilants from ever occurring in an onset complement position: 'supposed onset clusters, in which the right-hand slot is filled by a stop or fricative (kt, pn, kn, ps and the like) . . . can be shown to be heterosyllabic; either the first member appears in a 'coda' position, or the two consonants occur in separate onsets with an intervening empty nucleus' (Harris 1990:297).

Let me proceed to examine whether ps/ks can ever form contour segments. The evidence I use refers to the MG reduplication process. As I already mentioned in Chapter 4, reduplication is not as productive in MG as it was in AG. However, it still exists for a limited number of words which share one characteristic, namely that their base forms have non-branching O₁ (4) (e.g. le-leki 'very tall man' and ku-kúla
Words whose \(O_1 \) head of the stem is either required to govern an onset complement or license a rimal complement are all fossilised forms retained from the AG vocabulary (e.g. [tetriména] 'cliché' and [eskeména] 'on purpose') (4.1.2).

For ps/ks or ts to participate in MG reduplication processes, they must form non-branching onsets. This means that they can only occupy one skeletal position, i.e. they must be contour segments. If, however, they do not reduplicate as ts/ps/ks they assume one of the following three syllabic structures: (i) interconstituent, (ii) intervening empty nucleus or (iii) branching onset.

In MG, we do not find any reduplication forms such as \(psVpsV \) or \(ksVksV \), although there exist some \(tsVtsV \) words. I refer to the latter later in this sub-section. The lack, however, of \(psVpsV \) and \(ksVksV \) reduplication forms indicates that (i) the status of \(ps/ks \) is different from that of \(ts \) and (ii) unlike \(ts \), neither \(ps \) nor \(ks \) are contour segments.

Having, then, also excluded the contour segment option for \(ps/ks \), I now turn my attention to the two alternative structures that remain for them, i.e. (i) two onsets separated by an empty nucleus and (ii) interconstituent sequences. Once I establish the syllabic structure of \(ps/ks \), I will then turn to \(ts \).

The syllabic structure assumed when a nucleus intervenes

\[\text{The only exception that exists is that of the onomatopoeic word } [psipsina] \ 'kitten'. \] Following 4.1.2, onomatopoeic words fall beyond the domain of my investigation.
between two onset heads is that of (2). On the face of things, this structure can be rejected for both ps and ks because of the lack of positive evidence for its existence. Specifically, nowhere in the morphological paradigm of MG nouns or verbs where the ps/ks sequences occur does a vowel ever intervene between either of p/k and s (e.g. *[pisomi] for [psomi] 'bread', *[apesitő] for [apsitő] 'defy' and *[kisilo] for [ksilo] 'wood').

However, I cannot exclude the possibility of a nucleus existing there merely on the basis of a lack of positive evidence for its presence. Just as with pt/kt and pn/kn, there may well exist an empty nucleus between p/k and s. Careful analysis reveals that MG provides significant evidence in favour of this option. I present this evidence below.

To begin with, the existence of sequences such as pt/kt and pn/kn (Chapter 4) implies that there are no co-occurrence restrictions between p/k and s/t/n (as there were for the NC sequences of 3.2.2). The segments p/k and s show no signs of being in a governing relation: the segment s of these sequences can easily be replaced by t or n.

Secondly, as I show in this chapter, ps and ks behave identically to pt/kt and pn/kn. This similarity of behaviour can only indicate that ps/ks, pt/kt and pn/kn share an identical syllabic structure. Knowing that pt/kt and pn/kn form sequences of two onsets separated by an empty nucleus (4.1.2 and 4.2.2), I can only assume that ps/ks also share this structure.

Thirdly, if ps/ks were true interconstituent sequences, we would expect them to behave like other interconstituent sequences. For one thing, they should (i) allow onset complements and (ii) forbid rimal complements. Let me explore each possibility in turn.
5 The Syllabic Structure of the MG ts and ps/ks Sequences

Regarding onset complements, if ps/ks were genuine interconstituent sequences, they should allow r and/or l to follow them. Recall from Chapters 2 through 4 that r/l are the neutral segments which typically occur in governed positions. If, then, ps/ks were interconstituent structures, sequences like *psr or *ksl (where the oral stop occurs in a rimal complement position and sr or sl occur in the branching onset position (5)), should be attested in MG in both word-initial and word-medial positions. This is never the case: neither word-medially nor word-initially can ps/ks ever be followed by r/l.7

(5) * R 0
 | |
 N |
 | X x <- x -> x
 V p/ks r/l

Regarding rimal complements, we know that if ps/ks were genuine interconstituent sequences, they should never allow another non-nuclear segment to precede them. This restriction results from the fact that the first member of any interconstituent sequence occurs in the rimal complement position. If another segment were to precede p/k, the rime would end up with three skeletal positions. Recall that the head of the rime is always a nucleus (2.4). As a result, for those languages which allow branching rimes, a maximum of only one second member can occur in the rime. This second member can be either a nuclear or a non-nuclear segment. Should two non-nuclear segments occur in the rimal complement position, the binarity theorem (2.4) is violated (6).

7This argument is weakened by the fact that maybe sr and/or sl are not branching onsets anyway. It is indeed true that there seems to be evidence in favour of the exclusion of s from an onset head position in many languages of the world (J. Kaye: p.c.). However, as this issue is far from closed, I will maintain this argument, albeit tentatively, until such time as phonologists have reached a definite conclusion upon this issue.
The Syllabic Structure of the MG ts and ps/ks Sequences

If, then, any of the ps/ks sequences are genuinely interconstituent, we would expect them to occur only after a vowel. However, there exist MG words of both analytic and non-analytic morphology which allow a non-nuclear segment to precede the ps/ks sequences. I first review the analytic words which provide two pieces of evidence against the assumption of the interconstituent structure. Then, I examine the non-analytic words.

The first piece of evidence against the interconstituent structure of ps/ks comes from the existence of words like [élksi] 'attraction' and [térsi] 'enjoyment'. In these words, ps/ks are preceded by a strictly adjacent non-nuclear segment. The existence of such words not only excludes the interconstituent structure for ps/ks, but also lends support to the structure of two onsets separated by an intervening empty nucleus (i.e. pv₀s/kv₀s).

The second piece of evidence against the interconstituent structure of ps/ks comes from the fact that these words display analytic morphology. Concretely, the segments p/k and the segment s of the words [élksi] and [térsi] do not belong to the same governing domain. The morphological structure of all the analytic -lksi and -rpsi words is $[[A][B]]$ (7).
The proof that the boundary falls between \(p/k\) and \(s\) comes from the existence of words of two kinds. The first set of words consists of the stems \{élkv\} and \{térpv\} and the non-analytic suffixes (e.g. \[élk+\] 'I attract', \[élk+istik+ös\] 'attractive', \[élk+θr+ø\] 'sleigh'). The second set of words consists of words which accept the analytic suffix \{-si\} (e.g. \[[kämpvö]s\] 'shine' and \[[kämpvö]s\] 'flexion'). These words show that two syllabification domains (i.e. \{élkv\}/\{térpv\} and \{-si\}) occur in the words \(élkv^si\) and \(térpv^si\).

In (7), the oral stop (i.e. \(p/k\)) occurs in the last onset position \(O_2\) of morpheme \{A\} and is strictly adjacent to the rimal complement position which is filled with the segment \(r/l\). This oral stop \(O_2\) is licensed by the empty nucleus which follows it \(N_2\). This nucleus \(N_2\) happens to be final in this governing domain (of morpheme \{A\}). The reader may recall that final empty nuclei are licensed in MG (2.11.1). As a result, the final empty nucleus of the stem \(N_2\) is phonetically inaudible. The segment \(s\) occurs in the \(O_3\) position (morpheme \{B\}) and is independent of the preceding morpheme \{A\}, as the brackets show. The oral stops \(p/k\) and \(s\) are phonetically adjacent, their intervening nucleus being phonetically unrealised.

In (8), I present the stems \{térp\} and \{élk\} with a present tense non-analytic suffix and the analytic suffix \{-sV\} forming (i) other tenses of the verbal paradigm (pres.subj./future) and (ii) the feminine gender nouns (nominal paradigm).

(8) Present

<table>
<thead>
<tr>
<th>Pres.subj/future</th>
<th>Noun</th>
</tr>
</thead>
<tbody>
<tr>
<td>[térp+ø]</td>
<td>[térpvö]s</td>
</tr>
</tbody>
</table>

This evidence shows that \(ps/ks\) can occur across analytic morpheme boundaries. This implies that at least in these cases \(ps/ks\) are not genuinely interconstituent, an empty nucleus intervening between \(p/k\) and \(s\) (2). In Chapter 6, I provide
additional evidence in favour of the existence of an empty nucleus in the final nuclear position of morpheme \{A\} of the analytic \{-si\}-ending words. Concretely, I show how the presence of this empty nucleus forbids the spreading of the L’ element from a nasal segment to its licensing oral stop.

Let me now turn to some non-analytic words which also allow ps/ks to be preceded by strictly adjacent non-nuclear segments (e.g. [marksisis] 'Marxist', [afksiméno] 'increased', [éfksinos] 'Euxine (geographical name)' and [éfpsixos] 'courageous'). As far as phonology is concerned, these words constitute one analytic domain and both p/k and s belong to this morphological domain. In these words, ps/ks do not occur across morpheme boundaries (i.e. *[[mark]sitis], *[[afk]simeno], *[[éfk]sinos] and *[[éfp]sixos]). Any existing morphological boundary is only etymological (non-analytic) (i.e. [marks+istis], [afks+imén+c], [éf+p+s+i+os] and [éf+k+s+i+os]).

Again, the existence of words such as (i) [sás+istis] 'sadist' and [vasan+istis] 'torturer', [parapi+imén+c] 'falsified' and [parat+imén+c] 'abandoned', [kal+ós] 'good' and [kak+ós] 'bad' and (ii) [markvós+ismós] 'Marxism' and [markvós+istikós] 'Marxist', [afkvós+án+c] 'increase (verb)' [afkvós+ist] 'increase (noun)' and [afkvós+omíos+] 'alternate increase and decrease', [éN+p+vó+six+os] 'animate' and [p+vó+six+] 'soul' proves that two syllabification domains (i.e.{-istis}, {-iméno}, {-os} and {markvós-}, {afkvós-}, {pvó+six-}) are present in the words markvós+istis, afkvós+imeno and afkvós+inos.

Given (i) the non-analytic morphological structure of the above-mentioned words, (ii) the possibility of a strictly adjacent non-nuclear segment preceding ps/ks, (iii) the binarity theorem (2.4) and (iv) the well-formedness condition of phonological strings (2.11.1), the only possible structure these words can assume is that of (9), where an empty nucleus
intervenes between p/k and s^5.

(9) O_1 R_1 O_2 R_2 O_3 R_3 O_4 R_4 O_5 R_5

$\begin{array}{cccccccccc}
N_1 & N_2 & N_3 & N_4 & N_5 \\\n\hline \\
X & X & X & X & X & X & X & X & X & X \\
\end{array}$

\begin{align*}
m & a r k \nu^0 s \text{ i s t } i s \nu^0 \\
am & f k \nu^0 s \text{ i m e n o } \\
e & f k \nu^0 s \text{ i n o s } \nu^0 \\
e & f p \nu^0 s \text{ i x o s } \nu^0 \\
\end{align*}

A structure like (10) must be ruled out. Following the morphological structure of words which begin with the non-analytic prefix \{ef-\} (e.g. [éfksinos] and [éfpsixos]), the segment r/f cannot occur in the O_2 position. It can only occur in the rimal complement position ((R$_1$), as in (9)), where it can be licensed by the strictly adjacent oral stop (following the Licensing Principle (2.5) and the Coda Licensing Principle (2.11.2)). If r/f were analysed as occurring in an onset position ((O$_2$), as in (10)), a nucleus would have to intervene between f and p/k. Nevertheless, such a structure would erroneously imply an analytic morphology for the \{ef-\} initial words.

(10) $^* O_1$ R_1 O_2 R_2 O_3 R_3 O_4 R_4 O_5 R_5

$\begin{array}{cccccccccc}
N_1 & N_2 & N_3 & N_4 & N_5 \\
\hline \\
X & X & X & X & X & X & X & X & X & X \\
\end{array}$

\begin{align*}
m & a r \nu^0 k s i s t i s \nu^0 \\
am & f k \nu^0 k s i m e n o \\
e & f k \nu^0 k s i n o s \nu^0 \\
e & f p \nu^0 k s i x o s \nu^0 \\
\end{align*}

What is more, a structure like (10) would render impossible the interactions that take place when, instead of \{ef-\}, any of the nasal-ending non-analytic prefixes (e.g. \{paN-\}, \{siN-\}, \{eN-\}) occurs before a ps-initial stem (e.g.

5The reader may have noticed that structure (9) is identical to that of the words arkv0tik and irkv0tik (4.1.2) and sNpv0tosi and éNpv0nefsi (4.2.2).
[-psix-]). The forms we should obtain when the nasal-ending prefixes are used are [empsixôno] ≈ [e(m)bsixôno] 'encourage', [pampsiô] ≈ [pa(m)bsiô] 'unanimously' and [simpsifizo] ≈ [si(m)bsifizo] 'balance or compensate'. In all of these forms, the nasal is homorganic to the following stop. Moreover, the L' element is allowed to spread from the nasal onto the following stop rendering the latter low-toned. Following 3.2.2, these interactions can only take place when the nasal segment is strictly adjacent to an oral stop. Consequently, a structure like (10) should be excluded. The correct structure is given in (11).

The above-mentioned shortcomings lead me to reject the interconstituent structure for ps/ks and adopt the structure of two onset heads separated by an empty nucleus. Let me, then, sum up the arguments in favour of the latter structure. First, ps/ks fail to show systematic co-occurrence restrictions (t and n may also occur with p and k). Second, ps/ks display identical phonological behaviour with pt/kt and pn/kn, which allow an empty nucleus to intervene between them. Third, ps/ks can occur across analytic morpheme boundaries (élkvô-si). Fourth, ps/ks both allow rimal complements to precede them in both analytic and non-analytic words ([élkvôsi] and [markô+sistás], respectively). Fifth, if a nasal segment precedes the ps/ks sequences, it is homorganic to the oral stop ([empsixos]). Sixth, when preceded by nasal-ending non-analytic prefixes, the oral stops become voiced ([embsixôno]). These two interactions imply the strict adjacency of the nasal and oral stop. Seventh, the lack of participation of both ps/ks in reduplication processes
excludes the possibility of their forming contour segments. Eighth, the theory-internal impossibility of \(s \) occurring in onset complement positions allows the rejection of the branching onset status for \(ps/ks \).

I conclude this sub-section by examining the syllabic structure that should be assigned to \(ts \). The reader may recall that earlier in this sub-section I have excluded the possibility of \(ts \) forming a branching onset on Harris’s (1990) stipulation that \(s \) cannot occur in onset complement positions. I now present some distributional evidence from the MG reduplication process which not only excludes the branching onset, interconstituent and intervening empty nucleus options, but also provides evidence in favour of the contour segment structure.

Given that reduplication processes are only witnessed in words whose \(O_1 \) of the base is non-branching, the existence of \(tsVsV \) reduplication forms would imply that its two segments (\(t \) and \(s \)) occupy only one skeletal point, i.e. one timing unit. In other words, if we find MG reduplication forms whose base \(O_1 \) position is filled with \(ts \), this \(ts \) must be a complex segment, as illustrated in (12).

\[
(12) \quad \begin{array}{c}
\begin{array}{c}
O \\
X \\
/ \\
t \\
t
\end{array}
\end{array}
\]

This is indeed the case. In MG we have reduplication forms such as [tsitsǐi] ‘stark naked’, [tsatsára] ‘comb’, [tsutsúni] ‘dick’ and [tsetsé] ‘tsetse’ (13).

\[
(13) \text{suffix: } O_1 N_1 \text{ base } O_1 N_1 O_2 N_2 \\
| | | | \\
X X X X X X \\
/ \ / \ / \\
t s \beta_1 \t s \beta_2 \alpha_2
\]

The above evidence that \(ts \) forms a contour segment rather
than an interconstituent sequence or a sequence of two onsets can be tested further. If ts were a genuine interconstituent sequence (14), it should never allow a strictly adjacent non-nuclear segment to precede it (15).

(14) \[R_0 \quad O \quad \] (15) \[* \quad R \quad O \]

\[
\begin{array}{cccccccc}
N \downarrow & \downarrow & \downarrow & \downarrow \\
\times & \times & \times & \\
\alpha & \text{ts} & \end{array}
\quad
\begin{array}{cccccccc}
\downarrow & \downarrow & \downarrow & \downarrow \\
\times & \times & \times & \times \\
\alpha & \beta & \text{ts} & \end{array}
\]

If ts allows non-nuclear segments to precede it, the interconstituent syllabic structure should be rejected. In fact, ts allows other strictly adjacent non-nuclear segments to precede it, as in the words [skértso] 'jest', [órtsa] 'luffing', [káltsa] 'sock' and [kartslamás] 'a dance' (16).

(16) \[O_1 \quad R_1 \quad O_2 \quad R_2 \quad O_3 \quad R_3 \quad O_4 \quad R_4 \quad O_5 \quad R_5 \]

\[
\begin{array}{cccccccccccc}
N_1 \downarrow & \downarrow \\
\times & \\
\text{s} & \text{ker} & \text{ts} & o & \text{orts} & \text{a} & \text{k} & \text{artsi} & \text{la} & \text{m} & \text{a}
\end{array}
\]

Furthermore, if ts consisted of two onsets separated by an empty nucleus, it should behave in a similar way to ps/ks. It should, for instance, occur across analytic morpheme boundaries. This, however, is not the case in MG. All the words where ts is preceded by a non-nuclear segment display non-analytic morphology, i.e. [A+B]. Unlike ps/ks, the oral stop of ts can never belong to the first morpheme and s to the second morpheme of even non-analytic words (e.g. [tsix+a] 'thrush' (morpheme-initially), [orts+aro] 'luff' (morpheme-finally), [kotsif+as] 'blackbird' (morpheme-medially in etymological stem) and [mikr+útsik+os] 'smallish' (morpheme-medially in etymological suffix)).
Just as we would expect from a contour segment, ts never occurs across analytic boundaries. It always occurs as an unbreakable unit. One may, then, ask how verb stems which end with t form those verb/noun forms which require the addition of the analytic suffix {-sV}? In these cases t and s should surely occur across a morphological boundary. A similar fact would imply that, just like ps/ks, ts also consists of two onsets separated by an empty nucleus.

However, these {-sV}-ending verbal and nominal forms show that MG treats ts differently from ps/ks. Concretely, unlike p/k-ending stems, those verb and noun stems which end in t do not form either of their present subjunctive and future tenses or their nouns with ts. They construct these forms in one of three different ways. In two, the segment t is dropped so that it does not occur across an analytic morphological boundary whose second morpheme starts with s. Let me examine each type in turn.

In the first type, the t-ending forms drop the oral stop completely and only retain s. For instance, {[òtò]} yields {[òks]} and {[òs]} 'place'. The potential *tv₀s sequence which would occur across the analytic boundary is avoided. In the second type, the potential *tv₀s sequence is turned into a kv₀s sequence, since the latter can occur across an analytic morpheme boundary, while the former cannot (e.g. {prátò} 'make' yields {[pråkv]} and {[pråv]} for the verbal and nominal forms respectively). Again, the existence of a *tv₀s sequence is avoided. In the third type, t is retained, but the added suffix is no longer {-sV}, but {-isV} (e.g. {rotò} 'ask' yields {[rot]sò} and {[erò]s}; {zitò} 'demand' yields {[zit]sò} and {[zit]s}). The potential *tv₀s sequence is, once more, avoided (17).

![Table](image)

(17) \[O₁ \quad N₁ \quad O₂ \quad N₂ \quad O₃ \quad N₃ \]
\[
| \times \quad \times \quad \times \quad \times \quad \times \quad \times |
\]
\[
| \quad \quad \quad \quad \quad \quad \quad \quad |
\]
\[
| z \quad t \quad s |
\]
Let me now sum up the arguments I have presented in this sub-section in favour of a contour segment structure for ts. First, ts participates in MG reduplication processes ([tsitsi5i]). Second, ts allows non-nuclear segments to precede it ([kàltsa]). Third, it never occurs across morpheme boundaries, even though the latter may only be non-analytic ([tsixia], [orts-áro], [kòtsif-as] and [mikr-útsikos]). Fourth, whenever ts might be expected to occur across an analytic boundary (i.e. in those t-ending verb stems to which the analytic suffix [-si] is added) it is either dropped or the morpheme that is added to it is [-isi].

5.2.3 The distribution of low-toned dz and bs/gs

Following the analysis of oral stops I presented in Chapter 3, ts and ps/ks may become low-toned only in the strict adjacency of a nasal segment which fills the immediately preceding rimal complement position. The multiple interactions that take place in this environment involve the spreading of the L' element from the nasal onto the stop and that of the ?3 and place specification elements from the oral stop to the nasal (3.2.2).

When these interactions take place, the L' element of the nasal segment spreads to the following skeletal position, rendering the segmental material that is attached to this position low-toned. When this position is occupied by the contour segment ts, all the segmental material attached to it is affected by the L' element spreading. The derived segment is dz (18).
By way of contrast, when the L element spreads to the ps/ks sequences, only the segmental material attached to the immediately following position is affected. This means that the only segment that is rendered low-toned after the spreading of the L element of the nasal is the oral stop (i.e. p/k) (19), (20).

As p/k and s are separated by an intervening empty nucleus (5.2.2), the L element cannot spread to the fricative across this nuclear position (19). As a result and contrary to the oral stop which becomes low-toned, the segment s of the sequences ps/ks remains neutral. By way of contrast, the segment s of the contour segment ts is not neutral, as it belongs to the same skeletal position as the oral stop (t) and is, thus, affected by the L element spreading (18).

The same process takes place with the pt/kt sequences. In the strict adjacency of a nasal segment (as in the word siNpvo'tosi 'coincidence'), the first of the two oral stops
(i.e. p/k) is rendered low-toned (3.2.2). The second stop (i.e. t) remains neutral and is not affected by the L' element spreading, as it is separated from p/k by an intervening empty nucleus across which the L' element cannot spread ((21), (22)).

(21) X^N
| \(L^-\) >> > >
| h°
| <<< ?°
| <<< U°
| <<< m°
| p°
| v°
| t

(22) X^N
| \(L^-\) >> > >
| h°
| <<< ?°
| <<< v°
| <<< k°
| v°
| t

The neutral t and s have traditionally been transcribed as d and z, respectively. This practice is erroneous. There does not seem to exist any phonetic evidence supporting the existence of a low-toned coronal stop or fricative in this environment. For the sake of consistency and in order to denote that this segment is neutrally (rather than negatively) charmed, I diverge from traditional practice: throughout this

In fact, there seem to exist some phonetic indications that the segments s/t are not fully voiced in these environments. Specifically, during 1990, I have carried out laryngographic and spectrographic analyses of a number of MG nuclear and non-nuclear sequences. These included a number of Nts sequences, one Nps and one Npt sequences. Some of the findings of this analysis appear in Pagoni (1990). The analysis of these Nts/Nps/Npt sequences revealed the presence of considerable laryngeal activity during the pronunciation of dz/b. By way of contrast, during the pronunciation of the segments s/t of both the Nps/Npt sequences, the laryngeal activity was considerably diminished. Admittedly, all words were pronounced by only one speaker. More importantly, however, these experiments were severely limited in number. I accordingly refrain for the moment from considering the above as conclusive phonetic evidence in favour of the voiceless state of the segment s/t in the Nps/Npt sequences. More experiments are clearly needed before such phonetic evidence can be cited here as conclusive.
thesis, I use the symbols s and t (i.e. bs/gs and bt/gt) when the ps/ks and pt/kt sequences have been rendered low-toned in the strict adjacency of a nasal segment (e.g. [si(m)bsifizo] for sinpvOsisifizo and [pa(m)bt oxos] for pánpvOt oxos 'very poor'). By way of contrast, I use the symbol dz when ts has been rendered low-toned in the strict adjacency of a nasal segment. This notation signals that the totality of the segmental material attached to the skeletal position which ts fills has been rendered low-toned (e.g. [dzáki] for Ntsáki, *[dsáki] 'fireplace').

Let me now turn to the environments which give rise to strict adjacency between a nasal segment and ps/ks. The first environment where ps/ks may occur in the strict adjacency of a nasal segment and, as a result, become low-toned is after one of the nasal-ending non-analytic prefixes (e.g. {eN-}, {siN-} and {paN-} as in the words empvOsixóno, simpvOsisifizo and pampvOsiñ I introduced in 5.2.2). The second environment where ps/ks may become low-toned because of their strict adjacency with a nasal segment is after a nasal-ending proclitic (e.g. toN, tiN, as in ton pvOsará 'the fisherman' and tiN kvOsiña 'the timber'). The latter NC sequences occur across a MinSB (1.1).

In both cases, the L' element spreads from the nasal segment of the prefix or proclitic onto the strictly adjacent licensing oral stop (and not, as I explained, to the fricative). As the reader knows from 1.2, this L' element spreading is not obligatory for ps/ks when prefixes are involved and when the NC sequences occur across a MinSB. I explain why this is so in Chapter 6.

These are the only environments which give rise to Nps/Nks in MG. In other words, there are no cases of lexical bs/gs in MG, just as there are no cases of lexical b/d/g in the language. In the same way, no cases of lexical bt/gt and bn/gn can be found in MG. The only way we may come across sequences like bt/gt and bn/gn is when the first oral stop of,
respectively, the \textit{pt/kt} and \textit{pn/kn} sequences (i.e. \textit{p/k}) occurs after a nasal-ending prefix (e.g. \textit{sInpv^otosi} and \textit{eNpv^onèo}) or a nasal-ending proclitic (e.g. \textit{tiN pv^otosi} 'the fall' and \textit{tiN pv^onci} 'the breath'). Just as with \textit{ps/ks}, the interactions between the \textit{L}^-' element of the nasal segment of either the nasal-ending etymological prefix or the proclitic and the first oral stop of the \textit{pt/kt} and \textit{pn/kn} sequences are also not obligatory. I explain why this is so in Chapter 6.

Let me now turn to \textit{ts}. Just as with \textit{ps/ks}, there exist two environments where \textit{ts} can be preceded by a nasal. However, only one of these environments is identical to that of \textit{ps/ks}. This is the environment across a MinSB. Just like the remaining non-complex oral stops (i.e. \textit{p/t/k}) and the stop-initial sequences we have seen (i.e. \textit{ps/ks}, \textit{pt/kt} and \textit{pn/kn}), \textit{ts} becomes low-toned after a nasal-ending clitic, always provided that speakers treat this syntactic boundary as minor (e.g. [to(n) dza(j)gari] for \textit{toN tsانkarı} 'the cobbler').

The segment \textit{ts} does not appear after a nasal-ending prefix in MG. This happens because \textit{ts} was introduced in the language when the construction of forms consisting of nasal-ending prefixes and stems which have an initial oral stop was no longer productive (i.e. \textit{*ents-}, \textit{*pants-}, \textit{*sints-}).

The second environment where we may come across \textit{Nts} sequences involves the cases of lexical \textit{Nts}. Just like the MG oral stops (i.e. \textit{p/t/k}) and unlike the instances of the stop-initial onset sequences \textit{ps/ks}, \textit{pt/kt} and \textit{pn/kn}, there exist some lexical \textit{Nts} sequences. The nasal segment which passes its \textit{L}^-' element onto the strictly adjacent \textit{ts} does not belong to any prefix/suffix (e.g. [\textit{Ntsاک+}] 'fireplace', [\textit{aNtsامHis}] 'maladroit', [\textit{NتسNts+ج}] 'very short man' and [\textit{سuvلا+Ntsيیک+و}] 'kebab house', respectively yielding [(n)dzáki], [a(n)dzamis], [(n)du(n)dzés] and [\textit{suvلا(n)ذيیکو}]). These lexical \textit{Nts} sequences which yield [dz] are unparalleled by \textit{Nps} [\textit{bs}] (\textit{*[bz]}) and \textit{Nks} [\textit{gs}] (\textit{*[gz]}).
The environments, then, where we may encounter Nts are different from those of Npv's and Nkv's and similar to those of Np, Nt and Nk. This fact serves as an additional indication in favour of (i) the adoption of a structure for ts where the two segments occupy one skeletal position (just like p/t/k) and (ii) the adoption of a structure for ps/ks where each of their segments occupies one skeletal position.

5.3 Summary

In this chapter, I have reviewed the literature regarding the syllabic structure of ts, ps, ks and their voiced cognates. I have also offered a GP analysis of these sequences which participate in MG phonological variation processes (their first segment is an oral stop). In my discussion, I have argued against KLV's (1990) view that ps/ks are interconstituent sequences in MG. I have produced evidence in favour of the lack of co-occurrence restrictions between p/k and s/t/n. I have also shown that ps/ks (i) can occur across analytic morpheme boundaries and (ii) can allow rimal complements to precede them in both analytic and non-analytic words. In addition, I have demonstrated that when ps/ks are preceded by any of the nasal-ending non-analytic prefixes, their oral stop becomes low-toned, while the nasal is rendered homorganic to the oral stop. These two facts indicate the strict adjacency of these two segments and exclude the possibility of p/k and s being strictly adjacent. Lastly, the lack of participation of both ps/ks in MG reduplication processes and the fact that s cannot occur in onset complement positions have led me to propose that ps/ks form sequences of two onsets separated by an empty nucleus.

In this chapter, I have also argued (alongside KLV (1990)) that ts should assume a different syllabic structure from ps/ks. I have provided evidence in favour of a contour segment structure. Specifically, I have argued that ts (i)
participates in MG reduplication processes, (ii) allows non-nuclear segments to precede it and (iii) never occurs across morpheme boundaries, even though the latter may only be non-analytic. Lastly, whenever *ts* might occur across an analytic boundary (i.e. in those *t*-ending verb stems to which the analytic suffix *{-si}* is added) *t* is either dropped or the morpheme *{-isi}* is added to it.

Finally, I have shown in this chapter that the different syllabic structure of *ts* and *ps/ks* is reflected in the formation and distribution of their voiced cognates.
CHAPTER SIX

A GOVERNMENT PHONOLOGY ANALYSIS
OF MODERN GREEK PHONOLOGICAL VARIATION

6.0 Introduction

In this chapter I assemble and further develop the GP explanations I have so far provided (Chapters 3 through 5) for the behaviour of MG NC sequences which occur within a variety of syllabic structures. My aim is twofold. I first want to show that it is the syllabic structure assigned to MG words by a GP-defined grammar that determines the phonological behaviour of their NC sequences. The analysis I provide examines the particular patterns of phonological behaviour that each syllabic structure generates. My second goal is to demonstrate how the grammar defined for MG by a restrictive theory of syllabic structure such as GP is capable of generating (i) all and only the grammatical contexts within which NC sequences may occur and (ii) all and only the attested variants that each context possesses.

In order to achieve these goals, I present in 6.1 an explanatory account of the linguistic aspect of MG phonological variation. I discuss each of the four contexts that a GP-defined grammar of MG assigns to words which contain NC sequences. I also examine the phonologically conditioned variant(s) that each syllabic structure may have. Lastly, I explain why the NC sequences of particular syllabic structures behave the way they do in MG. An analysis of MG phonological variation would be incomplete without a discussion of the central but highly controversial prenasalisation issue. In 6.2, I explore the question of its existence in MG and, ultimately, argue against it.
6.1 GP and the phonological behaviour of the MG NC sequences

This section is divided into two sub-sections. In 6.1.1, I present the four syllabic contexts potentially involved in phonological variation processes. I show that two of these contexts are categorical, i.e. the grammar allows only one realisation for their NC sequence. I also show that the other two contexts allow optionality, i.e. the grammar allows each of these two contexts to have a minimum of two realisations for its NC sequence. I draw attention to the fact that the variants the grammar defines for each of the four syllabic structures are all phonologically conditioned. Lastly, I show that in those syllabic structures which allow optionality (i.e. more than one realisation for their NC sequence) it is purely social and stylistic (i.e. extragrammatical) factors that determine which particular variant (out of all the possible variants for the syllabic structure in question) gets selected in speech.

In 6.1.2, I provide the GP explanations for the phonological behaviour of the NC sequences that occur in each of the syllabic contexts defined by the MG grammar. My aim is to show that syllabic structure can explain why certain contexts exclude, while others allow, optionality.

6.1.1 NC sequences in context

In Chapters 3 through 5, I have presented four different syllabic contexts within which NC sequences may occur. All of these contexts are expressed in terms of syllabic structure and are defined by the grammar of MG that the theoretical framework of GP has generated.

Each of the four syllabic structures within which MG grammar allows NC sequences to occur exhibits a different phonological behaviour, i.e. gives rise to different variants. This means that each of the contexts within which an NC
sequence may occur is not only different with respect to syllabic structure, but also behaves differently with respect to variation.

In (1) below, I assemble the 4 syllabic structures within which NC sequences may occur in MG. I also present their respective realisation(s). A detailed discussion of each syllabic context and its realisation(s) follows in 6.1.2.

(1) Syllabic structure Realisation

(a) \ldotsBV^ONCV\ldots\ D
(b) \ldots[V^ONCV]CV\ldots\ NC
(c) \#V^ONCV\ldots\ !
 \ldots(B)VNCV\ldots\ ND \approx D
(d) (B)VNCV^OV\ldots\ NC \approx ND \approx D

As (1) shows, the first two syllabic structures that the MG grammar defines (i.e. (1a) and (1b)) do not allow for the possibility of variability. They are categorical, i.e. they allow only one realisation for their NC sequence. By way of contrast, the remaining two syllabic contexts that the grammar defines (i.e. (1c) and (1d)) allow for variability, with (1c) allowing two and (1d) allowing three variants for their NC sequences.

At this point, it is important to note two facts. In the first place, the syllabic contexts within which particular variants occur are defined by the MG phonological system itself, and not by any extragrammatical factors (e.g. social and/or stylistic factors). Likewise, the particular variants that exist for each syllabic context are defined by the MG grammar itself and not by any extragrammatical factor. This

\[\text{The symbol}\ #,\ \text{used to mark word boundaries, is employed here and throughout this thesis to indicate the fact the } v^0\ \text{is word-initial. In this syllabic structure, the onset preceding this } v^0\ \text{is empty.}\]
means that the particular variant(s) that exist for each syllabic structure are entirely phonologically conditioned. Non-phonological factors, such as the ones posited by previous accounts of the phenomenon (i.e. the Greek or foreign origin of a word, its characterisation as learned/non-learned, the speed with which the utterance is delivered, the word-medial or word-initial position in which the NC sequence occurs (1.2)), cannot explain why certain contexts allow, while other contexts exclude, optionality. These non-phonological factors can also not condition the variant(s) attested for each NC sequence.

Let me illustrate the above point by an example. The only variant that the phonological system defines as grammatical, i.e. well-formed, for a word to which the same phonological system assigns the syllabic structure ...BY\textcircled{O}NCV... (e.g. ál\textcircled{O}pum 'album') is D (i.e. [álbum]). All other realisations of this NC sequence (e.g. NC, ND) are ungrammatical (i.e. ill-formed), irrespective of the social an/or stylistic circumstances under which this word is uttered (i.e. *[ámpum], *[álbum]). In the same way, the only variants that the MG phonological system defines as grammatical for a word which assumes the structure ...(B)VCN... (e.g. koNTá 'near') are either of the ND or D variants (i.e. [kondá] ≈ [kodá]). An NC variant for this context will always be ungrammatical (i.e. *[kontá]), no matter what social and/or stylistic factors are prevalent during its utterance. As I pointed out, this happens because the variants of particular syllabic structures are phonologically and not socially or stylistically conditioned.

In the second place, in those environments where the phonological system allows for optionality in the realisation of the NC sequences (i.e. (1c) and (1d)), the selection by a speaker of a particular variant (out of the total of possible variants) does not depend on the phonological system itself. Rather, the selection of the particular variant that is used in speech (out of all the possible variants allowed for the
NC sequence in question) depends on purely social and stylistic factors, i.e. it is socio-stylistically, rather than phonologically, conditioned.

This means that in those syllabic structures in which the phonological system allows optionality, the selection of one particular variant rather than the other possible one(s) crucially depends on the social and stylistic factors that prevail at the particular moment when a specific speaker utters a word which is potentially involved in phonological variation processes. The grammar cannot (and should not be able to) tell us what social connotations each variant has. This evaluation falls within the domains of the social matrix which is completely independent of the grammar.

In short, then, the GP-defined grammar of MG allows NC sequences to be realised in different ways, depending on the syllabic structure within which they occur. For each syllabic structure defined by the grammar as allowing optionality (i.e. contexts (1c) and (1d)), speakers can only choose from amongst a particular set of variants that are defined (yet again by the phonological system itself) as grammatical and no other set of variants. For those syllabic contexts where the grammar forbids optionality (i.e. the categorical contexts (1a) and (1b)), speakers can only use the unique realisation that the phonological system defines as grammatical.

As I pointed out in Chapter 1, foremost among the social factors that influence the selection of a variant (out of the total of all the variants that the system defines as grammatical for the particular context) is the age and sex of the speakers as well as the social network they belong to. Foremost among the stylistic factors is the amount of attention a speaker pays to speech, the characterisation of a word as learned/non-learned and its Greek or foreign origin.

The investigation of the social evaluation of particular variants falls beyond the concern of this thesis. For an examination of the social factors and their correlation with particular linguistic variants the interested reader is referred to Pagoni (in preparation).a.
6.1.2 How GP can explain the phonological behaviour of the MG NC sequences

As I showed in the immediately preceding sub-section, the grammar that GP defines for MG (Chapters 3 through 5) assigns four different syllabic structures to its various NC sequences. In this section, I argue that the syllabic structure within which an NC sequence occurs is the only factor determining the attested variants specific NC sequences give rise to. Concretely, my aim is to show that the NC sequences which occur in identical syllabic structures (both within and across words) also display identical phonological behaviour. My aim is to also explain why each syllabic structure adopts the particular variation pattern it displays and no other.

In order to achieve these aims, I will examine in turn each of the 4 syllabic structures I presented in (1). I will first deal with one of the two syllabic structures that allow optionality, namely the syllabic structure that gives rise to the ND ≈ D variation pattern. I will subsequently proceed to an investigation of the two categorical contexts. I will first examine the syllabic structure which gives rise to the D variant. I will then discuss the syllabic context which gives rise to the NC variant. Lastly, I will turn my attention to the second syllabic structure that allows variability, i.e. the context which generates the NC ≈ ND ≈ D variation pattern.

Let me begin my discussion with the syllabic structures that give rise to the ND ≈ D variation pattern. These take either the form ...(B)VNCV... or the form #0NCV... (1c). In the first syllabic context, the nucleus which governs the nasal of the NC sequence is filled (i.e. has phonetic content). In

4Recall that following Chapters 3 through 5, identical syllabic structures display identical phonological behaviour (e.g. ps/ks, pt/kt and pn/kn behave identically; ts behaves differently from ps/ks/pt/kt/pn/kn).
the second syllabic structure, the nucleus which precedes the NC sequence is empty and has no licensing duties to perform (its preceding onset is empty).

The \(ND \approx D\) variation pattern is attested within non-analytic words and across MinSBs. This pattern is also attested next to both MinSBs and MajSBs. In this variation pattern, the first variant allows the surfacing of the nasal reflex (e.g. [mbukála], [egeniázo], [kondá] and [tim börta] for, respectively, the words Npukála 'bottle', enkeniázo 'I inaugurate', koNTá 'near' and tiN pórlta 'the door'). The second variant suppresses the surfacing of the nasal reflex (e.g. [bukála], [egeniázo], [kodá] and [ti börta]). No variants such as *[enkeniázo] or *[emkeniázo], *[mpukála] or *[nbukála], *[kontá] or *[komTá] and *[tin börta]\(^5\) can ever occur in MG for these NC sequences.

In GP terms, the L element of the nasal reflex spreads obligatorily onto the oral stop. The place specification element of the oral stop spreads to the nasal segment also obligatorily. Only the surfacing of the nasal reflex is optional (and socially motivated). As I argue in 6.2, when the nasal reflex surfaces, it does so in the rimal complement position and not as a prenasalised contour segment (2).

\[
\begin{array}{c}
| & O & R \\
| & N \\
| & X \\
| & X \\
| & N & C & V
\end{array}
\]

\(^5\)The variant *[tin pórlta]* may also occur in MG but only when the MinSB involving the clitic tiN and the noun pórlta is treated as major. The syllabic structure assumed then is different from that assumed for the MinSB. I come back to this point later in this sub-section, when I examine the behaviour of NC sequences which occur across MajSBs.
Let me now present in turn each of the syllabic structures which give rise to the ND \(\approx \) D variation pattern. I will start my discussion with those cases where the nucleus which governs the nasal of the NC sequence is filled. Two configurations are possible for this structure. Firstly, the filled nucleus which governs the nasal segment may be preceded by an empty onset, as in (3). Secondly, this filled nucleus may be preceded by a filled onset, as in (4).

(3) \(O_1 \ \ R_1 \ \ O_2 \ \ R_2 \)

\[
\begin{array}{c}
N_1 \\
X \ X \ X \\
V \ N \ C \\
e \ N \ k
\end{array}
\]

(4) \(O_1 \ \ R_1 \ \ O_2 \ \ R_2 \)

\[
\begin{array}{c}
N_1 \\
X \ X \ X \ X \\
V \ N \ C \ V \\
\text{Venciazo}
\end{array}
\]

NC sequences may also occur across a MinSB. In this case, the spreading of (i) the occlusion and place specification element from the oral stop to the nasal and (ii) the L' element from the nasal onto the stop render the oral stop low-toned. The above interactions do not lend support to an analysis whereby the nasal-ending proclitic and the oral-stop-initial content word belong to different analytic domains. Instead, these interactions lend support to an analysis in which the proclitic and the content word form one analytic domain. The nasal reflex of the proclitic should be analysed as occurring in the rimal complement position and the oral stop of the content word or second clitic should be analysed as occurring in the onset head position ((O\(_2\)), as in (5)).

(5) \(O_1 \ \ R_1 \ \ O_2 \ \ R_2 \ \ O_3 \ \ R_3 \)

\[
\begin{array}{c}
N_1 \\
X \ X \ X \ X \ X \ X \\
V \ N \ C \ V \\
\text{t in p o r t a}
\end{array}
\]

The syllabic structure displayed in (5) is, then, identical to that displayed in (4). Both syllabic structures
have an audible nucleus ((N₁) in (4) and (5)) which licenses a preceding filled onset ((O₁) in (4) and (5)) and governs the following nasal reflex. Also, the NC sequences of both structures (4) and (5) are followed by a phonetically realised nucleus (N₂). We know from Chapters 4 and 5 that identical syllabic structures display identical phonological behaviour. It should, then, come as no surprise that the variation pattern displayed by configurations such as those illustrated in (5) is identical to the variation pattern displayed by configurations such as those illustrated in (4), i.e. \(ND \approx D \).

Let me now present the configuration of (6). Here, the nucleus which governs the nasal of the NC sequence is empty but has no licensing duties to perform (i.e. it is not preceded by a filled onset). In configurations such as those of (6), NC sequences also display the variation pattern \(ND \approx D \).

\[
\begin{array}{c}
(6) & O_1 & R_1 & O_2 & R_2 \\
& N_1 & \text{__} & N_2 \\
x & x & x & x \\
v^0 & N & C & a \\
v^0 & N & p & \text{ukala}
\end{array}
\]

As I already mentioned in 3.2.3, the empty nucleus ((N₁), as in (6)) cannot be licensed by proper government: a governing domain, to wit NC, intervenes between N₁ and its governor (N₂). Instead, N₁ is licensed by Magic Licensing. Magic Licensing, then, enables the empty nucleus (N₁) to carry out its governing duties to its nasal complement.

In (3) through (6), we have only seen NC sequences which occur within etymological boundaries. In contrast, some NC sequences occur across etymological morpheme boundaries (e.g. \([eN+kenlæz] \text{'I inaugurate'}\), \([sIN+prátæ] \text{'I co-operate'}\) and \([pÀN+plutos] \text{'extremely wealthy'}\)). However, as etymological boundaries are invisible to the phonology, the variation pattern these NC sequences display is also \(ND \approx D \).
(i.e. \[egeniázo\] \(\approx\) \[egeniázo\], \[simbráto\] \(\approx\) \[sibráto\] 'collaborate' and \[pámbutos\] \(\approx\) \[páblutos\] 'very rich'). The syllabic structure assumed by \{eN\}-initial words is identical to that of (3). The syllabic structure assumed by \{siN\}/\{paN\}-initial words is identical to that of (4). In all of the above-mentioned syllabic structures, a filled nucleus precedes the NC sequence. Identical syllabic structures display identical phonological behaviour.

The \(ND \approx D\) variation pattern is also attested when NC sequences which appear within the syllabic structure \((\beta)NCV\ldots\) occur next to either a MinSB or a MajSB. I will first look into those cases where the word preceding these NC sequences ends in a nuclear segment: next to a MinSB, the NC sequence which occurs after a nuclear segment (e.g. \(i\) \(\text{Ntropi}\)) allows its nasal reflex to optionally surface (e.g. \([i\) \(\text{ndropi}\] \(\approx\) \([i\) \(\text{dropi}\])) (7).

(7) \(O_1\) \(\begin{array}{c} R_1 \ \ O_2 \ \ R_2 \ \ O_3 \ \ R_3 \\ N_1 \ \ \ \ \ \ \ \ N_2 \ \ \ \ \ \ N_3 \\ \ [\ x \ x \ x \ x \ x \ x \ x \] \end{array}\) \(\text{i N t r o p i}\)

In the above configuration, the two words form one analytic domain. The nuclear segment of the proclitic fills the \(N_1\) position of the content word. The nucleus which follows the NC sequence also has phonetic content (\(N_2\)). The syllabic structure assumed for \(i\) \(\text{Ntropi}\) is identical to that of \(e\)\(\text{Nkeniázo}\) (\(...VNCV\ldots\), as in (3)), i.e. an audible nucleus governs the nasal reflex. Once again, we see that identical syllabic structures display identical phonological behaviour.

Next to a MajSB, the NC sequence which occurs after a nuclear segment (e.g. \(\text{tréxo Npas}\) (8)) allows its nasal reflex to optionally surface (e.g. \([\text{tréxo mbas}\] \(\approx\) \([\text{tréxo bas}\]), i.e. this configuration also adopts the \(ND \approx D\) pattern. However, unlike (7) above, the boundary preceding this NC sequence is
major. Consequently, I cannot analyse the two words as forming one analytic domain.

\[
\begin{array}{cccc}
O_1 & R_1 & O_2 & R_2 \\
\backslash N_1 & \backslash & \backslash N_2 \\
X X X X X & & & \\
T R E X O \\
\end{array}
\begin{array}{cccc}
O_1 & R_1 & O_2 & R_2 & O_3 & R_3 \\
\backslash N_1 & \backslash N_2 & \backslash N_3 \\
X X X X X X X & & & & & \\
\backslash\backslash\backslash\backslash\backslash\backslash\backslash N_{pas} a s \backslash\backslash\backslash\backslash\backslash\backslash\backslash v^0 \\
\end{array}
\]

The structure these NC sequences assume is identical to that of *Npukála* (6), i.e. an empty nucleus ((N₁) of the word *Npas*) governs their nasal reflex. This nucleus is preceded by an empty onset ((O₁) of the word *Npas*). This means that the empty nucleus governing the nasal has no licensing duties to perform. As identical structures display identical behaviour, the variation pattern the word *v^0*Npas displays can only be identical to that of the word *v^0*Npukála, i.e. *ND ≈ D*. In both (6) and (8), the nucleus which precedes the NC sequence is empty and has no licensing duties to perform.

The above presentation of NC sequences which occur next to a syntactic boundary leads me to conclude that, irrespective of the nature of this syntactic boundary (i.e. irrespective of whether the syntactic boundary is minor or major), NC sequences give rise to the *ND ≈ D* variation pattern, so long as an audible nuclear segment precedes them. Later in this sub-section, I show that the phonological behaviour of the NC sequences which occur next to a syntactic boundary but are preceded by an audible non-nuclear segment is totally different from the one we saw above. In addition, I show that provided that they are preceded by an audible non-nuclear segment, NC sequences behave identically in both MinSB and MajSB configurations.

The last point I want to raise concerning the *ND ≈ D* variation pattern is that this is also adopted by compound words which assume the analytic structure [[A][B]]. The NC sequence which appears within either of the two morphemes, {A}
or {B}, behaves in exactly the same way as the NC sequences which occur in non-compound words of identical syllabic structures. Concretely, the NC sequences which appear in either of the two morphemes of a compound word independently undergo the various phonological operations dictated by their syllabic structure. As a result, the variation pattern they display is identical to that of a non-compound word of the same syllabic structure.

Following the above analysis, the variation pattern of the morpheme \(v^{\text{O}N\text{tim}\text{éni}}\) of the compound word \([\text{mis\text{o}}][v^{\text{O}N\text{tim}\text{éni}}]\) 'half-dressed' displays is identical to the variation pattern of the non-compound word \(v^{\text{O}N\text{tim}\text{éni}}\) 'dressed'. The two morphemes display the same syllabic structure as \(v^{\text{O}N\text{puk\text{â}la}}\) (6). Following the analysis I provided earlier in this sub-section, this syllabic structure gives rise to the variants \([\text{ndim\text{éni}}] \approx [\text{dim\text{éni}}]\) (just like \([\text{mbuk\text{â}la}] \approx [\text{buk\text{â}la}]\)). As a result, the variants that may surface for the compound word \([\text{mis\text{o}}][v^{\text{O}N\text{tim}\text{éni}}]\) are \([\text{misondim\text{éni}}] \approx [\text{misodim\text{éni}}]\), i.e. with and without the surfacing of the nasal reflex. Once again, we see that identical syllabic structures give rise to identical variation patterns.

Let me now turn to the two categorical contexts (i.e. those environments which do not allow any variation in the realisation of their NC sequences). In the first of the two contexts, the only realisation allowed for the NC sequence is D. The syllabic structure which gives rise to this unique variant is that of (1a), i.e. \(B^{\text{N}C\text{V}}\). This syllabic structure can be attested within words and next to either MinSBs (e.g. \(t\text{i}s v^{\text{O}N\text{trop\text{i}si}}\) 'the shame (gen.sg.fem.)') or MajSBs (e.g. \(t\text{ré\text{x\text{is}} v^{\text{O}N\text{pas}}\) 'you run just in case').

In this syllabic configuration, the onset head position preceding the nucleus which governs the nasal reflex is filled. This filled onset is licensed by an empty nucleus which is itself licensed, following 3.2.3, by Magic Licensing.
In the word álv^Npum 'album' (9), for example, the N₂ position is filled by an empty nucleus. This empty nucleus which is licensed by Magic Licensing must both govern the following nasal and license its preceding onset (O₂).

(9) O₁ R₁ O₂ R₂ O₃ R₃ O₄ R₄
N₁ N₂ \ N₃ N₄
x x x x x x x
β v₀ N C a
a l v₀ N p u m v₀

At present, it is not entirely clear to me why a filled onset position preceding the empty nucleus which governs the nasal segment of the NC sequence should have this effect on the surfacing of the nasal reflex. I strongly suspect that the surfacing of this reflex may be disallowed because the governing and licensing power of the empty nucleus governing the nasal reflex is diminished. Specifically, the configuration here is that of an empty nucleus which is required to perform both governing and licensing work (to respectively its following nasal reflex and preceding filled onset), while it is not licensed through proper government or the parameter licensing domain-final empty nuclei, but by Magic Licensing. It appears that the governing power of an empty nucleus is diminished when it has to also license its preceding onset while it is itself licensed by Magic Licensing (rather than proper government). Further research is clearly needed in order to clarify this issue.

Apart from within-word positions, this categorical pattern of phonological behaviour is displayed when NC sequences occur next to either a MinSB or a MajSB following a non-nuclear segment. Let me first examine the MinSB configuration. Next to a MinSB, we may have a proclitic which ends in an audible non-nuclear segment. If this proclitic is followed by a content word which starts with an NC sequence (e.g. tis v₀Ntropis (10)), the only attested variant is [tis
dropis]. No variant such as *[tis ndropis] may ever occur in MG.

This leads me to analyse the proclitic and content word as forming one analytic domain (10). In this case, the empty nucleus of the content word would have to be analysed as occurring in the N_2 position. The syllabic structure of (10) is, then, identical to that of (9). The empty nucleus (N_2) cannot be properly governed by N_3, as a governing domain consisting of an NC sequence intervenes between the two nuclei. Following my discussion in 3.2.3 and earlier in this sub-section, the empty nucleus preceding the NC sequence must be licensed by Magic Licensing. It seems that when an empty nucleus has to license a preceding onset while it is itself licensed by Magic Licensing, its power of governing its following nasal segment is diminished. As a result, the surfacing of the nasal reflex is disallowed in this configuration. The identity of syllabic structures in (9) and (10) explains in a non-arbitrary way the identity of phonological behaviour of the NC sequences whose empty nucleus is required to carry out both governing and licensing duties.

So far, then, we saw that the NC sequences which occur next to a syntactic boundary and are preceded by a nuclear segment adopt the $ND \approx D$ variation pattern, irrespective of the nature of the syntactic boundary (e.g. MinSB: *[i dropi] ≈ *[i dropi], as in (7); MajSB: *[tréxo mbas] ≈ *[tréxo bas], as in (8)). We also saw that the NC sequences which occur next to MinSBs but are preceded by an audible non-nuclear segment can only be realised as D (e.g. *[tin dropi], *[tin dropi], as in (10)). This leads me to conclude that the differential treatment of NC sequences which occur next to MinSBs (i.e. the $ND \approx D$
variation pattern, as opposed to the D realisation of the NC sequence) depends on the nature of the preceding audible segment, as speakers treat the two words as forming one analytic domain.

Let me now turn to the NC sequences which occur next to a MajSB, following a non-nuclear segment (e.g. *tréxis Npas (11)). In this configuration, each word forms one analytic domain. We would expect then the NC sequence to display the $ND \cong D$ variation pattern we saw in (6). However, this is not the case. These structures allow only one variant, D (i.e. *[tréxis bas], *[*tréxis mbas]).

(11) O R 0 Î' X X X X X X X X X X N t r e x i s N p a s

In configurations such as that of (11), the last audible segment of the first word surfaces obligatorily. At the same time, the NC sequence of the second word forces the spreading of (i) the L'element from the nasal segment to the oral stop and (ii) the occlusion and place specification elements from the oral stop to the nasal.

The surfacing of the nasal reflex of the NC sequences which occur next to MajSBs (e.g. *tréxis Npas) crucially depends on the nuclear or non-nuclear nature of the segment preceding the empty nucleus which licenses the nasal reflex. Earlier in this sub-section, we saw that the surfacing of the nasal reflex of the NC sequences which occur next to MinSBs (e.g. *tis Ntropis, tin Ntropi) also depends on the nuclear or non-nuclear nature of the segment preceding the empty nucleus which licenses the nasal reflex.

The above two facts lead me to suggest that the nature of the syntactic boundary is not the factor that determines
the variation pattern of the NC sequences which occur next to syntactic boundaries. Instead, the nature of the segment preceding the NC sequence is the factor that determines the variation pattern of these sequences.

Let me conclude the discussion of this categorical context by focusing on structure (6), exemplified with the word \(v^Np\text{kála} \), and structure (9), exemplified with the word \(\ddash v^Np\text{um} \). In these two structures, an empty nucleus (\(N_1 \)) governs the nasal reflex. Structure (6) shows that the surfacing of the nasal reflex is optional when the onset preceding this nasal reflex (\(O_1 \), as in (6)) is empty (i.e. when the NC sequence occurs word-initially). For example, the word \(Np\text{kála} \) allows the variation pattern \(ND \approx D \), i.e. \([mb\text{kála}] \approx [b\text{kála}] \). Structure (9) shows that the surfacing of this nasal reflex is disallowed when the same onset (\(O_2 \), as in (9)) is filled (i.e. when the NC sequence occurs word-medially). For instance, \(\ddash v^Np\text{um} \) only allows the variant \(D \), i.e. \([\ddash l\text{bum}] \), \(*[\ddash l\text{mbum}] \). On the basis, then, of this evidence, one might support a claim against syllable structure and in favour of word position as the factor determining the variation pattern of NC sequences. After all, the nasal reflex surfaces optionally after an empty nucleus only word-initially (6); word-medially, it never surfaces (9).

However, it is only on the face of things that word position appears to determine the variation pattern that specific NC sequences generate. As I showed earlier in this sub-section, the behaviour of word-initial NC sequences which allow an empty nucleus to precede them and which allow a filled onset to precede this empty nucleus ((10) and (11)) is identical to that of word-medial NC sequences which display the same syllabic structures (filled onset followed by an empty nucleus), (9). Both positions disallow the surfacing of the nasal reflex, giving rise to the same variant, \(D \). This indicates that only syllable structure and not word position determines the variation pattern (and, hence, the phonetic
variants) of NC sequences.

Speakers treat NC sequences which occur next to MinSBs as if they belong to one and the same analytic domain with the proclitic (i.e. as if there exists no morphological boundary between them ((7) and (10))). The interactions that take place in this analytic domain are identical to the interactions that take place when this domain is filled not with two distinct words which are treated as one (as in (7) and (10)), but with only one word (as in (6) and (9)).

Let me test further the influence that syllabic structure exerts on the phonological behaviour of NC sequences. If word position were the factor determining the surfacing of the nasal reflex, we would expect the word-initial nasal reflex of the content word Ntropi to surface freely next to a MinSB, irrespective of whether the preceding clitic ends in a nuclear or a non-nuclear segment (e.g. i versus tin). This, however, is not the case in MG, where the nasal reflex surfaces optionally after a nuclear segment (as illustrated in (7)) but is suppressed after a non-nuclear segment (as shown in (10)).

Lastly, let us not forget that the nasal reflex is suppressed only when a filled onset precedes the empty nucleus which governs the nasal segment of the NC sequence ((9), (10) and (11)). The only grammatical variant for the configurations displayed in (9), (10) and (11) is the D variant. When, however, both the onset and the nucleus which precede the nasal segment of the NC sequence are empty as in (6), the variation pattern this NC sequence displays is ND ≈ D. As I showed earlier in this sub-section, the ND ≈ D variation pattern is adopted also when the nucleus governing the nasal reflex is filled by an audible segment ((3) and (4)).

The above three pieces of evidence demonstrate that different syllable structures display different variation patterns. A configuration of a filled onset position preceding
the empty nucleus which governs the nasal reflex of an NC sequence (e.g. álv^Npum and tis Ntropís) is treated differently from a configuration of an empty onset position preceding the empty or filled nucleus which governs the nasal reflex of an NC sequence (e.g. Ntropí and i Ntropí). The former configuration displays the D variant, while the latter displays the ND ≈ D variation pattern. The phonological behaviour of NC sequences depends on the syllabic structure in which these sequences occur, and not on whether the NC sequence occurs word-initially or word-medially.

Identical syllabic structures display identical variation patterns. A configuration of a filled onset position preceding the empty nucleus which governs the nasal reflex of an NC sequence is treated identically, irrespective of whether it occurs word-initially (e.g. tis v^Ontropís (10)) or word-medially (e.g. álv^Npum (7)). The variant these identical configurations display is D. Also, a configuration of an empty onset position preceding the empty or filled nucleus which governs the nasal reflex of an NC sequence is treated identically irrespective of whether it occurs word-initially (e.g. Npukála (6), tréxo Npas (8)) or word-medially (e.g. eNkeniázo (3)). The variation pattern these identical configurations display is ND ≈ D.

Let me now turn to the examination of the syllabic context which gives rise to the unique variant NC. This variant is attested in domain-final position of words of analytic morphology (e.g. [[[lompv^s]]] (12)) and across MajSBs (e.g. [[[îtan] [próta]]] (13)).

```
(12) O R 0 R 0 R 0 R
| \ \ | \ \ | \ \ | \ \ |
| [ [ x x x x x ] x x ]
| | | | | | | |
| a N p v^O s |
```
Let me examine each structure in turn, starting with (12). As I pointed out in Chapter 5, the spreading of the L' element from the nasal segment to the stop is blocked when the NC sequence occurs in domain-final position. This gives rise to the NC variant (e.g. [lämpsi], *[lambio], *[lambri]). The nasal reflex surfaces obligatorily in these words (e.g. lämpsi, *[läpsi]).

The obligatory blocking of the spreading of the L' element from the nasal to the stop in words of analytic morphology might at first seem arbitrary. It is, however, explained within a GP framework. Specifically, this blocking is effected by licensed domain-final empty nuclei. Recall that final empty nuclei are parametrically licensed in MG (2.11.1). The blocking of the spreading of the L' element from a nasal segment to a strictly adjacent oral stop in MG by these parametrically licensed domain-final empty nuclei, could be interpreted as a signal of the presence of a domain boundary.

This behaviour of domain-final empty nuclei is not unique to MG. Brockhaus (1990, 1991, 1992a) convincingly argues that

Brockhaus (1992b) handles the blocking of the spreading of the L' element from the nasal segment to the oral stop by means of element licensing. The reader may recall from 2.13, that Brockhaus (1992b) suggests that parametrically licensed domain-final empty nuclei are weak licensors. The nucleus following the NC sequence in the syllabic context I presently examine is a parametrically licensed domain-final empty nucleus. As a result, Brockhaus (1992b:5) suggests that although the L' element still spreads from the nasal to the oral stop, 'being unlicensed, it has no effect, as it were; its presence doesn't manifest itself'. For a detailed discussion of the government-licensing and element-licensing properties of MG empty nuclei the reader is referred to Pagnoni (in preparation).
final obstruent devoicing in German (interpreted as the presence of an unlicensed laryngeal element L^- in the segmental representation of obstruents) is always triggered by a following parametrically licensed domain-final empty nucleus. In the Hochlautung standard German pronunciation, then, the presence of an unlicensed laryngeal element (L^-) could be interpreted as signalling the presence of a domain boundary.

The lack of manifestation of the spreading of the L^- element in MG words, signals analyticity. This explains why $*[mp],*[nt] *[ŋk]$ and $*[nts]$ sequences cannot occur word-initially: the spreading of the L^- element is blocked only in domain-final position where the NC sequence is licensed by a parametrically licensed domain-final empty nucleus. All other positions display obligatory spreading of the L^- element.

This analysis also explains why $*[nt]$ sequences can never occur in the language. An $[nt]$ sequence would be attested in MG only if $[nt]$ were allowed to occur in domain-final position of analytic words. In such a case, nt would be followed by an empty nucleus. This nucleus would in turn be followed by the analytic suffix $\{-sV\}$. This would give rise to a $Nt\nu^O$s sequence. However, as we know from 5.2.2, such a structure never occurs in MG. Following Chapter 5, MG provides ample evidence for a contour segment structure for ts. As a result and contrary to $[mp]$ and $[ŋk]$ which occur in the language because they allow an empty nucleus to follow them (i.e. $pv^Ot/kv^Ot/pv^On/kv^On/pv^Os/kv^Os$; see Chapters 4 and 5), no $nt\nu^O$s sequences can ever occur in MG.

Returning again to the lack of manifestation of L^- element spreading in MG, let me point out that, in cross-boundary NC sequences such as illustrated in (13), it signals the presence of a MajSB between the nasal and oral stop segments. Words which display this structure (i.e. an NC sequence which occurs across a MajSB) retain their
phonological shape. This means that each word forms its own analytic domain.

Specifically, the last audible non-nuclear segment of the first analytic domain (in the cases I investigate, a nasal segment) is pre-nuclear \((O_3)\), as in \(13\)). As a result, it is licensed by a following empty nucleus \((N_2)\), as in \(13\)). Following 3.2.4, pre-nuclear stops have their own lexically distinctive place specification element. As word-final non-nuclear segments are invariably coronal in MG, the nasal segment that may occur in this position can only be \(n\). This nasal segment never allows its \(L'\) element to spread onto another non-nuclear segment (e.g. *\(\text{ê} \text{milúsan} \text{kias}\), *\(\text{ítam próta}\), *\(\text{óróm peðíon}\), *\(\text{tréxum polí}\), *\(\text{iroykóm prákseon}\), *\(\text{pérnum prosforés}\), *\(\text{ê} \text{milúsan} \text{gias}\), *\(\text{ítam bróta}\), *\(\text{óróm beðíon}\), *\(\text{tréxum bolí}\), *\(\text{iroykóm brákseon}\) and *\(\text{pérnum brósforés}\)).

This happens for two reasons. Firstly, the nasal segment of the above sequences is followed by a nuclear position \((N_3)\), as in \(13\)) across which elements cannot spread. Secondly, even if this domain-final empty nucleus did not intervene between the nasal segment and the oral stop of the second word, the only segment to which the \(L'\) element could spread in MG is the phonetically adjacent oral stop. However, this stop belongs to a different analytic domain. Interactions can only take place within and not across analytic domains.

As a result, words retain their phonological shape across MajSBs. The only variant NC sequences can display when they occur across MajSBs is NC (e.g. \(\text{ê} \text{milúsan} \text{kias}\) and \(\text{ítan próta}\); \(\text{órón peðíon}\) and \(\text{tréxun polí}\) and \(\text{iroykón prákseon}\) and \(\text{pérnun prosforés}\)). The nasal reflex surfaces obligatorily across MajSBs (e.g. *\(\text{ê} \text{milúsa} \text{kias}\)^{1}, *\(\text{íta próta}\), *\(\text{óréo peðíon}\), *\(\text{tréxu

^{1}This structure occurs in MG. However, it refers to the first person singular, and not to the third person plural that I discuss here.
poli], *[iroidó prákleon] and *[pérnu prosforés]) as the L element spreading is blocked.

Let me now turn to the NC ≈ ND ≈ D variation pattern. This pattern is displayed by words in which the nasal segment precedes a ps/ks or a pt/kt sequence (14) (e.g. sinpv₀sifizo, sinpv₀tosi, respectively yielding the variants [simpɔsi] ≈ [simbsifizo] ≈ [sibsifizo] and [simpɔtosi] ≈ [simbtosi] ≈ [sibtosi]). The NC ≈ ND ≈ D variation pattern is a hybrid of the realisations attested in two different patterns of phonological behaviour, namely the variation pattern ND ≈ D and the variant NC. Again, GP can explain why we get this pattern when a nasal segment precedes a ps/ks or a pt/kt sequence.

(14) O₁ R₁ O₂ R₂ O₃ R₃ O₄ R₅ O₅ R₅
 N₁ \ | \ N₂ \ | \ N₃ \ | \ N₄ \ | \ N₅ \ | \\
 x | x | x | x | x | x | x | x | x |
 s | i | Np | v₀ | s | i | f | i | z | o
 s | i | Np | v₀ | t | o | s | i

On the one hand, all words which display the NC ≈ ND ≈ D variation pattern are non-analytic and their NC sequences are preceded by a filled nucleus (i.e. sinpv₀sifizo and sinpv₀tosi). In (3) and (4), we saw that all non-analytic words whose NC sequences are preceded by a filled nucleus give rise to the ND ≈ D variation pattern, irrespective of whether the onset position which is licensed by this nucleus is empty (e.g. [egeniázo] ≈ [egeniázo]) or filled (e.g. [kondá] ≈ [kodá]). As a result, the words sinpv₀sifizo and sinpv₀tosi signal their non-analyticity and their preceding audible nucleus by allowing the same variation pattern, ND ≈ D (i.e. [simbsifizo] ≈ [sibsifizo] and [simbtosi] ≈ [sibtosi], in the same way as enkeniázo allows the variants [egeniázo] ≈ [egeniázo] and koNtá allows the variants [kondá] ≈ [kodá]).

On the other hand, all analytic words in which the NC
sequence occurs before the domain-final empty nucleus give rise to the variant NC (e.g. [lampai], *[lambb], *[lapsi] (12)). The words siNpvOsifzo and siNpvOtosi are not analytic and their NC sequence does not occur in domain-final position. However, their NC sequence is followed by an empty nucleus, in the same way as the NC sequences of the above-mentioned analytic words. As a result, the siNpvOsifzo and siNpvOtosi type of words signal their following empty nucleus by allowing the variant NC (i.e. [simpsifzo] and [simptosi]). The combination of the ND \(\approx \) D variation pattern and the NC variant generates the pattern NC \(\approx \) ND \(\approx \) D, for those words where the nasal reflex occurs before a pt/kt or a ps/ks sequence.

Within words, this variation pattern is generated when any of the \{eN-\}/\{siN-\}/\{pan-\} prefixes precede a \{pvOs-\}/\{kvOs-\} or a \{pvOt-\}/\{kvOt-\}-initial morpheme. As I mentioned earlier in this sub-section, the boundary between these prefixes and the stop-initial stem is only etymologically. As a result, the place specification element obligatorily spreads from the oral stop to the nasal segment (e.g. *[simpsifzo], *[simptosi]). The spreading of the L' element from the nasal to the stop is optional. Lastly, the surfacing of the nasal reflex is obligatory when the L' element spreading is not in evidence (e.g. *[simpsifzo], *[simptosi]).

The NC \(\approx \) ND \(\approx \) D variation pattern is also attested when NpvOs/NkvOs or NpvOt/NkvOt occur across MinSBs (15). Specifically, a structure such as \(\delta eN \) kvOs\text{éro} 'I do not know' has the variants [\(\delta e \) k\textsuperscript{séro}] \(\approx \) [\(\delta en \) g\textsuperscript{séro}] \(\approx \) [\(\delta e \) g\textsuperscript{séro}]. This is the case because the two words are treated as if they formed one analytic domain. The syllabic structure assumed by NpvOs/NkvOs/NpvOt/NkvOt sequences which occur across MinSBs is identical to that adopted when these sequences occur within words: a filled nucleus precedes the nasal segment and an empty nucleus follows the oral stop. Following the above analysis, the variation pattern similar configurations give rise to can only be NC \(\approx \) ND \(\approx \) D.
(15) \(\text{O R O R O R O R} \)
\[
\begin{array}{cccccccc}
\text{X} & \text{X} & \text{X} & \text{X} & \text{X} & \text{X} & \text{X} \\
\text{N} & \text{N} & \text{N} & \text{N} & \text{N} & \text{N} & \text{N} \\
\text{O} & \text{E N K} & \text{V}^0 & \text{E} & \text{R} & \text{O}^8
\end{array}
\]

Let me conclude this sub-section by looking at some \(NC \) sequences which appear in non-analytic forms such as \(\text{pempti} \) 'Thursday'. These words display a completely different set of variants from the ones I have so far discussed. This is due to their different syllabic structure. As I pointed out in 5.1.2, the middle of the three non-nuclear segments (\(p \)) is epenthetic and not lexical (16). This \(p (17) \) is created by means of the spreading of (i) the place specification element (\(U^0 \)) from the strictly adjacent nasal segment (\(m \)) and (ii) the \(?^0 \) and \(h^0 \) elements from the following oral stop.

\[^8 \text{Brockhaus (1992b) handles the spreading of the L}^* \text{element from the nasal segment to the oral stop in the configurations of (16) and (17) by means of element-licensing. Specifically, Brockhaus (1992b) suggests that properly governed empty nuclei can be either strong or weak element-licensors. In the dialect of a particular social group of MG speakers, properly governed empty nuclei are weak element-licensors. This means that in this particular socially-defined dialect, the oral stop of the NC sequences which display the syllabic structure \(...(B)VNCV... \) surfaces as neutral (\(NC \) variant). In the dialect of a different social group of MG speakers, properly governed empty nuclei are strong element-licensors. This means that in this second socially-defined dialect, the oral stop of the NC sequences which display the syllabic structure \(...(B)VNCV... \) surfaces as low-toned ((\(N)D \) variant). The interested reader is, again, referred to Brockhaus (1992b) and Pagoni (in preparation)b for a more detailed analysis.} \]

\[^5 \text{It is not entirely clear to me at this stage how GP can accommodate the creation of this contour segment structure. At first sight, the creation of this epenthetic stop appears to involve the insertion of a skeletal position between the rimal complement of \(R_1 \) and its licensing onset head (\(O_2 \)). However, such a move would amount to a violation of the Projection Principle. Further research into this matter is clearly needed.} \]
Following Clements (1987), the sequence `mpt` of the word `pempti` displays all the typical characteristics of what he calls 'type A' intrusive stops. Specifically, Clements (1987) notes that 'type A' intrusive stops (i) cannot appear before consonants which are in a stressed syllable, (ii) can be synchronically intrusive for some speakers but not for others, (iii) show dialectal variation in their incidence and their optional or obligatory character and (iv) are felt by speakers to be different to obligatory lexically-present stops\(^{10}\).

In accordance with the above characteristics, the fact that this `p` is epenthetic and not lexical is evidenced by the existence of the variants `[pempti] \approx [pemti]`. When this `p` is not epenthesised, the labial nasal `m` allows its L- element to spread onto the coronal stop, hence the variant `[pemdi]`. When the `p` is epenthesised, the spreading of the L- element from the nasal onto the stop is blocked (i.e. *[pemdi]). The nasal reflex surfaces obligatorily, irrespective of whether the

\(^{10}\)Clements (1987) reports that experimental research on the last characteristic has shown, inter alia, that in order to highlight the difference between intrusive and lexically-present stops, speakers eliminate the intrusive stop of clusters which contain them and lengthen the underlying stop of clusters which contain lexically-present oral stops. To my knowledge, no similar research has been carried out for MG intrusive stops: this is clearly an area in need of further investigation.
spreading of the L' element is blocked (e.g. *[pépti], *[péti]) or not (e.g. *[pébti], *[pédi]).

Again, in conformity with the above characteristics, this p appears before a non-nuclear segment which is in an unstressed syllable. It also appears to be intrusive for only some speakers. The majority of my informants (12 out of 17) allowed the epenthetic stop to surface in less than 30% of the potential tokens. Lastly, 3 informants commented on the different character of p in words such as pęmpəti and sımptosı.

The four patterns of phonological behaviour I presented above account for all the configurations in which NC sequences may appear in MG. I sum them up immediately below.

The words that display the ND ≈ D variation pattern assume either of the following syllabic structures: (i) ...(B)VNCV... (i.e. NC sequences which are preceded by a filled nucleus), or (ii) #v^0NCV... (i.e. NC sequences which are preceded by an empty nucleus which has no licensing duties to perform, as the onset head that this nucleus licenses is also empty). These syllabic structures can be encountered (i) across MinSBs (tiN pórtə), (ii) within and across etymological boundaries of non-analytic words (enkeniázo, koNtá), (iii) next to either MinSBs or MajSBs, provided that the segment preceding the NC sequence is nuclear (i Ntropí, pâne Nprostá) and (iv) in compound words ([miso][Ntimení]).

The words that display the D variant assume syllabic structure ...by^0NCV... (i.e. the empty nucleus which precedes the nasal reflex of the NC sequence is required to govern a filled onset). This syllabic structure can be encountered in non-analytic words (ály^0Npum) and next to both MinSBs and MajSBs provided that the segment preceding the empty nucleus which governs the nasal of the NC sequence is non-nuclear (tis Ntropí, tréxis Npas).
The words which display the NC variant assume syllabic structure \([[[...VNCv^o]CV...]] \) (i.e. the empty nucleus which follows the oral stop of the NC sequence is domain-final and parametrically licensed). This syllabic structure is only encountered in NC sequences which occur across MajSBs (iroikôn prákv^oseon) and in domain-final position of analytic words (lâmvp^osi).

Finally, the words which display the \(NC \approx ND \approx D \) variation pattern assume the syllabic structure ...
\(VNCv^oBv... \) (i.e. the nasal segment of the NC sequence occurs before a \(pv^o/t/kv^o/t \) or a \(pv^o/s/kv^o/s \) sequence). This syllabic structure is encountered both word-medially (sin\(pv^o/sifizo \), sin\(pv^o/tosi \)) and word-initially (sin \(kséro \)).

In this sub-section, we also saw that the pattern of phonological behaviour displayed by NC sequences which occur next to a syntactic boundary depends on the nature of the audible segment preceding the NC sequence and not on the nature of the syntactic boundary. Specifically, we saw that in both MinSB and MajSB contexts, when word-initial NC sequences are preceded by an audible nuclear segment, the variation pattern is \(ND \approx D \) (\(Npukála \), tréxo Npas for, respectively, MinSB and MajSB). When these NC sequences are preceded by a non-nuclear segment, the only attested variant is \(D \) (\(tis Npukálas \), tréxis Npas for, respectively, MinSB and MajSB). The nature of the syntactic boundary does not determine the behaviour of the NC sequences which occur next to a syntactic boundary: their behaviour depends solely on syllabic structure.

In contrast, the pattern of phonological behaviour displayed by NC sequences which occur across a syntactic boundary depends on the nature of this boundary. This is due to the fact that since, in the latter case, syllabic structures are identical (i.e. filled nuclei preceding and following the NC sequences), the only thing that
differentiates them is the nature of the syntactic boundary. The MinSB gives rise to the $ND \approx D$ variation pattern ($tiN \ p\orta$), while the MajSB gives rise to the NC variant ($itan \ p\orta$).

6.2 The MG 'prenasalisation' issue

Before embarking on an investigation of the alleged existence of prenasalisation in MG, I would like to remind the reader of certain facts I raised and briefly discussed in Chapter 1. To begin with, the term 'prenasalisation' has no pre-theoretical status. As a result, different linguists have, over the years, adopted different syllabic structures and distribution patterns for what they call 'prenasalised' segments.

As we saw in 1.2, Magoulas (1979) claims that MG low-toned oral stops which are preceded by a surfacing nasal reflex are instances of prenasalised segments and they assume an affricate structure. Again following 1.2, Magoulas (1979) is the only linguist to claim that these segments should be assigned phonemic status. However, any claim for the phonemic status of these 'prenasalised' segments has to be rejected for MG, even in a framework as unconstrained and powerful as SPE, as the replacement of a 'prenasalised' with a 'non-prenasalised' oral stop does not bring about a change of meaning in MG (e.g. $[\acute{a}^n\dras]$ 'man', $[\acute{a}\dras]$ 'man').

The remaining linguists invariably call ND variants 'prenasalised', but assign to them allophonic rather than phonemic status. The majority of these linguists do not clarify which syllabic structure they assign to these variants. In the following paragraphs, I examine each of the three possible structures that an ND variant can assume. My aim is to show that only one of them exists in MG.
In the first structure, the nasal and oral stop occur under the same skeletal position, as illustrated in (18). This means that the nasal and oral stop occupy one timing unit. They accordingly assume the structure of a contour segment. In the second and third structures, the nasal and oral stop occur under different skeletal positions ((19) and (20) respectively). This means that each segment occupies one timing unit. However, in the second structure, the nasal segment occupies the rimal complement position and is licensed by the strictly adjacent onset head position which is filled in by the oral stop, as shown in (19). In this second structure, the nasal and oral stop form an interconstituent governing domain. In the third structure, the nasal and oral stop each occupies an onset head position, as in (20). This means that although the two non-nuclear segments look as if they are strictly adjacent, they are not: an intervening empty nucleus separates them (i.e. Nv^OC). This syllabic structure is identical to that adopted by pt/kt, pn/kn (Chapter 4) and ps/ks (Chapter 5).

I would like to suggest that only structure (19) exists in MG. Structures (18) and (20) must be rejected. To provide support for this claim, I examine each structure in turn. I first show that we can exclude structure (20). I then demonstrate that structure (18) also has to be rejected as MG provides ample positive evidence in favour of the existence of only structure (19).

To the best of my knowledge, none of the linguists who claim that MG possesses 'prenasalised' segments has ever argued that these variants assume structure (20). I present below the evidence against the postulation of an empty nucleus.
intervening between N and C.

In Chapters 3 through 5, we have seen that nasals interact with neutral oral stops in MG. These interactions (involving the spreading of the \mathcal{O} and place specification elements from the oral stop to the nasal and the spreading of the L' element from the nasal onto the stop) give rise to the low-toned series of stops in the language. A structure like (20) would render impossible any interaction between N and C. It must, therefore, be excluded as ill-formed.

At this point, one might raise an objection and claim that, for instance, the lack of spreading of the L' element from the nasal segment onto the oral stop in domain-final position of analytic words can be taken as a sign that, at least in this environment, an empty nucleus intervenes between the two segments. However, such a claim can be disproved on three grounds. I list them in turn immediately below.

Firstly, the place specification element spreads obligatorily from the oral stop to the nasal in all NC sequences. This fact strongly indicates that the two positions are strictly adjacent and that no segments intervene between them.

Secondly, let us for the sake of argument assume that in these instances where the L' element does not spread onto the stop the correct structure is that of (20). If this hypothesis were correct, we should be able to find similar configurations in both word-medial and word-initial positions. This implies that we should be able to find NC variants in both word-medial and word-initial positions. However, this is not the case in MG. Although NC variants are attested word-medially (e.g. *lámpsí), they are never attested word-initially (e.g. *[mpukála]). This distributional gap indicates that the nasal and oral stop do not assume structure (20).
Thirdly, these domain-final NC variants do not behave like true sequences of onsets separated by an empty nucleus: they can never be preceded by another non-nuclear segment. If the nasal segment of the NC variant occurred in an onset position, there would be no reason why another non-nuclear segment could not precede it. However, this is never the case in MG: NC variants are never preceded by non-nuclear segments (e.g. [lampsi], *[lármpsí]). Following the binarity theorem (2.4), this can only serve as an indication that the nasal reflex of NC variants does not occur in an onset position. What is more, the same behaviour is attested when ND variants are involved: no non-nuclear segment can precede them (e.g. *[esgjenázo] and *[kolndá] for eNkeniázo and koNtá, respectively).

The above evidence leads me to reject (20) as a possible structure for MG 'prenasalised' segments. I now turn my attention to an examination of structures (18) and (19). Following 1.2, these are the two different structures most linguists adopt, albeit often indirectly and implicitly, for the MG ND variants. I provide three arguments in favour of structure (19) and against structure (18).

The first argument against the adoption of structure (18) for MG ND variants is purely theory-internal and refers to the derivation of the ND variants. Following Chapters 3 through 5, low-toned oral stops are derived from interactions between nasal reflexes which occur in rimal complement positions and oral stops which license the nasal reflexes from strictly adjacent onset head positions. In the ND ≈ D and NC ≈ ND ≈ D variation patterns, the surfacing of the nasal reflex is optional. The two variants then (i.e. the variant which allows the surfacing of the nasal reflex (i.e. ND) and the variant which disallows this surfacing (i.e. D)) can only be derived from the same source, i.e. the interactions between the strictly adjacent nasal and oral stop of the NC sequence (3.2.2).
This means that, following 3.2.2, any claim in favour of the existence of a contour segment structure for the ND variant (18) implies the derivation of this ND variant from an underlying NC sequence whose segments adopt structure (19). The derivation of this ND variant from an NC sequence which assumes structure (19) should be non-arbitrary. This means that we should be able to turn in a non-arbitrary way the interconstituent syllabic structure of (19) (from which both the ND and D variants are derived) into the contour segment structure of (18) (for the derivation of the contour ND variants). This process is displayed in (21) and (22) below.

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
N_1 & N_2 & N_3 & N_4 & N_5 & N_6 & N_7 & N_8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
R_1 & R_2 & R_3 & R_4 & R_5 & R_6 & R_7 & R_8 \\
\hline
X & X & X & X & X & X & X & X \\
\hline
P & u & k & a & a & a & a & a \\
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
N_1 & N_2 & N_3 & N_4 & N_5 & N_6 & N_7 & N_8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
O_1 & O_2 & O_3 & O_4 & O_5 & O_6 & O_7 & O_8 \\
\hline
X & X & X & X & X & X & X & X \\
\hline
N & p & u & k & a & a & a & a \\
\end{array}
\]

In order to derive a contour structure for the ND variants from an underlying NC sequence, we must allow the delinking of the nasal segment from the rimal complement position ((R₁), as in (21)) and its attachment to the adjacent onset head position ((O₂), as in (21)). Such a deleting and re-attachment operation will result in a structure like (22). Such an operation can only take place in a relatively unconstrained framework which allows lexical representations to undergo restructuring during derivation.

GP is an extremely restrictive theory. It adopts non-arbitrariness as one of its major meta-theoretical principles (2.1). In terms of principles of grammar, GP adopts, inter alia, the Projection Principle (2.11.4). In a framework which
is set up with these requirements, an operation whereby a particular syllabic structure (e.g. (18)) is derived from a different syllabic structure (e.g. (19)) is impossible. Following the Projection Principle, no restructuring of existing governing relations is possible. The governing relations that are established at the level of lexical representation remain constant throughout a derivation. As a result, GP categorically excludes an operation like that displayed in (21) and (22). A structure which at the level of lexical representation takes the form of (19) cannot change into a structure which ultimately takes the form of (18). The delinking and re-attachment processes I described above are rejected in a GP framework.

Let me now turn to some theory-external arguments against the existence of a contour segment structure for the ND variants and in favour of their interconstituent structure. The evidence I cite below comes from the MG reduplication process. The reader may recall from Chapters 4 and 5 that all non-nuclear segments may reduplicate in MG so long as they occur in head positions of non-branching onsets which also have no licensing duties to perform (e.g. *uluši* 'flower', *papāra* 'bread soaked in sauce', *kokoviós*O 'goby').

The segments *b/d/g/dz* may also undergo reduplication processes (e.g. *bubúki* 'bud', *dudúka* 'megaphone', *gágaros*O 'popular expression for native Athenian', *dzidzfóngos*O 'popular expression for dandy'). This may at first sight appear to indicate that instead of being derived from strictly adjacent NC sequences, MG low-toned stops are independently existing segments in MG. This, however, is not true. In 3.2.2, I argued in favour of the exceptionless derivation of all MG low-toned stops from underlying NC sequences. Besides, in line with current thinking in the field (e.g. Shaw 1985), reduplication processes actually take place only after the NC sequences (from which *b/d/g/dz* are derived) have undergone the necessary interactions that will allow them to surface as low-
toned stops. Recall that reduplication of non-nuclear segments which occur in head positions of (i) branching onsets (e.g. tetriména 'cliché') and (ii) onsets which have to license a rimal complement (e.g. estavroménosvO 'crucified') is no longer productive in MG (4.1.2). All words of this type are inherited from AG.

On the basis of participation of b/d/g/dz in MG reduplication processes, we would expect to also witness participation of the ND variants in reduplication processes if these ND variants assumed a contour segment structure (i.e. if the nasal reflex and the low-toned oral stop occupied one skeletal position). If the above claim were correct, the reduplicative words vO NpúNbúki and vO NgángarosvO should respectively possess the variants [mbuNmúki] and [n gáNgaros]. The variants [mbaNmbás], [n dziNdzifóngos] and [nduNdúka] should also be possible. If, on the other hand, the ND variant assumed an interconstituent (rather than a contour segment) structure, we would expect variants such as *[mbumbúki] and *[ngángaros] to be disallowed in MG. Recall that following 4.1.2, this is the case because interconstituent sequences of rimal complements and onset heads cannot participate in MG reduplication processes.

In fact, the second hypothesis is correct. In over 50 hours of tape-recorded conversation I have collected, I do not have a single instance of an ND reduplicated token. My repeated questions to all my 17 informants, as well as to a host of other native speakers of MG concerning the grammaticality of reduplication of ND variants, were all answered in a categorically negative way.

At this point, one might raise the objection that reduplication is productive only for MG non-nuclear segments which do not assume a contour segment structure. However, such a claim can easily be disproved by the examination of the phonological behaviour of ts, the MG contour segment I
discussed in Chapter 5. Recall that following 5.2.2, ts fully participates in MG reduplication processes (e.g. tsitsi’i 'stark naked', tsatsára 'comb'). The only reason, then, that all ND variants are excluded from reduplication processes in MG is that they do not assume a contour segment structure.

The second and final empirical argument against the existence of a contour segment structure for the ND variants comes from their distribution. Concretely, their distribution is different from that of ts, the true contour segment of MG and identical to that of interconstituent sequences of non-nuclear segments such as sp, st and sk.

In Chapter 5, we saw that ts, like all non-nuclear segments which occupy one skeletal position, can be preceded by a strictly adjacent non-nuclear segment (e.g. káltsa 'sock' and órtsa 'luff'). By way of contrast, interconstituent sequences of non-nuclear segments cannot be preceded by non-nuclear segments (e.g. *[árstra], *[kálska] and *[lárspl]). This follows from the binarity theorem which specifies that all constituents have a maximally binary structure (2.4). As the head of all rimes is always occupied by a nuclear segment, a maximum of only one non-nuclear segment may fill the governed position of the rimal constituent. The fact, then, that so-called 'prenasalised' oral stops can never be preceded by a non-nuclear segment (e.g. *[tsárnda] and *[elndrivi]) indicates their interconstituent rather than contour segment status.

What is more, words such as flv̩Ntsi and álv̩Npum have an empty nucleus separating the segment l from the nasal reflex. This empty nucleus occurs in the head position of the rimal complement (see 3.2.2 and 3.2.3 for an analysis of this structure). As I pointed out in 6.1, similar syllabic structures do not allow the nasal reflex to surface (e.g. [ábum], *[álmbum], just as [tis bukálas], *[tis mbukálas]). As a result, ND variants cannot occur in either of these word-medial or word-initial syllabic structures. Note that these
syllabic structures are the only ones to allow a non-nuclear segment to phonetically precede a low-toned oral stop.

Altogether, then, ND variants may only assume an interconstituent structure in MG. The arguments in favour of this claim are as follows. Firstly, the interactions that take place between the nasal and oral stop segments of the NC sequences renders their strict adjacency obligatory. Secondly, the non-arbitrariness and Projection principles oblige us to allow for the ND variant only the interconstituent structure. This is due to the fact that the underlying NC sequence from which the ND variants are derived assumes an interconstituent (and not a contour segment) structure (3.2.2). Third, the impossibility of participation of the ND variants in MG reduplication processes is a clear indication that these segments do not occupy only one skeletal position. Fourth, the fact that non-nuclear segments are not allowed to precede ND variants indicates that the MG ND variants cannot adopt a contour segment structure. Following the exclusion of (20) and (18) as possible structures for MG ND variants (and the impossibility of any ND variant forming a branching onset (Harris 1990:277)), the only possible structure an ND variant may assume is that of an interconstituent governing domain.

6.3 Summary

The arguments of this chapter aimed at demonstrating that the only factor that determines the phonological behaviour of NC sequences is syllabic structure. Factors such as word position or the origin of a word were shown to be irrelevant to the phonological behaviour of MG NC sequences.

The patterns of phonological behaviour of NC sequences are four in total. The ND = D variation pattern is displayed by NC sequences which are either preceded by a filled nucleus or, if they are preceded by an empty nucleus, the onset head
that this nucleus licenses is also empty. The D variant is displayed by NC sequences which are preceded by an empty nucleus. This empty nucleus is required to govern its complement and license a filled onset. The NC variant is displayed by NC sequences which occur in domain-final positions. These NC sequences are licensed by a parametrically licensed domain-final empty nucleus. The $NC \approx ND \approx D$ variation pattern occurs when the nasal segment of the NC sequence occurs before a $pv^Ot/kv^Ot/pv^Os/kv^Os$ sequence.

In this chapter, I have also demonstrated that the behaviour of the NC sequences which occur next to a syntactic boundary depends solely on syllabic structure. When preceded by an audible nuclear segment, NC sequences display the $ND \approx D$ variation pattern in both MinSBs and MajSBs. When these NC sequences are preceded by a non-nuclear segment, the only attested variant is D, again for both MinSBs and MajSBs. In contrast, the pattern of phonological behaviour displayed by NC sequences which occur across a syntactic boundary depends on the nature of this boundary. The MinSB gives rise to the $ND \approx D$ variation pattern, while the MajSB gives rise to the NC variant.

In this chapter, I have also shown that the ND variants which have over the years been called 'prenasalised' assume an interconstituent structure. This is demonstrated by several facts. Firstly, the obligatory interaction of the nasal and oral stop indicate that these segments are strictly adjacent and in a governing relationship. Secondly, the impossibility of derivation of a contour segment structure from an underlying interconstituent structure excludes the assignment of a contour segment structure to ND variants. Third, the impossibility of participation of prenasalised variants in MG reduplication processes indicates that ND variants do not occupy only one skeletal position. Fourth, the impossibility of non-nuclear segments preceding ND variants lends support to the postulation of an interconstituent structure for them.
CONCLUSION AND SUGGESTIONS FOR FURTHER WORK

In this thesis I have endeavoured to demonstrate two things. In the first place, I have attempted to show that the phonological behaviour of MG NC sequences crucially depends on the syllabic structure in which they appear. In the second place, I have aimed at demonstrating that an impressive number of problems that have, over the years, been repeatedly reported in the existing literature on MG phonology can be resolved by use of a constrained theory such as GP.

The framework of GP has been shown to be up to the task of accounting for interview and spontaneous speech data. In fact, GP has managed to provide explanations for the existence and phonological behaviour of all and only the attested forms of MG that were subjected to examination in the present thesis.

The four areas where the adoption of the theoretical framework of GP has advanced our knowledge of the phonological events that take place in MG are as follows.

Firstly, with respect to the question of the existence of a low-toned series of oral stops in MG, I have shown in Chapter 3 that lexically MG only possesses a neutral series of stops (i.e. p/t/k/ts) and that it derives its low-toned series (i.e. b/d/g/dz) from the interactions that take place when neutral oral stops occur in the strict adjacency of nasal segments. The interactions that take place between these segments involve the spreading of the occlusion and place specification elements from the oral stop to the nasal and, depending on the syllabic structure of the word(s) involved, the spreading of the L element from the nasal onto the stop.

Secondly, regarding the syllabic structure of pt/kt, pn/kn and ps/ks, I have demonstrated in Chapters 4 and 5 that all
six sequences assume an identical syllabic structure in MG, namely that of two onset heads separated by an intervening empty nucleus. The \(pt/kt \), \(pn/kn \) and \(ps/ks \) sequences behave identically with respect to a number of MG phonological phenomena, foremost amongst which are the interactions they enter into when their initial oral stop occurs in the strict adjacency of a nasal segment. Having contrasted the phonological behaviour of the above-mentioned sequences with that of the MG sequence \(ts \), I have also demonstrated that \(ts \) is a contour segment. Because of its syllabic structure, the phonological behaviour that \(ts \) displays is identical to that of the MG neutral oral stops.

Thirdly, with reference to the question of the existence of prenasalisation in MG, I have concluded in Chapter 6 that prenasalisation does not exist as a phonological phenomenon in the language. The surfacing of the nasal reflex before a stop in those structures where this is optional takes place in the rimal complement position. The surfacing of the oral stop takes place in the onset head position.

Fourthly, with regard to the phonological behaviour of MG NC sequences, I have shown that (i) different syllabic structures (syllabic contexts) give rise to different patterns of phonological behaviour and that (ii) the assumption of the correct syllabic structure for a word where an NC sequence appears allows one to actually predict the phonological behaviour of the NC sequence in question. For those syllabic structures which allow variability, the particular variant that a speaker will actually use at specific moments in time depends entirely on social (i.e. extragrammatical) factors. As such, the examination of which variants specific speakers use in particular moments in time (in those contexts where the phonological system allows for variability) has not formed part of the immediate concern of this thesis.

Finally, regarding the phonological behaviour of MG NC
sequences, the results of the analysis presented in this thesis lead me to the following conclusion. MG NC sequences display four different patterns of phonological behaviour depending on the syllabic structure in which they occur. Two of these patterns display categorical behaviour, as they allow only one realisation for the NC sequence. The remaining two patterns allow for variability. In the one of the two patterns which allow for variability there exist two realisations of the NC sequence, while in the other pattern there exist three realisations for the NC sequence.

The specific patterns of phonological behaviour that NC sequences display in MG, together with the syllabic contexts in which each pattern occurs are as follows.

In the first place, the D realisation is attested when the nucleus which precedes the nasal reflex of the NC sequence is empty and is also required to govern a filled onset. This realisation of the NC sequence is attested in non-analytic words and next to MinSBs and MajSBs.

In the second place, the NC realisation is attested when the nucleus following the NC sequence is empty and occurs either across MajSBs or in domain-final position of analytic words.

In the third place, the $ND \equiv D$ variation pattern is attested when the NC sequences are either preceded by a filled nucleus or, if they are preceded by an empty nucleus, the onset head that this empty nucleus licenses is also empty. This realisation is attested when the NC sequences occur across MinSBs, within and across etymological boundaries of non-analytic words, next to either MinSBs or MajSBs (provided that the preceding segment is nuclear) and in compound words.

In the fourth place, the $NC \equiv ND \equiv D$ variation pattern is attested when the nasal segment of the NC sequence occurs
before either a word-medial or a word-initial $pv^O_t/kv^O_t/pv^O_s/ kv^O_s$ sequence.

Also, the pattern of phonological behaviour displayed by NC sequences which occur next to a syntactic boundary depends on the nature of the preceding audible segment (i.e. on the syllabic structure) and not on the nature of the syntactic boundary. When these NC sequences are preceded by a nuclear segment, the variation pattern is $ND \approx D$. When these NC sequences are preceded by a non-nuclear segment, the only variant is D. In contrast, the variation pattern of the NC sequences which occur across a syntactic boundary depends on the nature of this boundary. This is due to the fact that since their syllabic structures are identical (i.e. filled nuclei preceding and following the NC sequences), the only thing that differentiates them is the nature of the syntactic boundary. The MinSB gives rise to the $ND \approx D$ variation pattern, while the MajSB gives rise to the NC variant.

The issues I have discussed in this thesis do not come anywhere near exhausting the subject of MG phonological variation. Since part of this phenomenon (specifically the surfacing of the nasal reflex in those variation patterns where this surfacing is optional) seems to depend on social rather than linguistic factors, it is to be hoped that the extragrammatical influencing factors will be investigated in depth in future work.

Another area that needs serious study is that of the MG fricatives. Our understanding of the workings of the MG phonological system can be substantially advanced if future research addresses the following issues: (i) charm values and lexical distinctiveness of the compositional elements of MG fricatives, (ii) the phonological behaviour of MG fricatives in a variety of syllabic positions and (iii) the syllabic structure that should be assumed by non-nuclear sequences where a fricative is the initial segment.
(e.g. fx, $s\emptyset$, $\emptyset n$, fn, mn, $\emptyset n$, xm, etc.).

Furthermore, a totally neglected area which is nevertheless fraught with interesting questions is that of the syllabic structures that different MG dialects assume for their non-nuclear sequences (e.g. pt/kt, pn/kn, ps/ks, ts, $\emptyset n$, mn, tl, etc). Much more light can be shed not only on the workings of MG phonological variation but also on the workings of the whole MG phonological system once data from other MG dialects and other languages of the world are examined.

Finally, future work will hopefully soon address a number of questions that I have already raised in my analysis of MG phonological variation. Foremost among these questions are those concerning (i) the way 'Magic Licensing' operates in MG (and other languages of the world) with respect to $s+C$ and NC sequences, (ii) the influence of coronality on the behaviour of t (versus the other non-coronal stops) and (iii) the creation, representation and distribution of epenthetic stops in the various languages of the world.

Although the present thesis has not been able to address all these and many more intriguing issues, it has explained at least a substantial set of important phonological phenomena in standard MG. It is to be hoped that further research in this area will soon see the light of day.
APPENDIX A

In this Appendix I assemble the data sets I have presented in Chapter 1 and discussed in Chapters 2 through 6. These data sets consist of all the linguistic environments where MG NC sequences may be phonetically or phonologically adjacent. This table comprises (i) representative examples of the different syllabic structures in which NC sequences may occur in MG (individual data sets), (ii) the different variants that each data set may have and (iii) those variants which are disallowed for each data set.

<table>
<thead>
<tr>
<th>Syll. Str.</th>
<th>Variants</th>
<th>Disal. Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nprévo</td>
<td>[brávo]</td>
<td>*[mprávo]</td>
</tr>
<tr>
<td></td>
<td>[mbrávo]</td>
<td>*[nprévo]</td>
</tr>
<tr>
<td>2. Npukála</td>
<td>[bukála]</td>
<td>*[mpukála]</td>
</tr>
<tr>
<td></td>
<td>[mbukála]</td>
<td>*[npukála]</td>
</tr>
<tr>
<td>3. tréxo Npas</td>
<td>[tréxo bas ke]</td>
<td>*[tréxo mpas ke]</td>
</tr>
<tr>
<td></td>
<td>[tréxo mbas ke]</td>
<td>*[tréxo npas ke]</td>
</tr>
<tr>
<td>4. tréxun Npas ke</td>
<td>[tréxun bas ke]</td>
<td>*[tréxun mps ke]</td>
</tr>
<tr>
<td></td>
<td>[tréxun mbas ke]</td>
<td>*[tréxun npas ke]</td>
</tr>
<tr>
<td></td>
<td>[tréxun npas ke]</td>
<td></td>
</tr>
<tr>
<td>5. tréxis Npas ke</td>
<td>[tréxis bas ke]</td>
<td>*[tréxis mps ke]</td>
</tr>
<tr>
<td></td>
<td>[tréxis mbas ke]</td>
<td>*[tréxis npas ke]</td>
</tr>
<tr>
<td>6. ōen milúsan kias</td>
<td>[ōe milúsan kias]</td>
<td>*[ōe milúsa gias]</td>
</tr>
<tr>
<td></td>
<td>[ōe milúsan kias]</td>
<td>*[ōe milúsa kias]</td>
</tr>
<tr>
<td>7. ítan prôta</td>
<td>[ítan prôta]</td>
<td>*[ítam brôta]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*[ítam prôta]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*[íta brôta]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*[íta prôta]</td>
</tr>
<tr>
<td>8. oréon peðión</td>
<td>[oréon peðión]</td>
<td>*[oréom beðiôn]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*[oréo beðiôn]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*[oréom peðiôn]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*[oréon beðiôn]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*[oréo peðiôn]</td>
</tr>
<tr>
<td>9. tréxun polí</td>
<td>[tréxun polí]</td>
<td>*[tréxum bolí]</td>
</tr>
<tr>
<td>10. iroikónprakv⁰seon</td>
<td>[iroikónprákseon]</td>
<td>*[iroikóma brákseon]</td>
</tr>
<tr>
<td>11. pérnun prosforés</td>
<td>[pérnun prosforés]</td>
<td>*[pérnum brosforés]</td>
</tr>
<tr>
<td>12. páne Nprostá</td>
<td>[páne mbrostá]</td>
<td>*[páne mprostá]</td>
</tr>
<tr>
<td>13. mikrí Npeláðes</td>
<td>[mikrí mbeláðes]</td>
<td>*[mikrí mbeláðes]</td>
</tr>
<tr>
<td>14. tréxun Nprostá</td>
<td>[tréxun mbrostá]</td>
<td>*[tréxun mprostá]</td>
</tr>
<tr>
<td>15. mikrón Npeláðon</td>
<td>[mikrón mbeláðon]</td>
<td>*[mikrón mbeláðon]</td>
</tr>
<tr>
<td>16. i Npukála</td>
<td>[i mbukála]</td>
<td>*[i mpukála]</td>
</tr>
<tr>
<td>17. tis Npukálas</td>
<td>[tis mbukála]</td>
<td>*[tis mbukálas]</td>
</tr>
<tr>
<td>18. tiN pórta</td>
<td>[ti bórta]</td>
<td>(ti pórta)</td>
</tr>
<tr>
<td>19. ōen pernó</td>
<td>[ōen bernó]</td>
<td>(ōe bernó)</td>
</tr>
<tr>
<td>20. saN táfos</td>
<td>[sa dáfos]</td>
<td>(sa táfos)</td>
</tr>
<tr>
<td>21. tiN tropi</td>
<td>[ti dropí]</td>
<td>(ti tropí)</td>
</tr>
</tbody>
</table>
22. **tiN Ntropi**

[tin dropi]	*[ti ntropi]
[ti dropi]	*[tin ndropi]
[ti ndropi]	

23. **ēN Npéno**

[ēem bēno]	*[ēen mpéno]
[ēe bēno]	*[ēen mbēno]
[ēen mbēno]	

24. **saN Ntuvāri**

[san duvāri]	*[san ntuvāri]
[sa duvāri]	*[san nduvāri]
[sa nduvāri]	

25. **ēNkeniāzo**

[engeniāzo]	*[eeneniāzo]
[egeniāzo]	*[enkeniāzo]
*[emkeniāzo]	

26. **siNprāto**

[simbrāto]	*[siprāto]
[sibrāto]	*[simprāto]
*[sinprāto]	

27. **pāNplutos**

[pāmplutos]	*[pāplutos]
[pāblutos]	*[pāmplutos]
*[pānplutos]	

28. **kōNTā**

[kondā]	*[kontā]
[kodā]	*[kotā]
*[kōntā]	

29. **[[misō][Ntimeni]]**

[misodimēni]	*[misontimēni]
[misondimēni]	*[misotimēni]
*[misontimēni]	

30. **NparvO Npūni**

[barbūni]	*[mparpūni]
[mbarbūni]	*[mbarmbūni]
*[barmbūni]	*[parpūni]

31. **[[lāNpV] si]**

| [lámpsi] | *[lāmbzi] |
| *[lāmbzī] | |

32. **siNpvO sifizo**

[simpśnifzo]	*[sinpsifzo]
[simbsifzo]	*[sipśifzo]
*[simbsifzo]	

33. **pēmpti**

[pēmpti]	*[pēpti]
[pēmti]	*[pēbdī]
*[pēmti]	

34. **lēmpti**

[lēmpeti]	*[lepti]
[lēmti]	
*[lēmti]	
APPENDIX B

The purpose of this Appendix is twofold. I firstly provide some information pertaining to the process I employed for the collection of the data on which this research is based. I secondly outline the criteria I used in the selection of the sample I interviewed.

Following Pagoni (1989), there exist strong indications of social differentiation in the surfacing of the nasal reflex in the two contexts where variability is allowed by the MG grammar. The results of the above pilot study of MG phonological variation show a clear correlation of particular phonetic variants and the degree of participation of individuals and group(s) of informants in specific networks.

In accordance with these findings, I decided not to employ a random sampling procedure for the present investigation. Instead, I focused on only one social group, characterised as middle class. The sample I interviewed was selected on the basis of primarily the participation of individual informants and groups thereof in sets of network relationships. The members of each selected network are reasonably balanced by age and sex.

The resulting sample consists of 17 informants, 9 women and 8 men, all native speakers of MG. Each sex is represented by two age groups, (i) 20-35 (age group A) and (ii) 50-70 (age group B). In (1) below, I give two initials for each informant. Initials are followed by each informant's details of sex and age group membership at the time of the interview.

(1) INITIALS SEX AGE GROUP
 1. NP Male B
 2. FB Female B
 3. IB Male B
 4. DA Male A
 5. EB Female A
6. KA Male A
7. MD Female B
8. OD Female A
9. AG Female A
10. VM Male B
11. SM Female B
12. MM Male A
13. MV Male B
14. ZV Female B
15. JV Male A
16. MB Female A
17. RB Female B

The fieldwork for this research was carried out according to the principles outlined in Milroy (1987). All the above-mentioned informants belong to four different but interrelated social networks. Specifically, FB, IB, EB, KA and DA form one network; MD, OD, and AG form another network; VM, SM, and MM form the third network; MV, ZV, JV, MB and RB from the fourth network. NP is a peripheral/marginal, rather than core, member of each of these networks.

The younger informants link these four networks: they are all close friends, colleagues or relatives. They all know each member of their respective networks intimately and are well acquainted with the older members of the other three networks. The older members who belong to the same network know each other intimately. Their acquaintance with the older members of the other networks is, more often than not, remote.

The data collection process took place in Athens, Greece, in 1988-1989. Each informant was interviewed for 3-6 hours. All interviews were conducted by myself. At the time of the interview, and with the exception of NP, whom I had known intimately for almost 24 years, I had been closely associated with all younger informants for at least 6 years and had been well acquainted with the older ones for a period of 3-6 years.

Interviews took place in the social setting that was familiar to each speaker (usually their home). The familiarity
of the surroundings, combined with the fact that informants considered me as a member of their network, rather than as an 'outsider', enabled them to use more casual styles of speech. Following Labov (1972a, 1972b) these styles are not easily observed when informants are in the presence of 'outsiders' to their networks, still less when these outsiders aim at observing these very linguistic habits of their interviewees.

Interviews were designed to elicit two speech styles. The first style, hereafter RS (Reading Style), was formal and careful, involving three different reading activities. The second style, hereafter SS (Spontaneous Style), was casual and relaxed, ranging from minimally controlled to totally spontaneous conversation.

The RS involved the reading aloud of the four reading passages, the extended word list and the minimal pair list I provide in Appendix C (hereafter RP, EWL and MPL respectively). All activities include a significant number of different syllabic structures where NC sequences appear. Each syllabic structure is represented by words of (i) both Greek and foreign origin and (ii) the learned and popular vocabulary.

This choice of words stems from the objective of examining, inter alia, whether the phonological behaviour of MG NC sequences can be influenced by factors other than syllabic structure. The results I obtained from this investigation show that extragrammatical factors such as the origin and/or the membership of a word in the learned/non-learned vocabulary can only influence the particular variants that speakers select in the two contexts where the grammar of MG allows variability (i.e. contexts (1c) and (1d) in Chapter 6). These results form the basis for the argumentation I provided in 6.1.1, namely that the phonological behaviour of NC sequences is determined by the syllabic structure in which
these sequences appear.

Let me come back to the presentation of the interview material. The four RPs, each of which was rated differently on a formality scale, contained 299 instances of NC sequences. The first two RPs were informal. The first RP mainly described the interior of a gipsy hut. The second RP was a dialogue between a couple concerning an invitation to a wedding. The other two RP's were formal, written in the form of newspaper articles. One reported on the political situation in South Africa before the release from prison of Nelson Mandela. The other article reported on an imaginary financial scandal in Greece and the legal action taken as a result of it. The EWL consisted of 555 NC sequences. The NC sequences of both the four RPs and the EWL appeared not only in word-initial and word-medial position but also across and next to MinSbs and MajSBs. The MPL contained 71 minimal pairs and was the most formal of all reading activities. With one exception, all the NC sequences of the MPL were either word-initial or word-medial.

At the end of these three reading activities, I gave my informants a series of photographs from advertisements which, at the time of the interviews, were quite well-known. These photographs generated conversations on topics related to the products themselves, advertising techniques and the media. Often informants would start by discussing topics related to the above-mentioned subjects and then quickly digress to subjects of greater interest to them and remotely related to the photographs.

As I was well-acquainted with all 17 informants, I was aware of the subjects each one was most keen on discussing. The older informants enjoyed talking about their life experiences and current hobbies which ranged from cooking, gardening and embroidery, to literature, finance and politics.
The younger informants enjoyed discussing university-life experiences, as well as emotional and job-hunting problems. The interest in politics was shared by practically all informants.

By the time the discussion started, most informants assumed that the interview was over. Attention was turned away from the tape-recorder and the microphone, both purposefully placed slightly to the side of the informants. The conversation became fairly relaxed, following the patterns of a routine visit. The usual socialising, the occasional interruptions by other members of the family and/or telephone calls and the joining in the discussion of other members of the household ensured an atmosphere atypical of interviews.

At the end of these conversations, I asked some brief questions on accent and the MG language. As practically all informants held strong laymen's views on these subjects, long and heated conversations were sometimes generated. Interviews were concluded with each informant filling a questionnaire on personal information such as age, education and profession. The questionnaire and the questions on accent and the MG language also appear in Appendix C.

Depending on the speaker and the duration of the interview, the tokens of NC sequences I obtained in the SS ranged from 1060 to 1543. Adding to these the 925 RS tokens, the sum total of RS and SS tokens ranged for each speaker from 1985 to 2468.

The quantitative material gathered in this way was subjected to detailed analysis. For the purposes of this analysis I grouped together relevant tokens of the different

1 This position not only avoids numerous sound distortion effects, but also ensures that the tape-recording apparatus is not always in full view of the informants.
phonetic variants that NC sequences display in the different contexts which allow variability. The index scores calculated for individuals and groups of individuals who belonged to the same cell were correlated with stylistic factors (e.g. reading versus spontaneous style) and social factors (e.g. age, sex and network membership). The details and results of these correlations are to be found in Pagoni (in preparation).
APPENDIX C

In this appendix I provide a transcription of the reading passages, the minimal pair list and the extended word list I used for my interviews. Although this transcription fails to give a detailed picture of the syllabic structure of all the words I used, it at least depicts quite accurately and in line with the GP analysis I presented in this thesis the syllabic structure of those sequences of segments that are of special interest to an investigation of MG phonological variation (i.e. NC sequences, pt/kt, pn/kn, ps/ks and ts). The transcription of the above-mentioned reading material is followed by the questionnaire each informant filled in and the questions on the basis of which the discussion on accent and the MG language was conducted.

Reading passage 1

katiforizontas tin plajia tu vunú pros tin amfiloxia vreóike nprós stIN paránka tu jiftu. ítan skepasméni me miá NtsíNkini skepi pu jiálize ston ílio. Npénontas aníkrise tin paliá sónpa me to skuriásmeno Npurl, ena saravaliasmeno Ntulápi, kena ýánntso apópu krémoNtaN pénNte NprúNtsini mastrapádes. sto váhos ñíékrine mia ftoóryafía me ti jenovéfa na kratái ena Ntéfi ke na kitá ton pánëira ke ti zéNpra pu vrísKontan sta pódia tis. o jiftos ítan kvo saploménon xámo. forúse ena triméno pánthéoni. toN kitakvo se kalá. i melanxolia ítan zoýrafisméni sto prósoó tu. ñen Nporúse na pístepvo si oti ítan móno triánta xronón. i ðéa ton svýròN kátisproN malión tu ton sokárisi. ton akúNpise ke ekinos pérnoNtas ton xanpári kvo sýpvo nise ke teNtóbíke xtipóNtas ton anKóna tu stóN tíxo. toN tárakvo se o póNos apo to éNkavma ke múNkrise sa ãerió.

Reading passage 2

o Nkíkas vvoúke apo to Npakáliko tu xanTsianíréea kátoNtas tin Npaloméni tsáNta tu jemáti me kánposa tsanpiá staflía, peNtékvo si Ntenekéákia
Appendix C

Ntolmádes jialaNtsí, misí Ntuzína Npires, brúNpess ke káti aNtsúyes na tis
iNpízese! Npénontas ston kípo apo tiN píso meríá tis misóNkremisménis
máNtras aNtámose stiN pórta tis kuzínas tis tiN patrúla, tí zoNtoxíra, tí
siNtrófísa tú.
- òe vrika jiaúrti strañkísméno jia NtsaNtsíki.
- òen pírázi. pínás?
- sa líkos, ke danKóni ena suNtsukáki.
- vré NtsanaNpétí miN tsiNpás. òa se píasi lókvOsiNkas! ãNte, ke súxo símera
Nprizóla, aNtíoia ke anKuroNtomosaláta. tóra ettímaNáo Npürekákia jia tin
ëNkóna mu tìn olinpiá. pîje me ti siNpëtréra stiN thalasa jia Npánió. miN
kVOsexásis, Nkíka, tìN kiriaki paNtrévete i tリアNtafíllía i NpirvONplomátà. metá
 tô jâmo òa pâme stiN veránta to NpuzukvoNsiôiko. pëzí i renpëtikí koNpanía me
 toN NpajánNtéra. bâxi Npuzúki, NpaNlamà, akorVoNteón, Ntéfi ke ton yeNtse
ton Ntsími stiN líra. o òe NparvONpá Ntsavós òa xorépvoi zeiNpëkikó. ti
pèNptí ìbame ta prikíá. ti keNtímate, Ntántéles, staNpotá trapezomántíla,
Ntsevréèes, Nkonplén! ke épipíla! rotoNta, Npufèèes, sèNtúkia ke tsuNpelékia!
àn pis kiápot xrisáfíká! Npirlántia, ruNpinía, ðiàmainNtía, ena soró!!!
- píus kalésane?
- tiN katerína tin xoNtronoPALú, toN kósta, ton lânpiro, toN paNtéli, ton jiánko,
 toN tákí, tiN trelokaNpéro tìN tásia, ke tiN kiki ke tiN kûla tu karaNkùni. jia
ðóro òa tus páro to Nkrízo anPazúr ãpó toN teNpësi ton éNpóra. òen vrika
to Nplé pu ìbela!
-ëNtákvoi, òen pírázi!

Reading passage 3

jioxánvoNpurvñK, tu anTapokrití mas lâNpi NtisiNtsíloní.
nées siNkrúsis se apókeNtres sinikies tu jioxánvoNpurvñK, opu
páno apo éNteka xiliádes énxromi néi íxan siNkeNitroðí forázoNtas sinÎmata
ðíamartírias jia tis apáNthropes siníoikes diavíossis sta Nkéto. siNkekriména
sinelifíðan ekatoNtàdes Ntópií, kâdois ke siNparastátæs apo tìn ziNpánpue,
namNpiá ke anKóla. se sinêNtekvOsi me anTapokirités tu asoséíðenít prés, i
kíria maNtélà katìNkile ti xrísi NkłonpvoS ke ti ripvOisi dakriðnon vomvón
enanâNtoN siNkeNitroðéNton ðiaNsolóN. metá apoN parêmvasi tu epískopú ke
nonpëlista NtësmoNtu tútu, i kivén尼斯 Npóða símfoNíse na eNeférósi ðiakosíus
peníNta apo tu siNlðéBëntes.
pirá anNtalýðian epísis koNtá se aNamaNtorrixía tu stâlenNpos ta opía
ekmetalévoNte i eteries NtáimoNt estánplisment límiteNt ke i
NKólvoNteNpervO\nk máins kóNpani me apotélesma to álote anáiró enpórió
ðiamaNtión kaðos ke proióNton opos xaviódooNtes ke elefaNTostúN, ala ke
Npanáses, mánko, avokánto ke Nkréip frút na stamatiNsi lýo tu epiNvikténval
enpárvoNko apo perisóteres apo triNtapénte xóres, me sinália tin ipóNtisimN
tu ënikú nomismatos, ránt, kírios ënéNtì tu õolariu ke tu elvetikú fránku.

ëNKiri kiiki anaferòun oti ta ésoðá tis sinavlias pu õðìike sto uëNplei
tis anklías jia ti sináriósi ton eë domíNta xróN tu nélsona mânèla, ke i
ópia õôríse meghá antrapókrisi, ta diatèðún jia tiN kalitàrefsi ton sinéikón
ðiavísis sta Nkétò. Análoèi sinavlia sto Ntitróít ton ìpa anaméNte na pra
matopìðhi stis arxes tu xília eniakósia õð jáNtaNéa.

Reading passage 4

ta éNtòna provlíma pu parusiázoNte sti ñiaxírisi tu
enporoviNmaníkuní këNtrò anpeNkopìoN ke panNkañòu õëò òN opos
antímetoNtísuN sinNtòmos ipo tu en targeted suN simvúlu ke jëNikú õiefeNtúN ton
këNtrikón õrafìN NIS oðò Nkúra, kíriu alfa kàNkéralí. I ekprosòpi ton
sinòikalístikón somation kàNñkìlàn os asìmòfòrs tas ipògráfías simvásis me
viomíNmaniká sinNkrotimáta is florentíà, riánt, islamaNpán, xoNk-ôNìk, NpaNkóNìk, kaðos ke is tin jìuNkoslavaNìa, tsánt, unNkàNta, unNkària ke anklía.

katòpiN tis kataNkélías õòðí enðòli ipo tu isaNkeléos kíriu Npí ñia tiN
parapoNpip is ton takvôtikón anakrítin kíriòN pëtròN konstaNtíNíðín, tu
proanaferèNtos kíriu aNkàNmuN kàNkéralí, os ke ton melòN tu õílikitikú
simvúlu kíriòN kíriòN evánkélu NpàNtuvá, antóni NkuNtsúN, ankélú
Npólnölí, xaralánpuN maraNkópuN, lavreNtúN tâNsmNdísí, mânèu pàNkálu ke
kírias anòromáxis NtôrvoNtsí. enNtòmetakvôí, afíxísan enk NpovróNto Ntálìas,
i Nnìpí pràmatogóNímones kírii kírii ròNpèr NkuNtrón, ke Nkí enNtiróNkó ke
ek NtuNpáí i kiría anNkàNka NpreNpí ìna provuN is enNperistatômNnon élenxonN
pàNtoN ton stixión is apoNfanóûN epi tu vásmu ton kataNkélíN.

Minimal pair list

Ntínos finos tropí Ntropí òésí Npésí
ti vúla tin kúla õántís mánNtís õíno Ntíno
Npufés kufés kuzína Ntuzína sála Npála
Extended word list

(a) word-initial and word-medial NC sequences

<table>
<thead>
<tr>
<th>rama</th>
<th>Ntama</th>
<th>janti</th>
<th>NkanTifi</th>
<th>kefi</th>
<th>Ntafi</th>
</tr>
</thead>
<tbody>
<tr>
<td>ora</td>
<td>Npora</td>
<td>lezanta</td>
<td>levanta</td>
<td>lima</td>
<td>Npapa</td>
</tr>
<tr>
<td>ratsa</td>
<td>rantsa</td>
<td>npojos</td>
<td>lojos</td>
<td>laso</td>
<td>Npaso</td>
</tr>
<tr>
<td>rayiyo</td>
<td>rantizo</td>
<td>kunpi</td>
<td>kuli</td>
<td>doiri</td>
<td>doniti</td>
</tr>
<tr>
<td>sinpaeto</td>
<td>sixado</td>
<td>poitos</td>
<td>pntonos</td>
<td>deno</td>
<td>Npono</td>
</tr>
<tr>
<td>anKira</td>
<td>apira</td>
<td>anKio</td>
<td>antio</td>
<td>roka</td>
<td>Rona</td>
</tr>
<tr>
<td>kalos</td>
<td>kanko</td>
<td>staia</td>
<td>stanka</td>
<td>vazi</td>
<td>Nkazi</td>
</tr>
<tr>
<td>oromena</td>
<td>nkomena</td>
<td>araka</td>
<td>aranpa</td>
<td>Sopa</td>
<td>sonpa</td>
</tr>
<tr>
<td>blouse</td>
<td>nkofia</td>
<td>foras</td>
<td>paras</td>
<td>sopa</td>
<td>sonpa</td>
</tr>
<tr>
<td>apalaji</td>
<td>antalaji</td>
<td>zanpon</td>
<td>tanpon</td>
<td>yala</td>
<td>yanpa</td>
</tr>
<tr>
<td>Entera</td>
<td>etera</td>
<td>entimo</td>
<td>ensimo</td>
<td>pino</td>
<td>Nnino</td>
</tr>
<tr>
<td>tsanta</td>
<td>tsontsa</td>
<td>konna</td>
<td>konpra</td>
<td>xol</td>
<td>Npol</td>
</tr>
<tr>
<td>Nkarizi</td>
<td>xarizi</td>
<td>Ntsami</td>
<td>Ntsaki</td>
<td>mesa</td>
<td>menta</td>
</tr>
<tr>
<td>politkos</td>
<td>pontikos</td>
<td>Ntsanpa</td>
<td>sanpa</td>
<td>laki</td>
<td>lani</td>
</tr>
<tr>
<td>elefsi</td>
<td>NpvoNefsi</td>
<td>suzuik</td>
<td>NpuNpuki</td>
<td>vazo</td>
<td>Npazo</td>
</tr>
<tr>
<td>Ntsanitski</td>
<td>NtsNtsiki</td>
<td>tsakizo</td>
<td>tsanTizo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Npez, muNtilai, onpoe, violoNtselo, sanpa, lezanta, konstanTinupoli, Npar, xunta, Npurerki, Npasket, troNpeta, salipinka, tanko, manpo, penTeli, sinkr, Ntsamaki, xonpi, antiprosopos, NoriNts, ranTevu, tNpano, olipiakos, Nkalisan, marantaona, Ntron, enkios, pntonos, Ntsunsukos, tsernoNpil, koNko, akorvoNteon, varinpopi, npinko, aryeNTini, anNTas, NtsirinTsaNtsules, levanta, frankolevanTinos, parapopi, Npugatsu, antitorpilikos, einnts, funtuiki, lunpanko, Nkranka, NpaNtsanakis, sirinka, zoNklar, yanKrena, ralaNTi, NtsanaNpetic, anti, NpaNpacs, NpervoNpantits, nerANTsi, NpervONpuni, faintarios, Npapantonits, sNOp, linpra, tse Nkuevara, repunplikanos, enpistosini, tsanTizo, manTsurana, sinperasma, Ntropi, parenpodizo, tanpom, santuits, anTRANs, tsanNkaries, enpEzo, NkanKvoSter, tsonta, sintakvisi, onpela, sikrafias, inNTinkes, monteNtist, apoNioNpoeos, Nketo, inTtelite, Nkomena, xtra sENp, zanpom, mentium, sinNposio, NkuverNanta, Ntuman, mankas, sinpVIkvisi, kanpink, linTSaro, konplekviskos, zontanevo, Npanpakasi, NporvoNk, lentel, nprezNief, norKorvoNpatsof, enpiastro, sinKiries, patsaNtsioko, enTakvisi, erkONTision, lanTsa, siniNnonies, suvlaNtsi,
Appendix C

(b) NC sequences next to msb's

(c) NC sequences across msb's

ton kavalári, tiN káva, tiN pròðesi, ton kúrAsa, ton kakuxión, ton katáfera, ton tixóðíokVótón, tiN pròðesmiá, ston katanalótón, tiN trofi, an plínis, tiN tsápa, ton parijórion, ston kahárise, tiN panúkla, ðen káríse, ton tliKvoxe, ton tsaríatáno, tiN plái, ðen ponó, ton tileráson, ton tsámiko, miN kóvis, tiN portokalía, ton tsapíni, ton píre, ðen kVóséro, ton kóijkón, stíN prímon, tiN kataplikVósi, an paraVlépVósis, tiN tsíxla, ton prítáneon, stín téxni, tiN kípVóSéli, ton texíti, stín tsépi, tiN pápia, miN kopanás, ton kávura, ton polaplasía, ðen plákose, ton trokVótíkon, tiN kerósokópiá, òtan kínýjise, stin plíri, ðen pónese, tiN púli, ðen kontaraxtípíme, ton trémi, ton kérvero, tiN tsákise, ton tsákose, tiN tsántise, tiN pátise, ton tríjo, ðen perró, ton paNtódínamo, ðen paraVlépo, miN plínis, tiN triáda, ton planíti, òtan troxízo,
Appendix C

(c) NC sequences across and next to msb's and masb's

...

Questionnaire

1. Name:
2. Age: 20-28 () 29-35 ()
 45-55 () 56-66 ()
3. Sex: Male () Female ()
4. Do you have children? Yes () No ()
 How many? () Of what age is each? () ()

 Which foreign language(s) do they speak?
 To which school do/did they go?
 Are they studying?
 What and where do they study?
 Have they finished their studies?
5. What is your profession/occupation?
6. What are your hobbies?
7. Are you a member in any organisation/society/club?
8. How regularly do you buy: a) newspapers
Appendix C

b) magazines
c) books

9. How active is your social life?

10. What is your relationship with each of the remaining 16 informants?

Language questions

1. Do you speak with an accent? Do other people consider you have an accent?

2. How broad do you think your accent is?

3. Do you think you speak "well", "correctly"?
 Who do you think speaks "correctly", "well"?
 Is it good to speak "correctly", "well"? Why?
 Do you make an effort to speak "correctly"?

4. On which factor do you think "correct"/"good" speech depends:
 a) vocabulary b) accent c) syntax
 d) education f) other

5. Did you find any common pronunciation characteristic in the words you read? Do you know if there exists any pronunciation rule for b/d/g/dz? Where do we learn this rule?

6. How do you pronounce b/d/g/dz? How do other people pronounce b/d/g/dz?

7. Are distinctions such as the following important for the manner that you pronounce b/d/g/dz?
 a) the katharevousa versus demotiki characterisation of a word
 b) casual versus formal speech
 c) rapidity of speech
 d) the particular word in question (e.g. whether the word is rarely/often used, popular/archaic, etc.)

9. Have you ever thought about the pronunciation 'problem' of b/d/g/dz? Have you ever thought of any other pronunciation 'problem' of Modern Greek?

Works Consulted

Works Consulted

McCarty, J. & A. Prince. 1990. *Foot and word in prosodic
Works Consulted

Papadopoulos, Th. 1976. I genesi tis Ellinikis kommatikis glossas. ANTI period B, 46. 29/5/76. 36-8.

