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A bstract

In this thesis, we study the evolution of rainfall at a single site and over a network of 

sites by generalising existing point process based models.

Stochastic models based on clustered point processes, such as the Neyman-Scott and 

the Bartlett-Lewis processes, have been used recently in the description of the behaviour 

of rainfall at a fixed point in space. In such models, storms are idealised as cluster origins 

that arrive in a Poisson process and are followed by a number of rain cell origins, the 

cluster members. A rectangular pulse is associated with each rain cell origin, having 

independent random duration and intensity. In this thesis, a class of models with rain 

cell duration and intensity being dependent random variables has been developed and 

the main properties have been derived.

For the description of the evolution of a rainfall event at many distinct spatial lo

cations, we consider a master clustered point process which is decomposed into sub

processes according to a marking mechanism, depending on the location(s) that are af

fected by a storm and its rain cells. Each cluster of the sub-processes is randomly trans

lated in time, in order to allow different sites to experience the same event at different 

times. Some of the model’s parameters remain the same at all generated sub-processes, 

while others vary in a stochastic or deterministic way. We follow two approaches in mod

elling the probability that a storm or a rain cell affects a particular subset of sites. One 

is to describe the spatial structure of a rainfall event by assigning to each of its elements 

a band of random width, location and orientation, that intersects the catchment area. 

Alternatively, the probability that two sites experience the same event can be expressed 

as a deterministic function of the distance between the sites.

The models are fitted to raingauge data from the South-West of England.
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C h apter 1

S toch astic  R ainfall M odels

1.1 Introduction

Rainfall modelling had traditionally been a research area of disciplines in the physical 

sciences like hydrology, meteorology, climatology and atmospheric physics. Over the last 

few decades however, after the fundamental work of Le Cam (1961), probabilitists and 

statisticians have been motivated to introduce a new way of approaching the evolution 

of rainfall events, by developing a stochastic approach.

Following Cox and Isham (1994), we distinguish three broad types of mathematical 

models for rainfall,

• the empirical statistical models in which the relationships between the explanatory 

variables are represented via empirical equations (Stein, 1986);

• the models of dynamic meteorology in which the physical processes are described 

using the theories of fluid dynamics and thermodynamics and large systems of 

nonlinear differential equations are solved numerically (Mason, 1986);

• the intermediate stochastic models in which a modest number of parameters, tha t 

are related to physical characteristics, are used to represent the evolution of the 

rainfall process.

All three types have an im portant role to play and the choice between them depends 

on the purpose of the analysis. The way we shall approach this area is to identify basic 

physical structures of the process and then to describe them with a stochastic model.



In this study, we start with an analysis of rainfall data collected over short recording 

intervals, and our aim is to describe the main properties of the observed process using 

stochastic models that have a small number of physically interpretable parameters. Such 

models can then be used to produce synthetic data for use as inputs for other hydrological 

processes, like rainfall run-off models in the design of storm-drainage systems.

Precipitation areas are usually classified according to their spatial extent. A hierar

chical structure has been observed in most rainfall systems, where a precipitation area of 

a given scale has one or several smaller scale areas of more intense precipitation embedded 

within it. Waymire and Gupta (1981a) give a very good description of the structure of 

rainfall in space and time. According to this, areas greater than about km^ are re

ferred to as synoptic areas, and generally have a lifetime of one to several days. Synoptic 

areas contain large subsynoptic precipitation areas, called large mesoscale areas (LMSA), 

that have a spatial extent ranging from 10  ̂ to lO'̂  km^, last for several hours and usually 

appear as elongated bands. The precipitation intensity inside an LMSA is always higher 

than the region surrounding it. One level down the hierarchy of the rainfall organisa

tion are small mesoscale precipitation areas (SMSA), that build and dissipate within an 

LMSA, range from 10  ̂ to 10  ̂ km^ in horizontal extent and have an average lifetime of 

a few hours. Both LMSA and SMSA contain identifiable regions of cumulus convective 

precipitation, known as convective cells, whose areas depend upon the storm and range 

from 10 to 30 km^ and whose durations are of the order of several minutes to about 

half an hour. Convective cells within LMSA appear in clusters, which is a result of the 

movement of air masses of different temperatures. The rainfall intensity within a cell is 

always higher than that of the region surrounding it. Although the above classification is 

based on observations on cyclonic storms, a similar type of multi-level representation can 

also be used for convective rainfall, with a wide range of storm types exhibiting similar 

characteristics. So, a hierarchical structure has been observed in the spatial extent, the 

temporal development and the intensity of many rainfall systems.

Precipitation is a continuous time and space phenomenon. However, rainfall data  are 

usually available in discrete form. For instance, gauge stations record the total rainfall 

intensity during a sequence of time periods, at a fixed spatial location, while radar beams 

scan the atmosphere above a large area, at regular times, and give spatial averages



of rainfall intensity over smaller sub-regions. Depending on the application, stochastic 

rainfall models may examine marginal behaviour and properties of the process, such as 

its temporal evolution at fixed points in space, or the spatial structure of a single rainfall 

event. Ideally, we expect tha t models that describe only the temporal or only the spatial 

behaviour of the process can be derived as special cases of fully spatial-temporal models. 

This is not always an easy task. Some of the problems were pointed out by Valdes, 

Rodriguez-Iturbe, and Gupta (1985), who used a multidimensional model that produces 

moving storms with realistic mesoscale features, to simulate rainfall in space and time. 

The rainfall intensities of the simulated process are measured at fixed gauge stations, 

and then three different one-dimensional temporal models are fitted. None of the three 

models reproduces in a satisfactory manner the characteristics of the multi-dimensional 

model. A question that arises is whether the spatial-temporal model that is used to 

simulate rainfall is indeed capable in reproducing all physical features of a precipitation 

event, and thus whether it should be used to assess the performance of the temporal 

models.

Although the spatial and temporal aspects of rainfall are linked in a dynamic way, 

models tha t describe one or the other or both of these aspects have been developed 

independently and in parallel. In what follows, we present some of the research that 

has been done during the last couple of decades, in modelling the various features of the 

evolution of precipitation fields.

1.2 Tem poral evolution at a single location

One key issue in modelling the temporal evolution of rainfall at a fixed spatial location, 

is the representation of the process at various time scales using a single set of parameters. 

For example, one may wish to describe the physical attributes of the rainfall intensity at 

a fixed point for hourly, daily and weekly periods. It is desirable that the integration, 

over different time intervals, of the instantaneous process coming from a mathematical 

model, will represent realistically the characteristics of the integrated rainfall process.

Two very im portant features of the rainfall process, the first to be modelled, are 

the numbers of events that happen during various time intervals and the rainfall amount 

associated with each event. Waymire and Gupta (1981a) in a review paper present various



approaches to describing the above characteristics. Rodriguez-Iturbe, Cox, and Isham 

(1987a) start their study with a Poisson process based model, in which a rectangular pulse 

with random intensity and duration is associated with each point. The results of fitting 

such simple stochastic models to data suggest tha t there is a lot of dependence between 

rainfall intensities over disjoint time intervals, and a high probability of rainy periods 

occurring close to each other. One way to incorporate this dependence is to assume a 

high-order Markov chain model, either in discrete or in continuous time, that governs the 

alternation between wet and dry time intervals. Another way is to consider models based 

on cluster point processes that are overdispersed compared to a simple Poisson process.

M ark ov  chain b ased  m o d e ls

Stern and Coe (1984) used a two state, discrete time, second-order Markov chain 

model for the analysis of daily rainfall data, where the states correspond to periods of 

rain below and above a certain threshold. The authors argue that the assumption of 

stationarity is inappropriate, even for periods as short as one month. For this reason, 

each day of the year is fitted separately, using data from a 53-year record, and a time series 

for each transition probability is produced. The amount of rain above a predetermined 

threshold, during a wet day, is assumed to have a gamma distribution with time dependent 

mean. Two cases are examined, one where the mean rainfall intensity per rainy day 

is independent of the history of the process, and the other where the mean depend 

stochastically on the state (i.e. ‘dry’ or ‘wet’) of the two previous days. Surprisingly, the 

former, rather than the latter, seems to be in accordance with the data, but this is not a 

typical result. In order to incorporate the temporal variability of the model’s parameters, 

a curve, that has the form of either a generalised linear model or a Fourier series, is fitted 

to each time series. A disadvantage of this analysis is that the model can not easily be 

extented to cope with more frequent recording intervals. Also, its performance has not 

been tested on second order properties of the rainfall intensity.

Hutchinson (1990) examined a stationary, continuous time, three-state Markov pro

cess for the occurrence of rainfall, aiming to link some atmospheric conditions to the 

amount of rain at a fixed location. The three states of the Markov chain correspond to 

dry spell, transitional period and wet spell or shower. The second of the above states is
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associated with clouds that have the potential, not always realised, to become disturbed 

and deposit rain on the ground. Wet and dry spells are always succeeded by transitional 

periods, so the transition m atrix is specified by a single parameter. The model has three 

more parameters, the exponential sojourn rates for each state. A rainfall event is defined 

as a sequence of wet spells and transitional periods, thus allowing showers to occur in 

clusters but not to overlap. The distribution of the length of a rainfall event and of a dry 

period, which is a sequence of dry spells and transitional periods, have been derived. A 

shower’s intensity is exponentially distributed, constant throughout its lifetime and inde

pendent of its duration. The author questions the assumption of independence between 

intensities of showers by examining a model with correlated intensities and a correlation 

function tha t decays exponentially with the time lag between the showers. The first 

and second order properties of the total rainfall intensity for models with independent 

and with correlated shower intensities are derived. The conclusion drawn from fitting 

the models is that the latter reproduces the observed properties, of hourly up to daily 

recording intervals, very accurately.

C lu ste r  p o in t p ro cess  b ased  m o d els

Following a different approach, Kavvas and DeUeur (1981) considered a cluster-based 

point process model, in continuous time, where at the primary level is the rainfall gen

erating mechanism, for instance the fronts, and at the secondary level are the elements 

of the process tha t produce the actual rainfall, such as the shower cells. Cluster centres 

arrive in a Poisson process and each one generates a random number of shower cells. 

The time lag between the occurrence of a cluster centre and its members is exponentially 

distributed. The model, as defined above, has a Neyman-Scott (Neyman and Scott, 

1958) structure in time and was used to study daily rainfall sequences. The interval 

length for this study is taken to be one day, mainly because of computational limita

tions. The log-survivor function between two consecutive rainfall occurrences and the 

rainfall counts spectrum, which is the Fourier transform of the covariance density of the 

rainfall counts process, are used to fit the above cluster-based model and also a simple 

Poisson model of rainfall arrivals. Both statistics show that the Neyman-Scott model 

preserves the behaviour of the daily data very well.

11
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Figure 1.1: Point process models in time; Poisson, B artle tt-Lew is  and  N eym an-Sco tt  

(left). R ec tangu lar  pulse rain cells as elem ents of rainfall models (r igh t) .

R odriguez-Itu rbe , Cox, and  Isham  (1987a) in troduced  two types of cluster point p ro 

cess models for th e  behav iour  in tim e of the  p rec ip ita tion  a t  a  fixed point in space. A 

com m on fea tu re  of the  two types is t h a t  cluster origins, called s to rm s ,  arrive in a  Poisson 

process and genera te  a  nu m b er  of rain  cells, which are  idealised as rec tangu la r  pulses 

having random  d u ra t io n  and  intensity. A g raphica l rep resen ta t ion  of the  tem p o ra l  s t ru c 

tu re  of th e  Poisson process and two clustered  point processes is given in F igure 1.1. In 

th e  N eym an-Sco tt  based model, the  n um ber of rain cells per s to rm  is a  ran d o m  variable, 

t h a t  follows a geom etric  or a  Poisson d is tr ibu tion . T he  cell origins are independently  

displaced from the  s to rm  centre  by d istances which a re  exponentia lly  d is tr ibu ted . In the  

B artle tt-Lew is  based model, cell origins follow th e  s to rm  centre  in a  renewal process.
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centre in a renewal process, usually Poisson, which terminates after an exponential time. 

In both cases, the total rainfall intensity at a specific time is the sum of the intensities 

of all active rain cells. The assumption that rain cells have a finite lifetime, makes these 

models appropriate for the study of properties related to dry periods. Since rainfall data 

are available in aggregated form, the continuous-time process is discretised by taking the 

cumulative rainfall totals over disjoint time intervals of fixed length. The second-order 

properties for the continuous and the aggregated process, and the probability that an ar

bitrary time interval of fixed length is dry, have been derived. The Bartlett-Lewis based 

model is fitted to monthly rainfall data from Denver, Colorado, and is compared to a 

Poisson-based model in which storms have a rectangular profile. The results show that 

the former performs much better than the latter, and that it preserves the main proper

ties of the process at aU levels of aggregation, the only exception being the probability of 

zero rainfall during an arbitrary interval, which is overestimated.

A more detailed comparison between the three point process models with rectangular 

pulses was carried out by Rodriguez-Iturbe et al. (1987b). This analysis shows tha t the 

Poisson based model can be used for the description of the rainfall process only at a fixed 

level of aggregation, preferably larger than a typical duration of a storm. On the other 

hand, the Neyman-Scott and the Bartlett-Lewis based models are capable of reproducing, 

using a single set of parameters, the statistical properties of temporal rainfall at various 

scales of aggregation, ranging from one hour to one day. These models also perform 

well with regard to the extreme values of rainfall, but they give poor estimates of the 

probabiltiy of zero rainfall at an arbitrary time interval of fixed length.

In order to improve the performance of the cluster-based rectangular pulses models, 

Rodriguez-Iturbe, Cox, and Isham (1988) extended their earlier results by considering 

a Bartlett-Lewis model in which the cell duration parameter varies randomly between 

storms but is fixed for all cells within a cluster. Also, the parameters for the storm 

duration and the cell inter arrival time are made scale-invariant, which corresponds to 

having a common structure for each storm but allowing distinct storms to occur at 

different timescales. So with only one extra parameter a continuum of storm types can 

be modelled successfully, and indeed the study shows that the probability tha t there is 

no rain in an arbitrary time interval is accurately reproduced at different time scales.

13



Entekhabi, Rodriguez-Iturbe, and Eagleson (1989) applied the above idea to a Neyman- 

Scott model and obtained similar results.

After the development and the analytical exploration of the modified Neyman-Scott 

and Bartlett-Lewis models, there was a need for a detailed and extensive comparison be

tween all the cluster-based rectangular pulses models. Such a comparison was carried out 

by Velghe et al. (1994), who consider three classes of models, namely the Bartlett-Lewis, 

the Neyman-Scott with a geometric distribution and that with a Poisson distribution for 

the number of cells per storm. For each class, the original model, with constant param eter 

for the cell duration, and the modified one, with a random parameter, are examined. The 

rainfall data used are from Denver, Colorado, A reassuring result is that the modified 

models give better estimates, as compared to the original ones, of the zero depth proba

bility, the correlation structure, several conditional distribution characteristics and of the 

extreme value properties. Minor differences in the performance are found between the 

original models, with the geometric Neyman-Scott one being shghtly superior. Concern

ing the modified models, it is observed that the Bartlett-Lewis one is very sensitive to the 

sets of moments used in the parameter estimation, and that the geometric Neyman-Scott 

model, in general, performs better than the others.

A generalised Neyman-Scott rectangular pulses model has been developed recently 

by Cowpertwait (1994), that allows the rain cells to be of a number of different types, 

with a certain probability associated to the occurrence of each type. The distributions of 

cell intensity and duration depend on the cell type, so the generalised model provides a 

correlation between these two characteristics of the generated rain cells. However, given 

the type of the cell, all the variables involved are mutually independent. The case where 

cells can be of two types, ‘heavy’ or ‘light’, is examined in some detail and the model is 

fitted to rainfall data of different months separately. In order to ensure a smooth seasonal 

variation in the parameter estimates, it is assumed that each param eter varies across the 

year according to a harmonic relationship. As a result, the total number of parameters 

is reduced, but the estimates of the statistical properties of the rainfall intensity are less 

accurate. Compared to the original Neyman-Scott model, in terms of the extreme values 

distribution, the generalised model produces a better fit to the historical values.

It is worth mentioning that the idea of modelling the seasonal variability of parameters

14



was also explored by Onof and Wheater (1993), who fitted a Bartlett-Lewis based model 

with random rain cell duration to British rainfall data. It is suggested that it is possible 

to use a polynomial curve or a Fourier series for a smoother representation of the above 

variability, on a daily rather on a monthly basis, and to obtain satisfactory results.

In many hydrological applications, such as the rehabilitation of storm sewer systems, 

properties such as the probability of dry speU sequences of given length and the extreme 

values distribution are of particular interest. Cowpertwait et al. (1996) used a Neyman- 

Scott rectangular pulse model, with fixed rain cell duration param eter, and found that 

the two-parameter WeibuU distribution for the rain cell intensity, instead of its special 

case the exponential distribution, gives good agreement between the simulated and ob

served daily annual maximum rainfalls. Also, it is observed tha t when the wet and dry 

spell transition probabilities, rather than the lag 1 autocorellations, are included in the 

generalised method of moments fitting procedure (a description of which can be found in 

Section 3.4), the estimates of the dry spell sequences are improved.

1.3 Spatial structure of a single event

Equally as interesting as the study of the temporal evolution of rainfall at a fixed point 

in space is the exploration of its spatial structure at a fixed point in time. Rodriguez- 

Iturbe, Cox, and Eagleson (1986) developed a rainfall model in continuous space, in 

which the temporal variability is ignored by examining individual storms separately and 

assigned to each point in space the total storm rainfall. Each storm consists of a number 

of rain cells, the rain-producing elements, that are distributed in the area of interest 

independently according to a two-dimensional Poisson process. The rainfall intensity 

at the cell centre is random and is distributed around the centre in a way specified 

by a spread function. Four circularly symmetrical spread functions are considered, and 

the second order properties of the total depth are derived using the moment generating 

function. When the spread function has a quadratic exponential form, and the intensity at 

the cell centre is exponentially distibuted, then the total storm depth at a given location 

has a gamma distribution and its properties are given in a closed form. Because the 

probability of an area being dry is non-zero only for spread functions with finite support, 

an arbitrary threshold is placed to the rainfall depth when the spread function decays

15



non-linearly with distance. A few generalisations of this model are examined. The first is 

to allow some parameters, such as the mean intensity at the cell centre, to vary randomly 

between storms. The second is to incorporate more flexible and realistic spread functions 

either by letting some of the parameters be random, varying from cell to cell, or by 

allowing for each rain cell a random fluctuation in intensity around the decaying trend 

from the cell centre. Finally, a clustering mechanism for the spatial distribution of rain 

cells is considered. In particular, a model with a Neyman-Scott two-dimensional process 

for the allocation of rain cells in space and with an isotropic quadratic exponential spread 

function is studied in more detail.

Poisson spatial models, such as the ones described above, were applied to air mass 

thunderstorm rainfall by Eagleson et al. (1987), who used observations from a dense 

network of raingauge stations. In order to produce a random rainfall field, the station 

observations are interpolated onto a rectangular grid. The bias of the correlation esti

mates that is produced from the interpolation is investigated and seems negligible. Also, 

the assumptions of homogeneity and isotropy of the random field are verified. Three dif

ferent spread functions are tested, namely, a quadratic exponential, a simple exponential 

and a linear function. Storm days are identified and the three models are fitted to each 

storm separately. It is observed that the parameter estimates present a variability among 

storms and thus the mean rainfall intensity at the cell centre is assumed to be random. 

This generalisation improved significantly the fitting of the two models with exponential 

type spread function, for which the second-order properties can be derived analytically. 

An overall conclusion is that the Poisson process models developed by Rodriguez-Iturbe, 

Cox, and Eagleson (1986) are capable in reproducing important features of the spatial 

distribution of total storm precipitation, at least for storm types that are essentially 

stationary in space.

1.4 M odel developm ent in continuous space and tim e

A more complete study of the rainfall process is obtained via stochastic models tha t 

are built in continuous space and time. Waymire and Gupta (1981b) illustrated, with 

theorems and examples, the suitability of the point process based models, as compared 

to other stochastic models, to accommodate features of the physical structure exhibited

16



by space-time rainfall. They also stressed the fact that the tools of point process theory 

can facilitate algebraic operations and make further mathematical exploration possible. 

They formulated a quite general and abstract model that reflects the main features of 

the hierarchical rainfall structure. The large-scale elements of the process, the cluster 

potentials, arrive in the three-dimensional time-space according to a point process, and 

have a spatial extent of given radius. A similar generating mechanism exists for the 

smale-scale elements, the rain cells, that occur within the cluster potentials. The rainfall 

intensity at a point in space and time, due to a single cell, is a deterministic function of 

the age of the cell and the distance away from the cell centre. Cluster potentials and rain 

cells are allowed to move with different velocities. The total rainfall intensity at a specific 

time and ground location is the sum of the intensities contributed by all rain cells that 

arrived in the past over the region of interest.

Waymire, Gupta, and Rodriguez-Iturbe (1984) extended the above model to allow 

rainbands to occur, in time, in clusters over an arbitrary fixed geographical region, and 

made specific assumptions about the form of the functions involved. The extended model 

has a two-level clustering in space and one in time. It is assumed that rainbands arrive in 

time in a Poisson process and each rainband generates a number of cluster potentials that 

are spatially allocated according to a two-dimensional Poisson process. A number of rain 

cells, the elements that actually deposit rain on the ground, arrive within each cluster 

potential according to a point process in three-dimensional space-time. The point process 

of rain cell origins is assumed to have a Neyman-Scott structure in time and in space, with 

the two displacement components being statistically independent. Rain cells have a fixed 

intensity at the centre, at the time of birth, which decays exponentially with the age of 

the cell and the distance away from the centre. So, once a rain cell is born, it contributes 

to the to tal rainfall intensity at aU spatial locations and at all times, which implies that 

the probability of a point being dry is always zero. In addition to the above specifications, 

rainbands and raincells move with fixed but different velocities. The authors, employing 

the tools of the point process theory, derived the mean and the covariance density in 

space and time of the rainfall intensity. A further important achievement of this study is 

that several qualitative features of the precipitation system follow as consequences of the 

above formulation and not as part of the initied assumptions. An example is the Taylor
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or frozen field hypothesis, tha t states that the temporal autocovariance at a fixed point 

in space should be of the same form as the spatial autocovariance at a fixed point in time, 

with the ‘tim e’ argument of the former converted into the ‘spatial’ argument of the latter 

by multiplication by a typical velocity.

Phelan and Goodall (1990) introduced a generalised version of the previous model 

that has the same clustering mechanism, but allows some of the rain cell characteristics, 

such as the rain intensity at the cell origin, the aging rate, the planar velocity and the 

spatial extent, to be mutually independent random variables. The water content of a rain 

ceU has now a Gaussian surface in space, and a double exponential shape in time, which 

captures both the intensive and the dissipative stages of a rain cell. The scale, orientation 

and anisotropy of the rain cells are estimated by applying a linear transformation that 

takes a rain cell of spherically symmetric covariance structure having unit scale to one 

with the estimated covariance structure. The model is fitted to individual tropical storms 

using hourly radar data and the analysis is focused on the geometry and kinetics of a 

sample intensity process. The rain cells are identified by direct inspection of the radar 

images. In order to estimate the parameters, the model is decoupled in time and each 

hour is analysed separately. At a fixed time, the intensity, spatial location and dispersion 

of each rain cell are estimated using the least squares method, yielding a time series 

of fitted characteristics for each one. Then, the model is recoupled and the remaining 

parameters, tha t is, the velocity and the aging rate, are estimated again by ordinary least 

squares. The conclusion drawn from the fitting is that the hypothesis of time invariant 

cell characteristics needs further investigation. In general, models that require manual 

identification of individual rain cells are not very promising in analysing long sequences 

of rainfall systems.

A different approach, based partly on the theory of Markov chains and partly on 

point processes, was followed by Smith and Karr (1985) in a study of daily rainfall 

sequences. Days are classified as ‘wet’ or ‘dry’ and the alternation between these two 

states is governed by a stationary transition matrix. For days in which rainfall occurs, the 

number of rain ceU origins has a Poisson distribution with the rate being an exponential 

random variable, that is, the cells occur in a doubly stocheistic Poisson process. Rain 

cells are idealised as cylinders that have fixed constant radius and exponential intensity,
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and are located over the area of study in a spatial Poisson process. The model was fitted 

to rainfall data from a network of five raingauge stations. Two parameter estimation 

procedures are developed, one based on maximising the likelihood function, and the 

other on the method of moments. In both cases, the spatial and the temporal parameters 

are estimated separately. A serious disadvantage of this approach is that there is not a 

time continuum since spatial features of the rainfall are assumed independent between 

days. Thus, this model could not be used successfully in studying rainfall data of a small 

temporal resolution, such as hourly or five minutes, since it does not take into account 

the temporal correlation between successive periods.

Cox and Isham (1988) explored a simple point process based model, where storms 

consist of single rain cells that arrive in a Poisson process in space and time. Rain cells 

are idealised as cylinders of random radius that move with constant random velocity 

and die after a random time. The intensity of a cell is constant during its lifetime but 

varies stochastically between cells. The innovation of this formulation is that the rain 

cells have a finite spatial extent and duration which implies that the probability that 

there is no rainfall at a point in space and time is non-zero. The authors derived a 

general expression for the spatial-temporal covariance function under the assumption 

that aU the variables involved in the model are mutually independent. Further to this 

result and under the additional assumptions that the rain cell’s duration and radius are 

exponentially distributed and the velocity has a gamma distribution, several statistical 

properties of the process are determined, including the spatial covariance at a fixed point 

in time and the temporal covariance at a fixed point in space, as well as properties 

related to the probability of non-zero rainfall at various points in space and time. Cox 

and Isham (1988) also considered a cluster-based spatial-temporal model in which storm 

centres arrive in a Poisson process in space and time, and cells occur in a Bartlett-Lewis 

process in time, at the same spatial location as the storm origin. An analytic expression 

for the spatial-temporal covariance function is not available, but other properties such 

as the variance of the marginal rainfall intensity can be derived approximately under 

reasonable assumptions.

A far more realistic and mathematically elegant model has been developed recently 

by Northrop (1996). Storm centres arrive in a homogeneous Poisson process in three-
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dimensional space-time. Following each storm centre, rain cell origins arrive in a temporal 

Bartlett-Lewis-type cluster, tha t is, they arrive in a Poisson process, that starts with a 

cell located in time at the storm centre, and terminates after an exponential time. All rain 

cell origins within the storm are displaced from the storm centre according to a spatial 

displacement distribution. Two such distributions have been studied — one where the 

cell origins are uniformly distributed over a random ellipse centred on the storm centre, 

the other where the displacements follow a bivariate Gaussian distribution. Both these 

variants of the model have the flexibility to produce a wide range of storm structures, 

ranging from rain bands to more widespread rainfall. Each cell is elliptical in shape, 

with a random major axis, and deposits rain at a constant intensity on all points in 

space covered by its defining ellipse during its lifetime. The elliptical peripheries of 

the rain cells are scaled versions of the storm ellipse, or the elliptical contours of the 

bivariate Gaussian distribution. The intensity, the duration and the major axis of a 

ceU are mutually independent random variables. AU ceUs within a storm and the storm 

centre itself, move with the same random velocity. CeU clusters belonging to distinct 

storms are independent. Northrop (1996) derived explicit expressions for the second 

order properties — mean, variance and covariance density — of the process, and an 

approximate expression for the probabiUty that a randomly chosen pixel, of arbitrary 

size, is dry at a given time. The models are fitted to radar data from Wardon HiU, 

South-West England, and have proved to be capable of reproducing the main spatial- 

temporal features of the rainfaU field.

1.5 M ulti-site  m odels

It is often desirable to study the temporal evolution of rainfaU at various distinct spatial 

locations simultaneously. Although fuUy spatial-temporal models describe the behaviour 

of the rainfaU process in a continuous time and space domain, it is usuaUy difficult 

to derive from such models analytical expressions about marginal properties at specific 

points in space. Also, when data are available as time series of rainfaU intensities at 

various sites, then some features of the process, such as the velocity or the spatial extent of 

the event, can not be estimated directly from the data, which makes the spatial-temporal 

models inappropriate for such analysis. For these reasons, it is im portant to develop
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multivariate models, that describe the relationships between rainfall intensity at different 

sites and also preserve the structure of the single site models for their marginal processes 

at each site. The literature on multivariate or multi-site models is limited. This is partly 

because research effort has concentrated on the development of satisfactory single site 

models, and partly because progress in multi-site modelling requires an extensive analysis 

of data collected from a carefully designed network of raingauge stations. The network 

should ideally consist of a large number of stations, located close enough together to 

capture the within rain cell dependences, and should occupy a large area, so that several 

spatial features of the rainfall structure can be observed.

Among the first who explored this area of rainfall modelling are Cox and Isham (1994), 

who used some rectangular pulses point process models for a single site and modified them 

to allow the study of more than one, say n, sites. More specifically, it is assumed that there 

is a master point process of storms which evolve independently of each other, and that 

each storm can affect a subset of the n sites with a certain probability. From the between 

sites characteristics, for simplicity, only second order properties between pair of sites 

are considered. So, if initially the analysis is restricted to two sites, three subprocesses 

are generated from the master Poisson process, and each storm origin belongs to one of 

them depending on the site(s) it affects. A key issue is how the subprocesses are related, 

in other words, what assumptions should be made about the dependence between the 

evolution of the rainfaU processes at distinct sites.

One extreme case is to have identical storms at aU affected sites. Cox and Isham 

(1994) examined a sUghtly modified model, by aUowing the rain ceU intensity to be 

scaled by a different constant at each site. The theoretical cross-correlation function 

of the cumulative rainfall intensity at the two sites is derived, and its form does not 

depend on the level of aggregation, a result which is inconsistent with the empirical data. 

Another extreme case is to suppose that a storm evolves idependently at aU affected 

sites. Cowpertwait (1994) suggested the use of a model with a number of different ceU 

types (mentioned in Section 1.2), where each type corresponds to rain ceUs affecting a 

different subset of a network of sites. Although the model is not fitted to rainfaU data, 

it is unUkely th a t it wiU give satisfactory results, since the assumptions of independence 

between the variables of different types usuaUy produce smaUer cross-correlations than
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observed. A more realistic, intermediate model that has the Bartlett-Lewis structure in 

time was constructed by Cox and Isham (1994), who assumed that the Poisson process 

of cell origins is the same at all affected sites but the storm truncation mechanism acts 

independently at each site. Also, the intensities of cells with a common origin but at 

different sites are independent, but the durations of such cells are dependent and are 

scaled versions of the same exponential variable. The common parameter for the cell 

duration can either be constant or vary randomly for different storms. The theoretical 

cross-correlation function is derived, and allows a varying degree of dependence between 

the rainfall intensity at the two sites for different parameter sets. Such an approach, 

where some of the rainfall characteristics are kept the same for all subprocesses and 

others vary in a stochastic or deterministic way, is very promising. However, a detailed 

data analysis is a prerequisite to provide guidelines for appropriate assumptions.

1.6 T he project

The work presented in this thesis has being carried out as part of the Hydrological Radar 

Experiment (HYREX) project, funded by the Natural Environment Research Council. 

A carefully designed dense network of 49 raingauge stations has been installed in the 

Brue river catchment, in South-West England, covering an area of roughly 140 km^. The 

gauges are 0.2 mm tipping buckets and the way they operate is that rain is accumulated 

in each bucket until it is filled out. Then, the water is released, the time is recorded 

and the bucket is ready for the next measurement. So, the raingauge data available are 

sequences of times when a bucket tipped, from which rainfall intensity aggregated over 

disjoint time intervals can be calculated. A radar station, located close to this network, 

is monitoring the region every 5 minutes. Radar data are collected for 5 x 5 km^ pixels 

up to a distance of 210 km from the station, and for 2 x 2 km^ pixels up to a distance of 

75 km. Both types of data are available from September 1993.

Our part of the project involves analysis of the raingauge data and modelling of the 

evolution of rainfall over the network of gauges. In Chapter 2, we discuss the results 

of the data  analysis that provide guidelines for the theoretical developments. A class 

of point process models for the temporal evolution of rainfaU at a single site, with rain 

ceU characteristics being dependent random variables, is developed in Chapter 3. The
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modelling of the  p rec ip ita tion  process s imultaneously a t  a  small set of sites, and  the  

explora tion  of different ways in which the  inter-site  dependence can be in c o rp o ra ted  is 

presented  in C h a p te r  4. T h e  results of fitting the  multi-site models to  ra ingauge d a t a  are 

shown in C h a p te r  5, while the  conclusions of this research are given in C h a p te r  6.
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Figure 1.2: T h e  m ap  of the  Brue ca tchm ent a rea  with the  locations and  nam es  of the

ra ingauge s ta t ions .
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C h ap ter  2

D a ta  A n alysis

Our research interest is the stochastic modelling of the temporal evolution of rainfall at a 

single point in space and also at a number of spatially separated locations. Before doing 

any theoretical work, it is im portant to carry out a substantial amount of data analysis, 

which will provide guidehnes for the theoretical model development. The data we have 

available are from a network of raingauge stations (Figure 1.2), which covers an area of 

about 140 km^, expanded around the basin of the river Brue and has an altitude range 

from 35 to 193 meters. Since the area is topographically inhomogeneous, it is crucial 

to know whether the statistical properties of the rainfall intensity are influenced by the 

spatial location and the elevation of the sites. This is one of the three broad areas of our 

data analysis. The second area involves the investigation of the temporal and seasonal 

variation of the rainfall intensity at a fixed point in space. Finally, we are interested in 

the between-site properties and how they are related to the separation distance and the 

orientation of the sites. This wiU provide information about some spatial characteristics 

of the rainfall, such as the storm velocities in different seasons.

As raingauge data  become available, a routine analysis is carried out tha t includes 

the production of tables of monthly summary statistics (Appendix A) and of plots of 

cumulative rainfall intensity during a month (Figure 2.1). Also, a quality control process 

is apphed, which involves the inspection of the monthly cumulative hyetographs and the 

ehmination of bad data. For instance, with reference to the cumulative plots in Figure 

2.1, it is easy to  identify the problematic gauges no. 28 in June and no. 35 in December. 

The process of identifying bad data is particularly difficult in summer months because
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Figure 2.1: H yetographs  of cum ula tive  rainfall in tensity  for Ju n e  1994 ( top )  and December 

1994 (b o t to m ) .
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there is more variability in the rainfall intensity between gauges. In addition to our 

gauge quality assessment, reports have been supplied by the Institute of Hydrology for 

each station, with a list of the periods during which a technical problem was reported. 

Suspect gauges have been excluded from any subsequent data analysis.

2.1 Tem poral correlations

We examine the temporal characteristics of rainfall at a single site, and demonstrate the 

results for June 1994 and December 1994, a typical summer and winter month respec

tively, and for one raingauge of the whole network. In this context the rainfall intensity 

is to be regarded as an instantaneous quantity, measured in millimetres per hour. The 

data available are measurements of the total rainfall intensity during disjoint intervals 

of fixed length h. Let us denote by tn the n-th time interval of a sequence and by Yn 

the aggregated rainfall intensity during tn. W ith reference to the hourly time series in 

Figure 2.2, we notice the clustered structure of the process, as well as the differences in 

the arrival rate and the intensity of a rainfall event between the two months. When the 

data are aggregated over larger time intervals, the time series become smoother, there are 

more rainy intervals and the accumulated rainfall intensity is higher during rainy periods.

In addition to the time series, one can plot the aggregated rainfall intensity, dur

ing interval tn against that of tn+k- In such graphs the origin has a high frequency, that 

corresponds to transition between dry intervals, and there are fewer points further away 

from it. The time-ordering is lost, but it is easy to observe the relationship between 

rainfall intensities at time intervals separated by lag k,  which is related to the lag k cor

relation function. The plots of the rainfall intensities during successive intervals, shown 

in Figure 2.2 for the same months as previously, are fairly symmetric relative to the diag

onal, suggesting tha t the rates at which storms build and dissipate are similar. Because 

near the origin there are multiple points, in this graph, different symbols represent points 

with different multiplicity, while the atom at the origin has a frequency of 671 in June 

and 552 in December.

A more detailed analysis of the data involves the calculation, for individual months, of 

some correlation measures, such as the lag k correlation function, 'y(k) = corr{Fn,,F^_|_t}, 

and the probability tha t two time intervals of fixed length h, separated by lag k, are both
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Figure 2.2: Hourly t im e  series of rainfall intensities ( to p ) ,  plots of hourly rainfall in ten 

sities during  successive intervals (b o t to m ) .

dry, poo{k) = f ( ) /  -  =  0), and the ir  g raphical rep resen ta t ion  for different k.  W ith

reference to  Figure 2.3, we notice th a t  th e  au toco rre la t ion  'y{k)  decays fairly rapidly  for 

small lags and  stabilizes a t  values close to  zero, bu t  th e  p robabili ty  poo{k)  rem ains a lm ost 

con s tan t  for all t im e  lags, and  exhibits  only a  slight d rop  from the  value resulting  from  lag 

zero. T he  la t te r  suggests  t h a t  d ry  intervals ap p ea r  a lm ost random ly  in t im e and  thus  th e  

conditional probabili ty  F{\ 'n+k = 0 |F /  =  0 ) is essentially independen t of A;, for positive 

values of k,  and asym pto tica l ly  we have poo{k) = poo(O)^, where poo(O) =  P ( F /  =  0 ) is

the  p robabili ty  t h a t  an a rb i t r a ry  tim e interval of a  given length  is dry. A similar p a t t e r n

(no t  presented  here), is exhibited  by th e  probabili ty  p++(&) =  P{Yn > 0 , >  0 ),

which takes  very similar values for all positive k  and  it is approx im ate ly  equal to  th e

square  of p + + ( 0 ) =  P ( } /  > 0 ).

A correlation m easure  th a t ,  in general, provides m ore  in fo rm ation  ab o u t  th e  s t ru c tu re  

of th e  rainy periods is the  conditional lag k  au toco rre la t ion ,  which is calculated  keeping 

the  tem p o ra l  spacing fixed b u t  only using pairs where b o th  values are  positive, t h a t  is
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Figure 2.3: C orre la tion  m easures  against t im e lag, of hourly (b lue), 6-hourly  (red) and 

daily (green) rainfall d a ta ,  for Ju n e  1994 (left) and  D ecem ber 1994 (righ t) .

7 (A:) =  corrlV n, Vn+A:|^n > >  0}. However, since we observed th a t  for all positive

time lags, p++(&) is approx im ate ly  independen t of k  and  equal to  F{Yn > 0 )^ =  we 

expect t h a t  ^ ( k )  is app rox im ate ly  p roport iona l  to  7 (A:), and  can be w rit ten  as

.  _ p++(At) EjYr^Yn+k) -  pI EjVnf

p \ cov{rn,i;+fc}
var(y;,|};, > o) 
p I  var(F^

7 (Ai).
var(y^|Fri > 0)

T he plots of 7 (A;) aga ins t  the  t im e  lag k,  for th ree  levels of aggregation  h, are  i l lus tra ted  

in Figure 2.3. T h e  p a t te rn s  of th e  tw o correlation  functions are  indeed very similar and  

the closer to  one is the  probabili ty  p_|_, th e  closer are  the  values of 7 (&) and  j { k ) .

In Ju n e ,  th e  corre la tion  of hourly  d a t a  decays sharply, ind ica ting  a  fairly short  lifetime 

of the  rainfall events. For the  G-hourly d a t a  of this m o n th ,  an  in teresting  fea ture  is th e
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Figure 2.4: T em poral au tocorre la t ion  m easures  a t  a  single site for 24 m on ths ,  of

hourly!blue), 6-hourly (red) and daily (green) rainfall d a ta :  probabilities poo(O) ( top  

left) and poo(^)  ( to p  righ t)  and correla tions y ( l )  (b o t to m  left) and  7 (2 ) (b o t to m  right)

very steep drop of j i k )  and j ( k )  to  ju s t  below zero for small t im e  lags, and  th en  the  

following peak a t  lag 4, which corresponds to  24 hours. Such behaviour is quite  com m on 

in sum m er m onths ,  when rain is falling during  cer ta in  hours of th e  day, usually in the  

afternoon . T h e  lag 1 correla tion of daily d a t a  is also very high, which points  to  th e  

conclusion th a t  dry periods tend to  last a  long t im e  and  a re  in te r ru p te d  by clusters of rainy 

days. On th e  o the r  h an d ,  th e  correla tion  functions produced  from the  D ecem ber d a ta  

set are qu ite  sm oo th ,  and  in co n tras t  w ith  th e  su m m er  m on ths ,  once they  reach values 

close to  zero they  rem ain  fairly stable . Also, th e  rainfall intensities  between successive 

days are a lm ost uncorre la ted .

Figure 2.4 illus tra tes  th e  seasonal variability of th e  probabilities poo(O) and  />oo(l) 

and of th e  tem p o ra l  au toco rre la t ions  7 ( 1 ) and 7 ( 2 ), for a  period of two years, s ta r t in g
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from January 1994, labeled no. 1, The former exhibit an obvious seasonal pattern, 

with high values in summer and low values in winter, while the la tter do not show any 

dependence with season. It might be interesting to note tha t in August both lag 1 and 

lag 2 correlations, for all three levels of aggregation (1 ,6  and 24 hours), are very close to 

zero, mainly because rainfall events during this month are sporadic and have very short 

lifetimes.

2.2 B etw een-sites correlations

In the previous section we looked at some temporal correlation measures of the rainfall 

intensity at a fixed point in space. The main purpose, however, of planning and setting 

up the network of raingauge stations is to study the joint properties of rainfall at several 

locations and to gain insight into the spaitial structure of an event. The quantities we 

calculate are between-site properties only, and more specifically, our attention is focused 

on the following three measures:

• the lag k cross-correlation, ‘Jij{k), between the rainfall intensity at site i, Y n \  

observed during an arbitrary time interval of fixed length h, and the one at site j ,  

n̂+k'> observed kh  time units later during a period of the same length;

• the probability that two sites, i and j ,  are both dry, Poo\k) =  F(vJ^^ = =  0 ),

or both rainy, p+^^(k) = > 0 ), during arbitrary periods of the

same fixed length h separated by time lag k-

• the lag k cross-correlation, calculated from the pairs tha t have both observations 

positive, ^ij{k) =  corr{T^^\ > 0 }, usually referred to as condi

tional cross-correlation.

We investigate the effect of the distance and orientation of the pairs, on the cross

correlation measures, at various time scales and time lags. As before, we present the 

results for a dry summer month, June 1994, and a winter month with high rainfall, De

cember 1994. D ata are used from all gauges that are functioning properly during the 

examined periods.
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2.2.1 Zero t im e  lag

We s ta r t  using hourly  d a ta ,  and group  th e  pairs of sites according to  the  angle, th a t  

is formed between th e  line t h a t  joins th em  and  the  east-w est axis. W hen  two sites are 

exam ined  s im ultaneously  {k = Q) the  ordering is irrelevant and  th e  value of </>, in rad ians,  

belongs to  one of th e  sets =  [—tt /2 ,  —tt /4 ) ,  c>2 =  [—7t/4 ,0 ) ,  S 3  = [0 ,7t/4) and 

^4 =  [7r / 4 , 7r / 2 ).

T h e  g raphs  of 7 i j (0 ) p lo t ted  against the  ac tua l  d is tance  between the  sites, are  quite  

e rra t ic ,  since m any  pairs with  close d istances produce  fairly different values of the  p rop

erty, and so th e  underly ing shape  is not easily seen. In o rder  to  sm o o th  th e  curves, the  

d is tance  is calculated  to  th e  nearest  k ilometer, and th e  p lo tted  value is an average, from 

th e  values of all pairs th a t  have the  sam e dis tance  (in km ).

J u n e  1 9 9 4  
P r ( l w o  s i t e s  a r e  s i m u l t a n e o u s l y  d ry )

D e c e m b e r  1 9 9 4  
P r ( t w o  s i t e s  a r e  s i m u l t a n e o u s l y  d r y )

D i s t a n c e  ( K m )  

a g  z e r o  c r o s s —c o r r e l a t i o n

°o
D i s t a n c e  ( K m )

Lag z e r o  c o n d i t i o n a l  c r o s s - c o r r e l a t i o n

°o

D i s t a n c e  ( K m )

Lag z e r o  c r o s s - c o r r e l a t i o n

D i s t a n c e  (K m )

Log z e r o  c o n d i t i o n o l  c r o s s - c o r r e l a t i o n

D i s t a n c e  ( K m ) D i s t a n c e  ( K m )

Figure 2.5: Cross-corre la tion  m easures a t  zero t im e lag, for pa ir  of sites with  angu lar  

sepa ra t ion  in S \  =  [- t t / 2 , - 7t / 4 ) (blue), S 2  =  [ - 7t / 4 , 0 ) (green), S 3  = [0 , 7r / 4 ) (red) and  

S 4  = [7r / 4 , 7r / 2 ) (b row n),  for hourly  d a ta ,  for Ju n e  1994 (left) and  D ecem ber 1994 (r igh t) .
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Figure 2.5 shows the plots of some cross-correlation measures against distance, where 

the four curves correspond to the different angular separation between sites. The prob

abilities p^^(O) and pf|!'^(0 ) (the la tter not presented here), do not change appreciably 

with the distance or angle, reflecting the fact that the Brue area is fairly small compared 

to the spatial extent of a rainfall event and once a storm hits the catchment, it visits all 

locations more or less simultaneously. On the other hand, the cross-correlation function, 

7 îj(0 ), decreases with distance, implying the existence of small-scale elements within the 

rainfall event that do not cover the whole area, and thus produce high correlations for 

nearby sites. These elements have a smaller size during summer months than during 

winter months, so tha t 7 tj(0 ) decays more sharply in the former than in the latter case. 

Also, the cross-correlation, 7 i j ( 0 ) ,  tha t is derived conditionally upon the pair of non-zero 

observations, has the same pattern as the unconditional one, but lower values. One of 

the most interesting features of the graphs is that the cross-correlation of the pairs that 

have an angle, ç5>, in the set S 3 = [0 , 7t / 4 ), decays less slowly with distance, compared to 

the other sets, while the pair of sites with in <Si =  [—t t / 2 ,  —7 r / 4 ) ,  which is orthogonal to 

^ 3 , has the most rapidly decreasing pattern. This suggests the existence of a prevaihng 

orientation, but before drawing any further conclusion we should look at the non-zero 

lag cross-correlations, which provide more information about the velocity of a storm ’s 

movement.

2 .2 .2  N o n z e r o  t im e  lags

When two sites are examined in different periods {k /  0), the ordering is im poratant and 

the angle <f> takes values in the interval [—7 r ,7 r ) ,  which is partitioned into eight intervals 

each of length 7t / 4 . The cross-correlation function for each one of the eight groups is 

calculated, with distances rounded to  the nearest kilometer. Instead of having a graph 

with eight curves, which would be rather messy to  read, we keep the four sets <Si,. . . ,  «S4 

defined earlier, and we assign to each pair of sites a directional distance, which is the 

actual Euclidean distance if (j) belongs in [—t t / 2 ,  t t / 2 ] ,  or its negative value if (f>+Tr belongs 

in [—7t / 2 , t t /2 ]. So for instance, two points with negative directional distance that belong 

in group «S3 , have an angular separation between —tt and —37t / 4 , in radians.

In Figure 2.6 we present the conditional cross-correlation function ^ij{k)  of hourly
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June  1994 
I ag 1 conditional c ro ss -co r re la t io n

December 1994 
Log 1 conditional c ro ss -co r re la t io n

I
Directional dis ta nce  (Km)

I ag 2 conditional c ro ss -co r re la t io n

- I :  10 - 8  - 6  - 4  - 2  0 2 4

Directional d is ta nce  (Km)

Lag 2 conditionol c ro ss -co r re lo t io n

o  M 
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10 -6 B •4 -2 0 2 6 8 10 12

Directional d is tance (Km)

Log J  conditionol c ro ss -co r re la t io n

<j S

10 8 5 2 0 2 6 8 10 12

- 1 0  - 8  - 6  - 4  - 2  0  2  4

Directional d is ta nce  (Km)

Log 3 conditional c ro ss -co r re la t io n

Directional d is tance (Km) Directional dis ta nce  (Km)

Figure 2.6: C onditional cross-correlations, for pa ir  of sites w ith  angu lar  separa t ion  in =  

[ - 7t / 2 , - 7t / 4 ) (b lue) , j >2 =  [ - 7r / 4 , 0 ) (g reen), 4S3 =  [0 , 7r / 4 ) (red) and  S 4  =  [7r / 4 , 7r / 2 ) 

(brow n), for hourly  d a t a  a t  t im e  lags of 1 hour  ( to p ) ,  2 hours (m iddle) , 3 hours (b o t to m ) .

d a ta  for t im e  lags 1, 2 and  3. T h e  uncond itional p roperties  have a  similar p a t te rn ,  but 

th e  differences between the  curves corresponding  to  the  four directions are  smaller. In 

Ju n e  1994, increases for small abso lu te  d istances , it  reaches a  m ax im u m  value and

then  it s ta r t s  d ropping . From th e  location and th e  height of th e  peak , it is possible 

to  o b ta in  in fo rm ation  a b o u t  s to rm  m ovem ent and  th e  degree of correla tion  between the  

rainfall in tens i ty  a t  various sites. T h e  curve t h a t  corresponds to  th e  lag 1 conditional 

cross-correlation  of group  S 3  takes  its m ax im u m  value for th e  pairs th a t  a re  fu r thes t  

a p a r t  in th e  B rue  a rea ,  and  it would be very in te res t ing  to  know if it would continue to 

increase for larger d istances. T h e  g raphs  show t h a t  s to rm s with direction from  north-w est 

to  sou th -eas t  move w ith  th e  highest speed, since th e  peak of 7 i j ( l )  corresponds to  pairs
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that are a distance of roughly 8 km apart.

It is believed tha t the initially unexpected increase in the lag 3 cross-correlation for 

pairs of sites with positive directional distance, is due to the clustering of storms and the 

arrival of a new storm, that has a general direction from west to east.

Having examined the cross-correlation functions of several other summer months, 

the conclusion we draw is tha t because of the relatively few storm arrivals during this 

season, the shapes of the functions are determined by a small number of events, and 

thus detailed inference about the movement of rainfall can not be made. Indeed, summer 

months with similar total rainfall intensity as June 1994, can produce different patterns 

for the joint-properties between pair of sites.

The cross-correlation functions for December 1994, on the other hand, remain fairly 

constant with distance, and there are no obvious differences in the pattern between the 

various groups of pairs, which is evidence of the very slow movement and wide-spread 

nature of winter rainfall. Similar things apply to the cross-correlation function of most 

of the winter months we have examined.

Overall, the conclusion from this analysis is that the velocity (speed and direction) of 

rainfall influences the joint-properties between sites, and thus should be included in the 

model construction.

2.3 Topographic effects

The topographic effects of the Brue area on the behaviour of the rainfall process have 

been examined using basic statistical tools and presented graphically. Our analysis is 

focused on the examination of two effects, the ground altitude and the location within 

the catchment area.

2.3 .1  G rou n d  a lt i tu d e

The evolution of the process at the various sites for monthly periods, is described via 

some summary statistics (Appendix A), such as the mean, /t, and standard deviation, s, 

of the rainfall depth, the probability, tha t an arbitrary interval of given length is wet, 

aud the conditional mean, and standard deviation, calculated using the nonzero
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observations only. The time resolution of the data used is 1 hour, since aggregation over 

larger time periods would smooth the overall pattern and reduce any difference between 

the sites. Because the variable is constrained to lie between the values 0 and 1, the 

logistic transformation, p*̂  = ln (^^+^ ), is used as a response variable in the regression 

model. Similarly, the other four statistics tha t take non-negative values, are transformed 

using the natural logarithmic function. Each transformed statistic, y* say, is initially 

plotted against the altitude, z, of the ground in metres, for a visual inspection of the 

underlying pattern. For most months, the properties tha t show a linear relationship with 

the ground elevation are the mean, y* =  ln(/i), and the probability, while there seems 

to be no correlation between the other three statistics and the elevation. So, a regression 

line, y* =  a  -f- x, is fitted to the transformed mean and probability, and the results for 

June and December are presented here.

W ith reference to Figure 2.7 and Tables 2.1 -  2.2, we notice that the regression Hnes 

fitted to the data have statistically significant slopes and explain between about 30% 

and 50% of the total variation between the gauges, of each one of these statistics. So, 

in describing the behaviour of the rainfall process at several points in space, one should 

keep in mind that part of the spatial variation of the process is due to the variation 

in altitude. The decision, however, of whether to include the elevation of a site in the 

model building, should be made only with reference to a specific model. In many cases, 

the simplicity of a model is more desirable than the incorporation of a factor that is not 

absolutely necessary.

An alternative way of illustrating the relationships between the ground elevation and 

the mean rainfall intensity, /i, and the probability of a wet interval, is via scatter 

plots, where the range of values of each property is split into a number of levels, say 

five, and each level is represented by different colour. The topography of the Brue area 

is illustrated via this type of map. With reference to Figure 2.8, it is clear from the 

scatter plots of the four statistics, tha t the ones tha t look close to the pattern of the 

Brue topography are those of the mean, /i, in June 1994 and of the probability, in 

December 1994. Indeed, in the regression analysis we found tha t these two properties 

have heigher values than the others.
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fi* =  - 3 . 7 8 2 2  +  0 .0 0 3 4  x  =  49 .21%

Predictor Coef. St.error t-ratio F-ratio

Constant

Elevation

-3.7822

0.0034

0.0554

0.0005

-6 8 .2 2 1 1

6.4552

41.67

p I  = -3.0016 +  0.0014 X =  29.45%

Predictor Coef. St.error t-ratio F-ratio

Constant

Elevation

-3.0016

0.0014

0.0353

0.0003

-85.1129

4.2362

17.95

Table 2.1: Regression statistics for the log of the mean and the logistic of the probabihty 

that an arbitrary interval is rainy, for June 1994.

fi* = -1.9778 +  0.0014 X = 36.79%

Predictor Coef. St.error t-ratio F-ratio

Constant

Elevation

-1.9778

0.0014

0.0285

0.0003

-69.3779

5.1182

6 .2 0

pX = -1.6862 +  0.0015 x = 45.6%

Predictor Coef. St .error t-ratio F-ratio

Constant

Elevation

-1.6862

0.0015

0.0255

0 .0 0 0 2

-66.0585

6.0753

36.91

Table 2.2: Regression statistics for the log of the mean and the logistic of the probability 

that an arbitrary interval is rainy, for December 1994.
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Figure 2.7: Plots and regression lines of the log mean rainfall intensity, /Î*, (left) and the 

transformed probability, of a wet interval (right) against the elevation of the sites for 

June 1994 (top) and December 1994 (bottom).

2.3.2 Spatial characteristics

Next, we investigate the spatial association of the rainfall process within the Brue catch

ment. Six transects are formed, each of 2 km width, that cover the main part of the Brue 

area, three having a North-South and three a East-West orientation, (see Figure 1.2) and 

they are examined separately. A few joint properties are calculated for all pairs of sites 

within each transect, such as the zero lag cross-correlation, 7 zj(0 ), between the rainfall 

intensities at two sites, say z and j ,  and the probability, Poo\0 ), that these sites are 

simultaneously dry. In order to get smoothed curves, the inter-site distance is rounded 

to the nearest kilometer, and the derived value is an average, from the values of all pairs 

that have the same distance (in km).
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Figure 2.8: Topography of the Brue area (top), elevation effects for June 1994 (middle) 

and December 1994 (bottom) and hourly data. The number assossiated to each symbol 

is the minimum value of the corresponding level.
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I'igure 2.9: Lag zero average cross-correlation functions (solid lines) of the various tran

sects and a confidence zone of ±  one standard deviation (dotted lines) for June 1994 

(top) and December 1994 (bottom).

The plots of 7 îj(0 ) for June 1994 and December 1994, are illustrated in Figure 2.9. 

It might be worth clarifying that the value of 7 ^ (0  ) at zero distance is the mean cross- 

correlation for pairs that are less than 0.5 kilometer apart, which is why the value is a 

little less than one. For a given month, the cross-correlation functions that correspond 

to transects with the same orientation are very similar and show a decreasing spatial 

association with inter-site distance. A difference is observed between the quantities that 

correspond to North-South and East-West orientation. The former take lower values 

than the latter, which is evidence of the presence of a prevailing direction in the storm’s 

movement. Also, the localised summer storms result in rapidly decaying and very variable 

functions, while in uniform winter systems the effect of the distance upon the spatial 

correlation is small. Comparable plots for the probability pgg^O) show no dependence
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either on inter-site distance or on the orientation, reflecting the fact that the size of the 

Brue area is small compared to the size of a rainfall event and all sites experience an 

event almost simultaneously.

2.4 Conclusions

From the temporal properties of rainfall at a single site, only the ones that are related to 

the proportion of wet and dry time intervals exhibit a systematic seasonal pattern, while 

the cross-correlation measures, calculated at various levels of aggregation and time lags, 

give a lot of information about the structure of the rainfall process at small time scales, 

for the different seasons.

The analysis of the spatial association of rainfall has shown tha t the zero time lag 

cross-correlation functions decay with inter-site distance, with a slope that depends on 

the orientation of the pair of sites. The cross-correlation at non-zero time lags is also 

influenced by the distance and the orientation of the sites. This reflects the presence of 

a prevailing direction which should be taken into consideration in the multi-site model 

development. Also, the between-site properties depend on the orientation of the pairs of 

sites rather than their absolute location.

The investigation of the orographic effects of the Brue area on the behaviour of the 

rainfall process has revealed tha t the ground elevation explains about 30% — 50% of the 

variation in the mean rainfall intensity and the probability of a wet interval. Thus, the 

inclusion of this variable has the potential to improve the modelling of the process, even 

at this very local scale.
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C h ap ter  3

S in g le-site  m odels

3,1 Introduction

The temporal evolution of rainfall events at a fixed point in space has been extensively 

studied during the last few decades and several models based on the theory of stochastic 

point process have been developed. A few interesting results from research in this area 

have already been discussed in Section 1 .2 . One common feature of these models is that 

the random variables involved are mutually independent. However, the duration and 

intensity of rainfall are often inversely related. For example, rainfall is often classified 

into two broad categories, convective, which is very intense short-lived rain (e.g. summer 

thunderstorm s), and non-convective, which is hghter and longer lasting (e.g. stratiform 

rain). Also, Waymire and G upta (1981a) mention that cyclonic storms contain two dis

tinct types of precipitation areas, namely the large mesoscale areas, which have large 

spatial extent, move slowly and have low intensity, and the small mesoscale areas, which 

cover a smaller region, move faster and have higher intensity compared to the former. So, 

if rainfall events are observed at a fixed point in space, it is thought tha t the components 

of the process with high intensity wiU tend to have short Ufetimes and vice versa. One 

way to model the presence of distinct types of rainfaU components, suggested by Cow- 

pertwait (1994), is to have within the same storm many types of small scale elements, 

each with independent duration and intensity. This idea was appUed using two types 

of rain cells, ‘heavy’ and ‘Ught’, with the former having generally shorter lifetimes and 

higher intensities than the latter. A disadvantage of this approach is tha t the number of
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types in which rain cells are classified, and the ranges of values for the parameters of the 

duration and intensity of each type, have to be specified in advance by the researcher.

In this chapter we study the relationship between duration and intensity of rainfall. 

The stochastic models that we develop are based on the theory of clustered point processes 

and in particular on the Neyman-Scott and Bartlett-Lewis processes. In such models, the 

large-scale elements, called storms, are generators of the small-scale elements, called rain 

cells. At this point, it should be mentioned that the concept of rain ceU is not precise. 

Although we regard it as a mathematical device in the clustering mechanism, rather than 

as a physical entity, it is desirable that the parameters that describe its characteristics 

have physical interpretations and take reahstic values. In general, the ranges of the 

param eter estimates depend on the data resolution and the type of the model that is 

used (e.g. spatial-temporal, single-site, multi-site, etc.) and thus it is rather dangerous 

and arbitrary to have a fixed idea about the rain cell’s features.

We shall follow the general approach and notation of Rodriguez-Iturbe, Cox, and 

Isham (1987a) (RICI), who discuss two models based on a stationary Poisson process 

of storm origins of rate A. In each case, with each storm origin a random number of 

rain cells with independent rectangular profiles is associated. The duration, T, of a 

ceU is exponential with parameter rj and survivor function T l , and its intensity. A', is 

also random, independent of L. In the Neyman-Scott model the positions of the rain 

cells relative to the storm origin are determined by a set of independent and identically 

distributed random variables, and it is assumed that there is no cell in the storm origin. 

Natural candidates for the distribution of the distance between the cluster centre and its 

members are the Normal and the exponential distributions, the latter is used more often 

in rainfall modelling and in this particular model. The number of rain cells per storm, C, 

has either a Poisson or a geometric distribution. In the Bartlett-Lewis model, the cluster 

members follow the cluster centre in a finite renewal process. In the special version that 

was examined by RICI, the renewal process is Poisson with rate /?, and terminates after 

a time th a t is exponentially distributed with parameter 7 . In this model, it is assumed 

that there is a rain ceU located at the storm origin. Under these assumptions, the number 

of rain cells per storm has a geometric distribution with mean E{C)  = 1 + (3/').

The to tal rainfall intensity, Y{t) ,  at a time t is the sum of the intensities of all rain
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cells active at that time,

ro o

Y { t ) =  /  Xt - u{ u)  d N{ t  -  u),  (3.1)
Jo

where N{ t )  counts arrivals in the clustered point process of rain cells, and Xt - u{ u)  is the 

intensity, at time i, of a rain cell having origin at t — w, so that

I X  with probability X d u ) ,
Xt -u(u)  = <

I 0 with probability 1 -  X l {u).

The mean of the total depth process is

E{Y{ t ) }  = X E { C ) E { X ) r , - \

and the autocovariance at lag r  ( r  > 0 ) is given by

cr(r) = cov{y(0 ,T(i  + r)}
/•CO ro o

= E{ Xt - u ( u ) , X t + T - v i v ) } c o v { d N{ t  -  u ) , d N ( t T -  v) } .  (3.2)
Jo Jo

The covariance of d N{ t )  of a clustered point process, can be expressed (Cox and Isham, 

1980, §2.5) in terms of the conditional intensity function, h (r), as

c{t ) =  hm c o v { d N i t ) , d N ( t  +  T)}  =  X E { C ) { S { T )  +  h { T ) - X E { C ) } ,  (3.3)
d T , d t—*0

where S denotes the Dirac delta function. The function h (r), which is the limiting rate 

at which points occur in (r, r  +  dr )  conditionally upon there being a point at the origin, 

is different for the two clustered point process. Specifically, (Cox and Isham, 1980, §3.4) 

for the Neyman-Scott process specified above, h{r)  is given by

h { T )  =  A E{C)  + r  dx
i / f C j  Jo

and when this is substituted in (3.3), it results in

c (t)  =  A E{C) S(t ) + ^ E { C { C  -  1)} (3.4)

In a Bartlett-Lewis process on the other hand, the conditional intensity function is

h{T) = XE { C)  + ( 3 e - ^ \
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and from (3.3) we get

c(r) = A E{C) S { t )  + A E{C) P (3.5)

It is then straightforward to derive the second-order properties of the to tal rainfaU depth 

for the Neyman-Scott and the Bartlett-Lewis based models, after substitution of (3.4) 

and (3.5), respectively, into (3.2).

3.2 T heoretical m odel

3 .2 .1  D e s c r ip t io n

We shall now develop some clustered point process models for the temporal evolution of 

rainfall at a fixed spatial location, which also capture the inverse relationship between 

the intensity and duration of the phenomenon. From the descriptions of the Bartlett- 

Lewis and the Neyman-Scott models in the previous section, it is clear that the difference 

between the two concerns the precise way in which the cluster members are distributed in 

time, which is expressed through the covariance function c(r). As far as the derivation of 

the second-order properties of the total rainfall intensity is concerned, the same procedure 

can be followed for both clustered processes. So far, comparisons between the two types 

of models have not provided significant evidence in favour of one or the other, and the 

choice between them is, most of the time, rather arbitrary. In the following description 

and in the model fitting, the Bartlett-Lewis based model is used, because the probability 

of zero rainfaU during an arbitrary time interval of fixed length can be given algebraicaUy 

in a closed form, in contrast with the Neyman-Scott based model where simulated data 

are needed to provide estimates of this property.

We consider a Bartlett-Lewis model, in which storm origins arrive in a Poisson process 

of rate A and each is foUowed by a Poisson process of rain ceU origins, of rate /5, that 

terminates after a time that is exponentiaUy distributed with rate 7 . Each rain ceU has a 

rectangular profile, with intensity, X , and duration, L, where now, these are assumed to 

be dependent random variables, with joint probability density function fxL^  independent 

of the Poisson process of storm origins. The marginal density functions of X  and L are 

denoted by f x  and / l ,  respectively. Distinct ceUs have mutually independent durations 

and intensities.
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The to tal rainfall intensity at time Y{t),  is given by the integral representation
roo

y ( ( )  =  /  -  2 ,) ,  (3 .6)

where the intensity, at time t, of a rain cell of age u, Xt-u{u),  is now defined as

{X with probability density T l ( x . u )  for z > 0 ,
( 3 . 7 )

0 with probability 1 -  dx Tl {x ,  u) , 

where X l { x , u )  = dl  f x L { x , l )  is the survivor function of the rain cell duration.

3 .2 .2  S eco n d -o rd er  p rop ertie s

In the present analysis, we are mainly interested in the second order properties of Y{t).  

Higher order moments can be derived in a similar way. The expected value of the total 

rainfall intensity is:
roo

E{Y{t ) }  = /  E { X t - u ( u ) d N ( t ~ u ) }
Jo

= X E{C) r  du E{Xt - ^ (u ) }
Jo

rcc‘ roo roo
= X E { C )  /  du / dx X / dl  f x L ( x , l )

Jo Jo  Ju

=  A E ( O r d / / / ^ ( / ) E A i A : | / ]  ( 3 . 8 )
Jo

= X E { C ) E { X L ) ,  (3.9)

which is the product of the storm arrival rate, the mean number of rain cells per storm 

and the expected ‘size’ of a rain cell.

The lag r  autocovariance ( r  > 0) of the intensity function Y{i)  is derived by substi

tuting (3.5) and (3.7) into (3.2), to give:
roo roo

cy(r) = / / E { X i - u { u ) X t j ^ r - v { v ) ] c o v { d N { t - u ) , d N { t - \ - T - v ) ]
J o  Jo

roo
= X E{C)  /  du £{X ,_„(u) +  r)}

Jo

+X f) E(C)  r  du r  dv E{Xt-u{u)Xt+r-v{v)}
Jo Jo

roo roo
=  A £ (C ) du dl E[X^  | /] f i { l )  +  A /3 E(C)

Jo Ju+ T

{
roo roo ru+T  roo

J  du J  dl E[X  I /] / l {1) e--"" J  dv j  dl' E[X'  11'] f i H ' )  e "

roo roo roo roo ^
+  e'"' /  du dl E[X  I (] / l {1) e-'" /  dv /  dl' E[X '  | I'] /z,(/')  ̂ ,

Jo  Ju Ju+ T  J v  J
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where X  and X '  are independent and identically distributed random variables. The first 

term of cy (r) , gives the ‘within cell’ contribution to the covariance, while the second 

term gives the contribution from different rain cells of the same storm. Becausfse storms 

arrive and develop independently of each other, rainfall intensities due to rain cells that 

belong to different storms are uncorrelated.

After routine integration the 4-fold integrals are reduced to double integrals resulting 

in the following formula for the lag r  autocovariance of the total rainfaU intensity,

roo \ a
c y { t ) = \ E { C )  /  d l ( l - T ) E [ X ‘‘ \ l ] f L ( l ) + - j E { C )

Jt 7
x | 2 7  Z)(0,r,/-f- T ,  0) + 2 7  B{0,1 -F r, 0 0 ,0) -  2 7 T A (0 ,r, / -f r , 0)

A ( 0 , 0 ,  00,  0)  +  A ( 0 , r ,  00, /?)  -  ^ ( - 7 , /  +  r,  0 0 , 7 )

A(7 , 0 ,0 0 ,0) -  ^ ( 7 ,0 , 1 -f r, - 7 ) -k A (0,0, r , - 7 )}, (3.10)

where

and

and

roo rb
A{0, a, 6, C) = / dl dl' E[X  \ I] M l )  E[X'  | /'] M O

Jo Ja

roo rb
B(S,  a, b , Q =  dl dl' E[X  I /] M ‘) E[X'  | f] M O  ‘

Jo J a

roo ro
D($, a, 6 , C) = / dl dl' E[X | M O  I /'] M O  I'

Jo Ja

The variance of the process Y { t )  is deduced from the covariance cy (r), by setting r  

equal to zero,

var{y(i)} = A E{C) E[X'^L) + ^ E ( C ) { 2 -y H (0,0, /,0) +  2 7  5 (0 , /, 0 0 , 0 )

+ 2  A ( 7 , 0, o o , 0 ) -  A ( 0 , 0 , o o , 0 ) -  A ( 7 , 0, f , - 7 ) -  A ( - 7 , / , o o , 7 ) } .  ( 3 . 11 )

It is not difficult to verify that when X  and L are independent. Equation (3.10) 

simpUfies to the corresponding expression for the independent case (Rodriguez-Iturbe, 

Cox, and Isham, 1987a, Eq.4.12)

CK(r) =  ^  5 (C ) 5 (X ^) +
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3 .2 .3  F u rth er  p ro p ert ie s

Since rainfall data are usually observed in aggregated form, we consider the cumulative 

rainfall intensity in disjoint time intervals of fixed length h,

"tih
y f  ) =  /  Y{u)du.  

hu-i )h

The expected value of is easily derived from the continuous time process,

= h E{Y{t )}  = h X  E(C)  E { X L ) . (3.12)

The second order properties of Yf^^ are obtained using the expressions

var{T({/'^} = 2 ^  (h -  r )  cy(r) dr , (3.13)

and for /u > 1

cov { y , f  ,y ,(^> J = /  (ft -  I r  I) cy{kh + T ) d r ,  (3 .1 4 )

where cy (r)  is the covariance of the continuous process, given in Equation (3.10) for the 

model with dependent rain cell duration and intensity.

Other properties of interest, such as the probabihty of zero rainfall intensity during 

an arbitrary time interval, the transition probabihties between dry and wet intervals, and 

the mean duration of a dry and a wet spell, are not functions of the rain cell intensity, 

and in particular are the same whether or not X  and L are dependent. Expressions for 

such properties can be found in Rodriguez-Iturbe et al. (1987a) and Onof et al. (1994) 

for the Bartlett-Lewis based models and in Cowpertwait (1991) for the Neyman-Scott 

based models.

3.3 E xponential dependence

The motivation for the current research is to explore the behaviour of rainfaU models 

where the intensity and duration of rain ceUs are negatively correlated. From the wide 

range of models that satisfy this requirement, we consider some tha t are reasonably 

plausible and mathematicaUy tractable in order to be able to derive analytic expressions 

for the statistical properties of the process.

In the present study, the exponential distribution for the ceU duration, L,  with pa

rameter T] say, is retained since it has been used in the past to give satisfactory results.
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Concerning the conditional distribution of the intensity X , it is assumed that it has an 

exponential form with mean depending on L, tha t is E { X  | L)  =  g{L). A first thought 

is to take an inverse function for the conditional mean, g{L) = IJL.  This choice however 

is mathematically inconvenient because when g{L) is substituted in (3.10) it gives rise to 

incomplete Gamma functions that have to be integrated. A class of functions that is both 

realistic and mathematically tractable is g{L) = f  where / ,  c and d are non

negative scalars. Note that the second order properties involve X  only through E { X L )  

and E[X'^L),  so the explicit distributional form is unimportant once these moments are 

fixed. In what follows, we describe the cases d =  0 and d = 1 . When d is fixed, the model 

is specified by six parameters, one extra compared to the original Bartlett-Lewis model.

3 .3 .1  M o d e l w ith  E { X  | A) =  /

The mean total rainfall intensity is obtained by substituting E { X  | L) = fe~^^  and 

/l(G  = in equation (3.8), which gives

£ { r ( t ) }  = A E(C)  (3.15)

We assume an exponential distribution for the cell intensity given the duration, thus 

E(A ^|L) =  which is substituted in (3.10) and results in the following expression

for the lag r  covariance of Y{t):

The mean and second order properties for the aggregated rainfall process, are

derived by combining equations (3.13), (3.14) and (3.16) and the details are given in 

Appendix B.

The variables X  and L are always negatively correlated (Figure 3.1), with correlation 

function

cov(X, X)
corr(%, L) =

\Zvar(%) var(X)

/ t?{c2+(c+t;)2} 1
Y (20+77) {c+ny ^
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where (  = cfrj. The correlation tends to zero as (  tends to  infinity, tha t is as either the 

mean cell duration, 77“ ,̂ tends to infinity, or the conditional cell intensity, E{X\L) ,  tends 

to zero.

The unconditional mean of X  is E { X )  =  frj/{c +  r/) and its marginal probability 

density function is

f x { x )  =  / l ( 0  f x \ L{ x \ l )  ^  J  exp{(c -  77) /  -  / " ^  x }  dl .

Some plots of f x , using estimated parameter values after fitting the model to  rainfall data, 

are presented in Figure 3.2 (at the end of this chapter). Compared to the exponential 

density function of the original model, f x  has a larger mode at the origin and decays 

faster, and thus generates cells with small intensity.

M od el  wi th E( XI L)  =  f e x p (  —c L) Mode l  wi th E (X I L )  =  f L e x p (  —c L)

o o

I 0  2 4 6 8  1 0  12  14  1 6  18  2 0 I 0  2 4 6 8 10  12  14  16  1 8  2 0

Z e t o Z e t o

Figure 3.1: Correlation between rain cell intensity, X , and duration, X, as a function of 

C =  c /77.
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3 .3 .2  M o d e l  w ith  E [ X  \ L) =  f  L e

The exponential distribution for the cell duration is retained in this model, so we have

E ( X L )  = 2t]/{c + t})  ̂ and thus the mean of y(<) is

E{y(i)} = A E{C) (3.18)

Under these assumptions, the covariance function of the total rainfall intensity be

comes

' r ( r )  =  +  4(2c +  , ) r  +  (2 c +

X ( {4(c +  ^)  -  7}^ e - -  + - l l ( c + : , ) '  + M e + ; 7 ) { f - ( c  +  '? )4  ^
[ 2 (c -f rj)

The mean and second order properties for the aggregated rainfall process, are given 

in Appendix B.

The correlation function between rain cell intensity and duration is

corr(A', T) = ----------

( 1 - 0  / (2 C + i)^
( l  + f)V4(C + l )-‘ - ( 2 f  +  l ) 3 -

When C = c/?7 > 1, X  and L are negatively correlated, while when (  = 1 , they are 

uncorrelated but not independent. As with previous model, when (  tends to infinity, the 

correlation between A and L tends to zero.

The unconditional variable A” has mean E { X )  = 77)  ̂ and probability density

f x ( x )  = / l ( 0  f x \ M ^ )  ^  J ]  | ( ^  - v ) ^ ~

The density function f x ,  plotted using some parameter estimates (Figure 3.2), has 

a mode at the origin higher than the exponential one in April and June and lower in 

December. This suggests tha t it is more likely to have cells with high intensities during 

rainy months and low intensities during summer.

3.4 M odel fitting

We use two methods for fitting the models presented in the previous sections to raingauge 

data; a generalised method of moments and a spectral approach. Let 6 — {#1 , . .  .,0 ^ }
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be the parameter vector of a model.

3 .4 .1  G en era lised  m e th o d  o f  m o m e n ts

Suppose that m  distinct population moments of a random variable Yt can be calculated 

as a function of 0, such as

E{Y^) = for

The classical method of moments estimate of 6 is the value 0 for which these population 

moments are equated to the observed sample moments; that is 6 is the value for which

^  1 ^  •

^  Vt for i = 1 ,2 , . . . ,  772,
t=l

where y  = (y i,. • •, Vn ) is a series of data.

In the generalised method of moments (GMM) (Hamilton, 1994) one might try to 

estimate 0 so as to be as close as possible to p > 772 moments, by minimising with respect 

to 0 a criterion function

[g (^ ;y )] 'W  [g(0;y)] (3.20)

where [g(0;y)]' = [{ah(^) -  P'l} • • -{a^p(^) ~ M ]  W  is a (p x p) positive defined 

symmetric weighting matrix reflecting the importance given to matching each of the 

moments. The weighting matrix W  may be a function of the data y, and its optimal 

value is given by S~^, the inverse of the asymptotic variance-covariance matrix.

In order to estimate the parameter vector 6 of the rainfall models discussed in this 

chapter, we use a version of the GMM, whose description is as follows. Suppose that 

a set ^  = {'0 1 , . .  .,0k} of primary features of the data is selected, for which the corre

sponding theoretical expressions, $(#) = (0 i (0 ) , .. .,0k(^)}, have been derived. Typical 

examples of such features are the mean, the variance, the correlation and the probabil

ity of no rainfall, at various levels of aggregation. We select a number p > 772 of the 

observed and the corresponding theoretical values of these features, to form the vector 

[g(^iy)]^ =  [(0 i(^) — 0 1 } . • -{0p(^) -  0p}l- To avoid bias from large magnitude com

ponents, we set W  to be a diagonal matrix, with its ( j , j )  element equal to 1 / 0 | .  The 

variance-covariance matrix S would require enormous algebraic effort to be derived, thus 

it is not being used in this application. So, the objective function that is minimised

51



over the parameter space is the weighted sum of squares of the differences between the 

observed and the theoretical model properties,

The goodness of fit is assessed by comparing observed and fitted values of the complete 

set of features in ^ .

A key advantage of the GMM is that it requires specification only of certain moment 

conditions rather than the full density function. This can also be a drawback, in tha t 

GMM often does not make efficient use of all the information in the sample. In addition, 

the estimate 6 depends on the features used in the fitting procedure, and indeed can 

vary greatly. It has been observed (e.g. Rodriguez-Iturbe, Cox, and Isham (1988), 

Onof (1992)) that when this version of GMM is used in fitting a five or six param eter 

point process model for rainfall, an appropriate set of six primary features tha t gives 

good estimates includes the mean, correlation lag 1 , variance, and probability of dry 

interval at 1 hour level of aggregation, and the last two properties at 24 hours level 

of aggregation. These conclusions have been confirmed using the dependent intensity- 

duration models, but the details wiU not be given here. These six properties were used 

to obtain results via the GMM fitting that are reported in the rest of this chapter. In 

general, the primary features used in the fitting should be chosen so as to capture the small 

scale, within storm structure of the process as well as the large scale, between storm s’ 

dependencies. For instance, the correlation of the rainfall intensity provides information 

about the temporal distribution of rain cells and the patchiness of the storm, since it has 

contributions from rain cells that belong to the same storm. So, this property should be 

used at small levels of aggregation. Summary statistics calculated from daily data, such 

as the probabihty that an arbitrary daily interval is dry and the variance of the rainfall 

intensity, are im portant in estimating the storm arrival rate.

3 .4 .2  S p ec tra l  m e th o d

The spectral method of parameter estimation is based on W hittle’s method for time 

series, and has recently been applied (Chandler, 1997) in fitting point process models to 

rainfall data. One of the main advantages of this approach is tha t it makes use of the
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whole series of data and, specifically, of its Fourier transform. The assumptions necessary 

in order to apply the spectral method are that the stochastic process Yt is stationary with 

mean ^ y (^ ) , and that in any reahsation of Yi, observations tha t are far apart will be 

approximately independent. Under these assumptions, the second-order spectral density 

of the process exists and is defined by

/ oo
c y ( r ;0 )e  dr u; G ( - tt/ A ,x /A ) (3.22)

-O O

where cy(.; 6 ) is the covariance function of the rainfall model with, now, its dependence 

on 6  made expUcit and A is the level of aggregation. Given a series of data y i , . . . ,  2/iv, the 

sample Fourier coefficients for every possible frequency lj can be calculated and combined 

to form the periodogram F(w). If only a single reahsation of the process is available, then 

the series of data can be split into a number, 5*, of segments long enough to be treated 

as (approximately) independent reahsations (Chandler, 1997). The fragmentation of the 

time series can also be apphed with multiple reahsations of the process, and the advantage 

is that the final periodogram is smoother than the original and thus the computational 

time required for the convergence of the optimisation procedure is reduced substantiaUy. 

When the series of data give a total of S  segments, we use the mean of the S  periodograms, 

î{üJSp), evaluated at frequencies

^ p = 0 , 1,...,[A725'].

The approximate log-hkelihood function, which is maximised to give an estimate 6  of 

the param eter vector 0 , is written as

In L s ( 0 ) =  (ln2-b ln/iy'(O;0)) -  5 ^  477/1 7 ( ^ 5  -0 ) +

+ 0  ( ^ )  “

where ÿs is the sample mean rainfall intensity from the S  segments, and with the foUowing 

correction term  added whenever [A"/5] is even.

When the spectral method for parameter estimation is applied, one way of comparing 

different models is to use the Akaike Information Criterion (AIC) (Akaike, 1974) which
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is given by

A IC (^) =  -2 ln X 5 (^ )  + 2m

where m  is the number of parameters being estimated. The model with the lowest AIC 

value is judged as providing the best fit to the data. In addition, it is possible to assess

the adequacy of fit by evaluating the set of features in $ ( 0  ) and comparing them with

the corresponding observed values of which in our application is more useful than the 

AIC.

The second-order spectral densities of the rainfall models that were introduced in the 

previous section are derived using (3.22) and the corresponding covariance functions. So, 

the spectrum of the model with the conditional mean of X  given by fe~^ ^ is

2  A 7? (1 +  g )  A 7  P{1 +  g )

'  ^  7T (2c +  i ; )  {(2c + t; ) 2  + i-(c +  r ; ) ^  (7  ̂+  {(c +  7))^  +  '

For the model with E { X  | L) = we have

4 A r; (1 +  ^) { 6  (2 c + 77)'^-f 3 (2c + 77)^
^  7T (2 c-t-77)3 {(2 c -1- 77)2 a;2}3

2 A -y 77̂  (1 +  ^ )  { 4  (c  +  77)2 +
7T ( 7 2  - 1 - u ; 2 )  ( c - f  77 )4  { ( c  +  7 7 ) 2 - 1 - a ; 2 p

3.5 D iscussion  of the results

Tha data available have been collected at a network of raingauge stations, located in the 

South-West England, during the period January 1994-December 1996. Since the models 

described in this chapter are built for the analysis of the temporal evolution of rainfall 

events at a fixed point in space, in the fitting we use data from a single site and we 

present here the results for gauge no. 37.

One requirement is that the time series of rainfall intensities does not have any trends 

(including seasonal trends), since aU models assume a stationary point process. On 

the other hand, if a very short run of data is used, say weekly, tha t satisfies temporal 

homogeneity, it is very unlikely that any general conclusions can be drawn about the 

models’ behaviour, since the results wiU not be representative. In fitting rainfall models 

it is common to examine each month of the year separately, and to consider the time 

series of a particular month from all annual sequences, say all Januaries, as independent
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realisations of the same process. Then, the observed properties are calculated as averages 

of the corresponding values obtained from each individual month. In this case, it is 

possible to get sets of typical parameter values for every month tha t can be used in other 

hydrological studies. Of course, one hopes to have as much data as possible but even with 

three years rainfall sequences, as in the present study, a natural grouping is via months. 

In this section, we present and discuss the fitting results for December, April and June 

data  sets, which are representative winter, spring and summer months, respectively. The 

first part of the discussion concerns the comparison between the methods used for the 

estimation of the models’ parameters, namely the generalised method of moments and 

the spectral method.

During the model fitting procedure, we have introduced two dimensionless param

eters K = (3/rj and cf) =  7 / 77. Also, when the rain cell duration param eter rj becomes 

random (Rodriguez-Iturbe, Cox, and Isham, 1988), it is assumed tha t it follows a gamma 

distribution with index parameter a  and scale parameter i/.

The spectral method has been successfully used in the past to provide parameter esti

mates of point process models (Chandler, 1997). It also provides criteria for comparison 

between models with different number of parameters. However, when this approach is 

used in fitting rainfall models, it fails to give close estimates of the probability that an 

arbitrary time interval of fixed length is dry, which is a property of great importance 

for many hydrological applications. Also up to now, this method can not be applied to 

fit the Bartlett-Lewis model with random cell duration param eter, denoted hy M 2 -, but 

research is currently in progress (R.Chandler, personal communication) in order to de

rive the loglikelihood function of this model. W ith reference to Table 3.1, that gives the 

fitting results for the December data set, we notice tha t the second order-properties of 

the data  are predicted fairly accurately by the original Bartlett-Lewis model, denoted by 

M l  (Rodriguez-Iturbe et al., 1987a), and the one with dependent rain ceU duration and 

intensity of the type E{X\ l )  =  f e ~^ \  denoted by Mz-  In contrast, the estimated values 

of the probability of zero rainfall are often far from the observed ones. The AIC value 

for these models are very close, suggesting very similar performances concerning the first 

and second order properties. In comparison, the model with E{X\ l )  =  f l e~^ \  denoted 

by A^4 , has a relatively high AIC value, indicating a poor performance, which is also

55



evident from the estimated properties. Similar results are obtained when the spectral 

method is applied to other data sets, but are not presented here.

W ith the GMM on the other hand, because the probability of zero rainfall of hourly 

and daily data  is used during the parameter estimation procedure, the estimates are 

‘forced’ to give good fitted values for these properties. So, the question in this case is 

whether a model is able to reproduce the observed properties at levels other than the 

ones used in the fitting. The results for months December, April and June are presented 

in Tables 3.2, 3.3 and 3.4, respectively.

Starting with model A I4 , with dependent rain cell intensity and duration of the 

form E[X\ l )  = we notice that it produces very poor estimates of the lag one

correlation of hourly data, and more specifically, this property is overestimated by 10  — 

33%, although it is included in the objective function (Equation (3.21)). In addition, the 

lag one correlation is overestimated at higher levels of aggregation and, the probability 

of zero rainfall at an arbitrary time interval of length 24 hours is underestimated up to 

about 10%. These results give a rather disappointing overall picture of model A44 , thus 

we exclude it from the remaining of this discussion.

Having in mind that the rectangular pulse rainfall model with random cell duration, 

denoted by Adg (Rodriguez-Iturbe et ah, 1988), improved the performance of the original 

model, yV4i, at the expense of one extra parameter, it is interesting to see how model M 3 

performs as compared to A4i and M 2 - With reference to Table 3.4 that gives the results 

for month June, we notice that although all three models produce similar values for the 

first and second order properties. A i] and M 3 give better estimates of the probability of 

zero rainfall as compared to A4i, with the former slightly underestimating and the la tter 

shghtly overestimating this property. Similar conclusions are drawn from fitting these 

rainfall models to data from April, presented in Table 3.3.

The results from the December data set, shown in Table 3.2, suggest tha t the proba

bihty of zero rainfaU, at levels of aggregation not used during the param eter estimation, 

is predicted more accurately by model A4 2 than A43 , with the la tter shghtly underesti

mating this property. As before, the shape of the correlation functions of models A4] 

and A4s are very similar and closer to the observed, as compared to A4%.

So, from the assessment of fit we conclude that models A4] and M 3 , defined by six
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parameters, are more successful, as compared to the original five parameter model yVfi, 

in reproducing observed rainfall properties at a range of time scales, especially concerning 

the probability of zero rainfall during an arbitrary time interval.

Now, for a discussion about the parameter estimates, we concentrate on the three 

rectangular pulse rainfall models vWi, M 2 and Aig, whose performances are satisfactory. 

The values of parameters A, E{C)  and 77 show that model M 2 generates many storms, 

in some cases nearly twice as many compared to M 3 , each storm consists of many rain 

cells that have high intensity and extremely short average lifetime, ranging from about 

25 minutes in June, to 8.4 minutes in December. The mean storm duration for A42 is less 

than 3 hours, and the parameters suggest that storm Hfetime is longer during summer 

than during winter months, which is the opposite of what we expected.

On the other hand, model M 3 generates a small number of storms, with rain cells 

lasting several hours. Storms have an average lifetime ranging from about 7 to 12  hours, 

and generate more rain cells in December than in June. It is quite interesting to note that 

the correlation, p, between the rain cell duration and intensity for this model is always 

negative with value close to —0.38.

Finally, the original Bartlett-Lewis model. M i ,  generates storms with mean duration 

about 10 hours for December, and 4 hours for June and rain cells with mean duration 

about 40 minutes. The number of cells per storm in the summer months is double the 

number we get in winter, but the rain ceU intensity is lower in the former than in the 

latter case.

On the basis of this analysis, we conclude that model M 3 , in which the mean rain 

ceU intensity is given by £'(A"|/) = provides an alternative way of improving the

prediction of the probabiUty of zero rainfaU of the original Bartlett-Lewis model M \ ,  

and also captures the inverse relationship between rain ceU intensity and duration. The 

results of the fitting are encouraging but before drawing more general conclusions, the 

model should be tested on rainfaU data coUected at other geographical regions tha t have 

weather types different from tha t of South-West England, and also to longer sequences of 

rainfall data. A disadvantage of model M 3 is that the expressions for the second-order 

propeties are rather compUcated, so it is unUkely that it can be used in the study of 

rainfaU process at several spatial locations.
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Fitting results using the spectral m ethod for parameter 
estimation.

Table 3.1: Observed and estimated properties for December rainfall data.

level of Mean Probability Variance Correlation
aggregation of no rain lag 1 lag 2 lag 3

1 h n 0.168 0.808 0.363 0.487 0.249 0.172
M l 0.168 0.704 0.301 0.404 0.203 0.181
Mz 0.168 0.834 0.365 0.471 0.250 0.186
M 4 0.136 0.873 0.298 0.713 0.120 0.037

6 h Ji 1.007 0.558 5.282 0.312 0.166 0.120
M l 1.006 0.366 4.145 0.432 0.319 0.246
Mz 1.010 0.666 5.347 0.272 0.059 0.013
M 4 0.813 0.671 3.284 0.115 0.002 0.000

12 h n 2.014 0.397 13.856 0.276 0.128 0.100
M l 2.013 0.254 11.873 0.460 0.270 0.161
Mz 2.020 0.527 13.601 0.158 0.008 0.000
M a 1.626 0.491 7.094 0.055 0.000 0.000

24 h n 4.029 0.222 37.004 0.223 0.070 0.131
M l 4.026 0.148 34.668 0.397 0.140 0.049
Mz 4.041 0.329 31.505 0.075 0.000 0.000
M a 3.252 0.262 14.737 0.026 0.000 0.000

H  : Observed properties,
Ml ' .  O riginal Bartlett-Lew is model,
Mz' .  B artlett-Lew is m odel with E (A '|/) =  f e ~ ^ \  

Bartlett-Lew is m odel with E{X\ l )  =

M odel’s param eters Derived param eters
A K 4> V E(% ) P T E (C )

M l 0.043 0.100 0.017 2.555 1.436 0.255 0.043 6.894

A K 0 V c / P 7 E (C ) E (% ) P
Mz 0.039 0.945 0.279 0.885 0.802 3.158 0.836 0.247 4.384 1.657 -0.378

A K V c / P 7 E (C ) E (X ) P
M a 0.052 0.055 0.889 0.609 1.400 16.292 0.034 0.541 1.062 4.936 -0.302

Model #  of param . AIC value
M l 5 -11675.8
M z 6 -11673.8
M a 6 -11509.6
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Fitting results using the generalised m ethod o f m om ents.

Table 3.2: Observed and estimated properties for December rainfall data.

level of Mean Probability Variance C orrelation
aggregation of no rain lag 1 lag 2 lag 3

1 h n 0 .168 0.808 0 .363 0 .487 0.249 0.172
M l 0 .1 6 7 0.791 0 .377 0 .508 0.232 0.162
M 2 0 .168 0.808 0.363 0 .487 0.282 0.209
M z 0 .168 0.808 0 .363 0 .487 0.240 0.185
M 4 0 .1 6 4 0.813 0 .394 0.603 0.168 0.139

6 h n 1.007 0.558 5.282 0.312 0.166 0.120
M l 1.004 0.546 5.534 0.310 0.149 0.081
M 2 1.007 0.600 5.562 0.326 0.135 0.078
M z 1.007 0.548 5.381 0.345 0.161 0.081
M 4 0.986 0.575 4.982 0.368 0.226 0.155

12 h n 2.014 0.397 13.856 0.276 0.128 0.100
M l 2.008 0.410 14.497 0.263 0.074 0.022
M 2 2.015 0.431 14.7.56 0.254 0.082 0.043
M z 2.015 0.379 14.474 0.278 0.068 0.017
M 4 1.972 0.394 13.440 0.362 0.164 0.077

24 h n 4.029 0.222 37 .004 0.223 0.070 0.131
M l 4.016 0.240 36 .624 0.171 0.015 0.001
M. 2 4.030 0.222 37 .004 0.183 0.046 0.022
M z 4.030 0.222 37 .004 0.169 0.011 0.001
M a 3.943 0.198 36.418 0.283 0.062 0.014

The properties in b o ld  have been used in the fitting procedure.

H  : Observed properties,
M \ .  Original B artlett-Lew is model,
M . 2 '- Bartlett-Lew is m odel with random  cell duration,
Mz' .  Bartlett-Lew is m odel with £'(A'|/) =
M 4 : Bartlett-Lew is m odel with E(A'|/) =

M odel’s param eters Derived param eters
A K 4> V (3 T E (C )

M l 0.044 0.198 0.065 1.556 1.450 0.308 0.101 4.040

A K 0 a V E (X ) ^ (t) E (C ) E{r))
M 2 0.055 0.439 0.062 2.821 0.394 1.746 3.142 0.444 8.068 7.162

A K V c / /? 7 E (C ) E (X ) P
M z 0.030 3.238 0.592 0.194 0.834 4.695 0.627 0.115 6.465 0.885 -0.368

A K 4> c / /? 7 E (C ) E { X ) P
M a 0.053 0.053 0.109 0.575 1.933 28.549 0.031 0.063 1.487 2.609 -0.370
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Table 3.3: Observed and estimated properties for April rainfall data.

level of Mean Probability Variance C orrelation
aggregation of no rain lag 1 lag 2 lag 3

1 h n 0.088 0.871 0 .134 0 .526 0.297 0.251
M l 0 .088 0 .860 0 .146 0 .5 6 4 0.272 0.176
M 2 0 .088 0.871 0 .134 0 .526 0.320 0.242
M 3 0 .088 0.871 0 .134 0 .5 2 7 0.283 0.220
M 4 0 .084 0 .874 0 .149 0 .708 0.212 0.159

6 h n 0.527 0.707 2.095 0.394 0.129 0.071
M l 0.525 0.696 2.289 0.296 0.130 0.068
M 2 0.527 0.737 2.195 0.346 0.133 0.069
M 3 0.528 0.693 2.140 0.362 0.152 0.068
M 4 0.505 0.710 2.045 0.376 0.209 0.132

12 h 7Ï 1.054 0.583 6.272 0.219 0.034 0.046
M l 1.050 0.588 5.934 0.241 0.061 0.017
M 2 1.055 0.610 5.909 0.253 0.067 0.030
M 3 1.056 0.570 5.830 0.270 0.052 0.010
M a 1.010 0.570 5.535 0.342 0.130 0.052

24 h n 2.109 0.417 14.809 0.181 0.091 0.073
M l 2.101 0.426 14 .727 0.153 0.011 0.001
M 2 2.110 0.417 14.809 0.166 0.029 0.011
M 3 2.111 0.417 14.802 0.151 0.006 0.000
M 4 2.020 0.382 14.765 0.245 0.038 0.006

The properties in b o ld  have been used in the fitting procedure.

V. : Observed properties,
M.\' .  Original Bartlett-Lew is model,
A f0: Bartlett-Lew is model with random  cell duration,
Ada: Bartlett-Lew is model with E{X\ l )  =
M. \ \  B artlett-Lew is model with £ ’(A'j/) =

M odel’s param eters Derived param eters
A K V E(A ') /? 7 E (C )

Adi 0.027 0.267 0.087 1.237 0.994 0.330 0.107 4.077

A K <l> a u E (A ) f;(7 ) E (C )
Ado 0.032 0.661 0.070 3.476 0.632 1.034 3.637 0.385 10.509 5.500

A K V c / /? 7 E (C ) P
Ada 0.021 2.911 0.553 0.243 0.769 2.863 0.707 0.134 6.261 0.687 -0.393

A K <i> ri c / 7 E (C ) E (X ) P
M 4 0.031 0.086 0.143 0.535 1.589 14.957 0.046 0.076 1.602 1.775 -0.353
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Table 3.4: Observed and estimated properties for June rainfall data.

level of Mean Probability Variance C orrelation
aggregation of no rain lag 1 lag 2 lag 3

1 h n 0 .035 0 .9 5 7 0.071 0 .643 0.476 0.339
M l 0 .035 0 .955 0 .074 0 .684 0.446 0.326
M 2 0 .035 0 .9 5 7 0.071 0 .643 0.402 0.295
M z 0 .035 0 .9 5 7 0.071 0 .644 0.373 0.265
M a 0 .035 0 .9 5 7 0 .075 0 .855 0.417 0.296

6 h H 0.212 0.889 1.645 0.195 0.072 0.035
M l 0.212 0.909 1.466 0.332 0.064 0.013
M 2 0.212 0.905 1.326 0.370 0.153 0.090
M z 0.212 0.877 1.295 0.378 0.179 0.096
M a 0.210 0.899 1.391 0.378 0.105 0.032

12 h n 0.423 0.836 3.547 0.204 0.084 0.054
M l 0.423 0.859 3.906 0.177 0.007 0.000
M 2 0.424 0.852 3.632 0.280 0.093 0.049
Mz 0.424 0.826 3.568 0.302 0.082 0.024
M a 0.419 0.845 3.788 0.227 0.020 0.002

24 h n 0.847 0 .756 9 .297 0.109 0.166 0.063
M l 0.847 0 .766 9.195 0.081 0.000 0.000
M 2 0.847 0 .756 9 .297 0.201 0.052 0.026
Mz 0.848 0 .759 9.289 0.188 0.015 0.001
M a 0.839 0 .747 9.255 0.110 0.001 0.000

The properties in b o ld  have been used in the fitting procedure.

H  ; Observed properties,
Ml ' .  Original Bartlett-Lew is model,
Mo'-  B artlett-Lew is m odel with random  cell duration.
Mi ' .  Bartlett-Lew is model with E{ X\ l )  =  f e ~ ^ \
M a - B artlett-Lew is m odel with

M odel’s param eters Derived param eters
A K 4> V E ( X ) 7 E ( C )

M l 0.009 1.254 0.163 1.659 0.708 2.081 0.270 8.711

A K a V E (X ) E { l ) E ( C )

M 2 0.010 0.623 0.152 2.799 1.174 1.068 1.485 0.362 5.091 2.383

A K V c / /? 7 E ( C ) E ( % ) P
M z 0.005 2.929 0.691 0.150 0.441 3.149 0.439 0.104 5.236 0.798 -0.398

A K V c / P 7 E{C) P
M a 0.010 0.401 0.348 0.572 1.181 7.437 0.229 0.199 2.153 1.384 -0.273
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December

— E(XIL)=f  e x p ( - c L )  
—  KX I L ) = f  L e x p ( - c L )  
— E(X) c o n s t a n to n

X

April

—  E(XIL) =f  e x p ( - c E )  
— E(XIL)=f  E e x p ( - c L )  
— e ( x ) c o n s t a n t

X

J u n e

— E( X! L) =f  e x p ( - c E )  
—  E(XIL)=f  L e x p ( - c  
— E ( x ) c o n s t a n t

o n

X

F igure 3.2; M arginal p ro b ab ility  density  function  of ra in  cell in tensity , A ', for th re e  rainfall 
m odels; tw o w ith  d ependen t cell d u ra tio n  in ten sity  of th e  form  E { X \ l )  = fe~^^  (b lue) 
and  E { X \ l )  = (g reen) and  one w ith  exponen tia l cell in ten sity  and  independen t of
th e  d u ra tio n  (red ).
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C h ap ter  4

M u lti-s ite  analysis o f rainfall

4.1 Introduction

In regions where data are available at a small number of spatially separated points, it 

is useful to develop models that can be cahbrated from a network of raingauges. In 

principle, it is possible to apply a full spatial-temporal model, such as the one developed 

by Northrop (1996), and to derive some properties of the model at a discrete collection 

of points in space. In practice however, this is compUcated and an alternative approach 

is to develop models that express directly the between-site interactions, in a manner 

which reflects the underlying spatial-temporal structure of rainfall. These models are 

called multi-site models, and should have inter-site properties that depend on the distance 

between the examined sites and possibly on topography, and should preserve the structure 

of single-site models for their marginal processes at each site.

The models we consider are generaUsations of those proposed by Cox and Isham 

(1994), whose approach is as follows: when rainfall is studied over a network of sites, a 

storm or a cell may be categorised according to the subset of sites which it affects. The 

basic idea is that storms arrive at the study area in a point process called the master 

process, and the type of the storm is determined by some random mechanism. In order 

to decide upon a suitable function for the probabiUties of the different storm/cell types, 

we incorporate assumptions about the spatial structure of the rainfall event.
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4.2 F ixed tim e displacem ent of clusters

We start by examining the evolution of rainfall at two sites, say i and j ,  from a network 

of n raingauge stations. In this analysis, we consider only storms tha t affect at least one 

of the two sites, and assume tha t these arrive in a stationary Poisson process in time, of 

rate A. Associated with each storm origin is a random number, C, of rain cells tha t are 

independently and identically distributed around the storm origin, forming a temporal 

Neyman-Scott process. Each rain cell has a rectangular profile with random intensity, 

X , and exponential duration, L. The different intensities and durations are mutually 

independent and independent of aU other variables.

Storms can be classified into three types or classes, say ‘2’, ‘j ’ and ‘‘i j \  depending on 

the site(s) they affect. We define the probabilities:

P i  = P(storm  affects site i only),

Pj = P(storm  affects site j  only),

Pij = P(storm  affects b o th  sites i and j )  = I — pi -  pj, 

and attach to each storm origin a multivariate random variable, M , called mark, in

dependent of all other variables, to indicate its class, according to the probabilities pi, 

pj and pij. The master point process of storm origins generates two subprocesses, one 

consists of the storms that affect site i and the other of these affecting site j .  This is the 

result of the following two operations on point processes, the decomposition of the master 

process of storm origins into three subprocesses according to the value of the mark, M ,

and the superposition of the subprocesses of types ‘2’ and ‘"ij’’ and those of types ‘j ’ and

H j \  Since the original process of storm origins is Poisson, both subprocesses are also 

Poisson (in time), with rates A, = \{pi + pij) and \ j  = \ [pj  +  pij), respectively. In 

addition, it is assumed that aU rain cells within a storm belong to the same class as the 

storm itself. In order to allow the two sites to experience the same storm at different 

times, we introduce the displacement factors (k = 1 , . . . ,  n) which are real scalars. So, 

for instance, storm and rain cell origins of the subprocess that corresponds to site k , are 

translated in time by the amount which is fixed for all storms and rain cells affecting 

tha t site. The following diagram illustrates the generation of the two subprocesses, each 

one corresponding to a different site. The large bullets in the diagram denote the storm 

origins and the small ones the rain cell origins.
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In  o rd e r  to  in tro d u c e  som e v a ria tio n  b e tw een  th e  ra in fa ll in te n s itie s  a t  d ifferen t s ite s , 

we allow  so m e o f th e  m o d e l’s p a ra m e te rs  to  v a ry  be tw een  th e  g e n e ra te d  su b p ro cesse s . In  

a  c a tc h m e n t a re a  as sm all as th e  B rue , w here  th e  la rg es t d is tan ce  b e tw een  sites is a b o u t 

12 km , i t  is rea so n ab le  to  s ta r t  w ith  a  m o d el in  w hich th e  s to rm -re la te d  p a ra m e te rs  a re  

th e  sam e  fo r all s ites , and  to  le t only th e  ra in  cell c h a ra c te ris tic s  vary  b e tw een  s ite s . 

In itia lly , in  th e  m a s te r  p rocess we assum e th a t  th e  n u m b ers  o f ra in  cells, C , p e r  s to rm  

a re  in d e p e n d e n t a n d  iden tica lly  d is tr ib u te d  ra n d o m  variab les, reg a rd less  o f s to rm  ty p e , 

an d  th a t  th e  d is tan ces  (in tim e) betw een  th e  s to rm  an d  ra in  cell o rig ins a re  in d e p e n d e n t 

a n d  e x p o n e n tia l d is tr ib u te d  w ith  p a ra m e te r  /), com m on  for aU s to rm  ty p es . I t  is a lso  

assu m ed  th a t  th e re  is no ra in  ceU a t  th e  s to rm  orig in . U nder th is  fo rm u la tio n , aU affec ted  

sites  h av e  id e n tic a l s to rm  s tru c tu re s .

C o n ce rn in g  th e  re s t o f th e  m o d e l’s p a ra m e te rs , le t us su p p o se  th a t  th e  d u ra tio n s  

o f ra in  ceUs ex p erien ced  a t  s ite  k (k  =  l , . . . , n ) ,  a re  scaled  by  a  fixed p o sitiv e  fa c to r  

/«. In  o th e r  w ords, th e  d u ra tio n  o f th e  sam e ra in  ceU ex p erien ced  a t  d ifferen t s ite s  

is a  sca led  version  o f th e  sam e ra n d o m  v ariab le . If  th e  ra in  ceU d u ra tio n , X, in  th e  

m a s te r  p ro cess  is ex p o n e n tia l w ith  p a ra m e te r  77, th e n  th e  d u ra t io n  a t  s ite  k  is defined  

as Xk =  a n d  is also e x p o n en tia l w ith  p a ra m e te r  In  o rd e r to  avo id

o v e r-p a ra m e te r is a tio n  an d  w ith o u t loss o f generaU ty  we se t 77 =  1 . Since th e  seco n d  o rd e r  

p ro p e r tie s  involve th e  ra in  ceU in ten s ity , X ,  on ly  th ro u g h  th e  m o m e n ts  E { X )  a n d  

it  is n o t n ecessa ry  to  specify h e re  its  d is tr ib u tio n a l fo rm . In  g en e ra l, i t  is possib le  to  a p p ly  

a  s im ila r scaU ng m ech an ism  to  th e  in ten s itie s  o f a  ra in  ceU as ex p erien ced  a t  d iffe ren t 

s ite s , b u t  fo r sim pU city we assu m e  th a t  th e se  a re  th e  sam e a t  a ll affec ted  s ite s . T h is
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a ssu m p tio n  can  be  easily  rem o v ed  if it  is necessary  to  im prove th e  m o d e l’s p e rfo rm a n c e .

T h e  m a rg in a l p ro p e rtie s  o f th e  above m o d e l a t  a  single s ite  a re  th e  sam e  as th o se  

g iven in  S ec tio n  3 .1 , so o u r in te re s t  in  th is  c h a p te r  is focussed  o n  th e  b e tw e e n -s ite  p ro p 

e rtie s , s ta r t in g  w ith  th e  lag  r  c ross-covariance  fu n c tio n , c , j ( r ) ,  b e tw een  th e  to ta l  ra in fa ll 

in te n s itie s  a t  s ite  i a t  tim e  t ,  Y i(t), an d  a t  s ite  j  a t  tim e  t - f - r ,  Yj { t  + r ) .  L et us d e n o te  by 

Ym{ t )  th e  ra in fa ll in te n s ity  a t  tim e  t ,  due to  s to rm s  of ty p e  m  G S ince s to rm s

evolve in d e p e n d e n tly , on ly  ra in  cells th a t  be long  to  th e  sam e s to rm  c o n tr ib u te  to  th e  

c ross-covariance  fu n c tio n , w hich  fo r r  >  0 is w r it te n  as

Cij{r) =  c o v { y ; ( / ) ,y j ( t - h  r ) }

=  c o v { f i( / )  +  Y i j ( t ) , Y j ( t  + t ) +  Y i j { t  -f r ) }

=  c o v { Y i j { t ) , Y i j ( t  +  t ) }

=  I "  j "  c o v { f / A f  (( -  u) ,  +  T -  t ; ) } ( 4 .1 )

w here  for k =  z, j ,

= <

X  if  >  u

0 o th e rw ise ,

1 if  th e re  is a  cell o rig in  of ty p e  ‘z j ’ a t  tim e  t 

a t  th e  su b p ro cess  co rresp o n d in g  to  s ite  k ,

0 o th e rw ise .

A  cell o rig in  a t  tim e  t a t  s ite  zc, co rresp o n d s to  a  p o in t a t  tim e  t in  th e  m a s te r  p o in t 

p rocess th u s , th e  covariance  o f th e  co u n tin g  m easu res  a n d  d N j p ( t  -f r )  b eco m es

d N l p { t + T - v ) }  =

( 4 .2 )

w here  A,y =  A pi j  a n d  t i j  = U -  t j .  A fte r su b s t i tu t in g  (4 .2 ) in to  (4 .1 ) we g e t

Cij{r) = Xij E { C )  J  d u  E { X ' ^ ) P { L i  > u , L j  > u +  r  +  Uj )

m ax{0,

XijP
CO CO

+ ^ E { C ^  -  C ) E ( X ÿ J  d u  f  d v  >  u ) P ( L j  > v)

0 0
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=  A ÿ £ ( C ) £ ( X ^ )  J  d u e
m a x { 0 ,-T  —

oo U +  T +  t i j

E{C^ -  C ) E ( X f  { f  du f d u e - '’(“- ' ’+’'+‘'>)e“ f “ e V"
m̂ax{0 ,-T-fij} 0

oo

+ J  du J  dv ^^+T+t,j) g 1%̂ e ^

0 max{0,u+T+fij}

= \ i j E ( C ) E { X ^ ) I ^ ^ - ^ E ( C ‘̂ - C ) E ( X f J i , .  (4.3)

The first term  in the above expression gives the contribution from a single rain cell (within 

cell correlation), while the second term gives the contribution due to different rain cells 

of the same storm (between cells correlation).

The integral lyj in Equation (4.3) depends on the signs of {U — Ij) and ( r  +  t{j), and 

in order to calculate it we distinguish four cases.

• If — Ij > 0 and r  +  tij > 0 then, 

max{ft, ï ± ^ }  = ï± I i± i ,  for u > 0  

and
CO

J V %

• If l{ — Ij > 0 and T +  tij < 0 then.

and

where r)ij —

(q-'i) oo
J  du +  J  du

- r - t i j  i^(r+ti , )
(q-'i)

b .  ~  b )  ç V { r + t i j ) / { l i - l j )

T] T]

QVi{r+tij) gT?,;(T + (,j)

Vi Vij

n _
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• If /,• -  Ij < 0 and T +  Uj > 0 then, 

and

oo

J  d?/ e -  ( " + ^ + ^ v ) / ^ ;  +  J
0 (, (’•+ ĵ)

Ü. + _  (4 ~ + )/(/,-/,)
7]  7]

Q-Vj{r+Uj) ç-riji{T+tij)

7]j 7]ji

• If /j- — /j < 0 and r  +  tij < 0 then, 

max{ f-, — } “  77 for w > 0 

and

= 7 du .
V r]i

To summarise the above results we write

' -  (^)+ e"‘> ("+•■.) if r + tij < 0,
du =

’ " ' I /  ''" -  (if-)'"' e Vi ('+ 'v) if T + tij > 0,Vj  '  77;, /  -  ■ i IJ

where =  max{0, z}.

Similarly, in Equation (4.3), depends on the sign of (r  +  tij), and so we distinguish 

two cases.

• If r  +  t i j  > 0 then u + t  + t i j  > 0 for u > 0 , and we get

o o  U+T +  tijj

=
J  du J  dv e-/)(«-t;+T+f,j) ^-v^u ^-r,jv

0 0
o o  oo

+  J  du J  dv e/)("-^+T+(v) e~viu
0  U + T  +  t V

^-P{T+tij) e - ’7j('r+«.j)

iVi +  iVj -  ^ ^ ( 77% +  Vj) -  VjY
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• If r  +  tij < 0 , then,

u + T + t i j  > 0  for u > —T — t i j  , and we get

— '’’ — t i j  OO

= J  du j  dv
0 0

oo U + T + fij
J  du J  dv g-TJ.U g-77,%,

— T — t i j  0

OO OO

+ y* du y  dn e^(«-^+T+t,j) e"^«“
- T - t i j  U +  T +  t t j

p0{r+t,j)
+ 2p-{Vj +  P) iVi -P) ' {rji +  T]j) (^2 _  yy?) • 

Finally, the lag r  cross-covariance function ( r  > 0) becomes

Cij{r) = <

2\ j  e -  ( ^ ) +  I + ^ E ( C ^  -  C ) E ( X )

X

A,,£’(C)F;(A'2) -  ( ;^ )+  e-'7;.(T+(u)j +  ^ E { C ^  -  C ) E { X f

^  (riUvj) iP^-V^p] ^  ^(»7,-|-/3) ( t7j

4.3 A ggregated process

Since rainfall data are available in aggregated form, we consider the cumulative rainfall 

totals in disjoint time intervals of fixed length h. Let be the to tal

rainfall intensity experienced at site i during the n-th interval of length h of the aggregated 

process. The lag k cross-covariance function {k > 0), C\ j \ t i j , k ) ,  of the rainfall intensity 

of the aggregated process, depends on the value of tij relative to —h{k + 1 ), —hk  and

—h{k — 1 ). So, we take the value of tij to lie in each of the four intervals and calculate

the cross-correlation in each case separately.

h { k + l ) h  h

j  Yi{t)dt, J  Yj{s)ds y = J  C i j ( k h T ) { h  -  \r\)dr%  =  cov <
kh -A
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f  C i j , 2 ( k h  + r ) ( h -  \ r \ ) d T  =  t )  if -  h { k  -  1) < Uj,

} - k h  h
f  C i j^ i ( k h  +  r) (/i +  T ) d r  +  /  Cij,2 ( k h  +  r )  ( h  -  \ r \ ) d T  =  C j j k )

if -  k h  <  t i j  < - h { k  -  1 ),

/  C i j ^ i {k h  +  r ) { h -  \ r \ ) d T  +  /  Cij^2 { k h  +  r )  { h  -  r ) d T  =  C \ ^ l { t i j , k )
—t a  —kh

-h  
—ta —kh

-h

—ta — k h

-h

if — h(^k +  1 ) < tij < —kh,

f  Cij^i{kh +  r) (/i -  |r|)rfr = k) if tij < - h { k  +  1),
. —h

= Xi jE(C)E(X^)  Vi( t i j ,k)  +  ^ E { C ^  -  C ) E { X Ÿ  V2{tij,k). (4.4)

The functions Vi{ti j ,k)  and V2{tij, k) are the results of the integration of the exponential 

functions that are involved in Cij(r), over the interval [-h,h],  for the four cases specified 

above and are derived as follows.

If —h{k — 1) < tij, then 

Vi{ti j ,k)  =

V2{tij,k) =

where

'/j 'Ijl
tij, k) 2pWi{T]j, tij, k)

i v i + p)  (% -  /)) i v i + T]j) {Vj -  P'^y

h
W i { Ç , t , j , k ) =  I  | r | ) d r  =  - 2  +  e^^ ) .  ( 4 .5 )

-h

W h e n  —k h  <  t i j  <  - h { k  -  1), t h e n

V^{Ui,k)  =  -  ( — )+ W2(vi j , t i j , k)  -  ( — )+ W2{r^ji,tij,k),
T]i T]j T]ij T]ji

y ( .  W 2 i P , t i j ,  k)  W3 ( ( 3 , t i j , k ) _________ 2P

 ̂ +  /))(77: -  /)) (T7: +  -  /)) +  T7;)
f  W 2 { r } i , t i j , k )  W 3 { r j j , t i j , k ) \

1  W j - P ' ^ )  J
where

— t i j — k h

f  g(((v+t/i+T) ^  d r if tij + k h > 0
- h

J  e-C{Uj+kh+T) d r  if tij -i- kh < 0
— t a — k h
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—t i j —kh

f  e(((v+^/i+T) Çfi _  1^1) d r  i f  t i j  +  k h  <  0

J  ^- ( ( t i j +kh+r)  _  1^1  ̂ i f  t - j  ^  k h  > 0
— t i i —kh

=  À  { ( ^ ■ ' ' ‘ -  2 )  +  1 +  ( ( A -  I t i j  +  k h  I ) }  . ( 4 . 7 )

W h e n  - h { k  +  1) <  t i j  <  —k h  t h e n

V , ( t i j ,  k )  =  +  W , { V i , t i j , k )  _  t )  -  ( i ) +  W , { V i U  t i j ,  k ) ,
7i Vj Vij Vji

V 2 ( t i j , k )  =  2/3
i ’lj +  / ) ) ( %  -  /5 ) ( ’?.' +  / ) ) ( %  -  /?) (%  +  % )

I W - / 3 " )  ( v ] - l 3^ )  ;■

F in a l ly ,  i f  t i j  <  —h { k +  1), t h e n

k)  =  -  ( — )+  W i { r , i „  t i „  k ) ,
It  Vij

V2{t-- k ) =  2 / 3Wi { T] i , t i j , k )
i v j  + P )  i v i  -  P )  i v i  + V j )  { V i  -  P ' ^ y

The lag zero cross-covariance function between the rainfall intensities at two sites of 

the aggregated process is obtained using the expression

/  / i  h \  h h

^ i j \ ^ i j ^ ^ )  = cov j y  Yi ( t )d t , J  Yj(s)ds i  = J  Cij{r){h -  T)dr -f J  Cji(r)(h -  T)dr,  
lo  0 J 0 0

which, after calculating the integrals for each of the four cases specified earlier, results in

Equation (4.4) with k = 0.

It may be worth mentioning that if the cell duration is the same at all affected sites,

(/^ = /,Vk), then = r)~y = 0 and thus the cross-covariance function C i j \ t i j , k ) ,  at

time lags k > 0, simplifies to

= ^ E ( C ) E { X ^ ) W { r , , t , j , k ) +  E ( C ^ - C ) E { X f  

X {r}W{P, t i j , k ) ~  PW{t}, tij, k)},
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where
[ ^ i i C U j , k )  if I tij + kh  |>  h,

[ t i j ,k)  +  VF3(C, tij, k) if I tij + k h \ < h .

The cross-correlation function between the rainfall intensities at sites i and j ,  is 

derived by dividing the covariance c \ j \ t i j ,  k) by the square roots of the variances of the 

aggregated process of total rainfall intensity at the two sites. Storms at site i arrive at a 

rate A* = \{pi  -f pij), and the duration of a rain cell experienced at that site is scaled by 

li, giving an average value of r]~̂ . So, the variance of the total rainfall intensity of the 

aggregated process at site i, for this Neyman-Scott based rainfall model, is (Rodriguez- 

Iturbe et ah, 1987a)

= I  2E(C)E(X^)  ivih -  1 + e-".") +

X E{C^  -  C) {0 iv,h -  1 +  e - ”''*) - T j i ( 0 h - 1  + e - '’'*)}. (4.8)

Similarly, the variance of the aggregated rainfall intensity at site j ,  var{y^**}, is obtained

from (4.8) by replacing the parameters A, and rji by Xj = X{pj + pij) and rjj, respectively.

4.4 Random  displacem ent

In the previous section, a rainfall model is considered in which storm origins, the cluster 

centres, are classified according to which sites they affect, and are translated in time by 

fixed amounts (k  = 1 .. .n) at the subprocess corresponding to site k . So far, the time 

displacement factors are assumed to be independent of any locational characteristics of 

the examined sites and of the storm ’s structure in space. In this section, some of these 

rather unrealistic assumptions are removed and a parameterisation is made tha t allows 

the displacements to depend on some measure of distance between the examined sites, 

and to vary randomly between storms.

Initially, a two-dimensional Euchdean space is defined and the region of the network 

of raingauge stations is inscribed in a disc, V,  of (finite) radius R d , and whose centre 

is taken to be the origin of the coordinate system. In the following analysis, each site is 

represented by its corresponding coordinates. As already mentioned, storm origins are 

assumed to occur in time according to a stationary Poisson process of rate A. Only storms 

that affect parts of the disc, V,  are considered in the analysis and thus contribute to the
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storm arrival rate. The value of X is, in general, related to the size of the examined area, 

which is constant in this study.

Storms and their associated rain cells are assumed to move across the disc, V,  with 

constant velocity, and affect a subset of sites of the network. The trace of a particular 

storm ’s movement over the catchment area is envisaged as a band of given width, location 

and orientation. The movement and the spatial extent of a rainfall band is illustrated 

schematically in the above diagram. The assumption that a storm and aU its rain cells 

affect the same sites is kept, implying that all cluster members have essentially equivalent 

spatial extents, and thus their traces at the examined area coincide with that of the storm. 

Additionally, we assume that as the cluster moves along the band, it hits the disc, î>, 

in fronts tha t are perpendicular to the direction of its movement (dashed lines in the 

diagram). Locations within the disc V  that are covered by the band, experience rainfaU 

that has a duration and intensity specified by the rain ceUs’ characteristics. Since the 

size of the catchment area is relative smaU, we assume that storms and rain ceUs do not 

start or term inate within the disc V.

Suppose that the main axis, ^ 5, of a storm’s band has a fixed direction (f>, which is the 

angle formed with the x-axis. Let the point with coordinates (x i,y ,), which corresponds
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to site i of the network, be projected on to the band’s main axis, ^ 5 , at the point a{. 

The difference of the displacement factors, t{j =  ti — tj, now has a physical interpretation, 

since it represents the lag between the times that rainfall elements reach the two sites i 

and j .  Obviously, this time lag depends on the speed, V, of the storm movement and on 

the distance, dij, between the points ai and Oj, which in turns depend on 0. A realistic 

form of dependence is to have

-  IT )V

where, the signed distance d{j may take any real value and is given by

dij =  {xi -  X j )  c o s  (f)+ {yi -  yj) sin </>. (4.9)

It might be worth mentioning that conditioning on a storm affecting two sites i and j ,  

the distance d{j and consequently the time lag are independent of the width and the 

location of the band associated with that storm.

In a more realistic situation, one expects to have different storms moving with different 

speeds. We define the variable VV = 1/V and assume it follows a gamma distribution, with 

index 9 and scale parameter u. The density function of VV is /V{6),

so the mean and variance of the speed, V, are respectively

E(V) = ' and var(V) =
( 9 - 1 )  '  '  ( 9 - 1 ) 2  ( 9 - 2 ) ’

Also, let all cells within a storm move with the same speed as the storm, which ensures 

that the displacement factor is the same for aU members of a cluster. Since VV varies 

between storms but remains constant throughout a storm’s lifetime, the cross-covariance 

function of the aggregated process of the new model can be obtained by replacing in 

Equation (4.4) tij by Wdij  and taking the expected value of Cip{Wdi j , k )  with respect 

to VV,

E w [ C l j \ w d i i , k ) ]  = Xij E(C)  E{X^)  Ew[Vi iWdij ,k)]

£ ( T  -  C) E ( X Ÿ  EwlVi iWdi j ,  &)]. (4.10)

The details of this calculation are given in Appendix C.

So far we have allowed for the effect of the spatial separation between the sites on the 

time lag tij. But the expression of Ew[C|j‘̂ (Wd,y,/:)] also involves the probability, pij,
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that a storm affects both sites i and j ,  which again depends on the distance between the 

sites and probably also on the storm ’s features. We follow two approaches in modelling 

these dependences, a deterministic and a stochastic one.

4.5 Em pirical m odelling of som e betw een-site interactions

One way to express the dependence with distance of the probability that two sites are 

affected by the same storm or cell is to use a deterministic function tha t describes the un

derlying physical behaviour. Although such properties cannot be observed directly from 

the data, because rainfall elements may overlap in time and in space so that individual 

effects cannot be distinguished, it is reasonable to assume that the further away are two 

locations, the less likely it is that they get rain from the same element. Also, as the 

distance tends to zero, this joint probability should collapse to the marginal probability 

that a single location is affected by a storm or cell.

More specifically, suppose that storms affect part of the catchment area and all rain 

cells within a storm affect the same sites. An intuitively realistic form of dependence is 

to have

pij = min{pj,pj} e"*' + pi Pj {I -  e"*' (4.11)

where pi =  P(storm affects site z), pj = P(storm affects site j ) ,  and dij is the 

Euclidean distance between sites i and j .  So, when the distance is small, the dominant 

part in Equation (4.11) is the first one, where it is expected tha t pi and pj are very 

similar, and that pij is essentially equal to the probabifity that at least one of the two 

sites is affected by the storm. For large distances, it is assumed tha t a storm affects site 

i independently of site j ,  and thus pij is given by the product of pi and pj.

It is possible to express the probability, qij, that a rain cell affects both sites i and j  

with a similar function,

Qij = m in{çi,qj} 4- qi qj {I -  ^ ') ,  (4.12)

where qi =  P(ceU affects site z), and qj =  P(ceU affects site j ) .  Then, we expect tha t in 

general Ks < Kc, in other words the probability qij decays more rapidly with distance as 

compared to pij.
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The advantages of this formulation are that it is both intuitively and mathematically 

simple, and it can be expanded easily to model the probability th a t a rainfall element 

affects more than two sites. Among the disadvantages is that it does not include any 

information about the spatial structure of the rainfall event. As a result, the probabilities 

Pi  are model parameters that are estimated directly from the data. Thus, for every new 

site tha t is included in the analysis, one extra probability has to be estimated and so the 

dimensionality of the parameter space increases linearly with the number of the examined 

sites.

4.6 Random  rainfall bands

In Section 4.4, it is assumed that each storm moves with random speed and the trace of 

its passage over the catchment area is a band of fixed width and location. In this section 

we allow some of the features of the rainfall bands to vary randomly between storms. As 

a result, the probability that a storm affects a subset of sites of the network is no longer a 

constant parameter but a random quantity. Furthermore, a substantial reduction on the 

total number of parameters of the model is achieved when the rainfall process is examined 

at more than two locations.

The problem of locating at random a line in a plane, or in a bounded region, is 

not a simple one. Kendall and Moran (1963) give a few paradoxes that arise when a 

probability measure is ascribed to geometrical objects, such as points, lines and rotations. 

The confusion is usually caused by the failure to distinguish the proper reference set. In 

general, the distribution of a geometric object is defined by determining first a system 

of coordinates which define the object uniquely, and then a probability distribution on 

the range of these coordinates. Kendall and Moran (1963) mention tha t if we write the 

equation of the line as

X sin^  — y cos<  ̂=  O', (4.13)

then the differential element da d(j) is the only measure that remains invariant under 

the group of all translations and rotations. In our application, the examined region is a 

disc of (finite) radius, R d , and a line is specified by the angle, 0 , it makes with a fixed 

axis, say the z-axis, and the distance, a , from the origin. Its equation is given by (4.13),
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and the case where a and (j) are independent random variables is now considered.

Suppose tha t the rainfall band associated with a storm has a width 2^^, a direction 

and the signed distance between its main ajds, .4^, and the origin is The spatial 

extent and the location of the band is fuUy determined by o;̂  and Rs,  and in order to 

describe the stochastic nature of the rainfall process, these variables should be random. 

The values of a ,  and Rs affect only the probability that a subset of sites is affected by a 

storm, while the direction of the storm’s movement, (p, also affects the lags between the 

times tha t rainfall liits the various sites. The following diagram illustrates the spatial 

features of the rainfall band.

Rv

So, at this stage, only Og and Rg are allowed to vary between storms, while the 

randomisation of (f) is left to a later stage. Two natural candidates for the distribution 

of the width of a rainfall band are the gamma distribution and its special case, the 

exponential distribution. The latter is mathematically more tractable and in modelling
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the spatial-temporal rainfall fields, when storms are envisaged as cylinders (Cox and 

Isham, 1988) it has been used for the distribution of storm radius. So, it is assumed here 

that Rs is exponentially distributed with parameter and with survivor function 

A particular site experiences a storm if its distance from the storm ’s main axis is smaller 

than the value of Rg. The signed distance, d{, between the axis As ’ y = x tan ^  -f 

and site i with coordinates ( x i , y i )  is

di = as — yi cos <p -|- Xi sin (j)

=  Q s  -  Mi .

For given values of Og and 0, the probability, Os), that a storm affects site i is

Aa) =  d^Rsi\di\) = exp{-ps\ag  -  A/;|}, (4.14)

and so for the point process that corresponds to site the storm arrival rate is A pi(0, Og).

Similarly, the probability, p^ (^ , Og), that a single storm affects two particular sites i 

and j  is expressed in terms of the survivor function J-r ,. More specifically, the value of 

Rg should be greater than both absolute distances |d, | and |dj|, in order tha t both sites 

experience the storm, that is

Pij{(f),ag) = TRM'^a.x{\di\,\dj\}) = exp{-/?g max{|d,|, (4.15)

In general, different storms may affect different parts of the area D, so it is more 

realistic to let the position of a storm’s rainfall band, specified by the signed distance Og, 

be random. In the absence of any topographical effects to indicate a preferred route for 

the storms, (Section 2.3.2) we assume that Og is uniformly distributed in [—R d , R d ]-

Specifically, the probability pi{(f) ,ag)  in equation (4.14) is now replaced by its mean 

value, Pi((/>), given by

1 ?
Pi{d>) =  J e x p { - p g |o ! g  d o g

- R d

— 2Æd/9 ~ ^^p {—Ps(Rd + A/Î)} -  exp{-/>s(il£) — A/i)}}. (4.16)

Similarly, the expected value with respect to cng, of the probability pij(</>, a^) tha t a 

rain cell affects two sites i and j  is
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 ̂ no
V i j W  =  2 ^  J  ex^{ -ps  max{\di\, \dj\]} da,

R d

J
- R d

= — 2^Rd  'p ~  exp {-/Js(il£ ) +  Afi j)} -  e x p { - p s { R D  ~

where Afij =  {Mi + Mj)/2.

It is straightforward to obtain the cross-covariance function of the model with random 

rainfall bands from the expression of Ey\;[clj \ 'Wdij ,k)]  given in Equation (4.10), by 

replacing parameter Xij by Xpij{(f)), resulting in

^  V p i j ^  £ (C " -  C) E { X f  Ew[V2{Wdij,  k)]. (4.18)

In addition, the expression of the variance of the total rainfall intensity at a site, say 

z, is easily derived from Equation (4.8) by replacing X{ = X{ pi  + P i j )  by Ap,(^).

4.7 Cell classification only

So far, it is has been assumed tha t different storms affect different parts of the catchment 

area and that all rain ceUs within a storm have the same spatial characteristics (location 

and spatial extent) as the storm, thus affecting the same sites. However, results from 

fitting the previous model to observed rainfall sequences in the Brue area, showed values 

close to one for both Pj(^) and Pij{4>),  suggesting that once a storm hits this area, it affects 

almost all sites. Also, for that model the estimated cross-correlation function between 

the rainfall intensities at two sites takes higher values as compared to the observed ones, 

which imphes that rain cells have smaller spatial extent than the storm, and each one 

affects a subset of the sites affected by the storm. Thus, a marking mechanism similar to 

the one discussed in Section 4.2, is applied to the rain cell origins rather than to the storm

origins. So now, cell origins are classified into the three types ‘z’, ‘j ’ and H j \  depending

on the site(s) they affect. We define the probabihties:

Qi = P(cell affects site z only),

Qj = P(cell affects site j  only),

qij =  P(cell affects b o th  sites z and j ) .

Initially, the master point process of cell origins is decomposed into three subprocesses,
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according to the probabilities qi, qj and qij. Then, the subprocesses of types ‘i ’ and 

and those of types ‘j ’ and ‘zy’ are superposed to generate two processes, one for each 

affected site. The Poisson process of storm origins, of rate A, is the same at all generated 

subprocesses. At this stage, we specify the distribution of the to tal number of rain cells 

per storm, C, and assume it is Poisson with mean //c- Thus, the number of rain cells per 

storm tha t affect site i is also Poisson with mean fic{Qi + Qij)-

A schematic representation of the generation of the two subprocesses of rain cell 

origins from the master process is given in the following diagram, where the large bullet 

denotes the storm origin and the small ones the cell origins.
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In addition to the above specifications of the model, suppose tha t each storm affects 

the whole catchment area, it moves with a speed, V, that is constant during its hfetime 

but varies randomly between storms, and with a direction, 0, tha t is kept fixed at this 

stage. Each storm has a main axis. As-, whose signed distance from the origin is Og. It 

is assumed that rain cells move with the same speed and direction as the storm, and 

associated with each one is a rainfall band whose width and position relative to As  are 

random variables, and whose main axis is denoted by Ac> These bands are related to the 

paths of the rain cells as they move across the disc V.  Suppose tha t the distance between 

the parallel axes Ac and As  follows a two-sided exponential distribution with parameter 

Po tha t is, the density function of the signed distance between the cell axis and the origin 

is f {w)  = Each cell band has a width 2Rc, where Rc is exponential with

mean p~^.
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For given values of <j> and a^, the probability, qi{(j),as), th a t a rain cell affects site i is

OO

qi{(f),as) = Y  J  ^ ^ p { - P c \a s - J ^ i - w \ } e x - p { - / 3 c \o c s - w \ ] d w  (4.19)
— CO

= p2 {Pc^^v{-pc\o^s -  M \ }  -  -  ^^i\]},  (4.20)

where A/i =  yi cos -  z, sin 4>. The first exponential term in (4.19) gives the probability

that the absolute distance between site i, with coordinates (z,-,î/,), and Ac is less than

Rc. Similarly, conditioning on the values of 0 and the probabihty, (<;/>, Og), tha t a 

cell affects both sites i and j  is

qij{(j),as) = {/)c exp{-pc\ois -  Afij\} -  pc exp{-/3c|o!a -  A/ij|}}.
He Pc

(4.21)

If now we let Og be uniformly distributed in the interval [—R d ')Rd ]'i then the expected 

value of the probability Ç;(^, a^) is given by

 ̂ R d

j  qi{<p,a,)da.
- R d

01  p „  R d ) - p I K-jMi,  0c ,  R p )

2 R d  Pc (0 1  -  p \ )

where

(4.22)

K ,{J\fRd) — 2 — exp{— + A/̂ )} — exp{—̂ (i?£) — A/")}

= 2 ( l - e " ^ ^ ^  coshCAT). (4.23)

The probability Çÿ(^, Og) is replaced by its expected value with respect to Og,

 ̂ R d

( l i M )  =  J  q i j { < i > , o : s )  d a s
—R d

=  -  p I  K ( M i j , 0 c , R d ) } .  ( 4 . 2 4 )

In order to derive the lag k cross-covariance function (k > 0) between the rainfall 

intensities at two sites, we refer to the corresponding function, Ey\>[Cjj\Wdij,k)],  given 

in Equation (4.10). In the model with rain cell classification only, the storm arrival 

rate is A, while the numbers of rain cells that affect site i, site j  and both sites, are
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Poisson variables with means iic^nW-, l̂ cQj{<l>) and respectively. So, the lag k

cross-covariance function (A; > 0) becomes

=  Xqi j { < t > ) , i c E{ X ^) Ew[ Vi { >Vd i i , k ) ]

+ Y  E { X f  E w m W d i i ,  k)], (4.25)

where the first term gives the ‘within cell’ contribution to the covariance, and the second 

term  gives the contribution from different rain cells of the same storm.

4.8 Random  direction

In the previous sections it has been assumed that the direction, 4>, of the storm movement 

is fixed for all storms. This is not realistic, even for relatively short periods, such as 

one month. The study of the observed cross-correlation functions for various angular 

separations between pair of sites (Section 2.2), has revealed that although there exists a 

prevailing direction, the contributions from other directions are also very significant. In 

this section, we investigate ways in which 4> can vary randomly between storms.

The main problem of randomising 0 is the complexity of the expressions in which it 

is involved, which limits any further algebraic manipulation. For instance, for a fixed 

pair of sites, the direction of the storm movement influences the probability tha t a rain 

ceU affects the pair of sites, and also the lag between the time it hits each one of them. 

Although (f) can take any real value, we restrict its domain to the interval (0,27t], since 

the values <f) and (f) -f 2A:7r, for any integer k and any real (j), correspond to the same point 

on the circumference of a circle.

So, a possibility is to model <f) using a continuous circular distribution. The between- 

site properties of the aggregated process under the new assumption are derived by taking 

the expected value, with respect to of the corresponding expressions with fixed ^ ’s. 

This requires integration of some functions tha t do not have an analytic closed form and 

have to be evaluated numerically. One way to overcome this computational obstacle is to 

consider as a discrete random variable, in which case one needs to evaluate a relatively 

small number of sums, as compared to the numerous iterations required by the numerical 

methods of integration. Theoretically, given any distribution on the line, it is possible to 

wrap it around the circumference of a circle of unit radius, and to construct a circular
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distribution (Mardia, 1972). However, the literature on discrete circular distributions is 

very limited, mainly because their properties are not as tractable as their analogues on 

the real line. Thus, in this analysis we start with a continuous distribution and then 

discretise it, by integrating its density function over a number of intervals.

The most common of the continuous circular distributions is the von Mises, which 

plays a key role in statistical inference on the circle, and has probability density function

g«cos((;6-<̂ o)
g{(j); 4>o, k) = . , 0 < </) < 27t, k > 0, 0 < </>o < 27t,

ZiriQ̂ K.)

where Io{hi) is the modified Bessel function of the first kind and order zero,

^o(«) = ( 2 )^"-
r = 0  '

The von Mises distribution is unimodal, symmetric around the mean direction (pQ and 

the larger the value of the concentration parameter, k, the greater the clustering around 

the mode, (see Figure 4.1). Although the von Mises distribution seems, intuitively, a 

suitable model for the direction of the storm movement, the discretisation of its density 

function does not lead to mathematically tractable expressions and thus this choice is 

inappropriate because of computational constraints.

Another continuous circular distribution is the cardioid, with probability density func

tion

gi<P) ^  { I + 2 K cos{(f)-(po)}, 0 < </> < 27t, l«l < (4.26)

With reference to Figure 4.1, we see that the cardioid distribution is also symmetrical and 

unimodal, with mean direction </>o, and as compared to the von Mises distribution, it can 

not produce density functions with very high concentration around the mean. However, 

since the data analysis did not reveal such a large clustering, this weakness is of little 

practical significance. On the other hand, if <p foUows the cardioid distribution, then the 

probability P{<pi < 4> < <̂2), < (pi < <p2 2?r), is given by the simple analytic form

i  -  <Pi) + 2 «:{sin(0 2  -  (po) -  sin(<;6i -  0o)}}- Thus, if (0,27t] is segmented into s 

disjoint intervals, each of length 27t/5, then the probability, gr, that <p belongs to the r-th  

interval, (r  =  1,..., 5 ), is easily calculated. The function defined by

9 r  — -  4- — {sin(^r — 00  +  “ ) “ S i n ( 0 r  “ 0 0  — “ ) } ,  0 r  =  — (2r — 1), r  =  1,..., 5 , (4.27)
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The von  Mises d is t r i b u t i o n The  c a r d i o i d  d i s t r i b u t i o n
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Figure 4.1: Probability density function of the von Mises distribution (left) and the 

cardioid distribution (right), both for mean direction = 0°.

satisfies the usual properties of a probabihty density function of a discrete distribution, 

and is used as the probabihty distribution of the direction, 0, of the storm movement.

So, when </> is random, combining Equations (4.22), (4.24) and (4.27), we get the 

probabihties that a rain ceU affects a given site, say z, or a pair of sites, say i and j ,  

respectively
m m

Çi — ^  ,,9 t  Qi{4^r) a n d  qij — qi j { 4^r ) '
r = l  r= l

Also, the cross-covariance function is derived using Equations (4.25) and (4.27) as follows.

k)] = A Me E { X ^ )  E4qi j {4>) E w [ V i ( W d i j ( , j > ) ,  fc)] ] 

+ ^ 1 ^ 1  E ( X f  E^[qi{4>) qj{4>) E w m W d i j W ,  k)]  ]. (4.28)

The marginal properties of the rainfaU intensity at a single site are also functions of 

the direction, and we take the expected value with respect to <f> of the corresponding 

expressions.
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4.9 Probability o f zero rainfall at two sites.

In modelling the evolution of rainfall at more than one distinct point in space, it is 

im portant to study the probabihty tha t two (or more) sites have zero rainfall during 

either the same arbitrary time interval or different periods, and to explore how these 

properties depend on the distance between the examined sites. If

is the total rainfall intensity experienced at site i during the n-th interval of length h of 

the aggregated process, then ideaUy, we would hke to derive aU conditional probabihties 

of the form f  =  yj), but from our experience in modehing rainfaU at

a single site, we know that those for yi ^  0 and yj ^  0 are going to be difficult to 

obtain analyticaUy. So, we focus on the probabihty of zero rainfaU at two sites i and j  

simultaneously, = 0), for an arbitrary period of fixed length h, say [0,h].

4 .9 .1  S to rm s w ith  fixed  t im e  d isp la cem e n ts  at var iou s s ite s .

We examine the evolution of rainfaU over a network of sites, and consider a model in 

which storms arrive in a Poisson process (in time) of rate A and generate a number, C, 

of rain ceUs, that occur in a Neyman-Scott process. It is assumed tha t storm and rain 

ceUs move across the catchment area with a fixed speed and direction, which imphes that 

the lag tij = ti — tj between the times tha t a rainfaU element reaches two sites i and j  is 

the same for aU storms and aU rain ceUs. The traces that are formed as rain ceUs move 

across the area, are visuahsed as paraUel bands tha t have width and location tha t varies 

randomly between ceUs. Since the catchment area is relatively smaU, we assume tha t aU 

storms affect the whole area, thus the rainfaU band associated with each storm always 

has a width that is greater than the examined area. The specifications of the spatial 

structure of rainfaU are similar to the ones described in Section 4.7, so when the direction 

(j) is fixed, the probabihties Çi(</>) and qij{(f>), tha t a rain ceU affects a particular site, say 

i, or a pair of sites, say i and j ,  are given in Equations (4.22) and (4.24), respectively. In 

addition, we let the number of rain ceUs, C, per storm foUow a Poisson distribution with 

mean /Xc, and as before the duration of rain ceUs is exponential with parameter rj, and 

is scaled by a constant factor li at site i giving a mean hfetime of rji = j]/li. We remind 

that it is assumed tha t there is no rain ceU attached to the storm origin.

Examining the rainfaU intensities at two sites i and j  at times t and t +  r  respectively,
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is equivalent to looking at the master point process and considering the rainfall intensity 

at time t — due to elements that affect site i, and the intensity at time t r  — tj due 

to elements that affect site j .  So, the probability that the subprocesses corresponding 

to sites i and j  are simultaneously dry during the interval is the same as the

probability tha t in the master process, there are no active rain cells of type ‘i ’ or ‘i j ’ during 

the interval + h] and of type ‘j ’ or ‘z j’ during [—t j , —tj  +  h]. Consequently,

= 0) can be written as the product of three terms, the probability, 

that in the master process, there is no rainfall during +  h] and

+  h] due to rain cells that affect both sites, and the probabilities tha t in the 

master process, an arbitrary interval of length h is dry, due to rain cells that affect site i 

only, and due to the ones affecting site j  only, .

Initially, we derive the probability and thus consider only rain cells that

affect both sites i and j .  Since C  is Poisson, the number of type ‘z j’ rain cells per storm 

is also Poisson with mean = fic lii what follows the explicit dependence

of on <p is dropped for the sake of notational simplicity. As in the derivation of

the cross-covariance function when the displacement factors are fixed, we distinguish four 

cases depending on the value of tij = — tj relative to —h, 0 and h.

C ase 1: tij > h.

time

~U  ̂ —ij ^
] h "

------------------^

master
process

process, 
at site z

process 
at site j

This diagram illustrates how the interval [0,h] of the subprocesses corresponding to 

sites z and j  is translated in time to the intervals Si = [—<%, —tiYh]  and Sj  = [ - / j ,  -<j +  /i], 

respectively, in the master process. In this diagram both displacement factors are positive.
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but the same results apply to any values of U and tj, such tha t Uj > h. In the following 

analysis we focus on the master point process of rain cell origins and we explore the 

contribution to the probability = 0) of the type ‘i j ’ rain cells only.

First let us consider a single storm with origin at time y. If y < —U then Si is dry 

if there are no rain ceU arrivals during this interval and if aU cells with origin, say w, 

before —ti have duration less than —ti — w at site i and less than —tj — u at site j ,  with 

probability

p [ l i  < - t i  -  u, Lj < - t j  -  = p(^L < mill

We distinguish the following two cases.

If li > lj then m in{~*j~’‘ , for y < u <  - t i .

})•

(4.29)

If li < lj then min{ =
— t i  — U if T  < u < - t i .

(4.30)

Also, Sj is dry if no rain cells arrive during this interval, and if aU cells with origin, u, 

after —ti +  h and before —tj have duration less than —tj — u at site j .

When li > lj, the probability, Il[’'^ (̂y, Zjj), of zero rainfall during intervals Si and Sj 

due to a single storm with origin at y < —ti is

^  5 § ' - ' S 0 ....
'  - b

m
CO

J  ( l  - > <

- t i + h ~ ^ j + h

n—k—m

CO n 

n = 0  k=

X

X ^- P i ^ ^ - ^ i - y )  "I ç - P { h - t j - y )  ( n - k - m )

OO , ,k

€ g  i f  -  jh iM
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/ 3 - ^ , l  / /
OO n —k —m

V f > - l ^ { h - ^ i - y )  ^    p - P { h - t j - y ) { n - k - m )

t fn = k + m   ̂ ^

= exp { - I i i i  ( -  rii e'’(‘'+>')} -  e'^C'+î'*
I I P -

, —0 h
-   -------{/? _  tjj

When li < lj, the probability Il5’'’̂ (3/, tij) is given by 

n P { y , / i j )

OO , , n  n 
Pi7= E J E7 7  Ï

n = 0  " fc=0

n —k

E
771 =  0

y

71 — / î

m

n — k —m

P e-0iv-y) ^ J  p

= exp I  -  —  e'7j(<*+v) -  e^(^+î/)| ..  +
I P -  7?:

Since storms arrive in a Poisson process of rate A, the mean number of storm origins 

during an interval of length x is also Poisson with mean Xx and, conditioning on the 

number of points in that interval, their times are uniformly distributed. So, if we consider 

all storms that arrived before time —ti ,  then the probability tha t intervals Si and Sj  are 

dry, due to type ‘i j ’ rain cells only, is

n P (< i i )

=  Hm f :  e - ' l - ' - )  I  d y ]

= exp I -A  J  | l  -  exp I  -  Ai {r j i ,  %, y) +
L — OO

J  % ___g - 0 > ‘i  Ê  g - 0 l t g - n j i U j - h )  ~  , I

0 - r i i  ! 3 - m  (/) -  %) (/) -  %) J P  7 ’

where
^  e”'*' if m < 7]j

SjT if IJ,' >  IJ j

( 4 .3 1 )



and = mcLx{z, 0}.

Suppose tha t a single storm has origin, y, in Si- Then, in order intervals S{ and Sj 

to  be dry there must be no cell arrival before time —U +  h or during interval Sj^ and all 

cells with origin, u < —tj must have duration less than —tj — u at site j .  In this case, 

the probability, Il2 ^ \y , t i j ) ,  of zero rainfall during Si and Sj due to a single storm, is

n = 0 k=0

—ti

— t i + h

= exp I  +
P Q - V j i t i j - h )  _  y y  ç - 0 { t i j - h )

-  1 -

n —k

The number of storms with origin in S{ is Poisson with mean Xh and conditioning on 

the number of storm arrivals, their times are uniformly distributed in the corresponding 

interval. So, the probability of zero rainfall in the master process during Si and Sj due 

to all storms with origin in Si  ̂ is

=  E
k —0

X^
k\

—t i + h

- \ h J  ^ 2 ^ \ y , U j ) d y
-ti

= exp I  -  A J  1 -  exp |  -  fiij ^1 + e ^
Pe-'nj{tij-h) _  ^^ç-(3{tij-h)

(d-ri j
— 1 — e- I 3 t

Next, we consider a single storm that arrived during [—ti +  h , —tj]. Obviously, this 

storm does not affect interval S{̂  and for Sj to be dry, there should be no cell arrivals 

during Sj and all rain cells that arrived before time —tj should terminate at site j  before 

- t j .  The probability, U^^^\y,tj),  of this event is

n—k

— exp < fiij  ^__ ^Vj{tj+y) _  ( __ 'Ij...  4 _  p-0h\^P{tj+y)
P -  l j  -  l j

and as before, taking into account aU storms tha t arrived in [-t i + h, - f j] ,  the probability
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tha t Si and Sj  are dry is

œ y^k^-\{U,-h)
= 1 ^ -

k-Q

- t .

k\

= exp <
f ^ - V j

> .

Finally, when a single storm has origin in Sj, then aU rain ceUs of this storm should 

arrive after time - t j - \ - h ,  with probability

n = 0 n:
y-tj+h

and the corresponding probability due to all storms that arrived in Sj  is

nS'̂ > -= E
e~ Xh

— t j  -{-h

k = 0
k\

= exp I -A  J  1 -  exp{- f i i j  (1 -  e j .
So, when tij > h, and considering only type ‘i j ’ rain ceUs, the probabihty th a t in the 

master process, the intervals Si = [—ti, —ti +  h] and Sj = [ - t j ,  —tj +  h] have zero rainfaU, 

is

=  s P C u )  n p .  ( 4 .3 2 )

C ase  2: 0 < tij < h.

When the absolute difference between the time displacement factors, is less than the 

level of aggregation h, the intervals Si and Sj tha t are formed by translation of [0, h] from 

the two subprocesses corresponding to sites i and j  back to the master process, overlap 

and their union is one interval of legth h +  as it is iUustrated in the foUowing diagram. 

As before, we focus on the master point process and examine only the contribution of 

the type ‘i j ’ rain ceUs to the probabihty that interval Sij = [ - t i ,  —tj +  h] is dry.
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time

—tj h—ti +  h master
process

process 
at site i

process, 
at site i

We start by considering a single storm with origin, y, before time —tj. For interval 

Sij in the master process to be dry, all rain cells with origin u < —ti must have lifetimes 

less than ti — u when experienced at site i and less than tj — u at site j .  The probability 

P{L < min{ depends on the sign of {U — lj), and its expression is given in

Equations (4.29)-(4.30). If k > lj, then the probability that in the master process the 

interval Sij has zero rainfall due to a single storm with origin y < - t j  is

=  E
“  -

n = 0 n\ E
k=Q

n—k
OO

- t j + h

X  I  y  ( l  -

= exp < -qij  He ^  V i { t i + y )  _  f  p 0 { t i + y )

-  rn /

while, when lj < lj we have instead

=  E  E
t j + h

r T -ti \  "
I j 0 « - « “-!<) ( l  -  e”j(‘j+“>)du + f P ( l  -  >
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= | - P v { y r ^  e’'<(“ +î')

Mu+v) ! Vi I g-m j+ k)  _  /?(’?■• -  %)
V - %  (/) -  %)(,) -  %)

If we consider all storms tha t arrived before —U, then the corresponding probabihty 

becomes

n ^ 'C ü )

= E I /  <̂y|
{ 0

-A  J  1 -  exp I  -  fiij Ai{7]i, Tfj, y)  -  fiij

— OO

..........

where A\ { r f i , r f j , y )  is given in (4.31).

Similarly, the probabihty of zero rainfaU in the master process during Sij due to aU 

storms with origins in this interval is

( U]+h
= exp j - A  y  1 -  e x p { - ^ i j  (1 -  dy

FinaUy, when 0 < tij < h the probabihty that the interval Sij of the master process 

has zero rainfall, due to aU storms and considering only rain ceUs tha t affect both sites, 

is

(4.33)

C ase  3: —h < tij < 0.

In this case, the difference between the time displacements is less than the length h, 

with time —tj proceeding time —ti and because of symmetry with Case 2, we have

= n f '(«;.) n f  ((,.). (4.34)

C ase 4: tij < - h .

Similarly, this case is symmetric to Case 1, with respect to i and j ,  so the probabihty 

tha t in the master process there is no rainfaU during the intervals [—t j , —tj +  h] and
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[—ti, —ti +  h], due to rain cells of type ‘i j ’ only is

n f  n f  («,.) n f . (4 .35)

So far, for the calculation of = 0) we have considered only rain cells

tha t affect both sites i and j ,  and thus the contributions to this probability due to cells 

tha t affect only one of the two sites remain to be examined. We now focus on rain cells 

tha t affect site i only and derive the probability tha t in the master process, an arbitrary 

interval of length /i, say Si = [-ti ,  - t i  + h], has zero rainfall intensity. The number of type 

‘z’ rain cells per storm is a Poisson variable with mean /z,- = fJ>i{4>) = {qi{4>) — qij{4>)}-

A single storm with origin y < - t i  has no active rain cells of type ‘P during Si with 

probabihty

„=o "■

= 1 -  w  t  ....... " - ( ^ + }}  •

If we consider aU storms that arrived before —ti, then the probabihty that Si is dry is 

nr* = l  j n t \ y , U ) d y \

= exp | - A  y  { l  -  exp { -  +  W d y j  ,

which does not depend on the displacement factor ti, but only on the length, h, of the 

interval.

A storm with origin, y, in Si leaves this interval dry if ah of its rain cehs arrive after 

time —ti +  h. Storms arrive in a Poisson process of rate A and conditional on the number 

of arrivals during Si, their times are uniformahy distributed in Si. So, the probabihty 

tha t in the master process, the interval Si is dry due to ah storms that arrived during 

this interval, is

n \  k

t = 0  ' I n = 0
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= exp IA  y  exp{-/xi (1 -  e d y j

So, the probability that in the master process an arbitrary interval of length h  is dry 

due to rain cells that alfect site i only is

(4.36)

Similarly, we derive the corresponding probability, , due to rain cells tha t affect site 

j  only.

Finally, we are in the position to calculate the probability tha t sites i and j  are dry 

simultaneously during an arbitrary period of length h,  when storms and rain cells in the 

master process are displaced by a constant factor at the various sites. This probability 

is a function of t{j = ti  — t j  and is given from

^  ^  0) ^  J i ~ )  (4.37)

4 .9 .2  R a n d o m  s to r m  f e a tu re s

We now allow the displacement factors to depend on the location of the examined sites 

and to vary randomly between storms, and calculate the probability tha t two sites are 

simultaneously dry during an arbitrary interval. Following similar steps as in the calcu

lation of the cross-covariance function (Section 4.4), we express tij as the product of the 

distance, d i j  = { x i  -  Xj ) c o s ( j )  + (y, — yj)sin^ , between sites i and j ,  and the random 

variable W  = 1/V, where V is the speed of the storm movement. As before, W has a 

gamma distribution with density function /w (0  =  /T{6), so the probability

of the two sites being simultaneously dry during an arbitrary period of length h  becomes

E w [P(y I ' ‘̂  = y/''* =  0) 1 (4.38)
h/ \d- i j \  OO

J  f w { w )  i j j l^^\w\di j \  <  h ) d w +  J  f y \ ; {w )  <  w \d i j \ )d x

0 hl\dij\

which is calculated numerically.

In theory, it is possible to extend the above result and derive with the same way, the 

probability that two sites are dry for periods of the same length h, lagged by k time units. 

However, because Cases 1 and 4, as well as Cases 2 and 3 will no longer be symmetric,
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the complication of the formulae increases dramatically and they become impractical to 

use.

The previous expression involves the probabilities Çi, qj and qij and the signed distance 

dij, which are all functions of the direction (f) of the storm movement. Suppose tha t 0 is a 

discrete random variable, that varies between storms and its density function is given in 

Equation (4.27). Then the expression of the probability that two sites are simultaneously 

dry, is derived by taking the expected value, with respect to <f), of jEvv[-P(^/^^ =  Yj^^ =  

0)], which is not given in an analytic closed form, but it is possible to  evaluate it evaluated 

using numerical methods of integration.

4.10 A lternative m ulti-site m odels

4 .1 0 .1  S torm  and rain ce ll c la ss ifica tio n

In modelling the evolution of rainfaU over an area of the size of Brue catchment, it is 

reasonable to assume that the storms considered in the analysis affect the whole area 

and that rain ceUs may be classified according to the locations they affect. In other 

words, storms arrive at the catchment area in a Poisson process of rate A and the master 

point process of rain ceU origins is decomposed into a number of subprocesses, each one 

corresponding to a different subset of sites. However, when the network of raingauge 

stations covers a much larger area, some of these assumption are unlikely to be correct 

and wiU need to be changed. Using a similar framework to the above, it is possible to 

build models that could be appUed when storms have a mean spatial extent tha t is smaU 

compared to the examined area, which is inscribed in a disc V  of radius R ^ .  SpecificaUy, 

let us assume that storms move with random speed, V, that remains constant throughout 

their Hfetime, and with direction, 0, that is kept fixed at this stage. The trace of a storm 

movement is visuaUsed as a band of width 2Rs, tha t intersects the catchment area, and 

has a main axis tha t is a signed distance a g away from the origin. Each storm generates 

a random number of rain ceUs that arrive in time in a Neyman-Scott process and move 

with the same speed and direction as the storm. The trace from a ceU’s passage over 

the disc T>, which is the area that experiences rain due to tha t cell, is envisaged as a 

band with main axis Ac and random width 2Rc- We assume tha t Rc has an exponential
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distribution with parameter pc and tha t the signed distance, ac, between the axis Ac 

and the origin of the coordinate system, is uniformally distributed in [a, -  Rs,ag  +  Rs]- 

The assumption that storms and rain cells do not start or term inate at a location of the 

catchment area is retained, for the sake of simplicity, although it is very likely tha t when 

the area is large it should be removed.

This model is based on the idea that both storms and rain cells may be classified 

according to the sites they affect, and the probability that a rainfall element affects a 

subset of sites reflects the spatial structure of the event and possibly the topography of 

the catchment area.

For this model, conditioning on the values of Og and the probability tha t a 

rain ceU affects a particular site, say i with coordinates (xi,yi),  is

 ̂ Os + Rs
qi{(j ) ,as,Rs)  = ^  j  e x p { - p c \ a c  -  Vi cos <f) +Xism<l) \ }  dac

Û f —Rs

= < (4.39)
_ g-Pcda.-AT.I+fl,) j

where = yi cos <f> — x,- sin ç.

If there is no evidence to support the existance of topographic effects, we may assume

tha t the signed distance, Og, of the storm axis from the origin is uniformally distributed

in [—R d i R d ]- Also, if Rs is a positively defined random variable with probability density 

function //?., then the probability that a rain cell affects site i becomes

— Rasi^Rsi Rs) ] ]
R d  00

= j  das j  dRs fR,{Rs) qi{(f>,as,Rs)
—R d  0

=  5 ( A 4 )  +  5 ( - A / ; ) ,  ( 4 .4 0 )

where

\RD+̂ \̂

, - P c R s

IBc+ATI
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Under the same assumptions about the distribution of the storm and rain cell char

acteristics, and for a fixed direction </>, the probability that a rain ceU affects two sites, 

say i and j ,  is

R d  CO f  f  T> \

qij{(f>) = j  2̂ R '  J  e x p { - p c m a x { \ a c - M i \ , \ a c - A f j \ ] ]
—Rd 0 otf—Rt

=  e x p { -  ^ W i  - M i l }  {B{Mij) + B i -M i j ) } ,  (4.41)

where Afij = +jVj)l'2.

Natural candidates for the distribution of Rs are the gamma and, its special case, the 

exponential distribution. The latter, specified by a single parameter, has the mode at the 

origin and thus it is expected to produce storms with small mean width, in contrast with 

the former, which is a two parameter distribution, and thus its density function can take 

a wider range of shapes. The gamma distribution would be a more appropriate model 

for storms with large mean spatial extent.

Let us now suppose that the number of rain cells, C, per storm is Poisson with mean

Pc- Then, the probability, Pi{(f)), that a storm affects a particular site z, is written as

Pi{ç) = 1 -  P(storm does NOT affect site z)

= 1 -  P(NO rain cell affects site z)

k=o
= 1 -  exp{-/Zc (4.42)

Similarly, for the probability, Pij{4>)^ that a storm affects two sites z and j ,  we have

Pij{(f>) =  1 -  P(storm does NOT affect sites z AND j )

= 1 — P(NO rain cell affects site i OR site j )

= 1 -  E  (1 -  -  %('A) + <ii iWŸ
k=0

= 1 -  exp{-fic{qi{(l>) + qj{4>) -  qiji<l>))}- (4.43)

The lag k cross-covariance function of the aggregated process between the rainfall 

intensity at two sites is

+ ^ ^ 4 ^  m' h W  qM  E { X Ÿ  E w m W d i i ,  k)], (4.44)
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where the expressions of A:)], m =  1,2 are given in Appendix C, if the

assumptions about the storm and rain cell movement are the same as in the previous 

sections. Furthermore, it is possible to allow the direction, (j), to vary randomly between 

storms according to the discretised cardioid distribution Çr given in Equation (4.27).

4 .1 0 .2  B a r tle tt-L e w is  b a sed  m u lt i-s ite  m o d e ls

As already mention, in modelling the evolution of rainfall at a single point in space, 

the Neyman-Scott and Bartlett-Lewis based models with rectangular pulse rain cells 

(Rodriguez-Iturbe, Cox, and Isham, 1987a), are fairly tractable and intuitively realistic 

and when fitted to rainfall data, both give estimated properties tha t are very close to 

the observed ones. So, although the temporal structure of clusters is different in the two 

processes, their statistical properties, when they are used as rainfall models and under 

the assumptions specified by these authors, are very similar.

Having developed some Neyman-Scott based multi-site models, it would be interesting 

to see if it is possible to apply the same ideas to a Bartlett-Lewis process. Cox and Isham 

(1994) examined the properties of some Bartlett-Lewis based multi-site rainfall models, 

and we try here to expand their results by incorporating some spatial features of the 

rainfall event, following the same steps as with the Neyman-Scott process.

As before, we assume that there is a master process of storms tha t is Poisson (in time) 

of rate A, and storms evolve independently of each other. For a particular storm we have 

P(storm affects site i) = where Xi = Ap̂ ,

P(storm affects sites i and j )  = pÿ, where A,j =  Xpij.

Let us suppose that rain cells follow a storm, whose origin is at time u, in a Poisson process 

of rate (5 and counting measure that is the same at all affected sites. Conventionally, 

it is assumed tha t a rain cell is attached to each storm origin. The storm truncation 

mechanism acts independently at each site and at a site, say z, the mean storm lifetime 

is exponentially distributed with parameter 7 i. We also assume tha t the duration and 

intensity of a particular cell at a particular site, are independent variables, th a t intensities 

of cells with common origin but at different sites are identical, but tha t durations of such 

cells are dependent. Specifically, we assume tha t the duration L{ at site i is given by 

Li = /iZ, where the /,• are scalar constants and L is exponential with param eter In
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addition to the above specifications, in order to allow different sites to experience the 

same storm and rain cell at different times, the processes of storm and of rain cell origins 

are translated in time by a fixed amount at site i, different for each site. The lag r  

cross-covariance function (r  > 0) between rainfall intensity at sites i and j  is

m i n { t - t i , i - t j + T }  ^  t - t i

Cü(r) =  ^ij J  d u E l  I  d K ( v )  x H L t A » )
-oo ^ u

(4.45)

where is the intensity at site i at time (, of a cell whose origin at tha t site

is at time v + ti. For t{ = tj = 0 the expression is given in Cox and Isham (1994, 

Equation(1.3.4)). Then, by expressing E[dNu{v)] as [6(u — v) + P]dv and following the 

same steps as in Section 4.2, it is straightforward to show that c,y(r) is written as

+ A., 0  E { X Ÿ

=  Cu,i(r) Ü r <  - t i j .

Cij{r) =

y  ( 7 i - I - 7 7 + / 3 )  f e " y , ( : '+ ( ù )

( r j , - 7 t )  I ( 7 ,4 - 7 ; )  (7,4-77; (77̂ 4 -7?;) (77,

77;(7' +  « , ; )
A .,^ ( .^ ') ( l  +  : d ^ )  e - ”,■(-+<.,)} + A.; 0 E{X)-

( 7 7 ; - 7 ; )  ( 7 i 4 - 7 ; )  (7 7 i4 -7 ;) ( 77̂ 4" 77;) (77; 4 - 7 , )  J ’  ~

Note tha t the factor 1 -f /?/(7 i -f 7 j)  is the mean number of cells per storm tha t are 

common to the two sites, and that for i = j  the expression is given in Rodriguez-Iturbe 

et al. (1987a, Equation (4.12)).

As expected, the cross-covariance function of this Bartlett-Lewis based model has the 

same structure as the corresponding function of the Neyman-Scott based model consid

ered in Section 4.2. Thus, the cross-covariance of the aggregated process, 

of this model can be derived using the functions Wm{C,tij,k),  m  =  1 ,2,3, given in 

Equations (4.5)-(4.7), in each of the four cases specified in Section 4.3. Let us suppose 

tha t storms move with fixed direction, 0, and random speed, V. As before, it is possible 

to write the difference between two displacement factors, Uj = — tj,  as a function of a

measure of distance between the examined sites and the speed, V.
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The cross-covariance function of this model is calculated in the same way as in Ap

pendix C. The site-dependent parameters are those of the rain cell duration, rji, a t a 

given site say z, (z = 1 ,..  . ,n ) ,  and of the storm duration, Now, suppose tha t j i  is

expressed as a function of the site’s location and some features of the storm, such as its 

position and spatial extent, and let us assume that these features vary randomly between 

storms. Unhke the Neyman-Scott based models in which the mean number of cells per 

storm appears in the expressions of the second-order properties as a ‘scalar’ that can be 

modelled separately, in the Bartlett-Lewis based models, 7 ,- determines not only the mean 

number of rain cells per storm, experienced at a subset of sites including z, but is also 

involved in some denominators and exponents in the cross-covariance function (Equation

(4.46)). So, even under very simple assumptions about the storm characteristics, not 

only would it not be possible to get an analytic closed form for the cross-covariance func

tion for this Bartlett-Lewis model, but its expression is too complex for straightforward 

numerical evaluation.

A similar problem arises in the calculation of the probability tha t two sites are simul

taneously dry during an arbitrary period of length h. The calculation of this property, 

even at the early stage when the displacement factors are assumed constant, involves 

integrals tha t cannot be evaluated numerically with reasonable accuracy. The idea of 

approximating some parts by series of polynomials has not simphhed the expressions 

substantially.

We conclude that it is not possible to make much useful progress in developing a 

Bartlett-Lewis based multi-site model, analogous to the Neyman-Scott one considered in 

this chapter, and with the specifications described above.

4.11 Sum m ary

In this chapter we have developed some multi-site models tha t aim to describe the stochas

tic nature of the rainfall process, as it is observed at a network of raingauge stations. The 

basic concept is that there is a master point process of storm or rain cell origins which is 

decomposed into a number of subprocesses, each one corresponding to a different site. A 

key issue in the modelling is tha t the dependences between the generated subprocesses 

should reflect the between-site correlations and the spatial structure of the rainfall event.
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In making the sensible assumptions, we have in mind the results from the data analysis 

(Chapter 2) and the research tha t haa already been done in this and in relevent areas 

(Sections 1.4 and 1.5).

The models we have developed have a Neyman-Scott structure in time, which is kept 

the same at aU generated subprocesses. In order to allow different sites to experience 

the same rainfall event at different times, it is assumed that storms and their associated 

rain cells move with the same velocity (speed and direction), which remains constant 

throughout their lifetime but varies randomly between storms. Since the data available 

are rainfall sequences at a smaU number of distinct points in space, it is not possible 

to make inferences about the shape of the storm or the rain cells. Instead, the traces 

tha t are formed as the rainfall elements move across the examined area, are visualised as 

bands, parallel to the direction of the movement, with random width and position. So, 

the probability that a storm and/or a rain cell affects two sites depends on these spatial 

features of the associated band and on some measure of distance between the examined 

sites. An alternative approach, where the above probability is modelled in a deterministic 

way, is also studied. The cross-covariance function between rainfall intensities at two sites 

and the probability that these sites are simultaneously dry for an arbitrary period of given 

length, have been derived.

The models we built describe the main properties of the evolution of the rainfall 

process. However, because they are mathematically complex it is not possible to make 

any further assumption about the way some of their parameters, such as the cell duration, 

depend on topography. Ideally, we would like to assess the performance of a model, in 

which the cell duration scaling factors vary either randomly or deterministicaUy with the 

elevation of the ground, but this is difficult because of computational constraints.

The multi-site model we developed has one site-dependent param eter when a stochas

tic approach is followed in modelling the dependencies between the rainfall intensities at 

various sites. When several sites are examined simultaneously, one way to reduce the 

dimensionality of the parameter space is to group the sites according to their location 

and to have the same rain cell duration parameter for nearby sites.
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C h ap ter  5

F ittin g  o f m u lti-site  m od els

5.1 M ethods applied

In this chapter, we start by outhning the method used for the parameter estimation 

and the optimisation procedure applied and then we present the results of fitting some 

multi-site models developed in Chapter 4, to rainfall data from the Brue catchment area. 

The estimation of the model’s parameters is based on the generalised method of 

moments, discussed in Section 3.4. In brief, let the ?n-dimensional parameter vector of 

the model be 0 = ( ^ i , . . . ,  0^), and select a set of k features of the data, 'ipi {i = 1 , . . . ,  /:), 

for which the corresponding model expressions, (l>i{6), have been obtained. We form 

the sum of squared differences between the {ipi} and the weighting each term

appropriately, and we find the vector 6 which minimises the objective function

. . g  ( « - . ) ■

We now have the possibihty of including more than m  features in the minimisation 

{k > m). Assessment of fit of the model to the data is achieved by comparing the 

estimated values of features not used in the fitting procedure with those of the data.

A key issue when the model fitting is based on the GMM is the selection of the 

properties to be included in (5.1), which is essentially subjective. Some general guide

lines are tha t the chosen features should a) contain sufficient information th a t all the 

model parameters can be reliably estimated, b) not be highly mutually correlated and c) 

have relatively small samphng errors. However, even when these guidelines are followed,
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because of the high dimensionality of the parameter space and the non-linearity of the 

model expressions, the parameter estimates depend very much upon the initial values 

given to the numerical optimisation algorithm, which complicates the choice of an appro

priate set of features still further. There is also a problem of param eter identification, 

since it is possible to get similar estimated properties for very different sets of param eter 

values. This is usually evidence of the existence of many local minima. We have done a 

substantial amount of analysis in order to find proper sets of features to be used in the 

param eter estimation procedure of some multi-site models developed in Chapter 4.

The choice of the optimisation method is crucial, especially when both the objective 

function and its derivatives are not available in an analytic closed form. The success of 

a numerical method depends mostly upon the number of calculations it makes at each 

iteration, the computer memory it requires to store the intermediate results, and the rate 

of convergence to the optimal. The method we use is called BFGS and is a quasi-Newton 

method. This means that both first and second order derivative information is used, but 

the Hessian matrix H (x) is approximated via an iterative scheme, reducing considerably 

the computational requirements. The basic idea and the steps of this method (Georgiou 

and Vassiliou, 1993) are described below. Let us denote by /(x ) ,  V /(x )  and the 

objective function, the vector of its first derivatives and the approximation of the inverse 

of the Hessian matrix at the fc-th iteration, respectively, and by x* the minimum of the 

objective function /(x ) . The algorithm starts at the initial value xq, provided by the 

researcher, and sets ho = I, the identity matrix. Let the approximation of x* after the 

A:-th iteration be x^. The estimate of is obtained iteratively by

hk = hk-i -|- Ak-i — ISk-i’,

where A k - i  and Bk-i  are particular functions of x^_i, /(x ^ _ i)  and hk- i .  The direction 

of search for the next approximation of the minimum is dk = —hk V/(xfc), and the size 

of the step, along dk, is obtained via minimisation of f {xk  -1- sdk) with respect to s, 

using an iterative search method, the golden section. Then, Xk+i is given by

Xk-\-\ — Xk Sk hk V_^(x/;). (5.2)

Convergence criteria, applied to each coordinate separately and to the objective func

tion, determine the termination of the algorithm. The BFGS method has a hyper-linear

103



convergence rate, that is, there exists a sequence of non-negative real numbers 

such th a t for all fc > ko, where ho > 0, we have || -  x* || < ak || x t  -  x* ||.

The model fitting analysis has been performed using the computer software G auss 

3.0 and its procedure OPTIMUM.

5.2 M odel fitting to three sites

As the multi-site model development was progressing, the results of fitting the various 

intermediate models to rainfall data provided useful information about the dependencies 

and the assumptions that should be made. As an example, at an early stage of the 

modelling we studied a Neyman-Scott based model in which storm and rain cells affect 

two sites and we assumed that the evolutions of the process at the two sites are identical, 

with the only exception being a different scaling of the rain cell durations at the two 

sites. When only the temporal properties of the model at a single site are studied, 

this idea is very similar (both conceptually and mathematically) to having a single-site 

model, tha t is fitted to more than one site simultaneously using only marginal properties. 

However, although in the single-site Neyman-Scott based model, both the Poisson and 

the geometric distribution for the number of rain cells per storm give satisfactory results, 

the conclusion we came to, after fitting the above simple multi-site model, is tha t the 

Poisson distribution is much superior to the geometric one. Similarly, at a later stage, 

the fitting results suggested that a multi-site model in which the durations of the same 

rain cell at different sites are dependent and scaled versions of the same random variable, 

is more successful in reproducing observed properties of the data, as compared to models 

with either independent or identical rain cell durations.

Initially, the models were fitted to raingauge data  from only two sites, but as they 

became more complicated, information about the behaviour of the rainfall process at more 

than two locations was needed for r eh able estimation of the parameters. In this section, 

we present the results of fitting two multi-site models to three sites simultaneously, using 

monthly sequences of rainfall intensities of hourly resolution.

The models we consider are the one with random rain ceU characteristics (Section 

4.8), denoted by A ii, and the one in which the probabiHty tha t a cell affects a given site 

is a model parameter (Section 4.5), denoted by M 2 - In both models, storm and rain cells
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move with the same random speed. In general, the examined sites should be chosen to 

provide as much information as possible about the spatial structure of the rainfall events. 

A good scheme is one where the sites form a triangle with sides of similar lengths, which 

covers a large part of the catchment area. Obviously, the choice of the sites influences the 

estimates of some parameters, especially when there is a lot of spatial variation between 

the observed properties.

Another crucial factor in the parameter estimation procedure is the choice of the 

model properties to be included in the objective function (5.1). A selection of some 

marginal properties of the three sites and some joint properties of the three pairs is 

required for a satisfactory representation of the spatial structure of the rainfall process. 

Also, properties at various levels of aggregation should be used in order to capture the 

temporal behaviour of the process. In general, observed properties of sequences of rainfall 

intensities aggregated over small time intervals, say 1 hour, provide more information 

about the within storm structure, while the between storms dependencies are captured 

by rainfall data  aggregated over longer periods.

Based on our experience of the single-site model fitting, the marginal properties of 

each site tha t are included in this analysis are the mean, variance, lag one correlation and 

probability tha t an interval is dry at the 1 hour level of aggregation, and the variance at 

the 24 hours level of aggregation. The choice of an appropriate set of joint properties is 

more difficult, due to the absence of any previous experience. Initially, from each pair of 

sites, we used two zero lag cross-correlations, one at an aggregation level of 1 hour and one 

of higher level, for instance 6, or 12, or 24 hours, but the fitting results were poor. Then 

the la tter statistic was replaced by the lag one cross-correlation of hourly data, which 

seemed to provide additional information about the movement of rainfall event, and 

improved significantly the estimated properties. Thus, throughout the analysis presented 

here, we use the lag zero and lag one cross-correlation for each of the three pairs of sites. 

The same features are used in the parameter estimation procedure of both models M.\ 

and A4 2 .

In this section, we present the fitting results for June 1994 and December 1994, 

representative summer and winter months, respectively.
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5.2.1 Param eter estim ates

Initially, we specify the distribution of some model variables. For both models, it is 

assumed tha t for a particular rain cell at a particular site, the intensity and duration are 

independent variables and tha t intensities of ceUs with common origin but a t different 

sites are identical. Throughout the rest of this chapter the cell intensity, X , is assumed 

to have an exponential distribution, so that E{X'^) = 2E{X)^.  It is straightforward to 

remove this assumption, with the introduction of a second moment param eter for X .  

Also, as already mentioned in Chapter 4, the cross-correlation between the to tal rainfall 

intensities at two sites can be reduced by letting the rain cell intensities at different sites 

be either independent or scaled versions of the same random variable. Some of these 

cases may be considered if the fitting results suggest so.

We recall that in modelling the direction, 0, of the storm movement, we have assumed 

tha t it is a discrete random variable with a two-parameter probability density function 

(Equation 4.27). The data analysis presented in Chapter 2, shows that there exists 

a prevailing orientation for the rainfall movement (see Table 2.5), and there is more 

variability of this in June than in December. It is possible to use these results in fitting 

model M l ,  by keeping the mean direction of the storm movement, ^o, fixed and equal 

to 7t / 8 , the midpoint of interval [0 , 7t / 4 ]. Then, from the fitting procedure we wiU get an 

estimate of the concentration parameter, K, around 4>o.

The parameter estimates of models M \  and M 2 a.re given in Tables 5.1 and 5.3, 

respectively. Of aU the parameters, the most robust to choice of initial values, is the 

storm arrival rate. A, which in our experience always takes the same value for both multi

sites models. In addition, these estimates of A are the same as those obtained from fitting 

the Neyman-Scott single site model (Rodriguez-Iturbe et al., 1987a) to each of the three 

sites separately. The estimates of (3 and E{ X)  for models M i  and M 2 are in general 

fairly similar, but not the same, and also they vary slightly from the corresponding values 

obtained from the single site fitting.

These results have motivated us to split the fitting procedure into two parts. In the 

first part, the relates to A ii single-site model is fitted to all three sites simultaneously, 

and its parameters are estimated using only marginal properties. If n sites are fitted, 

then the number of parameters to be estimated at this stage is 4 -f n, since the model has

106



M odel param eters Estir 

June 94

n ate  for 

D ecem ber 94

Storm arrival rate, A 0.006 hr-i 0 .0 2 0  hr-i

Mean rain cell intensity, E { X ) 0.81 m m /h 0.97 m m /hr

Mean temporal displacement of cells 

from storm origin, /3~^
5.78 hr 4.37 hr

Mean no. of rain cells per storm, E(C) 2 1 .1 14.9

Mean speed of storm/cell movement, E{V) 15.3 km /h 8.4 km /hr

Std. dev. of storm/cell movement 3.4 2.8

Mean width of a rain cell, 2p~^ 14 km 45.5 km

Mean distance of cell from storm axis, /3~^ 1.5 km 1.4 km

Mean direction of storm movement, (f)o 7t / 8 7t/ 8

Concentration parameter of direction, k, 0.43 0.37

site 2, 37.3 min 34.6 min

Mean cell duration site j ,  77“ ^ 27.0 min 49.9 min

site /c, % 1 43.6 min 41.2 min

Table 5.1: Parameter estimates of model M \ .  The data used are from sites: i =  13, 

42, fc =  30 ill June, and i = 5, j  = 42, k = 29 in December.

J =

one site-dependent parameter, the scalar of the cell duration. At the next step, we use 

the values of A, /? and E {X )  obtained at the first stage and estimate all the remaining 

6 +  n parameters, using both marginal and joint properties. Note tha t when the rain 

cell depth has an exponential distribution, E { X )  cancels out in the expression of the 

cross-correlation. The model features that are included in the objective function are the 

same for the two methods, so that a comparison of the results can be made directly. 

An advantage of the two-step procedure is tha t in the second stage the dimension of 

the param eter space is reduced by three, which speeds up computation especially when 

n is large. A disadvantage is that this reduction usually hmits the searching space for 

the minimum point, but since our objective function is highly nonlinear it is practically

107



D erived m odel param eters June 94 D ecem ber 94

P(ceU affects site i) 0.467 0.750

F (cell affects site j ) 0.453 0.739

P(ceU affects site k) 0.468 0.750

P(ceU affects sites i and j ) 0.300 0.634

P(ceU affects sites i and k) 0.454 0.750

P(cell affects sites j  and k) 0.309 0.634

Table 5.2: Additional parameters of model estimated using the values of the previous 

table. The sites examined are: i = 13, j  = 42, A: =  30 in June, and i = 5, j  = 42, k = 

29 in December.

impossible to find the global optimum. When three sites are examined simultaneously, the 

two-step procedure produces estimates of the properties that are very similar to the ones 

obtained with the one-step fitting procedure, and for this reason, they are not presented 

here.

W ith reference to Tables 5.1 and 5.3, the means and standard deviations of the speed 

of the storm/ceU movement for the two models are fairly close, which indicates tha t the 

parameterisation of the speed is fairly satisfactory. For model M i ,  the mean width of the 

rainfall band, associated with each rain cell, is greater than the largest distance between 

the three examined sites. However, because the mean distance of the cell from the storm 

axis is about 1.5 km, the mean value of the probability that a rain cell affects a site is 

less than one (Table 5.2). It is very interesting to note that this probability takes similar 

values at all three sites, as a result of the spatially homogeneous structure of the process. 

In contrast, in model M 2 these probabilities are site-dependent parameters, they are not 

related to any spatial characteristic of the process and, in general, their values are very 

different depending on the marginal properties used in the fitting procedure.

Concerning the mean number of cells per storm, the two multi-site models produce 

on average more rain cells per storm, compared to the Neyman-Scott single site model, 

but each one affects a site with a certcdn probability, and thus the expected number of

108



M odel param eters Estii 

June 94

n a te  for 

D ecem ber 94

Storm arrival rate, A 0.006 hr-^ 0.020 hr"^

Mean rain cell intensity, E { X ) 0.84 m m /h 1.32 m m /hr

Mean temporal displacement of cells 

from storm origin,
7.46 hr 4.93 hr

Mean no. of rain ceUs per storm, E{C) 22.0 26.3

Mean speed of storm/ceU movement, E{V) 14.3 km /h 9.1 km /hr

Std. dev, of storm/ceU movement 4.2 3.1

site z, Qi 0.264 0.377

Probability that a cell affects site j ,  qj 0.268 0.359

site k, Qk 0.671 0.998

tc 0.119 0.057

site z, r)~̂ 59.1 min 28.2 min

Mean cell duration at site j , 38.2 min 42.2 min

site /c, % ^ 28.5 min 14.1 min

Table 5.3: Parameter estimates of model M 2 ‘ The data used are from sites: i = 13, j  = 

42, k = 30 in June, and z = 5, j  = 42, k = 29 in December.

these rain cells that each site experiences is reduced.

Having fitted model M i  to data from different months, we noticed tha t in general, 

during the dry summer months, storms arrive less frequently than in winter, and they 

consist of more rain cells, which have a shorter mean duration, intensity and spatial 

extent. Storm and rain cells move on average faster in summer than in winter.

5 .2 .2  A sse sm e n t o f  fit

A successful multi-site model should be capable of describing the main between-site de

pendencies of the rainfall process and also of preserving its temporal behaviour at a fixed 

location. The adequacy of the fit is assessed via comparison between observed and es
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tim ated properties, both marginal and joint, tha t have not been used in the param eter 

estimation procedure.

M arginal properties

W ith reference to tables 5.4 and 5.6, both multi-site models reproduce fairly accurately 

most of the marginal properties of all three sites. This is achieved by having the same 

storm structure at all sites and letting only the number of rain cells per storm tha t 

affect a given site and the mean cell duration vary with the location. Models M \  and 

Af 2 share the same advantages and disadvantages as the corresponding single-site model, 

which has a Neyman-Scott structure in time (Rodriguez-Iturbe et al., 1987a). T hat is, 

their estimates of the first and second order statistics are very close to the observed 

ones, but the probability of zero rainfall during an arbitrary time interval tends to be 

systematically overestimated. Because none of the between-site properties of the multi

site models is given by an analytic closed form, the randomisation of the rain cell duration 

param eter, in a way similar to that applied by Rodriguez-Iturbe et al. (1988) tha t 

would probably improve the fitting, is computationally implausible. Another drawback 

of these types of models is that they can not capture some seasonal characteristics of 

the rainfall sequence, such as the daily effect that is usually present in summer weather 

systems and causes substantial correlations at relatively high levels of aggregation. By 

contrast, during winter months the correlation of the rainfall intensity during two time 

intervals is a decreasing function of the time lag between the intervals, and this decaying 

pattern  is well reproduced by the single-site model and its extensions, models M \  and

Joint properties

The between-site properties that are estimated (via numerical methods) for the as

sessment of fit, are the cross-correlation function at various time lags and the probability 

tha t two sites are simultaneously dry during an arbitrary time interval of given length. 

W ith reference to tables 5.5 and 5.7, we notice that model M \  is better than in 

reproducing the observed properties of the data. Indeed, for December 1994, and in 

general for most rainy months, the zero lag cross-correlation of A4i, for all three pair
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of sites and at all levels of aggregation, is estimated very accurately. The non-zero lag 

statistics are systematically slightly underestimated, while the probability tha t both sites 

are dry is well estimated at small levels of aggregation but is overestimated for time in

tervals of 12 and 24 hours. This however is related to, and might be caused by, the poor 

performance of the model concerning the marginal probability of a dry interval. Similar 

remarks apply to the fitting results of A4i, for June 1994. An additional comment is 

tha t the observed lag one cross-correlation function, like the marginal one, increases for 

large levels of aggregation, and this behaviour is not captured by the theoretical func

tion. Also, the probability of no rainfall at two sites, is reproduced quite satisfactorily 

not only for small levels of aggregation but also for large ones. Concerning the fitting 

results of model A42 , its main disadvantage is tha t it does not describe very successfully 

the dependencies between the rainfall intensity at two sites, as they are summarised by 

the cross-correlation functions.
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level of Mean Probability Variance Correlation
aggregation of no rain lag 1 lag 2 lag 3

I h U 0.032 0.943 0.041 0.576 0.228 0.228
M l 0.031 0.941 0.043 0.545 0.280 0.199
Af 2 0.030 0.948 0.046 0.620 0.326 0.206

6 h n 0.195 0.875 0.690 0.424 -0.030 0.101
M l 0.185 0.882 0.681 0.305 0.098 0.035
M 2 0.181 0.889 0.780 0.287 0.101 0.045

12 h n 0.390 0.783 1.446 0.470 0.388 0.314
M l 0.370 0.842 1.777 0.205 0.024 0.003
M 2 0.362 0.847 2.008 0.208 0.037 0.007

24 h n 0.780 0.667 5.129 0.432 0.008 -0.007
M l 0.741 0.779 4.282 0.106 0.002 0.000
M 2 0.723 0.783 4.850 0.119 0.004 0.000

level of Mean ProbabiHty Variance Correlation
aggregation of no rain lag 1 lag 2 lag 3

1 h n 0.025 0.950 0.019 0.431 0.388 0.232
M l 0.021 0.947 0.025 0.448 0.212 0.161
M 2 0.020 0.955 0.025 0.490 0.205 0.133

6 h n 0.152 0.850 0.350 0.471 -0.022 0.185
M l 0.129 0.884 0.341 0.286 0.094 0.033
M 2 0.119 0.892 0.349 0.253 0.096 0.043

12 h n 0.303 0.767 0.721 0.632 0.393 0.212
M l 0.257 0.844 0.876 0.197 0.024 0.003
M 2 0.237 0^W8 0.875 0.195 0.036 0.007

24 h n 0.607 0.667 2.759 0.413 0.018 0.005
M l 0.515 0.781 2.096 0.103 0.002 0.000
M 2 0.474 0.784 2.090 0.114 0.004 0.000

level of Mean ProbabiHty Variance Correlation
aggregation of no rain lag 1 lag 2 lag 3

1 h n 0.039 0.940 0.059 0.450 0.195 0.124
M l 0.036 0.939 0.054 0.587 0.316 0.221
M 2 0.037 0.925 0.048 0.496 0.269 0.215

6 h n 0.232 0.850 0.785 0.252 0.001 0.072
M l 0.215 0.881 0.903 0.314 0.100 0.035
M 2 0.221 0.853 0.749 0.365 0.155 0.069

12 h H 0.463 0.783 1.835 0.187 0.208 0.198
M l 0.429 0.841 2.373 0.209 0.025 0.003
M 2 0.442 0.811 2.046 0.272 0.053 0.011

24 h n 0.927 0.700 5.161 0.281 0.029 -0.042
M l 0.859 0.778 5.736 0.108 0.002 0.000
M 2 0.884 0.750 5.207 0.153 0.006 0.000

Table 5.4: June 1994. Marginal properties of sites 13 (top), 42 (middle), 30 (bottom).
H are the observed values. Properties in bo ld  have been used in the model fitting.
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level of probability of Cross-correlation
aggregation both sites dry lag 0 lag 1 lag 2 lag 3

1 h n 0.928 0.618 0.494 0.409 0.372
M l 0.907 0.723 0.302 0.212 0.142
M 2 0.920 0.582 0.486 0.243 0.155

6 h n 0.833 0.840 0.522 -0.017 0.172
M l 0.766 0.825 0.260 0.180 0.116
M 2 0.790 0.726 0.262 0.102 0.045

12 h n 0.750 0.827 0.660 0.617 0.479
M l 0.671 0.859 0.182 0.102 0.053
M 2 0.696 0.771 0.201 0.037 0.007

24 h n 0.667 0.886 0.690 -0.009 -0.008
M l 0.537 0.880 0.096 0.000 0.000
M 2 0.561 0.804 0.118 0.004 0.000

level of probability of Cross-correlation
aggregation both sites dry lag 0 lag 1 lag 2 lag 3

1 h n 0.924 0.494 0.426 0.239 0.158
M l 0.904 0.548 0.402 0.224 0.132
M 2 0.893 0.478 0.499 0.266 0.179

6 h n 0.800 0.766 0.311 -0.009 0.101
M l 0.767 0.807 0.284 0.176 0.103
M 2 0J48 0.696 0.324 0.131 0.059

12 h n 0.750 0.806 0.361 0.277 0.177
M l 0.673 0.855 0.194 0.087 0.002
M 2 0.658 0.756 0.247 0.047 0.009

24 h n 0.633 0.889 0.318 0.022 0.007
M l 0.539 0.881 0.102 0.000 0.000
M 2 0.534 0.796 0.142 0.005 0.000

level of probability of Cross-correlation
aggregation both sites dry lag 0 lag 1 lag 2 lag 3

1 h n 0.924 0.666 0.387 0.150 0.129
M l 0.929 0.704 0.394 0.263 0.194
.W2 0.887 0.520 0.458 0.281 0.190

6 h H 0.825 0.716 0.234 -0.008 0.124
M l 0.859 0.952 0.270 0.111 0.020
M 2 0.744 0.701 0.309 0.129 0.057

12 h n 0.733 0.722 0.292 0.384 0.374
M l 0.805 0.974 0.184 0.065 0.004
M 2 0.655 0.757 0.235 0.045 0.009

24 h n 0.633 0.772 0.524 0.002 0.002
M l 0.724 0.984 0.096 0.006 0.000
M 2 0.533 0.795 0.135 0.005 0.000

Table 5.5: June 1994. Cross-properties between sites 13 and 42 (top), 42 and 30 (middle),
13 and 30 (bottom). V, are the observed values. Properties in bo ld  have been used in
the model fitting.
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level of Mean Probability Variance Correlation
aggregation of no rain lag 1 lag 2 lag 3

1 h n 0.133 0.836 0.216 0.487 0.250 0.177
M \ 0.127 0.832 0.229 0.558 0.301 0.214
A42 0.123 0.841 0.247 0.477 0.236 0.174

6 h U 0.798 0.581 3.362 0.223 0.145 0.016
M i 2 0.763 0.692 3.719 0.290 0.068 0.017

0.738 0.689 3.585 0.280 0.077 0.023
12 h n 1.597 0.435 8.185 0.206 0.071 0.029

M l 1.526 0.603 9.598 0.172 0.011 0.001
M 2 1.477 0.597 9.177 0.178 0.015 0.001

24 h H 3.194 0.258 22.517 0.057 0.070 -0.026
M l 3.051 0.472 22.498 0.083 0.000 0.000
M 2 2.954 0.466 21.627 0.089 0.001 0.000

level of Mean Probability Variance Correlation
aggregation of no rain lag 1 lag 2 lag 3

1 h n 0.176 0.835 0.427 0.452 0.258 0.172
M l 0.181 0.819 0.399 0.656 0.389 0.270
M 2 0.175 0.831 0.438 0.585 0.313 0.215

6 h n 1.053 0.573 6.256 0.331 0.203 0.048
M l 1.085 0.688 7.348 0.311 0.071 0.018
M 2 1.053 0.688 7.264 0.294 0.078 0.023

12 h n 2.106 0.403 16.869 0.271 0.064 0.085
M l 2.170 0.600 19.264 0.180 0.011 0.001
M 2 2.105 0.597 18.802 0.183 0.015 0.001

24 h n 4.213 0.226 48.993 0.081 0.093 0.034
M l 4.340 0.470 45.454 0.086 0.000 0.000
M 2 4.211 0.466 44.481 0.091 0.001 0.000

level of Mean Probabihty Variance Correlation
aggregation of no rain lag 1 lag 2 lag 3

1 h n 0.165 0.798 0.284 0.477 0.250 0.151
M l 0.151 0.826 0.302 0.606 0.341 0.238
M 2 0.163 0.777 0.279 0.478 0.325 0.264

6 h n 0.989 0.484 4.397 0.207 0.159 0.044
M l 0.908 0.690 5.209 0.299 0.070 0.018
M 2 0.978 0.626 4.519 0.365 0.106 0.031

12 h n 1.977 0.306 10.635 0.210 0.143 0.076
M l 1.817 0.601 13.538 0.176 0.011 0.001
M 2 1.956 0.544 12.336 0.223 0.019 0.002

24 h n 3.955 0.165 30.655 0.118 0.044 -0.006
M l 3.633 0.471 31.828 0.084 0.000 0.000
M 2 3.912 0.425 30.177 0.108 0.001 0.000

Table 5.6: December 1994. Marginal properties of sites 5 (top), 42 (middle), 29 (bottom).
7i are the observed values. Properties in bold  have been used in the model fitting.
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level of probability of Cross- correlation
aggregation both sites dry lag 0 lag 1 lag 2 lag 3

1 h n 0.793 0.778 0.637 0.248 0.183
M l 0.754 0.772 0.561 0.341 0.221
M2 0.736 0.522 0.733 0.414 0.271

6 h n 0.500 0.957 0.259 0.152 0.034
M l 0.517 0.923 0.298 0.135 0.025
M 2 0.469 0.835 0.382 0.094 0.028

12 h n 0.339 0.965 0.219 0.070 0.051
M l 0.368 0.945 0.174 0.044 0.000
M 2 0.319 0.883 0.232 0.018 0.002

24 h U 0.161 0.977 0.059 0.109 -0.013
M l 0.199 0.955 0.083 0.000 0.000
M 2 0.161 0.907 0.114 0.001 0.000

level of probability of Cross-correlation
aggregation both sites dry lag 0 lag 1 lag 2 lag 3

1 h n 0.753 0.743 0.447 0.232 0.158
M l 0.728 0.721 0.358 0.128 0.102
M 2 0.656 0.605 0.547 0.376 0.221

6 h n 0.411 0.902 0.261 0.153 0.031
M l 0.508 0.920 0.229 0.123 0.029
M 2 0.443 0.818 0.348 0.214 0.029

12 h n 0.210 0.912 0.224 0.041 0.079
M l 0.362 0.943 0.137 0.023 0.000
M 2 0.333 0.859 0.216 0.018 0.002

24 h n 0.132 0.947 0.036 -0.005 0.069
M l 0.196 0.954 0.066 0.000 0.000
M 2 0.208 0.881 0.106 0.001 0.000

level of probabihty of Cross-correlation
aggregation both sites dry lag 0 lag 1 lag 2 lag 3

1 h n 0.769 0.885 0.513 0.239 0.177
M l 0.787 0.811 0.336 0.246 0.112
M 2 0.666 0.601 0.558 0.491 0.241

6 h H 0.419 0.952 0.193 0.126 0.029
M l 0.676 0.921 0.223 0.113 0.015
M 2 0.446 0.825 0.355 0.100 0.030

12 h U 0.242 0.958 0.179 0.069 0.033
M l 0.590 0.967 0.134 0.003 0.000
M 2 0.335 0.866 0.221 0.019 0.002

24 h n 0.132 0.971 0.025 -0.001 0.013
M l 0.471 0.985 0.065 0.000 0.000
M 2 0.209 0.888 0.108 0.001 0.000

Table 5.7: December 1994. Cross-properties between sites 5 and 42 (top), 42 and 29
(middle), 5 and 29 (bottom). 7i are the observed values. Properties in bo ld  have been
used in the model fitting.
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C h ap ter  6

C onclusions

In this thesis, we have studied the evolution of rainfall at a single site and over a network 

of sites using clustered point process based models.

We have developed some single-site models with dependent rain cell duration, X, and 

intensity, X . The analysis that is carried out shows that the 6-parameter Bartlett-Lewis 

model in which the mean ceU intensity is given by E{X \L )  = fe~^^  produces accurate 

estimates of the first and second order properties of the aggregated rainfall intensity, at 

several levels of aggregation, and also improves the prediction of the probability th a t an 

arbitrary time interval of fixed length is dry, as compared to the original model with 

indepedent cell duration and intensity.

The multi-site models we have considered are based on the idea that when rainfall is 

studied over a network of sites, a storm or a rain cell may be categorised according to  the 

subset of sites which it affects. In particular, we assume that the point process of storm 

origins is the same at all sites, while the process of rain cell origins, that has a Neyman- 

Scott structure in time, is decomposed to generate a number of subprocesses, one for 

each examined site. In modelling the lag between the time tha t different sites experience 

the same rainfall elements, it is assumed that aU cells within a storm and the storm itself 

move with the same random velocity, which remains constant throughout their lifetime. 

Associated with each rain cell is a band, parallel to the direction of the movement, whose 

width and position are random, and which determines the probability that a particular 

cell affects a given site. This model preserves the structure of the Neyman-Scott model 

for its marginal processes at each site, and we have derived its cross-correlation function
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and the probability that two sites are simultaneously dry. The overall performance of 

this model, when it is fitted simultaneously to data from three sites, is satisfactory and 

encouraging.
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A ppendix  A

T ables o f m on th ly  sum m ary  

sta tis tic s

As part of a routine data analysis, tables of monthly summary statistics are calculated 

and stored in an archive, accessible by all members of the project. These tables include, 

for each gauge, properties like the monthly total and hourly mean rainfall intensity, and 

at levels of aggegation of 1 hour, 6 hours and 24 hours the probability that a time interval 

is rainy, the standard deviation and the conditional mean and standard deviation. The 

last two properties are calculated using non-zero observations only. We present part of 

the tables with summary statistics for June 1994 and December 1994.
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SUM M A RY  STATISTICS, JU N E  94.
SITE R ainf

to ta l
all (m m ) 

m ean Ih
Pro 

1 h
bability 

6 h
wet 

24 h
Uncon 

1 h
ditional

6 h
std, dev. 

24 h
Cone 
1 h

itional 
6 h

Hean 
24 h

Condi 
1 h

donal st 
6 h

d. dev. 
24 h

2 16.600 0.023 0.049 0.117 0.300 0.178 0.589 1.500 0.474 1.186 1.844 0.659 1.315 2.262

3 16.400 0.023 0.051 0.150 0.367 0.123 0.512 1.424 0.443 0.911 1.491 0.326 1.022 2.030

4 16.600 0.023 0.042 0.125 0.333 0.183 0.595 1.458 0.553 1.107 1.660 0.715 1.326 2.130

5 18.200 0.025 0.050 0.133 0.333 0.185 0.645 1.715 0.506 1.138 1.820 0.662 1.414 2.573

6 16.800 0.023 0.050 0.125 0.300 0.164 0.595 1.590 0.467 1.120 1.867 0.573 1.316 2.448

7 16.800 0.023 0.050 0.117 0.300 0.163 0.579 1.521 0.467 1.200 1.867 0.572 1.267 2.296

8 18.000 0.025 0.047 0.125 0.333 0.167 0.605 1.656 0.529 1.200 1.800 0.572 1.292 2.463

9 19.200 0.027 0.050 0.108 0.267 0.190 0.683 1.744 0.533 1.477 2.400 0.675 1.536 2.680

10 14.600 0.020 0.072 0.167 0.333 0.089 0.365 1.170 0.281 0.730 1.460 0.189 0.594 1.640

11 19.800 0.027 0.053 0.117 0.300 0.156 0.647 1.753 0.521 1.414 2.200 0.453 1.349 2.618

12 20.200 0.028 0.047 0.117 0.300 0.177 0.714 1.894 0.594 1.443 2.244 0.569 1.590 2.904

13 23.400 0.032 0.057 0.125 0.333 0.202 0.830 2.265 0.571 1.560 2.340 0.641 1.841 3.426

14 23.600 0.033 0.008 0.192 0.300 0.172 0.096 1.869 0.482 1.026 2.622 0.468 1.295 2.614

15 31.800 0.044 0.061 0.158 0.300 0.266 1.060 2.838 0.723 1.674 3.533 0.817 2.177 4.255

16 22.000 0.031 0.054 0.133 0.267 0.213 0.705 1.820 0.564 1.375 2.750 0.733 1.444 2.622

17 22.400 0.031 0.057 0.158 0.400 0.225 0.712 1.911 0.546 1.179 1.867 0.782 1.424 2.654

18 20.800 0.029 0.054 0.133 0.333 0.179 0.695 1.855 0.533 1.300 2.080 0.570 1.468 2.726

19 23.600 0.033 0.057 0.150 0.300 0.211 0.873 2.238 0.576 1.311 2.622 0.683 1.903 3.447

20 22.600 0.031 0.056 0.117 0.267 0.183 0.779 2.172 0.565 1.614 2.825 0.551 1.701 3.442
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SU M M ARY STATISTICS, D EC EM BER  94.

too

m
>

âI
t
fT

0
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B
I

a
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0(D

1
I—»COCO

SITE Rain fa 
to ta l

ill (m m ) 
m ean Ih

Pro 
1 h

bability 
6 h

wet 
24 h

Uncon 
1 h

ditional 
6 h

st. dev. 
24 h

Cone 
1 h

litional 
6 h

VIean 
24 h

Condi 
1 h

tional st 
6 h

,. dev. 
24 h

2 95.200 0.128 0.151 0.395 0.774 0.465 1.827 4.620 0.850 1.943 3.967 0.906 2.483 4.901

3 101.000 0.136 0.153 0.387 0.645 0.497 1.941 5.096 0.886 2.104 5.050 0.974 2.649 5.586

4 120.000 0.161 0.184 0.468 0.839 0.547 2.164 5.524 0.876 2.069 4.615 1.000 2.781 5.740

5 99.000 0.133 0.164 0.419 0.742 0.464 1.834 4.745 0.811 1.904 4.304 0.875 2.432 5.057

6 95.000 0.128 0.142 0.371 0.710 0.486 1.956 5.200 0.896 2.065 4.318 0.983 2.762 5.717

7 115.000 0.155 0.169 0.419 0.742 0.563 2.125 5.468 0.913 2.212 5.000 1.086 2.817 5.818

8 107.800 0.145 0.172 0.435 0.806 0.486 1.941 5.009 0.842 1.996 4.312 0.887 2.530 5.245

9 125.200 0.168 0.191 0.468 0.806 0.617 2.381 6.002 0.882 2.159 5.008 1.170 3.104 6.310

10 105.800 0.142 0.160 0.395 0.774 0.567 2.137 5.101 0.889 2.159 4.408 1.159 2.955 5.406

11 115.200 0.155 0.168 0.427 0.774 0.584 2.221 5.677 0.922 2.174 4.800 1.149 2.973 6.036

12 105.800 0.142 0.167 0.427 0.806 0.485 1.934 5.030 0.853 1.996 4.232 0.897 2.544 5.283

13 107.600 0.145 0.167 0.427 0.839 0.501 1.980 5.214 0.868 2.030 4.138 0.938 2.610 5.445

14 98.000 0.132 0.156 0.387 0.742 0.466 1.859 5.168 0.845 2.042 4.261 0.890 2.525 5.596

15 124.000 0.167 0.199 0.460 0.774 0.526 2.088 5.851 0.838 2.175 5.167 0.911 2.631 6.181

16 108.600 0.146 0.176 0.435 0.742 0.488 1.941 5.007 0.829 2.011 4.722 0.887 2.523 5.294

17 117.200 0.158 0.168 0.427 0.742 0.558 2.141 5.520 0.938 2.211 5.096 1.058 2.815 5.862

18 111.400 0.150 0.171 0.435 0.839 0.535 2.090 5.233 0.877 2.063 4.285 1.018 2.761 5.449

19 113.600 0.153 0.176 0.444 0.806 0.513 2.067 5.574 0.867 2.065 4.544 0.937 2.694 5.876

20 113.200 0.152 0.179 0.468 0.774 0.529 2.132 5.994 0.851 1.952 4.717 0.985 2.774 6.433



A ppendix B

P ro p erties  o f  th e  aggregated  

p rocess o f single s ite  m od els

The functions that need to be integrated for the calculation of the covariance of the 

aggregated process are of the following three types:

r ( / i - =  M Ç l ,
J —h

{h -  |r |)  {kh +  r )  (mhk  +  2) -  h (e™'“ -
J-h  m3 ^

[  (h -  |r |)  (/c/i +  r)^ {m^h‘̂ {P  +  1) + 4mhk  + 6)
J - h  m r

^—m k h

+ -— j - 2 m h  {mh — {mhk  +  2) — e

where 5'i(m ) = (1 — e e

The variance, var{y/.^^}, involves the derivation of the following integrals:

/  (ft -  r) e-"*^dr =  i  (e"”*'--  l  +  mft),

/  (ft -  7-) r e - “ ’’rfr =  ^  {m ft(e-”*'‘ +  1) +  2 (e -” '‘ -  1)},

J  ( f t  — T ) e ~ ' ^ ' ' d T  =  ^  { e “ "*^ (m ^ ft^  +  4mft +  6) +  2mft — 6 } .
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We give the second order properties of the aggregated process for the Bartlett-Lewis 

based rainfall models with dependent cell duration and intensity. When E {X \L )  = fe~^^  

we have:

=  ft £ { y ( < ) }  =  ft A £ ( C )

v a ria i'')}  = -  1 +  (2c +  „)ft}

2 A /? 7 7/  ̂ E{C) P f -  l  -{- (c -|- Tj)h e~'̂  ̂ — 1 -f 7 /1I
(c + r i Y i p  -  {c- \ -r iY)  \  (c +  ri)  ̂ p  j ’

covfy^^^ y(^) ) — 2 ^ f  /Q  _ -(2c+7))/i\2 -{2c+‘n){k-l)h'[ , ^ P 1 V f

r n  _  g-(c+)7)/i\2 ç-{c+r]){k-l)h (  ̂ _  g—rh\2 ç-'y(k-l)h '|

I P T W  ?  J ’
where the last equation holds for A: > 1.

When E {X \L )  = f  L the properties of the aggregated process are:

£ { y f }  =  f t A £ ( C ) ^ ^ ,

^  + l) + 2 -  1)}} ’

cov fy (^ )  y(^) 1 -  2A n E lC ) f2 {^3(A; +  1) -  2 gf3(&) +  ^ 3(t -  1)}  X p p  E{C)p 
“ v{y,, , y , , + , }  -  2XnE(c)f (2,+^)6  +  ( ,  +  ^)4 +  ^)2 _ ^ 2 }

, ^x2 . 21 , fî i(c +  77)7 { I I 7 2 - 17(c +  7y)2} 3 7 ^ 4 ( 0 + 7 7 ) !
| _ { 4 ( c + , )  - 7 } +  2(c  + -„ ) 3 { ( c + , ) ^ - 7 ^ } ---------- 2{c + vy r

where

(72(772) =  -  1 +  mh,

g3 {k) =  {20 4- Shk{2c +  77) 4- h?hP{2c 4- 

^4(772) =  {h{k 4- l)e "^ ^  -  2hk +  h(k -  l ) e^^}  

and the last expression is valid for A: > 1.
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For the Neyman-Scott based rainfall models, the second-order properties are derived 

from the corresponding expressions of the Bartlett-Lewis based models after replacement 

of param eter 7  by /? and of E (C ), in the second term of the variance and covariance 

function, by E{C^ -  C) 12.
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A ppendix  C

C ross-correlation  fu n ction  for 

m o d el w ith  random  W

Initially, we define the functions Gi, G2 and Gs as follows:

£2
=  J  fw{w)  dw = (C .l)

where 'y{t^6) = f  ^du is the incomplete gamma function,
0

£2

^ 2 (^ 1 , ^2 )  = J  w fw{w)  dw = - { ^ { 1̂ 6 2 , 0  + I) - ' y { u € i , e  + I)} , (C .2 )

and
£2 ^

^ 3 (( ,f i,(2 )  = y  /w (w ) dw = {7 (^2(î  +  C ) , ^ ) - 7 (fi(^^ +  C),^)}- (C.3)
£1

Then, it is straightforward using Equations (C.1)-(C.3), to integrate with respet to  w 

the functions Wm{Ç-!dijW,k), m  = 1 ,2 ,3 , in (4.5)-(4.7), over an interval [c i,62), when 

dij w + kh is positive and negative.

# When dij + kh > 0, then we getHJ

£2

W it (1, ( 2 ) =  ■^{e-<>'-2 + e<'') f w { w ) d w

€~<̂ h
(e — 2 +  ^3(Cd,-j,Cl,€2),
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W 2+ (Cî ) ^2)

= ^  J -  1 +  ((A; -  l)/i -  Cdijw] /w (w ) dw
Cl

= ^  ^3(-C^Ü5 1̂ ? 2̂) +  {({k -  l )h  -  1 } Gi {€i ,€2) — Qdij ^ 2(^1 , ^2)} ,

and

'̂̂ 3+ (C) ^iji k ’)(.\-)(-2)
C2

= ^  / {(e-C ' -  2 ) +  1 -  f (* -  l)ft -  Ç,dijw) fw{w)  dw
Cl

= | ( e  — 2 ) e G3{Cdij,€i,€2) +  {1  -  ({k — l)/i} ^ 1(61, 62) — (dij ^ 2(^1 , ( 2 ) j

• When dij w -}- kh < 0, then the three functions become

eCkh
(e — 2 + Gs{—(dij,  €1^6 2),

T4̂ 2~(C? ^iji k, Cl, C2 )

= ^ J {e-(C '+ :)''e-C ''" ' -  1 +  ((& + l )h  + (di jw] fw{w)  dw
Cl

= ^  {e G3i(dij,€i,€2) + {({k  +  l )h  — 1 } ^ 1(61 , 62) +  (dij ^ 2(^1 , C2)} ,

and

^^3“ (C? dij, k. Cl, C2) 
C2

=  i  y {(e-^* -  2) ê *'* +  1 + C(fc + l)ft +  (di jw) fw{w)  dw
Cl

“  ^  {(^ ^3(—(dÿ , Cl, C2) +  {((A; + l )h  +  1 } ^ i(c i, C2) +  (dij ^ 2(^17 ^2)} •

C .l A; =  0

The zero lag cross-covariance of the aggregated process for the model with random W, 

when dij < 0 , is obtained by integrating cjj^{wdji ,0)  over the interval [0,h/dji), where

125



dji =  -d i j ,  and Cij^^(wdji,0) over [h/dji,oo), which results in the following

° j i  CO

E y v [ C ^ f \ w d i j , 0 ) ]  =  j  c l j l { w d j i , 0 ) d w +  J  c l j } , { w d j i , 0 ) d w

= \ i jE {C)E {X^)V ,^{d j i ,0) + ^ E { C ^  -  C ) E { X ) % ^ ( d j i , 0),

where

and

Vi+{dji,0) = — W3-{i]i,dj i,0,0,— )-\------y^2-{'nj^dji,0,0,— )
T]i üji rjj uji

- (  —  ^'^3-(^ü,djj-,0,0,— ) -  ( —  )■*■ W2-{r]ji,dji,0,Q, —  )
Vij “ji Vji

+ — Wi-(rji,dji,  0, — , oo) — Wi-{rji, dji, 0, — , oo),
Tji dji Tfij dji

^ W2 - { l 3 , d j i , 0 , 0 , - ^ )  W i - { P , d j i , 0 , - ^ , o o )

^ 2■^idJ^ , 0  -  +  (̂ rii +  P )  (r)j -  P )  ^  i v j  + /^) i v i  -  P )

2P [ ^'^'^3-(^nf^inO,0,^) W2 - { r i j , d j i , 0 , 0 , - ^ )  Wi - { T ] i , d j i , 0 , - ^ , o o )
"h 7 Ô /-,o \ 1"

ivi + Vj) I  -  P^) Wj -  P'^) (77? -  P'^) j

When dij > 0, then t{j should also be non-negative and in this case the cross- 

covariance is obtained by integrating Cjj^2 i ' ^ d j i , 0 ) over the interval [ 0 , —h / d j i )  and 

Ci j ^^{ wdj i , 0 )  over [ - h / d j i , o o ) ,  that is.

Ew[Cjp{wdij,0)] =  J  Cljl{wdji ,0)  dw + J  c \ j \ { w d j i , 0 )  dw
h

= Evi;lCj^\wdji,0)],

because of the equivalence of Cjj^2 i^ij ,0 ) with Ĉ ji\{tji-> 0) and of 0) with C^ji\{tji, 0).

C.2 k  =  \

The cross-covariance of the rainfall intensities at sites i and j ,  during successive time 

intervals {k = 1), is given in two parts depending on the sign of dij. So, if dij < 0, then
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we have
h 7h

d,, d,i

1)1 =  J  1) f w { w )  d w +  J  c l j l i w d j i ,  1) /w ( w )  d w

0

oo

+ j  c}f\{wdji,l) fw{w) dw
t

= A,, E(C)  E (X ^ )  Vi+(d,i, 1) +  ^  E{C^ -  C) E { X f  1),

where

Vi+{dji,l) = — iy2+(^n c?jn 1,0, — ) H W^+irjj, d j i ,1 ,0 ,— )
Tji d j i  rjj d j i

- (  —  )'*’ W2- ^i Vi j ^dj i , l , 0 , — ) -  { —  )'  ̂ W3- \ - {7j j i , dj i , l , 0 , — ) +  — W : i - { r j i , d j i , l , — , — )

+  — W2- (Vj .  dji,  1, — , — ) -  ( — )+ Ws-{rj i j ,  dji,  1, — , — ) -  ( i ) +  W2-{rj j i ,  dji ,  1,
Tjj Uj t  Uj i  Ijij Uj i  Uj i  Tjji Uj i  d j i

+  — Wi - { r j i , d j i ,  1, — , oo) — { — ) ' ^ Wi - { r j i j , d j i ,  1, — , oo),
Tji d j i  Ij ij  d j i

and

_ '̂V2+{ ^^dj i ,  1 , 0 , ^ )  Ty3+(^,dji, 1 , 0 , ^ )  ^V3- { p , d j i , l , - ^ , ^ )

(^i+/?) (??i -/?) (% + /)) (% -  /)) (rij +  P)  iVi -  P)

^ ^ 2 - { P ^ d j i , l , ^ , ^ )  Wi-{P,  dji, l , ^ , o o )  2P d j i ,1 , 0 , - ^ )

{ l i  +  P ) i l j - p )  O l j + P ) i V i - P )  i'ni +  ^ j ) \  i l i - P ^ )

^^3+ {'nj^dji ,  1 , 0, ^ )  W^- { r j i ,  d j i ,  1, 1^ )  w 2-(%, dj i ,  1, ^ ,  | ^ )

^  i V j - P ^ )  { V i - P ^ )  { r j ] -P^)

W ^ - { r j i , d j i , l , ^ , o o )
+

When di j  >  0 we get

E M ^ i P i ' ^ d i j ,  1)] =  /  C  (^h){wdji,  1) d w

0

= XiiE{C)E{X^)Vi-{dji ,  1) + ^ E { C ^  -  C )E {X fV 2 -{d j i ,  1),

where

V i - { d j i , l )  =  —  W i + ( r j j , d j i , 1 , 0 , o o ) - ^  W i + { i j j i , d j i , l , 0 , o o ) ,
Vji
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, . Wi+ {/}, dji, 1 ,0, oo) 2/? Wi+(%, dji, 1 ,0 ,0 0 )

(% +  m  ( % - m  (m + n i ) { v ] - n  ■

C.3 k > 2

Finally, the cross-covariance function for the other time lags greater than one, when 

dij < 0, is
fc —1 ) hk
‘̂ ji <̂ji

^wlCjj\wdij,k)] = J  Clj\{wdji,k) fw{w) dw ■]- j  Ĉ j^ î' d̂ji.k) fy^{w) dw
0 h ( k - i )

dji

dji OO
+ J  Cl^'liwdji.k) f}^{w) dw+ J  Cjj\{wdji,k) f)^{w) dw

h±, h(k + l)
dji dji

= \ , ,E {C )E {X ^ )  V ,,(d ,i, k)  +  ^ £ ( C ^  -  C ) E { X f  k),

where

1 W / J ; ^ (^ '- 1 )  hk^  1 J , h{k -  I) hk^

Tji d j i  d j i  Tjj d j i  d j i

TJij d j i  d j i  Tjj- d j i  d j i

rji d j i  Tjjj d j i

W M P , d j i , k , 0 , ! ^ )  W M 0 , d j u k , ! ^ , l f : )
V 2+ { d j i ,  k) = ------ -------—r r - ------ ^ ----  + -----------------------  -

(^t +  P)  (% -  P)  i V j  +  P)  (% -  P)

W , . { / 3 , d , i , k , ^ i ^ )  W , - i P , d j i , k , ^ , ^ )

^  (^i +  P)  i v j  -  P)  {r j j  -I- (5) {rj i  -  /?)

W 2 - { P , d , i , k , ÿ f : , ^ )  W ^ - { ( 5 , d j i , k , ^ , ^ )

{r}i +  P ) { r j j -  P)  ^  { r ) j - \ -P)  {rj i  -  P)

2P j W M V j . d j i i k i O , ^ )  W , ^ { T j i , d j i , k , ^ , ^ )

(% + 7?j) j  { V j - P^ )  { Vi ~P^ )
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(^j -  iVi -  P^)

W , - (% , dj i ,  k ,  % ü ,  0 0 ) ]

^  i v f - n  ]■

For non-negative values of we have

oo

fc)] = j  Cljliwdji,  k) fw{w)  dw 
0

=  XijE{C)E{X^) V^-idji, k)  + ^ E { C ^  -  C ) E { X Ÿ  V^-idji,  k) ,

where

Vi-(<ijj,/c) = IF1+(t/j, ( i j j , 0, oo) — —qj (z/ji, (fj;, A;, 0, 0 0 ),
Vj Vji

Wi+((5,dji,k,0,oQ) _  2(5 Wi+{7]j,dji,k,0,oo)
 ̂ (77, +^) (%-/)) (77: + 77;)(77j-m '
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