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Abstract

Direct measurements of the angular distributions of CO, fragment ions produced in
interactions with 750 nm laser pulses of 60 fs duration are presented. These
distributions dramatically show the bent nature of the initially linear dissociating
molecule and allow observation of the alignment of the different dissociation

channels.

The first measurements of 750 nm laser pulses of 60 fs with vibrationally excited
CO. are presented. In comparison with ground state CO, enhanced kinetic energies
of the carbon fragment ions, particularly C*, have been observed. These
observations are consistent with unusually large bends in the molecule induced by
the laser field. Perpendicular alignment of the molecule with the laser field is also
implied. A comparison of the results of dissociative ionisation of CO, by 750 nm
laser pulses of 60 fs duration and by 532 nm laser pulses of 35 ps duration is made.

Presented for the first time are the results of intense laser field dissociation of
nitrous oxide using laser pulses of 35 ps duration and these results are compared
to the dissociative ionisation using 750 nm laser pulses of 60 fs duration. Original
results of MEDI of sulphur hexafluoride using 60 fs laser pulses at 750 nm are
presented. The fragmentation pattem of SFg displays features similar to those
found in experiments with diatomic and triatomic molecules, with a tendency
towards symmetric dissociative channels and producing fragment energies which
for all channels are consistent with a Coulomb explosion at a single, critical,
internuclear separation.
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Figure 5.7: TOF spectra of N,O fragment ions resulting from
dissociative ionization by 60 fs laser pulses at 750 nm, with a gas
pressure of 1.5 x 107 mbar, an extraction field of 300 V/cm and a
laser intensity of 9 x10'* W/cm?. The labels show the zero positions of
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intensity is 5.9 x 10" W/ecm? and the ambient pressure 8 x 10°® mbar.

Figure 5.12: Spectra of the dissociative ionization of N,O by 532 nm
laser light of 35 ps pulse duration with a focused laser intensity of 1.5
x 10" W/cm? and by 750 nm laser light of 60 fs pulse duration with a
focused laser intensity of 5.9 x 10" W/cm?® The laser polarization

direction is perpendicular to the TOF axis for both spectra.
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Figure 5.13: Spectra of the dissociative ionization of N,O by 5632 nm laser light
of 35 ps pulse duration with a focused laser intensity of 1.5 x 10" W/cm? and
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recorded with an extraction field of 300 V/cm.

Figure 6.3: The kinetic energy distributions calculated from a 1D-TOF
spectrum for the fragment ions from the dissociative ionization of CO, in a 60

fs laser field.

Figure 6.4: Covariance map of CO, from which the energy ranges of ions from
dissociative ionization channels have been determined (Bryan et al, 1997).

Figure 6.5: Angular resolution of C*, O* and O** ions in a 500 V/cm extraction
field.

Figure 6.6: Polar plots, as a function of the laser polarization direction, of CO*
(thermal and energetic), C*, O from channels (1,1,1) and (1,2,1), C¥, and 0%
from channels (2,2,2) and (2,3,2) where r is the number of counts per laser

pulse for each ion group. All data points are reflected into each quadrant.
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Figure 6.7: Angular distributions of fast O* channels (1,1,1) and
(1,2,1) and O** channels (2,2,2) and (2,3,2). The angle (theta) is the
angle between the TOF axis and the laser polarization direction.

Figure 6.8: The section of the covariance map showing the C*-O*
island and the section of the simulated covariance map showing the
C*-O" island (Cornaggia, 1996). The positions of two energy
distributions, referred to in Section 6.4.3 as a and b, are shown.

Figure 6.9: Modification to the ratios of the polarizabilities
perpendicular and parallel to the molecular axis for the extremes of
the bending vibration of ground state CO,.

Figure 6.10: The two orientations of CO, molecules postulated to

occur in the femtosecond laser.

Figure 6.11: TOF spectra in the absence of a test gas (Residual
pressure 4 x 10 '° mbar) showing the contamination peaks due to the
Kanthal wire being heated.

Figure 6.12: TOF spectra of the dissociative ionization of CO, at
room temperature (blue line) and heated to 473 K (red line) recorded
when the laser polarization was parallel to the TOF axis. The laser
intensity was 7 x 10'° W/cm? and the ambient gas pressure 1 x 107
mbar.

Figure 6.13: TOF spectra of the dissociative ionization of CO, at
room temperature (blue line) and heated to 473 K (red line) recorded
when the laser polarization was perpendicular to the TOF axis. The
laser intensity was 7 x 10" W/cm? and the ambient gas pressure 1 x
107 mbar.

Figure 6.14: Kinetic energy distribution of C*, C** and C* fragment
ions derived from the peak produced by the forward moving ions in
the spectra recorded when the CO, molecules were at room
temperature (blue line) and at 473 K (red line).
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Figure 6.15: Kinetic energy distributions of O*, 0** and O* fragment
ions, derived from the peak produced by the forward moving ions in
the spectra recorded when the CO, molecules were at room
temperature (blue line) and at 473 K (red line). A contribution due to
the C* ion, derived from the forward part of the C* TOF distribution,
has been subtracted from the O" high energy tail with the remaining
O" shown as the green line.

Figure 6.16: Summary of the summizes for the orientations and bend
geometry of the molecule for parallel and perpendicular laser
polarization directions with respect to the TOF axis for both heated
and room temperature CO. gas. The angle & is an unquantified value.

Figure 6.17: Segment of the Covariance map of SO, showing the
usual atoll shape of the correlation island of S*-O* (Comaggia et al,
1996a).

Chapter 7 Femtosecond Laser Pulse Dissociative
lonization of Sulphur Hexafluoride

Figure 7.1: The octahedral geometry of the SFg molecule.

Figure 7.2: TOF spectrum of the dissociative ionization of SFg
recorded with an extraction field of 300 V/cm, when the laser
polarization direction is parallel to the TOF axis. The laser intensity
was 7 x 10" W/cm? and the ambient gas pressure was 1 x 10® mbar.

Figure 7.3: An electron impact spectrum of SFg using 184 eV
electrons (Hitchcock and Van der Weil, 1978).

Figure 7.4: TOF spectra of the fragmentation of SFg in a 60 fs laser

field with the laser polarization parallel to the TOF axis, and recorded
with extraction fields of (a) 300, (b) 150 and (c) 75 V/cm.
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Figure 7.5: The alignment of the SFs molecule with respect to the
laser polarization direction and the TOF axis, assuming there is no
modification to the molecular geometry by the laser field. The laser
polarization is (a) perpendicular and (b) parallel to the TOF axis.

Figure 7.6: The angular acceptance, 0, of the forward moving F*, F**

and F* ions for a 300 V/cm extraction field.

Figure 7.7: TOF spectra of the dissociative ionization of SFs in a 60
femtosecond laser field recorded with a 300 V/cm extraction field. The
laser intensity is 7 x 10" W/cm? and the ambient gas pressure 2 x 10°
® mbar. Spectra recorded with both laser polarizations (parallel and
perpendicular to the TOF axis) are shown.

Figure 7.8: The angular acceptance, 6, of the forward moving F*, F**

and F* ions for extraction fields of 75 V/cm.

Figure 7.9: TOF spectra of the dissociative ionization of SF¢ recorded
with a 300 V/cm extraction field when the laser polarization direction
was parallel and perpendicular to the TOF axis. The laser intensity
was 7 x 10" W/cm? and the ambient gas pressure was 2 x 10® mbar.

Figure 7.10: The modification to the geometry of the SFs molecule
exposed to a femtosecond laser field.

Figure 7.11: Kinetic energy distributions for F*, F* and F* found
from the spectra recorded with a 75 V/cm extraction field. The arrows
refer to calculated kinetic energies released for MEDI channels given
in Table 7.6.

Figure 7.12: Region of the TOF spectrum recorded with a 300 V/cm
extraction field showing the relative heights of the F*, F** and F* ions.
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Appendices

Figure A1 (a) A good and (b) a bad spatial focus for N* in the TOF
mass spectrometer described in Section 2.5 where S,/2 is the
geometric midpoint (0O eV equipotential) in the extraction region and E
is the initial kinetic energy of the ion.

Figure A2: (a) lons dissociating in the extraction region when the
laser polarization axis is parallel to the time of flight axis and (b) a
section of the resulting TOF spectrum.

Figure A3: Form 1 of the TOF simulation explained in this appendix.
Definitions of the labels shown on the graph (picture 1) can be found
in the program.

Figure A4: Form 2 of the TOF simulation explained in this appendix.
Definitions of the labels shown on the graph (picture 2) can be found

in the program.

Figure A5: The dimensions of the TOF mass spectrometer used in
the calculations in this appendix

Figure A6: Sulphur hexaflouride molecule.
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Chapter 1

Chapter 1: Introduction

1.0 Introduction

The study of intense laser field physics is a well established but fast moving and
expanding field. The advent of table top lasers producing short pulses which can then
be spatially focused to dimensions of um? has resulted in the production of laser
intensities of up to 10'” W/cm?. However, even a focused intensity of 10" Wicm? is
considered to be super-intense.

To elaborate on the dramatic effect of these laser electric fields on atoms a comparison
of the atomic field binding the electron to the proton in hydrogen atom (51.4 V/A) and
the electric field produced by the focused laser intensity 10" W/cm? (8.68 V/A) show
that they are comparable in magnitude. The electric field magnitude is comparable with
the atomic field and can no longer be treated as merely a perturbation. Intense laser
field interactions with atoms and molecules can be thought of in two ways; either as a
multiphoton process or as a field ionization process. Traditionally, the Keldysh
parameter, vy, (Keldysh, 1965) is used to distinguish between the two regimes.

1
B w(2mE, )2
r= oF Equation 1.1
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Chapter 1

where P is the n-photon ionization rate (s™), g, is the generalized multiphoton cross

section (cm® s™), I is the peak laser intensity (photons cm?s™) and » the number of

photons absorbed.

Generally at higher intensities and/or longer wavelengths (where y<<1) there are
substantial difficulties in applying conventional muitiphoton theory. Multiphoton theory
assumes the laser electric field to be a perturbation. For y<<1 this can no longer be
considered to be the case. The higher order terms of the perturbation series are no
longer negligible and the entire theoretical multiphoton procedure breaks down.
Tunneling then becomes the dominant mechanism producing ionization of the atom.
The electric field produced by the focused laser light perturbs the Coulomb potential
resulting in a lowered potential barrier, as shown in Figure 1.2a. The electric field
oscillation time is longer than the time taken for the electron to tunnel out of the
potential well. The perturbation of the field, and thus, the reduction of the barrier, is
dependent on the laser intensity and the tunneling time is dependent on the height of

the barrier.
(@ (b)

40 40

0 0

UeV) o 5pd uev) o 5pS \

-80 -80

@ @
5 Q 5 -5 0 ]
rd) k)

Figure 1.2: The perturbation of the xenon atomic potential well by the intense laser electric field
(the sloped linear lines) such that a) the 5p° electron remains bound and b) at a higher laser
intensity it can escape classically over the barrier.

Experiments began, quite naturally, by investigating the effect of exposing an atom to
the intense electric field. Within the multiphoton regime perturbation theory was
successful in predicting appearance intensities of ions in the field. Problems arose for
physicists when performing experiments in the tunneling regime. Initially, the tunneling
regime was only accessible by altering the wavelength of the laser light (Chin et al,
1988). However, later, as laser technology improved higher focused
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laser intensities were achieved pushing shorter wavelengths into the tunneling
regime (Codling et al, 1987). There was also some difficulty in understanding
ionization in the ‘intermediate regime’ where y=1. Within this region ionization did
not appear to be dominated purely by either tunneling or the multiphoton
mechanism.

1.1 A Sequential Versus a Collective (Rapid Vertical)
lonization Mechanism

Intense laser field ionization produces ions in a range of charge states. What is
unusual compared to electron impact ionization or synchrotron radiation ionization
is that the charge states produced are so high. L’'Huillier et a/, 1983a and 1983b,
measured the ionization rates of xenon and appearance intensities of the ions in
order to investigate the mechanisms of ionization. Two possible theories were put
forward to describe how ionization occurred. Firstly, that the ionization mechanism
could be collective, or instantaneous, for example, Xe - Xe*, with both electrons
removed simultaneously from the atom, or secondly that the final ionization state
was the result of a sequential, or stepwise, process where Xe - Xe* was followed
by Xe* - Xe* such that the ionization occurred in two stages. The experiment lead
them to the conclusion that at high intensities for 532 nm and 1064 nm wavelength
light the ionization mechanism was sequential, but that for low intensity light the
ionization was collective. However, Boyer et al, 1984, using 193 nm light with a
peak intensity of 10’ W/cm? on Ar and Kr and Luk et al, 1985, also using 193 nm
light but with a peak intensity of 10" W/cm?® on He, Ne, Ar, Kr, |, Xe, Eu, Yb, Hg
and U, both found no evidence of stepwise ionization and concluded that the
ionization mechanism was a collective process. It was pointed out by
Lambropoulos, 1985, that the laser intensity in a real situation is not a delta function
but increases during the pulse. Thus, sequential ionization, with a rising laser
intensity, was the only realistic explanation. Codling et al, 1987, in an effort to settle
the question realized that sequential ionization could be proved or disproved by
dissociatively ionizing a molecule, specifically hydrogen iodide which is isoelectronic
with xenon. If collective ionization occurred at the equilibrium internuclear
separation then the kinetic energy of the fragments would be large when calculated
using Coulomb repulsion. In fact Codling et al, 1987, detected ionic fragments with
energies lower than expected implying that Coulomb explosion occurred at larger
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internuclear separations than the equilibrium separation. This was interpreted as

the result of a slow stepwise process.

The field ionization Coulomb explosion model (Codling et al, 1987) is a classical
model for predicting appearance intensities of ions. The assumption is that
tunneling through the potential barrier is a minor process and that most of the
ionization is caused by the escape of the electron over the potential barrier. The
outermost electron is positioned in the Coulomb well of the singly charged point-like
core of the atom at the energy level corresponding to the ionization potential. When
an electric field is applied to the atom the potential well is distorted, creating a finite
width potential barrier, as shown in Figure 1.2a. In this purely classical model the
barrier reduces with increasing laser intensity until finally the electron can escape
over the top of the barrier resulting in ionization, as shown in Figure 1.2b. Later this
model was further developed (Codling et al, 1989) to take into account the fact that
the electrons can also tunnel through the barrier and, thus, it developed into a
quasi-classical model. The field ionization model can be applied equally well to
diatomic molecules as to atoms.

The direction of the applied laser electric field rapidly reverses direction within half
the period governed by the wavelength of the laser light. For example, a laser of
750 nm reverses electric field direction every 1.25 fs and a laser of 532 nm every
0.89 fs. The field ionization Coulomb explosion model proposes that at the
beginning of the ionization process the outermost electron in the diatomic molecule
can move from ion to ion, but that as the ions move further apart the inner potential
barrier hinders the charge transfer and the electrons become localized within one
well. A new mechanism was suggested in which an electron trapped in the potential
well, shown on the left of the Figure 1.3, could be ionized over the inner barrier into

the continuum.
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Figure 1.3: Field ionization of a diatomic molecule when the laser polarization is parallel with
the molecular axis. The ionization potential of the localized electron has been Stark shifted by
the laser field such that it can escape from the potential well on the left-hand side of the
figure into the continuum.

Frasinski et al, 1989a, explained how, using the potential energy curves shown in
Figure 1.4, ionization of the nitrogen molecule could be occurring as a process of
instantaneous excitation followed by dissociation to a particular internuclear
distance followed by further ionizations and subsequent dissociations until the
molecule was completely dissociated. The field ionization Coulomb explosion model
had led the Reading group to the conclusion that sequential ionization was the most
reasonable explanation of ionization in intense laser electric fields.
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Figure 1.4: Potential energy diagram of N, showing the path of sequential ionization and
dissociation (Frasinski et al, 1989a).

However, these experiments (Codling et al, 1987 and Frasinski et al, 1987) and the
field ionization Coulomb explosion model did not settle the question of coliective
versus sequential ionization. Results from experiments performed by other groups
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seemed to find that both collective and sequential ionization occurred under various
circumstances. An experiment on the nitrogen molecule (Boyer et al, 1989)
indicated that vertical transitions to higher charge states of the molecule from the
equilibrium distance were occurring for intensities of 10'® W/cm? and 248 nm
wavelength laser light. Frasinski et al, 1989, reanalyzed the data of Boyer et al,
1983, and showed how the results could be reinterpreted as sequential ionization.
Comaggia et al, 1990, studying N, using two different wavelengths, 305 and 610
nm, found that the kinetic energy of the fragment ions showed a vertical collective
ionization transition from the equilibrium internuclear separation of the transient
molecular ion for the former wavelength and sequential ionization mechanism at
increasing internuclear distances for the latter wavelength. Nomand et al, 1991,
found that stepwise ionization occurred for dissociative ionization of oxygen using
600 nm laser light, but also that the ionization was collective using laser light of 248
and 305 nm, which compared well with the data from Cornaggia et al, 1990, on N..
Commenting on Comaggia et al, 1990, Normand explained the two mechanisms for
different wavelengths by suggesting that initially the parent ion is excited to the N,**
state. For the 305 nm experiment the lifetime of this state is long compared to the
risetime of the pulse and therefore, the only route for ionization is a rapid vertical
(collective) ionization. However, for the 610 nm light the lifetime of the transient
parent ion state is short compared to the risetime of the pulse allowing sequential
ionization to proceed. Normand et al, 1992a, investigating carbon monoxide found
that using 2 ps 610 nm laser light and 1.4 ps 305 nm laser light the ionization was
sequential. However, they noted that the kinetic energy peaks were very sharp and
therefore suggested that the dissociation of the molecule between ionization steps
could not take place via Coulomb dissociation curves, since broad energy
distributions would be expected. They suggested that the dissociation proceeded
via laser field modified resonance states.

Frasinski et al, 1991, so far an advocate of stepwise ionization, questioned this
when they used a 3D covariance map to look at the fragmentation pattern of N,O
using 600 nm wavelength laser light. They suggested that six electrons were
promoted to super-excited states and were stabilized by a combination of the
oscillating field and the three potential wells. After stabilization was lost they
postulated that the electrons were simultaneously ejected from the molecule.

There was an important problem with the sequential ionization idea. It had been
assumed that the particular intemuclear separation for each stage of ionization was










































































































































































































































































































































































































































































































































































































































































































































