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Abstract

Abstract

This thesis investigates the Baeyer-Villiger oxidation of cyclic ketones to optically
enriched lactones by the enzyme cyclohexanone monooxygenase (CHMO), cloned
into Escherichia coli JIM107 pQR210. Two model substrates were selected (2-hexyl
cyclopentanone and 4-methyl cyclohexanone) to conduct investigations with. A
major constraint found was that whole cell catalysis produced low reaction rates and
poor enzyme stability. Isolated enzyme was stabilised effectively by using elevated
levels of the cofactor NADPH.

Recycle of the expensive NADPH was investigated by detailed studies of
thermostable glucose and alcohol dehydrogenases. These were characterised by
marked product inhibition. Alcohol dehydrogenase from Thermoanaerobacter
brockii (TBADH) was chosen for the ease of removal of the acetone product from
the system and the high affinity for NADPH.

The interaction between CHMO and TBADH was modeled by simultaneous
numerical integration of their rate equations leading to an understanding of the effect
of different enzyme ratios on system performance. This model also predicts the
conditions necessary to maximise cofactor stability and re-usability. Quantification
of a range of processing strategies was performed, fed-batch operation was found to

be 2.5 times more productive than batch.

Multi-gram syntheses of lactones were performed at 2L scale with both free and
immobilised enzymes. NADPH recycle was effective at producing over 700 reaction
cycles. Immobilised CHMO was found to be significantly more stable than free
enzyme under process conditions, a catalyst with retained activity of 12% and
specific activity of 1.2Ug" was produced. TBADH produced 42% retained and
13.6Ug specific activity. Co-immobilisation of both enzymes on the same support
produced a catalyst with an activity of 0.6Ug™.
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Introduction

1.0 Introduction

1.1 Chirality

1.1.1 Definition

Chirality 1s a term used to describe a property of molecules that exists when an atom
(usually carbon) has attached to it four different functionalities. The consequence of
this is to create two distinct forms of the same molecule that differ only in their
spatial arrangement, forming mirror images that are not superimposable upon one
another. A molecule with this property is termed chiral. Figure 1.1 below illustrates

how these two forms of the same compound can exist, and are in fact mirror images.

R, i Ry
| | |
C d C
o ~ } """" .
R | "Ry | Ry | "R
R3 ! R3

Figure 1.1 Optical isomers

The two mirror image forms of a particular compound are called erantiomers and
can be distinguished by the fact that they rotate plane polarised light in opposite
directions when one form is present in excess over the other, hence the traditional
use of the phrase optical isomers. A mixture of equal proportions of both

enantiomers is known as a racemic mixture.
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Introduction

Enantiomeric excess (ee) is a term widely used to define the proportion of the two
enantiomers of a compound within a mixture and is calculated using equation (1)

where the two enantiomers are termed A and B.

[4]-15]
ee = (m) x 100 (1)

Thus a racemic mixture will have an ee of 0%, and a ratio of enantiomer A to B of
300 will have an ee of 99%.

In almost any environment the two enantiomeric forms of any compound exhibit
identical chemical behaviour. The exception to this is when interactions occur with
another chiral molecule, this is extremely common within biological systems and so
becomes a serious issue in the pharmaceutical industry when evaluating the potency

and toxicity of potential chiral drug candidates.
1.1.2 Advantages of enantiomeric purity over racemic mixtures

Two enantiomeric forms of the same compound often have different
pharmacological effects when administered as a therapeutic drug or agrochemical
(Collins et al, 1997). The most infamous example of this is the different effect each
enantiomer of thalidomide has on the body. One enantiomer produces the desired
antiemetic effect, whilst the other is a powerful teratogen causing limb deformity in
developing foetuses. The drug was administered as a racemic mixture, thus

generating the side effects in patients caused solely by the undesired enantiomer.

Other possibilities with administering racemic mixtures are that one enantiomer may

be completely inactive thus the dose given to a patient is twice that theoretically

17



Introduction

necessary generating the possibility of side effects due entirely to the large dosage. It

is also possible that both enantiomers have the same effect, but not with the same

potency. An example of this is the anti-inflammatory Ibuprofen (Cannarsa, 1996).

Table 1.1 below

pharmaceuticals over racemates.

summarises

the potential

advantages of enantiopure

Properties of racemate

Potential benefits of enantiomer

One enantiomer is exclusively active

The other enantiomer is toxic

Enantiomers have different pharmokinetics
Enantiomers metabolised at different rates

in the same person

Enantiomers metabolised at different rates

in the population

One enantiomer prone to interaction with
key detoxification pathways

One enantiomer is agonist, the other is

antagonist
Enantiomers vary in  spectra  of
pharmacological action and  tissue
specificity

Reduced dose and load on metabolism
Increased latitude in dose and broader use
of the drug

Better control of kinetics and dose

Wider latitude in setting the dose;
reduction in variability of patients’
response

Reduction in varnability of patients’
responses; greater confidence in setting a
single dose

Reduced interactions with other common
drugs

Enhanced activity and reduction of dose

Increased specificity and reduced side
effects for one enantiomer; use of other

enantiomer for different indication

Table 1.1. Potential therapeutic benefits of enantiomerically pure drugs.
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1.1.3 Industrial significance of chiral molecules

The global market for optically pure pharmaceuticals is extremely large, in 1995
approximately $50 bn worth of sales of optically pure pharmaceuticals were
achieved, amounting to one fifth of the total pharmaceutical market, with sales in
recent years achieving 20% growth per annum (Cannarsa, 1996). Sales rose to $71.1
in 1997 with half the top 100 selling drugs being single enantiomers (Stinson, 1998).
It has been estimated that 75% of synthetic pharmaceuticals and 20% of
agrochemicals will be single enantiomers by the year 2000 (Collins et al, 1997).

Table 1.2. lists the top fifteen single enantiomer drugs in terms of sales.

Drug Name Company 1995 sales/ SM
Epogen Amgen 3060
Vasotec Merck 2460

Premarin Various 2080
Amoxil Various 2080
Pravachol BMS 2020
Humulin Various 1970
Zocor Merck 1825
Cardizem Zeneca 1790
Capoten BMS 1670
Zestnl Merck 1350
Mevacor Merck 1260
Sandimmune Sandoz 1250
Neupogen Amgen 1230
Ceclor Eli Lilly 1050
Zoloft Pfizer 990

Table 1.2. The top single enantiomer drugs by sales (Cannarsa, 1996)

19
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There is a growing trend to producing compounds with multiple chiral centres, such
as newer protease inhibitors designed to combat the spread of HIV e.g. Abbott’s
Norvir and Merck’s Crixivan (Davies and Reider, 1996). A recent review (Stinson,

1998) covers the current developments in new single enantiomer drug candidates.

Regulatory issues are also increasingly important. The FDA stipulates that both
enantiomers of a potential new drug must be compared in terms of biological
activity. Only if there is no appreciable difference may a racemate be used. This is
usually not the case in that nearly all drugs have isomeric forms with different
pharmacological effects. The European CPMP has a similar, if weaker, policy at
present that says a racemic mixture can be used providing no data is available that
illustrates improved safety of the single isomeric form over the mixture. Several
drugs have recently switched from racemic to single isomer forms, i.e.
desfenfluramine (anoretic), levofloxacin (antibiotic), ibuprofen (anti-inflammatory)
and dilevalol (beta-blocker) (Juaristi, 1997). It seems almost certain that this trend
will continue and regulations will become more restrictive with time, becoming the
chief driving force in the development of improved methods of single enantiomer

synthesis.

1.1.4 Methods for enantioselective synthesis

The methods of introducing enantioselectivity in syntheses are diverse. Many current
targets are reactions termed racemic switches, single enantiomer forms of drugs that
are currently on sale as racemates, such as Astra’s stomach ulcer treatment Prilosec

which has been recently patented as a single enantiomer variant (Stinson, 1993).

There are two general classes of reactions that generate enantiomerically enriched
products, depending on the properties of the starting material. The first class of
reaction is known as kinetic resolution and occurs when the starting material is a

racemic mixture. Formation of product occurs from only one enantiomer of the
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starting material, the other being essentially unreactive. Formation of product is thus
limited to a 50% yield. An example of this is the esterification of a racemic
carboxylic acid shown in Figure 1.2 (Chen et al, 1987). One enantiomer forms the

ester, the other is unreacted.

c1—©—o*c02H + HO—<:> —_— cn—@o‘ W o
: 0]
Racemic substrate

Product

cn—@-o’LcmH

Unreacted enantiomer

Figure 1.2 Kinetic resolution of a racemic carboxylic acid

This reaction class is not ideal due to the low yield and the required separation of the
unreactive enantiomer post reaction. More emphasis has been placed on the second
class of reaction termed asymmetric synthesis. In this case the starting material does
not contain a chiral centre, the reaction introduces chirality and forms only one
enantiomeric form of product, such as the hydrolysis reaction shown in Figure 1.3
(Chen et al, 1982).
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CoH502C  CO2CoH5 HO2C  CO2C2Hs

Non chiral substrate Single enantiomer product

Figure 1.3. Asymmetric synthesis from a prochiral substrate

The reaction is theoretically able to reach 100% yield and as such would require less
purification. Asymmetric syntheses are now generally the favoured technology in

developing routes to enantiopure pharmaceuticals (Cannarsa, 1996).

One area of intense interest is the use of chiral catalysts based on transition metal
chemistry (Cannarsa, 1996) such as palladium, silver and platinum, often it is
possible to prepare chiral forms of existing and established catalysts to convert
racemic syntheses to enatiospecific reactions, making racemic switching a viable

technology.

The main area of focus in developing enantioselective synthesis is currently the use
of enzymes either in an isolated form or within a microorganism to perform reactions
(Stinson, 1998). Enzymes by their very nature tend to be selective in processing one
enantiomer of a compound over the other due to the biological ongin of the catalyst.
As new drug candidates become larger and more complicated with many different
functionalities it is often necessary with chemical catalysis to introduce extra
synthetic steps in their preparation in order to protect some of these functionalities
from undesired side reactions (Davies and Reider, 1996). Enzymatic catalysts have a
very significant advantage as generally the selectivity of their reaction is so complete
and the reaction conditions are mild such that no protection (and subsequent

deprotection) is required, allowing the number of synthetic steps to be reduced. The
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use of an enzyme (in any form) to perform any specified chemical reaction, whether

enantioselective or not is termed biocatalysis.

1.2 Biocatalysis

1.2.1 Industrial examples of biocatalytic processes

Biocatalysis is used widely in the process industries, from pharmaceutical
manufacture, where the enzymatic reaction may be a single step in a multi step
chemical synthesis, to waste treatment (Roberts et al, 1995; Faber, 1992).
Biocatalysts were originally entirely from microbial sources, (Wang et al, 1979)
however advances in genetic engineering have expanded the range available
(Dordick et al, 1991; Bliem et al, 1991). The first commercially important
application was the hydroxylation of progesterone in 1952 (Peterson ef al, 1952).
Enzymes show particular promise in their ability to catalyse enantioselectively,
generating chirally pure products often in applications where there is no equivalent

chemical technique available.

Biocatalysis can also offer advantages over traditional chemical syntheses in terms of
energy usage, waste generation and purity. The biosynthesis of indigo is a process
that can dispense with toxic chemical reagents and does not generate toxic waste
material (Tramper, 1996). Biocatalysis is not yet able to compete on cost
effectiveness with existing chemical methods for bulk chemical manufacture,
although polyacrylamide is currently produced in Japan at a rate of 30000
tonnes/annum (Ashina and Masuro, 1993) in a process that has significantly
“greener” credentials than the established chemical route. Biocatalysis also can offer
potential routes to new compounds, which cannot be made via traditional chemical

syntheses.
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Several large scale biocatalytic processes are currently in late phase development or
have just gone into production (Stinson, 1998). A recently developed process is that
for the synthesis of the potent potassium ion channel blocker MK-499 (Merck) that
uses an aminotransferase enzyme to introduce the correct enantioselectivity into an
intermediate molecule (Davies and Reider, 1996). NSC operates a multi-ton process
producing single enantiomer forms of the amino acids phenylalanine and tyrosine
using an aromatic transaminase enzyme, operating in 180000L batches. BASF plan
to have a 1000 tonnes/annum single isomer amine plant operational by the middle of
the year 2000 based on lipase catalysed acylation, enantiomerically pure alcohols are
also targets of this technology. Glaxo-Wellcome operate an enantiospecific
biocatalytic step to produce a potent anti-HIV agent on a multi-ton scale
(Mahmoudian et al, 1993).

Currently most commercially operating biocatalytic processes involve hydrolytic
enzymes, particularly lipase, esterase and protease (Faber and Franssen, 1993). This
is mainly due to the availability, high stability in aqueous and organic solvents and
lack of cofactor requirement. These processes are well established and the

fundamental chemistry, biology and engineering have been well characterised.

1.2.2 Future directions for biocatalysis

Biocatalysis can offer advantages in the preparation of enantiopure compounds over
chemical methods. The environmental impact of a biocatalytic process may be
significantly lower than the equivalent chemical process. Additionally the increasing
complexity of target compounds would result in necessary protection steps if
produced chemically. These three factors will inevitably make the use of biocatalysis
more widespread in the future, however there are other issues that arise when
evaluating the potential for these technologies. Redox biocatalysis (particularly cell
free systems) has generally yet to establish itself, due in part to the limited
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commercial availability of redox enzymes and the technical difficulties in
regenerating the unstable and expensive cofactors required for enzyme function.
Carbon-carbon bond syntheses are another important target that have yet to emerge

as viable technologies.

A reluctance to use biocatalysis is in part due to several widely held views that the
technology is not robust enough to operate as a process, for example catalyst stability
1s perceived to be low;, thermophillic biocatalysts have been shown to be stable
above 70°C (Lamed and Zeikus, 1981) and immobilisation of enzymes to solid
supports confers superior stability to many diverse enzymes (Gerhartz, 1990). It is
also believed that the only solvent that can be employed is water; the use of co-
solvents, second organic phases and pure organic solvents has often been
demonstrated (Klibanov, 1990; Woodley, 1990, Woodley and Lilly, 1992).

Other problems such as low reaction rates and yield due to interference from the
reaction components can be overcome or their effect limited by the use of different
reactor modes or processing strategies (Freeman et al/, 1993; Woodley and Lilly,
1994). This requires a thorough understanding of the system under investigation in
order to rationally select a process design. Future progress in this technical area is
crucial in increasing acceptance of biocatalysis, as is application of recombinant
DNA techniques.
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1.3 Biocatalytic process selection

1.3.1 Selection of catalyst

Biocatalysts are generally in two forms, whole cells or isolated enzyme preparations.
(Lilly, 1977, Gerhartz, 1990; Dordick et a/, 1991 and Wingard et al, 1976).

Whole cell biocatalysts are usually non-reproducing and may even be non-viable, as
long as sufficient stable enzyme activity exists within the cells. Problems can arise
due to the organism being difficult to grow, substrate and product toxicity, mass
transfer problems into the cell, side reactions (such as further enzymes in a pathway
degrading a desired product) and cell lysis. Whole cells are historically the only
method available for example in a multi-enzyme conversion or when expensive
cofactors are necessary (redox biocatalysis), it is also possible that the enzyme
cannot be isolated with retention of activity. Some of these problems can be
overcome in some cases with the advent of recombinant DNA technology, by
engineering the relevant genes into a more flexible host, such as Saccharomyces

cerevisiae or Escherichia coli.

Purified enzymes can overcome some of these constraints, but have their own
characteristic problems, for example re-use of enzyme, product contamination,
enzyme stability and the additional cost of purification. Purified enzymes are
generally only used if whole cells are not suitable. The purity of the enzyme
preparation need not be high, as it is only necessary to remove from the catalyst other
enzymes that may interfere with the target reaction and compounds that may lower
the activity of the desired enzyme. The issues of stability, re-use and product
contamination can be addressed by attaching the biocatalyst to a solid support in a

procedure known as immobilisation.

26



Introduction

The immobilisation of biocatalysts to a solid support was first reported by Grubhofer
and Schleith in 1953 (Gerhartz, 1990) who immobilised a variety of digestive
enzymes including trypsin and pepsin. The first practical application was the
immobilisation of fungal aminoacylase by Chibata and coworkers in 1969 to
enantioselectively produce L-amino acids. The rationale behind immobilisation is
that it enables a relatively expensive biocatalyst such as an intracellular enzyme to be
removed from solution into a more recoverable insoluble form, which can then be re-
used to lower costs and can significantly simplify downstream processing of the
product, as the enzyme is retained within the reactor. Immobilisation of cells is also

practiced, and can give extra mechanical support to fragile organisms.

However immobilisation is not without drawbacks, and can lead to diffusional
problems of both substrate and product with the potential creation of undesirable
micro-environments around the biocatalyst. Also the activity of an immobilised
enzyme can be reduced due to steric interference of the support near the active site,

activity will also be lost due the immobilisation procedure itself.

By either entrapping the catalyst within a matrix i.e. a porous gel or encapsulating
within a bead an immobilised catalyst is created (Wingard et al, 1976). This could
help alleviate substrate inhibition, by limiting the local substrate concentration, but
cause diffusional problems. In practice this is not easy to achieve. Cell layering by
viable cell growth within a bead can further add to this problem, making the

commercial use of immobilised cells rare.

Another range of immobilisation techniques are catagorised as binding to a solid
surface. This could be simple adsorption to the surface of a support, or covalent
linkage to either a support, or bridging between individual enzyme molecules. A
recent technique pioneered by Altus Biologics (Cambridge, USA) is the preparation
of cross linked enzyme crystals (CLECS) by reaction with a bi-functional reagent
forming extremely stable insoluble enzyme crystals that are active in a range of
solvents (Margolin, 1994). Diffusional limitations are likely to be less severe than
entrapment. The binding process can add to enzyme stability with respect to

temperature and pH due to steric resistance to unfolding, allowing higher
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temperatures to be used to increase reaction rates and decrease the possibility of
microbial contamination. Covalent linkage of enzyme molecules is the most widely
used in practice due to the relative ease of the procedure and the lack of enzyme loss
into the medium due to the covalent nature of the bonding (Gerhartz, 1990).

1.3.2 Reactor modes

The choice of reactor for a biocatalytic process is largely based on the characteristics
of the reaction itself and the form of catalyst employed. The design should be
flexible to allow for process changes and it is established wisdom that operating at
the limits of the reaction constraints often yields the best performance (Wang et al,
1979). Assuming "ideal" conditions a kinetic analysis can be undertaken to allow an
analysis of the suitability of different reactor configurations of which there are
considered three "ideal" types (Jenkins et al, 1992).

1) Batch Stirred Tank (BSTR)
2) Continuous Stirred Tank (CSTR)
3) Continuous Plug Flow (CPFR)

The reactors are considered ideal in that the stirred tank reactors are perfectly mixed
(including a uniform dispersion of biocatalyst) and all the material contained within
a CSTR will have a single residence time. Also a CPFR should have no axial mixing,
with radial homogeneity. In all cases the reactors are considered isothermal and no

mass transfer limitations (both internal and external) exist (Wingard et al, 1976).

A mass balance can be written and combined with the Michaelis-Menton equation to
yield design equations for the BSTR, CPFR and CSTR (Lilly and Dunill, 1976).
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) 1 :
Batch stirred tank XSo+K, . ln(l_—x) = k.% (2)
) . X E
Continuous stirred tank X.So+K, .(—1 ~ XJ = k.a 3)
. 1 E
Continuous plug flow X.So+K,.In %)= k.—d 4)

If the initial substrate concentration is much greater than K, then the left hand term
of all the equations dominates, and all the reactors perform equally well, the batch
mode in this case is penalised due to downtime between runs. If the initial substrate
concentration is below the value of K, then at high conversions (i.e. 99%) the
amount of enzyme needed in a CSTR compared to that in a BSTR is roughly 20
times greater (depending on the particular enzyme) This is due to the low
concentration of substrate in a CSTR which makes inefficient use of the enzyme.
This mode of operation is inefficient in it’s use of catalyst and rarely used in practice
for just this reason. The advent of recombinant DNA technology and over expression
has considerably reduced the cost of biocatalyst in some cases, and so a CSTR may
be operable now, compared to a similar process conducted ten years ago. This is by

no means universally so.

A packed bed plug flow reactor allows high concentrations of enzyme to be available
(up to 65% by volume) however the flow pattern is not well mixed and so there will
be regions of very high substrate and product concentrations which can be toxic to
the cells or cause inhibition of the enzyme. A similar problem is encountered if there
is a pH shift due to the reaction and acid/alkali has to be added; since there is no
mixing, areas of extreme pH will exist. This can be partially addressed with the use
of a recycle loop, which draws off the process stream to a small stirred tank where
pH control takes place before the material is fed back to the beginning of the reactor.

If a gaseous component is required by the reaction a CPFR reactor is not suitable as
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it is very difficult to disperse the gas bubbles effectively, when compared to a well
mixed system. A CPFR system will generate few mechanical forces of consequence
on the catalyst (mainly pumping) but it can cause problems with biocatalysts with

short operational lifespans as replacing the packing can be very time consuming.

The BSTR suffers in that due to agitation (which generates good mixing) the
maximum concentration of biocatalyst that can be accommodated in the reactor is
limited to roughly 10% by volume due to increased viscosity and grinding
(particularly with immobilised beads) and so if the kinetics require a large amount of
catalyst to achieve the reaction in a realistic time-scale this could preclude this mode
of operation. Also the degree of mixing could be lowered to such an extent due to the
viscosity increase that the vessel could no longer be considered well mixed. A
variant of this design is when substrate is supplied continuously or intermittently
over a production run, the so-called fed batch stirred tank reactor (FBSTR) which
can overcome substrate toxicity by feeding in substrate regularly so the concentration
in the vessel never exceeds a predetermined value. The limit of this design is the
maximum feed concentration which is defined by the aqueous solubility of the
substrate. Table 1.3. summarises the abilities of the three general reactor modes to
cope with a number of common features of biocatalytic systems. It must be noted
that in this analysis presented it is considered that the cost of the biocatalyst is
significant in the overall process economics and as such is not pertinent to all

systems.
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Characteristic BSTR CPFR CSTR
Liquid flow pattern well mixed plug flow well mixed
pH control possible difficult possible
Temperature control possible difficult possible
Gaseous reactants/ products possible unsuitable possible
Presence of second liquid phase possible unsuitable possible
(solvent/reactant/product)
Control of substrate inhibition poor poor good
(better in FBSTR)
Control of product inhibition better better poor
solid feed solution possible unsuitable possible
Mechanical catalyst damage possible unlikely possible
Concentration limit of catalyst low high low

Table 1.3. General characteristics of three types of reactor for biocatalytic reactions

(Woodley and Lilly, 1994)

1.3.3 Structured biocatalytic design methodology

1.3.3.1 Introduction

A biocatalytic process can, depending on several different factors be designed

toward a number of different and often conflicting criteria such as high final product

concentration where it is perceived that downstream processing may be difficult

and/or expensive, volumetric productivity such as in conversion cost intensive

processes or toward catalyst re-use where the enzyme is the dominant cost. It is thus

often the case that issues common to biocatalysis are not considered and design is

very much on an individual case basis. This approach has several shortcomings, for
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instance the engineer may conduct experiments that are not pertinent to the
particular study and the final design may be very inflexible if and when the process
is subject to change by the use of a new substrate, improved biocatalyst or change in
final product formulation. Thus design time may be unnecessarily long and re-

engineering and revalidation is a real possibility in the future.

Several attempts have been made to generate a more systematic approach
encompassing all the issues raised above. Dervakos and coworkers (Dervakos et al,
1995) proposed a knowledge based system. However such as system can be
problematic to set up in the first place, and requires data on a large number of
diverse bioconversions in order to be confident in its use which in the scope of this
thesis is impractical. Another approach has been proposed (Woodley and Lilly, 1994,
1996) that illustrates the benefit of examining only the constraints imposed on a
particular conversion through the collection of a defined data set on the fundamental
properties of the substrates, products, catalyst and possible interactions between the
three in order to highlight the process designs that are impractical and those that
should be highlighted for further evaluation via the use of heurnistics. This approach,
through the identification of process constraints also should allow the designer to
focus in areas of potential process improvement such as targets for protein
engineering. The key steps within this design philosophy are shown in Figure 1.4.
The methodology described has been successfully applied to design of the
transketolase process (Hobbs et al, 1993; Mitra, 1996) and the fluorocatechol
synthetic process (Lynch, 1994). The proposed data set is shown in Table 1.4.
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BIOCATALYTIC REACTION

Characteristic Data
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OF THE REACTION

Rules/Heuristics
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DETERMINE CONSTRAINTS ON
PROCESS

Rules/Heuristics
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v

IDENTIFY APPROPRIATE
PROCESS OPTIONS

Figure 1.4. Decomposition of biocatalytic process design methodology (Dervakos et
al, 1995)
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SUBSTRATE/PRODUCT PROPERTIES

Melting/boiling points
Water solubility
Temp/pH/time Stability
Volatility,

REACTION PROPERTIES

Equilibrium -pH/temp dependence
Michaelis-Menton Kinetics
Enantioselectivity

Acid/base production

Water consumption/production
Gas consumption/production
Heat evolution

BIOCATALYST PROPERTIES

Single/multienzyme
Cofactors

Coenzymes

Enzyme location

Location of enzyme activity
Requirement for water
Stability

INTERACTIONS BETWEEN BIOCATALYST/PRODUCT/SUBSTRATE

Substrate inhibition
Product inhibition
Activity

Substrate toxicity
Product toxicity

Table 1.4. The proposed key data set to determine process selection (Woodley and
Lilly, 1994)
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1.3.3.2 Characterisation of the system with a model reaction

In general a potential biocatalyst will be able to react a wide range of related
substrates and so if a process is to be designed to be efficient and flexible in
substrate range the choice of a particular substrate for characterisation studies must
accommodate this. It would be impractical and time consuming to characterise all
the potential conversions and so it becomes necessary to select a model substrate to

conduct studies with.

It has previously been shown that by using a simple, representative and readily
available substrate valuable design data can be collected that is applicable to more

complex targets (Mitra, 1996), requiring minimal further experimental studies.

1.3.3.3 Reaction properties

The data collected regarding the reaction will be in general independent of the model
substrate, such as the pH/enzyme activity profile and the relation of temperature to
reaction rate. These data will narrow down the conditions which studies in the other

areas need to focus on, such as the range of pH for product stability studies.

Requirement or generation of a gaseous phase within the reactor will have a
constraining effect on reactor performance due to supply limitation of for example
oxygen which is only sparingly soluble in water (Stanbury and Whittaker, 1995). De-
bottlenecking can be achieved through number of methods including membrane
oxygenation (Wang et al, 1988; Henzler and Cauling, 1993; Weiss et al 1996, Drury
et al,1988), use of additives, such as perflourocarbons as a dispersed second phase
(Mattiasson and Aldercreutz, 1983, King et al/, 1989; Rols and Goma, 1989; Mano et
al, 1990, Martin et al, 1995; Elibol and Mavituna, 1996; Cho and Wang, 1988) and
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