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ABSTRACT

Optical lattices induced by light detuned far from the frequency of any atomic res-
onance transition are ideal systems in which to develop techniques for the coherent
control of atomic motional and internal states. Decoherence arising from sponta-
neous emission can be eliminated to an arbitrary degree by varying the detuning of
the optical field. The atoms trapped in these lattices are to a large extent isolated
from environmental disturbances and from each other. The first step towards the
coherent control of atoms in a far-detuned lattice is their preparation in a single
motional state.

In this thesis the preparation of atoms in the ground vibrational state of a
two-dimensional far-detuned optical lattice via resolved-sideband Raman cooling
is presented. This sideband-cooling scheme involves stimulated Raman transitions
between bound vibrational states of a pair of magnetic ground state sublevels,
followed by an irreversible step due to optical pumping, resulting in a net loss
of one quantum of vibrational energy per cooling cycle. This process provides
efficient cooling in two-dimensions and leads to the accumulation of a large fraction
of atoms in the 2-D ground vibrational state of a potential well associated with a
single Zeeman substate.

Experiments aimed at improving and monitoring the characteristics of the
far-detuned lattice and the sideband-Raman cooling efficiency are also described.

Parametric excitation experiments and modelling are employed to investigate the



degree of anharmonicity of the optical potential and the importance of heating
induced by laser intensity noise, whilst Zeeman-state analysis of the sample is
performed for monitoring the distribution of atoms over different magnetic sub-
states. Finally, spin-polarization experiments are carried out in order to study
the paramagnetic properties of the lattice and lead to an evaluation of a spin-

temperature for the sample.
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CHAPTER 1

Introduction

In this chapter an overview of the basic principles of laser cooling for neutral
atoms is given, with particular emphasis on Sisyphus cooling in optical lattices.
The first section treats cooling processes arising from light-induced forces acting
on a moving atom in the Doppler and sub-Doppler limits, as well as the magneto-
optical trap configuration. In the second part of the chapter, the mechanisms of
cooling and dynamics in optical lattices are presented. The optical potential and
the quantum description that leads to the calculation of the vibrational bands of
motion are also dis;:ussedA In the last section an overview of the known different
geometries for optical lattices is given, which explores configurations in one, two

and three dimensions.

1.1 Principles of laser cooling

The fundamental mechanisms of atom-light interactions are presented in this sec-
tion. Radiation pressure can be used to cool moving atoms by exploiting the
Doppler effect, as was first proposed by Hansch and Shawlow in 1975 [1]. Other

mechanisms of cooling are linked to the presence of polarization gradients and

13



1.1. Principles of laser cooling 14

lead to sub-Doppler temperatures (2], [3]. The magneto-optical trap configura-
tion (4] is also discussed, which allows not only the cooling of the atoms but also
their storage in the trapping region for a considerable time, thus allowing efficient

capture of atoms and increased cooling.

1.1.1 Atom-light interaction and light-induced forces

An atom interacting with an electromagnetic field undergoes mechanical effects,
due to momentum transfer during processes of absorption and emission of photons.
There are two types of forces that arise from this interaction, namely the radiation
pressure or scattering force and the dipole force.

Radiation pressure is generated by processes involving the absorption of pho-
tons followed by spontaneous emission. Each time an atom absorbs a photon,
there is a transfer of momentum from the photon to the atom given by p = #k,
where k is the wave-vector associated with the incident light. After absorbing, the
atom spontaneously emits a photon; spontaneous emission is isotropic, meaning
that there is no preferred emission direction. As a result, after averaging over
many cycles of photon absorbtion and emission, over a time much longer than the
excited state lifetime, there will be no contribution to the net force from spon-
taneous emission processes. Therefore, the force resulting from multiple photon
scattering processes will be F = nhk, where n is the number of scattered photons
per unit time. The photon scattering rate depends on the light intensity I, the
detuning A = wy, — w, (wr is the laser frequency and w, is an atomic resonance
frequency) and the natural linewidth T of the transition.

If we consider a moving atom as a two-level system interacting with a pair of
counter-propagating laser beams tuned to a frequency w;, < wy, it can be shown

[2], [3] that the net average force exerted by the light, for times ¢t > 1/T" (1/T
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being the lifetime of the excited level), is:
LI/Ig
; 2
1+ 1/15 + (Aa30)

F = ik (1.1)

where [Ig is the saturation intensity for the transition, A is the light detuning from
the resonance frequency of the atomic transition and v is the atomic velocity. This
is the scattering force, otherwise known as radiation pressure.

The dipole force on the other hand, originates from processes of absorption
followed by stimulated emission, when a spatial gradient of the light intensity is
also present. The dipole force acting on a atom in a laser field can be expressed

as 2], [5]:
_ hA-k-v) Vi/Ig

T L+ 1/1s + (Boe0)”

Radiation pressure was exploited in the first proposal of laser cooling [1] and in

(1.2)

the realization of optical molasses [6]. The first optical trapping was realized the
following year [7], exploiting the dipole force generated by a strongly focused laser

beam.

1.1.2 Doppler cooling

It is possible to exploit radiation pressure in order to create a viscous force that
reduces the kinetic energy of atoms in a vapour, as suggested by Hansch and
Shawlow in 1975 [1]. Counter-propagating laser beams tuned to a frequency lower
than that of an atomic resonance can be used, thus creating a viscous force that
slows down the atoms along the direction of beam propagation. A moving atom
is more likely to absorb a photon from the beam that is propagating in the oppo-
site direction to its motion: the result of many cycles of absorption followed by
spontaneous emission is a reduction of the atomic velocity in this direction. This

configuration is called optical molasses, [6].
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In the low intensity limit I < Ig, equation 1.1 becomes:

, I 2A)T

F = —QU = *4h/€LEW’U

(1.3)

where A is the detuning from the atomic resonance, I is the lifetime of the excited
state and Ig is the saturation intensity (for caesium, which is the atomic species
used in the work described in this thesis, Is = 1.12 mW/cm?) and v is the velocity
component along kr. The resulting force is a viscous force that tends to slow
down the atoms in the direction of propagation of the beams, thus reducing their
kinetic energy. The cooling is limited by spontaneous emission processes; due
to spontaneous emission, at short times the viscous force fluctuates around its
average value, given by equation 1.3. The balance between the heating process
and the cooling is studied in [2], [3] where it is shown that the minimum achievable

temperature in the Doppler limit is reached when A = I'/2 and it is given by:

AT
Toin = —. 1.4
AL ZkB ( )

For caesium the minimum temperature is 7.5¢ = 125 pK, which corresponds to
an atomic rms velocity vrms = 9 cm/s. The minimum kinetic energy achievable is

therefore limited by the width of the transition used for the cooling process.

1.1.3 The magneto-optical trap

The atomic density achievable in an optical molasses is very low because of the
atoms’ diffusive motion; even atoms with very small velocity escape from the
laser interaction region after a short time. In 1986, Pritchard [4] implemented a
scheme, first suggested by Dalibard, which required the use of a spatially non-
uniform, magnetic field and counter-propagating laser beams of opposite circular
polarization with detuning A < 0 in order to exploit the internal atomic structure
to provide a restoring force towards the center of the trap as well as a viscous

force. It is thus poséible to confine and cool a sample of atoms starting from a gas
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Y

F=1

T My =0

Figure 1.1:  Scheme of a magneto-optical trap in I-dimension for a £ = 0 - F/ = ]
transition.

at room temperature using the scheme iu 4], which ciuplovs counter-propagating,

laser beams with a detuning A < 0 from an atomic resonance and opposite circular

P — 7 A hyvperfine transition £ = 0 — [ = 1 is selected and an

polarization o
inhomogencous magunetic ficld is also added which is null at the trap center and
lereases linearly moving away frou zero point.

As is shown in figure 1.1 for an F=0 to =1 transition. the effect of the in-
homogencous magnetic field is to generate a Zeeman-splitting of the levels that is
spatially dependent: thus the o7 polarized bea is move likely to be absorbed by
an atom moving in the opposite direction (because the Zeeman splitting produced
by the magnetic field brings the Mg = —1 closer to resonance). while the prob-
ability for it to interact with an atom moving in the same direction is reduced.
The Zeeman splitting is such that the more distant an atom is from the center of
the trap, the more the transition is brought in resonance with the beam which is
propagating in the opposite direction. In this way. it is possible to generate, as
shown in (2], [3], a force acting on the atoms which is the sum of a viscous force
that cools the atoms and a confining force. T'his opens up the possibility of obtain-
ing higher densities of trapped atoms as well as a more efficient cooling process
arising from longer interaction times between the atoms and the laser beams. It
is shown in [2], [3] that this force can be generated along three spatial dimensions

with the use of three pairs of connter-propagating laser beams o — o~ polarized
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and a quadrupole magnetic field.

1.1.4 Sub-Doppler cooling

In 1988 temperatures lower than the Doppler limit were reported in optical mo-
lasses [8], [9]. These gave evidence that other kinds of mechanisms were also
involved in cooling. New theories were developed [5], [10], which explained the
observations of temperatures below the Doppler temperature. It was found out
that new cooling mechanisms were indeed involved, arising from the degeneracy
of the ground level involved in the optical transition and from optical pumping,
between different Zeeman sub-levels associated with the polarization gradient,
generated by the laser beams.

Let us consider the case of a 1-dimensional optical molasses. It was discovered
in [5], [10] that two new cooling phenomena occur, depending on the polarization

configuration of the laser beams:

i) two counter-propagating laser beams with opposite circular polarization

(ot — o7) lead to motion induced orientation effect;

ii) two counter-propagating laser beams with orthogonal linear polarization

(m® — 7¥) lead to Sisyphus Cooling;

The first of the two mechanisms is linked to a radiation pressure imbalance. A
moving atom interacting with two counter-propagating ¢+ — o~ polarized laser
beams, experiences a population imbalance among the sub-levels of its ground
state that depends on position, giving rise to an imbalance of the radiation pres-
sure which results in further cooling. In the second case (polarization 7* — 7¥),
the polarization of the optical field varies along the z-axis. Therefore different
transitions (i.e. with distinct Clebsch-Gordan coefficients) between Zeeman sub-
levels are favoured, depending on the position. Consequently, the light-shift of

the Zeeman sub-levels becomes spatially modulated. Optical pumping processes
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occurring in this modulated potential lead to so-called Sisyphus cooling. It has
been proved [5], [10] that in both cases the minimum temperature achievable in
the low saturation limit is proportional to the ratio %.

In the following I will discuss Sisyphus cooling in detail, as optical lattices are
designed to exploit Sisyphus cooling in order to achieve localization, by carefully
choosing the laser beams polarization. I will also refer briefly to motion induced
orientation as well, as in higher dimensions molasses and MOT, both kinds of

cooling mechanisms are present.

1.1.4.1 Motion induced orientation effect

Two counter-propagating laser beams with opposite circular polarization generate
a field with a resultant linear polarization that rotates around the z-axis (see

figure 1.2). The polarization gradient interacting with the moving atom induces

- @MW(@F s

y -

Figure 1.2: Representation of the ¢ — o™ polarized optical molasscs configuration which
gives risc to a rotating lincar polarization.

y

an atomic orientation and an imbalance between the ground state sub-levels (see
figure 1.3 for an F = 1 ground state) and leads to a bigger probability for the atom
to absorb photons from the beam that is propagating in the direction opposite to

its velocity, which results in cooling. It can be shown [5], [10] that in the sub-
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e === 7 _———

A, 3/40A,

— ——

|MY='1> ii |MY:+1>
My =0 )

Figure 1.3: Induced oricntation effect, which shows an incrcased population on onc of the
ground statc sub-levels (this case is for an £ = 1 ground statc).

Doppler limit the minimum temperature achievable is given by:

RO?
kBTsub—Dop 0.8 _A—u (15)

where () = T, /ﬁ is the Rabi frequency associated to the field and A is the
detuning. The minimum achievable temperature is very close to the one-photon

recoil energy limit.

1.1.4.2 Sisyphus cooling for an atomic configuration with F, = 1/2

The configuration #* — 7¥ (i.e. the two counter-propagating laser beams have
orthogonal linear polarization) gives rise to an ellipticity gradient along the z-
axis, as shown in figure 1.4. The polarization changes from linear to ¢, to linear,
to ot and so on, along z—axis. This leads to a spatial modulation of the light
shift of the ground states sub-levels, as shown in figure 1.5, the distance between
adjacent locations of pure o~ and o7 light being A/4, where )\ is the optical
wavelength.

Figure 1.5 refers to an atom with a ground state with hyperfine number F, =
1/2 and an excited state with F, = 3/2. This is the simplest situation to describe
Sisyphus cooling but does not fully account for the cooling mechanism operating

for atoms with large F'. For atoms with F' > 1 there is the possibility of cooling
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Figure 1.4: Representation of the lincar-orthogonal-lincar polarization optical molasses
configuration, which gives risc to an cllipticity gradient.

caused by optical pumping between different light-shift surfaces at a single well-

site, which is not allowed for FF = 1/2, as each lattice site presents only one

light-shift surface. After discussing the Fy = 1/2 case I will extend the treatment

to atoms with large Fy.

If an atom has almost zero velocity and it is placed at a location of ot light,
it will be optically pumped to an |mp = 1/2) state. The energy levels of the
atom will also experience a light shift. Since the Clebsch-Gordan coefficient is
larger for the mp, = 1/2 — mpg, = 3/2 than for the mg, = ~1/2 — mp, = 3/2
transition for o™ exciting light, then the ground state sub-level with m F, =1/2
will experience a larger light shift. The opposite is true at o~ locations.

When the atoms are moving along the axis of the laser beams with velocity
v # 0, they experience a spatially varying polarization. This means that the
two ground state magnetic sub-levels will present a varying light shift along the
z—axis. As the atoms move from a pure o+ point of light towards a point of o~
light, the probability of being optically pumped to mp = —1/2 increases, and
reaches a maximum at locations of pure o~ light; when the atom in the mp = 1/2

state climbs the potential hill, figure 1.5, and approaches its top, it will be optically
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1.5:  St'iiiiclassical picture lor tlie Sisyplui.s cooliuft, on a = 1/2 ~ F. = 12

Iran.sitiou. The atoms arc shown to cliiul) potentiai hills before being o|)tieallv pumped
back at the bottom of the potential well, thus loosing kinetic energy.

iniinped to nip = -1/2 and will thus lose kinetic energy. So at the end of the cycle
tlie atom is optically pumped again into a valley" of the potential, from where, if
it has still enough kinetic energy, it can start climbing again and the process would
be repeated. The net result is a dissijiation effect related to anti-Stokes Raman
processes, driven by the ojitical ])mnpmg. Thesi' processes are most efhcient when
the velocity of the atom is such that CL, —A/S. wlu're A is the wavelength of the

laser field and determines the periodicity of the potential (see hgure f.5) and 7,
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is the optical pumping time: this means that when the velocity of the atom is
such that the atom moves over a distance A\/4 during an optical pumping time,
the cooling is more efficient. The temperature limit in the Sisyphus case can be
estimated, as shown in [2] from:
2

kpTsys ~ h{—i—l. (1.6)
This result predicts that an arbitrarily low temperature can be reached since
decreasing the laser intensity and increasing the detuning leads to a lower temper-
ature. Of course the temperature cannot decrease indefinitely, as at some point,
the loss of energy during each cooling cycle would be balanced by the recoil energy
gained in the spontaneous emission step. The lower limit for intensity determines
the minimum temperature achievable, which is of the order of Er/kp, where

(1ik)?

Ep = — is the one-photon recoil energy.
2mes

1.1.4.3 Sisyphus cooling for an atomic configuration with F, > 1

Sisyphus cooling provides cooling and localization of atoms in optical lattices,
in which each lattice site is associated with a minimum light shift of one or more
ground state sub-levels, depending on the F;y number. For a total ground state an-
gular momentum F=1/2, Sisyphus cooling involves optical pumping among states
mp = 1/2 and mp = —1/2, which have minima of light shift at different locations.
For ground state with F; > 1, more than one sub-level present a minimum of the
light-shift at the same location (lattice site), therefore cooling can also happen
locally, without hopping between lattice sites.

For an atom with ground state of hyperfine number F,; > 1 and excited state
F. = Fy + 1 moving within an optical lattice, there is a set of optical poten-
tials associated with the Fy 4 1 ground states, which are coupled by stimulated
Raman transitions. For such atoms there are two possible pictures to describe

the mechanisms of cooling, as reported in [11]. In one case, cooling can occur
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Figure 1.6: Scmiclassical picture for the Sysiphus cooling on a F), = 2 —/\. = 4 transition,
ajrepresents local cooling, cine to optical pumping at a given lattice site and b) hopping
cooling, motional induced conpling causes transitions between the adiabatic pote“ntials
and atoms are pumped between different lattice sites. Figure from PR A 56, 17U5
locally at a given lattice site as atoms preferentially climb steep potential wells
and descend shallow ones. As shown in figure i.b the two potentials among which
cooling happens have different curvature, thus the atoms lose more kinetic energy
in climbing than they gain in descending, the difference in energy being dissii)ated
in optical pumping. In the second case, shown in hgnre 1.bb, atoms cool when
they hop between lattice sites, nv making non-adiabatic transitions between the
(onpled set of optical potentials and preferentially being pumped to the ;)otential
with the largest light shift. In [11] theoretical studies for the F, = 2 F =3
transition of these cooling mechanisms lead to the conclusion that, although there
is some local cooling, the dominant mechanism is cooling with inter-well hop-
ping, with a rate twice ns large. Local cooling is expected to be more efficient
for atoms with large F, since the larger the F, the more internal states for which
local cooling would work become available. In [12] distinct cooling and magnetiza-
tion decay times were measured for a 1-D optical lattice of caesium atoms cooled
on the Fj = 4 F], = 5 transition; the magnetization characteristic time was
found to be three times longer than the localization time. The distinct nature of

these timescales is a clear signature of local cooling. In [13] the build up of the
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localization was measured to take of the order of few microseconds.

1.2 Introduction to optical lattices

Atoms can be cooled and trapped in a periodic lattice of potential wells generated
by interfering laser beams. The atoms trapped in these lattices are to a large ex-
tent isolated from environmental disturbances and from each other, due to the low
filling factor (i.e. fraction of lattice sites populated) characteristic of such lattices.
The richness and flexibility inherent to the atom-light interaction allows a wide
range of properties characterizing an optical lattice to be adjusted [14] through
the geometry of the laser beams, their polarization, intensity and frequency and
through the addition of static electric and magnetic fields. Furthermore the pos-
sibility of dynamically altering the lattice properties can be exploited and many
different experiments can be performed [15]. Experiments devised in the past sug-
gested that these pfoperties must be carefully chosen in order to provide efficient
Sisyphus cooling, which only occurs for configurations where light is circularly
polarized at positions of maximum light shift.

In this section I will give an introduction to optical lattices. I will describe the
methods for treating laser cooling in optical lattices and the quantum treatment
that leads to the band theory. I will then present a summary of some possible
different configurations extensively discussed in [14]. In particular I will discuss
the 2-dimensional configuration used extensively for the experiments performed

in the course of this work.

1.2.1 Laser cooling in optical lattices

Many theoretical models have been used for the study of laser cooling in opti-
cal lattices and in this section I will highlight the principal methods and results

achieved, referring in particular to the Jessen and Deutsch paper of 1998 [16] and
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to [17].

The general theory of laser cooling for a multilevel atomic system is discussed
in detail in [2] and the main results will be summarized here. Consider a monochro-
matic optical field which is interacting with a gas of atoms, being tuned close to
an atomic transition of ground state |F,) and excited state |F,). There are, there-
fore, 2(Fe + Fy + 1) states that evolve coherently through the coupling to the laser
field and dissipatively through the coupling to the vacuum. The full description
of the system would, in general, be very complicated. However, in the limit of low
intensity or large detuning, which also represent the regime where cooling is most
efficient, the problem can be simplified. In this regime, the saturation parameter
is small and the population of the excited state is consequently small. This means
that the time scales of spontaneous emission and optical pumping can be sepa-
rated, the first being much shorter than the second. Therefore, the excited state
population and atomic coherence between ground and excited state relax rapidly
and the atoms adiabatically follow the evolution of the ground state manifold.
The excited state can then be eliminated and a simplified Hamiltonian can be
considered, that acts only on the atom’s external coordinates and internal ground

state manifold, as discussed in [17]. The reduced Hamiltonian then becomes:

H= él%-j[- + Uy (eL(x) . &)T (eL(x) . cAl) , (1.7)

Mg+q
mg €

where P and x refer to the center of mass, d = > q.m, Cmy Fe,mg+q)(g, Fg,mgle;

is the dipole operator, cp¢ is the Clebsch-Gordan coefficient coupling the states
|Fy, mg) and |F,, me) and e, are the spherical basis vectors.

When the 2-D lattice is formed by beams with all polarization vectors lying
in the same plane, choosing the quantization axis normal to the plane, the light
field can be decomposed into ¢ components only. In the very simple case of a

Fy = 1/2 —.F = 3/2 transition, the my = £1/2 states are not coupled by the

laser field; this means that the coherent atomic motion can be considered as taking
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place on two separate scalar potentials, one corresponding to a mg = 1/2 and one
to a mg = -1/2 state. For a transition F ~ F + I with F > 1, the light shift
o|)erator contains iroth diagonal and olf-diagonal terms in the \§j, Fgpirifj) basis.
The diagonal terms correspond to al)sor])tion and stininlated emission processes
with Am.g = 0 while the off-diagonal ones have Anig = +2. Neglecting off-diagonal
elements we obtain the ‘diabatic’ potentials; if the total light shift operator is
diagonalized the ‘adiabatic’ potentials are ol)tained, which correspond to light

shift eigenvalues of an atom localised at a particnlar position. The diabatic and

adiabatic potentials are both shown in hgnre 1.7 fora Fg = 2 » = :1transition.
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higure 1.7. a) level structure of a Fg = 2" E>= K aloiii. flower left: diabatic potential

oln.aiued ignoring coupling between different nip states. Lower right: adiabatic potential

obtained considering coupling A/;;,, = £2. Figure from Adv. At. Mol. Opt. Phys. 37,
199G

In general neither of the two representations completely describes the sitna-
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tion pertaining in near-detuned optical lattices. For slow moving atoms, the time
spent in the crossing region of the adiabatic potentials is long enough to allow
stimulated Raman transitions, so that the atom motion follows the adiabatic po-
tential, while fast moving atoms follow the diabatic potentials. When the atoms
are strongly localized at the bottom of the potential well, the two potentials are
almost identical.

Equation 1.7 describes the coherent evolution of an atom, but in order to
treat laser cooling, dissipative processes must be added. If the excited state is
adiabatically eliminated, then the master equation for the atomic density operator

p can be written as [17]:

L R IR By KSR G )
The first term just represents the coherent evolution of the system, ruled by the
Hamiltonian of equation 1.7. The second and third terms represent the dissipative
processes linked to optical pumping between ground-state sublevels. The second
term describes the population decay from one ground state sublevel, due to opti-
cal pumping into other sublevels and A = (e (x) - d){(ez(x) - d). The third term
represents the transfer of population to the ground state sublevel from other sub-
levels by optical pumping. The operator Wy (ks) = (e™+%e, - J)T(EL(X) . cf) rules
the absorption processes of a lattice photon, followed by emission of a fluorescence
photon with a specific wave-vector ks and helicity A with respect to the quanti-
zation axis. Np(ks) is the probability distribution of photons with helicity A and
wave vector kg and T's is the scattering rate. Equation 1.8 can be rewritten in

units of the recoil energy Eg, so that it is dependent only on two dimensionless

parameters:

i) Ug = Eg%; it defines the timescale for coherent evolution processes (i.e. os-

cillation time at the bottom of the potential well)
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ii) Ts = ’gﬁ, it defines the timescales for dissipative optical pumping

The solution of equation 1.8 is in general not trivial, but it can be obtained if
some simplifications are made, as detailed below. In the semiclassical approxima-
tion the coordinates of the center of mass are treated as classical variables; this
can be assumed if the spread in Doppler shift, due to the width of the momen-
tum distribution, is small compared to the natural linewidth and when the spatial
coherence of the atomic wave-function is small compared to that of the light wave-
length. The relaxation time-scale for internal degrees of freedom must be shorter
than for external degrees of freedom, so that the atom can be seen as a classical
particle subject to an instantaneous force. When the internal timescale becomes
much longer than the external one, then a quantum treatment is required, as I

will discuss in the following section.

1.2.1.1 Quantization of the atomic motion and band theory

For multilevel atoms in an optical lattice the semiclassical approximation is not
applicable, because the internal timescale 7;p; is typically much longer than the
external one 7.y (oscillating regime). In this case a full quantum treatment is
required, in which the external coordinates (x,P) also have to be treated as
quantum operators. The spectrum of energy eigenstates consists of bands, with
bandgaps separating the tightly-bound states, and a quasi-continuum spectrum for
free states. In the oscillating regime, laser cooling can be studied by diagonalizing
the atom-laser Hamiltonian and treating the vacuum as a perturbation. The prob-
lem is analogous to the description of an electron moving in the periodic potential
formed by ions in a solid crystalline structure. The difference is mainly due to the
fact that the optical potential depends strongly on the internal state of the atom
and because, in general, internal and external degrees of freedom are not separa-

ble. The eigenstates are then ‘entangled’ states of these variables. Generally, it is
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possible to write the state of the atom as a 2F; + 1 component spinor. Each wave

function can then be expressed in Bloch form as |) = >, e I%|ug") @ |myg),
where |uq ) has the periodicity of the lattice. Results of band calculations for a
far-detuned optical lattice are shown in the following chapter in figures 2.5 2.6,
2.3 and 2.4. The energy bands shown there exhibit curvature for higher energy
states. This curvature arises because, in a lattice with Fy, > 1, atoms can tunnel
between neighboring wells associated with opposite light polarization. The band
curvature becomes substantial as soon as the energy rises above the top of the low-

est adiabatic potential well, but such bands do not have a completely free particle

character.

1.2.2 Optical Lattice in one dimension

The simplest possible configuration for an optical lattice is in one dimension for an
atomic transition with ground state F,, = 1/2 and an excited state with F. = 3/2,
as described in [17]. A standing wave is formed by a pair of linear cross-polarized
laser beams, in the scheme represented in figure 1.4. This configuration is usually
referred to as 1-D linllin. Choosing the quantization axis Z along the direction
of propagation of the beams, the total light field can be decomposed into two
standing waves of ot and o~ polarization, with a spatial offset of A/4, so that the
antinodes of one coincide with the nodes of the other. The polarization of the total
field changes along 2 from circular to linear (via elliptical) and back to circular,
while the total intensity of the light is independent of z. In [5] the potentials for

the states F; = £1/2, in the limit of low saturation, are given by:
2 1
Uija = 300 cos? (kz) + U0
2 1
Ui =300 sin? (kz) + 300, (1.9)

hAs
2

where Uy = is the maximum value of the light shift; the saturation itself is

defined in terms of the parameter s = 2Q?/(4A? +I'?), for the transition involved
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at points of pure circular polarization, with Rabi frequency Q. In the case of
red detuning, this potential is represented in figure 1.5, where it is shown that
the cooling occurs because of optical pumping between the atomic ground state
sublevels, a mechanism that is called Sysiphus cooling and it is further described in
section 1.1.4.2. In (5], [2] a semiclassical model is used to predict the temperature
of atoms in an optical lattice, by estimating the averaged friction and diffusion
coefficient. Atoms reach a temperature that corresponds to a mean kinetic energy
which is of the order of magnitude of the depth of the potential, which means
that a large fraction of the atoms can be trapped in individual potential wells.
Near the bottom of the potential well, the atoms are localized in the Lamb-Dicke
regime. In this regime the atomic center-of-mass motion can be approximated by a
thermally excited harmonic oscillator. By expanding the optical potential around
the minimum and taking the quadratic term in the displacement, it is possible to

define the oscillation frequency

hwosc = ngom UOERa (1'10)

212 . .
where Fp = ’; A’fl is the recoil energy of one photon and Kgeom is a constant,

which depends on the geometry of the lattice; in the 1-D linllin case this is
24/2/3. Again, this treatment is meaningful only if the atom resides in a given
potential well for a time comparable to or larger than the inverse of the vibrational

frequency.
1.2.3 Optical lattices in two and three dimensions

1.2.3.1 2-D Optical lattice

It was suggested in 1993 by Grynberg et al. that it is not necessary to phase-lock
the lasers in order to keep the topography of the lattice constant, provided that
in order to generate an N-dimensional optical lattice, N + 1 beams are employed.

Fluctuations of the N independent relative phases would then simply result in a
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spatial translation of the lattice. Typically, the fluctuations of the relative phases
are slow compared to the atomic response time, so that the atoms adiabatically

follow the lattice translations. In figure 1.8 two possible configurations for the

y
. z
k1 X k1
ko k3 k2 k3
20 20

Figure 1.8: Two dimensional optical lattice configurations for = 7/3, with (A) all the
beams polarizations lying on the lattice planc and (B) onc of the beams polarization lying
on the lattice planc and the two other orthogonal to the lattice planc.

2-D case (Grynberg [14]) are shown. Assuming 6 = 7/3, as shown in the figure,
the primitive cell is spanned by a; = (7/K.)& + (7/K,)y and as = —(7/K)Z +
(r/Ky)y, where K, = ksin§ and K, = k(cosf + 1), k being the wave-number.

Different polarization choices in the two geometries change the relative position
of o and o~ sites, i.e. the basis of the unit cell. For configuration (A), the positive
frequency component for the electric field is given by:

E()e—iky

Er(x) = 7

[—esr(1+ 2e"Y cos (K o)) + e (1 + 2599 cos (K — 26))],
(1.11)
where the quantization axis is 2, being perpendicular to the x — y plane, and the

relative phases are chosen such that there is a local maximum of the o polarized
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component at the origin. A basis associated with each primitive cell consists of a
ot site at vi = 0 (black dot) and o~ site at vo = (26/K; )% (white dot).

For configuration (B), in figure 1.8, in order to obtain maximum light shift at
points of pure o polarization, it is necessary to choose different amplitudes for the
three plane waves, Fo = E3 = E;/2 (E) being the beam travelling along the y
axis), and a convenient relative phase. The electric field in this geometry is then
given by:

Eoe—iky

EL(X) = \/5

[—er(1+ 2e Y cos (K,x)) + e (1 + 265 cos (K,z))]

(1.12)
In this case, the quantization axis is chosen in the z — y plane along k;. From
equation 1.12 we can see that the basis of the primitive cell has ¢ at v; = 0 and
o~ at va = (7/ K. )%

This second configuration has pure circular polarization at positions of maxi-
mum light shift for an arbitrary angle 6, while in geometry (A) this requirement
was only fulfilled choosing an angle of § = 7/3. But, because of the intensity
imbalance of the three laser beams, the potential of configuration (B) presents a

non-zero radiation pressure at the potential minima, making it less suitable for

cooling and trapping than the potential of configuration (A).

1.2.3.2 3-D Optical Lattice

The discussion in the above two-dimensional case can be generalized also to three
spatial dimensions. In order to create a lattice in N dimensions, N+1 laser beams
should be used to achieve a constant topology. If more beams are used, they
have to be phase locked. In the following, I discuss an example of a 3D lattice,
generated by four beams, which can be viewed as a three dimensional extension of
the 1D lattice discussed above, [14]. Let us start again with the one dimensional

lattice, formed by two opposing beams with crossed linear polarization along the
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2—axis. One of the two beams is split, in order to get two beams in the x —z
plane with equal intensities and linear polarizations along the y—axis. The other
beam is split into two beams lying on the z —y plane, with linear polarizations
along the z—axis. The total field will generate a periodic potential with points of
pure CFt and <7~ light; at these points all beams contribute with equal intensity
and therefore the net radiation pressure is zero. This structure, shown in figure
1.9, gives rise to a simple tetragonal lattice, in [14] this configuration as well
as other possible ones are studied; it is shown that, by changing the geometry
and number of laser beams, one can construct other types of unit cells, such as

face-centered-cubic and body-centered-cubic.

Figure 1.9: Three dimensional tetragonal optical lattice configurations generated with
four beams.

1.3 Aims of this thesis and outline

Optical lattices induced by light detuned far from the frequency of an atomic reso-
nance transition are ideal systems in which to develop techniques for the coherent

control of atomic motional and internal states. They provide conservative poten-
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tials, which can be engineered in order to achieve a wide variety of forms, through
a careful choice of the geometry and polarization configuration of the optical field
and the strength and orientation of supplementary static magnetic fields. Further-
more the decoherence arising from spontaneous emission can be suppressed to a
high degree. The atoms trapped in such lattices are to a large extent isolated from
environmental disturbances and from each other. The first step towards coherent
control of atoms in a far-detuned lattice is their preparation in a single motional
state.

In this thesis an extensive study of atoms in a 2-D non-dissipative optical lattice
is presented. The main goal of the thesis is to achieve two-dimensional cooling of
the atomic sample via resolved-sideband Raman-cooling. In this way the atoms
can be prepared in the ground vibrational state of the light-shift potential surface
corresponding to a single Zeeman sub-level. This is an ideal starting point for
coherent control, as it is a minimum uncertainty state.

An understanding of the properties of the lattice is gained through theoreti-
cal modelling of the potential light-shift and band structure. A two-dimensional
scheme for resolved-sideband Raman-cooling [18] is also modelled; these calcula-
tions offer us the possibility of estimating a priori the optimum parameters for
the loading of the lattice and the Raman-cooling of the sample.

The loading of the far-detuned optical lattice is monitored and a series of
experiments are run aimed at the optimization of the transfer of atoms from a
super-imposed, near-resonance lattice. Experimental techniques are implemented
in order to measure the population of vibrational bands and Zeeman states. These
techniques are used in order to monitor and optimize the transfer of atoms, by
ensuring that the increase in vibrational temperature during the transfer is mini-
mized and that the maximum population in the desired stretched state is achieved.

The possibility of resolving the populations of the single bands is also exploited
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in order to study the mechanisms of loss in the far-detuned lattice and the ef-
fects of noise or spontaneous-scattering induced heating in the far-of-resonance
lattice (chapter 4). Stern-Gerlach experiments (chapter 6) are used to monitor
the population in the distinct Zeeman levels and to maximize the population of
the |mp = —4) state, in which the Raman cooling becomes efficient. Furthermore,
this technique is employed for a study of the magnetization properties of the lat-
tice as well as the spin-temperature of the ensemble of atoms in the lattice. In
chapter 6 a thorough analysis of the variation of the Zeeman states’ population
as a function of a static magnetic field orthogonal to the lattice plane allows an
investigation of the paramagnetic properties of the lattice and the determination
of a spin temperature.

In chapter 5, experiments on parametrically excited atoms in the lattice, com-
pared to simulations, allow us to investigate the heating induced by laser inten-
sity fluctuations. Parametric excitation experiments and simulations permit also
a study of the vibrational frequencies of the far-detuned lattice and allow the
matching of the near-detuned vibrational frequency to the far-detuned one. Fur-
thermore, a second order perturbation method, allows the investigation of the high
degree of anharmonicity and of the non-uniformity of the potential depth along
the trapping sites.

Following the optimization of the loading of atoms in the far-detuned lattice,
sideband-Raman cooling experiments are performed, aimed at the preparation of
atoms in a single motional state. Two-dimensional sideband Raman cooling is
finally achieved (chapter 7), using a method first proposed by Jessen and Deutsch
(18]. The method is based on coherent coupling, due to stimulated Raman transi-

tions induced by the lattice field, with an irreversible step due to optical pumping.



CHAPTER 2

Non-Dissipative Optical Lattices

The spontaneous scattering of photons, which is an inherent part of the Sisy-
phus cooling that leads to localization of atoms in a near-detuned lattice, has the
disadvantage of being responsible for decoherence effects and thus for a reduced
lifetime of the vibrational coherences. While the spontaneous scattering rate is
proportional to Kjg‘, the potential depth is proportional to %. It is therefore pos-
sible to reduce the scattering rate by tuning the lattice light field very far from
an atomic resonance (far-detuned regime), while keeping the potential depth con-
stant by adequately increasing the intensity. The scattering rate can therefore be
reduced from a typical value of I'y = 500 kHz in the near-detuned lattice to only
I's ~ 100Hz in the far-detuned optical lattice, while maintaining the vibrational
frequency typically wy;, = 40K Hz in both cases. In this way we generate a far-
detuned lattice, an almost dissipation-free potential, with longer-lived vibrational
coherences.

In this chapter an in depth discussion of optical lattices in the far-detuned
regime is offered. The form of the optical potential which may readily be accounted
for using the concept of effective magnetic field presented in section 1. Section

2 details the calculation of the band-structure for our 2D lattice configuration

37
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and presents results for a variety of potential depths. The last section of the
chapter is entirely dedicated to a sideband-Raman-cooling scheme, first realized
by Hamann et al. in 1998 [20], which was used to increase the population of
the ground vibrational state over that obtainable by Sisyphus cooling alone in a

near-resonant lattice.

2.1 Optical potential in the far-detuned regime and

fictitious magnetic field

The potential for atoms in the ground state manifold interacting with a laser field
is given by [18]:

U(x) = -Ep(x)-&- EL(x) (2.1)

where Ef, is the electric field, & = — )", ageaeg /R g is the atomic polarisability
tensor in the far-off resonance limit, with age being the electric dipole operator
between the ground and excited hyperfine states; Age = wy — wye is the detuning
from the transition between the hyperfine levels |g) — |e).

The electric dipole operator is a sum of contributions from all the allowed tran-
sitions between Zeeman sublevels of the ground and excited states. By expanding
the laser field [20], [21], [18] in the spherical polarization basis (c*,07,m), it is

possible to show that the only non-zero elements of the matrix,
<F= m‘iIU(x),F’ mj>a (2'2)

are only those which connect states with Am = 0, £1, 2. Terms for which Am =
0 lie on the diagonal of the matrix, while off-diagonal terms couple states for which
Am = +£1,+2 and result from stimulated Raman transitions between different
ground state sublevels, involving ¢ and 7 polarized light. The ‘adiabatic’ potential
is found by diagonalizing this matrix taking into account off-diagonal terms which

represent the Raman coupling. The new eigenstates will be a superposition of the
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|F,m) basis functions. An adiabatic potential cannot be associated with a pure

* or 0~ light, where the Raman coupling is

|F, m) state, but at locations of pure ¢
almost non-existent, it is nearly identical to the ‘diabatic’ potential associated to
the |F, m = %4) state. The diabatic potential is obtained simply by neglecting the
off-diagonal terms in matrix 2.2. As the atom moves away from regions of pure
o polarization, the contribution to the eigenstate of other magnetic sublevels is

* and

increased gradually and avoided crossings are created midway between a o
a o~ site. In general, if the Raman coupling is significant, the adiabatic potential
describes the lattice better, as long as the atoms move slowly enough through the
avoided crossings to undergo Raman transitions. Fast moving atoms will follow
the diabatic potential. For atoms tightly bound at ¢ locations, the adiabatic and
diabatic potentials almost coincide.

An optical lattice with polarization gradients will, in general, establish coher-
ences between the different magnetic sublevels of the ground state via stimulated
Raman transitions. These coherences, in conjunction with the effects of external
magnetic fields, can be exploited to control the atomic state. To study the coher-
ent evolution of the atomic state, it is necessary to start in the dissipation-free

regime, i.e. the lattice should be tuned very far from the atomic resonance. In

this limit equation 2.1 can be simplified and the optical potential can be written

as [18]:
U(x) = Us(x) + Begs(x) - o, (2.3)
where
Uy = ~ZUiles () (24)
and
Besy = SUiler’ () x ex(x)), (2.5)

with U; being the single beam light shift and € being the polarization vector. It

has been assumed that the lattice is generated by equally intense laser beams, so
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that the single beam amplitude can be factorized. From equations 2.3 and 2.5 it
can be shown that the light shift potential is equivalent to a shift, proportional
to the local intensity of the field and independent of the hyperfine state of the
atom (Uj(x)) and the effect of an effective fictitious static magnetic field, whose
amplitude and direction depend on the local ellipticity of the polarization. This
fictitious field is interacting with the magnetic moment fi = —gpupF, where F is
the angular momentum operator, gr is the gyromagnetic ratio and pp is the Bohr
magneton.

In the limit of infinite detuning coherences between states with Am = £2 go
to zero (cf.[18]). If the polarization of the light field is linear at any location,
the effective magnetic field vanishes, thus making the light-shift independent of
the magnetic sublevel of the atom. For different ellipticity of the laser light,
polarization in the plane of the lattice gives rise to longitudinal effective B fields.
The combination of a 7 and ¢ component of the light gives rise to a transverse
effective magnetic field. The great advantage of engineering B, through the light
polarization is that it is possible to generate an effective magnetic field which is

spatially varying on the scale of the optical wave-length.

2.2 Effects of static magnetic fields

Equation 2.3 can easily be generalized to take in account of the effect of a static

magnetic field B can be taken in account, as shown in [18], by writing:
U(x) = Us(x) + (Bess(x) + B) - . (2:6)

The introduction of a static magnetic field in directions parallel and transverse
to the quantization axis (or the fictitious magnetic field itself) gives rise to dif-
ferent effects: a field parallel to the z-axis simply adds a Zeeman energy shift

AE = grupmBgz to the diagonal terms of the optical potential matrix 2.2. This
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dependence on the m quantum number can be exploited in order to accumulate
atoms in a preferential state in the near-detuned lattice, just by increasing the
depth of the corresponding potential through the Zeeman effect.

A transverse magnetic field along the x or y direction creates off-diagonal terms
in the optical matrix, which generate the coupling between magnetic sublevels
which differ by Am = +1. This coupling between magnetic sublevels can be
exploited in the near-detuned lattice in order to enhance the cooling efficiency
and also to increase the localization of the atoms at the bottom of the potential

well.

2.3 Band-structure of the 2-D far-detuned optical lat-

tices

As discussed previously in section 1.2.1.1, the periodicity of the optical lattice
allows us to use the methods of solid state physics in order to determine its energy
spectrum [22]. For atoms in an optical potential, the Hamiltonian can be written
as:

P2

H= U(x), (2.7)

where U (x) is given by equation 2.3 and % is the kinetic energy of the center-
of-mass. The eigenvalues of this Hamiltonian form a discrete spectrum of energy

levels, as discussed in section 1.2.1.1.



Figure 2.1; Lowest potential surface of a 2-D optical lattice associated with nip = +4
states. Adjacent lattice sites have opposite polarizations.

The band structure and energy levels were calculated for a two dimensional
lattice with the geometry of figure 1.8(A). The employed laser beam configuration
is shown in figure 6.3. It consists of three co-planar laser beams of equal intensity,
propagating at angles of 120° with respect to each other and linearly polarized in
the plane of the lattice. This configuration gives rise to a lattice of alternating
and (7~ sites. The two dimensional diabatic potential for the lower shifted states
mp = =4 is shown in a 3D plot in figure 2.1 and as a 2D contour plot in figure 2.2
for just one of the two mp states. The potential has hexagonal symmetry, with
rings of six minima surrounding a potential maximum. Adjacent minima are at
locations of opposite pure circular polarization.

A code was available to be used to calculate the vibrational bands of a periodic

one-dimensional potential. I used the code to model the two-dimensional potential
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Figure 2.2: 2D contour plot of potential surface of a 2-D optical lattice associated with
mp = —4 state.

well by considering cuts along the two directions. As we will see, by using a one-
dimensional model, the band structure results are symmetric only for the lower
lying vibrational states. In this limit the band structure is independent of the
direction chosen and it is therefore justified to assume a unique band structure
and introduce the two-dimensional degeneracy for the energy levels. Referring

to figure 1.8(A) and 2.2 for the axis definition and selecting one of the potential

-3.5
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wells corresponding to \mF = —4), cuts along the x and y directions for the 2D
potential of figure 2.1 yield the ID x and y band structure in figure 2.3, 2.4 and
2.5, 2.6 respectively as a function of quasi-momentum q. Superimposed in the
same figures is the spatially-varying potential depth, which refers to an arbitrary

horizontal scale. In figures 2.3 and 2.4 the z-potential is plotted and the bands
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Figure 2.3: Band structure (coloured lines) for a potential depth of 170 ER, cut in the

x-direction, plotted versus the quasi-momentuin q. Superimposed on this plot, employing

the same vertical scale, is a cut through the potential energy surface in the x direction.

The horizontal scale of this curve (black line) is arbitrary and is chosen so that one period
of the potential fits into frame of the figure.

are calculated for the \mjr = 4) state for a maximum light shift of /70ER and
250A'fl respectively; these values represent the typical potential depth used for
the experiments. In figures 2.5 and 2.6 the same is shown along the ~-direction.
It is important to notice that for the lower lying bands the two potentials are
equivalent and the vibrational frequencies are the same along the two dimensions.
For higher lying bands differences arise: along the x and y direction anharmonicity
and asymmetry of the potential make the vibrational frequencies and number of

bound states quite different. Since in the experiments the sample is always cooled
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Figure 2.4: Band structure (coloured lines) for a potential depth of 250 Efi, cut in the
x-direction, plotted versus the quaai-momentum q. Superimposed on this plot, employing
the same vertical scale, is a cut through the potential energy surface in the x direction.
The horizontal scale of this curve (black line) is arbitrary and is chosen so that one period
of the potential fits into frame of the figure.
to very low temperatures, the population over the higher lying levels is in general
negligible, it is then justified to assume that the potential for the lower lying
vibrational states in the two dimensions is the same as the symmetric potential
along the y-direction.

'The different levels also present a certain band-width of allowed energy. The
width of the bands, see section 1.2.1, is not shown in figures 2.5 and 2.6, but the
results of band width calculations are shown in table 2.1, where the (t,, represents
the width of the nth band. It is noteworthy that the spacing between the bands
decreases with increasing band index n and at the same time the width of the
bands increases with n, due to anharmonicity of the potential. In the tight binding

regime, near the bottom of the potential well, the bands are well approximated

by the vibrational energy levels of a harmonic oscillator; the band index n can
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Figure 2.5: Band structure (coloured lines) for a potential depth of 170 Ea. cut in the
y-direction. plotted versus the quasi-momentum q. Superimposed on this plot, employing
the same vertical scale, is a cut through the potential energy surface in the y direction.
The horizontal scale of this curve (black line) is arbitrary and is chosen so that one period
of the potential fits into frame of the figure.
then be considered as the vibrational quantum number. 'The width of the bands
in this regime is negligible, showing that no significant tunneling between wells
occurs. Going to higher vibrational numbers, the bands get closer and they show
a significant curvature and width. The curvature arises because, when an atom’s
energy is greater than that of the lowest adiabatic potential well, it can tunnel
between adjacent potential wells, leading to a spread of the wavepacket. This can
result in atoms being less localized and therefore diffusing through the lattice,
in the x-direction the potential presents different periodicity and symmetry, but

for low-lying bands, in the tight binding regime, the two cuts present similar

characteristics of energy levels, curvature and width.
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Figure 2.6; Band structure (coloured lines) for a potential depth of 250 Eji, cut in the

y-direction, plotted versus the quasi-momentum q. Superimposed on this plot, employing

the same vertical scale, is a cut through the potential energy surface in the y direction.

The horizontal scale of this curve (black line) is arbitrary and is chosen so that one period
of the potential fits into frame of the figure.

2.4 Theory of resolved-sideband Raman cooling

In this section 1will describe the principle of the resolved-sideband Raman-cooling
scheme used in our work, which was proposed for the first time by Jessen and
Deutsch in [18] and experimentally demonstrated in 1998 [20].

In the previous section it was pointed out that, for atoms localized at the
bottom of the potential well, in the tight binding regime, without any further
perturbation, tunneling between neighbouring wells is negligible. This condition
allows us to consider each lattice site as an independent potential well. At locations
of maximum light shift the optical potential has pure helicity: the most deeply
bound states have negligible mixture of Zeeman sub-states. But if the vibrational
levels n of two |m/r) states become degenerate, then coupling between different

mp wells can be introduced as a transverse component of the fictitious magnetic
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Umaz = 170ER Umnaz = 250ER
& on(kHz) | Epny1 — En (kHz) | n | on(kHz) | Enqq — E, (kHz)
0 | 0.0000 32.943 0 | 0.0000 40.204
1 | 0.0000 31.724 1 | 0.0000 39.005
2 | 0.0000 30.423 2 | 0.0002 37.743
3 | 0.0000 29.018 3 | 0.0012 36.409
4 | 0.0004 27.478 4 | 0.0070 34.988
5 | 0.0040 25.747 5 | 0.0028 33.464
6 | 0.0488 23.712 6 | 0.0907 31.813
7 | 0.3897 21.116 7 | 0.2300 29.981
8 | 2.3099 17.915 8 | 0.4848 27.832
9 | 7.9608 17.499 9 | 0.7831 24.979
10 | 16.2395 21.134 10 | 3.7082 21.696
11 | 22.6617 25.132 11| 9.8553 20.313
12 | 26.6338 28.672 12 | 18.7859 27.588
13 | 30.1953 30.876 13 | 28.5801 28.368

Table 2.1: Energy separation between vibrational levels and levels widths (¢4,) for Umas = 170ER
and Umas = 250FER. For increasing n number anharinonicity becomes significant and the bands

are broadened.

field and resonantly enhanced, thus leading to a mixture of states.

Sideband Raman-cooling is based on the exploitation of this coherent mixing
of states, by controlling the coupling between different product states |mr) & |n),
or |mp,n) states, in order to selectively transfer population from a state |mp =

4,n + 1) to a state [mg = 3,n). Optical pumping then transfers the atoms back
Er
vib

which means that the energy separation of vibrational levels is much greater than

to the mp = 4 state. When atoms are in the Lamb Dicke regime,

< 1,

the recoil energy; this implies that elastic scattering is favoured. In a typical
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experiment the Lamb Dicke factor is 1/20 so that to a good approximation

optical pumping brings back the atorqullz to the mp = 4 state without a further
change in vibrational quantum number, thus decreasing the vibrational energy by
one quantum.

The electromagnetic field can induce coherences between states |m) — |m +
Am), where Am = +1, £2, through stimulated Raman transitions involving pho-

* or 0t « o respectively. In the infinite detuning

tons of polarization # — o
limit it is possible to show [18] that the Am = +2 coherence term goes to zero.
Furthermore it has been proved [18] that, even at smaller detunings, the efficiency
is very small, thus making the Am = %2 induced coherences not useful for coher-

ent control. Coherences between states with Am = +1 can be induced by means of

a magnetic field and stimulated Raman transitions, the interaction matrix being:

({n'},m £ 1|[BI*!(z) F 1B (x)] Fe|{n},m)
2F ’

Ummt1 = (2.8)

where By is the sum of the external and fictitious magnetic fields. An external
transverse magnetic field does not couple states of different parity |m,n),|m +
1,n £+ 1), which are located at the same lattice site. It is however possible to
exploit the effective magnetic field in order to generate both even and odd parity

couplings. In the limit of infinite detuning equation 2.8 becomes, as shown in [18],

Unis = = A ELD D) 0ty (0 0) 4 5, a0,

(2.9)

where €,, and e, are the different components of polarization of the electric field
and n are the vibrational quantum numbers. From equations 2.5 and 2.9 it follows
that the Raman coupling terms are zero at locations of pure polarization (o4 or
).

In the 2-D configuration which we are using, figure 2.7, the coupling potential

is introduced by slightly rotating the polarization of one of the beams out of the
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lattice plane. This introduces the tt component needed for Raman coupling at

sites where the polarization would otherwise be entirely a+. Changing the polar-

Figure 2.7: Experimental setup for resolved-sideband Raman cooling; Raman coupling is
introduced by adding a rrpolarized component (red) to the light field.

ization of one of the beams from linear to elliptical, corresponds to introducing

a Tl polarized light with amplitude (figure 2.7) and relative phase with

respect to the beam propagating in the -y direction, it can be shown [18] that

the total electric field is then given by:

. A
Bie™Y il + 2emy cos fKn)] +

+e [1+ cos - 20)]} + (2.10)
where = Ajsin® and Ky = k{| + cos”). The effective magnetic field then
becomes:

+ (Ey™M = - N [2sin 9sin {KxX - 9) cos {Kyy - 0)

42%cos * cos { KxX —9) sin [Kyy —<) —isin</)], (2.11)

where Ui is the single-beam light-shift for a Clebsch-Gordan coefficient of 1. Equa-
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tion 2.11 shows that the Raman coupling has both even and odd terms along both
coordinates of the lattice plane and its effectiveness (i.e. amplitude and phase)
can be adjusted through the ellipticity of the beam.

Using equation 2.8 and 2.11 and expanding around the minimum of the poten-
tial well in the harmonic approximation, it can be shown that maximum coupling
for the odd parity states occurs for ¢ = n/2. The efficiency of coherent transfer
can be characterized by one parameter, or figure of merit [18], which depends on
the ratio of m component to ¢ component, detuning and potential depth. For
our lattice configuration, the figure of merit for coherent transfer of population is

given by :

Ur _ 0.0047 E; |A| (@)1/4 (2.12)

"~ VF BT\
where Up = 2—%%}‘7}, 71 is the Lamb-Dicke parameter and Ep is the recoil energy.
The coupling introduced with 7 light induces transitions from |m,n) to |/m—1,n—
1). Relaxation back to the vibrational manifold of the |m) state with the loss of one
quantum of vibrational energy is induced by optical pumping, as shown in figure
2.8, where the pumping beam tuned to the |[FF =4,mp =3) — |F =4,mp = 4)
transition is represénted in blue. Also in the same figure a repumper beam (red)
tuned to the FF = 3 — F = 4 transition is shown: this is used to replenish the
hyperfine ground state on which the cooling happens. Raman coherences induced
by 7, o light are represented in black.

For cooling to be efficient it is necessary that the heating rate, which is domi-

nated by photon scéttering, is well below the oscillation frequency, which means:

Pwosc 2 Beys
— —_ 2.
( Er > > r (2.13)

This also means that the time-scale for population transfer, #/Ug, must be much

shorter than the vibrational excitation rate:

\Ur|
hdn/dt

—k>1, (2.14)
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F=
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F=3
Figure 2.8: Experimental level scheme for resolved-sideband Raman cooling. The Raman
pumper polarized, tuned toF = 4 —F = 4 transition is shown in blue, the repumper
light d*' polarized, tuned toF = 3 —F = 4 transition is shown in red and Raman
coupling is represented with black arrows.

where k is the merit factor for the population transfer with optical pumping. The

figure of merit is derived in [18] and is;

fx~ 0.17-~U . ky=3kx. 2.15)

in all the experiments performed, see chapter 7, the figure of merit was estimated
to be » L

The Raman coupling introduced by changing the polarization of one of the
lattice beams can be resonantly enhanced by bringing into degeneracy levels [mF =
4,n) with \mp = 3,n —1). in figure 2.9 the potential and band structure is shown
for the m/r = 4 and mp = 3 states, for Umax = 200Ep. A magnetic field along
the quantization axis would Zeeman-shift the levels proportionally to their mp
quantum number. By adding a static magnetic field, states \mp = 4,n) and
\mp — 4,n —1) can be brought in resonance, which is referred to as tuning to
the first red sideband. In figure 2.10 the magnetic field necessary to tune to the

first sideband is plotted versus the potential depth for the different pairs of levels
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Figure 2.9: Band structure for the mp = 4 (blue) potential and nip = 3 (purple) potential.

involved {n,n —1}, with n = 1 —2 5. The various lines represent the values of
magnetic field necessary so that mp = 4,n = 1,2,3,4,5 levels can be brought into
degeneracy with the corresponding mp — 3,n —1 states, for different potential
depths. Even for a fixed potential depth, from figure 2.10 it can be seen that
different vibrational levels {n} are brought into degeneracy with (n —1} levels
for different values of the magnetic field. This is due to anharmonicity and the
fact that higher lying levels are more closely spaced than lower ones. The range
of values of magnetic field necessary to go through all the resonances depends on
the potential depth. It should also be noted that a similar plot to figure 2.10 but
calculated for the potential cut along the ~-direction would show almost identical
values as those found for the z-direction. Differences however arise for higher lying

vibrational states: the spread in values becomes quite large, especially in the x-
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Figure 2.10: Magnetic field to tune to the first red sideband for different potential depths.

direction and their range becomes substantially different too. This indicates that
in order to obtain efficient cooling in two dimensions, it is necessary to start with
only the lower lying levels in the x and y directions appreciably populated, so that
they are characterized by similar parameters and can be cooled simultaneously.
In conclusion, in this section 1 have explored the feasibility of a method to
increase the population of the ground vibrational level of the potential well as-
sociated with one stretched state. This method is based on the addition of a
component of light to the lattice field, and necessitates the use of a pumper beam
to repopulate the stretched state, as well as a static external magnetic field to
Zeeman-shift and thus bring into degeneracy vibrational levels of potential wells

corresponding to different magnetic substates.
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2.5 Population distribution over vibrational levels

In this section 1 discuss the behaviour of atoms in a harmonic potential well and

some quantities will be defined which are to be used in later chapters. The eigen-
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Figure 2.11: Block diagram for population of different vibrational levels at different

temperatures for 1-D harmonic oscillator for ground state kinetic temperature To-

states of atoms trapped in an harmonic potential can be characterized as product
states \F,m)\n), where n is the harmonic oscillator quantum number. For an en-
semble of atoms in thermal equilibrium, the population is distributed over different
vibrational levels and this distribution defines the vibrational temperature 7y of
the sample. For a two-dimensional harmonic oscillator the occupation probability

for a vibrational level characterized by =0,y =nis [23]:

ldn —(1 — (2.16)
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where

_ fiwose H
gp =€ kBTyib — n
Hn— 1

(2.17)

is the Boltzman factor. The mean vibrational excitation number is given by:

m=Y =2 (2.18)

1-gp’

n

The kinetic temperature is defined in terms of the variance Ap, along one dimen-

sion, of the momentum distribution of the ensemble of atoms, as:

_ (Ap)y?
Mkg

Tk (2.19)

The momentum variance is related to the ground state momentum py = M Aw,sc/2:
(Ap)? = p3(27 + 1). (2.20)

Introducing the ground state kinetic temperature Ty = p/mkp and combining

equations 2.19 and 2.20 we get:

(Ap)? _Tx
P} 1o

= (2n+1). (2.21)

It is also possible to rewrite gg only in terms of Tk and 7y, as it comes from

equations 2.17, 2.18, 2.21:
Tk -Tp
Tk + Ty

Using equations 2.21 and 2.16 the population of the ground state (as well as the

g5 (2.22)

populations of all bound levels) are reconstructed by simply measuring the kinetic
temperature of the sample after its release from the far-detuned lattice (FDL). In
figure 2.11 the population distribution for a 1-dimensional harmonic oscillator is
calculated, assuming a ground state temperature 7 = 0.956uK for four different
kinetic temperatures. As we are interested in the ground state population of a
two-dimensional harmonic oscillator, in figure 2.12 a diagram of the population
distribution over different vibrational levels for the same temperatures is shown,
for a 2-D harmonic oscillator in the case n, = 0,n, = n. It has been assumed

that the temperatures in both dimensions are the same.
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Figure 2.12; Block diagram for population of different vibrational levels at different

temperatures for a 2-D harmonic oscillator with n” = Or’iy = n and ground state kinetic
temperature 70.

2.6 Conclusions

In this chapter 1 have presented the theory for far-detuned optical lattices and
the results of band calculations in this regime. A method for resolved-sideband
Raman cooling was explored and the parameters required to tune the cooling to
the first sidebands were calculated. Finally, the population distribution over the

different vibrational levels was calculated for 1-D and 2-D harmonic oscillators.



CHAPTER 3

The Experimental Apparatus

This chapter reviews the experimental apparatus, which was set up during the first
year of my PhD. The experiment was previously partially set up in Oxford but it
was moved to London in coincidence with the start of this work. I have worked on
rebuilding the experiment in London, particularly in implementing the set-up for
the far-detuned optical lattice and all the experiments described in this thesis. I
also computer-automated the experiment, through multiple input/output boards
and the Labview programming language. The chapter begins with a description
of the laser sources, placing particular emphasis on the techniques used to narrow
the natural emission line shape and the fine control of the frequency tuning. These
parameters are particularly crucial in a laser cooling experiment. The setup to
control stray magnetic fields, as well as the magnetic quadrupole trap coils are
then described. Most of the measurements presented in this thesis exploit a time-
of-flight setup which is presented at the end of the chapter. All the parameters
and characteristic times of the experiment were computer-controlled and the basics
of the software and hardware tools used can be found in the last section of this

chapter.

58
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3.1 The caesium source

The gas of caesium atoms is contained in a cell of 132 x 72 x 52 mm, with 5 mm
thick walls, antireflection coated on the outside for 852 nm wavelength light. The
cell is kept at very low pressure, down to 10~° Torr, using a ion pump. For a
detailed description of the vacuum system I refer to [24].

The nuclear spin of the caesium atom is I = 7/2, and the hyperfine interaction
splits the levels in the eigenstates of the total angular momentum F', according to
the scheme in figure 3.1. The caesium transition used to cool and trap the atoms
is the Dy 62.91/2, F=4-—> 62P3/2, F =35 at a wavelength of 852 nm. The lifetime
of the excited level is 30 ns, corresponding to a natural linewidth I'/27 = 5.22
MHz.

3.2 Laser frequency stabilization

A typical laser-cooling experiment requires several different laser sources tuned at
different frequencies. In this section a brief description of the required tuning for
the lasers is given, while referring to later sections for the techniques used.

The atoms are first collected and cooled in a magneto-optical trap (MOT),
which consists of three pairs of counter-propagating laser beams, with opposite
circular polarization, tuned to the low frequency side of the Dj line, FF = 4 —
F' = 5 transition. At the same time a repumper beam tuned to the Dy line,
F =3 — F = 4 transition is used to pump atoms lost to F; = 3 back to the
cooling transition. A further step in cooling is obtained by further detuning the
trapping beam and switching off the magnetic field gradient, so that the atoms are
left to cool further in an optical molasses. The atoms are then transferred to a 2-
dimensional near-detuned optical lattice, composed of three co-planar light beams

arranged at 120° with respect to each other, and linearly polarized in the plane
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Figure 3.1: Scheme of the hyperfine structure for cacsium atom.
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of the lattice. This change of geometry makes it necessary to use a different laser

source, tuned to the red of the Dy, F = 4 — F' = 5 transition, which also allows

a greater range of detunings. The next step is to generate a far-detuned lattice,
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detuned up to 20 GHz to the red of the Dy, FF = 4 — F' = 5 transition, which
means being well detuned to the low frequency side (red) of all the excited state
hyperfine structure. Furthermore, the intensity needs to be increased by orders
of magnitude, thus making necessary the use of another laser source. In what
follows, I will explain how the different beam’s frequencies are set and controlled,
while in the subsequent sections I will explain the method which was used in order
to create very narrow emission linewidths.

As will be discussed later, a diode laser is used as the master laser, providing
a frequency reference to the trap and near-detuned lattice lasers, which are both
injection-locked to the master. A part of the master laser output beam is routed
to a saturated absorption setup (see next section), after being shifted in frequency
through an acousto-optic modulator (AOM) used in a double pass. The saturated
absorption signal is used to lock the master laser, as explained in section 3.4,
on the crossover of the FF = 4 — F' = 4,5 transitions. The master frequency
can therefore be set to twice the frequency shift produced by the acousto-optic
modulator (AOM) from the FF = 4 — F' = 4,5 cross-over, see figure 3.2. The
master output beam is then employed to inject the trap laser. Before being sent
to the cell, the trap beam is further shifted toward the red of the F =4 — F' =5

transition, as shown in figure 3.2.

The master laser also generates the beam that is used to inject the near-
detuned lattice laser, but it is first double-shifted via an AOM used in a double
pass. The output of the injected lattice laser, is then further shifted by a fixed
80 MHz acousto—optic modulator. A repumper beam is added, tuned to the Dy
F =3 — F' = 4 transition, locked on a saturated absorption signal. This laser
only provides repumping light, needed to replenish the ground state Fj; = 4 level

on which the cooling processes happen. The far detuned optical lattice reference
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Figure 3.2: Scheme of frequencies for the near-detuned lattice and trap beam, as obtained
by shifting the master-injecting frequency.

frequency is generated by a DBR laser diode, with very narrow emission linewidth.

The DBR output is used to pump a single-pass tapered-amplifier (MOPA - Master

Oscillator Power Amplifier) [25], [26], [27], capable of an output of up to 0.5VV. A

detailed description of this system can be found in section 3.6.

3.3 Grating-stabilized diode lasers

Diode lasers are very sensitive to optical feedback. The free-running laser has
many different oscillation modes and the emission frequency fo is determined by
the competition of the different modes. By increasing the number of photons at a
specific frequency wy it is possible to support the gain of the mode at frequency
wjf while inhibiting the others, thus forcing the emission at a;/ and reducing the
linewidth. In order to narrow the bandwidth of the laser and to select a particular
frequency, optical feedback is used. The optical feedback is obtained by means of
a diffraction grating, which allows us to select a specific wavelength to be retro-
reflected into the laser cavity. The grating is placed in the path of the output laser

beam in a Littrow configuration, forming an extended cavity resonator with the
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back facet of the diode laser [28], [29], as shown in figures 3.3, 3.4. In the Littrow

output beam

PZT

djffraction grating

~zero order

Mirror

Collimating Lens

SDL 5412-H1
Diode Laser

Figure 3.3: Scheme of the external cavity configuration.

configuration, represented in figure 3.4 when a — (3 the first diffracted order is
reflected in the direction of the incident beam back into the laser cavity (which
is now formed by the back facet of the diode and the grating), thus forcing the
laser oscillation at the frequency of the reflected beam. By changing the grating’s
orientation with respect to that of the incident beam, it is possible to select a

specific wavelength according to the dispersive law
2dsin(a) = mA, 3.1

where d is the pitch of the grating, a is the incidence angle and m the diffractive
order, see figure 3.4. The grating used here had 1200 lines/mm and Xbiaze = 750

nm. The grating is placed on a mount which allows rotations about two axes
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Figure 3.4: Scheme of the grating in the Littrow configuration.

in order to obtain alignment of the first order diffracted beam and also to select
different wavelengths. The optimum alignment is obtained by minimising the
threshold current.

With diode lasers in external cavity configuration it is therefore possible to
control the emission wavelength. At the same time, a narrowing of the linewidth
is also produced, due to the increased finesse of the cavity on which the radiation
oscillates. In this way the linewidth of the laser may be reduced from some tens of
MHz to a few tens of kHz only. The emission frequency can be tuned within the
free spectral range of the resonator, by adjusting the cavity length. A variation

AL in the length of the cavity gives a change in frequency given by:

Av _ -AL

> T (3.2)

The extended cavity configuration also has disadvantages, due to the increased
mechanical and thermal instability, that can lead to an uncontrolled drift of the
emission frequency. The cavity is therefore isolated from mechanical vibrations
and air currents and the diode is thermally stabilized, by means of a Peltier element

and feedback circuit.
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3.4 Laser frequency stabilization on an atomic reso-

nance

In order to lock the laser at a specific frequency, any drift must be controlled
and corrected electronically. A correction signal must be generated and added to
the driving current of the laser, or to the voltage that controls the piezo-electric
element in the laser cavity. The error signal used to control the laser frequency is
the derivative of the saturated absorption signal of caesium. A saturated absorp-
tion scheme is necessary because the spectrum generated by the absorption of a
gas of atoms on a laser beam is broadened mainly because of the Doppler effect:
atoms with different velocities are brought in resonance by the laser light for dif-
ferent values of the radiation frequency. This broadening would hide the hyperfine
structure, being larger than the separation between the levels. With sub-Doppler
spectroscopic techniques it is possible to remove this cause of broadening and re-
solve the hidden hyperfine structure. The scheme used in our experiment is that of
saturated absorption (figure 3.5). Two counter-propagating monochromatic laser
beams with frequency w are sent into the gas sample. Because of the Doppler
effect, atoms of different velocities will see a different frequency wp = w(1 £v/¢),
where v is the component of the atomic velocity in the direction of the beam
propagation. Atoms can absorb a photon of frequency w if their velocity v is such
that

|w—w0—k-v]§£, (3.3)

27

where I is the width of the excited level.

In general, the two counter-propagating beams will bring into resonance two
different classes of atoms with equal and opposite velocities, unless they are tuned
exactly to the resonance frequency, in which case they both interact with the same
class of atoms of zero velocity. Therefore, one beam interacting with a group of

atoms in a small range of velocities (Jk - v| < %) will modify the population dis-
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Figure 3.5: Representation of the saturation ahsoi'irtion sciieine use to stabilize lasers
frerpteney.

tribiition of the ground state creating a hole in the distribution of velocities for
which the atoms are brotight in resonance. At the same time a peak is generated
in the population distribution of the excited level corresponding to the same class
of velocities {hole burning). The second beam therefore interacts with a modified
[opnlation distribution. If the hrst beam has an intensity comparable to the cae-
sium saturation intensity (1.12 niVV/cm'") and the transmission of the other beam
is observed, the absorption prohle shows a dip corresponding to the frecpiencies
that bring in resonance atoms with velocities for which the hole burning happens.

Figure 6.5 shows the scheme that was used to obtain the spectrum shown in
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figure 3.6 for the master laser. The output of the master laser is sent through
a Faraday optical isolator, in order to avoid any unwanted feedback to the laser
cavity. The beam is then sent to an acousto-optic modulator (AOM) set in a
double pass configuration, in such a way that the first order diffracted beam is
retro-reflected in the AOM, being overlapped with the in-going beam. The effect
of this is a double shift in frequency as explained in section 3.2. A quarter wave-
plate and a polarising cube are used to route the frequency double-shifted beam
to the saturated absorption scheme (fig. 3.5). In figure 3.6 one can distinguish the
absorption lines corresponding to allowed transitions between the hyperfine sub-
levels of the excited state and the ground state. Also visible, are cross-over lines
arising from atoms which have non-zero velocity and that are Doppler-shifted into
resonance with two different transitions, giving rise to saturated absorption lines
at the mean frequency of the two transitions. In figure 3.8 the caesium saturated
absorption spectrum used for the repumper laser shows transitions from the F' = 3
ground state to the excited hyperfine level F* = 4. This signal was obtained
with a similar scheme to the one described for the master laser. In order to use
the saturated absorption scheme to frequency-lock the laser on an atomic line,
it is necessary to transform the correction signal into an anti-symmetric signal
which discriminates between the drift of the laser towards high or low frequencies.
By frequency-modulating the laser light itself, it is possible to extract the first
derivative of the saturated absorption signal and to use this to correct for the
frequency drift of the laser.

If a signal f(z) is frequency-modulated with a modulation amplitude m and
modulation frequency w, it is possible to show that the signal can be decom-
posed in the sum of terms which oscillate at different harmonics, multiples of the

modulation frequency:

f(z + mecos (wt)) = 52 An(z, m) cos (nwt). (3.4)
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Figure 3.6: Cacsium saturated absorption spectrum. Cooling transitions: 65/, F = 4 —
6Py, F.
A lock-in amplifier is used to extract the amplitudes of the different harmonics.
The saturated absorption signal from the photodiode is fed to a lock-in amplifier,
where a mixer is used to multiply all the Fourier components of the signal with
a sinusoidal wave generated by an internal oscillator. The product of two sines
with different frequencies is given by the sum of two sines, one oscillating at a
frequency which is the sum of the two (ws + wg) and one at a frequency which
is the difference of the two (wg — wg). When the reference signal generated by
the oscillator has the same frequency as one of the harmonics of the input signal
(ws = wg), then one the two output sines oscillate at zero frequency while the other
oscillates at 2wg. The output of the mixer is then sent to a low-pass filter which
eliminates all the components oscillating at frequencies above the cut-off frequency
of the filter. The output signal will then be proportional to the amplitude of the

component at frequency wg through a coefficient which depends on the phase
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Figure 3.7: Decrivative of cacsium saturated absorption spectrum. Cooling transitions:
652, F =4 — 6Pys, F.
difference between this component and the reference signal. By adjusting the
lock-in phase it is possible to obtain a maximum correction signal and with the
appropriate sign to oppose the frequency drifts of the laser source. For small values
of m in equation 3.4 the output signal is the first derivative of the input signal,
shown in figures 3.% and 3.9 respectively, for the master laser and the repumper
laser. The frequency modulation is obtained for the master laser through the
acousto optic modulator and for the repumper by modulating the current. The
saturated absorption signal is sent to a lock-in amplifier which outputs the first
derivative of the input signal. The lock-in output is then sent to an integrating
circuit which provides the correction to the laser. The correction is divided in a
fast part which is added to the driving current of the diode and a slow part which

is fed back to the piezo-electric transducer.
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Figure 3.8: Cacsium saturated absorption spectrum. Repumping transitions: 65, F' =
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3.5 Injection locking

The master laser, described in section 3.3, is frequency-locked to one atomic tran-
sition and is used to injection-lock two other ‘slave’ lasers, which will provide the
trap light and near-detuned lattice light. The design of these lasers is shown in
figure 3.10. The laser radiation is collimated, sent through an anamorphic prism
pair to correct the ellipticity and then directed to an optical isolator. A slight
misalignement of the anamorphic prisms generates a stray reflection which can be
used as a monitor beam, as represented in the same figure.

It is possible to stabilize the emission frequency of a diode laser (slave) by
injecting a small amount of light from another source (master) into the laser cavity.
The master injecting laser forces the slave to oscillate at the same frequency and

with the same spectral characteristics. The two oscillators are coupled so that
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Figure 3.9: Decrivative of cacsium saturated absorption spectrum. Repumping transitions:
651 /9, F = 3 — 6Py, F.

the frequency and phase of their emitted radiation become strongly correlated.

This technique is very useful since it generates a slave laser source stabilized in

frequency without any loss in power, as no output light needs to be reflected back

into the laser cavity.

The injection locking scheme is shown in figure 3.11. Each slave laser has
an optical isolator on the output, which allows the injecting light into the diode
cavity, but does not allow light from the slave laser to be coupled to the master
cavity. The injecting beam is sent into the side entrance of the optical isolator
with the right polarization, so that it is entirely transmitted into the slave cavity.
In order to align the injection the input polarizer of the optical isolator was tilted
a bit, so that a beam is emitted through the side output of the isolator. This
beam was used to aiign the injection light to the slave beam. The stray reflection

from the prisms shown in figure 3.10 is used to monitor the efficiency of the
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Figure 3.10: Slave laser design.

injection, by observing the variation of intensity transmitted through a caesium
vapour cell as the current to the diode is ramped. When the injecting beam from
the master laser is aligned, a dip in transmission of the monitor beam is recorded
over a certain range of driving currents for the slave laser as it locks to the master
frequency, which is tuned over a caesium absorption line, figure 3.12. The trap
slave laser is injected directly from the master laser, whereas the near-detuned
lattice slave laser has an acousto-optic modulator in a double pass configuration
in the injecting beam (figure 3.11); this allowed us to reach larger detunings for
the lattice light. In figure 3.2 the frequency scheme for the master, trap slave and
lattice slave lasers is shown. In figure 3.13 a layout of part of the optical table
shows how the trapping, repumper and near-detuned lattice beams are generated

and locked to the desired frequency.
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Figure 3.11: Injection locking scheme.
3.6 Master Oscillator Power Amplifier

in order to generate the intensity needed for the far-detuned lattice to have the
same potential depth as the near-detuned one, while being hundreds of times
further detuned, a Master Oscillator Power Amplifier (MOPA) was used [25],
[26], [27]. A MOPA system is used to amplify the light coming from a narrow
linewidth master oscillator, so that the output light has increased intensity and the
same spectral features as the injecting light. A strained quantum well distributed
Bragg reflector (DBR) laser diode was used as master oscillator. These lasers

have a narrowed linewidth output, due to a grating structure which is grown
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Figure 3.12: Injection locking signal. The upper trace shows the variation in the power

transmitted through the caesium cell when the slave current is ramped but the laser is

not injecting, the lower trace shows the absorbtion of the beam when the laser is injection
locked

within the gain medium, which behaves as a high reflectivity surface, selective in
wavelength. Therefore, only the wavelengths that satisfy the Bragg condition can
oscillate in the laser cavity. At the same time they are continuously tunable over
a range of several gigahertz, without having the mode-hops associated with an
external cavity. The power amplifier consists of a tapered gain element which is
pumped with high current, typically 1.5 A. The tapered amplifier output spectrum
is typically very broad, but it can be narrowed by feedback from an external cavity
or by injecting light from a narrow linewidth master laser, when it operates as a
single pass optical amplifier (MOPA). in this way it is possible to achieve an
output with the same spectral characteristics as the master laser at an intensity
which can be up to two orders of magnitude greater, resulting in a power of up to
0.45 W.

The scheme of the mounts and optics needed for the tapered amplifier are
shown in figure 3.14. Short focal length (3.1 mm), high numerical aperture (0.6)
aspheric lenses are used to couple the injecting light in and the amplified light

out. These lenses are placed on mounts to control x, y, z positioning. The whole
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Figure 3.13: Layout of the optical bench.

mount is temperature stabilized by means of a control unit which drives a Peltier
element positioned on a water-cooled heatsink.

The output of the front and back facets of the tapered amplifier (TA) were
collimated by positioning the aspheric lenses in the three dimensions. The ampli-
fied spontaneous emission beam emitted from the back facet was retro-reflected
into the 'T’A and the output power was monitored to optimize the lens positioning;
maximum output was achieved when the reflected light was best collimated and
injecting the amplifier. The master light was then aligned to the spontaneously

emitted light from the back facet. The injection was improved by ensuring that
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Figure 3.14: Tapered amplifier mount design.

the polarization is parallel to the plane of the taper of the amplifier and by cor-
recting the shape of the injecting beam using an anamorphic prism pair, as shown
in figure 3.15. The output of the tapered amplifier is highly astigmatic. The
output coupling lens is used to collimate the beam in the vertical direction only.
A cylindrical lens external to the mount is then used to correct the horizontal
astigmatism. Optical isolators are used to provide 100 dB isolation between the

TA and the UBR in order to prevent optical feedback into the master cavity.

3.7 Magnetic fields

To trap atoms in a magneto-optical trap a inhomogeneous magnetic field is needed,
such that it is null at the center of the intersection region of the laser beams
and increases linearly along each of the three cartesian directions. This field is
generated by a pair of coils in an anti-Helmholtz configuration, i.e. with current
flowing in opposite directions, which are placed around the cell with their common
axis along the vertical direction. The coils are made of 150 turns of copper wire
wrapped around a square support of 8 cm side. The coils are placed at a distance

of 7 cm, which gives the most uniform field gradient at the center of the trap.
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Figure 3.15: MOPA system consisting of a DBR and TA.

The magnetic field gradient along the vertical direction is dB/dz ~ A*1/4 G/cni,
where / is the current through the coils. The magnetic field gradient along x and
y is half the value of the gradient along the z axis and of opposite sign.

'Ib make sure that the magnetic field is null at the center of the intersection
region of the laser beams, it is necessary to compensate for the terrestrial magnetic
field and for all the stray fields which are present in the laboratory. 'This is achieved
by using three pairs of square Helmholtz coils, all of the same dimensions, placed
around the cell to form a cube of 50 cm side. These coils can provide a sufficiently
uniform magnetic field in three directions, which can be finely tuned with an

accuracy of a few milliGauss.

3.8 Time-of-Flight setup

The time-of-flight method described in [30],[31] was used to determine the tem-

perature of the atoms when they are released from the lattice. 'This technique
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consists of releasing the cloud of atoms from the lattice and letting it expand,
due to the thermal motion of the atoms, and to fall under gravity. After 110 ms
from their release the atoms pass through a thin probe beam which is placed 6
cm below the trap, orthogonal to the gravitational axis. A photodiode detects
the absorption of the probe beam as the atoms pass and different arrival times
can be recorded. This distribution can then be converted to a momentum dis-

tribution, from which the temperature can be inferred. The experimental setup

Anb-Halmhntz Coils

If‘ Mitror

IPPHOTOOODC

beam

Figure 3.16: Layout of the cell in which the trap is formed, with trap beams, coils and
the time-of-flight setup.
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for a time-of-flight detection is shown in figure 3.16, where the layout of the cell
in which the trap is formed and the position of the various coils are also shown.
The time-of-flight setup consists of a near resonant beam, < 1 mm thick and 1
cm wide, which is retro-reflected to avoid any systematic momentum transfer. A
cmﬁbination of polarising cube and two wave-plates allows the selection of the
polarisation of the two counter-propagating beams. Typically this is set to be
circular (¢%/0™) polarized, but for the Stern-Gerlach experiments (see chapter
6), these were set to linear. The cloud of atoms, following its release from the
lattice and its subsequent fall, passes through this layer of light and absorbs it. A
typical signal generated with a time-of-flight measurement is shown in figure 4.2.

In determining the temperature it is assumed that the initial spatial density

distribution of the cloud is a Gaussian function of the position
pr(r) o exp (—r? /o)

and that the momentum distribution is a Maxwell-Boltzman
pp(P) o exp (—p? /o) o exp (—p?/(2mcskpT))

with kT = mgsvZ,s- Using kinetic theory it is straightforward to calculate
the size of the atomic cloud after a time t from its release, while it is assumed
that there is no change in the momentum distribution, i.e. no heating is present.
Taking also into account the finite size of the probe beam, the solution for the
temperature gives the following expression, as a function of the (temporal) 1/+/e

half-width wy;, detected from the time-of-flight signal:

2 2
m Tini T O

T = kcs <gzw}m - TOF) ) (3.5)
B drop

where f4-op is the time it takes the atoms with zero velocity to reach the probe
beam, op; is the initial half-width at 1/+/e of the cloud’s spatial distribution and

oror is the half width at 1/4/e of the intensity distribution of the probe beam
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along the vertical axis. From equation 3.5 it is possible to see that the resolution
of the method is limited by the initial size of the cloud and the vertical thickness
of the TOF beam. In the limit of infinite ¢4,,, the second term of equation 3.5
goes to zero, but for finite dropping time (110 ms in our case) for a gip; = 0.5
mm and opor = 0.5 mm, the term yields a resolution limit of about 0.7uK. Thus
no temperature below this limit can be measured. The initial size of the cloud as
well as the size of the TOF beam are measured by imaging using a CCD camera.
These measurements have significant errors, which result in an uncertainty on the
temperature determination of 0.2uK. Furthermore the fitting procedure leading
to the determination of wy;y, is usually iimited by noise, but the error associated
with it is usually an order of magnitude less then the one in determining the size

of the cloud and TOF beam by imaging.

3.9 Computer-automation of the system

Due to the typical time-scales involved in the various trapping and cooling cycles,
a laser-cooling experiment necessitates a fully electronic control. Strict control of
the timing of the different stages of the experiment is required, down to the typical
time-scales of the system under investigation and this has to be done in a highly
reproducible fashion. I therefore designed and developed a computer program
to control all the devices through the channels of an AT-AO-10 and PCI-6800
data acquisition boards (National Instruments). The two boards are synchronized
through an RTSI connector. I used Labview software packages which provides a
graphical programming language (G) and many libraries for instrument control
and data acquisition.

The main function of the program is to write an array of values to the analogue
channels which are then output at a specified rate. In this way it is possible to

control the signal sent to each channel with a resolution of 10 us. At the moment
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fourteen different devices can simultaneously be controlled, which allow us to
change the frequency of the lasers, their intensities, the current of the magnetic
coils and to control mechanical shutters. A user interface allows the setting of the
duration of each phase of the experimental sequence as well as the setting of the
different parameters at the beginning of each session. The code has been revised
several time during the course of these three years, but it now allows the setup of
experiments involving the control of up to eighteen channels simultaneously and
to programme up to fifteen different phases from the front panel. It is therefore

very flexible and easy to use.

3.10 Conclusions

In this chapter I described the experimental apparatus which was used for the ex-
periments presented in this thesis. An overview of the methods used to frequency-
stabilize the lasers and to narrow their bandwidth was presented. The different
laser sources are also described, as well as the coils which were used to produce
static magnetic fields. Finally, I gave a description of the computer program that

I developed in order to automate the experiment.



CHAPTER 4

Atoms in a Far-Detuned Optical
Lattice

In this chapter I will describe the preparation of atoms in a nearly dissipation-
free optical potential, which is obtained by using light tuned a few thousand
linewidths to the low frequency side of the Dy atomic resonance of caesium. In
the near detuned regime, the scattering rate involved in cooling is also responsi-
ble for decoherence effects and a reduced lifetime of the vibrational states. Cold
neutral atoms in a far-detuned optical lattice may offer a long coherence time
because of the reduced spontaneous scattering rate and their weak coupling to the
environment. In principle it is possible to reduce arbitrarily the scattering rate
by increasing the detuning of the laser beams. In the limit of large detuning, in
fact, the scattering rate is proportional to Zlg, while the potential depth results
to be proportional to %. By simultaneously increasing the detuning the intensity
of the laser beams forming the lattice in an appropriate manner, it is possible to
almost completely suppress the scattering rate, while maintaining a deep enough
potential well. For the typical parameters of the far-detuned lattice used in our

experiment, the spontaneous scattering rate is in the range of 50 — 1000 Hz, for

82
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a characteristic vibrational frequency of ~ 30 — 40 KHz, which has to be com-
pared with the typical scattering rate in a near-detuned lattice of ~ 500K Hz for
the same potential depth. Therefore the atoms trapped in the potential wells of
a far-detuned optical lattice, can oscillate several periods before a spontaneous
scattering event occurs. The non-dissipative nature of such lattices should allow
the preparation and manipulation of pure quantum states, thanks to the increased
life-time of the vibrational states. At the same time, the reduced scattering rate in
a far-detuned lattice (FDL) leads to absence of built-in laser cooling and makes it
necessary to load a sample of atoms previously prepared in a near-detuned lattice
(NDL). In the NDL the features of the periodic structure are built. In the first
section of this chapter the loading of the near-detuned lattice is presented. Fol-
lowing the characterization of the near-detuned lattice, atoms are transferred to
a super-imposed lattice induced by light tuned far from resonance, in which they
can be tightly bound in a dissipation-free potential. An analysis of the transfer ef-
ficiency and storage times is performed, to optimize the loading. Experiments are
also performed to gain information on the population distribution over different

vibrational levels.

4.1 Preparation of a cooled sample in a near-detuned

optical lattice.

The sample of atoms is firstly collected by a magneto-optical trap (MOT), as
described in section 3.2. The magnetic field gradient typically used for the MOT
is 6 G/cm, the intehsity of the laser beams typically (3.5 £ 0.1) mW/cm? with a
detuning of 2.5T" from the F' =4 — F’ = 5 transition. The magneto-optical trap
configuration is typically left on for 2 sec, which was found to be the characteristic
loading time to collect a sample of ~ 8 - 108 atoms. The magnetic field gradient is

then switched off, the detuning increased and the intensity decreased. The atoms
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are left to cool further in an optical molasses, typically tuned ~ 6I" from resonance
and with reduced beams intensity, which is set to ~ 1.8 mW/ cm? per beam. These
parameters were chosen in order to minimize the temperature and maximize the
number of atoms trapped. The temperature of the atoms was measured with

the time-of-flight method, described in section 3.8, and was found to be typically

—z
x4
y

< 10uK.

Figure 4.1: Representation of the lattice plane and quantization axis.

Atoms so prepared, were then transferred to a 2D near-detuned lattice. 'I'he
configuration used was the one described in section 1.2.3, and consists of three
co-planar laser beams, all with linear in-plane polarisation, propagating at 120°
with respect to each other. The gravity axis lies on the plane of the lattice, as
shown in figure 4.1. This allows us to measure the kinetic temperature along one
of the two lattice dimensions. 'I'he intensity and detuning were varied to achieve
a colder sample and to better transfer the atoms to the far-detuned lattice. In

figure 4.2 the TOF spectrum for a near detuned lattice is shown: the single beam
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Figure 4.2: TOF signal of the near detuned lattice and Gaussian fit (dotted line) to

extract the temperature.

intensity was set to 3 mW/cm? and the detuning was set to 26" to the red of
the ¥ = 4 — F' = 5 transition. A Gaussian fit of the signal was performed
in order to estimate the temperature of the sample, using equation 3.5. The
measured temperature extracted from the spectrum in figure 4.2 was found to be
(3.5+0.2) uK. Lower temperatures were found to be achievable, down to the lower
limit of ~ 3 uK. A careful adjustment of the current to the compensation coils
was found to be very crucial in order to minimize the temperature, as discussed
in [32].

'To gain an insight into the localization of the atoms and the quantization of
the vibrational modes in the potential wells generated by the ND lattice, probe
transmission spectra were taken. A weak probe beam, with a typical intensity of

0.2 mW /cm?, is sent through the optical lattice, at a small angle with one of the
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lattice beams, with a polarisation parallel to that of the nearly co-propagating
lattice beam. The frequency of the probe beam is swept by ramping the RF to an
acousto-optic modulator, and the transmitted intensity is recorded.

An atom confined in a potential well should exhibit a discrete spectrum of
vibrational energy levels, like a harmonic oscillator. The lattice beam (acting
as a pump light) together with the probe beam can induce stimulated Raman
transitions among such levels. When the difference in frequencies between these
two stimulating sources corresponds to the separation between two vibrational
levels, Raman resonances arise. For i) wprobe — Wiattice < 0, this corresponds to
a net gain in the transmission of the probe, while for ii) wprobe — Wiattice > 0, it
results in a net absorption of the probe. In any case the probing light is both
absorbed and emitted, but the net effect depends on the population of the levels
involved. In case i) if the pump beam excites the population of level n the probe
has to stimulate the emission and decay to n + 1 (Wprobe < Wiattice) OF if it is the
probe to excite from level n + 1, then the pump has to stimulate the de-excitation
to n. As level n + 1 is less populated than level n, this would result in a net
gain for the probe beam, as shown in figure 4.3. A similar argument explains the
absorption of the probe when its frequency exceeds that of the lattice light.

From these considerations, we should expect to see simmetric resonances in
absorbtion and gain when the difference in frequency between pump beam and
probe beam equates the separation between the vibrational levels in the lattice.
In figure 4.3 the probe transmission intensity is plotted versus the detuning of
the probe beam with respect to the lattice beam. This spectrum was taken for a
detuning of the lattice Ajqyy = —4.4T, and an intensity [}, = (2.04£0.1) mW /cm?
per beam. Two peaks can be distinguished at 0,ro0e = £70 kHz, which correspond
to the vibrational frequency associated with the lattice potential. A small Rayleigh

feature is also visible at dprope = 0. This was regarded as a proof of the localization
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and of the existence of ([uaiitized vibrational levels for the atoms in the optical
lattice. It was also used as a tool to measnrc the fretpiency of oscillation of the

atoms at the bottom of the potential wells.

4.2 Loading the Far-detuned Optical Lattice

In a near-detuned optical lattice, control of the center-of-mass motion is limited by
heating processes which occur at a rate determined by the scattering of photons.
It is possible to create a new kind of lattice where the heating processes are
almost completely suppressed. In the limit of large detuning the scattering rate is
proportional to ~ and it is therefore possible to reduce the dissipative processes by
increasing the detuning A of the laser source to tie very far from resonance. At the

same time, in order to generate a deep enough potential well, the intensity of the
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laser source must be adequately increased, as the potential depth is proportional
to % Particular care has to be taken during the transfer from the near-detuned
lattice, where the atoms are first cooled and lqcalised, in order to guarantee that a
good degree of localization is maintained. For this reason it is necessary to finely
control the intensities of the two sets of beams in order to ensure a matching of the
vibrational frequencies of the near-detuned and far-detuned lattice and to adjust
the difference in path length for the both lattices beams, in order to guarantee a
matching in the the relative spatial phase of the lattices beams. In this section I
will describe the experimental setup and the loading technique which was employed

to transfer the atoms from the near-detuned lattice to the far-detuned one.

4.2.1 Far-Detuned Optical Lattice Setup

Shown in figure 4.4 is the setup that was used to overlap the far-detuned lattice
beams with the beams of the near-detuned one. A combination of polarising
cubes and quarter-wave plates are used to create three equally intense beams
for the near detuned and far-detuned lattice. In section 1.2.3 I discussed how
changes in the relafive phases of the laser beams can produce a translation of a
N-dimensional lattice, generated by N + 1 beams. For a good transfer among the
lattices, it is very important that the maxima and minima of the near-detuned
and far-detuned lattice overlap, a mismatch resulting in heating and loss of the
atoms. This means that the spatial phase difference among the beams must be
the same in the NDL and FDL: this can be guaranteed if the difference in path
length between different beams is matched at the two optical frequencies . If
two beams of the lattice traverse path lengths [; and /o before intersecting in the
lattice region, then the spatial phase difference, which determines the position
of minima and and maxima of the potential, of the near-detuned (ND) and far-

detuned (FD) lattice beams at the point of intersection is d¢np = knp(l2 — 1)
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and §¢rp = kpp(lz — 11). In order to guarantee a good overlap between the two
potential wells, it is necessary to ensure that d¢nyp — d¢prp < 7. It follows that
8l < %’TC—VFD) must be satisfied. For the typical values of the experiments
vnp — vrp =~ 10 GHz, which gives an upper limit on §/ of only a few millimeters.
In order to match this requirement, the two retro-reflecting mirrors in the beam
paths are mounted on micrometer adjustable translation stages, as shown in figure
4.4, which can be adjusted monitoring the number of atoms loaded and their
temperature for optimization. The intensities of the near-detuned and far-detuned
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to experiment
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Figure 4.4: Expcrimental setup to overlap far-detuned and ncar-detuned beams to form
the lattice.

beams are controlled separately by two acousto-optic modulators. For the near-
detuned lattice the first order diffracted beam allows the continuous variation of
the intensity of the beam, while, for the far-detuned case, the zero order non-
deflected beam is chosen, thus necessitating the use of a mechanical shutter to

completely extinguish the light. In this way it is possible to finely change the
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intensity from I, down to approximately 0.2 - I, and use the shutter to turn
the light completely off.

The far-detuned lattice is generated by a MOPA system pumped by a DBR
laser, described in section 3.6. This is capable of an output power of up to 0.45
W. The output beam, though, has a poor spatial quality and a pinhole was used
to spatially filter the beam and correct its profile. This causes 50% of the power
to be lost. Other sources of power loss are the various optics placed in the laser
path, the acousto-optic modulator, used to control the intensity of the beams, and
the optical isolator, placed at the laser output to avoid feedback. As a result, the
maximum single beam power obtainable is 25 mW. This constitutes the greatest
limitation of the eiperimental setup, and it will be found to affect most of the
measurements presented in the following sections. Ideally, in order to have a
well working lattice, with isotropic properties over all spatial extent, the light
intensity should be uniform over the spatial region where the lattice is built, so
that atoms at different locations experience the same potential depth. This could
be achieved by expanding the lattice beam and selecting the central most uniform
intensity region, but this would have caused further loss of power, which could
not be allowed. The profiles of the far-detuned lattice beams were imaged along
both the two dimensions and were, in fact, found to be non-uniform over the
cloud spatial extent. As it is shown in figures 4.5, 4.6 the full width at 90%
intensity is ~ (1.0 £ 0.1) mm in the horizontal direction and ~ (0.45 + 0.06) mm
in the vertical direction, which was smaller than the extent of the cloud released
from the near-detuned lattice. As it will be shown in the next chapter, this causes
inhomogeneity on the potential depth and a spread in the characteristic vibrational
frequency of the atoms trapped at different lattice sites, as the measurements
revealed when the lattice was parametrically excited (see chapter 5). This will

also affect the efficiency of resolved-sideband Raman cooling, where the spread in
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Figure 4.5: Intcnsity profile of the far-detuned beam along the horizontal direction.

vibrational frequencies is expected to broaden cooling resonances such that they
are no longer resolved, see chapter 7. In the Stern-Gerlach experiments {chapter
6) a reduction in the net fictitious field experienced by the ensemble of atoms was
partly attributed to the inhomogeneity of the potential depth. A more powerful
laser source is therefore needed for the optimization of the experiment.

A typical sequence for the far-detuned lattice loading proceeds as follows: the
atoms are first loaded in a near-resonant lattice where they are cooled down to
a few microKelvin and trapped in the wells of the optical lattice. Typically, the
near-detuned lattice is generated by light tuned up to A = —261 to the red of the
F = 4 — F' = 5 transition, with a maximum intensity of 3 mW/cm? per beam,

the size of the beams being ~ 1 cm?

. The intensity and detuning were varied
in order to control the potential depth, according to the fact that the light shift
is proportional to é (see previous paragraph). The far-detuned super-imposed

lattice must generate the same light shift in order to keep the strong confinement

and the same degree of localization as the near-resonant potential; therefore, while
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Figure 4.6: Intensity profile of the far-detuned beam along the vertical direction.

increasing the detuning in order to decrease the scattering rate, the intensity of
the beam must be raised to maintain the same potential depth. The detuning was
varied in the range 1000 — 45007, the maximum equivalent intensity achievable in
our setup being ~ 500 mW/ cm? per beam. This equivalent intensity is obtained
by considering the intensity distribution as uniform and assuming an equivalent
area given by the product of the FWHM of the intensity profile along the two
dimensions.! The typical vibrational frequencies for these values of intensity and
detunings were in the range 30 — 45 kHz and the scattering rate below 1000 Hz.
The far-detuned lattice parameters were first theoretically estimated in order to
match the potentia‘l depth and vibrational frequency of the near-detuned lattice
and were afterwards tested by using the parametric excitation method, descrzlbed
in chapter 5. The transfer of atoms from the near-detuned to the far-detuned
lattice is accomplished by simultaneously controlling the intensities of the two

laser beams. This is done in order to ensure the tight binding of the atoms for the

'T will use this parameter to characterize the lattice from now on and, when possible, I will

include the full spatial profile of the beams
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whole duration of the transfer. By linearly changing the intensities of the NDL and
FDL in a way that the sum of the depths of the two potentials is approximately
the same during the transfer, the atoms would feel no variation in the apparent
potential, thus maintaining localization. The duration of the transfer was typically
400 — 500 ps. The duration was varied in order to optimize the transfer efficiency,

by monitoring the temperature and number of atoms in the loaded sample.

4.2.2 Studies of transfer efficiency and losses in the far-detuned

lattice

A typical sequence of the experiment starts with the loading of the atoms in a near-
resonant lattice where they are prepared in the lower states of motion by Sisyphus
cooling processes. The near-detuned lattice is typically left on for 5 ms, which is
enough to cool the atoms down to a few pK in the two dimensions of the lattice
and at the same time short enough for the atoms not to escape in the direction
orthogonal to the lattice plane, due to their velocity in the z-direction. Following
that the intensities of the two beams are simultaneously ramped, in order to ensure
tight binding transfer. The intensity and detuning of the far-detuned lattice were
varied in order to match the potential depth of the near resonance potential.

In figure 4.7 two time-of-flight spectra are shown for two different durations
of a far detuned lattice, tpp = 10 ms and tpp = 70 ms. The intensities of the
beams were set to .(400 4+ 50) mW/cm? and the detuning A = (~4500 + 100)T,
giving a scattering rate of I'y ~ 50 Hz. In these spectra, two peaks are evident,
separated in time by At = 10 ms and At = 70 ms, i.e. times equivalent to the
far-detuned lattice duration. The first Gaussian peak is very clear in the spectrum
taken for a 10 ms duration of the far-detuned lattice. Due to the smaller spatial
extent of the FD beam with respect to the ND one, a fraction of the atoms which

were stored in the near-detuned potential are never trapped by the FD light; these
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Figure 4.7: TOF signal obtained for two different loading times for the far-dctuncd lattice.

atoms start falling as soon as the ND light is replaced by the FD. The separation
of the two peaks corresponds in fact to the duration of the FD lattice. Further
losses of atoms are detected as a decaying tail between the two peaks. Thus atoms
leaking out of the far-detuned lattice at later times are detected as a decreasing
tail between the two Gaussians.

Measurements were performed in order to determine the lifetime of the FD
lattice, by measuring the number of atoms trapped for different time durations.
In figure 4.8 the decay is reconstructed by plotting the area under the Gaussian
peak for different storage times. This curve is characterized by an initial fast decay

followed by a slower decay. The trend is best fitted with a sum of two exponential



4.2. Loading the Far-detuned Optical Lattice 95

fraction of atoms

time duration (ms)

Figure 4.8: Lifc-time measurcment for the far detuned lattice. The dotted curve represents
the fit to a single cxponcntial and the solid curve represents the fit to a sum of two
cxponcentials, which gives two characteristic times t1 = (13 £ 2)ms and ¢t; = (50 £ 10)ms.
decays, which betray the existence of two characteristic times: a short one of
(13 £ 2) ms and a longer one of (50 & 10) ms.

These losses can be attributed to several mechanisms, also found responsible
for losses in 3-D blue detuned optical lattices [33]. At long times, transverse motion
of the atoms in the lattice plane, which is increased by scattering of spontaneously
emitted photons, allows the escape from the trapping region. At shorter times,
highly energetic atoms, which are not tightly bound, diffuse through the lattice
to regions of shallower wells and can be excited out of the lattice, due to heating
induced by laser beams intensity fluctuations.

Spontaneous emission as well as laser noise heat the atoms, so that atoms
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in bound vibrational levels are transferred to higher energy, nearly free states,
and are therefore lost after some time. The low scattering rate for these lattice
parameters, I's ~ 50Hz, suggests that the effect of spontaneous scattering is
relevant at long times. The ‘long’ characteristic time was found to slightly decrease
by decreasing the detuning of the laser source, which is consistent with attributing
the losses to heating induced by scattering. Another mechanism of escape is linked
to the diffusion of unbound atoms towards regions of shallower light-shift potential.
The non-homogeneous spatial profile of the beam intensity over the lattice region
suggests that this may be contributing to the loss of atoms. Furthermore, if the
cooling during the near-detuned phase was not efficient atoms which are too hot
tend to populate the higher lying vibrational levels, which, as discussed in chapter
2, have a significant curvature and broadening. This curvature in the bands means
that the atoms are not tightly bound and can therefore be excited out of the lattice
more easily. As said above, excitation may be provided at short times by intensity
fluctuations of the lAaser source. Such phenomenon will be discussed in section 5.4,
where an estimate of the noise induced heating is given. It will be shown that
intensity noise only produces a small heating of the sample at short times (~ 10
ms), which is however enough to excite out of the lattice the most energetic atoms.
This would also suggest that at short times the atoms from the higher bands are
more easily lost, making the loss mechanism band-dependent. This idea found
support from the analysis of the temperature of the sample at different storage
times, see section 4.3.

In order to investigate further the loss mechanisms, the temperature of the
sample was also monitored, for different durations of the far-detuned lattice. In
figure 4.9 the variation of the temperature as a function of storage time is reported.
The decay of temperature with time provides evidence for the band-dependence

of the loss mechanisms, which causes the population of the excited bands to die
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Figure 4.9: Temperature decay of far-detuned lattice versus time duration.

out faster. The temperature decays rapidly (consistent with the assumption that
atoms escaping from states close to the top of the potential are responsible for
the fast decay), and it reaches a steady value of ~ 3/uK. This steady value for the
temperature is given by the balance between the loss of highly energetic atoms and
the heating of atoms in lower lying states induced by scattering or noise, which
becomes relevant at long times. At the same time it shows reduced loss rates for
lower lying bands.

It is very difficult to isolate without ambiguity the different causes of loss. A
major cause of loss of atoms is, in fact, linked to the non-uniform spatial profile
of the FD beams over the lattice region. As a consequence, some of the atoms are

never bound in the FD potential, while others are bound in a region of shallower
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potential, which allows energetic atoms to be easily excited out of the lattice. The
option of expanding the FD beam further to select an almost uniform section of
the intensity profile was ruled out due to the fact that the available laser power
was limited. A compression of the cloud, as suggested in [34], before loading
the near-detuned lattice was attempted resulting in an increased loading of the

far-detuned lattice, but significant losses were still detected.

4.3 Band population measurements

Several experiments were performed in order to further investigate the storage of
atoms in the far-detuned optical lattice and to acquire an understanding of the
band population distribution. Experiments were run that were aimed at the se-
lection of the lower lying bands. Similar band selection techniques were used in
[35], [36], and [37] for quantum state preparation or simply used as a diagnostic
instrument. The typical sequence of a band selection experiment proceeds as fol-
lows. The atoms were firstly loaded in the far-detuned lattice with a laser intensity
Lnaz. After a certain storage time the atoms in the higher lying vibrational levels
were released by ramping down the laser intensity to a value I, for which high
energy atoms are not bound anymore. The intensity was typically ramped down
to Imin in 500us and the Ip,;, value was kept constant for variable times. The
laser light was then switched off by ramping the intensity to zero. It has to be
pointed out here that due to a limitation of the experimental setup, it was only
possible to ramp céntinuously the laser intensity down to 20% of the maximum
intensity. This was due to the fact the the lattice beam was generated by the
zero order beam of an acousto-optic modulator and even at maximum first order
diffracted light, the intensity of the zero order was up to 20% of the maximum
intensity. The light was completely disrupted by means of a mechanical shutter.

In figure 4.10 a sequence is shown for an initial storage time of 10 ms and
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Figure 4.10; Selecting the lower bands for quantum state preparation.

Imin — 0.2 x Imax kept (R for 5 ms before the light was completely switched
off. The peaks corresponding to the higher and lower lying bands are very well
separated, therefore it is possible to reconstruct the population of the different
vibrational levels. in the case examined in figure 4.11, the starting potential
had Unax — IdOL7i and the sample kinetic temperature was 5 /iK. The calculated
bands for these parameters are shown in figure 4.12. The first six bands correspond
to bound states for the atoms, while the levels n = 8 and n = 9 show a significant
curvature and broadening, which means that the corresponding wave-function is
not localised. By reducing the laser intensity we see that the losses start to be

significant for / = 0.67", i.e. when the maximum light shift is reduced to 80A"



4-3.  Band population measurements

1.10
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20

Figure 4.11:

I «) »

20 40 60 80

1/Lx%

100

120

100

--4.5

D
4.0 -o
@D

3.5 J

%
--3.0

--2.5

H—FFFFFFFEL20
100

( » I «-

100 20 40 60 80

1/U %

Measurement of population and temperature variation for selected bands.

-05 M o 02 Ol 0 o 02 03 04 05

2qn/a

Figure 4.12: Results of band calculations for Umax = 140E/f. Superimposed on this plot,

employing the same vertical scale, is a cut through the potential energy surface.

The

horizontal scale of this curve (black line) is arbitrary and is chosen so that one period of

the potential fits into frame of the figure.



4-3.  Band population measurements 101

-30

-40

-05 -04 ‘(l 05

Figure 4.13: Results of band calculations for Umax = 80E/%. Superimposed on this plot,

employing the same vertical scale, is a cut through the potential energy surface. The

horizontal scale of this curve (black line) is arbitrary and is chosen so that one period of
the potential fits into frame of the figure.

Bandstructure Ina 20 POOL

-05 -01 01 02 03 0s

Figure 4.14: Results of band calculations for Umax = 28E;(.Superimposed on this plot,
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fits into frame of the figure.

(see figure 4.13). The kinetic temperature starts dropping as well, due to the

reduced momentum spread associated with lower lying bands. It was possible to

control the intensity down to about 0.2x/max, which corresponds to Umax =
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As shown in figure 4.14 and by analyzing the broadening of the bands, the three
lower states correspond to bound states. Data plotted in figure 4.11 show that at
1 —O.'llmax the fraction of atoms that remained trapped in the reduced potential
is ~ 37% of the initial population. This was found to be in good agreement
with the calculated total population of the first three bands of a 1-D harmonic
oscillator, when the starting temperature of 5 /xK was assumed.

This was a preliminary study of band population measurements. To overcome
the limitation imposed by the far-detuned lattice intensity control, the experiment
has been now improved by introducing an electro-optic modulator, which is also
used to finely control the intensity of the far-detuned lattice. This new set-up
should allow us to investigate further the band population distribution and resolve

even the lowest lying bands.
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Figure 4.15; Band-dependent losses versus storage time.



4.8. Band population measurements 103

In order to sustain the hypothesis that the losses of atoms, as reported in
the previous section, are indeed band-dependent, a simple experiment was run.
The sequence was identical to the one previously described for band populations
resolution. The changes in the areas of the two peaks, see figure 4.10, were mon-
itored, this time at varying the storage time at maximum intensity. The atoms
were stored in the far-detuned lattice for variable times and then the populations
of the higher lying and three lower lying bands were simultaneously measured.
Therefore, if the losses are really band-dependent, it should be possible to see
that the first peak’s area, which counts the atoms populating higher lying bands,
start decreasing at shorter storage time, or decreases more rapidly than the area
of the second peak, which arises from lower energy atoms.

The variation of the areas of the two peaks versus the storage time at maximum
intensity are shown in figure 4.15. To estimate and compare the characteristic
decay times of the two sets of measurements, two exponential decays were fitted
to the two sets of data, resulting in a characteristic decay time of ~ (15 + 4)
ms for the first peak and of ~ (40 + 12) ms for the second one. These fits are
not meant to prove an exponential behaviour of the decay of the population in
different vibrational levels, neither do they constitute an accurate measurement
of the decay times; fhey only constitute a way of defining and quantifying the two
different decay rates. These lend further evidence for the band-dependence of the
loss mechanisms.

The measurements and experiments reported in this section are not meant to
constitute a detailed analysis of the problem. The limitations of the experimen-
tal setup, mainly the non-uniform potential depth of the far-detuned lattice, the
low laser power available and the coarse control on the laser intensity would not
allow a more accurate treatment. However it was important to study the loading

efficiency and the losses mechanisms to understand the importance of improving
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the experiment and the modifications that were required.

4.4 Conclusions

In this chapter I described the experimental setup and techniques used for load-
ing atoms into a 2-D far-detuned optical lattice, by transferring them from a
super-imposed near-detuned lattice. The efficiency of the transfer was studied
and experiments revealed that a significant fraction of atoms was lost at the time
of the loading, while more atoms were leaking out of the lattice at later times.
Experiments aimed at measuring the populations and temperature of the different
vibrational states were performed, which demonstrated the feasibility of resolving
the different band populations and proved that the loss of atoms from the lattice
is band-dependent.- A study of the population’s decay versus storage time led to
the evaluation of two distinct decay times; it was also possible to attribute as main
causes of loss the heating induced by spontaneous scattering for the long decay
time and, as it will be extensively discussed in the next chapter, laser intensity
fluctuations, that could be responsible for the short decay time. All the qualita-
tive analysis presented in this chapter revealed the limitations of the experimental

apparatus and suggested possible changes for its optimization.



CHAPTER 5

Parametric Excitation

The parametric excitation method is a useful tool for the investigation of the fea-
tures of the far-detuned lattice and has been pursued both experimentally and
theoretically in prévious works [38], [39], [40], [41]. The excitation caused by
resonant intensity fluctuations has been proposed as a major cause of heating in
far-off resonant traps [40], [41]. In [38] the parametric excitation method was first
used in order to characterize the lattice structure. In [42] parametric heating in
harmonic potentials is studied both non-perturbatively and perturbatively. The
former approach establishes an explicit connection between the classical and the
quantum description. The latter gives an alternative insight into the problem and
can be directly extended to take into account the anharmonicity, which becomes
relevant for shallow traps. The perturbative model was also used in order to in-
vestigate the characteristics of the far-detuned lattice, i.e. the effective vibrational
frequency, potential depth and anharmonicity.

In this chapter an overview of the results found in [42] will be presented. The
implementation of a code based on the model presented in [42], used to simulate
losses and heating in a parametrically excited lattice is described. The model is

then compared with the experimental results, which are presented in section 5.3,
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and the characteristic lattice features are evaluated. This model is particularly
useful to understand the effects of anharmonicity of the potential and of the non-
uniformity of the laser profile over the lattice region, which was found to affect
our experiment. In the last section of this chapter, results from simulations run to
evaluate the importance of noise-induced heating are reported. These represent
only an estimate of the maximum heating rate, as, due to the high noise floor of
the diagnostic electronics, the laser noise could not be measured accurately; they
led to the reasonable conclusion that the heating rate due to stochastic intensity

fluctuations should not be significant on the timescale of typical experiments.

5.1 Perturbative treatment of parametric excitations

I will outline the theoretical approach introduced in [40], [39],{42]. The non pertur-
bative approach to parametric heating, discussed in [42], is only valid for quadratic
potentials and canﬁot take into account anharmonicity effects. When the confin-
ing potential is shallow, however, anharmonicity effects become significant and a
simple method that can take them into account is the high order perturbative
approach to parametric heating presented in [42]. The purpose of the method is
to study some high order perturbative effects due to a variation of the strength
of the confining potential, while also taking into account the anharmonicity and
inhomogeneities of the laser beam’s profile.

Parametric excitation is obtained by applying a small modulation to the in-
tensity of the lattice light. The Hamiltonian of the system can then be written

as:

p2
H=—+VL+e(t), (5.1)

where the first term is the kinetic energy, the second term the potential energy

and €(t) = &};ﬂ is the fractional modulation induced on the potential by varying
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the light intensity;

Vi) = - o Bl

(5.2)
is then the effective potential, where « is the effective atomic polarizability and
E; is the radiation field amplitude.

Following the time-dependent perturbation theory, the unperturbed Hamilto-

nian is defined as:

Hy= 2~ +V(a) (5.3)

while the equation of motion of the state |¥(¢)) is ruled by:

mﬂzmzmemn@mx (5.4)
where
[B(2)) = et Mu(2)). (5.5)
The interaction operator is:
V= e‘LHot/hV(m)e_'iHot/h (5.6)

and the evolution operator is given by:

7 i t ¥, T4l !
Wﬁzl—ﬁﬁemvmﬁU@ML (5.7)

The transition probability between two states of the unperturbed Hamiltonian can

be written, using equation 5.7 as:
-~ i N
(n|U(t)|m) = bnm — EVnmA dt e(t )e*nm (5.8)

1 t oot o
“ﬁzv”kv’“m / dt'e(t') okt / dt"e(t")emt” 4
- 0 0

with wpk = (B, — Ek)/ﬁ and

2

Vi = (nlVIk) = Enf o — (nl2—k). (5.9)
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If it is assumed that the changes in the wave-function induced by U(t) are small
in the interval (0,t), then it is possible to estimate the average rate of transitions

from a state |n) to a state |m) in a time ¢:
1 7(n) 2
R = 3|10 (t)m) 2 (5.10)
If the heating is induced by a modulation of the confining potential:
€(t) = ep cos (wt) (5.11)
then up to the second order in ¢q, the transition probability is given by:

(”10(2)(t)|m)' = Onm + i"‘-OtVnm{C((‘ﬂnm +w)t) + (((wWnm — w)t)] (5.12)

2h
€0\ 2 1
_ (ﬁ) tzk: Vnkam[m[C((wnm + 2w)t) + {(wnmt)
~((@nk + @)t) = C((wnr — w)t)] + m

[C((wnm — 2w)t) + ((wrmt) — (((wnk + wW)t) — (((wnk — w)t)]],

where ((z) = %/ 2% It has to be again emphasized that this expression is
only valid for small changes induced in the time ¢.
For a harmonic oscillator with frequency wq, the matrix elements V,,,,, can be

written as [42]:

Vik = %[(214 + 16k + V(= Donpro + Vi + 1)(n+2)0p k2] (5.13)

From an examination of the various terms in equation 5.12, it is possible to see
that the following V5 Vim products are combined to give a non zero contribution

for:

(i) VantoVntonta — the resonant terms appear in the combination ¢((4wp +

2w)t) — ¢((2wp £ w)t), so that such transitions are highly suppressed
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(i1) VikVin — the resonant terms appear for w = 0,2wg. For w ~ 2wy the

amplitude of the transition is proportional to

ot (S5E5390) (5

(5.14)

(iil) Vant2Vat2nte and Vi, n Vo nto — these transitions can be viewed as a com-
bination of two virtual transitions n — m — m or n — n — m. According
to equation 5.12, the corresponding resonance frequency is the fractional

frequency w = |wnm|/2 = wp. The transition probability for w ~ wy is then:

,sin? (w — wo)t/2

(i)zﬁw B(Vin — V)22 — w0 )t/2 (5.15)
2/ W T () — wy)2t2 /4 )
e*wit?

sin? (w — wo)t/2

+(n+1)(n + 2)0n,m-2] o — w024

In all the above cases, the non resonant terms ((w’t), with o’ # 0, give rise
to oscillations of the transition probability, which is consistent with the results
found by the exact-evaluation of the transition probability discussed in [42]. For
long times, such that tw’ >> 1, then the resonant terms only give a significant
contribution.! In that limit the transition rates Rn_.m are constant.

The dominant transition probability of a fractional frequency resonance w =
2wp/n, arises at n-th order perturbation theory. It can be viewed as an n-steps
procedure consisting of n-steps virtual transitions, where n — 1 of them do not
change the state but one does change it. Thus it is expected that equation 5.15
describes approximately the transition probabilities n — n 4+ 2 when the source

has a frequency w = wy.

a2
keeping in mind the §-function representation as d(w) = % limt— oo ﬂﬁg/—a
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5.1.1 First order perturbation theory

As shown above, within the first order perturbation theory the additional varying

potential induces transitions between states n and m with an average rate:

2

L= [T (iwnmt) 4l 2
Rym = Vame(t)etrmt | = o2 [Vam!|” S(wmn), (5.16)
0

TT|h

where V,,,,, is the matrix element of the space part of the perturbation, defined in
equation 5.13,

S(w) = 2 /T cos(wT) < e(t)e(t+7) > dr (5.17)
T Jo

is the one-sided spectrum of the fractional intensity modulation and < e(t)e(t + 1) >
is the correlation function for the fractional intensity fluctuations.
If the confining potential can be approximated by a harmonic well 2, the only

terms which are non-zero for the transition rates are
mwp 2
Ryn = 1—65(0)(2n +1) (5.18)
and
mug
Rpont2 = ¥S(2w0)(n +1+1)(nt1). (5.19)

As shown in [40] and [41], from equations 5.18, 5.19 it is possible to deduce the
exponential character of the heating rate and its dependence on 2wyq, typical of
the parametric nature of the excitation process. Assuming that the atoms are
occupying the |n) state with probability P(n,t) at time t, the average heating
rate is given by the sum of the contributions of processes involving a change of

vibrational level; therefore, according to equation 5.19:
) T
(B) = 3 Pm)2hon(Rnsz = Rnonz) = Z8S(2u0) (B),  (5.20)
n
where the average energy (F) is

(B(t)) = 3 P(n,t)(n + %)mo. (5.21)

n

2 Assuming that the anharmonicity effects are negligible
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The heating rate is therefore proportional to the average energy itself and depends
on the vibrational frequency of the lattice. From equation 5.20 it is possible to
deduce the expomnential behavior of time evolution of the average energy. By
introducing the characteristic time ¢, the time to increase (E) by a factor of e, it
follows that:

te = (T8 Se(2wo)) ™" (5.22)

In the classical regime, parametric oscillators exhibit resonances not only at
2w but also at 2wg/n with n any integer. Resonances corresponding to n = 2 have
been observed for far-detuned optical lattices , as shown in [38], [43]. In order to
reconstruct the processes which lead to 2wp/n resonances it is necessary to appeal
to the nth-order perturbation theory. Furthermore, some general features of the
optical lattice are lost in the harmonic model: the energy-band structure and
spread of transition energy are not taken into account in the previous model. In
the following sections I will discuss a model, which is based on the results found in
[42] and similarly to [39], attempts to account for higher order heating rates and
the anharmonicity of the potential wells in our lattice. Our model was developed
independently on the work done in [39] and their differences and similarities will

be highlighted during the following sections.

5.1.2 Second order perturbation theory and anharmonicity

In section 5.1 the parametric excitation was studied in the harmonic approximation
and according to first order perturbation theory. In [39] the model was extended
to second order perturbation theory and the anharmonicity was introduced semi-
empirically as a broadening of the vibrational levels involved in the transition.

The second ordér correction to the transition rate between states |n) and |m)
is given by:

N\ 2
-1
. t

k 0

t : 7 t N "
giwnkt e(t’)dt'/ eWrmt” gl (5.23)

to
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The transition process can be described as a two step procedure: a first step
In) — |k) and a second |k) — |m). In the previous section it was shown in
equations 5.18, 5.19 that the only non-zero matrix elements for the space part of
the perturbation are the terms involving transitions |n) — |n) or |n) — |n £ 2).
Then for a first step in which the final state is the same as the initial [n} — |n),
followed by a second tramsition |n) — |n & 2), the net energy change is 2hwyq.
Therefore, a resonance occurs when the total energy of the two excitation processes
coincides with the net energy change, i.e for w = wp. The probability P(n) of

finding an atom in the level n is then given by:
P(n,t) = P(n,to) + Y _ R, (P(m,tg) — P(n,t0))(t — to)
m
+> R, (P(m,to) — P(n, to))(t — to)?, (5.24)

which is valid in the limit ¢ ~ tg.

All these considerations can be extended to the anharmonic potential case. The
difference is that the anharmonic transition matrix elements 7'(n, m) are non-zero
for a wider set of pairs n,m and the transition energies will have a broadened
distribution. To form an idea of the frequency spread in an anharmonic potential,
I refer to Table 2.1, where the energy spectrum obtained for a Upg, = 17T0ER and
Unmaz = 250FEk as well as the bandwidth for the different levels are shown.

In order to estimate the inter-band transitions driven by parametric excitation
a phenomenological broadening must be taken in account. The broadening arises
not only from anharmonicity of the band structure but also from other sources,
such as laser intensity and pointing fluctuations and, more important, intensity
inhomogeneities along the lattice region. In fact, in section 4.2 it was shown that
the laser profile is not homogeneous so that the trapped atoms experience different
potential at different lattice sites. This leads to a large variation of the vibrational
frequency of atoms at different lattice sites. Furthermore, each of the vibrational

bands in a single potential well exhibit a finite width, which is negligible for
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low lying levels but becomes significant for higher energy states. We can try to
take in account for this spread of frequencies considering each level involved in the
transition as a Gaussian density distribution of states, centered at wy with a width
on representing the frequency spread. Broad spectral lines can be introduced in
the model by defining, as suggested in [39], an effective spectral density Sefs(w),
obtained by the convolution of the two Gaussians associated to the levels involved
and with the excitation source with spectral density given by 5.17:

(W = wery)?

5.25

Seff(w) = Spexp

where O'gf = 02, + 02 + o2, with o,,,, the widths of the levels involved and og
the width of the excitation source and weys is Wmod — (Wm — wr). At the moment
all the sources of broadening can be semi-empirically included in the model as
constant level widths. A future very useful improvement of the code will be the
introduction of an energy dependent level width and trying to adapt the model
to the experimental data in order to find out the relation of the level broadening

with the vibrational number.

5.2 Parametric Excitation Simulations

Following the guidelines of the two previous sections, a simple model was devel-
oped, in order to simulate the parametric excitation experiment.

An initial Boltzmann distribution of atoms in the vibrational levels of a one-
dimensional harmonic oscillator is assumed. The use of a one-dimensional model
is justified considering the vibrational motion independent in the = and y direc-
tions. The rate-equations for the populations of each level are written according to
equations 5.18, 5.19. Instead of using the harmonic approximation as in [39], the
full matrix elements V,,,, were calculated and included in the code; in this way,

for each level involved in the transition the corresponding calculated frequency
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(see table 2.1) was introduced, thus improving the accuracy of the model. Nev-
ertheless a Serf, as defined in equation 5.25, was still used in order to consider
other broadening effects. The effective width takes into account the linewidth of
the levels involved and the broadening due the fluctuation of the spring constant
caused by the modulation of the potential depth. In this way the transitions from
one level to another were simulated, taking into account anharmonicity effects,
the linewidth of the resonances and the broadening caused by the modulation.
Effects of other broadening sources, such as inhomogeneities of the potential, will
be taken into account as a broadening in the transition linewidth.

Once the excitation processes have been considered, the loss of atoms excited
out of the potential have to be simulated. It was further assumed that atoms
excited to high-energy levels at the top of the potential well with width bigger
than E'r (see table 2.1) are unbound and therefore lost. Evaluating the excitation
and decay rates as Awell as the loss mechanisms, the population distribution over
vibrational levels is modelled. The mean vibrational energy is then calculated
as the population-weighted average of the vibrational energy of each level. The
energy increase with time, for a fixed modulation frequency of =~ 2wy, was shown to
be non-exponential; a fast energy growth at short times is followed by saturation at
longer times. This can be explained by linking the energy increase at short times
to atoms from the lower lying levels being excited to higher lying ones, whilst, at
longer times, when the higher lying levels are mostly populated, the modulation
source is no longer resonant with the excitation process, thus reducing the number
of atoms excited per unit time.

In figure 5.1 an example of the results of the parametric excitation simulation is
shown. The fraction of trapped atoms is plotted versus the excitation duration at
different excitation frequencies. In this simulation the potential depth is considered

uniform over the lattice region and equal to 200E g, which correspond to wy = 36
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02
EO1.

Figure 5.1: Simulation of parametrically induced losses versus modulation frequency and
time for: Umax = 200£'it, mp = -4, Tin = 3/tK, to = 0.1, = [L5Efi. The first resonance
can be seen at 36 kHz. which corresponds to the characteristic vibrational frequency.
kHz and the initial kinetic temperature of the sample is assumed equal to 3/iK.
The plot shows several features corresponding to the main 2wq resonance and
higher order resonances. It has to be pointed out that the main resonances occur
at a frequency slightly smaller than the vibrational frequency of the lower lying
levels. This shows that a significant fraction of atoms in the potential wells would
have a different characteristic vibrational frequency from the lowest lying ones,
due to the anharmonicity. So by estimating the shift of the resonance frequency
it is possible to give an estimate of the anharmonicity of the potential or of the

inhomogeneity of the well depth.
in figure 5.2 the corresponding kinetic energy is plotted, which shows that it

is possible to induce heating and cooling of the sample by parametrical excitation
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Figure 5.2: Simulation of parametrically induced temperature variation versus modulation
frequency and time for: Umax —200Efi, mp —-4, = 3/xK, e0o = 0.1, ;0 = L. 5Ep.
of the vibrational modes, depending on the chosen excitation frequency. At a
frequency for which the higher lying states are mostly excited, a parametric ex-
citation sequence would result in loss of high energetic atoms, therefore in a net
cooling of the remaining trapped sample. When the lower lying energy levels are
stimulated, the excitation would result in an increased population of the higher

lying ones, thus in a net heating of the atomic sample.

In the next two sections 1 will discuss how the model was used in order to
simulate the parametric excitation and the noise induced heating. The model’s
contribution towards our understanding of the effect of anharmonicity, Zeeman
population distribution and non-uniform laser intensity on the broadening of res-
onances is detailed. It will also be shown that the noise induced parametric ex-

citation effect produces significant heating only at times much longer than the
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typical duration of the experiment.

5.3 Parametric Excitation Measurements

A sample of atoms was prepared in the far-off resonance lattice with a detuning of
A = (-2000 + liid)r and a single beam intensity of = (400 £50) mW/cin”.
The potential induced on the trap[)ed atoms therefore had a maximum light shift of

Umax = 170£h", corresponding to = 55 kHz. A modulation of 10% wtis then

0.4 - I (2w,
T I T - T
20 40 60 80 100 120 140 160 180

modulation frequency (KHz)

Figure 53: Experimental spectrum of the losses induced by parametrically exciting the
lattice vibrational modes. The fraction of trapped atoms remaining in the lattice after
the parametric excitation is plotted versus the excitation frequency.
introduced in the lattice potential depth (through an acousto-optic modulator

used to control the laser intensity), which was left to parametrically excite the

vibrational modes for 25 ms. At the end of the excitation time, the atoms were



5.83. Parametric Excitation Measurements 118

released from the far-detuned lattice and let free to fall through the time-of-flight
probe beam. In this way it was possible to estimate the number of atoms still left
trapped at the end of the modulation, as well as the mean kinetic energy of the
sample of atoms. Measurements were taken at various excitation frequencies.

In figure 5.3 the measured fraction of atoms left in the lattice is plotted versus
the modulation frequency. According to section 5.1 a main resonance in the losses
of atoms was expected at twice the vibrational frequency, and a secondary reso-
nance at wy;,. The data in figure 5.3 show a broad band for losses, with a width
comparable to the resonance frequency itself.

In figure 5.3 two resonances seem to be resolved, despite the evident broad-
ening, for wmeg = 35 kHz and 58 kHz. These resonances do not agree with the
predicted resonances within the harmonic approximation, but are in good agree-
ment with the prediction of the anharmonic model. Invoking anharmonicity effects
it is also possible to explain the fact that resonances occur at frequencies slightly
different from the expected harmonic vibrational frequency and, partially, the ob-
served broadening. The major causes of broadening, though, were found to be due
to inhomogeneities in the potential depth experienced by the atoms. This is in
part caused by the inhomogeneous spatial intensity profile of the FDL beams, as
discussed in section 4.2. Furthermore, with the use of Stern-Gerlach experiments
(see chapter 6), it was also found that the atoms also populated several Zeeman
states. Potentials associated with different Zeeman states have different depth and
therefore the trapped atoms oscillate at different frequencies, depending on their
myp number. It was found that the Zeeman state population distribution plays a
major role in the broadening of the resonances. The parametric excitation was
modelled for differént Zeeman-state potentials and the weighted average was then
performed, after the populations of different Zeeman-states had been estimated

with a Stern-Gerlach experiment.
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Figure 54: Comparison between experimental and theory data for population losses. The

data plotted in black repreceent the measured number of atoms that remain in the lattice

after a parametric excitation of the sample at different frequencies for 25 ms. The red line
is the result of simulations.

in figure 5.4 the experimental data are plotted and compared with the results
from the model. The model is in good qualitative agreement with the experimental
data, allowing also the estimation of an effective vibrational frequency and there-
fore the maximum potential depth. The principal resonance of the trap seems to
occur at 1.66 wg, rather than 2w This follows from the fact that atoms in the
lowest levels are partly excited to higher lying levels but are not lost (as would
happen for a harmonic potential), while the most energetic atoms, which have a

smaller excitation energy due to anharmonicity and are therefore more resonant
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Figure 5.5:  Expcerimental spectrum of the change in kinetic tempcraturc induced by
paramctrically exciting the lattice vibrational modces at different frequencics for 25 ms.
with a lower excitation frequency, are immediately excited out of the lattice. This
explains why the predicted main resonance at 2wy actually occurs shifted to the
low frequency side. The asymmetry of the resonances is also well reproduced by
the model and reinforces the role of anharmonicity in the loss of atoms. Highér
harmonic resonances are also predicted by the model, leading to the broad feature
seen in figure 5.4, at ~ 3wy, not in very good agreement with the data, where this

resonance is shown to be almost suppressed.
The mean kinetic energy of the sample was also measured and the variation

in temperature is plotted versus the excitation frequency in figure 5.5. It is shown
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Figure 5.6: Comparison between experimental and theory data for kinetic temperature
variations. The data plotted in black represent the experimental result of temperature
measurements for the atoms left in the lattice after a parametric excitation experiment
at different driving frequencies for 25 ms. The red line represents result of simulation.
there that both cooling and heating of the sample can be achieved depending
on the excitation frequency: energy selective excitation processes can result in
either cooling or heating, depending on whether lower or higher lying states are
mostly excited. If the potential was homogeneous, it would be straightforward
to deduce that at lower frequencies atoms in higher lying vibrational states are
excited and expelled from the trap, thus resulting in a cooling of the sample. At
higher frequencies, on the other hand, transitions involving lower lying states are
mostly brought into resonance, thus heating the atoms. These results are in agree-

ment with [44], where the exploitation of anharmonicity in shallow traps through

parametric excitation processes was proposed as a method to boost evaporative
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cooling. The situation presented in figure 5.5 shows definite regions of net cooling
or heating, but the competition between the two phenomena cannot be simply
attributed to different vibrational levels of the same potential; different potential
depths and consequent spread in vibrational frequencies should also be taken in
account. This cannot be simulated well with the present model. The model also
does not take in account any other source of heating apart from the one introduced
by the parametric excitation, thus only partially representing the true situation.
Our model is not expected to fully reproduce the features of figure 5.5; it serves
only to show that, due to inhomogeneities and anharmonicity, there are frequency
ranges for which the net effect of parametric excitation is a cooling of the sample
(higher lying modes are mostly excited) and regions where the heating dominates
(lower lying modes are mostly excited). The predicted order of magnitude of such
temperature variations was also shown to be consistent with the measured one, as

it is shown in figure 5.6.

5.4 Noise-induced heating rates

In the previous sections it was shown that a modulation of the potential depth
could selectively excite atoms in different vibrational bands out of the lattice. This
would result in the remaining sample being heated or cooled. A code was developed
which can simulate the losses of atoms excited out of the well and the net kinetic
temperature of the sample of atoms which remain trapped. The anharmonicity
of the potential depth played a basic role in the possibility of selectively exciting
atoms in different bands by simply choosing an excitation frequency. If there was
no anharmonicity or if the excitation source was composed by a broad band of
frequency, then all the vibrational bands could be excited simultaneously. Laser
intensity noise can cause atom heating, while losses linked to heating can limit the

maximum storage time. Far-off-resonance optical lattices can be very sensitive to
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intensity fluctuations and beam pointing variation [40]. An attempt was made to
estimate of the upper limit to the heating rate induced by power fluctuations of
the laser source. A measure of the noise spectrum of the laser was not possible, as
the noise floor of the detection system electronics was above the noise level of the
laser. An estimate of the noise-induced heating was therefore determined assuming
a laser noise as high as the electronics noise, this constituting an upper limit for the
power fluctuation induced heating. Therefore, by assuming a fractional variation
with rms of g = 0.001 at 410 mW total laser output power, the real noise level has
certainly been overestimated. In case of noise-induced parametric excitation we
have stocastic fluctuations of the laser power, instead of sinusoidal modulation. In
this case we expect the energy to increase exponentially with time , as explained in
[45] and not to saturate, as a broadband fluctuation would simultaneously excite
the atoms in all the vibrational levels.

An estimate of the characteristic time of the heating process due to stocastic
fluctuations driving the center of mass motion can be reached by using equation
5.22: for vy = 35 kHz typically and S¢(2v9) = 1 x 1078 Hz! a characteristic time
of 80 ms was found. This is indeed a significant cause of heating, but only at
times longer than the typical duration of a far-detuned lattice phase (typically 10
ms or less). Considering the long characteristic time and the fact that the laser
noise is overestimated, the noise induced parametric excitation is not expected
to play a significant role in our experiment for atoms in lower lying vibrational
states. However atoms initially in highly energetic vibrational levels may be easily
excited out of the lattice even at short time, due to intensity noise, as discussed
in chapter 4. Thus in conclusion, we do not expect the noise-induce heating to
significantly affect and limit the sideband-Raman cooling experiment. However
intensity fluctuations of the laser are probably responsible for the reduced lifetime

of the far-detuned lattice and the band-dependent losses, as high energetic atoms
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Figure 5.7: Mecan cnergy growth duc to intensity noisc in the far-detuned lattice beam

in the lattice require minimal heating to be excited out of the well, as discussed

in chapter 4.

5.5 Conclus.ions

A model of atom losses in an optical lattice induced by parametrically modulating
the potential depth was developed, based on the theory presented in [42]. Ex-
periments were run to monitor the escape of atoms from the lattice, when the
laser beam was intensity-modulated. A comparison of the experiments with the
model lent us insight into the band structure and the degree of anharmonicity of
the potential. The temperature variation was also monitored and it was found

that by parametrically modulating the lattice depth at a suitable frequency, it
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was possible to selectively excite out of the lattice the most energetic atoms, thus
cooling the remaining trapped sample. The clear effect of the non-uniformity of
the potential depth along the trapping region was also demonstrated, which was
due to the restricted dimensions of the far-detuned laser beams. An analysis of
noise-induced heating suggested that intensity fluctuations may be partly respon-
sible for the band-dependent losses of the far-detuned lattice, studied in chapter
4. However, the noise-induced heating is not expected to affect significantly the

sideband-Raman cooling experiments (see chapter 7).



CHAPTER 6

Stern-Gerlach Analysis of

Zeeman-state Populations

In the absence of static external magnetic fields, the atoms are distributed equally
between the o+ and o~ wells in the lattice. By adding a static magnetic field along
the direction orthogonal to the lattice plane, the Zeeman levels are differently
shifted, according to their mp number. It is therefore possible to increase the
population in the wells corresponding to the lowest energy shifted sub-lattice. As
discussed in chapter 2, the sideband-Raman cooling scheme that we used in this
work exploits coherences induced between the vibrational states of the potentials
associated with the |mp = —4) and |mp = —3) states. A o~ -polarized pumping
beam populates the stretched state in which the cooling is efficient. By spin-
polarizing the near-detuned lattice it is possible to increase the initial population
of the |mp = —4) state in the far-detuned lattice, thus reducing the necessary
interaction with the pumping beam. This would improve the cooling efficiency by
reducing the heating rate due to photon-scattering,.

In this chapter I will describe the Stern-Gerlach experiments that were im-

plemented in order to perform a Zeeman analysis of the sample of atoms in the
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lattice and an investigation of spin-polarization of the lattice. These experiments
exploited the state-dependent magnetic dipole force induced by a magnetic field
gradient, which was used to separate the time of flight signals of the individual
magnetic sublevels. An optical lattice of the type described in chapter 3, in the
configuration shown in figure 1.8B, presents, in fact, a geometry which associates
with each lattice site a o1 or o~ light polarization. The atoms are distributed
over different lattice sites, each capable of trapping in different mp states. When
the atoms are released from the lattice they present a magnetic moment along
the axis orthogonaI to the lattice plane. The interaction of the atomic magnetic
moment with a non-uniform magnetic field is exploited to accelerate the atoms
differently according to their mp state; hence the time-of-flight (TOF) signals
for different Zeeman states can be time-separated. This method allows a mea-
surement of the relative populations of the Zeeman states as well as the different
temperatures associated with different lattice sites. This technique was used in
[12] to prove the efficiency of local Sisyphus cooling in lattices for atoms with a
large F'. The interaction between the atomic magnetic moment and magnetic field
gradients has been used extensively to tailor atomic beams. Several experiments
on magnetic atom optical components, such as mirrors or refractive systems [46],
[47], exploited the state-dependent magnetic dipole force induced with a varying
magnetic field. More recently Stern-Gerlach experiments on caesium atoms were
used to demonstrate a method to measure the quantum state of an atom with an
arbitrarily large angular momentum [19].

The following sections will give a brief summary of the interaction of a mag-
netic moment with a magnetic field and of the analytical model that was used to
simulate the Stern-Gerlach experiment. The experimental set-up and results are
then shown for atoms released from the lattice and also for a spin-polarized ([48])

and an optically o-pumped sample. The final section of this chapter discusses
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the magnetization induced by means of a constant magnetic field, parallel to the
lattice axis, and the consistency of the experimental data with the concept of a
spin temperature; the results are in agreement with previous studies presented in

48], [12].

6.1 Atoms interacting with a magnetic field

The magnetic moment of an atom with angular momentum F is given by:

p=~F=— %F (6.1)

where + is the gyromagnetic ratio, ¢ is the Landé factor for the |F, mp) state and
(B is the Bohr magneton.
If a magnetic field B is intrcduced the magnetic moment interacts with it and

the interaction potential becomes:
W=—-u-B. (6.2)

The force interacting with the atom can be expressed as the gradient of the po-

tential, that is equal to:

OB .. 0B .. OB
F=-VW=(n: %)1 +(p- %)J +(p- E)k’ (6.3)

where (i,j, k) is the basis of the cartesian axes. If the magnetic field is uniform
the magnetic moment precesses around the direction of B at a frequency (Larmor

frequency) which is directly proportional to the magnitude of the magnetic field
wr = [||BJ; (6.4)

the net force over a Larmor period T, = 27/wy, is zero. This means that the pro-
jection of the magnetic moment along the direction of the magnetic field remains

constant. If the magnetic field B is inhomogeneous, from equations 6.2, 6.3 it can
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be deduced that the net force is no longer zero and that it is proportional to the
magnitude of the magnetic moment.

In a quantum description of an atom placed in a spatially uniform, constant
magnetic field directed along the z-axis, B = Bk, the system has stationary

states which are eigenstates of F2 and Fz with energies [49]:
Ep = ppgmeB.. (6.5)
The time evolution of one of the stationary states
Tn(®)) = 3 cnlt)] Tm) (6.6)
is shown to be [49]:
[T (t)) = Aexp (—iEmt/R)|¥m) = Aexp (—iwrmt)|¥pm). (6.7)
From equations 6.6 and 6.7 it follows that the coefficients ¢, can be expressed as
cm(t) = exp (—imwrt)cem (6.8)

The populations of the stationary |U,,) states 7, = |cm(t)|? are therefore time-
independent: the populations along the direction of the magnetic field, which we
chose as the quantization axis, remain invariant.

The change in B during a small time interval can be decomposed to parallel
and transverse components with respect to z. Any change in B, has the sole
effect of changing the Larmor frequency. A variation in the transverse direction
of B, has the effect of introducing couplings with other Zeeman substates, [49].
The populations 7, are no longer constant in time, unless the variation in the

transverse field over a Larmor period is much smaller than |B|. This requires:
B>» ———. (6.9)

In the case where wy, is much bigger than the rate of change of the magnetic field,

the internal and external degree of freedom decouple and the angular momentum
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can adiabatically follow the variation of the magnetic field, while maintaining the
component of magnetic moment along the initial direction of B. This means that
the projection of the magnetic moment along B is constant over a Larmor period,
so time averaged (u) has only a constant component along B. From equation 6.3

and the previous condition follows that:
F = (1) V/B(r)], (6.10)

i.e. the force depends only on the magnetic field strength.

6.2 Stern-Gerlach simulations

An analytical model was developed to simulate the different arrival times of atoms
in distinguished mp levels, when they are in the presence of a magnetic field
gradient.

It was assumed that the condition of equation 6.9 is fulfilled, so that the
internal and external degree of freedom of the atoms decouple and the angular
momentum can adiabatically follow the slow changes of the magnetic field. In this
case the force acting on an atom depends on the time averaged magnetic moment
(which is constant)-and the gradient of the magnetic field strength, from equation
6.10. The model is then used to calculate the acceleration of the atoms along the
vertical axis, which leads to nine separate clouds corresponding to different atomic
mp states. By modelling the different trajectories along the vertical axis, it was
possible to estimate the different arrival times of the nine clouds of atoms at the
location of the TOF probe beam, situated 6 cm below the initial cloud position.
A typical sequence of the experiment was then simulated with the code, in order
to calculate the parameters which optimize the resolution of the nine peaks.

A cloud of cold caesium atoms is released and left free to fall under gravity for

a variable time. After some time the magnetic field gradient is switched on and
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left to interact with the atoms also for various durations. It was possible to vary
both time durations as well as the magnetic field gradient to simulate the TOF
signal produced by the falling clouds and to elect the right parameters in order to
optimize the resolution.

It was realised that it is very important not to let the atoms pass the region
of zero magnetic field (i.e. the middle point in the coils axis), in order to avoid
a change in the orientation of the spins! and an inversion of the acceleration
for individual mp states, which would result in decreasing separation among the
peaks. Therefore it is important to let the atoms fall freely until they are distant
enough from the zero field point, that even during the subsequent acceleration
none of the nine clouds passes again through that point. Assuming that there is no
heating overall in the Stern-Gerlach measurement process (i.e. no increase in the
mean velocity of thé atoms), the duration of the free-fall has to be set depending on
the duration of the interaction with the magnetic field gradient. This latter time
scale has to be set in order to achieve the maximum resolution. Both durations are
conditioned by the distance of the time-of-flight beam from the cloud. By running
the code it was found that the best resolution was achieved when the atoms were
let to fall freely for 30 ms. Following this, a magnetic field gradient of 40 G/cm
was introduced for 25 ms. The result of the simulation for these parameters is
shown in figure 6.1, where all mg levels are equally populated. The code does not
include a fitting routine to the experimental data, but it was, however, possible
to vary the population of the magnetic levels in order to match the predicted
curve to the measured Stern-Gerlach spectrum. In figure 6.2 a simulation of the
Stern-Gerlach experiment after optical pumping the sample with o light is shown,
which showed that as much as 40% of the atoms are in the mp = —4 state. The

model was therefore used to estimate the optimal parameters needed in order to

this condition is experimentally guaranteed by the on-axis constant magnetic field, which

keeps the alignment of the magnetic moment
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Figure 6.1: Simulated TOF spectrum for a a Stern-Gerlach experiment, for tfree-fall =
2hmsJ.drop = 30ms, G = A”G/crn and starting temperature 7 = ApK
perform the Stern-Gerlach experiment as well as to estimate the populations of

the magnetic sub-levels from some experimental spectra.

6.3 Stern-Gerlach experiments

The Stern-Gerlach analysis allowed us to measure the populations of the different
mp states and also to distinguish the kinetic temperature in the two sublattices
corresponding to trapping at (%t and a~ circular polarized light locations. This
was especially crucial in monitoring the transfer from the near-detuned to the
far-detuned lattice and in inspecting the efficiency of the Raman cooling.

The basic idea is to use the time-of-flight (TOF) detection scheme described in
chapter 3, to separate in time the detection of atoms in different mp states. When
the atoms are falling, following their release from the lattice, the introduction of a
magnetic field gradient has the effect of generating a state dependent force which

is proportional to the magnetic quantum number mp of the atom [49]. This
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Figure 6.2; Simulated TOF spectrum for a a Stern-Gerlach experiment, for tfree-fall = 30
ms, tdrop = 25 ms, G 40 G/cm and starting temperature 7 = ApK and 11 _i = 40%.

Figure 6.3: Representation of the lattice plane and quantization axis for the /lin — 0 —Ilin
2-D lattice.
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force leads to different arrival times at the TOF beam location, for each magnetic

sub-level atomic distribution.

cn
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Figure 6.4, Magnetic held gradient generated hum trap coils as a fmiction of the distance
hum the trap center.

Idle geometry of the lattice (see hgure 6.3) suggests a natural choice of a
quantization axis, which is orthogonal to the plane of the lattice itself: the atoms
trapped at different lattice sites where the light is a-polarized present a magnetic
moment along this axis, which we associate with the z-axis in the following. In the
absence of in-plane stray magnetic helds, the projection of the magnetic moment
along the quantization axis is preserved (see section G.i), therefore the populations
of the m.p states are preserved. However, in order to avoid population fluctuations
due to precession around in-plane residual stray magnetic fields, we can introduce
a uniform magnetic held along the z—axis as shown in hgure 6.3, strong enough to
maintain the orientation of the magnetic moment. This magnetic held is generated

by a pair of coils oriented parallel to the lattice plane in Hehnoltz conhguration,
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with a typical strength of Bz = 500 mG.
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Figure 6.5: Spectrum of a Stern-Gerlach experiment in the near-detunced lattice.

A sequence of the experiment proceeds as follows. The atoms loaded in the
lattice for different storage times are released and let free to fall. After 25 — 30 ms
(typically) the MOT coils are turned on, by ramping their current over 4 ms. The
slow turn-on of the current in the trap coils is necessary in order to allow the mag-
netic moments to adiabatically follow the change in the magnetic field direction,
while preserving the projection along the quantization axis, as shown by equation
6.9. For the standard value of current used, the magnetic field gradient is shown
in figure 6.4, plotted against the distance from the center of the coils along the
vertical direction. The atoms travel along the vertical axis for ~ 0.5 cm, before the

magnetic field gradient is switched on. This is necessary in order to guarantee that
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the atoms do not cross the region where the quadrupole field vanishes while being
accelerated; crossing a region of zero field would result in a loss of orientation of
the magnetic moments. In our experiment the additional on-axis magnetic field
guarantees the magnetic moment orientation will be maintained. If the orientation
is not maintained, an atom could undergo opposite acceleration above and below
the zero quadrupole field region, and therefore in the Stern-Gerlach spectrum, it
would be difficult to associate a single peak to a specific mp state. The magnetic
field gradient is left on for 25 ms, during which time the atoms experience a force
depending on their magnetic moment given by equation 6.10. This force is pre-
dominantly along the vertical direction and produces acceleration or deceleration
on the atoms, which is actually space dependent, of about ~ (4 x mp) m/s?. The
atoms are accelerated enough to have different arrival times, according to their
mp state, as they fall though the probe beam located 5 cm below the MOT. The
magnetic populations can then be determined from a fit of nine Gaussians to the
time-of-flight distribution signal.

In figure 6.5 a typical TOF spectrum following a Stern-Gerlach experiment
is shown: nine peaks corresponding to different magnetic sub-levels are resolved
making it possible to extract information about temperatures ahd populations of
the different Zeeman states.

In figure 6.6 the two spectra show the increased population of the two external
mp = +4 stretched states, due to optical pumping with circular light in the far-off
resonance lattice. A ot or o~ polarized beam was aligned orthogonal to the lattice
plane with an intensity of ~ 0.5/ (Is = 1.12 mW/cm?) and was left to interact
with the sample of cold atoms for 5 ms. This was especially useful in aligning
the pumper beam with the quantization axis, since a misalignment results in the
introduction of a # component of light, leading to a mixing of the mg states, and

thus resulting in a reduced efficiency of optical pumping to the stretched states.
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Figure 6.6: Spcctrurﬁ of a Stern-Gerlach cxperiment in the far-detuned lattice showing
the effect of ¢~ and o* optical pumping.

Figure 6.6 shows the efficiency of the optical pumping to the stretched states

and also shows that there is residual population in the other mpg levels. This

is probably due either to stray fields in the lattice plane, which generate mixing

of the sub-levels, or to a non-perfect alignment of the pumper beam axis. By
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maximizing the population in the |mp = +4) Zeeman sublevels it was possible to

align the pumper beam to the lattice quantization axis.

6.4 Magnetization and spin temperature in the near-

resonant lattice.

A set of experiments was also performed, aimed at the study of spin-polarization
through the introduction of a magnetic field along the z-axis during the near-
detuned lattice. As previously explained, this technique was investigated in an
attempt to optimize sideband-Raman cooling, by increasing the population in the
mp potential well in which the cooling is working (see chapter 2). The efficiency of
cooling should be increased by reducing the interaction of the atomic sample with
the o-polarized pumper beam, thus minimizing the heating and by increasing the
cooling rate. The cooling time should be therefore decreased and the efficiency
optimized.

In the case of a two-spin system and in the absence of a magnetic field, it should
be expected that half the atoms would be in the spin up state and half the atoms
in the spin down state. If a magnetic field is applied, some of the atoms will tend
to align, so as to minimize the energy of the system, thus more atoms should be
in the lower-energy state. Similarly, in our case, spin-polarization can be achieved
by introducing a magnetic field along the z direction during the near-detuned
lattice phase, where the interaction of the atoms with light can be exploited in
order to increase the population of the stretched states [48]. Optical potentials
generated by the light-shift of ground states with F' > 1, are associated with space-
dependent superpositions of the various Zeeman states. When a static magnetic
field B, is introduced in the direction orthogonal to the lattice plane, each Zeeman
sub-level is shifted. The transition probabilities among the Zeeman sub-levels,

induced by Raman coupling, are also altered. The corresponding field-induced
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steady-state magnetization was found to display a quasi-thermal dependence on
B, characterized by a phenomenological spin temperature [48], [12], which was
found to be different from the kinetic temperature of the sample. This means that
different mechanisms of energy exchange are involved, as will be discussed later,
which act on different time-scales. For this reason we can talk of quasi-thermal
equilibrium for the spin mode of the system: the isolated (translational and spin)
modes still exchange energy one with the other (as it happens for a system in
thermal equilibrium where the energy is stored in different modes - corresponding
to the various quantum states accessible to the system -), but the time-scale of
this exchange is much slower than for the exchanges within the isolated mode.

Depending on the direction of the magnetic field and on the polarization of
the lattice light at a certain lattice site, the static magnetic field is either paral-
lel or antiparallel to the fictitious magnetic field associated with the light shift.
This asymmetry leads to a steady-state population imbalance between the atoms
trapped at ot or o~ locations, as shown in [48].

The effect of the introduction of a static magnetic field parallel to the lat-
tice axis was reported for the first time in [48]: the observation of paramagnetic
behaviour of a three-dimensional caesium optical lattice was presented and the
existence of a characteristic spin-temperature was shown. Subsequently in [12], a
study of the induced magnetization in a one-dimensional optical lattice by means
of a transverse magnetic field led to the confirmation of a characteristic spin-
temperature for the sample of atoms; the results were also used to demonstrate the
importance of Sisyphus cooling within single light-shift potential wells for atoms
with large F. In [32] weak magnetic fields were used to enhance laser cooling and
state preparation and to show that coherent mixing and local energy relaxation
play important roles in laser cooling of large-F atoms. This was reinforced by find-

ing that, in the presence of a magnetic field parallel to the lattice axis, the atoms
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separate in two subsets (corresponding to ot or o~ lattice sites) with different
temperatures, indicating that, for large F, cooling occurs locally at each lattice
site.

In this section a simple model for quasi-thermal spin population distribution
is presented. Results from spin-polarization experiments are then shown and dis-

cussed in the last part.

6.4.1 A model for quasi-thermal distribution of spin population

From previously published experiments [48, 12], it was reported that atoms trapped
in a near-detuned paramagnetic optical lattice have a quasi-thermal behaviour.
This means that the population distribution over different Zeeman states corre-
sponds to a Boltzmann distribution. Herein a simple model is presented, which
simulates the population distribution over the different magnetic sub-levels as-
suming that the atoms are in thermal equilibrium. The model does not take into
account the potential modulation and the Raman coupling, but it treats the differ-
ent Zeeman states as a discrete set of energy levels which are populated according
to a Boltzman distribution. I will discuss later in this section the limitations of
the validity of this model.

When the atoms are localized at the bottom of the potential well the light
shift can be characterized by a scalar component independent of the mg num-
ber plus a vector component, which acts as a magnetic field shifting the Zeeman
levels. This fictitious magnetic field depends on the local light polarization, as
shown by equation 2.5, and is therefore not constant, but varies with the position.
If the atoms are well localized at the bottom of the potential well generated in
the 2D conﬁguratién that we used, then the By;y is maximum, the light being
purely circular polarized at these locations. Moving away from the bottom of

the potential well, the light polarization changes, which reduces the B}ict compo-
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nent along the quantization axis. A smaller B7,, corresponds to less separation
between the potential wells associated with different Zeeman sublevels, and an
increased Raman coupling among them, due to transverse components of the ficti-
tious field, which allows atoms to change mg state. If the atoms are well localized
at the bottom of the potential, then it is justified to assume a constant charac-
teristic B¢, as the one at pure o polarization. We can simplify the treatment
by assuming this condition is accomplished, but obviously this constitutes only
an approximate description and the net effect of the effective magnetic field is
necessarily overestimated. Assuming a quasi-thermal dependence of the Zeeman
population on the total magnetic field, a phenomenological spin temperature can
be introduced. Using standard statistical arguments, for an ensemble of atoms in
thermal equilibrium, the population ratio of two energy levels is given by

I, e E;, - E;
=L o exp 221
m, P Tk Ts

(6.11)
where E1, Ey are the energies of the levels involved and T is the system temper-
ature; what we call in this case the spin temperature. The energy of the levels
depends on the light shift (which is a constant function of mg) and on the Zeeman
shift, which is given by gmpupB, with g = %; B is projection of the sum of the
real and fictitious magnetic fields along the quantization axis. In this picture, at

the potential minima at sites of exact ¢ and o~ light polarization, the population

distribution over the mp levels will be:

O, L8 (Bset + B
at ot T E = exp im———s—z)mp (6.12)
mo
— I_Im l/J'B(_Bﬁct + Bz)
at o F — exp 4 m 6.13
My P kpTs F (6.13)

where B, is a static magnetic field added along the quantization axis and Il is
the population of the mp = 0 level. Simulations were run to monitor the pop-
ulation evolution for a varying static magnetic field. The significant parameters

are the spin temperature and the effective magnetic field, which modify the initial
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population distribution and the characteristic behaviour when the static magnetic
field is introduced, in figures 6.7 and 6.8, the populations of different magnetic
sub-levels are plotted versus the magnetic field, for an assumed 2.5 pK and 5.0 pK
spin temperature respectively. Each of the two figures shows the population dis-
tribution for two different effective magnetic fields, 30 mG and 120 mG. In the
inset the central region corresponding to a zero external magnetic field is shown
in detail. When the Bfid is larger, for zero static magnetic field, the populations
of the different magnetic levels are different, with the external states being more
populated (figure 6.7). This difference in population is reduced for higher spin

temperatures, as shown in figure 6.8.

B =120nda

T —2.5 pK (13
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Figure 6.7: Population of different Zeeman levels versus static magnetic field, when a spin
temperature of 2.5°K is assumed, for Bfid = 30 mG and Bfi"t = 120 mG. In the inset
the central region of null external magnetic field is expanded.
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Figure 6.8: Population of different Zeeman levels versus static magnetic field, when a spin
temperature of 5K is assumed, for Bfict —30 mG and Bfi"t ~ 120 mG. In the inset the
central region of null external magnetic field is expanded.

This model is only valid in the low magnetic field regime, as it does not take
into account potential structure and the spatial modulation of the energy lev-
els. hVom figures 6.8 and 6.7, the maximum magnetization versus magnetic field
is extracted and found to increase up to a maximum value (m) = +4 for posi-
tive and negative fields. This does not correspond to the real behaviour, as we
shall see in section 6.4.2, where the experimental results are shown. In [12] the
maximum magnetization achievable was explained as depending on the potential
depth. Shallow wells produce less localization and cooling, thus resulting in un-
bound atoms which would diffuse through the lattice. This would also result in a

reduced net polarization, furthermore, the value of the magnetic field for which
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the magnetization is maximum is associated with a well defined relationship of
the light-shift and Zeeman shift; maximum magnetization is obtained when the
adiabatic potentials of the different Zeeman states are only just separated. For
stronger magnetic fields, the net magnetization decreases, due to the fact that,
when the potentials are further separated, the Raman coupling among them is
reduced and the eigenfunctions associated with the lowest adiabatic potential be-
come pure |mp = 4) or [mp = —4). This suggests that, when the Raman coupling
between different wells is much reduced, the atoms trapped at different wells are
no longer in thermal equilibrium and can be considered as independent systems.
When B is sufficiently large the highest adiabatic potential is shifted enough to
become capable of trapping atoms again, and the net magnetization tends to de-

crease towards zero.

6.4.2 Spin-polarization experiments

The spin polarization method was used in order to increase the number of atoms in
the desired stretched states in the near-detuned lattice, prior to the loading of the
far-detuned lattice.. This should improve the efficiency of sideband-Raman cooling
by avoiding unnecessary heating related to optical pumping and in turn increase
the population of the ground vibrational state (see chapter 7). The population
distribution in the far-detuned lattice was also monitored, and it was shown that
the distribution found in the NDL was almost entirely preserved in the FDL.
Such a preparation should result in the increased efficiency of the Raman-cooling
technique, as the atoms would not need to scatter ¢ pumping light in order to
be transferred to the stretched state, where the cooling is efficient (see section
7.2). In this way the cooling time can be shortened and the heating due to the
interaction with resonant light reduced.

The configuration of the beams that was used gives rise to an anti-ferromagnetic
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Figure 6.9: Spcctruni of a Stern-Gerlacli experiment in the far-detuned lattice, showing the
effect of spin-polarization obtained by adding a small longitudinal magnetic field during
the near-detuned lattice phase.
type of lattice, with adjacent well sites associated with opposite circular polariza-
tion of the light field. Atoms trapped at adjacent sites therefore have oppositely
oriented magnetic moments. The atoms are distributed among the potential min-
ima with an equal probability of occupying one and one a~ potential well.
If a longitudinal magnetic held is introduced in a near-detuned lattice, there will
be an opposite shift in energy for the potential corresponding to negative mp
and the one corresponding to positive mp. The population distribution over the

wells changes and the number of atoms increases in the wells with lowest potential
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energy. The net result is that of a magnetization of the lattice.

A series of experiments was performed, aimed at increasing the population
in the stretched state |mp = —4), in order to prepare the sample of atoms for
optimized Raman cooling (see section 6.4). A sample of spectra taken for different
values of the magnetic field is shown in figure 6.9, for a potential depth of 120FE g
and a measured kinetic temperature of (4.5 + 0.2)uK. A small static magnetic
field was added during the near detuned lattice phase so that the atoms were
preferentially populating potential wells corresponding to a m g state of given sign.
It should be noted here that the value of static magnetic fields reported in figure
6.9 is the nominal B,; this means that the real external field is a sum of this value
plus any magnetic field offset By, that may be due to non-compensated stray fields
or an offset in the current of the magnetic coils. The near-detuned lattice was left
on for 5 ms, during which the magnetization was built. The sample was probed
following its loading in the far-detuned lattice for 2 ms, where such a distribution
had been shown to be preserved. The atoms were then released and a Stern-
Gerlach analysis was performed, as described in previous sections. As mentioned
above, spin-polarization experiments have been reported in [48) and [12]. In both
experiments, though, it was only possible to compare the global populations of o+
and o~ potential wells. However, the ability to perform Stern-Gerlach experiments
allowed us to follow the evolution of the population of individual mr states with
varying B,. In figure 6.10, the populations obtained from figure 6.9 are plotted
versus the magnetic field strength. The population of the {mp = —4, -3, -2, -1}
states increases with increasing the magnetic field strength. Each of the sub-levels
shows a characteristic rise in population for increasing B and a maximum, which
is dependent on the mp number.

The maximum value for the net magnetization was found to be (m) = —1.45+

0.2 for a static on-axis nominal magnetic field of 90 mG. The maximum magneti-
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Figure 6.10: Populations of different nip states plotted versus the magnetic field.

zation is obtained when the adiabatic potentials only just depart from each other,
due to the Zeeman shift. For higher values of the magnetic field, the magnetiza-
tion diminishes again as the potentials no longer overlap in energy and the Raman
coupling between different levels vanishes. Then, as explained in [12] and in the
previous section, the eigenfunctions of the light-shift Hamiltonian become single
\mp) states. For even higher magnetic fields, the higher lying potential becomes
capable of trapping atoms and the atoms tend again to distribute equally over cr+
or a~ wells, thus reducing the net magnetization [12].

In figure 6.11 the ratio of the population of the mp = —4 sub-level to that of

the mp ——3, —2, —1 sub-levels is shown as a function of the longitudinal magnetic
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Figure 6.11; Population ratios 7\.,nF=-"Y"rnF versus magnetic field.

field. For these data to be consistent with the existence of a well defined a spin
temperature, they have to exhibit exponential behaviour, it is possible to recognize
in all three sets of data an exponential growth at different rates for values of the
magnetic field below 90 mG. For values of magnetic field above this, the ratios
seem to reach a plateau and eventually decrease again. This is consistent with the
explanation given above for the limit of the degree of polarization obtainable, as
at higher magnetic field strengths the population oi mp = 1,2, 3,4 states starts
rising again. It was therefore assumed that the spin temperature argument is valid
for Bz < 90 mG.

If the assumption of the existence of a well defined spin temperature is valid.
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it follows that the ratios of the populations of different m g states versus magnetic

field should follow a law:

U, 1B Biot5(Mmp, — mpy)
X exXp — )
Tmr, k515

(6.14)

where Bioys = B, + By & Byt depending on the Zeeman state quantum number.
By taking the ratio of the measured population of two Zeeman states at the same
lattice site, the dependence of the exponential on the effective plus offset mag-
netic fields can be factored out, thus leaving the exponential growth characteristic
constant depending only on one unknown variable, which is the spin tempera-
ture. The spin temperature was then retrieved by fitting exponentials to the three
sets of data in figure 6.11. The temperatures found from the populations ratios
were (2.2 + 0.1)pK for II_4/TI_;, (2.3 £ 0.1)uK for II_4/II_5 and (3.2 £ 0.8)uK
for T1_4/I1_3. The analysis of the spectra in figure 6.10 was limited to the lev-
els {mp = —4, —3,~—2 — 1} because of the reduced resolution of the spectra for
{mp = 1,2,3,4} levels; the low signal to noise ratio on this side of the spectra
did not allow an accurate analysis of the level populations. This analysis showed
that the introduction of a spin temperature argument was consistent with our set
of data, and Tg = (2.6 £ 0.6)uK was found to be the characteristic spin temper-
ature of our system. This value is well below the measured kinetic temperature
Tk = (4.5 £ 0.2)pK, thus showing the distinct nature of the two. There is not
a unique temperature that can describe the system, but two separate tempera-
tures have to be assumed to characterize the motional and the internal degrees of
freedom. "

In figures 6.12 and 6.13, the populations of the different magnetic levels are
plotted versus the mg number, for a value of the nominal external magnetic field

of 90 mG. According to equation 6.14 the populations should follow a geometric

series behavior, of the type a®, where a = exp {— /s (B]:;fs 0B fict) } (for oF wells

respectively) and z = mp. For varying mp, the data points with mg < 0 follow
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a different exponential behaviour compared to the ones for mp > 0. Therefore
two distinct exponentials have to be fitted to the /my = —4,—3, —2,—1,0] and
[mp = 0,1,2,3,4] sets of data, one with a decay constant proportional to Bjict +
{Bz 4 B o) and the other with a decay constant proportional to Bjid - {Bz + B o).
Assuming a unique spin temperature for (% and a~ wells and fitting two different
exponential curves, it is therefore possible to estimate Bfid- It was assumed that
the spin temperature, I's — (2.6 £ 0.6)//K, measured from the exponentials fitted
in figure 6.11 was valid for both potential wells. It has to be pointed out here that

from the experimental data it is only possible to estimate an effective fictitious
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magnetic field that takes into account the averaging of Bjid over an atomic

wavepacket.

In figure 6.12 the populations of different Zeeman states are plotted versus
their mp number. This set of measurements is particularly affected by errors
in determining the population of states with mp > 0, due to the low resolution
of the time-of-fiight signal. Therefore, before performing a fit to the data, the
range of possible values for the fictitious magnetic field was estimated as follows.
Bfict increases with increasing difference between the decay constants of the two
exponentials (corresponding to mp < 0 and mp > (). In order to evaluate the

maximum value for the fictitious field which is compatible with the data, the red



6.4. Magnetization and spin temperature in the near-resonant lattice. 152

dotted curves were matched to the data, which showed the biggest difference in
characteristic constant being compatible with the data set within the error bars.
When the fictitious magnetic field decreases, the characteristic decay constants
become comparable and, in the limit of very small fictitious magnetic field, an
almost identical exponential can fit both data sets. The blue dotted lines represent
the exponentials which lead to the minimum value for the fictitious field, and they
show that there is very little difference between the two exponentials. From this
preliminary analysis, the estimated maximum and minimum values were found to

be B},

™% = 30 mG and B}, ™" = 5 mG. It follows that the effective fictitious
magnetic field is very weak (below 30 mG) and that an almost null fictitious field
would also be compatible with this set of data.

In figure 6.13 fits are performed on the two sets of data, weighted by the
errors. The red (blue) curve represents the fit to the mp < 0 (mp > 0) data
points. Assuming again a spin temperature Ts = (2.6 £ 0.6)uK, the measured
effective fictitious magnetic field is then B;m = (10£4) mG. The By, calculated
for a maximum potential depth of 120Eg is 150 milliGauss, so the result would
not seem to be consistent. It should be borne in mind that the light intensity is
not uniform over the trapping region, as shown in section 4.2. The non-uniformity
of the lattice depth along the trapping region leads to a spread of By;y values for
atoms at different locations. Furthermore the degree of excitation of the atoms
would change the effective fictitious field that they perceive. If the atoms are
not well localized near the bottom of the potential well the resulting net effective
fictitious field would be reduced. Another possible explanation is the non-perfect
alignment and polarization of the beams: a slight misalignment or tilt in one
of the beams polarization would change the local polarization at different lattice
locations, thus reducing the effective field. It should also be pointed out that

this set of measurements was particularly affected by the low resolution of the
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time-of-flight signal for the mp = 1,2, 3,4 states.

Our set of measurements is shown to be consistent with the introduction of
a spin temperature. They reveal, however, that the spin temperature is different
from the kinetic temperature. There is not a unique temperature that can describe
the steady state of the system; it is possible, however, to associate a kinetic tem-
perature to describe the motional degrees of freedom and a spin temperature to
characterize the internal degree of freedom. An estimate of the effective fictitious
magnetic field has been attempted, which was limited by the poor resolution of
the time-of-flight signal. However this study showed that the atoms in the lattice
wells experience a reduced fictitious field, due to the non-homogeneous poten-
tial depth along the lattice region, the polarization mixing of the beams and the
spread of the atomic wavepacket . Work is being done at the moment attempting
to improve the resolution of the time-of-flight Stern-Gerlach signal, to further in-
vestigate the paramagnetism. A better method to carefully check the alignment
and the polarization of the beams has to be implemented. A more powerful laser
has been purchased, which should allow us to expand the lattice beams and select
a region of uniform intensity. Once these improvements have taken place, it would
be useful to investigate the population evolution for both positive and negative
magnetic field for all the magnetic levels. A more accurate study of the fictitious
magnetic field should be undertaken. Furthermore measurements of the time nec-
essary to build the magnetization as well as the characteristic time of relaxation
of the magnetization could be analyzed. A study of the maximum magnetization
versus potential depth could yield important information on the structure of the

lattice potential.
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6.5 Conclusions

In this chapter I described a technique that allowed the measuring of the popula-
tions of single Zeeman substates in the near-detuned and far-detuned lattices. This
technique is based on Stern-Gerlach experiments aimed at resolving the different
mp-states time-of-flight signals. A Zeeman-state analysis of the sample allowed
the measurement of the magnetization of the atomic sample. The efficiency of this
method was demonstrated by studying spin-polarized samples in the near-detuned
lattice, by adding a static magnetic field to Zeeman-shift the m g energy levels.
The evolution of the population of such states was reconstructed whilst varying
the external static magnetic field along the quantization axis. Spin-polarization
was proved to be efficient and a well-defined phenomenological spin-temperature
could be evaluated, in agreement with the results presented in {48]. Furthermore,
the possibility of measuring the population of the single Zeeman states gave more
convincing proof for the existence of a spin temperature than the results presented
in [48], where only the total population of a o*t-well could be measured. Zeeman
state analysis also enables us to verify that the net magnetization of the sample
in the near-resonant lattice is preserved when it is transferred to the far-detuned
lattice. In particular it allows the preparation and measurement of a large frac-
tion of atoms in the |mp = +4) state, which could improve the efficiency of the

sideband-Raman cooling scheme used for quantum state preparation.



CHAPTER 7

Resolved Sideband-Raman Cooling

In recent years many groups have been working at developing techniques for quan-
tum state preparation and control for laser cooled atoms. Experiments aimed at
the coherent manipulation of quantum states have also been performed, gener-
ating Fock coherent states, squeezed states [50] and Schrédinger cat states [15].
Demonstration of quantum logic gates as discussed in [51], opens the way toward
quantum computat.ion. Sideband cooling between hyperfine levels was also used
to prepare a trapped ion in the motional ground state, a minimum uncertainty
state and therefore a good starting point for experiments in quantum state control
[51], [52]. The method required the use of two lasers which are phase-locked and
with a difference in frequency given by the spacing between the levels used for
cooling. Anti-Stokes processes are stimulated in this way, thus cooling the sample
of atomic ions. A similar technique has been employed in [53] for neutral atoms
in a one-dimensional optical lattice. |

In [20] a scheme for resolved-sideband Raman cooling in a 2-D far-detuned
optical lattice was demonstrated. In this scheme the cooling is introduced by
means of stimulated Raman transitions between degenerate vibrational levels of

a pair of different Zeeman sub-levels. The resonant Raman coupling required for

155
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cooling can be engineered in the lattice itself, using an appropriate choice of beam
polarizations. Atoms sideband cooled to the motional ground state at different
lattice sites are in identical quantum states, which difference each other only by
an arbitrary phase-factor.

In this chapter, I describe our implementation of a resolved-sideband Raman
cooling technique, based on the method demonstrated in [20], whose basic princi-

ples were described in chapter 2, and the results of our experiments.

7.1 Experimental setup for resolved-sideband Raman
cooling

The experimental set-up which was used in order to implement the Raman cooling
scheme described in section 2.4, is shown in figure 7.1. The lattice setup consists
of three coplanar beams at an angle of 120 degrees between each pair, as shown
in figure 6.3, intersecting at the trapping region. The lattice plane contains the
gravitational axis; this is necessary to allow long trapping times and also to enable
the use of the time-of-flight method (section 3.8) as a diagnostic tool.

In order to introduce an appropriate Raman coupling according to the scheme
of section 2.4, it is necessary to provide a m-component of the laser light. This is
obtained by tilting the polarization of one of the lattice beams out of the lattice
plane by 10° typica;lly. Additionally, a A\/4 plate provides a 7/2 phase difference
between the two components, which is required to optimize the cooling (see chapter
2). The coupling introduced by the 7 light induces transitions from |mp = —4,n)
to |[mp = —3,n — 1) states. Relaxation back to the vibrational manifold of the
|mpg) state is driven by optical pumping, as shown in figure 2.8. For this purpose,
a o~ -pumping beam is added along the z—axis, resonant with the |F = 4) —
|F' = 4) transition. A repumper beam, tuned to the |F = 3) — |F' = 4)

transition and o~ -polarized is also added. The repumper beam repopulates the
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Figure 7.1: Experimental setup for resolved sideband Raman cooling on a 2-D optical
lattice.

\E = 4) state of the atoms which decay to the |E = 3). Both the pumper and
repumper beams are set to be propagating in the direction perpendicular to the
lattice plane (i.e. the quantization axis) being opposite with respect to each other.
This guarantees also a minimum net momentum transfer during the interaction
of the lasers with the atoms. In order to increase the efficiency of cooling the
Im/r = —4,n) and \mp = —3,n —1) levels have to be brought into degeneracy.
This is accomplished by adding a static magnetic field along the quantization axis
which shifts the potentials, as explained in section 2.4. For this purpose a pair of
coils in Helmoltz configuration were placed with their common axis orthogonal to
the lattice plane, along the z—direction. These were used to generate a uniform
static magnetic field in the trapping region, of a flux density up to 0.5 G. The static

magnetic field is tuned to the proper value, derived from a consideration of the
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band structure (see section 2.4), to bring into degeneracy the vibrational levels in
adjacent wells involved in cooling. This method provides efficient two-dimensional
cooling, when the initial temperature of the sample is sufficiently low. In this case
the lowest lying vibrational levels are mostly populated in both dimensions, so
simultaneous cooling in 2-D is driven with the same value of magnetic field. The
typical parameters used for the lattice are U,qz = 200Er and A = 3000T". These
values give a vibrational frequency of wyip = 35 kHz, while the scattering rate
results to be I's = 200 Hz. As was mentioned in chapter 4, the heating induced by
spontaneous scattering becomes significant for long times, so there is a constraint
on the duration of the Raman cooling period. In the Lamb-Dicke regime the atoms
mostly spontaneously scatter photons elastically. The probability per photon for
there to be a net increase of one vibrational quantum is reduced, but it was shown
in [54] that the average increase in energy per spontaneous scattering cycle (a
two-photon process) is 2ER, the same as for a free atom. The heating produced
by spontaneous photon scattering during an experiment time ¢.,,; can be therefore
calculated as teoql'sEr < Fuwyip; this condition is guaranteed for teo < 80 ms.
The cooling time is in general set to 10 ms, which insures that the spontaneous

scattering induced heating is not significant.

7.2 Resolved-Sideband Raman cooling

The experiments start with the atoms being prepared in a 3-D magneto-optical
trap and then transferred to an optical molasses, where they are cooled to the sub-
Doppler regime. The cooled sample is then loaded into a 2-D near-detuned optical
lattice for typically 5 ms, where the atoms reach a temperature of ~ 3uK. During
this phase a static magnetic field is introduced in the direction perpendicular to
the lattice itself, in order to spin-polarize the sample and increase the population

of atoms in the |F = 4, mp = —4) state. As discussed in chapter 6, this process
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can be quite efficient, thus increasing the number of atoms in the stretched mpg
state. As mentioned in section 2.5, the initial distribution of atoms over different
vibrational and Zeeman levels is important for the efficiency of this method of
cooling.

Once the atoms are cooled and localized in the Lamb-Dicke regime, with an
increased population in the mp = —4 potential well, they are transferred to the
far-detuned lattice. The far-detuned beams are superimposed on the near-detuned
ones (see chapter 4). Transfer from the NDL to the FDL is obtained by simul-
taneously ramping the intensities of the far-detuned and near-detuned beams, as
explained in the far-detuned lattice section. The transfer usually last 400us. As
shown in chapter 4, a transfer efficiency of ~ 90% was typically achieved. By care-
fully matching the lattice beams paths and choosing the right potential depth, it
was possible to load the far-detuned lattice with minimal increase in temperature
over that of the near detuned one. Typical temperatures achieved were in the
range of (2.5 — 3.5)uK, for Upmqz = 200ER and wy, = 35 kHz.

When the longitudinal magnetic field is set to the appropriate value and the
Raman coupling is introduced, a coherence between states |mp = —4,n) and
|[mp = —3,n — 1) is established. Two isoenergetic photons, one ¢ and one 7
polarized are required to induce the transition. The atoms which are then trans-
ferred in the mp = —3 well will scatter photons of the pumping ¢~ polarized laser
and will be preferentially pumped back to the mp = —4 well. Due to the tight
confinement of the atoms in the Lamb-Dicke regime, the spontaneous emission of
a photon from the excited atom is most likely to return it to a state with the
same vibrational quantum number it has just left. Atoms decaying to |mg = 3)
may be re-excited by the pumping laser, and atoms decaying to |mz = 4,n # 0)
are coherently transferred again to |[mrp = —3,n — 1), where the cooling cycle is

repeated. After several cycles, the atoms end up in the jmp = —4,n = 0) state.
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This is a ‘dark state’, as there is no state in [mp = —3) to establish a coherence

with and there is a natural termination to the cooling cycle.

7.2.1 Resolved-sideband limit and causes of broadening

In the resolved-sideband limit it is required that the width of the resonances is
much smaller that the separation between two vibrational levels. This in turn
means that the coherent population transfer rate has to be much smaller than the
vibrational frequency characteristic of the lattice:

Ur|/h

Ul (7.1)
Wyib

where Ug is the Raman coupling, defined in section 2.4. Inserting the definition

for Ug, equation 7.1 becomes:

Usl/h _ (Ul/n)

Wyib Wayib

1

1 E, 2ER>Z
== 7.2
2V2F Ey (15U1 (7.2)

The first bracket on the right hand side of equation 7.2 is approximately the
number of bands in the well and the second bracket may be evaluated by using
typical parameters used in the experiment: E,/E; =0.1,U;/Eg =44 and F =4
for the transition that was used. Using these values we have %i ~ 0.04 K 1,
so the sidebands should be expected to be well resolved. This condition is fulfilled
over a large range of values which would include the most reasonable experimental
parameters.

There are other mechanisms, though, that could lead to a broadening of the
Raman resonances. As shown in chapters 2 and 5, the spacing between vibrational
bands is not unique, but varies with the band index, due to the anharmonicity of
the light-shift potential. In figure 2.10 the values of magnetic field necessary to
bring in resonance 'different |mp = 4,n;) with |[Mp = 3,n; — 1) states for n; =
{1,2,3,4,5} are plotted versus the potential depth. Except in the case of a very

shallow potential, it is possible to see that the magnetic field necessary to bring
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sub-levels, whose energy differs by 1 quantum, into degeneracy is not unique, but
depends on the band index n. For the Raman cooling to be efficient, it is therefore
necessary to vary the strength of the magnetic field over the range which allows
also the atoms in the higher-lying bands to be brought to a lower n level. This
turned out to be particularly important if the population distribution is spread
over many vibrational levels, i.e. when the starting vibrational temperature of the
sample is high. Nevertheless, if the initial temperature is low enough for most of
the atoms to be in the lower vibrational states, where the degree of anharmonicity
is much reduced, then an efficient cooling can be obtained without scanning the
magnetic field, as all the populated levels n are brought into degeneracy with
levels n — 1 simultaneously. The initial temperature is therefore a fundamental
parameter that affects the efficiency of cooling. Other causes of reduced sideband
resolution include inhomogeneity of the potential depth along the trapping region.
As it will be shown later, this was actually found to be a major cause of broadening

of the sidebands.

7.2.2 Experimental results

Typically a Raman cooling sequence was started immediately after the loading
of the far-detuned lattice. Following the 400us transfer time, the pumper and
repumper beams were switched on and the z—axis magnetic field tuned. The
time during which Raman coupling was effective was varied in order to optimise
cooling, like discussed in section 7.1. The duration of Raman cooling cannot be
increased indefinitely as, after a certain time, heating and loss of atoms become
significant. The pumper beam intensity was set to I, = 0.06 mW/ cm?.

A first set of Raman-sideband cooling sequences were run starting from a
sample at a temperature of (9.0 £ 0.2)uK, prepared in a lattice tuned 3000T

to the red of the resonance with a maximum light shift U, = 200Er. The
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Figure 7.2: Tcmpcrature variation versus static magnctic field along the z-axis for a side-
band Raman-cooled sample of atoms. The dotted linc represents the initial tempcerature
of the sample Tip; = (9.0 £0.2)uK.

Raman pumper and repumper as well as the magnetic field where switched on
as soon as the far-detuned lattice was loaded and were left on for 10 ms. The
magnetic field was kept constant during the whole Raman-cooling phase. In figure
2.12 the population distribution over the vibrational levels |n; = 0,n,) for a 2-
dimensional harmonic oscillator, shows that for a 9uK sample in a potential well
with ground state kinetic energy 7y = 0.96uK (T/Ty = 9.4 with reference to
figure 2.12), the at.oms are populating a wide set of vibrational levels. Due to
anharmonicity the values of magnetic field necessary to induce coherences among
different vibrational levels are several, as shown in figure 2.10. In this case we
need to calculate the band-structure appropriate to the 2-D lattice used in the

experiment in order to determine the range of magnetic field required to bring



7.2. Resolved-Sideband Raman cooling

163

0.13 T T T 1 T

0.12 4

0.11-
© 0.10 -
0.09 -
0.08 -
0.07 -
0.06
0.05
0.04

4
0.03 1

opulation IT

Q.

—r—+—tT+1T+1T+"T+r1Tr1Tt 1T

ground state

0.01 4
0.00 -

- - - = ]

002 dem s s

| VRN (N T U NN S ST |

-+

T+t

140 160 180 200 220 240 260 280 300 320

Magnetic field (mG)

Figure 7.3: ¢ Population of the 2-D ground state with n; = 0,n, = 0 versus static magnetic
field along the z-axis for a sideband Raman-cooled sample of atoms. The dotted line
represent the ground state population for the uncooled sample at a temperature of 9uK.

successively lower transitions to resonance.

From these calculations, shown in

section 2.4, it follows that to bring most of the atoms into the ground vibrational

state the magnetic field should be varied over a 20 mG interval. However, by

ramping the magnetic field over a range of values, the time for which a given

pair of levels (|mp = —4,n),|mp = —3,n — 1)) coherently interacts is reduced,

thus limiting the cooling efficiency. If the magnetic field was to be scanned, then

the Raman cooling phase duration would have to be increased adequately. But

the heating rate due to photon scattering becomes relevant at long times, thus

competing with the cooling processes. The net balance does not lead to improved

cooling efficiency.

In figure 7.2 the temperature of the Raman-cooled sample of atoms is plotted
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against the magnetic field flux density. The plot shows that there is a broad region
over which the cooling is efficient and a drastic reduction of temperature was
recorded, of up to AT = 5uK. Two resonances would be expected by scanning the
magnetic field, one corresponding to tuning to the first red sideband, i.e bringing
into degeneracy the |/mp = —4,n) with the |mp = —3,n — 1) level, and another
one, leading to a less efficient cooling, corresponding to tuning into degeneracy
|mp = —4,n) Imp = =3,n — 2) level (second red sideband). These should be

separated by a AB given by:
1
8IAB| = HlAul, (7.3)

where Aw is the separation between the n and n — 1 vibrational levels in the
mp = —4 potential well. Thus for an expected vibrational frequency of ~ 35 kHz
it should be possible to distinguish two resonances separated by ~ 100 mG, if
these resonances had a width much smaller than the separation, from equation
7.2. In figure 7.2 two resonances are not resolved but this can be explained by
observing that the spread of population over the vibrational levels due to the high
initial temperature leads to a spread in the value of the magnetic field required
to bring in resonance different vibrational levels, as discussed above (see figure
2.10, with T'/Ty = 0.94). This suggests that to have efficient cooling and to be
able to transfer a lérg;e fraction of atoms into the vibrational ground state, it is
necessary to start with a sample at low temperature such that a large fraction of
atoms is already in the lower lying vibrational states;in this way the anharmonicity
is negligible and all the |mp = —4,n;) levels can be brought into degeneracy
with the |mp = —3,n; — 1) levels with the same value of Raman magnetic field.
Nevertheless it has to be noted that the estimated 20 mG spread in resonant B
fields due to anharmonicity of the potential well, does not completely account for
the broadening in figures 7.2 and 7.3. As it will be shown later in this section,

part of the broadening of the sideband resonances plotted in figure 7.2 can be
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attributed to inhomogeneities of the optical potential, due to the spatial variation
of the laser intensity over the lattice region.

The temperature was measured along the z-direction of the lattice plane, with
reference to figure 2.7. Considering a 1-D harmonic oscillator, the population
of the ground vibrational state with n, = 0 has therefore been increased from
14% to 35%. In section 2.4 it was shown that this scheme for sideband Raman
cooling allows the simultaneous cooling in 2-D, with an efficiency along the y-
direction which is three times bigger than along the z-direction. Also, for low lying
states, the 1-D potential wells along the two directions are practically identical.
It is therefore reasonable to assume that the same temperature measured along
the z-axis is also obtained along the y-axis, so that the ground state population
can be calculated for a 2-D harmonic oscillator. In figure 7.3 the population of
the 2-D ground state n, = 0,n, = 0 is plotted versus the magnetic field. This
has been calculated according to equations 2.16 and 2.22 for a two-dimensional
harmonic oscillator, with Tk the measured kinetic temperature. The ground state

momentum distribution is equivalent to a temperature Ty given by:

hwo

Ty = —
0 2kp

(7.4)

and is found to be Ty = 0.96 uK. In this calculation I assumed that the temperature
of the sample is the same along the two lattice dimensions. Therefore the measured
temperature along the vertical direction was assumed to apply for both directions.
At maximum cooling the population of the ground state is increased by a factor of
5—6, but still only 10% of the atoms are in the ground vibrational level. Increasing
the pumper beam intensity or the 7 component did not increase the number of
atoms in the ground state on this occasion.

In order to eliminate the broadening due to anharmonicity of the potential,
further measurements were taken for lower starting temperatures for a sample of

atoms which are mostly populating the lower lying vibrational levels. In figure 7.4
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Figure 7.4: TOF signal of a far-dctuncd lattice with a kinctic tecmperature Tx = (2.5 &
0.2)uK.

a far-detuned lattice time-of-flight signal is shown for a sample at a temperature of

(2.5 £0.2) uK. It was found that very careful compensation of the static magnetic

field was crucial in order to achieve very low temperatures. The far-detuned lattice

parameters were the same as for the previous experiment and the sequence of the

cooling was repeated.

In figure 7.5 the measured temperature of the atoms is again plotted versus
the magnetic field. This time it is possible to distinguish the first of the two
resonances, while the second one appears to be very broadened and the features
do not have the expected Lorentzian shape observed in [20].

The spatial proﬁle of the far-detuned lattice beam was studied in chapter 4 and
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Figure 7.5: Temperature variation versus static magnetic field along the 2-axis for a side-
band Raman-cooled ssimple of atoms. The uncertainty in the temperature is represented
in figure and corresponds to 0.2/xK. The dotted line represents the initial temperature of
the sample 7i% = (2.5 + 0.2)fjK.
was found to lead to a inhomogeneous potential, which in turn means that wells
at different spatial locations bind atoms with different characteristic vibrational
frequencies. An estimated (10 —20)% variation of the optical potential in the trap
region would correspond to (5 —10)% variation in the vibrational frequency, in the
harmonic approximation. This would lead to less efficient cooling as not all of the
atoms are cooled simultaneously and also to a broadening of the resonances, as
for a wider range of magnetic field values there are still some levels brought into
degeneracy. This problem could be avoided had it been possible to expand the

lattice beam and select a spatially homogeneous region, such that the full-width

at half-maximum of the laser profile is much bigger than the full-width at half-
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Figure 7.6: Population of the 2-D ground state witli ru. = 0. wy = 0 v(;rsus static inagnctic
field along the z-axis for a sideband Raman-cooled sample of atoms. The dotted line
represent the ground state population for the uncooled sample at a temperature of 2.5/rK.
iiiiriximum of the extension of the sample of atoms. Power limitations, however,
(lid not allow ns to expand the beam further. A compression of the MOT was also
attempted, but the experiment showed only a modest improvement.

Returning to figure 7.5, we observe that for negative values of the magnetic field
there is a sharp increase in temperature, corresponding to the levels jm/r = —4, ui)
being brought into degeneracy with higher lying states. This can be explained by
observing that for negative values of the magnetic field the Zeeman shift is in the
opposite direction, therefore levels [rip = —4, n) can be brought into degeneracy
with \rup ——3, n —1), thus heating the sample. At higher values of the magnetic
field the induced coherences with higher lying vibrational states become negligible
and the temperature drops again. In figure 7.5 the presence of a magnetic field

offset can be observed, which is due to non compensated stray fields.
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The ground state population for a 1-D harmonic oscillator was found to in-
crease up to 85%. Again the population of the ground state was calculated from
the measured kinetic energy for a 2-D harmonic oscillator, assuming that the tem-
perature is the same for z and y dimensions. Figure 7.6 shows the population of
the ground state plotted against the applied magnetic field; the number of atoms
in the ground state'is increased from 30% to 70%, showing an improved efficiency
of the Raman cooling.

The error on the ground state population measurement is mainly due to sys-
tematic errors in the temperature estimate (see section 3.8). An improvement of
the accuracy of temperature measurements should be pursued in the future. In
fact for very low temperatures the small uncertainty leads to a large error in the
determination of the population of the ground state.

In conclusion the sideband-Raman cooling scheme was proved to be efficient
and to work as expected. Nevertheless the experimental setup needs to be further
improved in order to achieve higher accumulation of atoms in the ground vibra-
tional state. It was found that the inhomogeneities in the far-detuned potential
depth along the trapping region lead to a broadening of the Raman resonances
and to a reduced efficiency. This can be avoided by using a more powerful laser
source and expanding the beam, thus selecting a uniform region of laser intensity
and therefore creating a uniform potential depth for all the atoms in the lattice.
For this purpose a Ti:Sapphire laser, capable of producing 1W optical power, has

already been purchésed and installed.

7.3 Conclusions

In this chapter I have described the implementation of a resolved-sideband Raman
cooling scheme first suggested in [18], which was used to prepare a large fraction

of atoms in the ground vibrational state of the 2-D optical potential associated
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with the |mp = —4) state. When prepared in this fashion, atoms in the lattice are
in identical, pure quantum states both with respect to their motional and internal
degree of freedom. Sideband cooling occurs between vibrational levels in Zeeman
substates and Raman coupling is provided by the lattice beams themselves. A
longitudinal magnetic field tunes the lattice to the first red sideband to initiate
cooling. This method was found to be very sensitive to the initial temperature
of the sample, reflecting the high degree of anharmonicity of the lattice. Fur-
thermore, the results were compromised by the non-uniform potential depth at
different lattice sites, due to limitations in the available laser source power. Nev-
ertheless, the method was very efficient and permitted us to prepare 85% of the
total population in the one-dimensional ground vibrational state. The efficiency
of cooling in two dimensions allowed us to increase the population of the 2-D
vibrational ground state from 30% to 70% in the cooled sample. By improving
the experimental apparatus and using a more powerful laser source, it should be
possible to improve the efficiency of our method.

These results open up the possibility of performing a wide range of experiments
involving the coherent manipulation of a quantum state using adiabatic rapid
passage, which closely relates to this method for sideband-Raman cooling as it
employs the same coherent coupling. Ultimately, exploiting the techniques for
band population measurements (chapter 4) and Zeeman state analysis (chapter 6)

it will be possible to implement methods for quantum state measurements [19].



CHAPTER 8

Conclusions

Optical lattices present us with a rich and flexible system for the preparation
and manipulation of quantum states of neutral atoms. The light-shift potential
can be varied in depth, shape and periodicity by simply changing the laser beam
geometry, intensity and polarization as well as via the introduction of external
fields. Coherent couplings between atomic states can be engineered in a way that
makes it possible to manipulate the quantum state of atoms in the far-detuned
lattice and prepare atoms in a chosen quantum state.

In the far-detuned regime, optical lattices for neutral atoms offer many ad-
vantages for quantum state preparation and control, as the decoherence caused
by spontaneous emission is almost suppressed, and due to the weak coupling to
the environment. Furthermore, the low filling factor typical of optical lattices al-
lows atoms to be isolated from each other. Far-detuned optical lattices therefore
constitute a suitable environment for studies of quantum transport and quantum
chaos which can be performed with atoms prepared in such a manner; Fock states
and Schrédinger cat states can be generated, while tunneling between double well
potentials in a lattice can also be investigated [21]. Neutral atoms in far-detuned

optical lattices may also be suitable candidates for quantum computation. At the
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heart of quantum computation concepts lies the entanglement of many two-state
systems (qubits), which form the register of the quantum computer. Recently, a
new system for implementing quantum logic gates has been suggested [55], which
exploits trapped neutral atoms stored. at different locations in a far-detuned opti-
cal lattice that can be made to interact via laser-induced coherent electric dipole-
dipole interaction. The difficulty in this method lies in addressing and reading out
the state of individual qubits, which are generally spaced closer than the optical
wavelength. Lattices can be however designed with more widely separated wells,
for example by using a very long wavelength laser (such as an intense CO5 laser
[38]). Ultimately, quantum computing may require trap arrays which would allow
atoms to be separately manipulated and read out, [56], [57].

In this thesis I investigated a 2-dimensional configuration for a far-detuned
optical lattice, whiéh has been proved to be ideal for exploiting a simple scheme of
sideband-Raman cooling as the first step for quantum state preparation, [20]. This
work was aimed at the preparation of a large fraction of atoms in the vibrational
ground state of a 2-D far-detuned optical potential. The implementation of the
experimental setup and the optimization of the loading of atoms in the FDL were
the first objectives of this thesis. A scheme for sideband-Raman cooling was then
successfully implemented, which led to the preparation of a large fraction of atoms
in the ground vibrational state of the 2-D optical potential associated with the
|mp = —4) state. With the purpose of promoting and examining the efficiency
of loading and optimizing the effectiveness of sideband-cooling, several diagnostic
methods were implemented. Experiments were performed aimed at quantifying
the populations of different vibrational levels and at the Zeeman state analysis of
the atoms in the sample. These techniques were demonstrated to be effective with
a variety of experiments.

I will now give a brief summary of the thesis with reference to the work pre-
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sented in each chapter. Chapter 1 gave an overview on the theoretical background
in laser cooling and optical lattices in one, two and three dimensions. In chapter
2, the results of band structure calculations for a 2-D far-detuned configuration
were presented along with a a theoretical study of the sideband-Raman cooling
technique proposed in [16] and a calculation of various parameters. Chapter 3
was dedicated to the description of the experimental apparatus. In chapter 4
the loading technique for the far-detuned lattice was illustrated in detail. In the
same chapter the optimization of the loading efficiency and storage properties of
the lattice were studied. Band population measurements were also performed,
which lead to the confirmation of the existence of band-dependent loss mecha-
nisms in the far-detuned lattice. It became evident from these experiments and
from imaging the lattice beams intensity profile, that the non-homogeneity of the
latter constitutes a major limitation of the experiment. In chapter 5 the optical
potential was further investigated through parametric excitation experiments and
modelling. These measurements yielded insight into the anharmonicity of the op-
tical potential and the effects of non-uniform intensity profiles. It was found that
these cause a significant spread in the vibrational frequencies of the atoms. The
model was also used to simulate the heating induced by laser intensity fluctua-
tions; this was shown to be partly responsible for the band-dependent losses of
atoms in the far-detuned lattice, but also to be reasonably low so as not to affect
the sideband cooling.

A Zeeman-state analysis of the sample via Stern-Gerlach experiments, allowed
the measurement of the magnetization of our sample of atoms as well as the res-
olution of single mp states. The evolution of the population of such states was
also reconstructed By varying an external static magnetic field along the quanti-
zation axis. Spin-polarization was proved to be efficient and a phenomenological

spin-temperature could be evaluated, in agreement with [48]. Furthermore, the
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possibility of measuring the population of single Zeeman states yielded more con-
vincing proof for the existence of a spin temperature than the results presented
in [48], where only the total population of a o*-well could be measured. Zeeman
state analysis also enabled us to verify that the net magnetization of the sample in
the near-resonant lattice is preserved after its transfer to the far-detuned lattice.
In particular it allowed the preparation and measurement of a large fraction of
atoms in the |mp = £4) state, which could further improve the efficiency of the
sideband-Raman cooling scheme used for quantum state preparation.

In the last chapter a resolved-sideband Raman cooling setup was implemented.
Sideband cooling occurs between vibrational levels in Zeeman substates and Ra-
man coupling is provided by the lattice beams themselves. A longitudinal magnetic
field tunes the energy difference between vibrational states of distinct Zeeman sub-
levels. This method was found to be very sensitive to the initial temperature of
the sample, reflecting a high degree of anharmonicity of the lattice. Furthermore,
the results were compromised by the non-uniform potential depth at different lat-
tice sites, due to limitations in the laser source available power. Nevertheless, the
method was very efficient and permitted us to prepare 85% of the total population
in the one-dimensional ground vibrational state. The efficiency of cooling in two
dimensions led to an increase of the population of the 2-D vibrational ground state
from 30% to 70% in the cooled sample. By improving the experimental apparatus
and using a more powerful laser source so that inhomogeneous variation in the
vibrational frequency over the lattice size is eliminated (i.e when the potential
depth is uniform over the total spatial extent of the trap), it should be possible
to further enhance the efficiency of this method.

In conclusion this thesis presents an extensive study of neutral atoms in far-
detuned optical lattices. Experiments were implemented aimed at diagnosing the

potential properties, such as characteristic frequencies, anharmonicity effects and
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inhomogeneities of the potential depth. Measurements were performed to resolve
the populations of the single vibrational bands and single Zeeman states, which
could also allow the measurement of the quantum state of the sample. Raman-
sideband cooling led to prepare in excess of 70% of the atoms in the 2-D |mp =
—4,n, = 0,ny = 0) state. The limitations of the current experiment have to be
mostly attributed to the low laser power available and the non-uniform spatial
profile of the beams. The laser source used throughout this work has been now
replaced by a Ti:Sapphire laser capable of up to 1W output power; this should
allow the creation of a uniform intensity profile for the optical lattice, which will
definitely improve the experiments and the Raman cooling efficiency.

The outcome of this work opens up the possibility of performing a wide range
of experiments involving the coherent manipulation of single quantum states using
adiabatic rapid passage, which is closely related to the method for sideband-Raman
cooling as it uses the same coherent coupling. Ultimately, exploiting the techniques
for band population measurements (chapter 4) and Zeeman state analysis (chapter
6) it will be possible to implement methods for quantum state measurements [19].
Eventually this will open up the way to the controlled engineering of the individual
quantum states of trapped atoms, as a precursor to the encoding and processing

of information at the quantum level.
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