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A b s t r a c t

Optical lattices induced by light detuned far from the frequency of any atomic res­

onance transition are ideal systems in which to develop techniques for the coherent 

control of atomic motional and internal states. Decoherence arising from sponta­

neous emission can be eliminated to an arbitrary degree by varying the detuning of 

the optical field. The atoms trapped in these lattices are to a large extent isolated 

from environmental disturbances and from each other. The first step towards the 

coherent control of atoms in a far-detuned lattice is their preparation in a single 

motional state.

In this thesis the preparation of atoms in the ground vibrational state of a 

two-dimensional far-detuned optical lattice via resolved-sideband Raman cooling 

is presented. This sideband-cooling scheme involves stimulated Raman transitions 

between bound vibrational states of a pair of magnetic ground state sublevels, 

followed by an irreversible step due to optical pumping, resulting in a net loss 

of one quantum of vibrational energy per cooling cycle. This process provides 

efficient cooling in two-dimensions and leads to the accumulation of a large fraction 

of atoms in the 2-D ground vibrational state of a potential well associated with a 

single Zeeman substate.

Experiments aimed at improving and monitoring the characteristics of the 

far-detuned lattice and the sideband-Raman cooling efficiency are also described. 

Parametric excitation experiments and modelling are employed to investigate the



degree of anharmonicity of the optical potential and the importance of heating 

induced by laser intensity noise, whilst Zeeman-state analysis of the sample is 

performed for monitoring the distribution of atoms over different magnetic sub­

states. Finally, spin-polarization experiments are carried out in order to study 

the paramagnetic properties of the lattice and lead to an evaluation of a spin- 

temperature for the sample.
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C h a p t e r  1

Introduction

In this chapter an overview of the basic principles of laser cooling for neutral 

atoms is given, with particular emphasis on Sisyphus cooling in optical lattices. 

The first section treats cooling processes arising from light-induced forces acting 

on a moving atom in the Doppler and sub-Doppler limits, as well as the magneto­

optical trap configuration. In the second part of the chapter, the mechanisms of 

cooling and dynamics in optical lattices are presented. The optical potential and 

the quantum description that leads to the calculation of the vibrational bands of 

motion are also discussed. In the last section an overview of the known different 

geometries for optical lattices is given, which explores configurations in one, two 

and three dimensions.

1.1 Principles of laser cooling

The fundamental mechanisms of atom-light interactions are presented in this sec­

tion. Radiation pressure can be used to cool moving atoms by exploiting the 

Doppler effect, as was first proposed by Hansch and Shawlow in 1975 [1]. Other 

mechanisms of cooling are linked to the presence of polarization gradients and

13



1.1. Principles of laser cooling 14

lead to sub-Doppler temperatures [2], [3]. The magneto-optical trap configura­

tion [4] is also discussed, which allows not only the cooling of the atoms but also 

their storage in the trapping region for a considerable time, thus allowing efficient 

capture of atoms and increased cooling.

1.1 .1  A to m -lig h t in tera ctio n  and lig h t-in d u ced  forces

An atom interacting with an electromagnetic field undergoes mechanical effects, 

due to momentum transfer during processes of absorption and emission of photons. 

There are two types of forces that arise from this interaction, namely the radiation 

pressure or scattering force and the dipole force.

Radiation pressure is generated by processes involving the absorption of pho­

tons followed by spontaneous emission. Each time an atom absorbs a photon, 

there is a transfer of momentum from the photon to the atom given by p — ^k, 

where k is the wave-vector associated with the incident light. After absorbing, the 

atom spontaneously emits a photon; spontaneous emission is isotropic, meaning 

that there is no preferred emission direction. As a result, after averaging over 

many cycles of photon absorbtion and emission, over a time much longer than the 

excited state lifetime, there will be no contribution to the net force from spon­

taneous emission processes. Therefore, the force resulting from multiple photon 

scattering processes will be F  = nfik, where n  is the number of scattered photons 

per unit time. The photon scattering rate depends on the light intensity / ,  the 

detuning A =  (wf, is the laser frequency and Wg is an atomic resonance

frequency) and the natural linewidth F of the transition.

If we consider a moving atom as a two-level system interacting with a pair of 

counter-propagating laser beams tuned to a frequency < cua, it can be shown 

[2], [3] that the net average force exerted by the light, for times t 1/F (1/F
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being the lifetime of the excited level), is:

r I / I sF =  hk ------------------------------------------------------------ (1.1)
1 + 1 /Is  +

where Is  is the saturation intensity for the transition, A is the light detuning from 

the resonance frequency of the atomic transition and v is the atomic velocity. This 

is the scattering force, otherwise known as radiation pressure.

The dipole force on the other hand, originates from processes of absorption 

followed by stimulated emission, when a spatial gradient of the light intensity is 

also present. The dipole force acting on a atom in a laser field can be expressed 

as [2], [5]:

f  =   Y l lh ---- (1.2)
 ̂ 1 + 1 /Is  +

Radiation pressure was exploited in the first proposal of laser cooling [1] and in 

the realization of optical molasses [6]. The first optical trapping was realized the 

following year [7], exploiting the dipole force generated by a strongly focused laser 

beam.

1 .1 .2  D op p ler  coo lin g

It is possible to exploit radiation pressure in order to create a viscous force that 

reduces the kinetic energy of atoms in a vapour, as suggested by Hansch and 

Shawlow in 1975 [1]. Counter-propagating laser beams tuned to a frequency lower 

than that of an atomic resonance can be used, thus creating a viscous force that 

slows down the atoms along the direction of beam propagation. A moving atom 

is more likely to absorb a photon from the beam that is propagating in the oppo­

site direction to its motion: the result of many cycles of absorption followed by 

spontaneous emission is a reduction of the atomic velocity in this direction. This 

configuration is called optical molasses, [6].
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In the low intensity limit I  Is,  equation 1.1 becomes:

F  = - a v  = (1.3)

where A is the detuning from the atomic resonance, F is the lifetime of the excited 

state and Is  is the saturation intensity (for caesium, which is the atomic species 

used in the work described in this thesis. I s  =  112 mW/cm^) and v is the velocity 

component along ks-  The resulting force is a viscous force that tends to slow 

down the atoms in the direction of propagation of the beams, thus reducing their 

kinetic energy. The cooling is limited by spontaneous emission processes; due 

to spontaneous emission, at short times the viscous force fluctuates around its 

average value, given by equation 1.3. The balance between the heating process 

and the cooling is studied in [2], [3] where it is shown that the minimum achievable 

temperature in the Doppler limit is reached when A =  F/2 and it is given by:

For caesium the minimum temperature is =  125 /iK, which corresponds to 

an atomic rms velocity Vrms = 9 cm/s. The minimum kinetic energy achievable is 

therefore limited by the width of the transition used for the cooling process.

1 .1 .3  T h e  m a g n eto -o p tica l trap

The atomic density achievable in an optical molasses is very low because of the 

atoms’ diffusive motion; even atoms with very small velocity escape from the 

laser interaction region after a short time. In 1986, Pritchard [4] implemented a 

scheme, first suggested by Dalibard, which required the use of a spatially non- 

uniform, magnetic field and counter-propagating laser beams of opposite circular 

polarization with detuning A < 0 in order to exploit the internal atomic structure 

to provide a restoring force towards the center of the trap as well as a viscous 

force. It is thus possible to confine and cool a sample of atoms starting from a gas
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and a quadrupole magnetic field.

1 .1 .4  S u b -D op p ler  coo lin g

In 1988 temperatures lower than the Doppler limit were reported in optical mo­

lasses [8], [9]. These gave evidence that other kinds of mechanisms were also 

involved in cooling. New theories were developed [5], [10], which explained the 

observations of temperatures below the Doppler temperature. It was found out 

that new cooling mechanisms were indeed involved, arising from the degeneracy 

of the ground level involved in the optical transition and from optical pumping, 

between different Zeeman sub-levels associated with the polarization gradient, 

generated by the laser beams.

Let us consider the case of a 1-dimensional optical molasses. It was discovered 

in [5], [10] that two new cooling phenomena occur, depending on the polarization 

configuration of the laser beams:

i) two counter-propagating laser beams with opposite circular polarization 

(cr'*" — cr“ ) lead to motion induced orientation effect;

ii) two counter-propagating laser beams with orthogonal linear polarization 

(tt^ -  7T̂ ) lead to Sisyphus Cooling;

The first of the two mechanisms is linked to a radiation pressure imbalance. A 

moving atom interacting with two counter-propagating — cr" polarized laser 

beams, experiences a population imbalance among the sub-levels of its ground 

state that depends on position, giving rise to an imbalance of the radiation pres­

sure which results in further cooling. In the second case (polarization — tt^), 

the polarization of the optical field varies along the z-axis. Therefore different 

transitions (i.e. with distinct Clebsch-Gordan coefficients) between Zeeman sub- 

levels are favoured, depending on the position. Consequently, the light-shift of 

the Zeeman sub-levels becomes spatially modulated. Optical pumping processes
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occurring in this modulated potential lead to so-called Sisyphus cooling. It has 

been proved [5], [10] that in both cases the minimum temperature achievable in 

the low saturation limit is proportional to the ratio

In the following I will discuss Sisyphus cooling in detail, as optical lattices are 

designed to exploit Sisyphus cooling in order to achieve localization, by carefully 

choosing the laser beams polarization. I will also refer briefly to motion induced 

orientation as well, as in higher dimensions molasses and MOT, both kinds of 

cooling mechanisms are present.

1.1.4.1 M otion induced orientation effect

Two counter-propagating laser beams with opposite circular polarization generate 

a held with a resultant linear polarization that rotates around the z-axis (see 

hgure 1.2). The polarization gradient interacting with the moving atom induces

y

Figure 1.2: Representation of the cr+ — cr polarized optical molasses eonhguration which 
gives rise to a rotating linear polarization.

an atomic orientation and an imbalance between the ground state sub-levels (see 

hgure 1.3 for an T  =  1 ground state) and leads to a bigger probability for the atom 

to absorb photons from the beam that is propagating in the direction opposite to 

its velocity, which results in cooling. It can be shown [5], [10] that in the sub-



1.1. Principles of laser cooling 20

M'f 3/4 h A'

Figure 1.3: Induced orientation effect, which shows an increased population on one of the 
ground state sub-levels (this case is for an F = I ground state).

Doppler limit the minimum temperature achievable is given by:

hÇf
(1.5)^ B '^ su b — D o p  OC ^  ,

where D =  F ^  is the Rabi frequency associated to the field and A is the 

detuning. The minimum achievable temperature is very close to the one-photon 

recoil energy limit.

1 .1.4.2 S isyphus cooling for an  a tom ic  configu ration  w ith  Fg = 1/2

The configuration — tt^ (i.e. the two counter-propagating laser beams have 

orthogonal linear polarization) gives rise to an ellipticity gradient along the z- 

axis, as shown in figure 1.4. The polarization changes from linear to cr“ , to linear, 

to and so on, along z —axis. This leads to a spatial modulation of the light 

shift of the ground states sub-levels, as shown in figure 1.5, the distance between 

adjacent locations of pure a~ and cr+ light being A/4, where A is the optical 

wavelength.

Figure 1.5 refers to an atom with a ground state with hyperfine number Fg =  

1/2 and an excited state with F^ =  3/2. This is the simplest situation to describe 

Sisyphus cooling but does not fully account for the cooling mechanism operating 

for atoms with large F. For atoms with F  > 1 there is the possibility of cooling
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Figure 1.4: Representation of the linear-orthogonal-linear polarization optieal molasses
eonhguration, which gives rise to an ellipticity gradient.

caused by optical pumping between different light-shift surfaces at a single well- 

site, which is not allowed for F  =  1/2, as each lattice site presents only one 

light-shift surface. After discussing the Fg = 1/2 case I will extend the treatm ent 

to atoms with large Fg.

If an atom has almost zero velocity and it is placed at a location of light, 

it will be optically pumped to an Imp = 1/2) state. The energy levels of the 

atom will also experience a light shift. Since the Clebsch-Gordan coefficient is 

larger for the = 1/2 ^  rnp̂  ̂ =  3/2 than for the mp^ =  - 1 /2  ^  rrip̂ , = 3 /2  

transition for cr+ exciting light, then the ground state sub-level with =  1/2 

will experience a larger light shift. The opposite is true at cr“ locations.

When the atoms are moving along the axis of the laser beams with velocity 

u 0, they experience a spatially varying polarization. This means that the 

two ground state magnetic sub-levels will present a varying light shift along the 

2—axis. As the atoms move from a pure point of light towards a point of a~ 

light, the probability of being optically pumped to m p  =  - 1/2  increases, and 

reaches a maximum at locations of pure a~ light; when the atom in the m p — 1/2 

state climbs the potential hill, figure 1.5, and approaches its top, it will be optically
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1.5: St 'i ii iclassical  p ic tu re  lor t lie Sisyplui.s cooliuft, on a =  1 /2  ^  F,. =  1 / 2
Iran.sit iou.  T h e  a to m s  a rc  show n to  cliiul) p o te n t ia i  hills before  b e in g  o |) t iea l lv  p u m p e d  

b a ck  a t  t h e  b o t to m  of th e  p o te n t i a l  well, th u s  loosing k inet ic  energy.

iniinped to nip = - 1 /2  and will thus lose kinetic energy. So at the end of the cycle 

t lie atom is optically pumped again into a valley" of the potential, from where, if 

it has still enough kinetic energy, it can start climbing again and the process would 

be repeated. The net result is a dissijiation effect related to anti-Stokes Raman 

processes, driven by the ojitical ])mnpmg. Thesi' processes are most efhcient when 

the velocity of the atom is such that CT,, — A/S. wlu're A is the wavelength of the 

laser field and determines the periodicity of the potential (see hgure f.5) and r,,



1.1. Principles of laser cooling 23

is the optical pumping time: this means that when the velocity of the atom is 

such that the atom moves over a distance A/4 during an optical pumping time, 

the cooling is more efficient. The temperature limit in the Sisyphus case can be 

estimated, as shown in [2] from:

ksTsys ~  (1-6)

This result predicts that an arbitrarily low temperature can be reached since 

decreasing the laser intensity and increasing the detuning leads to a lower temper­

ature. Of course the temperature cannot decrease indefinitely, as at some point, 

the loss of energy during each cooling cycle would be balanced by the recoil energy 

gained in the spontaneous emission step. The lower limit for intensity determines 

the minimum temperature achievable, which is of the order of E fi jk s ,  where
ihkŸE r  =   ------  is the one-photon recoil energy.
2mcs

1.1.4.3 Sisyphus cooling for an atom ic configuration w ith  E g >  1

Sisyphus cooling provides cooling and localization of atoms in optical lattices, 

in which each lattice site is associated with a minimum light shift of one or more 

ground state sub-levels, depending on the Eg number. For a total ground state an­

gular momentum F —1/2, Sisyphus cooling involves optical pumping among states 

m.R =  1/2  and m p  =  - 1/ 2 , which have minima of light shift at different locations. 

For ground state with > 1, more than one sub-level present a minimum of the 

light-shift at the same location (lattice site), therefore cooling can also happen 

locally, without hopping between lattice sites.

For an atom with ground state of hyperfine number > 1 and excited state 

Fe = Eg + 1 moving within an optical lattice, there is a set of optical poten­

tials associated with the Eg P 1 ground states, which are coupled by stimulated 

Raman transitions. For such atoms there are two possible pictures to describe 

the mechanisms of cooling, as reported in [11]. In one case, cooling can occur
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Figure 1.6: Scm ic lassica l  p ic tu re  for t h e  S y s ip h u s  cooling  on a F), =  2 —> 1\. =  4 t r a n s i t io n ,  
a j r e p r e s e n t s  local cooling, cine to  op t ica l  p u m p in g  a t  a given la t t ic e  si te  a n d  b) h o p p in g  
cooling , m o t io n a l  in d u ced  c o np ling  causes  t r a n s i t io n s  b e tw ee n  th e  a d ia b a t i c  p o te n t i a l s  

a n d  a to m s  a re  p u m p e d  bet ween d ifferent la t t ic e  si tes. F ig u re  f rom  P R  A 56, 17Ü5

locally at a given lattice site as atoms preferentially climb steep potential wells 

and descend shallow ones. As shown in figure i.b the two potentials among which 

cooling happens have different curvature, thus the atoms lose more kinetic energy 

in climbing than they gain in descending, the difference in energy being dissii)ated 

in optical pumping. In the second case, shown in hgnre l.bb, atoms cool when 

they hop between lattice sites, l)V making non-adiabatic transitions between the 

( onpled set of optical potentials and preferentially being pumped to the ;)otential 

with the largest light shift. In [11] theoretical studies for the F,, = 2 Ff. = 3 

transition of these cooling mechanisms lead to the conclusion that, although there 

is some local cooling, the dominant mechanism is cooling with inter-well hop­

ping, with a rate twice ms large. Local cooling is expected to be more efficient 

for atoms with large F, since the larger the F, the more internal states for which 

local cooling would work become available. In [12] distinct cooling and magnetiza­

tion decay times were measured for a 1-D optical lattice of caesium atoms cooled 

on the F(j = 4 F], =  5 transition; the magnetization characteristic time was

found to be three times longer than the localization time. The distinct nature of 

these timescales is a clear signature of local cooling. In [13] the build up of the
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localization was measured to take of the order of few microseconds.

1.2 Introduction to optical lattices

Atoms can be cooled and trapped in a periodic lattice of potential wells generated 

by interfering laser beams. The atoms trapped in these lattices are to a large ex­

tent isolated from environmental disturbances and from each other, due to the low 

filling factor (i.e. fraction of lattice sites populated) characteristic of such lattices. 

The richness and flexibility inherent to the atom-light interaction allows a wide 

range of properties characterizing an optical lattice to be adjusted [14] through 

the geometry of the laser beams, their polarization, intensity and frequency and 

through the addition of static electric and magnetic fields. Furthermore the pos­

sibility of dynamically altering the lattice properties can be exploited and many 

different experiments can be performed [15]. Experiments devised in the past sug­

gested that these properties must be carefully chosen in order to provide efficient 

Sisyphus cooling, which only occurs for configurations where light is circularly 

polarized at positions of maximum light shift.

In this section I will give an introduction to optical lattices. I will describe the 

methods for treating laser cooling in optical lattices and the quantum treatm ent 

that leads to the band theory. I will then present a summary of some possible 

different configurations extensively discussed in [14]. In particular I will discuss 

the 2-dimensional configuration used extensively for the experiments performed 

in the course of this work.

1.2 .1  Laser c o o lin g  in  o p tica l la tt ic e s

Many theoretical models have been used for the study of laser cooling in opti­

cal lattices and in this section I will highlight the principal methods and results 

achieved, referring in particular to the lessen and Deutsch paper of 1998 [16] and
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to [17].

The general theory of laser cooling for a multilevel atomic system is discussed 

in detail in [2] and the main results will be summarized here. Consider a monochro­

matic optical field which is interacting with a gas of atoms, being tuned close to 

an atomic transition of ground state \Fg) and excited state [Fg). There are, there­

fore, 2 { F e F g 1) states that evolve coherently through the coupling to the laser 

held and dissipatively through the coupling to the vacuum. The full description 

of the system would, in general, be very complicated. However, in the limit of low 

intensity or large detuning, which also represent the regime where cooling is most 

efhcient, the problem can be simplihed. In this regime, the saturation parameter 

is small and the population of the excited state is consequently small. This means 

that the time scales of spontaneous emission and optical pumping can be sepa­

rated, the hrst being much shorter than the second. Therefore, the excited state 

population and atomic coherence between ground and excited state relax rapidly 

and the atoms adiabatically follow the evolution of the ground state manifold. 

The excited state can then be eliminated and a simplified Hamiltonian can be 

considered, that acts only on the atom’s external coordinates and internal ground 

state manifold, as discussed in [17]. The reduced Hamiltonian then becomes:

^  ^  ^  ^  ’ (1-?)

where P  and x refer to the center of mass, d =  Cml'^^\e, Fg, mg+q){g, Fg, rng\e*

is the dipole operator, is the Clebsch-Gordan coefficient coupling the states 

\Fg,mg) and |Fe,me) and are the spherical basis vectors.

When the 2-D lattice is formed by beams with all polarization vectors lying 

in the same plane, choosing the quantization axis normal to the plane, the light 

field can be decomposed into components only. In the very simple case of a 

Fg =  1/2 —>gF = 3 / 2  transition, the nrig =  ±1/2  states are not coupled by the 

laser field; this means that the coherent atomic motion can be considered as taking
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place on two separate scalar potentials, one corresponding to a mg = 1/2 and one 

to a m.g = -1 /2  state. For a transition F ^  F + I with F  > 1, the light shift 

o|)erator contains iroth diagonal and olf-diagonal terms in the \(j, Fgpirifj) basis. 

The diagonal terms correspond to al)sor])tion and stininlated emission processes 

with Am.g =  0 while the off-diagonal ones have Anig = ±2. Neglecting off-diagonal 

elements we obtain the ‘diabatic’ potentials; if the total light shift operator is 

diagonalized the ‘adiabatic’ potentials are ol)tained, which correspond to light 

shift eigenvalues of an atom localised at a particnlar position. The diabatic and 

adiabatic potentials are both shown in hgnre 1.7 for a Fg =  2 ^  =  :1 transition.

0.8
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higure 1.7: a) level structure of a Fg = 2 ^  F,> = If aloiii. flower left: diabatic potential
oln.aiued ignoring coupling between different nip states. Lower right: adiabatic potential 
obtained considering coupling A/;;,, = ±2. Figure from Adv. At. Mol. Opt. Phys. 37,

199G

In general neither of the two representations completely describes the sitna-
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tion pertaining in near-detuned optical lattices. For slow moving atoms, the time 

spent in the crossing region of the adiabatic potentials is long enough to allow 

stimulated Raman transitions, so that the atom motion follows the adiabatic po­

tential, while fast moving atoms follow the diabatic potentials. When the atoms 

are strongly localized at the bottom of the potential well, the two potentials are 

almost identical.

Equation 1.7 describes the coherent evolution of an atom, but in order to 

treat laser cooling, dissipative processes must be added. If the excited state is 

adiabatically eliminated, then the master equation for the atomic density operator 

p can be written as [17]:

^  = [̂H,p] -  ir,{A.p} + r» ç y  rf"ksAfft(k,) (1.8)

The first term just represents the coherent evolution of the system, ruled by the 

Hamiltonian of equation 1.7. The second and third terms represent the dissipative 

processes linked to optical pumping between ground-state sublevels. The second 

term describes the population decay from one ground state sublevel, due to opti­

cal pumping into other sublevels and A = (e_L(x) • d)^(e/,(x) • d). The third term 

represents the transfer of population to the ground state sublevel from other sub- 

levels by optical pumping. The operator Wk(k.s) = ■ d.)^{€l {x.) ■ d) rules

the absorption processes of a lattice photon, followed by emission of a fluorescence 

photon with a specific wave-vector kg and helicity h with respect to the quanti­

zation axis. Â /x(kg) is the probability distribution of photons with helicity h and 

wave vector kg and Fg is the scattering rate. Equation 1.8 can be rewritten in 

units of the recoil energy E r ,  s o  that it is dependent only on two dimensionless 

parameters:

i) Uq = it defines the timescale for coherent evolution processes (i.e. os­

cillation time at the bottom of the potential well)



1.2. Introduction to optical lattices 29

ii) Fg = it defines the timescales for dissipative optical pumping

The solution of equation 1.8 is in general not trivial, but it can be obtained if 

some simplifications are made, as detailed below. In the semiclassical approxima­

tion the coordinates of the center of mass are treated as classical variables; this 

can be assumed if the spread in Doppler shift, due to the width of the momen­

tum distribution, is small compared to the natural linewidth and when the spatial 

coherence of the atomic wave-function is small compared to that of the light wave­

length. The relaxation time-scale for internal degrees of freedom must be shorter 

than for external degrees of freedom, so that the atom can be seen as a classical 

particle subject to an instantaneous force. When the internal timescale becomes 

much longer than the external one, then a quantum treatm ent is required, as I 

will discuss in the following section.

1.2.1.1 Q uantization of the atom ic m otion and band theory

For multilevel atoms in an optical lattice the semiclassical approximation is not 

applicable, because the internal timescale Tint is typically much longer than the 

external one Text {oscillating regime). In this case a full quantum treatm ent is 

required, in which the external coordinates (x ,P ) also have to be treated as 

quantum operators. The spectrum of energy eigenstates consists of bands, with 

bandgaps separating the tightly-bound states, and a quasi-continuum spectrum for 

free states. In the oscillating regime, laser cooling can be studied by diagonalizing 

the atom-laser Hamiltonian and treating the vacuum as a perturbation. The prob­

lem is analogous to the description of an electron moving in the periodic potential 

formed by ions in a solid crystalline structure. The difference is mainly due to the 

fact that the optical potential depends strongly on the internal state of the atom 

and because, in general, internal and external degrees of freedom are not separa­

ble. The eigenstates are then ‘entangled’ states of these variables. Generally, it is
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possible to write the state of the atom as a 2Fg + 1 component spinor. Each wave 

function can then be expressed in Bloch form as |i/)) = ^  (gi \ m g ) ,

where \u^^) has the periodicity of the lattice. Results of band calculations for a 

far-detuned optical lattice are shown in the following chapter in figures 2.5 2.6,

2.3 and 2.4. The energy bands shown there exhibit curvature for higher energy 

states. This curvature arises because, in a lattice with > 1, atoms can tunnel 

between neighboring wells associated with opposite light polarization. The band 

curvature becomes substantial as soon as the energy rises above the top of the low­

est adiabatic potential well, but such bands do not have a completely free particle 

character.

1 .2 .2  O p tica l L a ttice  in one d im en sion

The simplest possible configuration for an optical lattice is in one dimension for an 

atomic transition with ground state Fg =  1/2 and an excited state with F^ =  3/2, 

as described in [17]. A standing wave is formed by a pair of linear cross-polarized 

laser beams, in the scheme represented in figure 1.4. This configuration is usually 

referred to as 1-D linTlin. Choosing the quantization axis z along the direction 

of propagation of the beams, the total light field can be decomposed into two 

standing waves of cr'*" and a~ polarization, with a spatial offset of A/4, so that the 

antinodes of one coincide with the nodes of the other. The polarization of the total 

field changes along z from circular to linear (via elliptical) and back to circular, 

while the total intensity of the light is independent of z. In [5] the potentials for 

the states Fg =  ±1/2, in the limit of low saturation, are given by:

2 1
^ 1/2 =  cos^ {kz) ±  - U q

U - i / 2  = -Uosin^ {kz) + -Uo, (1.9)

where U q = is the maximum value of the light shift; the saturation itself is 

defined in terms of the parameter s = 2D^/(4A^ + E^), for the transition involved
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at points of pure circular polarization, with Rabi frequency fl. In the case of 

red detuning, this potential is represented in figure 1.5, where it is shown that 

the cooling occurs because of optical pumping between the atomic ground state 

sublevels, a mechanism that is called Sysiphus cooling and it is further described in 

section 1.1.4.2. In [5], [2] a semiclassical model is used to predict the temperature 

of atoms in an optical lattice, by estimating the averaged friction and diffusion 

coefficient. Atoms reach a temperature that corresponds to a mean kinetic energy 

which is of the order of magnitude of the depth of the potential, which means 

that a large fraction of the atoms can be trapped in individual potential wells. 

Near the bottom of the potential well, the atoms are localized in the Lamb-Dicke 

regime. In this regime the atomic center-of-mass motion can be approximated by a 

thermally excited harmonic oscillator. By expanding the optical potential around 

the minimum and taking the quadratic term in the displacement, it is possible to 

define the oscillation frequency

h^osc — ^ g e o m v U o ^ R j  (1.10)

where E r  = is the recoil energy of one photon and Kgeom is a constant, 

which depends on the geometry of the lattice; in the 1-D lin_Llin case this is 

2 y^2/3. Again, this treatment is meaningful only if the atom resides in a given 

potential well for a time comparable to or larger than the inverse of the vibrational 

frequency.

1.2 .3  O p tica l la tt ic e s  in  tw o  and th ree  d im en sion s

1.2.3.1 2-D Optical lattice

It was suggested in 1993 by Grynberg et al. that it is not necessary to phase-lock 

the lasers in order to keep the topography of the lattice constant, provided that 

in order to generate an N-dimensional optical lattice, N  + 1 beams are employed. 

Fluctuations of the N independent relative phases would then simply result in a
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spatial translation of the lattice. Typically, the fluctuations of the relative phases 

are slow compared to the atomic response time, so that the atoms adiabatically 

follow the lattice translations. In figure 1.8 two possible configurations for the

(A)

z

20

(B)

Figure 1.8: Two dimensional optical lattice configurations for 0 = tt/3, with (A) all the
beams polarizations lying on the lattice plane and (B) one of the beams polarization lying 

on the lattice plane and the two other orthogonal to the lattice plane.

2-D case (Grynberg [14]) are shown. Assuming 6 =  tf/S, as shown in the figure, 

the primitive cell is spanned by a ]  =  [-k / K j . ) x  -b [ r : / K y ) y  and &2 =  — {'ïï / K x ) x  +  

{7r/Ky)y, where — ksmO and Ky =  k{cosO -f- 1), k being the wave-number.

Different polarization choices in the two geometries change the relative position 

of (7+ and cr~ sites, i.e. the basis of the unit cell. For configuration (A), the positive 

frequency component for the electric field is given by:

=  —ÿ = — [-e + ( l  + 2e'^"^ cos (K^x))  + e _ (l + cos {K^x  -  29))] ,

( 1 .1 1 )

where the quantization axis is z, being perpendicular to the x — y plane, and the 

relative phases are chosen such that there is a local maximum of the polarized
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component at the origin. A basis associated with each primitive cell consists of a 

cr+ site at v i =  0 (black dot) and a~ site at vg = {20/Kx)'^ (white dot).

For configuration (B), in figure 1.8, in order to obtain maximum light shift at 

points of pure a polarization, it is necessary to choose different amplitudes for the 

three plane waves, E 2  = = E \ /2  [Ei being the beam travelling along the y

axis), and a convenient relative phase. The electric field in this geometry is then 

given by:

p  p —i k y
El {x ) = ° [ -e + ( l  + 2e*'''"!' cos (K^x))  +  e_ (1 + 2e‘"»!' cos {K^x))]

v2
( 1 .12 )

In this case, the quantization axis is chosen in the x — y plane along k i. From 

equation 1.12 we can see that the basis of the primitive cell has at v% = 0  and 

a~ at V2 =  ['ïï/Kx)yi-

This second configuration has pure circular polarization at positions of maxi­

mum light shift for an arbitrary angle 9, while in geometry (A) this requirement 

was only fulfilled choosing an angle of 6  = t t / 3 .  But, because of the intensity 

imbalance of the three laser beams, the potential of configuration (B) presents a 

non-zero radiation pressure at the potential minima, making it less suitable for 

cooling and trapping than the potential of configuration (A).

1.2.3.2 3-D Optical Lattice

The discussion in the above two-dimensional case can be generalized also to three 

spatial dimensions. In order to create a lattice in N dimensions, N-|-l laser beams 

should be used to achieve a constant topology. If more beams are used, they 

have to be phase locked. In the following, I discuss an example of a 3D lattice, 

generated by four beams, which can be viewed as a three dimensional extension of 

the ID lattice discussed above, [14]. Let us start again with the one dimensional 

lattice, formed by two opposing beams with crossed linear polarization along the
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2—axis. One of the two beams is split, in order to get two beams in the x  — z 

plane with equal intensities and linear polarizations along the y—axis. The other 

beam is split into two beams lying on the z — y plane, with linear polarizations 

along the z —axis. The total field will generate a periodic potential with points of 

pure CT+ and <7~ light; at these points all beams contribute with equal intensity 

and therefore the net radiation pressure is zero. This structure, shown in figure 

1.9, gives rise to a simple tetragonal lattice, in [14] this configuration as well 

as other possible ones are studied; it is shown that, by changing the geometry 

and number of laser beams, one can construct other types of unit cells, such as 

face-centered-cubic and body-centered-cubic.

Figure 1.9: Three dimensional tetragonal optical lattice configurations generated with
four beams.

1.3 Aim s of this thesis and outline

Optical lattices induced by light detuned far from the frequency of an atomic reso­

nance transition are ideal systems in which to develop techniques for the coherent 

control of atomic motional and internal states. They provide conservative poten­
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tials, which can be engineered in order to achieve a wide variety of forms, through 

a careful choice of the geometry and polarization configuration of the optical field 

and the strength and orientation of supplementary static magnetic fields. Further­

more the decoherence arising from spontaneous emission can be suppressed to a 

high degree. The atoms trapped in such lattices are to a large extent isolated from 

environmental disturbances and from each other. The first step towards coherent 

control of atoms in a far-detuned lattice is their preparation in a single motional 

state.

In this thesis an extensive study of atoms in a 2-D non-dissipative optical lattice 

is presented. The main goal of the thesis is to achieve two-dimensional cooling of 

the atomic sample via resolved-sideband Raman-cooling. In this way the atoms 

can be prepared in the ground vibrational state of the light-shift potential surface 

corresponding to a single Zeeman sub-level. This is an ideal starting point for 

coherent control, as it is a minimum uncertainty state.

An understanding of the properties of the lattice is gained through theoreti­

cal modelling of the potential light-shift and band structure. A two-dimensional 

scheme for resolved-sideband Raman-cooling [18] is also modelled; these calcula­

tions offer us the possibility of estimating a priori the optimum parameters for 

the loading of the lattice and the Raman-cooling of the sample.

The loading of the far-detuned optical lattice is monitored and a series of 

experiments are run aimed at the optimization of the transfer of atoms from a 

super-imposed, near-resonance lattice. Experimental techniques are implemented 

in order to measure the population of vibrational bands and Zeeman states. These 

techniques are used in order to monitor and optimize the transfer of atoms, by 

ensuring that the increase in vibrational temperature during the transfer is mini­

mized and that the maximum population in the desired stretched state is achieved. 

The possibility of resolving the populations of the single bands is also exploited
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in order to study the mechanisms of loss in the far-detuned lattice and the ef­

fects of noise or spontaneous-scattering induced heating in the far-of-resonance 

lattice (chapter 4). Stern-Gerlach experiments (chapter 6) are used to monitor 

the population in the distinct Zeeman levels and to maximize the population of 

the \mF = —4) state, in which the Raman cooling becomes efficient. Furthermore, 

this technique is employed for a study of the magnetization properties of the lat­

tice as well as the spin-temperature of the ensemble of atoms in the lattice. In 

chapter 6 a thorough analysis of the variation of the Zeeman states’ population 

as a function of a static magnetic field orthogonal to the lattice plane allows an 

investigation of the paramagnetic properties of the lattice and the determination 

of a spin temperature.

In chapter 5, experiments on parametrically excited atoms in the lattice, com­

pared to simulations, allow us to investigate the heating induced by laser inten­

sity fluctuations. Parametric excitation experiments and simulations permit also 

a study of the vibrational frequencies of the far-detuned lattice and allow the 

matching of the near-detuned vibrational frequency to the far-detuned one. Fur­

thermore, a second order perturbation method, allows the investigation of the high 

degree of anharmonicity and of the non-uniformity of the potential depth along 

the trapping sites.

Following the optimization of the loading of atoms in the far-detuned lattice, 

sideband-Raman cooling experiments are performed, aimed at the preparation of 

atoms in a single motional state. Two-dimensional sideband Raman cooling is 

finally achieved (chapter 7), using a method first proposed by Jessen and Deutsch 

[18]. The method is based on coherent coupling, due to stimulated Raman transi­

tions induced by the lattice field, with an irreversible step due to optical pumping.
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Non-Dissipative Optical Lattices

The spontaneous scattering of photons, which is an inherent part of the Sisy­

phus cooling that leads to localization of atoms in a near-detuned lattice, has the 

disadvantage of being responsible for decoherence effects and thus for a reduced 

lifetime of the vibrational coherences. While the spontaneous scattering rate is 

proportional to the potential depth is proportional to It is therefore pos­

sible to reduce the scattering rate by tuning the lattice light field very far from 

an atomic resonance (far-detuned regime), while keeping the potential depth con­

stant by adequately increasing the intensity. The scattering rate can therefore be 

reduced from a typical value of F g =  500 kHz in the near-detuned lattice to only 

Fg ~  lOOifz in the far-detuned optical lattice, while maintaining the vibrational 

frequency typically Uyn̂  =  AQKHz in both cases. In this way we generate a far- 

detuned lattice, an almost dissipation-free potential, with longer-lived vibrational 

coherences.

In this chapter an in depth discussion of optical lattices in the far-detuned 

regime is offered. The form of the optical potential which may readily be accounted 

for using the concept of effective magnetic field presented in section 1. Section 

2 details the calculation of the band-structure for our 2D lattice configuration

37
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and presents results for a variety of potential depths. The last section of the 

chapter is entirely dedicated to a sideband-Raman-cooling scheme, first realized 

by Hamann et al. in 1998 [20], which was used to increase the population of 

the ground vibrational state over that obtainable by Sisyphus cooling alone in a 

near-resonant lattice.

2.1 Optical potential in the far-detuned regime and 

fictitious m agnetic field

The potential for atoms in the ground state manifold interacting with a laser field 

is given by [18]:

Û(x) = - E l ( x )  ■ Q . E t(x )  (2.1)

where is the electric field, d = — Y2^dgedeg/hAge is the atomic polarisability 

tensor in the far-off resonance limit, with d^e being the electric dipole operator 

between the ground and excited hyperfine states; Age = uji — tOge is the detuning 

from the transition between the hyperfine levels \g) ]e).

The electric dipole operator is a sum of contributions from all the allowed tran­

sitions between Zeeman sublevels of the ground and excited states. By expanding 

the laser field [20], [21], [18] in the spherical polarization basis (cr'*’,cr“ ,?r), it is 

possible to show that the only non-zero elements of the matrix,

(F,m^]f7(x)]F,mj), (2.2)

are only those which connect states with Am = 0, ±1, ±2. Terms for which A m  = 

0 lie on the diagonal of the matrix, while off-diagonal terms couple states for which 

A m  =  ± 1 ,± 2  and result from stimulated Raman transitions between different 

ground state sublevels, involving a and tt polarized light. The ‘adiabatic’ potential

is found by diagonalizing this matrix taking into account off-diagonal terms which

represent the Raman coupling. The new eigenstates will be a superposition of the
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\F,m) basis functions. An adiabatic potential cannot be associated with a pure 

|F, m) state, but at locations of pure or light, where the Raman coupling is 

almost non-existent, it is nearly identical to the ‘diabatic’ potential associated to 

the |F, m =  ±4) state. The diabatic potential is obtained simply by neglecting the 

off-diagonal terms in matrix 2.2. As the atom moves away from regions of pure 

a polarization, the' contribution to the eigenstate of other magnetic sublevels is 

increased gradually and avoided crossings are created midway between a (%+ and 

u o~ site. In general, if the Raman coupling is significant, the adiabatic potential 

describes the lattice better, as long as the atoms move slowly enough through the 

avoided crossings to undergo Raman transitions. Fast moving atoms will follow 

the diabatic potential. For atoms tightly bound at a locations, the adiabatic and 

diabatic potentials almost coincide.

An optical lattice with polarization gradients will, in general, establish coher­

ences between the different magnetic sublevels of the ground state via stimulated 

Raman transitions. These coherences, in conjunction with the effects of external 

magnetic fields, can be exploited to control the atomic state. To study the coher­

ent evolution of the atomic state, it is necessary to start in the dissipation-free 

regime, i.e. the lattice should be tuned very far from the atomic resonance. In 

this limit equation 2.1 can be simplified and the optical potential can be written 

as [18]:

Ù (x) =  f7j(x) + B e//(x ) • (2.3)

where

Uj =  —-C/i|ei,(x)p (2.4)

and

=  ^(7i[ez,*(x) X ei,(x)], (2.5)

with Ui being the single beam light shift and el being the polarization vector. It 

has been assumed that the lattice is generated by equally intense laser beams, so



2.2. Effects of static magnetic fields 40

that the single beam amplitude can be factorized. From equations 2.3 and 2.5 it 

can be shown that the light shift potential is equivalent to a shift, proportional 

to the local intensity of the field and independent of the hyperfine state of the 

atom (f7j(x)) and the effect of an effective fictitious static magnetic field, whose 

amplitude and direction depend on the local ellipticity of the polarization. This 

fictitious field is interacting with the magnetic moment /x = — wher e F is 

the angular momentum operator, gp is the gyromagnetic ratio and /xg is the Bohr 

magneton.

In the limit of infinite detuning coherences between states with Am =  ±2 go 

to zero (cf.[18]). If the polarization of the light field is linear at any location, 

the effective magnetic field vanishes, thus making the light-shift independent of 

the magnetic sublevel of the atom. For different ellipticity of the laser light, 

polarization in the plane of the lattice gives rise to longitudinal effective B  fields. 

The combination of a tt and a component of the light gives rise to a transverse 

effective magnetic field. The great advantage of engineering B^f f  through the light 

polarization is that it is possible to generate an effective magnetic field which is 

spatially varying on the scale of the optical wave-length.

2.2 Effects of static m agnetic fields

Equation 2.3 can easily be generalized to take in account of the effect of a static 

magnetic field B ca,n be taken in account, as shown in [18], by writing:

Û (x) =  C/j(x) +  (B e//(x) + B) • /x. (2.6)

The introduction of a static magnetic field in directions parallel and transverse 

to the quantization axis (or the fictitious magnetic field itself) gives rise to dif­

ferent effects: a field parallel to the z-axis simply adds a Zeeman energy shift 

A F  =  gpl^BTTiBz to the diagonal terms of the optical potential matrix 2.2. This
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dependence on the m  quantum number can be exploited in order to accumulate 

atoms in a preferential state in the near-detuned lattice, just by increasing the 

depth of the corresponding potential through the Zeeman effect.

A transverse magnetic field along the x oi y direction creates off-diagonal terms 

in the optical matrix, which generate the coupling between magnetic sublevels 

which differ by A m  =  ±1. This coupling between magnetic sublevels can be 

exploited in the near-detuned lattice in order to enhance the cooling efficiency 

and also to increase the localization of the atoms at the bottom of the potential 

well.

2.3 B and-structure of the 2-D far-detuned optical lat­

tices

As discussed previously in section 1.2.1.1, the periodicity of the optical lattice 

allows us to use the methods of solid state physics in order to determine its energy 

spectrum [22]. For atoms in an optical potential, the Hamiltonian can be written 

as:

H = ^  + (>(x). (2.7)

where f/(x) is given by equation 2.3 and ^  is the kinetic energy of the center- 

of-mass. The eigenvalues of this Hamiltonian form a discrete spectrum of energy 

levels, as discussed in section 1.2.1.1.



Figure 2.1; Lowest potential surface of a 2-D optical lattice associated with nip = ±4 
states. Adjacent lattice sites have opposite polarizations.

The band structure and energy levels were calculated for a two dimensional 

lattice with the geometry of figure 1.8(A). The employed laser beam configuration 

is shown in figure 6.3. It consists of three co-planar laser beams of equal intensity, 

propagating at angles of 120° with respect to each other and linearly polarized in 

the plane of the lattice. This configuration gives rise to a lattice of alternating 

and (T~ sites. The two dimensional diabatic potential for the lower shifted states 

m p  =  ±4 is shown in a 3D plot in figure 2.1 and as a 2D contour plot in figure 2.2 

for just one of the two m p  states. The potential has hexagonal symmetry, with 

rings of six minima surrounding a potential maximum. Adjacent minima are at 

locations of opposite pure circular polarization.

A code was available to be used to calculate the vibrational bands of a periodic 

one-dimensional potential. I used the code to model the two-dimensional potential
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Figure 2.2: 2D contour plot of potential surface of a 2-D optical lattice associated with
mp = —4 state.

well by considering cuts along the two directions. As we will see, by using a one­

dimensional model, the band structure results are symmetric only for the lower 

lying vibrational states. In this limit the band structure is independent of the 

direction chosen and it is therefore justified to assume a unique band structure 

and introduce the two-dimensional degeneracy for the energy levels. Referring 

to figure 1.8(A) and 2.2 for the axis definition and selecting one of the potential



2.3. Band-structure of the 2-D far-detuned optical lattices 44

wells corresponding to \mF = —4), cuts along the x  and y directions for the 2D 

potential of figure 2.1 yield the ID x  and y band structure in figure 2.3, 2.4 and 

2.5, 2.6 respectively as a function of quasi-momentum q. Superimposed in the 

same figures is the spatially-varying potential depth, which refers to an arbitrary 

horizontal scale. In figures 2.3 and 2.4 the z-potential is plotted and the bands

- 2 0 -

- 4 0 -

- 6 0 -

- 100 -

- 12 0 -

- 14 0 -

- 1 6 0 -

0.5- 0.5 -0  4 - 0.3 - 0.2 - 0.1 0 0.1 0.2 0.3 0 4
2q lUa

Figure 2.3: Band structure (coloured lines) for a potential depth of 170 Er , cut in the
x-direction, plotted versus the quasi-momentuin q. Superimposed on this plot, employing 
the same vertical scale, is a cut through the potential energy surface in the x direction. 
The horizontal scale of this curve (black line) is arbitrary and is chosen so that one period 

of the potential fits into frame of the figure.

are calculated for the \mjr = 4) state for a maximum light shift of 170Er and 

250A’fl respectively; these values represent the typical potential depth used for 

the experiments. In figures 2.5 and 2.6 the same is shown along the ^-direction. 

It is important to notice that for the lower lying bands the two potentials are 

equivalent and the vibrational frequencies are the same along the two dimensions. 

For higher lying bands differences arise: along the x  and y direction anharmonicity 

and asymmetry of the potential make the vibrational frequencies and number of 

bound states quite different. Since in the experiments the sample is always cooled
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Figure 2.4: Band structure (coloured lines) for a potential depth of 250 Efi, cut in the
x-direction, plotted versus the quaai-momentum q. Superimposed on this plot, employing 
the same vertical scale, is a cut through the potential energy surface in the x direction. 
The horizontal scale of this curve (black line) is arbitrary and is chosen so that one period 

of the potential fits into frame of the figure.

to very low temperatures, the population over the higher lying levels is in general 

negligible, it is then justified to assume that the potential for the lower lying 

vibrational states in the two dimensions is the same as the symmetric potential 

along the y-direction.

'I’he different levels also present a certain band-width of allowed energy. The 

width of the bands, see section 1.2.1, is not shown in figures 2.5 and 2.6, but the 

results of band width calculations are shown in table 2.1, where the (t„ represents 

the width of the nth band. It is noteworthy that the spacing between the bands 

decreases with increasing band index n and at the same time the width of the 

bands increases with n, due to anharmonicity of the potential. In the tight binding 

regime, near the bottom of the potential well, the bands are well approximated 

by the vibrational energy levels of a harmonic oscillator; the band index n can
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Figure 2.5: Band structure (coloured lines) for a potential depth of 170 Ea. cut in the
y-direction. plotted versus the quasi-momentum q. Superimposed on this plot, employing 
the same vertical scale, is a cut through the potential energy surface in the y direction. 
The horizontal scale of this curve (black line) is arbitrary and is chosen so that one period 

of the potential fits into frame of the figure.

then be considered as the vibrational quantum  number. 'J’he width of the bands 

in this regime is negligible, showing th a t no significant tunneling between wells 

occurs. Going to higher vibrational numbers, the bands get closer and they show 

a significant curvature and width. The curvature arises because, when an atom ’s 

energy is greater than th a t of the lowest adiabatic potential well, it can tunnel 

between adjacent potential wells, leading to a  spread of the wavepacket. This can 

result in atoms being less localized and therefore diffusing through the lattice, 

in the x-direction the potential presents different periodicity and symmetry, but 

for low-lying bands, in the tight binding regime, the two cuts present similar 

characteristics of energy levels, curvature and width.
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Figure 2.6; Band structure (coloured lines) for a potential depth of 250 Eji, cut in the 
y-direction, plotted versus the quasi-momentum q. Superimposed on this plot, employing 
the same vertical scale, is a cut through the potential energy surface in the y direction. 
The horizontal scale of this curve (black line) is arbitrary and is chosen so that one period 

of the potential fits into frame of the figure.

2.4 Theory of resolved-sideband Raman cooling

In this section 1 will describe the principle of the resolved-sideband Raman-cooling 

scheme used in our work, which was proposed for the first time by Jessen and 

Deutsch in [18] and experimentally demonstrated in 1998 [20].

In the previous section it was pointed out that, for atoms localized at the 

bottom of the potential well, in the tight binding regime, without any further 

perturbation, tunneling between neighbouring wells is negligible. This condition 

allows us to consider each lattice site as an independent potential well. At locations 

of maximum light shift the optical potential has pure helicity: the most deeply 

bound states have negligible mixture of Zeeman sub-states. But if the vibrational 

levels n of two ]m/r) states become degenerate, then coupling between different 

mp  wells can be introduced as a transverse component of the fictitious magnetic



2.4- Theory of resolved-sideband Raman cooling 48

Umax =  170Efi Umax =  250Ep,

n <7̂  (kHz) En+l — En (kHz) n cr„, (kHz) En+l -  En (kHz)

0 0.0000 32.943 0 0.0000 40.204

1 0.0000 31.724 1 0.0000 39.005

2 0.0000 30.423 2 0.0002 37.743

3 0.0000 29.018 3 0.0012 36.409

4 0.0004 27.478 4 0.0070 34.988

5 0.0040 25.747 5 0.0028 33.464

6 0.0488 23.712 6 0.0907 31.813

7 0.3897 21.116 7 0.2300 29.981

8 2.3099 17.915 8 0.4848 27.832

9 7.9608 17.499 9 0.7831 24.979

10 16.2395 21.134 10 3.7082 21.696

11 22.6617 25.132 11 9.8553 20.313

12 26.6338 28.672 12 18.7859 27.588

13 30.1953 30.876 13 28.5801 28.368

T able 2.1; E nergy  sep ara tio n  betw een v ib rational levels and  levels w id th s (cr,i ) for Umax ~  170E r  

and  Umax =  250E r . For increasing n  num ber an harm on ic ity  becom es significant and  th e  b an d s

are broadened.

field and resonantly enhanced, thus leading to a mixture of states.

Sideband Raman-cooling is based on the exploitation of this coherent mixing 

of states, by controlling the coupling between different product states |m/r) 0  |n), 

or \mF,n)  states, in order to selectively transfer population from a state |mp’ =  

4 ,n  -f 1) to a state |?Tii? =  3,n). Optical pumping then transfers the atoms back

to the mi? =  4 state. When atoms are in the Lamb Dicke regime. E h.
4: 1,

vib
which means that the energy separation of vibrational levels is much greater than 

the recoil energy; this implies that elastic scattering is favoured. In a typical
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experiment the Lamb Dicke factor ^  is 1/20 so that to a good approximation
nuyih

optical pumping brings back the atoms to the =  4 state without a further 

change in vibrational quantum number, thus decreasing the vibrational energy by 

one quantum.

The electromagnetic field can induce coherences between states \m) |m + 

Am), where Am =  ±1, ±2, through stimulated Raman transitions involving pho­

tons of polarization tt cr^ or cr^ respectively. In the infinite detuning

limit it is possible to show [18] that the Am =  ±2 coherence term goes to zero. 

Furthermore it has been proved [18] that, even at smaller detunings, the efficiency 

is very small, thus making the Am =  ±2 induced coherences not useful for coher­

ent control. Coherences between states with Am =  ±1 can be induced by means of 

a magnetic field and stimulated Raman transitions, the interaction m atrix being:

_  ({n'},m  ± l \[Bl°\x) T iB l f ix )]F± \{n],m)

where Btot is the sum of the external and fictitious magnetic fields. An external 

transverse magnetic field does not couple states of different parity [m ,n),]m  ±  

l ,n  ± 1), which are located at the same lattice site. It is however possible to 

exploit the effective magnetic field in order to generate both even and odd parity 

couplings. In the limit of infinite detuning equation 2.8 becomes, as shown in [18],

Um,m±l = F{F + 1)^

(2.9)

where and are the different components of polarization of the electric field 

and n are the vibrational quantum numbers. From equations 2.5 and 2.9 it follows 

that the Raman coupling terms are zero at locations of pure polarization {a± or

7t ) .

In the 2-D configuration which we are using, figure 2.7, the coupling potential 

is introduced by slightly rotating the polarization of one of the beams out of the
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lattice plane. This introduces the tt component needed for Raman coupling at 

sites where the polarization would otherwise be entirely a±.  Changing the polar-

Figure 2.7: Experimental setup for resolved-sideband Raman cooling; Raman coupling is 
introduced by adding a rrpolarized component (red) to the light field.

ization of one of the beams from linear to elliptical, corresponds to introducing 

a 7T polarized light with amplitude (figure 2.7) and relative phase with 

respect to the beam propagating in the - y  direction, it can be shown [18] that 

the total electric field is then given by:

Eie-^̂ y
•{—e+[l + 2e^^^y cos {Kxx)] +

+ e_[l +  cos -  26))]} + (2 .10)

where =  A;sin^ and Ky  =  k{\ +  cos^). The effective magnetic field then 

becomes:

+ iEy^^ = -  ^  [2 sin 9 sin {KxX -  9) cos {Kyy -  0)

4-2% cos ^ cos {KxX — 9) sin [Kyy — <̂ ) — isin</)], (2.11)

where Ui is the single-beam light-shift for a Clebsch-Gordan coefficient of 1. Equa­
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tion 2.11 shows that the Raman coupling has both even and odd terms along both 

coordinates of the lattice plane and its effectiveness (i.e. amplitude and phase) 

can be adjusted through the ellipticity of the beam.

Using equation 2.8 and 2.11 and expanding around the minimum of the poten­

tial well in the harmonic approximation, it can be shown that maximum coupling 

for the odd parity states occurs for <p =  tt/2. The efficiency of coherent transfer 

can be characterized by one parameter, or figure of merit [18], which depends on 

the ratio of n  component to a component, detuning and potential depth. For 

our lattice configuration, the figure of merit for coherent transfer of population is 

given by :
_  %  _  0.0047 |A|

where U r  = 7̂ is the Lamb-Dicke parameter and E r  is the recoil energy.

The coupling introduced with tt light induces transitions from jm, n) to |m — 1, n — 

1). Relaxation back to the vibrational manifold of the |m) state with the loss of one 

quantum of vibrational energy is induced by optical pumping, as shown in figure 

2.8, where the pumping beam tuned to the \F =  4, mp =  3) ^  |F  =  — 4)

transition is represented in blue. Also in the same figure a repumper beam (red) 

tuned to the F — 3 F  = A transition is shown: this is used to replenish the 

hyper fine ground state on which the cooling happens. Raman coherences induced 

by 7T, a  light are represented in black.

For cooling to be efficient it is necessary that the heating rate, which is domi­

nated by photon scattering, is well below the oscillation frequency, which means:

(2.13)
E r  J E r

This also means that the time-scale for population transfer, H / U r , must be much 

shorter than the vibrational excitation rate:

— = A: »  1, (2.14)
hdn/dt
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Figure 2.8: Experimental level scheme for resolved-sideband Raman cooling. The Raman 
pumper polarized, tuned to F  =  4 —>F =  4 transition is shown in blue, the repumper 
light a"*" polarized, tuned t o F  =  3 —> F  =  4 transition is shown in red and Raman 

coupling is represented with black arrows.

where k is the merit factor for the population transfer with optical pumping. The 

figure of merit is derived in [18] and is;

/tx ~  0 .1 7 - ^ U  . k y =3 k x .  (2.15)

in all the experiments performed, see chapter 7, the figure of merit was estimated 

to be »  1.

T’he Raman coupling introduced by changing the polarization of one of the 

lattice beams can be resonantly enhanced by bringing into degeneracy levels |mF =  

4, n) with \mp = 3,n — 1). in figure 2.9 the potential and band structure is shown 

for the m/r =  4 and mp  = 3 states, for Umax =  200Ep. A magnetic field along 

the quantization axis would Zeeman-shift the levels proportionally to their m p  

quantum number. By adding a static magnetic field, states \mp =  4,n) and 

\mp — 4, n — 1) can be brought in resonance, which is referred to as tuning to 

the first red sideband. In figure 2.10 the magnetic field necessary to tune to the 

first sideband is plotted versus the potential depth for the different pairs of levels
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Figure 2.9: Band structure for the mp = 4 (blue) potential and nip = 3 (purple) potential.

involved {n,n — 1}, with n =  1 —̂ 5. The various lines represent the values of 

magnetic field necessary so that m p  = 4, n =  1, 2, 3 ,4 ,5 levels can be brought into 

degeneracy with the corresponding m p  — 3 ,n  — 1 states, for different potential 

depths. Even for a fixed potential depth, from figure 2.10 it can be seen that 

different vibrational levels {n} are brought into degeneracy with (n — 1} levels 

for different values of the magnetic field. This is due to anharmonicity and the 

fact that higher lying levels are more closely spaced than lower ones. The range 

of values of magnetic field necessary to go through all the resonances depends on 

the potential depth. It should also be noted that a similar plot to figure 2.10 but 

calculated for the potential cut along the ^-direction would show almost identical 

values as those found for the z-direction. Differences however arise for higher lying 

vibrational states: the spread in values becomes quite large, especially in the x-



2.4- Theory of resolved-sideband Raman cooling 54

CÛ
-20

-40

-6 0

-80
50 100 150 200 250 350 400300

Uo(Er)

F igure  2.10: M a g n e tic  field  to  tu n e  to  th e  first re d  s id e b a n d  fo r d iffe re n t p o te n t ia l  d e p th s .

direction and their range becomes substantially different too. This indicates tha t 

in order to  obtain efficient cooling in two dimensions, it is necessary to s ta rt with 

only the lower lying levels in the x  and y directions appreciably populated, so th a t 

they are characterized by similar param eters and can be cooled simultaneously.

In conclusion, in this section 1 have explored the feasibility of a m ethod to 

increase the population of the ground vibrational level of the potential well as­

sociated with one stretched state. This m ethod is based on the addition of a tt 

component of light to the lattice field, and necessitates the use of a pum per beam  

to repopulate the stretched state , as well as a static external magnetic field to 

Zeeman-shift and thus bring into degeneracy vibrational levels of potential wells 

corresponding to different magnetic substates.
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2.5 Population distribution over vibrational levels

In this section 1 discuss the behaviour of atoms in a harmonic potential well and 

some quantities will be defined which are to be used in later chapters. The eigen-

a

0.8  -  ■

0.6  -  ■

V C 3 6 T

T=2.6T„
I V 3 .1 T „

T =9.4 T

2 3 4 5 6
vibrational number n

Figure  2.11: B lo ck  d ia g ra m  fo r p o p u la t io n  o f  d iffe re n t v ib ra t io n a l  levels a t  d iffe ren t
te m p e ra tu r e s  fo r 1-D h a rm o n ic  o sc illa to r  fo r g ro u n d  s t a te  k in e tic  t e m p e r a tu r e  To-

states of atoms trapped  in an harmonic potential can be characterized as product 

states \F,m)\n),  where n  is the harmonic oscillator quantum  number. For an en­

semble of atoms in therm al equilibrium, the population is distributed over different 

vibrational levels and this distribution defines the vibrational tem perature Ty of 

the sample. For a  two-dimensional harmonic oscillator the occupation probability 

for a vibrational level characterized by =  0, Uy =  n is [23]:

Idn — (1 — (2.16)
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where
 n.n

qjB = e = —----  (2.17)
11»-1

is the Boltzman factor. The mean vibrational excitation number is given by:

n =  n„,n =  — — . (2.18)

The kinetic temperature is defined in terms of the variance Ap, along one dimen­

sion, of the momentum distribution of the ensemble of atoms, as:

The momentum variance is related to the ground state momentum po =  MhcOosc/'^-

{ A p f = p l { 2 n  + 1). (2.20)

Introducing the ground state kinetic temperature To = p^/mkB  and combining 

equations 2.19 and 2.20 we get:

^  = ^  =  (2n + l). (2.21)

It is also possible to rewrite qs  only in terms of T% and To, as it comes from 

equations 2.17, 2.18, 2.21:

Qb =  (2.22)
J-K +  l O

Using equations 2.21 and 2.16 the population of the ground state (as well as the 

populations of all bound levels) are reconstructed by simply measuring the kinetic 

temperature of the sample after its release from the far-detuned lattice (FDL). In 

figure 2.11 the population distribution for a 1-dimensional harmonic oscillator is 

calculated, assuming a ground state temperature To = 0.956q,K for four different 

kinetic temperatures. As we are interested in the ground state population of a 

two-dimensional harmonic oscillator, in figure 2.12 a diagram of the population 

distribution over different vibrational levels for the same temperatures is shown, 

for a 2-D harmonic oscillator in the case Ux =  0,riy =  n. It has been assumed 

that the temperatures in both dimensions are the same.
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2.6 Conclusions

In this chapter 1 have presented the theory for far-detuned optical lattices and 

the results of band calculations in this regime. A m ethod for resolved-sideband 

Ram an cooling was explored and the param eters required to tune the cooling to 

the first sidebands were calculated. Finally, the population distribution over the 

different vibrational levels was calculated for 1-D and 2-D harmonic oscillators.



C h a p t e r  3

The Experimental Apparatus

This chapter reviews the experimental apparatus, which was set up during the first 

year of my PhD. The experiment was previously partially set up in Oxford but it 

was moved to London in coincidence with the start of this work. I have worked on 

rebuilding the experiment in London, particularly in implementing the set-up for 

the far-detuned optical lattice and all the experiments described in this thesis. I 

also computer-automated the experiment, through multiple input/output boards 

and the Labview programming language. The chapter begins with a description 

of the laser sources, placing particular emphasis on the techniques used to narrow 

the natural emission line shape and the fine control of the frequency tuning. These 

parameters are particularly crucial in a laser cooling experiment. The setup to 

control stray magnetic fields, as well as the magnetic quadrupole trap  coils are 

then described. Most of the measurements presented in this thesis exploit a time- 

of-flight setup which is presented at the end of the chapter. All the parameters 

and characteristic times of the experiment were computer-controlled and the basics 

of the software and hardware tools used can be found in the last section of this 

chapter.

5 8



3.1. The caesium source 59

3.1 The caesium source

The gas of caesium atoms is contained in a cell of 132 x 72 x 52 mm, with 5 mm 

thick walls, antireflection coated on the outside for 852 nm wavelength light. The 

cell is kept at very low pressure, down to 10“ ® Torr, using a ion pump. For a 

detailed description of the vacuum system I refer to [24].

The nuclear spin of the caesium atom is /  =  7/2, and the hyperhne interaction 

splits the levels in the eigenstates of the total angular momentum F , according to 

the scheme in figure 3.1. The caesium transition used to cool and trap the atoms 

is the Ü 2  6^.Si/2, F  =  4 ^  6^P3/ 2, F  =  5 at a wavelength of 852 nm. The lifetime 

of the excited level is 30 ns, corresponding to a natural linewidth F/27r =  5.22 

MHz.

3.2 Laser frequency stabilization

A typical laser-cooling experiment requires several different laser sources tuned at 

different frequencies. In this section a brief description of the required tuning for 

the lasers is given, while referring to later sections for the techniques used.

The atoms are first collected and cooled in a magneto-optical trap (MOT), 

which consists of three pairs of counter-propagating laser beams, with opposite 

circular polarization, tuned to the low frequency side of the D 2  line, F  =  4 —> 

F ' = 5 transition. At the same time a repumper beam tuned to the D 2  line, 

F  =  3 ^  F  =  4 transition is used to pump atoms lost to F^ =  3 back to the 

cooling transition. A further step in cooling is obtained by further detuning the 

trapping beam and switching off the magnetic field gradient, so that the atoms are 

left to cool further in an optical molasses. The atoms are then transferred to a 2- 

dimensional near-detuned optical lattice, composed of three co-planar light beams 

arranged at 120° with respect to each other, and linearly polarized in the plane
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Figure 3.1: Scheme of the hyperhne structure for caesium atom.

of the lattice. This change of geometry makes it necessary to use a different laser 

source, tuned to the red of the D 2 , F  = A ^  F' = 5 transition, which also allows 

a greater range of detunings. The next step is to generate a far-detuned lattice.
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detuned up to 20 GHz to the red of the D 2, F  =  4 —̂ =  5 transition, which

means being well detuned to the low frequency side {red) of all the excited state 

hyperhne structure. Furthermore, the intensity needs to be increased by orders 

of magnitude, thus making necessary the use of another laser source. In what 

follows, I will explain how the different beam’s frequencies are set and controlled, 

while in the subsequent sections I will explain the method which was used in order 

to create very narrow emission linewidths.

As will be discussed later, a diode laser is used as the master laser, providing 

a frequency reference to the trap and near-detuned lattice lasers, which are both 

injection-locked to the master. A part of the master laser output beam is routed 

to a saturated absorption setup (see next section), after being shifted in frequency 

through an acousto-optic modulator (AOM) used in a double pass. The saturated 

absorption signal is used to lock the master laser, as explained in section 3.4, 

on the crossover of the F  = 4 —> F ' =  4, 5 transitions. The master frequency 

can therefore be set to twice the frequency shift produced by the acousto-optic 

modulator (AOM) from the F  =  4 ^  F ' =  4, 5 cross-over, see figure 3.2. The 

master output beam is then employed to inject the trap laser. Before being sent 

to the cell, the trap beam is further shifted toward the red of the F  =  4 —> F ' =  5 

transition, as shown in figure 3.2.

The master laser also generates the beam that is used to inject the near­

detuned lattice laser, but it is first double-shifted via an AOM used in a double 

pass. The output of the injected lattice laser, is then further shifted by a fixed 

80 MHz acousto-optic modulator. A repumper beam is added, tuned to the D 2  

F  =  3 F ' =  4 transition, locked on a saturated absorption signal. This laser 

only provides repumping light, needed to replenish the ground state F^ =  4 level 

on which the cooling processes happen. The far detuned optical lattice reference
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Figure 3.2: Scheme of frequencies for the near-detuned lattice and trap beam, as obtained 
by shifting the master-injecting frequency.

frequency is generated by a DBR laser diode, with very narrow emission linewidth. 

The DBR output is used to pump a single-pass tapered-amplifier (MOPA - Master 

Oscillator Power Amplifier) [25], [26], [27], capable of an output of up to 0.5VV. A 

detailed description of this system can be found in section 3.6.

3.3 G rating-stabilized diode lasers

Diode lasers are very sensitive to optical feedback. The free-running laser has 

many different oscillation modes and the emission frequency to is determined by 

the competition of the different modes. By increasing the number of photons at a 

specific frequency wy it is possible to support the gain of the mode at frequency 

ujf while inhibiting the others, thus forcing the emission at a;/ and reducing the 

linewidth. In order to narrow the bandwidth of the laser and to select a particular 

frequency, optical feedback is used. The optical feedback is obtained by means of 

a diffraction grating, which allows us to select a specific wavelength to be retro- 

reflected into the laser cavity. The grating is placed in the path of the output laser 

beam in a Littrow configuration, forming an extended cavity resonator with the
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back facet of the diode laser [28], [29], as shown in figures 3.3, 3.4. In the Littrow

output beam

PZT

^zero order

t

djffraction grating

Mirror

Collimating Lens

SDL 5412-Hl 
Diode Laser

Figure  3.3: S ch em e  o f th e  e x te rn a l  c a v ity  c o n fig u ra tio n .

configuration, represented in figure 3.4 when a — (3, the first diffracted order is 

reflected in the direction of the incident beam back into the laser cavity (which 

is now formed by the back facet of the diode and the grating), thus forcing the 

laser oscillation at the frequency of the reflected beam. By changing the grating’s 

orientation with respect to that of the incident beam, it is possible to select a 

specific wavelength according to the dispersive law

2dsin(a) =  mA, (3.1)

where d is the pitch of the grating, a  is the incidence angle and m  the diffractive 

order, see figure 3.4. The grating used here had 1200 lines/mm and Xbiaze =  750 

nm. The grating is placed on a mount which allows rotations about two axes
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Figure 3.4: Scheme of the grating in the Littrow eonfiguration.

in order to obtain alignment of the first order diffracted beam and also to select 

different wavelengths. The optimum alignment is obtained by minimising the 

threshold current.

With diode lasers in external cavity configuration it is therefore possible to 

control the emission wavelength. At the same time, a narrowing of the linewidth 

is also produced, due to the increased finesse of the cavity on which the radiation 

oscillates. In this way the linewidth of the laser may be reduced from some tens of 

MHz to a few tens of kHz only. The emission frequency can be tuned within the 

free spectral range of the resonator, by adjusting the cavity length. A variation 

AL in the length of the cavity gives a change in frequency given by:

-  -  4 ^ .  (3.2)

The extended cavity configuration also has disadvantages, due to the increased 

mechanical and thermal instability, that can lead to an uncontrolled drift of the 

emission frequency. The cavity is therefore isolated from mechanical vibrations 

and air currents and the diode is thermally stabilized, by means of a Peltier element 

and feedback circuit.
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3.4 Laser frequency stabilization on an atom ic reso­

nance

In order to lock the laser at a specific frequency, any drift must be controlled 

and corrected electronically. A correction signal must be generated and added to 

the driving current of the laser, or to the voltage that controls the piezo-electric 

element in the laser cavity. The error signal used to control the laser frequency is 

the derivative of the saturated absorption signal of caesium. A saturated absorp­

tion scheme is necessary because the spectrum generated by the absorption of a 

gas of atoms on a laser beam is broadened mainly because of the Doppler effect: 

atoms with different velocities are brought in resonance by the laser light for dif­

ferent values of the radiation frequency. This broadening would hide the hyperfine 

structure, being larger than the separation between the levels. W ith sub-Doppler 

spectroscopic techniques it is possible to remove this cause of broadening and re­

solve the hidden hyperfine structure. The scheme used in our experiment is that of 

saturated absorption (figure 3.5). Two counter-propagating monochromatic laser 

beams with frequency w are sent into the gas sample. Because of the Doppler 

effect, atoms of different velocities will see a different frequency u p  = u>{l ±v/c)^  

where v is the component of the atomic velocity in the direction of the beam 

propagation. Atoms can absorb a photon of frequency u  if their velocity v is such 

that

|w — Wo — k - v| < — , (3.3)

where F is the width of the excited level.

In general, the two counter-propagating beams will bring into resonance two 

different classes of atoms with equal and opposite velocities, unless they are tuned 

exactly to the resonance frequency, in which case they both interact with the same 

class of atoms of zero velocity. Therefore, one beam interacting with a group of 

atoms in a small range of velocities (|k • v | < ^ )  will modify the population dis-
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tribiition of the ground state creating a hole in the distribution of velocities for 

which the atoms are brotight in resonance. At the same time a peak is generated 

in the population distribution of the excited level corresponding to the same class 

of velocities {hole burning). The second beam therefore interacts with a modified 

[)opnlation distribution. If the hrst beam has an intensity comparable to the cae­

sium saturation intensity (1 . 1 2  niVV/cm'^) and the transmission of the other beam 

is observed, the absorption prohle shows a dip corresponding to the frecpiencies 

tha t bring in resonance atoms with velocities for which the hole burning happens.

Figure 6.5 shows the scheme th a t was used to obtain the spectrum  shown in
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figure 3.6 for the master laser. The output of the master laser is sent through 

a Faraday optical isolator, in order to avoid any unwanted feedback to the laser 

cavity. The beam is then sent to an acousto-optic modulator (AOM) set in a 

double pass configuration, in such a way that the first order diffracted beam is 

retro-reflected in the AOM, being overlapped with the in-going beam. The effect 

of this is a double shift in frequency as explained in section 3.2. A quarter wave- 

plate and a polarising cube are used to route the frequency double-shifted beam 

to the saturated absorption scheme (fig. 3.5). In figure 3.6 one can distinguish the 

absorption lines corresponding to allowed transitions between the hyperfine sub- 

levels of the excited state and the ground state. Also visible, are cross-over lines 

arising from atoms which have non-zero velocity and that are Doppler-shifted into 

resonance with two different transitions, giving rise to saturated absorption lines 

at the mean frequency of the two transitions. In figure 3.8 the caesium saturated 

absorption spectrum used for the repumper laser shows transitions from the F  =  3 

ground state to the excited hyperfine level F  =  4. This signal was obtained 

with a similar scheme to the one described for the master laser. In order to use 

the saturated absorption scheme to frequency-lock the laser on an atomic line, 

it is necessary to transform the correction signal into an anti-symmetric signal 

which discriminates between the drift of the laser towards high or low frequencies. 

By frequency-modulating the laser light itself, it is possible to extract the first 

derivative of the saturated absorption signal and to use this to correct for the 

frequency drift of the laser.

If a signal f {x)  is frequency-modulated with a modulation amplitude m  and 

modulation frequency w, it is possible to show that the signal can be decom­

posed in the sum of terms which oscillate at different harmonics, multiples of the 

modulation frequency:

f { x  + m  cos {(jjt)) =  E^QAfi(z, m) cos {nut). (3.4)
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Figure 3.6; Caesium saturated absorption speetrum. Cooling transitions; 6 S']/2 , F  = 4
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A lock-in amplifier is used to extract the amplitudes of the different harmonics. 

The saturated absorption signal from the photodiode is fed to a lock-in amplifier, 

where a mixer is used to multiply all the Fourier components of the signal with 

a sinusoidal wave generated by an internal oscillator. The product of two sines 

with different frequencies is given by the sum of two sines, one oscillating at a 

frequency which is the sum of the two (wg -f u r ) and one at a frequency which 

is the difference of the two (wg — c u r ) .  When the reference signal generated by 

the oscillator has the same frequency as one of the harmonics of the input signal 

(wg =  ujr), then one the two output sines oscillate at zero frequency while the other 

oscillates at 2ujr. The output of the mixer is then sent to a low-pass filter which 

eliminates all the components oscillating at frequencies above the cut-off frequency 

of the filter. The output signal will then be proportional to the amplitude of the 

component at frequency wg through a coefficient which depends on the phase
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Figure 3.7; Derivative of caesium saturated absorption spectrum. Cooling transitions:
b ‘S 'i/2 ) F  = 4 6 F 3 / 2 , F ' .

difference between this component and the reference signal. By adjusting the 

lock-in phase it is possible to obtain a maximum correction signal and with the 

appropriate sign to oppose the frequency drifts of the laser source. For small values 

of m in equation 3.4 the output signal is the first derivative of the input signal, 

shown in figures 3.7 and 3.9 respectively, for the master laser and the repumper 

laser. The frequency modulation is obtained for the master laser through the 

acousto optic modulator and for the repumper by modulating the current. The 

saturated absorption signal is sent to a lock-in amplifier which outputs the first 

derivative of the input signal. The lock-in output is then sent to an integrating 

circuit which provides the correction to the laser. The correction is divided in a 

fast part which is added to the driving current of the diode and a slow part which 

is fed back to the piezo-electric transducer.
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3.5 Injection locking

The maister laser, described in section 3.3, is frequency-locked to one atomic tran­

sition and is used to injection-lock two other ‘slave’ lasers, which will provide the 

trap light and near-detuned lattice light. The design of these lasers is shown in 

figure 3.10. The laser radiation is collimated, sent through an anamorphic prism 

pair to correct the ellipticity and then directed to an optical isolator. A slight 

misalignement of the anamorphic prisms generates a stray reflection which can be 

used as a monitor beam, as represented in the same figure.

It is possible to stabilize the emission frequency of a diode laser (slave) by 

injecting a small amount of light from another source (master) into the laser cavity. 

The master injecting laser forces the slave to oscillate at the same frequency and 

with the same spectral characteristics. The two oscillators are coupled so that
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the frequency and phase of their emitted radiation become strongly correlated. 

This technique is very useful since it generates a slave laser source stabilized in 

frequency without any loss in power, as no output light needs to be reflected back 

into the laser cavity.

The injection locking scheme is shown in figure 3.11. Each slave laser has 

an optical isolator on the output, which allows the injecting light into the diode 

cavity, but does not allow light from the slave laser to be coupled to the master 

cavity. The injecting beam is sent into the side entrance of the optical isolator 

with the right polarization, so that it is entirely transmitted into the slave cavity. 

In order to align the injection the input polarizer of the optical isolator was tilted 

a bit, so that a beam is emitted through the side output of the isolator. This 

beam was used to align the injection light to the slave beam. The stray reflection 

from the prisms shown in figure 3.10 is used to monitor the efficiency of the
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injection, by observing the variation of intensity transmitted through a caesium 

vapour cell as the current to the diode is ramped. When the injecting beam from 

the master laser is aligned, a dip in transmission of the monitor beam is recorded 

over a certain range of driving currents for the slave laser as it locks to the master 

frequency, which is tuned over a caesium absorption line, figure 3.12. The trap 

slave laser is injected directly from the master laser, whereas the near-detuned 

lattice slave laser has an acousto-optic modulator in a double pass configuration 

in the injecting beam (figure 3.11); this allowed us to reach larger detunings for 

the lattice light. In figure 3.2 the frequency scheme for the master, trap slave and 

lattice slave lasers is shown. In figure 3.13 a layout of part of the optical table 

shows how the trapping, repumper and near-detuned lattice beams are generated 

and locked to the desired frequency.
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3.6 M aster Oscillator Power Amplifier

in order to generate the intensity needed for the far-detuned lattice to have the 

same potential depth as the near-detuned one, while being hundreds of times 

further detuned, a Master Oscillator Power Amplifier (MOPA) was used [25], 

[26], [27]. A MOPA system is used to amplify the light coming from a narrow 

linewidth master oscillator, so that the output light has increased intensity and the 

same spectral features as the injecting light. A strained quantum well distributed 

Bragg reflector (DBR) laser diode was used as master oscillator. These lasers 

have a narrowed linewidth output, due to a grating structure which is grown
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within the gain medium, which behaves as a high reflectivity surface, selective in 

wavelength. Therefore, only the wavelengths that satisfy the Bragg condition can 

oscillate in the laser cavity. At the same time they are continuously tunable over 

a range of several gigahertz, without having the mode-hops associated with an 

external cavity. The power amplifier consists of a tapered gain element which is 

pumped with high current, typically 1.5 A. The tapered amplifier output spectrum 

is typically very broad, but it can be narrowed by feedback from an external cavity 

or by injecting light from a narrow linewidth master laser, when it operates as a 

single pass optical amplifier (MOPA). in this way it is possible to achieve an 

output with the same spectral characteristics as the master laser at an intensity 

which can be up to two orders of magnitude greater, resulting in a power of up to 

0.45 W.

The scheme of the mounts and optics needed for the tapered amplifier are 

shown in figure 3.14. Short focal length (3.1 mm), high numerical aperture (0.6) 

aspheric lenses are used to couple the injecting light in and the amplified light 

out. These lenses are placed on mounts to control x, y, z positioning. The whole
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Figure 3.13: Layout of the optical bench.

mount is temperature stabilized by means of a control unit which drives a Peltier 

element positioned on a water-cooled heatsink.

The output of the front and back facets of the tapered amplifier (TA) were 

collimated by positioning the aspheric lenses in the three dimensions. The ampli­

fied spontaneous emission beam emitted from the back facet was retro-reflected 

into the 'I’A and the output power was monitored to optimize the lens positioning; 

maximum output was achieved when the reflected light was best collimated and 

injecting the amplifier. The master light was then aligned to the spontaneously 

emitted light from the back facet. The injection was improved by ensuring that
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the polarization is parallel to the plane of the taper of the amplifier and by cor­

recting the shape of the injecting beam using an anamorphic prism pair, as shown 

in figure 3.15. The output of the tapered amplifier is highly astigmatic. The 

output coupling lens is used to collimate the beam in the vertical direction only. 

A cylindrical lens external to the mount is then used to correct the horizontal 

astigmatism. Optical isolators are used to provide 100 dB isolation between the 

TA and the UBR in order to prevent optical feedback into the master cavity.

3.7 M agnetic fields

To trap atoms in a magneto-optical trap a inhomogeneous magnetic field is needed, 

such that it is null at the center of the intersection region of the laser beams 

and increases linearly along each of the three cartesian directions. This field is 

generated by a pair of coils in an anti-Helmholtz configuration, i.e. with current 

flowing in opposite directions, which are placed around the cell with their common 

axis along the vertical direction. The coils are made of 150 turns of copper wire 

wrapped around a square support of 8 cm side. The coils are placed at a distance 

of 7 cm, which gives the most uniform field gradient at the center of the trap.
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Figure 3.15: MOPA system consisting of a DBR and TA.

The magnetic field gradient along the vertical direction is d B /d z  ~  A*1 /A  G/cni, 

where /  is the current through the coils. The magnetic field gradient along x  and 

y is half the value of the gradient along the z axis and of opposite sign.

'lb make sure that the magnetic field is null at the center of the intersection 

region of the laser beams, it is necessary to compensate for the terrestrial magnetic 

field and for all the stray fields which are present in the laboratory. 'This is achieved 

by using three pairs of square Helmholtz coils, all of the same dimensions, placed 

around the cell to form a cube of 50 cm side. These coils can provide a sufficiently 

uniform magnetic field in three directions, which can be finely tuned with an 

accuracy of a few milliGauss.

3.8 Tim e-of-Flight setup

The time-of-flight method described in [30],[31] was used to determine the tem­

perature of the atoms when they are released from the lattice. 'This technique
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consists of releasing the cloud of atoms from the lattice and letting it expand, 

due to the thermal motion of the atoms, and to fall under gravity. After 110 ms 

from their release the atoms pass through a thin probe beam which is placed 6 

cm below the trap, orthogonal to the gravitational axis. A photodiode detects 

the absorption of the probe beam as the atoms pass and different arrival times 

can be recorded. This distribution can then be converted to a momentum dis­

tribution, from which the temperature can be inferred. The experimental setup

Anb-Halmhntz Coils

Mitrorn*
Mirrof

IPPHOTOOODC

beam

Figure 3.16: Layout of the cell in which the trap is formed, with trap beams, coils and
the time-of-flight setup.
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for a time-of-flight detection is shown in figure 3.16, where the layout of the cell 

in which the trap  is formed and the position of the various coils are also shown. 

The time-of-flight setup consists of a near resonant beam, < 1 mm thick and 1 

cm wide, which is retro-reflected to avoid any systematic momentum transfer. A 

combination of polarising cube and two wave-plates allows the selection of the 

polarisation of the two counter-propagating beams. Typically this is set to be 

circular (a-+/&+) polarized, but for the Stern-Gerlach experiments (see chapter 

6), these were set to linear. The cloud of atoms, following its release from the 

lattice and its subsequent fall, passes through this layer of light and absorbs it. A 

typical signal generated with a time-of-flight measurement is shown in figure 4.2.

In determining the temperature it is assumed that the initial spatial density 

distribution of the cloud is a Gaussian function of the position

P r { r )  oc e x p ( - r ^ / c r ? )

and that the momentum distribution is a Maxwell-Boltzman

pp{p) oc e x p  ( - p ^ / c j p )  oc e x p  ( - p ^ / ( 2m c s k B T ) )

with k s T  =  m e  s'arma- Using kinetic theory it is straightforward to calculate 

the size of the atomic cloud after a time t from its release, while it is assumed 

that there is no change in the momentum distribution, i.e. no heating is present. 

Taking also into account the finite size of the probe beam, the solution for the 

temperature gives the following expression, as a function of the (temporal) 1 / y/e 

half-width Wfin detected from the time-of-flight signal:

where t^rop is the time it takes the atoms with zero velocity to reach the probe 

beam, aini is the initial half-width at l / \ / e  of the cloud’s spatial distribution and 

(Ttof  is the half width at l / y/e  of the intensity distribution of the probe beam
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along the vertical axis. From equation 3.5 it is possible to see that the resolution 

of the method is limited by the initial size of the cloud and the vertical thickness 

of the TOP beam. In the limit of infinite tdrop the second term of equation 3.5 

goes to zero, but for finite dropping time (110 ms in our case) for a aini — 0.5 

mm and axoF — 0.5 mm, the term yields a resolution limit of about 0.7//K. Thus 

no temperature below this limit can be measured. The initial size of the cloud as 

well as the size of the TOP beam are measured by imaging using a CCD camera. 

These measurements have significant errors, which result in an uncertainty on the 

temperature determination of 0.2pK. Furthermore the fitting procedure leading 

to the determination of Wfin is usually limited by noise, but the error associated 

with it is usually an order of magnitude less then the one in determining the size 

of the cloud and TOP beam by imaging.

3.9 Com puter-autom ation of the system

Due to the typical time-scales involved in the various trapping and cooling cycles, 

a laser-cooling experiment necessitates a fully electronic control. Strict control of 

the timing of the different stages of the experiment is required, down to the typical 

time-scales of the system under investigation and this has to be done in a highly 

reproducible fashion. I therefore designed and developed a computer program 

to control all the devices through the channels of an AT-AO-10 and PCI-6800 

data acquisition boards (National Instruments). The two boards are synchronized 

through an RTS I connector. I used Labview software packages which provides a 

graphical programrning language (G) and many libraries for instrument control 

and data acquisition.

The main function of the program is to write an array of values to the analogue 

channels which are then output at a specified rate. In this way it is possible to 

control the signal sent to each channel with a resolution of 10 fis. At the moment
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fourteen different devices can simultaneously be controlled, which allow us to 

change the frequency of the lasers, their intensities, the current of the magnetic 

coils and to control mechanical shutters. A user interface allows the setting of the 

duration of each phase of the experimental sequence as well as the setting of the 

different parameters at the beginning of each session. The code has been revised 

several time during the course of these three years, but it now allows the setup of 

experiments involving the control of up to eighteen channels simultaneously and 

to programme up to fifteen different phases from the front panel. It is therefore 

very flexible and easy to use.

3.10 Conclusions

In this chapter I described the experimental apparatus which was used for the ex­

periments presented in this thesis. An overview of the methods used to frequency- 

stabilize the lasers and to narrow their bandwidth was presented. The different 

laser sources are also described, as well as the coils which were used to produce 

static magnetic fields. Finally, I gave a description of the computer program that 

I developed in order to automate the experiment.



C h a p t e r  4

Atoms in a Far-Detuned Optical 

Lattice

In this chapter I will describe the preparation of atoms in a nearly dissipation- 

free optical potential, which is obtained by using light tuned a few thousand 

linewidths to the low frequency side of the D 2  atomic resonance of caesium. In 

the near detuned regime, the scattering rate involved in cooling is also responsi­

ble for decoherence effects and a reduced lifetime of the vibrational states. Cold 

neutral atoms in a far-detuned optical lattice may offer a long coherence time 

because of the reduced spontaneous scattering rate and their weak coupling to the 

environment. In principle it is possible to reduce arbitrarily the scattering rate 

by increasing the detuning of the laser beams. In the limit of large detuning, in 

fact, the scattering rate is proportional to while the potential depth results 

to be proportional to By simultaneously increasing the detuning the intensity 

of the laser beams forming the lattice in an appropriate manner, it is possible to 

almost completely suppress the scattering rate, while maintaining a deep enough 

potential well. For the typical parameters of the far-detuned lattice used in our 

experiment, the spontaneous scattering rate is in the range of 50 — 1000 Hz, for

8 2
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a characteristic vibrational frequency of ~  30 — 40 KHz, which has to be com­

pared with the typical scattering rate in a near-detuned lattice of ~  bOOKHz for 

the same potential depth. Therefore the atoms trapped in the potential wells of 

a far-detuned optical lattice, can oscillate several periods before a spontaneous 

scattering event occurs. The non-dissipative nature of such lattices should allow 

the preparation and manipulation of pure quantum states, thanks to the increased 

life-time of the vibrational states. At the same time, the reduced scattering rate in 

a far-detuned lattice (FDL) leads to absence of built-in laser cooling and makes it 

necessary to load a sample of atoms previously prepared in a near-detuned lattice 

(NDL). In the NDL the features of the periodic structure are built. In the first 

section of this chapter the loading of the near-detuned lattice is presented. Fol­

lowing the characterization of the near-detuned lattice, atoms are transferred to 

a super-imposed lattice induced by light tuned far from resonance, in which they 

can be tightly bound in a dissipation-free potential. An analysis of the transfer ef­

ficiency and storage times is performed, to optimize the loading. Experiments are 

also performed to gain information on the population distribution over different 

vibrational levels.

4.1 Preparation of a cooled sample in a near-detuned  

optical lattice.

The sample of atoms is firstly collected by a magneto-optical trap  (MOT), as 

described in section 3.2. The magnetic field gradient typically used for the MOT 

is 6 G/cm, the intensity of the laser beams typically (3.5 ±  0.1) mW/cm^ with a 

detuning of 2.5F from the F  =  4 ^  F ' =  5 transition. The magneto-optical trap 

configuration is typically left on for 2 sec, which was found to be the characteristic 

loading time to collect a sample of ~  8 ■ 10  ̂ atoms. The magnetic field gradient is 

then switched off, the detuning increased and the intensity decreased. The atoms



4-1. Preparation of a cooled sample in a near-detuned optical lattice. 8 4

are left to cool further in an optical molasses, typically tuned ~  6F from resonance 

and with reduced beams intensity, which is set to ~  1.8 mW / cm^ per beam. These 

parameters were chosen in order to minimize the tem perature and maximize the 

number of atoms trapped. The tem perature of the atoms was measured with 

the time-of-flight method, described in section 3.8, and was found to be typically 

< 10/LtK.

Figure 4.1: Representation of the lattice plane and quantization axis.

Atoms so prepared, were then transferred to a  2D near-detuned lattice. The 

configuration used was the one described in section 1.2.3, and consists of three 

CO-planar laser beams, all with linear in-plane polarisation, propagating at 120° 

with respect to each other. The gravity axis lies on the plane of the lattice, as 

shown in figure 4.1. This allows us to measure the kinetic tem perature along one 

of the two lattice dimensions. The intensity and detuning were varied to achieve 

a colder sample and to better transfer the atoms to the far-detuned lattice. In 

figure 4.2 the TOP spectrum for a near detuned lattice is shown: the single beam
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Figure 4.2: TOF signal of the near detuned lattice and Gaussian fit (dotted line) to

extract the temperature.

intensity was set to 3 mW/cm^ and the detuning was set to 26F to the red of 

the F  = 4 F ' = b transition. A Gaussian fit of the signal was performed 

in order to estimate the tem perature of the sample, using equation 3.5. The 

measured tem perature extracted from the spectrum in figure 4.2 was found to be 

(3.5 ±0.2) pK. Lower temperatures were found to be achievable, down to the lower 

limit of ~  3 /iK. A careful adjustment of the current to the compensation coils 

was found to be very crucial in order to minimize the temperature, as discussed 

in [32].

To gain an insight into the localization of the atoms and the quantization of 

the vibrational modes in the potential wells generated by the ND lattice, probe 

transmission spectra were taken. A weak probe beam, with a typical intensity of 

0.2 mW /cm^, is sent through the optical lattice, at a small angle with one of the
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lattice beams, with a polarisation parallel to that of the nearly co-propagating 

lattice beam. The frequency of the probe beam is swept by ramping the RF to an 

acousto-optic modulator, and the transmitted intensity is recorded.

An atom confined in a potential well should exhibit a discrete spectrum of 

vibrational energy levels, like a harmonic oscillator. The lattice beam (acting 

as a pump light) together with the probe beam can induce stimulated Raman 

transitions among such levels. When the difference in frequencies between these 

two stimulating sources corresponds to the separation betv/een two vibrational 

levels, Raman resonances arise. For i) ujprobe ~ ^lattice < 0, this corresponds to 

a net gain in the transmission of the probe, while for ii) Uprobe ~ ^lattice > 0, it 

results in a net absorption of the probe. In any case the probing light is both 

absorbed and emitted, but the net effect depends on the population of the levels 

involved. In case i) if the pump beam excites the population of level n  the probe 

has to stimulate the emission and decay to n + 1 {tOpj-obe < ^ la t t ic e )  or if it is the 

probe to excite from level n + 1, then the pump has to stimulate the de-excitation 

to n. As level n -|- 1 is less populated than level n, this would result in a net 

gain for the probe beam, as shown in figure 4.3. A similar argument explains the 

absorption of the probe when its frequency exceeds that of the lattice light.

From these considerations, we should expect to see simmetric resonances in 

absorbtion and gain when the difference in frequency between pump beam and 

probe beam equates the separation between the vibrational levels in the lattice. 

In figure 4.3 the probe transmission intensity is plotted versus the detuning of 

the probe beam with respect to the lattice beam. This spectrum was taken for a 

detuning of the lattice Aiatt =  -4 .4F, and an intensity Iiatt =  (2.0 ±0.1) mW/cm^ 

per beam. Two peaks can be distinguished at ôprobe =  ±70 kHz, which correspond 

to the vibrational frequency associated with the lattice potential. A small Rayleigh 

feature is also visible at ôprobe =  0. This was regarded as a proof of the localization
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and of the existence of ([uaiitized vibrational levels for the atoms in the optical 

lattice. It was also used as a tool to measnrc the fretpiency of oscillation of the 

atoms at the bottom of the potential wells.

4.2 Loading the Far-detuned Optical Lattice

In a near-detuned optical lattice, control of the center-of-mass motion is limited by 

heating processes which occur at a rate determined by the scattering of photons. 

It is possible to create a new kind of lattice where the heating processes are 

almost completely suppressed. In the limit of large detuning the scattering rate is 

proportional to ^  and it is therefore possible to reduce the dissipative processes by 

increasing the detuning A of the laser source to tie very far from resonance. At the 

same time, in order to generate a deep enough potential well, the intensity of the
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laser source must be adequately increased, as the potential depth is proportional 

to Particular care has to be taken during the transfer from the near-detuned 

lattice, where the atoms are first cooled and localised, in order to guarantee that a 

good degree of localization is maintained. For this reason it is necessary to finely 

control the intensities of the two sets of beams in order to ensure a matching of the 

vibrational frequencies of the near-detuned and far-detuned lattice and to adjust 

the difference in path length for the both lattices beams, in order to guarantee a 

matching in the the relative spatial phase of the lattices beams. In this section I 

will describe the experimental setup and the loading technique which was employed 

to transfer the atoms from the near-detuned lattice to the far-detuned one.

4 .2 .1  F ar-D etu n ed  O p tica l L a ttice  S etu p

Shown in figure 4.4 is the setup that was used to overlap the far-detuned lattice 

beams with the beams of the near-detuned one. A combination of polarising 

cubes and quarter-wave plates are used to create three equally intense beams 

for the near detuned and far-detuned lattice. In section 1.2.3 I discussed how 

changes in the relative phases of the laser beams can produce a translation of a 

A’-dimensional lattice, generated by A  + 1 beams. For a good transfer among the 

lattices, it is very important that the maxima and minima of the near-detuned 

and far-detuned lattice overlap, a mismatch resulting in heating and loss of the 

atoms. This means that the spatial phase difference among the beams must be 

the same in the NDL and FDL: this can be guaranteed if the difference in path 

length between different beams is matched at the two optical frequencies . If 

two beams of the lattice traverse path lengths li and I2  before intersecting in the 

lattice region, then the spatial phase difference, which determines the position 

of minima and and maxima of the potential, of the near-detuned (ND) and far- 

detuned (FD) lattice beams at the point of intersection is =  k ^D ih  — h)
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and 5(f)FD = -  h)- In order to guarantee a good overlap between the two

potential wells, it is necessary to ensure that ôcpMD — ^4>fd  tt. It follows that

must be satisfied. For the typical values of the experiments

-  ffd — GHz, which gives an upper limit on 61 of only a few millimeters. 

In order to match this requirement, the two retro-reflecting mirrors in the beam 

paths are mounted on micrometer adjustable translation stages, as shown in figure 

4.4, which can be adjusted monitoring the number of atoms loaded and their 

temperature for optimization. The intensities of the near-detuned and far-detuned

I i to  p h o to d io d e

to  e x p e rim e n t

to  e x p e r im e n

F D  b e a m to  e x p e rim e n

C

N D  b e a m

Figure 4.4: Experimental setup to overlap far-detuned and near-detuned beams to form
the lattice.

beams are controlled separately by two acousto-optic modulators. For the near­

detuned lattice the first order diffracted beam allows the continuous variation of 

the intensity of the beam, while, for the far-detuned case, the zero order non­

deflected beam is chosen, thus necessitating the use of a mechanical shutter to 

completely extinguish the light. In this way it is possible to finely change the
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intensity from Imax down to approximately 0.2 • I  max and use the shutter to turn 

the light completely off.

The far-detuned lattice is generated by a MOPA system pumped by a DBR 

laser, described in section 3.6. This is capable of an output power of up to 0.45 

W. The output beam, though, has a poor spatial quality and a pinhole was used 

to spatially filter the beam and correct its profile. This causes 50% of the power 

to be lost. Other sources of power loss are the various optics placed in the laser 

path, the acousto-optic modulator, used to control the intensity of the beams, and 

the optical isolator, placed at the laser output to avoid feedback. As a result, the 

maximum single beam power obtainable is 25 mW. This constitutes the greatest 

limitation of the experimental setup, and it will be found to affect most of the 

measurements presented in the following sections. Ideally, in order to have a 

well working lattice, with isotropic properties over all spatial extent, the light 

intensity should be uniform over the spatial region where the lattice is built, so 

that atoms at different locations experience the same potential depth. This could 

be achieved by expanding the lattice beam and selecting the central most uniform 

intensity region, but this would have caused further loss of power, which could 

not be allowed. The profiles of the far-detuned lattice beams were imaged along 

both the two dimensions and were, in fact, found to be non-uniform over the 

cloud spatial extent. As it is shown in figures 4.5, 4.6 the full width at 90% 

intensity is ~  (1.0 ±  0.1) mm in the horizontal direction and ~  (0.45 ± 0.06) mm 

in the vertical direction, which was smaller than the extent of the cloud released 

from the near-detuned lattice. As it will be shown in the next chapter, this causes 

inhomogeneity on the potential depth and a spread in the characteristic vibrational 

frequency of the atoms trapped at different lattice sites, as the measurements 

revealed when the lattice was parametrically excited (see chapter 5). This will 

also affect the efficiency of resolved-sideband Raman cooling, where the spread in
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Figure 4.5: Intensity profile of the far-detuned beam along the horizontal direction.

vibrational frequencies is expected to broaden cooling resonances such that they 

are no longer resolved, see chapter 7. In the Stern-Gerlach experiments (chapter 

6) a reduction in the net fictitious field experienced by the ensemble of atoms was 

partly attributed to the inhomogeneity of the potential depth. A more powerful 

laser source is therefore needed for the optimization of the experiment.

A typical sequence for the far-detuned lattice loading proceeds as follows: the 

atoms are first loaded in a near-resonant lattice where they are cooled down to 

a few microKelvin and trapped in the wells of the optical lattice. Typically, the 

near-detuned lattice is generated by light tuned up to A = — 26F to the red of the 

F  =  4 F ' =  5 transition, with a maximum intensity of 3 mW/cm^ per beam, 

the size of the beams being ~  1 cm^ . The intensity and detuning were varied 

in order to control the potential depth, according to the fact that the light shift 

is proportional to ^  (see previous paragraph). The far-detuned super-imposed 

lattice must generate the same light shift in order to keep the strong confinement 

and the same degree of localization as the near-resonant potential; therefore, while
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Figure 4.6: Intensity profile of the far-detuned beam along the vertical direction.

increasing the detuning in order to decrease the scattering rate, the intensity of 

the beam must be raised to maintain the same potential depth. The detuning was 

varied in the range 1000 — 4500F, the maximum equivalent intensity achievable in 

our setup being ~  500 mW/cm^ per beam. This equivalent intensity is obtained 

by considering the intensity distribution as uniform and assuming an equivalent 

area given by the product of the FWHM of the intensity profile along the two 

dimensions.^ The typical vibrational frequencies for these values of intensity and 

detunings were in the range 30 — 45 kHz and the scattering rate below 1000 Hz. 

The far-detuned lattice parameters were first theoretically estimated in order to 

match the potential depth and vibrational frequency of the near-detuned lattice 

and were afterwards tested by using the parametric excitation method, described 

in chapter 5. The transfer of atoms from the near-detuned to the far-detuned 

lattice is accomplished by simultaneously controlling the intensities of the two 

laser beams. This is done in order to ensure the tight binding of the atoms for the

H will use this parameter to characterize the lattice from now on and, when possible, I will 

include the full spatial profile of the beams
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whole duration of the transfer. By linearly changing the intensities of the NDL and 

FDL in a way that the sum of the depths of the two potentials is approximately 

the same during the transfer, the atoms would feel no variation in the apparent 

potential, thus maintaining localization. The duration of the transfer was typically 

400 — 500 ps. The duration was varied in order to optimize the transfer efficiency, 

by monitoring the temperature and number of atoms in the loaded sample.

4 .2 .2  S tu d ies  o f  tran sfer  effic ien cy  and lo sses in  th e  far-d etu n ed  

la tt ic e

A typical sequence of the experiment starts with the loading of the atoms in a near­

resonant lattice where they are prepared in the lower states of motion by Sisyphus 

cooling processes. The near-detuned lattice is typically left on for 5 ms, which is 

enough to cool the atoms down to a few pK  in the two dimensions of the lattice 

and at the same time short enough for the atoms not to escape in the direction 

orthogonal to the lattice plane, due to their velocity in the ^-direction. Following 

that the intensities of the two beams are simultaneously ramped, in order to ensure 

tight binding transfer. The intensity and detuning of the far-detuned lattice were 

varied in order to match the potential depth of the near resonance potential.

In figure 4.7 two time-of-flight spectra are shown for two different durations 

of a far detuned lattice, tpD =  10 ms and tpD — 70 ms. The intensities of the 

beams were set to (400 ±  50) mW/cm^ and the detuning A =  (—4500 ±  100)F, 

giving a scattering rate of F g ~  50 Hz. In these spectra, two peaks are evident, 

separated in time by A t  — 10 ms and At  =  70 ms, i.e. times equivalent to the 

far-detuned lattice duration. The first Gaussian peak is very clear in the spectrum 

taken for a 10 ms duration of the far-detuned lattice. Due to the smaller spatial 

extent of the FD beam with respect to the ND one, a fraction of the atoms which 

were stored in the near-detuned potential are never trapped by the FD light; these
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Figure 4.7: TOF signal obtained for two different loading times for the far-detuned lattiee.

atoms start falling as soon as the ND light is replaced by the FD. The separation 

of the two peaks corresponds in fact to the duration of the FD lattice. Further 

losses of atoms are detected as a decaying tail between the two peaks. Thus atoms 

leaking out of the far-detuned lattice at later times are detected as a decreasing 

tail between the two Gaussians.

Measurements were performed in order to determine the lifetime of the FD 

lattice, by measuring the number of atoms trapped for different time durations. 

In figure 4.8 the decay is reconstructed by plotting the area under the Gaussian 

peak for different storage times. This curve is characterized by an initial fast decay 

followed by a slower decay. The trend is best fitted with a sum of two exponential
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Figure 4.8: Lifc-timc measurement for the far detuned lattice. The dotted curve represents 
the fit to a single exponential and the solid curve represents the fit to a sum of two 
exponentials, which gives two characteristic times = (13 ±  2)ms and t\ = (50 ±  10)ms.

decays, which betray the existence of two characteristic times: a short one of 

(13 ± 2) ms and a longer one of (50 ±  10) ms.

These losses can be attributed to several mechanisms, also found responsible 

for losses in 3-D blue detuned optical lattices [33]. At long times, transverse motion 

of the atoms in the lattice plane, which is increased by scattering of spontaneously 

emitted photons, allows the escape from the trapping region. At shorter times, 

highly energetic atoms, which are not tightly bound, diffuse through the lattice 

to regions of shallower wells and can be excited out of the lattice, due to heating 

induced by laser beams intensity fluctuations.

Spontaneous emission as well as laser noise heat the atoms, so that atoms
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in bound vibrational levels are transferred to higher energy, nearly free states, 

and are therefore lost after some time. The low scattering rate for these lattice 

parameters, Tg ~  50Hz^ suggests that the effect of spontaneous scattering is 

relevant at long times. The ‘long’ characteristic time was found to slightly decrease 

by decreasing the detuning of the laser source, which is consistent with attributing 

the losses to heating induced by scattering. Another mechanism of escape is linked 

to the diffusion of unbound atoms towards regions of shallower light-shift potential. 

The non-homogeneous spatial profile of the beam intensity over the lattice region 

suggests that this may be contributing to the loss of atoms. Furthermore, if the 

cooling during the near-detuned phase was not efficient atoms which are too hot 

tend to populate the higher lying vibrational levels, which, as discussed in chapter 

2, have a significant curvature and broadening. This curvature in the bands means 

that the atoms are not tightly bound and can therefore be excited out of the lattice 

more easily. As said above, excitation may be provided at short times by intensity 

fluctuations of the laser source. Such phenomenon will be discussed in section 5.4, 

where an estimate of the noise induced heating is given. It will be shown that 

intensity noise only produces a small heating of the sample at short times (~  10 

ms), which is however enough to excite out of the lattice the most energetic atoms. 

This would also suggest that at short times the atoms from the higher bands are 

more easily lost, making the loss mechanism band-dependent. This idea found 

support from the analysis of the temperature of the sample at different storage 

times, see section 4.3.

In order to investigate further the loss mechanisms, the temperature of the 

sample was also monitored, for different durations of the far-detuned lattice. In 

figure 4.9 the variation of the temperature as a function of storage time is reported. 

The decay of tem perature with time provides evidence for the band-dependence 

of the loss mechanisms, which causes the population of the excited bands to die
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Figure 4.9: Temperature decay of far-detuned lattice versus time duration.

out faster. The temperature decays rapidly (consistent with the assumption that 

atoms escaping from states close to the top of the potential are responsible for 

the fast decay), and it reaches a steady value of ~  3/uK. This steady value for the 

temperature is given by the balance between the loss of highly energetic atoms and 

the heating of atoms in lower lying states induced by scattering or noise, which 

becomes relevant at long times. At the same time it shows reduced loss rates for 

lower lying bands.

It is very difficult to isolate without ambiguity the different causes of loss. A 

major cause of loss of atoms is, in fact, linked to the non-uniform spatial profile 

of the FD beams over the lattice region. As a consequence, some of the atoms are 

never bound in the FD potential, while others are bound in a region of shallower
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potential, which allows energetic atoms to be easily excited out of the lattice. The 

option of expanding the FD beam further to select an almost uniform section of 

the intensity profile was ruled out due to the fact that the available laser power 

was limited. A compression of the cloud, as suggested in [34], before loading 

the near-detuned lattice was attempted resulting in an increased loading of the 

far-detuned lattice, but significant losses were still detected.

4.3 Band population m easurements

Several experiments were performed in order to further investigate the storage of 

atoms in the far-detuned optical lattice and to acquire an understanding of the 

band population distribution. Experiments were run that were aimed at the se­

lection of the lower lying bands. Similar band selection techniques were used in 

[35], [36], and [37] for quantum state preparation or simply used as a diagnostic 

instrument. The typical sequence of a band selection experiment proceeds as fol­

lows. The atoms were firstly loaded in the far-detuned lattice with a laser intensity 

Imax- After a certain storage time the atoms in the higher lying vibrational levels 

were released by ramping down the laser intensity to a value Imin for which high 

energy atoms are not bound anymore. The intensity was typically ramped down 

to Imin in 500/LiS and the Imin value was kept constant for variable times. The 

laser light was then switched off by ramping the intensity to zero. It has to be 

pointed out here that due to a limitation of the experimental setup, it was only 

possible to ramp continuously the laser intensity down to 20% of the maximum 

intensity. This was due to the fact the the lattice beam was generated by the 

zero order beam of an acousto-optic modulator and even at maximum first order 

diffracted light, the intensity of the zero order was up to 20% of the maximum 

intensity. The light was completely disrupted by means of a mechanical shutter.

In figure 4.10 a sequence is shown for an initial storage time of 10 ms and
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Figure 4.10; Selecting the lower bands for quantum state preparation.

Imin — 0.2 X Im ax  kept OR for 5 ms before the light was completely switched 

off. The peaks corresponding to the higher and lower lying bands are very well 

separated, therefore it is possible to reconstruct the population of the different 

vibrational levels. in the case examined in figure 4.11, the starting potential 

had Ujnax — IdOL’/î and the sample kinetic temperature was 5 /iK. The calculated 

bands for these parameters are shown in figure 4.12. The first six bands correspond 

to bound states for the atoms, while the levels n =  8 and n =  9 show a significant 

curvature and broadening, which means that the corresponding wave-function is 

not localised. By reducing the laser intensity we see that the losses start to be 

significant for 1 =  0.67^^^, i.e. when the maximum light shift is reduced to 80A'^
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Figure 4.11: Measurement of population and temperature variation for selected bands.
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Figure 4.12: Results of band calculations for Umax =  140E/f. Superimposed on this plot, 
employing the same vertical scale, is a cut through the potential energy surface. The 
horizontal scale of this curve (black line) is arbitrary and is chosen so that one period of 

the potential fits into frame of the figure.
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(see figure 4.13). The kinetic temperature starts dropping as well, due to the 

reduced momentum spread associated with lower lying bands. It was possible to 

control the intensity down to about 0.2xImax,  which corresponds to Umax =
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As shown in figure 4.14 and by analyzing the broadening of the bands, the three 

lower states correspond to bound states. Data plotted in figure 4.11 show that at 

1 — O.'Ilmax the fraction of atoms that remained trapped in the reduced potential 

is ~  37% of the initial population. This was found to be in good agreement 

with the calculated total population of the first three bands of a 1-D harmonic 

oscillator, when the starting temperature of 5 /xK was assumed.

This was a preliminary study of band population measurements. To overcome 

the limitation imposed by the far-detuned lattice intensity control, the experiment 

has been now improved by introducing an electro-optic modulator, which is also 

used to finely control the intensity of the far-detuned lattice. This new set-up 

should allow us to investigate further the band population distribution and resolve 

even the lowest lying bands.
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Figure 4.15; Band-dependent losses versus storage time.
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In order to sustain the hypothesis that the losses of atoms, as reported in 

the previous section, are indeed band-dependent, a simple experiment was run. 

The sequence was identical to the one previously described for band populations 

resolution. The changes in the areas of the two peaks, see figure 4.10, were mon­

itored, this time at varying the storage time at maximum intensity. The atoms 

were stored in the far-detuned lattice for variable times and then the populations 

of the higher lying and three lower lying bands were simultaneously measured. 

Therefore, if the losses are really band-dependent, it should be possible to see 

that the first peak’s area, which counts the atoms populating higher lying bands, 

start decreasing at shorter storage time, or decreases more rapidly than the area 

of the second peak, which arises from lower energy atoms.

The variation of the areas of the two peaks versus the storage time at maximum 

intensity are shown in figure 4.15. To estimate and compare the characteristic 

decay times of the two sets of measurements, two exponential decays were fitted 

to the two sets of data, resulting in a characteristic decay time of ~  (15 T 4) 

ms for the first peak and of ~  (40 ±  12) ms for the second one. These fits are 

not meant to prove an exponential behaviour of the decay of the population in 

different vibrational levels, neither do they constitute an accurate measurement 

of the decay times; they only constitute a way of defining and quantifying the two 

different decay rates. These lend further evidence for the band-dependence of the 

loss mechanisms.

The measurements and experiments reported in this section are not meant to 

constitute a detailed analysis of the problem. The limitations of the experimen­

tal setup, mainly the non-uniform potential depth of the far-detuned lattice, the 

low laser power available and the coarse control on the laser intensity would not 

allow a more accurate treatment. However it was important to study the loading 

efficiency and the losses mechanisms to understand the importance of improving
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the experiment and the modifications that were required.

4.4 Conclusions

In this chapter I described the experimental setup and techniques used for load­

ing atoms into a 2-D far-detuned optical lattice, by transferring them from a 

super-imposed near-detuned lattice. The efficiency of the transfer was studied 

and experiments revealed that a significant fraction of atoms was lost at the time 

of the loading, while more atoms were leaking out of the lattice at later times. 

Experiments aimed at measuring the populations and temperature of the different 

vibrational states were performed, which demonstrated the feasibility of resolving 

the different band populations and proved that the loss of atoms from the lattice 

is band-dependent. A study of the population’s decay versus storage time led to 

the evaluation of two distinct decay times; it was also possible to attribute as main 

causes of loss the heating induced by spontaneous scattering for the long decay 

time and, as it will be extensively discussed in the next chapter, laser intensity 

fluctuations, that could be responsible for the short decay time. All the qualita­

tive analysis presented in this chapter revealed the limitations of the experimental 

apparatus and suggested possible changes for its optimization.



C h a p t e r  5

Parametric Excitation

The parametric excitation method is a useful tool for the investigation of the fea­

tures of the far-detuned lattice and has been pursued both experimentally and 

theoretically in previous works [38], [39], [40], [41]. The excitation caused by 

resonant intensity fluctuations has been proposed as a major cause of heating in 

far-off resonant traps [40], [41]. In [38] the parametric excitation method was first 

used in order to characterize the lattice structure. In [42] parametric heating in 

harmonic potentials is studied both non-perturbatively and perturbatively. The 

former approach establishes an explicit connection between the classical and the 

quantum description. The latter gives an alternative insight into the problem and 

can be directly extended to take into account the anharmonicity, which becomes 

relevant for shallow traps. The perturbative model was also used in order to in­

vestigate the characteristics of the far-detuned lattice, i.e. the effective vibrational 

frequency, potential depth and anharmonicity.

In this chapter an overview of the results found in [42] will be presented. The 

implementation of a code based on the model presented in [42], used to simulate 

losses and heating in a parametrically excited lattice is described. The model is 

then compared with the experimental results, which are presented in section 5.3,

105
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and the characteristic lattice features are evaluated. This model is particularly 

useful to understand the effects of anharmonicity of the potential and of the non­

uniformity of the laser profile over the lattice region, which was found to affect 

our experiment. In the last section of this chapter, results from simulations run to 

evaluate the importance of noise-induced heating are reported. These represent 

only an estimate of the maximum heating rate, as, due to the high noise floor of 

the diagnostic electronics, the laser noise could not be measured accurately; they 

led to the reasonable conclusion that the heating rate due to stochastic intensity 

fluctuations should not be significant on the timescale of typical experiments.

5.1 Perturbative treatment of parametric excitations

I will outline the theoretical approach introduced in [40], [39], [42]. The non pertur­

bative approach to parametric heating, discussed in [42], is only valid for quadratic 

potentials and cannot take into account anharmonicity effects. When the confin­

ing potential is shallow, however, anharmonicity effects become significant and a 

simple method that can take them into account is the high order perturbative 

approach to parametric heating presented in [42]. The purpose of the method is 

to study some high order perturbative effects due to a variation of the strength 

of the confining potential, while also taking into account the anharmonicity and 

inhomogeneities of the laser beam’s profile.

Parametric excitation is obtained by applying a small modulation to the in­

tensity of the lattice light. The Hamiltonian of the system can then be written

as:

- ^ = ^  +  ^[1 + ^(0]) (5-1)

where the first term is the kinetic energy, the second term the potential energy

and e{i) = is the fractional modulation induced on the potential by varying
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the light intensity;

y (x ) =  - ia |E L ( x ) |2  (5.2)

is then the effective potential, where a  is the effective atomic polarizability and 

E l  is the radiation field amplitude.

Following the time-dependent perturbation theory, the unperturbed Hamilto­

nian is defined as:

= E  + v ( . )  (5.3)

while the equation of motion of the state is ruled by:

i h ^ ^ ^  = e{t)V{x,t)\9{t)),  (5.4)

where

!§(()) (5.5)

The interaction operator is:

ÿ  =  (5.6)

and the evolution operator is given by:

[/(() =  1 -  ^  r  e(t)ÿ(a:, ()î7((')d(h (5.7)
^ Jo

The transition probability between two states of the unperturbed Hamiltonian can 

be written, using equation 5.7 as:

{n\Ü{t)\m) = ônm -  ^Vnm [  dt e{t (5.8)
^ Jo

with Unk =  {En -  Ek) /h  and

Ki/c =  {n\V\k) — En§ n ~  (5.9)
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If it is assumed that the changes in the wave-function induced by U{t) are small 

in the interval (0,t), then it is possible to estimate the average rate of transitions 

from a state |n) to a state \m) in a time t\

= i |(n |f / ( ”)(t)|m )p. (5.10)

If the heating is induced by a modulation of the confining potential:

e(t) =  eo cos (cut) (5.11)

then up to the second order in eo, the transition probability is given by:

{n\Û^‘̂ \t)\m)- =  ônm +  ^^O^Kim[C((^nm + ^)^) + C((^nm ~ ^ )0 ] (5-12)

“ C((^nfc + ^)() -  Cii^nk — ^ )0 ] + -r,----------- r

[C((^nm — 2cu)t) + Ci^nmt) ~ Cii^nk + ~  C((^n/c ~ ^)^)]] i

where ({x)  =  _ it  has to be again emphasized that this expression is

only valid for small changes induced in the time t.

For a harmonic oscillator with frequency cuq, the matrix elements I4 ,m >  can be 

written as [42]:

Kifc =  —̂ [(2A: + l)0nk +  \ /  n(n — l)0n^k+2 + \ /(n  + 1) (n +  2)0n,k-2] (5.13)

From an examination of the various terms in equation 5.12, it is possible to see

that the following VnkVkm products are combined to give a non zero contribution 

for:

(i) Ki,n±2Ki±2,n±4 “ the resonant terms appear in the combination (((4cuo ±  

2u)t) -  C((2cuo ±cu)t), so that such transitions are highly suppressed
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(ii) VnkVkn -  the resonant terms appear for to =  0 ,2wQ. For w ~  2 ujq the 

amplitude of the transition is proportional to

2h iO r

I T /  |2  / C ( 0 )  -  ( ( ( ^  -  2 w o ) t ) A  |2  / ( ( 0 )  -  C ( ( 2 w o  -

(5.14)

(iii) V"n,n±2Fn±2,n±2 and Ki,nKi,n±2 “ these transitions can be viewed as a com­

bination of two virtual transitions n —> m. —> m or n n  —̂ m. According 

to equation 5.12, the corresponding resonance frequency is the fractional 

frequency u) =  \uJnm\/‘̂  =  WQ. The transition probability for w ^  wo is then:

(A) (5-15)

-  -  rnf[n{n  -  l)ôn,m+2

sin^ (w -  u>o)t/2
+ {n + l)(n  -f- 2 )Ôn^m- 2 (w -  wo)2(2/4

In all the above cases, the non resonant terms ((wT), with u'  7̂  0, give rise 

to oscillations of the transition probability, which is consistent with the results 

found by the exact evaluation of the transition probability discussed in [42]. For 

long times, such tha t tcu' Z$> 1, then the resonant terms only give a significant 

contribution.^ In tha t limit the transition rates i?n—m are constant.

The dominant transition probability of a fractional frequency resonance w =  

2o;o/n, arises at n-th order perturbation theory. It can be viewed as an n-steps 

procedure consisting of n-steps virtual transitions, where n — 1 of them do not 

change the state but one does change it. Thus it is expected that equation 5.15 

describes approximately the transition probabilities n —> n ±  2 when the source 

has a frequency u  = uq.

^keeping in  m ind  th e  (5-function rep resen ta tio n  as 0{uj) = ^  limf_.oo
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5 .1 .1  F irst order p ertu rb a tio n  th e o ry

As shown above, within the first order perturbation theory the additional varying 

potential induces transitions between states n  and m  with an average rate:

P n —n n  — rj^ — iKxml S{Umn)^ (5.16)

where Vnm is the matrix element of the space part of the perturbation, defined in 

equation 5.13,
2

S{co) = — cos(wT) < e{t)e{t-\-T) > dr (5.17)
J o

is the one-sided spectrum of the fractional intensity modulation and < e{t)e{t + t ) > 

is the correlation function for the fractional intensity fluctuations.

If the confining potential can be approximated by a harmonic well the only 

terms which are non-zero for the transition rates are

2
Rn^n = ^ S { 0 ) ( 2 n + l f  (5.18)

and

R n ~ * n ± 2  = -Y^S(2wo)(n + 1 ±  l)(n  ±  1). (5.19)

As shown in [40] and [41], from equations 5.18, 5.19 it is possible to deduce the 

exponential character of the heating rate and its dependence on 2wo, typical of 

the parametric nature of the excitation process. Assuming that the atoms are 

occupying the ]n) state with probability P{n, t)  at time t, the average heating 

rate is given by the sum of the contributions of processes involving a change of 

vibrational level; therefore, according to equation 5.19:

P{n)2bwQ{Rn-^n+2 — R n ^ n - 2 ) — — WQ5'(2wo) {E) , (5.20)
n

where the average energy {E) is

(F(t)) =  P (n , t){n +  hhxjQ. (5.21)

'A ssu m in g  th a t  th e  an harm on ic ity  effects are negligible
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The heating rate is therefore proportional to the average energy itself and depends 

on the vibrational frequency of the lattice. From equation 5.20 it is possible to 

deduce the exponential behavior of time evolution of the average energy. By 

introducing the characteristic time tg, the time to increase (E) by a factor of e, it 

follows that:

te = (7r^z/o&(2wo))"^ (5.22)

In the classical regime, parametric oscillators exhibit resonances not only at 

2u>o but also at 2ujofn with n  any integer. Resonances corresponding to n =  2 have 

been observed for far-detuned optical lattices , as shown in [38], [43]. In order to 

reconstruct the processes which lead to 2wo / n resonances it is necessary to appeal 

to the nth-order perturbation theory. Furthermore, some general features of the 

optical lattice are lost in the harmonic model: the energy-band structure and 

spread of transition energy are not taken into account in the previous model. In 

the following sections I will discuss a model, which is based on the results found in 

[42] and similarly to [39], attempts to account for higher order heating rates and 

the anharmonicity of the potential wells in our lattice. Our model was developed 

independently on the work done in [39] and their differences and similarities will 

be highlighted during the following sections.

5 .1 .2  S econ d  order p ertu rb a tio n  th eo ry  and a n h a rm o n ic ity

In section 5.1 the parametric excitation was studied in the harmonic approximation 

and according to first order perturbation theory. In [39] the model was extended 

to second order perturbation theory and the anharmonicity was introduced semi- 

empirically as a broadening of the vibrational levels involved in the transition.

The second order correction to the transition rate between states ]n) and |m) 

is given by:

R ÿ l m  =  Ç  ( y  )  (5.23)
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The transition process can be described as a two step procedure: a first step 

|n) —> \k) and a second |/c) —> |m). In the previous section it was shown in 

equations 5.18, 5.19 tha t the only non-zero matrix elements for the space part of 

the perturbation are the terms involving transitions |n) |n) or |n) |n ±  2).

Then for a first step in which the final state is the same as the initial |n) |n),

followed by a second transition |n) ^  |n ±  2), the net energy change is 2Wo. 

Therefore, a resonance occurs when the total energy of the two excitation processes 

coincides with the net energy change, i.e for uj = WQ. The probability P{n) of 

finding an atom in the level n  is then given by:

P(n , t) = P{n, to) 4- ^  Rl} l^ {P{m,  to) -  P (n , to)){t -  to)
m

+ ^ 2  ^o) -  P{n, to)){t -  to)^, (5-24)

which is valid in the limit t ~  to-

All these considerations can be extended to the anharmonic potential case. The 

difference is that the anharmonic transition matrix elements T(n, m) are non-zero 

for a wider set of pairs n, m  and the transition energies will have a broadened 

distribution. To form an idea of the frequency spread in an anharmonic potential, 

I refer to Table 2.1, where the energy spectrum obtained for a Umax — and

Umax =  250Er  as well as the bandwidth for the different levels are shown.

In order to estimate the inter-band transitions driven by parametric excitation 

a phenomenological broadening must be taken in account. The broadening arises 

not only from anharmonicity of the band structure but also from other sources, 

such as laser intensity and pointing fluctuations and, more important, intensity 

inhomogeneities along the lattice region. In fact, in section 4.2 it was shown that 

the laser profile is not homogeneous so that the trapped atoms experience different 

potential at different lattice sites. This leads to a large variation of the vibrational 

frequency of atoms at different lattice sites. Furthermore, each of the vibrational 

bands in a single potential well exhibit a finite width, which is negligible for
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low lying levels but becomes significant for higher energy states. We can try to 

take in account for this spread of frequencies considering each level involved in the 

transition as a Gaussian density distribution of states, centered at wo with a width 

an representing the frequency spread. Broad spectral lines can be introduced in 

the model by defining, as suggested in [39], an effective spectral density Seff{uj),  

obtained by the convolution of the two Gaussians associated to the levels involved 

and with the excitation source with spectral density given by 5.17:

=  5oexp , (5.25)

where =  cr^ +  cr̂  +  (Jq , with am,n the widths of the levels involved and ao 

the width of the excitation source and cug// is ojmod ~ i^m ~ ^n)- At the moment 

all the sources of broadening can be semi-empirically included in the model as 

constant level widths. A future very useful improvement of the code will be the 

introduction of an energy dependent level width and trying to adapt the model 

to the experimental data in order to find out the relation of the level broadening 

with the vibrational number.

5.2 Param etric Excitation Simulations

Following the guidelines of the two previous sections, a simple model was devel­

oped, in order to simulate the parametric excitation experiment.

An initial Boltzmann distribution of atoms in the vibrational levels of a one­

dimensional harmonic oscillator is assumed. The use of a one-dimensional model 

is justified considering the vibrational motion independent in the x  and y direc­

tions. The rate-equations for the populations of each level are written according to 

equations 5.18, 5.19. Instead of using the harmonic approximation as in [39], the 

full matrix elements Vnm were calculated and included in the code; in this way, 

for each level involved in the transition the corresponding calculated frequency
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(see table 2.1) was introduced, thus improving the accuracy of the model. Nev­

ertheless a Seff ,  as defined in equation 5.25, was still used in order to consider 

other broadening effects. The effective width takes into account the linewidth of 

the levels involved and the broadening due the fluctuation of the spring constant 

caused by the modulation of the potential depth. In this way the transitions from 

one level to another were simulated, taking into account anharmonicity effects, 

the linewidth of the resonances and the broadening caused by the modulation. 

Effects of other broadening sources, such as inhomogeneities of the potential, will 

be taken into account as a broadening in the transition linewidth.

Once the excitation processes have been considered, the loss of atoms excited 

out of the potential have to be simulated. It was further assumed that atoms 

excited to high-energy levels at the top of the potential well with width bigger 

than Efi  (see table 2.1) are unbound and therefore lost. Evaluating the excitation 

and decay rates as well as the loss mechanisms, the population distribution over 

vibrational levels is modelled. The mean vibrational energy is then calculated 

as the population-weighted average of the vibrational energy of each level. The 

energy increase with time, for a fixed modulation frequency of ~  2wo, was shown to 

be non-exponential; a fast energy growth at short times is followed by saturation at 

longer times. This can be explained by linking the energy increase at short times 

to atoms from the lower lying levels being excited to higher lying ones, whilst, at 

longer times, when the higher lying levels are mostly populated, the modulation 

source is no longer resonant with the excitation process, thus reducing the number 

of atoms excited per unit time.

In figure 5.1 an example of the results of the parametric excitation simulation is 

shown. The fraction of trapped atoms is plotted versus the excitation duration at 

different excitation frequencies. In this simulation the potential depth is considered 

uniform over the lattice region and equal to 200E r , which correspond to ujq =  36
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Figure 5.1: Simulation of parametrically induced losses versus modulation frequency and 
time for: Umax = 200£'it, mp = -4 , Tin = 3/rK, to = 0.1, =  l.5Efi. The first resonance

can be seen at 36 kHz. which corresponds to the characteristic vibrational frequency.

kHz and the initial kinetic temperature of the sample is assumed equal to 3/iK. 

The plot shows several features corresponding to the main 2wq resonance and 

higher order resonances. It has to be pointed out that the main resonances occur 

at a frequency slightly smaller than the vibrational frequency of the lower lying 

levels. This shows that a significant fraction of atoms in the potential wells would 

have a different characteristic vibrational frequency from the lowest lying ones, 

due to the anharmonicity. So by estimating the shift of the resonance frequency 

it is possible to give an estimate of the anharmonicity of the potential or of the 

inhomogeneity of the well depth.

in figure 5.2 the corresponding kinetic energy is plotted, which shows that it 

is possible to induce heating and cooling of the sample by parametrical excitation
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Figure 5.2: Simulation of parametrically induced temperature variation versus modulation 
frequency and time for: Umax — 200Efi, mp — -4 , =  3/xK, eo =  0.1, ero =  l.5Ep.

of the vibrational modes, depending on the chosen excitation frequency. At a 

frequency for which the higher lying states are mostly excited, a parametric ex­

citation sequence would result in loss of high energetic atoms, therefore in a net 

cooling of the remaining trapped sample. When the lower lying energy levels are 

stimulated, the excitation would result in an increased population of the higher 

lying ones, thus in a net heating of the atomic sample.

In the next two sections 1 will discuss how the model was used in order to 

simulate the parametric excitation and the noise induced heating. The model’s 

contribution towards our understanding of the effect of anharmonicity, Zeeman 

population distribution and non-uniform laser intensity on the broadening of res­

onances is detailed. It will also be shown that the noise induced parametric ex­

citation effect produces significant heating only at times much longer than the
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typical duration of the experiment.

5.3 Parametric Excitation M easurements

A sample of atoms was prepared in the far-off resonance lattice with a detuning of 

A = (-2000 ± lüü)r and a single beam intensity of =  (400 ±50) mW/cin^.

The potential induced on the trap[)ed atoms therefore had a maximum light shift of 

Umax = 170±h ,̂ corresponding to = 55 kHz. A modulation of 10% wtis then
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Figure 5.3: Experimental spectrum of the losses induced by parametrically exciting the
lattice vibrational modes. The fr act ion of trapped atoms remaining in the lattice after 

the parametric excitation is plotted versus the excitation frequency.

introduced in the lattice potential depth (through an acousto-optic modulator 

used to control the laser intensity), which was left to parametrically excite the 

vibrational modes for 25 ms. At the end of the excitation time, the atoms were
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released from the far-detuned lattice and let free to fall through the time-of-flight 

probe beam. In this way it was possible to estimate the number of atoms still left 

trapped at the end of the modulation, as well as the mean kinetic energy of the 

sample of atoms. Measurements were taken at various excitation frequencies.

In figure 5.3 the measured fraction of atoms left in the lattice is plotted versus 

the modulation frequency. According to section 5.1 a main resonance in the losses 

of atoms was expected at twice the vibrational frequency, and a secondary reso­

nance at Uyii). The data in figure 5.3 show a broad band for losses, with a width 

comparable to the resonance frequency itself.

In figure 5.3 two resonances seem to be resolved, despite the evident broad­

ening, for uJmod — 35 kHz and 58 kHz. These resonances do not agree with the 

predicted resonances within the harmonic approximation, but are in good agree­

ment with the prediction of the anharmonic model. Invoking anharmonicity effects 

it is also possible to explain the fact that resonances occur at frequencies slightly 

different from the expected harmonic vibrational frequency and, partially, the ob­

served broadening. The major causes of broadening, though, were found to be due 

to inhomogeneities in the potential depth experienced by the atoms. This is in 

part caused by the inhomogeneous spatial intensity profile of the FDL beams, as 

discussed in section 4.2. Furthermore, with the use of Stern-Gerlach experiments 

(see chapter 6), it was also found that the atoms also populated several Zeeman 

states. Potentials associated with different Zeeman states have different depth and 

therefore the trapped atoms oscillate at different frequencies, depending on their 

mp  number. It was found that the Zeeman state population distribution plays a 

major role in the broadening of the resonances. The parametric excitation was 

modelled for different Zeeman-state potentials and the weighted average was then 

performed, after the populations of different Zeeman-states had been estimated 

with a Stern-Gerlach experiment.
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Figure 5.4: Comparison between experimental and theory data for population losses. The 
data plotted in black reprœent the measured number of atoms that remain in the lattice 
after a parametric excitation of the sample at different frequencies for 25 ms. The red line

is the result of simulations.

in figure 5.4 the experimental data are plotted and compared with the results 

from the model. The model is in good qualitative agreement with the experimental 

data, allowing also the estimation of an effective vibrational frequency and there­

fore the maximum potential depth. The principal resonance of the trap seems to 

occur at 1.66 wg, rather than 2ujq. This follows from the fact that atoms in the 

lowest levels are partly excited to higher lying levels but are not lost (as would 

happen for a harmonic potential), while the most energetic atoms, which have a 

smaller excitation energy due to anharmonicity and are therefore more resonant
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Figure  5.5: E x p e r im e n ta l  s p e c tru m  ol' th e  c h an g e  in  k in e tic  te m p e ra tu r e  in d u c e d  by
p a ra m e tr ic a lly  e x c itin g  th e  la t t ic e  v ib ra t io n a l  m o d es  a t  d iffe re n t freq u e n c ie s  for 25 m s.

with a lower excitation frequency, are immediately excited out of the lattice. This 

explains why the predicted main resonance at 2wo actually occurs shifted to the 

low frequency side. The asymmetry of the resonances is also well reproduced by 

the model and reinforces the role of anharmonicity in the loss of atoms. Higher 

harmonic resonances are also predicted by the model, leading to the broad feature 

seen in figure 5.4, at ~  3wo, not in very good agreement with the data, where this 

resonance is shown to be almost suppressed.

The mean kinetic energy of the sample was also measured and the variation 

in temperature is plotted versus the excitation frequency in figure 5.5. It is shown
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Figure 5.6: Comparison between experimental and theory data for kinetic temperature
variations. The data plotted in black represent the experimental result of temperature 
measurements for the atoms left in the lattice after a parametric excitation experiment 

at different driving frequencies for 25 ms. The red line represents result of simulation.

there that both cooling and heating of the sample can be achieved depending 

on the excitation frequency: energy selective excitation processes can result in 

either cooling or heating, depending on whether lower or higher lying states are 

mostly excited. If the potential was homogeneous, it would be straightforward 

to deduce that at lower frequencies atoms in higher lying vibrational states are 

excited and expelled from the trap, thus resulting in a cooling of the sample. At 

higher frequencies, on the other hand, transitions involving lower lying states are 

mostly brought into resonance, thus heating the atoms. These results are in agree­

ment with [44], where the exploitation of anharmonicity in shallow traps through 

parametric excitation processes was proposed as a method to boost evaporative
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cooling. The situation presented in figure 5.5 shows definite regions of net cooling 

or heating, but the competition between the two phenomena cannot be simply- 

attributed to different vibrational levels of the same potential; different potential 

depths and consequent spread in vibrational frequencies should also be taken in 

account. This cannot be simulated well with the present model. The model also 

does not take in account any other source of heating apart from the one introduced 

by the parametric excitation, thus only partially representing the true situation. 

Our model is not expected to fully reproduce the features of figure 5.5; it serves 

only to show that, due to inhomogeneities and anharmonicity, there are frequency 

ranges for which the net effect of parametric excitation is a cooling of the sample 

(higher lying modes are mostly excited) and regions where the heating dominates 

(lower lying modes are mostly excited). The predicted order of magnitude of such 

temperature variations was also shown to be consistent with the measured one, as 

it is shown in figure 5.6.

5.4 Noise-induced heating rates

In the previous sections it was shown that a modulation of the potential depth 

could selectively excite atoms in different vibrational bands out of the lattice. This 

would result in the remaining sample being heated or cooled. A code was developed 

which can simulate the losses of atoms excited out of the well and the net kinetic 

temperature of the sample of atoms which remain trapped. The anharmonicity 

of the potential depth played a basic role in the possibility of selectively exciting 

atoms in different bands by simply choosing an excitation frequency. If there was 

no anharmonicity or if the excitation source was composed by a broad band of 

frequency, then all the vibrational bands could be excited simultaneously. Laser 

intensity noise can cause atom heating, while losses linked to heating can limit the 

maximum storage time. Far-off'-resonance optical lattices can be very sensitive to
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intensity fluctuations and beam pointing variation [40]. An attem pt was made to 

estimate of the upper limit to the heating rate induced by power fluctuations of 

the laser source. A measure of the noise spectrum of the laser was not possible, as 

the noise floor of the detection system electronics was above the noise level of the 

laser. An estimate of the noise-induced heating was therefore determined assuming 

a laser noise as high as the electronics noise, this constituting an upper limit for the 

power fluctuation induced heating. Therefore, by assuming a fractional variation 

with rrns of eo =  0.001 at 410 mW total laser output power, the real noise level has 

certainly been overestimated. In case of noise-induced parametric excitation we 

have stocastic fluctuations of the laser power, instead of sinusoidal modulation. In 

this case we expect the energy to increase exponentially with time , as explained in 

[45] and not to saturate, as a broadband fluctuation would simultaneously excite 

the atoms in all the vibrational levels.

An estimate of the characteristic time of the heating process due to stocastic 

fluctuations driving the center of mass motion can be reached by using equation 

5.22: for uq — 35 kHz typically and S^{2uq) =  1 x  10“ ® Hz“  ̂ a characteristic time 

of 80 ms was found. This is indeed a significant cause of heating, but only at 

times longer than the typical duration of a far-detuned lattice phase (typically 10 

ms or less). Considering the long characteristic time and the fact that the laser 

noise is overestimated, the noise induced parametric excitation is not expected 

to play a significant role in our experiment for atoms in lower lying vibrational 

states. However atoms initially in highly energetic vibrational levels may be easily 

excited out of the lattice even at short time, due to intensity noise, as discussed 

in chapter 4. Thus in conclusion, we do not expect the noise-induce heating to 

significantly affect and limit the sideband-Raman cooling experiment. However 

intensity fluctuations of the laser are probably responsible for the reduced lifetime 

of the far-detuned lattice and the band-dependent losses, as high energetic atoms
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Figure 5.7: Mean energy growth due to intensity noise in the far-detuned lattice beam

in the lattice require minimal heating to be excited out of the well, as discussed 

in chapter 4.

5.5 Conclusions

A model of atom losses in an optical lattice induced by parametrically modulating 

the potential depth was developed, based on the theory presented in [42]. Ex­

periments were run to monitor the escape of atoms from the lattice, when the 

laser beam was intensity-modulated. A comparison of the experiments with the 

model lent us insight into the band structure and the degree of anharmonicity of 

the potential. The temperature variation was also monitored and it was found 

that by parametrically modulating the lattice depth at a suitable frequency, it
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was possible to selectively excite out of the lattice the most energetic atoms, thus 

cooling the remaining trapped sample. The clear effect of the non-uniformity of 

the potential depth along the trapping region was also demonstrated, which was 

due to the restricted dimensions of the far-detuned laser beams. An analysis of 

noise-induced heating suggested that intensity fluctuations may be partly respon­

sible for the band-dependent losses of the far-detuned lattice, studied in chapter 

4. However, the noise-induced heating is not expected to affect significantly the 

sideband-Raman cooling experiments (see chapter 7).



C h a p t e r  6

Stern-Gerlach Analysis of 

Zeeman-state Populations

In the absence of static external magnetic fields, the atoms are distributed equally 

between the cr"̂  and wells in the lattice. By adding a static magnetic field along 

the direction orthogonal to the lattice plane, the Zeeman levels are differently 

shifted, according to their m p  number. It is therefore possible to increase the 

population in the wells corresponding to the lowest energy shifted sub-lattice. As 

discussed in chapter 2, the sideband-Raman cooling scheme that we used in this 

work exploits coherences induced between the vibrational states of the potentials 

associated with the \rriF — —4) and jmp =  —3) states. A cr~-polarized pumping 

beam populates the stretched state in which the cooling is efficient. By spin- 

polarizing the near-detuned lattice it is possible to increase the initial population 

of the \rriF = —4) state in the far-detuned lattice, thus reducing the necessary 

interaction with the pumping beam. This would improve the cooling efficiency by 

reducing the heating rate due to photon-scattering.

In this chapter I will describe the Stern-Gerlach experiments that were im­

plemented in order to perform a Zeeman analysis of the sample of atoms in the
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lattice and an investigation of spin-polarization of the lattice. These experiments 

exploited the state-dependent magnetic dipole force induced by a magnetic field 

gradient, which was used to separate the time of flight signals of the individual 

magnetic sublevels. An optical lattice of the type described in chapter 3, in the 

configuration shown in figure 1.8B, presents, in fact, a geometry which associates 

with each lattice site a cr'*' or cr“ light polarization. The atoms are distributed 

over different lattice sites, each capable of trapping in different m p  states. When 

the atoms are released from the lattice they present a magnetic moment along 

the axis orthogonal to the lattice plane. The interaction of the atomic magnetic 

moment with a non-uniform magnetic field is exploited to accelerate the atoms 

differently according to their m p  state; hence the time-of-flight (TOP) signals 

for different Zeeman states can be time-separated. This method allows a mea­

surement of the relative populations of the Zeeman states as well as the different 

temperatures associated with different lattice sites. This technique was used in 

[12] to prove the efficiency of local Sisyphus cooling in lattices for atoms with a 

large F. The interaction between the atomic magnetic moment and magnetic field 

gradients has been used extensively to tailor atomic beams. Several experiments 

on magnetic atom optical components, such as mirrors or refractive systems [46],

[47], exploited the state-dependent magnetic dipole force induced with a varying 

magnetic field. More recently Stern-Gerlach experiments on caesium atoms were 

used to demonstrate a method to measure the quantum state of an atom with an 

arbitrarily large angular momentum [19].

The following sections will give a brief summary of the interaction of a mag­

netic moment with a magnetic field and of the analytical model that was used to 

simulate the Stern-Gerlach experiment. The experimental set-up and results are 

then shown for atoms released from the lattice and also for a spin-polarized ( [48] ) 

and an optically cr-pumped sample. The final section of this chapter discusses
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the magnetization induced by means of a constant magnetic field, parallel to the 

lattice axis, and the consistency of the experimental data with the concept of a 

spin temperature; the results are in agreement with previous studies presented in

[48], [12].

6.1 Atoms interacting with a magnetic field

The magnetic moment of an atom with angular momentum F  is given by:

M = 7F  = - ^ ^ F ,  (6.1)

where 7  is the gyromagnetic ratio, g is the Lande factor for the |F, m/r) state and 

fiB is the Bohr magneton.

If a magnetic field B is introduced the magnetic moment interacts with it and 

the interaction potential becomes;

W  = —fj, • B. (6.2)

The force interacting with the atom can be expressed as the gradient of the po­

tential, that is equal to:

F =  -V W  =  (M ■ ®  )i + (M ■ ®  )j + (/X • ®  )k, (6.3)

where (i,j,k ) is the basis of the cartesian axes. If the magnetic field is uniform 

the magnetic moment precesses around the direction of B at a frequency (Larmor 

frequency) which is directly proportional to the magnitude of the magnetic field

^L =  |7 ||B |; (6.4)

the net force over a Larmor period T l =  27r/w_L is zero. This means that the pro­

jection of the magnetic moment along the direction of the magnetic field remains 

constant. If the magnetic field B is inhomogeneous, from equations 6.2, 6.3 it can
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be deduced that the net force is no longer zero and that it is proportional to the 

magnitude of the magnetic moment.

In a quantum description of an atom placed in a spatially uniform, constant 

magnetic field directed along the 2-axis, B =  B^k, the system has stationary 

states which are eigenstates of and Fz  with energies [49]:

Em =  hEg'TnpEz- (6-5)

The time evolution of one of the stationary states

l^m(i)> =  (6.6)

is shown to be [49]:

\^m{i)) =  A e x p { - iE m t /h ) \ ^m )  = Aexp{-icüLmt)\^m)-  (6.7)

From equations 6.6 and 6.7 it follows that the coefficients Cm can be expressed as

Cm{i) =  exp {-imujLt)cm (6.8)

The populations of the stationary |Tm) states TTm =  |cm(^)P are therefore time- 

independent: the populations along the direction of the magnetic field, which we 

chose as the quantization axis, remain invariant.

The change in B during a small time interval can be decomposed to parallel 

and transverse components with respect to z. Any change in Bz  has the sole 

effect of changing the Larmor frequency. A variation in the transverse direction 

of B±  has the effect of introducing couplings with other Zeeman substates, [49]. 

The populations Pm are no longer constant in time, unless the variation in the 

transverse field over a Larmor period is much smaller than |B |. This requires;

In the case where w^is much bigger than the rate of change of the magnetic field, 

the internal and external degree of freedom decouple and the angular momentum
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can adiabatically follow the variation of the magnetic field, while maintaining the 

component of magnetic moment along the initial direction of B. This means that 

the projection of the magnetic moment along B is constant over a Larmor period, 

so time averaged (/i) has only a constant component along B. From equation 6.3 

and the previous condition follows that:

F  =  W V |B (r) |,  (6.10)

i.e. the force depends only on the magnetic field strength.

6.2 Stern-Gerlach sim ulations

An analytical model was developed to simulate the different arrival times of atoms 

in distinguished mp  levels, when they are in the presence of a magnetic field 

gradient.

It was assumed that the condition of equation 6.9 is fulfilled, so that the 

internal and external degree of freedom of the atoms decouple and the angular 

momentum can adiabatically follow the slow changes of the magnetic field. In this 

case the force acting on an atom depends on the time averaged magnetic moment 

(which is constant) and the gradient of the magnetic field strength, from equation 

6.10. The model is then used to calculate the acceleration of the atoms along the 

vertical axis, which leads to nine separate clouds corresponding to different atomic 

m p  states. By modelling the different trajectories along the vertical axis, it was 

possible to estimate the different arrival times of the nine clouds of atoms at the 

location of the TOF probe beam, situated 6 cm below the initial cloud position. 

A typical sequence of the experiment was then simulated with the code, in order 

to calculate the parameters which optimize the resolution of the nine peaks.

A cloud of cold caesium atoms is released and left free to fall under gravity for 

a variable time. After some time the magnetic field gradient is switched on and
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left to interact with the atoms also for various durations. It was possible to vary 

both time durations as well as the magnetic field gradient to simulate the TOF 

signal produced by the falling clouds and to elect the right parameters in order to 

optimize the resolution.

It was realised that it is very important not to let the atoms pass the region 

of zero magnetic field (i.e. the middle point in the coils axis), in order to avoid 

a change in the orientation of the spins ̂  and an inversion of the acceleration 

for individual m p  states, which would result in decreasing separation among the 

peaks. Therefore it is important to let the atoms fall freely until they are distant 

enough from the zero field point, that even during the subsequent acceleration 

none of the nine clouds passes again through that point. Assuming that there is no 

heating overall in the Stern-Gerlach measurement process (i.e. no increase in the 

mean velocity of the atoms), the duration of the free-fall has to be set depending on 

the duration of the interaction with the magnetic field gradient. This latter time 

scale has to be set in order to achieve the maximum resolution. Both durations are 

conditioned by the distance of the time-of-fiight beam from the cloud. By running 

the code it was found that the best resolution was achieved when the atoms were 

let to fall freely for 30 ms. Following this, a magnetic field gradient of 40 G/cm  

was introduced for 25 ms. The result of the simulation for these parameters is 

shown in figure 6.1, where all m p  levels are equally populated. The code does not 

include a fitting routine to the experimental data, but it was, however, possible 

to vary the population of the magnetic levels in order to match the predicted 

curve to the measured Stern-Gerlach spectrum. In figure 6.2 a simulation of the 

Stern-Gerlach experiment after optical pumping the sample with a light is shown, 

which showed that as much as 40% of the atoms are in the m p  — —4̂ state. The 

model was therefore used to estimate the optimal parameters needed in order to

T h is  condition  is experim entally  guaran teed  by th e  on-axis co n stan t m agnetic  field, w hich 

keeps th e  a lignm ent of th e  m agnetic  m om ent



6.3. Stem-Gerlach experiments 132

oj 40

20

100 110 
time (ms)

120 130 140 150 160

Figure 6.1: Simulated TOF spectrum for a a Stern-Gerlach experiment, for tfree-fall =
2hmsJ.drop = 30m.s, G = A^G/crn and starting temperature T = ApK.

perform the Stern-Gerlach experiment as well as to estimate the populations of 

the magnetic sub-levels from some experimental spectra.

6.3 Stern-Gerlach experim ents

The Stern-Gerlach analysis allowed us to measure the populations of the different 

m p  states and also to distinguish the kinetic temperature in the two sublattices 

corresponding to trapping at (%+ and a~ circular polarized light locations. This 

was especially crucial in monitoring the transfer from the near-detuned to the 

far-detuned lattice and in inspecting the efficiency of the Raman cooling.

The basic idea is to use the time-of-flight (TOF) detection scheme described in 

chapter 3, to separate in time the detection of atoms in different m p  states. When 

the atoms are falling, following their release from the lattice, the introduction of a 

magnetic field gradient has the effect of generating a state dependent force which 

is proportional to the magnetic quantum number m p  oî the atom [49]. This
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F igure  6.3: R e p re s e n ta t io n  o f  th e  la t t ic e  p la n e  a n d  q u a n tiz a t io n  a x is  fo r th e  l i n  — 0 — l i n
2 -D  la t t ic e .
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force leads to different arrival times at the TOF beam location, for each magnetic 

sub-level atomic distribution.

cn
"O ■

4 A-6 -4 Ü
d (cm)

Figure 6.4; M a g n e tic  he ld  g rad ien t g e n e ra te d  h u m  t r a p  coils a s a fm ic tio n  of th e  d is ta n c e
h u m  th e  t r a p  cen te r .

Idle geometry of the lattice (see hgure 6.3) suggests a natural choice of a 

quantization axis, which is orthogonal to the plane of the lattice itself: the atoms 

trapped at different lattice sites where the light is a-polarized present a magnetic 

moment along this axis, which we associate with the z-axis in the following. In the 

absence of in-plane stray magnetic helds, the projection of the magnetic moment 

along the quantization axis is preserved (see section G.i), therefore the populations 

of the m.p states are preserved. However, in order to avoid population fluctuations 

due to precession around in-plane residual stray magnetic fields, we can introduce 

a uniform magnetic held along the z —axis as shown in hgure 6.3, strong enough to 

maintain the orientation of the magnetic moment. This magnetic held is generated 

by a pair of coils oriented parallel to the lattice plane in Hehnoltz conhguration,
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with a typical strength oi B z  = 500 mG.

0 . 0 3  0 . 0 4  0 . 0 5  0 . 0 6  0 . 0 7  0 . 0 8  0 . 0 9  0 . 1 0  0 .1 1

0 . 5 4 0

0 . 4 8 6

i 0 . 4 3 2

D )  0 . 3 7 8

LL

0 . 3 2 4

0 . 2 7 0

0.110.100 . 0 4  0 . 0 5  0 . 0 6  0 . 0 7  0 . 0 8  0 . 0 90 . 0 3

time (s)

Figure 6.5: Spectrum of a Stern-Gerlach experiment in the near-detuned lattice.

A sequence of the experiment proceeds as follows. The atoms loaded in the 

lattice for different storage times are released and let free to fall. After 25 — 30 ms 

(typically) the MOT coils are turned on, by ramping their current over 4 ms. The 

slow turn-on of the current in the trap coils is necessary in order to allow the mag­

netic moments to adiabatically follow the change in the magnetic field direction, 

while preserving the projection along the quantization axis, as shown by equation 

6.9. For the standard value of current used, the magnetic held gradient is shown 

in hgure 6.4, plotted against the distance from the center of the coils along the 

vertical direction. The atoms travel along the vertical axis for ~  0.5 cm, before the 

magnetic held gradient is switched on. This is necessary in order to guarantee that
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the atoms do not cross the region where the quadrupole field vanishes while being 

accelerated; crossing a region of zero field would result in a loss of orientation of 

the magnetic moments. In our experiment the additional on-axis magnetic field 

guarantees the magnetic moment orientation will be maintained. If the orientation 

is not maintained, an atom could undergo opposite acceleration above and below 

the zero quadrupole field region, and therefore in the Stern-Gerlach spectrum, it 

would be difficult to associate a single peak to a specific m p  state. The magnetic 

field gradient is left on for 25 ms, during which time the atoms experience a force 

depending on their magnetic moment given by equation 6.10. This force is pre­

dominantly along the vertical direction and produces acceleration or deceleration 

on the atoms, which is actually space dependent, of about ~  (4 x mp)  m/s^. The 

atoms are accelerated enough to have different arrival times, according to their 

m p  state, as they fall though the probe beam located 5 cm below the MOT. The 

magnetic populations can then be determined from a fit of nine Gaussians to the 

time-of-fiight distribution signal.

In figure 6.5 a typical TOF spectrum following a Stern-Gerlach experiment 

is shown: nine peaks corresponding to different magnetic sub-levels are resolved 

making it possible to extract information about temperatures aiid populations of 

the different Zeeman states.

In figure 6.6 the two spectra show the increased population of the two external 

m p  = ±4 stretched states, due to optical pumping with circular light in the far-off 

resonance lattice. A or a~ polarized beam was aligned orthogonal to the lattice 

plane with an intensity of ~  0.57g {Is =  1.12 mW/cm^) and was left to interact 

with the sample of cold atoms for 5 ms. This was especially useful in aligning 

the pumper beam with the quantization axis, since a misalignment results in the 

introduction of a tt component of light, leading to a mixing of the m p  states, and 

thus resulting in a reduced efficiency of optical pumping to the stretched states.
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Figure 6.6: Spectrum of a Stern-Gerlach experiment in the far-detuned lattice showing
the effect of a~ and cr̂  optical pumping.

Figure 6.6 shows the efficiency of the optical pumping to the stretched states 

and also shows that there is residual population in the other m p  levels. This 

is probably due either to stray fields in the lattice plane, which generate mixing 

of the sub-levels, dr to a non-perfect alignment of the pumper beam axis. By
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maximizing the population in the \mF = ±4) Zeeman sublevels it was possible to 

align the pumper beam to the lattice quantization axis.

6.4 M agnetization and spin tem perature in the near­

resonant lattice.

A set of experiments was also performed, aimed at the study of spin-polarization 

through the introduction of a magnetic field along the 2-axis during the near­

detuned lattice. As previously explained, this technique was investigated in an 

attem pt to optimize sideband-Raman cooling, by increasing the population in the 

m p  potential well in which the cooling is working (see chapter 2). The efficiency of 

cooling should be increased by reducing the interaction of the atomic sample with 

the cr-polarized pumper beam, thus minimizing the heating and by increasing the 

cooling rate. The cooling time should be therefore decreased and the efficiency 

optimized.

In the case of a two-spin system and in the absence of a magnetic held, it should 

be expected that half the atoms would be in the spin up state and half the atoms 

in the spin down state. If a magnetic held is applied, some of the atoms will tend 

to align, so as to rninimize the energy of the system, thus more atoms should be 

in the lower-energy state. Similarly, in our case, spin-polarization can be achieved 

by introducing a magnetic held along the 2 direction during the near-detuned 

lattice phase, where the interaction of the atoms with light can be exploited in 

order to increase the population of the stretched states [48]. Optical potentials 

generated by the light-shift of ground states with T  > 1, are associated with space- 

dependent superpositions of the various Zeeman states. When a static magnetic 

held Bz is introduced in the direction orthogonal to the lattice plane, each Zeeman 

sub-level is shifted. The transition probabilities among the Zeeman sub-levels, 

induced by Raman coupling, are also altered. The corresponding held-induced
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steady-state magnetization was found to display a quasi-thermal dependence on 

B,  characterized by a phenomenological spin temperature [48], [12], which was 

found to be different from the kinetic temperature of the sample. This means that 

different mechanisms of energy exchange are involved, as will be discussed later, 

which act on different time-scales. For this reason we can talk of quasi-thermal 

equilibrium for the spin mode of the system: the isolated (translational and spin) 

modes still exchange energy one with the other (as it happens for a system in 

thermal equilibrium where the energy is stored in different modes - corresponding 

to the various quantum states accessible to the system -), but the time-scale of 

this exchange is much slower than for the exchanges within the isolated mode.

Depending on the direction of the magnetic held and on the polarization of 

the lattice light at a certain lattice site, the static magnetic held is either paral­

lel or antiparallel to the hctitious magnetic held associated with the light shift. 

This asymmetry leads to a steady-state population imbalance between the atoms 

trapped at cr"*' or a~ locations, as shown in [48].

The effect of the introduction of a static magnetic held parallel to the lat­

tice axis was reported for the hrst time in [48]: the observation of paramagnetic 

behaviour of a three-dimensional caesium optical lattice was presented and the 

existence of a characteristic spin-temperature was shown. Subsequently in [12], a 

study of the induced magnetization in a one-dimensional optical lattice by means 

of a transverse magnetic held led to the conhrmation of a characteristic spin- 

temperature for the sample of atoms; the results were also used to demonstrate the 

importance of Sisyphus cooling within single light-shift potential wells for atoms 

with large F. In [32] weak magnetic helds were used to enhance laser cooling and 

state preparation and to show that coherent mixing and local energy relax:ation 

play important roles in laser cooling of large-F atoms. This was reinforced by hnd- 

ing that, in the presence of a magnetic held parallel to the lattice axis, the atoms
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separate in two subsets (corresponding to (%+ or a~ lattice sites) with different 

temperatures, indicating that, for large F, cooling occurs locally at each lattice 

site.

In this section a simple model for quasi-thermal spin population distribution 

is presented. Results from spin-polarization experiments are then shown and dis­

cussed in the last part.

6 .4 .1  A  m o d e l for q u asi-th erm al d istr ib u tio n  o f  sp in  p o p u la tio n

From previously published experiments [48, 12], it was reported that atoms trapped 

in a near-detuned paramagnetic optical lattice have a quasi-thermal behaviour. 

This means that the population distribution over different Zeeman states corre­

sponds to a Boltzmann distribution. Herein a simple model is presented, which 

simulates the population distribution over the different magnetic sub-levels as­

suming that the atoms are in thermal equilibrium. The model does not take into 

account the potential modulation and the Raman coupling, but it treats the differ­

ent Zeeman states as a discrete set of energy levels which are populated according 

to a Boltzman distribution. I will discuss later in this section the limitations of 

the validity of this model.

When the atoms are localized at the bottom of the potential well the light 

shift can be characterized by a scalar component independent of the m p  num­

ber plus a vector component, which acts as a magnetic field shifting the Zeeman 

levels. This fictitious magnetic held depends on the local light polarization, as 

shown by equation 2.5, and is therefore not constant, but varies with the position. 

If the atoms are well localized at the bottom of the potential well generated in 

the 2D conhguration that we used, then the R/ict is maximum, the light being 

purely circular polarized at these locations. Moving away from the bottom of 

the potential well, the light polarization changes, which reduces the compo­
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nent along the quantization axis. A smaller corresponds to less separation 

between the potential wells associated with different Zeeman sublevels, and an 

increased Raman coupling among them, due to transverse components of the ficti­

tious field, which allows atoms to change m p  state. If the atoms are well localized 

at the bottom of the potential, then it is justified to assume a constant charac­

teristic Bficti as the one at pure a polarization. We can simplify the treatm ent 

by assuming this condition is accomplished, but obviously this constitutes only 

an approximate description and the net effect of the effective magnetic field is 

necessarily overestimated. Assuming a quasi-thermal dependence of the Zeeman 

population on the total magnetic held, a phenomenological spin temperature can 

be introduced. Using standard statistical arguments, for an ensemble of atoms in 

thermal equilibrium, the population ratio of two energy levels is given by

111 E 2  -  El fa n \

where E i , E 2  are the energies of the levels involved and T5 is the system temper­

ature; what we call in this case the spin temperature. The energy of the levels 

depends on the light shift (which is a constant function o i m p )  and on the Zeeman 

shift, which is given by gmpppB ,  with g = B  is projection of the sum of the 

real and fictitious magnetic fields along the quantization axis. In this picture, at 

the potential minima at sites of exact and a~ light polarization, the population 

distribution over the m p  levels will be:

at <T+: =  exp (6.12)

at a - :  ^  ^  exp (6.13)
ffmo Kgig

where Bz  is a static magnetic field added along the quantization axis and Ilmo is 

the population of the mp = 0 level. Simulations were run to monitor the pop­

ulation evolution for a varying static magnetic field. The significant parameters 

are the spin temperature and the effective magnetic field, which modify the initial
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population distribution and the characteristic behaviour when the static magnetic 

field is introduced, in figures 6.7 and 6.8, the populations of different magnetic 

sub-levels are plotted versus the magnetic field, for an assumed 2.5 pK  and 5.0 pK  

spin temperature respectively. Each of the two figures shows the population dis­

tribution for two different effective magnetic fields, 30 mG and 120 mG. In the 

inset the central region corresponding to a zero external magnetic field is shown 

in detail. When the Bf id  is larger, for zero static magnetic field, the populations 

of the different magnetic levels are different, with the external states being more 

populated (figure 6.7). This difference in population is reduced for higher spin 

temperatures, as shown in figure 6.8.
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Figure 6.7: Population of different Zeeman levels versus static magnetic field, when a spin 
temperature of 2.5^K is assumed, for Bfid = 30 mG and Bfi^t = 120 mG. In the inset 

the central region of null external magnetic field is expanded.
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Figure 6.8: Population of different Zeeman levels versus static magnetic field, when a spin 
temperature of 5^K is assumed, for Bfict — 30 mG and Bfi^t ~  120 mG. In the inset the 

central region of null external magnetic field is expanded.

This model is only valid in the low magnetic field regime, as it does not take 

into account potential structure and the spatial modulation of the energy lev­

els. hVom figures 6.8 and 6.7, the maximum magnetization versus magnetic field 

is extracted and found to increase up to a maximum value (m) =  ±4 for posi­

tive and negative fields. This does not correspond to the real behaviour, as we 

shall see in section 6.4.2, where the experimental results are shown. In [12] the 

maximum magnetization achievable was explained as depending on the potential 

depth. Shallow wells produce less localization and cooling, thus resulting in un­

bound atoms which would diffuse through the lattice. This would also result in a 

reduced net polarization, furtherm ore, the value of the magnetic field for which
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the magnetization is maximum is associated with a well defined relationship of 

the light-shift and Zeeman shift; maximum magnetization is obtained when the 

adiabatic potentials of the different Zeeman states are only just separated. For 

stronger magnetic fields, the net magnetization decreases, due to the fact that, 

when the potentials are further separated, the Raman coupling among them is 

reduced and the eigenfunctions associated with the lowest adiabatic potential be­

come pure Imp — 4) or \mp =  —4). This suggests that, when the Raman coupling 

between different wells is much reduced, the atoms trapped at different wells are 

no longer in thermal equilibrium and can be considered as independent systems. 

When B  is sufficiently large the highest adiabatic potential is shifted enough to 

become capable of trapping atoms again, and the net magnetization tends to de­

crease towards zero.

6 .4 .2  S p in -p o lariza tion  ex p er im en ts

The spin polarization method was used in order to increase the number of atoms in 

the desired stretched states in the near-detuned lattice, prior to the loading of the 

far-detuned lattice.. This should improve the efficiency of sideband-Raman cooling 

by avoiding unnecessary heating related to optical pumping and in turn increase 

the population of the ground vibrational state (see chapter 7). The population 

distribution in the far-detuned lattice was also monitored, and it was shown that 

the distribution found in the NDL was almost entirely preserved in the FDL. 

Such a preparation should result in the increased efficiency of the Raman-cooling 

technique, as the atoms would not need to scatter a pumping light in order to 

be transferred to the stretched state, where the cooling is efficient (see section 

7.2). In this way the cooling time can be shortened and the heating due to the 

interaction with resonant light reduced.

The configuration of the beams that was used gives rise to an anti-ferromagnetic
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l-’igure 6.9: Spcctruni of a Stcrn-Gerlacli experiment in the far-detuned lattice, showing the 
effect of spin-polarization obtained by adding a small longitudinal magnetic field during

the near-detuned lattice phase.

type of lattice, with adjacent well sites associated with opposite circular polariza­

tion of the light field. Atoms trapped at adjacent sites therefore have oppositely 

oriented magnetic moments. The atoms are distributed among the potential min­

ima with an equal probability of occupying one and one a~ potential well. 

If a longitudinal magnetic held is introduced in a near-detuned lattice, there will 

be an opposite shift in energy for the potential corresponding to negative m p  

and the one corresponding to positive mp.  The population distribution over the 

wells changes and the number of atoms increases in the wells with lowest potential
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energy. The net result is that of a magnetization of the lattice.

A series of experiments was performed, aimed at increasing the population 

in the stretched state \mp =  —4), in order to prepare the sample of atoms for 

optimized Raman cooling (see section 6.4). A sample of spectra taken for different 

values of the magnetic field is shown in figure 6.9, for a potential depth of 120Er  

and a measured kinetic temperature of (4.5 ±  0.2)/iK. A small static magnetic 

field was added during the near detuned lattice phase so that the atoms were 

preferentially populating potential wells corresponding to a m/r state of given sign. 

It should be noted here that the value of static magnetic fields reported in figure 

6.9 is the nominal Bz', this means that the real external field is a sum of this value 

plus any magnetic field offset B q, that may be due to non-compensated stray fields 

or an offset in the current of the magnetic coils. The near-detuned lattice was left 

on for 5 ms, during which the magnetization was built. The sample was probed 

following its loading in the far-detuned lattice for 2 ms, where such a distribution 

had been shown to be preserved. The atoms were then released and a Stern- 

Gerlach analysis was performed, as described in previous sections. As mentioned 

above, spin-polarization experiments have been reported in [48] and [12]. In both 

experiments, though, it was only possible to compare the global populations of a'^ 

and a~ potential wells. However, the ability to perform Stern-Gerlach experiments 

allowed us to follow the evolution of the population of individual m p  states with 

varying Bz- In figure 6.10, the populations obtained from figure 6.9 are plotted 

versus the magnetic field strength. The population of the [mp  =  —4, -3 , —2, -1}  

states increases with increasing the magnetic field strength. Each of the sub-levels 

shows a characteristic rise in population for increasing B  and a maximum, which 

is dependent on the m p  number.

The maximum value for the net magnetization was found to be (m) =  —1.45 4: 

0.2 for a static on-axis nominal magnetic field of 90 mG. The maximum magneti-
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Figure 6.10: Populations of different nip states plotted versus the magnetic field.

zation is obtained when the adiabatic potentials only just depart from each other, 

due to the Zeeman shift. For higher values of the magnetic field, the magnetiza­

tion diminishes again as the potentials no longer overlap in energy and the Raman 

coupling between different levels vanishes. Then, as explained in [12] and in the 

previous section, the eigenfunctions of the light-shift Hamiltonian become single 

\mp) states. For even higher magnetic fields, the higher lying potential becomes 

capable of trapping atoms and the atoms tend again to distribute equally over cr+ 

or a~ wells, thus reducing the net magnetization [12].

In figure 6.11 the ratio of the population of the m p  = —4 sub-level to that of 

the m p  — —3, —2, —1 sub-levels is shown as a function of the longitudinal magnetic
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Figure 6.11; Population ratios T\.,nF=-^/^rnF versus magnetic field.

field. For these data to be consistent with the existence of a well defined a spin 

temperature, they have to exhibit exponential behaviour, it is possible to recognize 

in all three sets of data an exponential growth at different rates for values of the 

magnetic field below 90 mG. For values of magnetic field above this, the ratios 

seem to reach a plateau and eventually decrease again. This is consistent with the 

explanation given above for the limit of the degree of polarization obtainable, as 

at higher magnetic field strengths the population oi m p  =  1,2, 3, 4 states starts 

rising again. It was therefore assumed that the spin temperature argument is valid 

for Bz < 90 mG.

If the assumption of the existence of a well defined spin temperature is valid.
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it follows that the ratios of the populations of different m p  states versus magnetic 

field should follow a law:

fipBtot\{rnp2 -  ruFi) ra^A\
 ^

where Btot = Bz + B q ±  B fid  depending on the Zeeman state quantum number. 

By taking the ratio of the measured population of two Zeeman states at the same 

lattice site, the dependence of the exponential on the effective plus offset mag­

netic fields can be factored out, thus leaving the exponential growth characteristic 

constant depending only on one unknown variable, which is the spin tempera­

ture. The spin temperature was then retrieved by fitting exponentials to the three 

sets of data in figure 6.11. The temperatures found from the populations ratios 

were (2.2 ±  Q.l)pK for II_4/n _ i ,  (2.3 ± 0.1)pK for II_4/ n _2 and (3.2 ±  0.8)//K 

for n _ 4/ n _ 3. The analysis of the spectra in figure 6.10 was limited to the lev­

els {mp  =  —4, —3, - 2  — 1} because of the reduced resolution of the spectra for 

[mp  =  1,2, 3,4} levels; the low signal to noise ratio on this side of the spectra 

did not allow an accurate analysis of the level populations. This analysis showed 

that the introduction of a spin temperature argument was consistent with our set 

of data, and Tp =  (2.6 ±  0.6)pK was found to be the characteristic spin temper­

ature of our system. This value is well below the measured kinetic temperature 

Bk  = (4.5 ±  0.2)/iK, thus showing the distinct nature of the two. There is not 

a unique temperature that can describe the system, but two separate tempera­

tures have to be assumed to characterize the motional and the internal degrees of 

freedom.

In figures 6.12 and 6.13, the populations of the different magnetic levels are 

plotted versus the m p  number, for a value of the nominal external magnetic field 

of 90 mG. According to equation 6.14 the populations should follow a geometric

series behavior, of the type a^, where a — exp ksT s (for (7^ wells

respectively) and x = mp. For varying mp,  the data points with m p < 0 follow
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a different exponential behaviour compared to the ones for m p > 0. Therefore 

two distinct exponentials have to be fitted to the [my = —4, —3, —2, — 1,0] and 

[mp =  0,1,2,3,4] sets of data, one with a decay constant proportional to Bjict +  

{Bz 4- B q ) and the other with a decay constant proportional to B jid  -  {Bz + B q ).  

Assuming a unique spin temperature for (%+ and a~ wells and fitting two different 

exponential curves, it is therefore possible to estimate Bfid-  It was assumed that 

the spin temperature, 'I's — (2.6 ±  0.6)//K, measured from the exponentials fitted 

in figure 6.11 was valid for both potential wells. It has to be pointed out here that 

from the experimental data it is only possible to estimate an effective fictitious
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magnetic field that takes into account the averaging of Bjid  over an atomic

wavepacket.

In figure 6.12 the populations of different Zeeman states are plotted versus 

their m p  number. This set of measurements is particularly affected by errors 

in determining the population of states with m p  > 0, due to the low resolution 

of the time-of-fiight signal. Therefore, before performing a fit to the data, the 

range of possible values for the fictitious magnetic field was estimated as follows. 

Bfict increases with increasing difference between the decay constants of the two 

exponentials (corresponding to m p  < 0 and m p > 0). In order to evaluate the 

maximum value for the fictitious field which is compatible with the data, the red
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dotted curves were matched to the data, which showed the biggest difference in 

characteristic constant being compatible with the data set within the error bars. 

When the fictitious magnetic field decreases, the characteristic decay constants 

become comparable and, in the limit of very small fictitious magnetic field, an 

almost identical exponential can fit both data sets. The blue dotted lines represent 

the exponentials which lead to the minimum value for the fictitious field, and they 

show that there is very little difference between the two exponentials. From this 

preliminary analysis, the estimated maximum and minimum values were found to 

be =  30 mG and =  5 mG. It follows that the effective fictitious

magnetic field is very weak (below 30 mG) and that an almost null fictitious field 

would also be compatible with this set of data.

In figure 6.13 fits are performed on the two sets of data, weighted by the 

errors. The red (blue) curve represents the fit to the tuf < 0 {mp > 0) data 

points. Assuming again a spin temperature Ts  =  (2.6 ±  0.6)/iK, the measured 

effective fictitious magnetic field is then BJ^^^ =  (10 ±4) mG. The Bfict calculated 

for a maximum potential depth of l20Eji is 150 milliGauss, so the result would 

not seem to be consistent. It should be borne in mind that the light intensity is 

not uniform over the trapping region, as shown in section 4.2. The non-uniformity 

of the lattice depth along the trapping region leads to a spread of B fid  values for 

atoms at different locations. Furthermore the degree of excitation of the atoms 

would change the effective fictitious field that they perceive. If the atoms are 

not well localized near the bottom of the potential well the resulting net effective 

fictitious field would be reduced. Another possible explanation is the non-perfect 

alignment and polarization of the beams: a slight misalignment or tilt in one 

of the beams polarization would change the local polarization at different lattice 

locations, thus reducing the effective field. It should also be pointed out that 

this set of measurements was particularly affected by the low resolution of the
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time-of-fiight signal for the m p = 1 ,2 ,3 ,4  states.

Our set of measurements is shown to be consistent with the introduction of 

a spin temperature. They reveal, however, that the spin temperature is different 

from the kinetic temperature. There is not a unique temperature that can describe 

the steady state of the system; it is possible, however, to associate a kinetic tem­

perature to describe the motional degrees of freedom and a spin tem perature to 

characterize the internal degree of freedom. An estimate of the effective fictitious 

magnetic field has been attempted, which was limited by the poor resolution of 

the time-of-flight signal. However this study showed that the atoms in the lattice 

wells experience a reduced fictitious field, due to the non-homogeneous poten­

tial depth along the lattice region, the polarization mixing of the beams and the 

spread of the atomic wavepacket . Work is being done at the moment attempting 

to improve the resolution of the time-of-flight Stern-Gerlach signal, to further in­

vestigate the paramagnetism. A better method to carefully check the alignment 

and the polarization of the beams has to be implemented. A more powerful laser 

has been purchased, which should allow us to expand the lattice beams and select 

a region of uniform intensity. Once these improvements have taken place, it would 

be useful to investigate the population evolution for both positive and negative 

magnetic field for all the magnetic levels. A more accurate study of the fictitious 

magnetic field should be undertaken. Furthermore measurements of the time nec­

essary to build the magnetization as well as the characteristic time of relaxation 

of the magnetization could be analyzed. A study of the maximum magnetization 

versus potential depth could yield important information on the structure of the 

lattice potential.
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6.5 Conclusions

In this chapter I described a technique that allowed the measuring of the popula­

tions of single Zeeman substates in the near-detuned and far-detuned lattices. This 

technique is based on Stern-Gerlach experiments aimed at resolving the different 

m/r-states time-of-flight signals. A Zeeman-state analysis of the sample allowed 

the measurement of the magnetization of the atomic sample. The efficiency of this 

method was demonstrated by studying spin-polarized samples in the near-detuned 

lattice, by adding a static magnetic field to Zeeman-shift the m p  energy levels. 

The evolution of the population of such states was reconstructed whilst varying 

the external static magnetic field along the quantization axis. Spin-polarization 

was proved to be efficient and a well-defined phenomenological spin-temperature 

could be evaluated, in agreement with the results presented in [48]. Furthermore, 

the possibility of measuring the population of the single Zeeman states gave more 

convincing proof for the existence of a spin temperature than the results presented 

in [48], where only the total population of a cr^-well could be measured. Zeeman 

state analysis also enables us to verify that the net magnetization of the sample 

in the near-resonant lattice is preserved when it is transferred to the far-detuned 

lattice. In particular it allows the preparation and measurement of a large frac­

tion of atoms in the \mp = ±4) state, which could improve the efficiency of the 

sideband-Ram an cooling scheme used for quantum state preparation.



C h a p t e r  7

Resolved Sideband-Raman Cooling

In recent years many groups have been working at developing techniques for quan­

tum state preparation and control for laser cooled atoms. Experiments aimed at 

the coherent manipulation of quantum states have also been performed, gener­

ating Fock coherent states, squeezed states [50] and Schrodinger cat states [15]. 

Demonstration of quantum logic gates as discussed in [51], opens the way toward 

quantum computation. Sideband cooling between hyperhne levels was also used 

to prepare a trapped ion in the motional ground state, a minimum uncertainty 

state and therefore a good starting point for experiments in quantum state control

[51], [52]. The method required the use of two lasers which are phase-locked and 

with a difference in frequency given by the spacing between the levels used for 

cooling. Anti-Stokes processes are stimulated in this way, thus cooling the sample 

of atomic ions. A similar technique has been employed in [53] for neutral atoms 

in a one-dimensional optical lattice.

In [20] a scheme for resolved-sideband Raman cooling in a 2-D far-detuned 

optical lattice was demonstrated. In this scheme the cooling is introduced by 

means of stimulated Raman transitions between degenerate vibrational levels of 

a pair of different Zeeman sub-levels. The resonant Raman coupling required for

155
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cooling can be engineered in the lattice itself, using an appropriate choice of beam 

polarizations. Atoms sideband cooled to the motional ground state at different 

lattice sites are in identical quantum states, which difference each other only by 

an arbitrary phase-factor.

In this chapter, I describe our implementation of a resolved-sideband Raman 

cooling technique, based on the method demonstrated in [20], whose basic princi­

ples were described in chapter 2, and the results of our experiments.

7.1 Experim ental setup for resolved-sideband Ram an  

cooling

The experimental set-up which was used in order to implement the Raman cooling 

scheme described in section 2.4, is shown in hgure 7.1. The lattice setup consists 

of three coplanar beams at an angle of 120 degrees between each pair, as shown 

in figure 6.3, intersecting at the trapping region. The lattice plane contains the 

gravitational axis; this is necessary to allow long trapping times and also to enable 

the use of the time-of-flight method (section 3.8) as a diagnostic tool.

In order to introduce an appropriate Raman coupling according to the scheme 

of section 2.4, it is necessary to provide a 7r-component of the laser light. This is 

obtained by tilting the polarization of one of the lattice beams out of the lattice 

plane by 10° typically. Additionally, a A/4 plate provides a 7r/2 phase difference 

between the two components, which is required to optimize the cooling (see chapter 

2). The coupling introduced by the tt light induces transitions from \rriF ~  —4, n) 

to Imp =  —3, n  — 1) states. Relaxation back to the vibrational manifold of the 

Imp) state is driven by optical pumping, as shown in figure 2.8. For this purpose, 

a cr“ -pumping beam is added along the z —axis, resonant with the |F  = 4) ^  

|F ' =  4) transition. A repumper beam, tuned to the |F  = 3) —̂ |F ' =  4) 

transition and cr"'-polarized is also added. The repumper beam repopulates the
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Figure 7.1: Experimental setup for resolved sideband Raman cooling on a 2-D optical
lattice.

\E =  4) state of the atoms which decay to the \E =  3). Both the pumper and 

repumper beams are set to be propagating in the direction perpendicular to the 

lattice plane (i.e. the quantization axis) being opposite with respect to each other. 

This guarantees also a minimum net momentum transfer during the interaction 

of the lasers with the atoms. In order to increase the efficiency of cooling the 

|m/r =  —4,n) and \mp = —3,n  — 1) levels have to be brought into degeneracy. 

This is accomplished by adding a static magnetic field along the quantization axis 

which shifts the potentials, as explained in section 2.4. For this purpose a pair of 

coils in Helmoltz configuration were placed with their common axis orthogonal to 

the lattice plane, along the z —direction. These were used to generate a uniform 

static magnetic field in the trapping region, of a flux density up to 0.5 G. The static 

magnetic field is tuned to the proper value, derived from a consideration of the
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band structure (see section 2.4), to bring into degeneracy the vibrational levels in 

adjacent wells involved in cooling. This method provides efficient two-dimensional 

cooling, when the initial temperature of the sample is sufficiently low. In this case 

the lowest lying vibrational levels are mostly populated in both dimensions, so 

simultaneous cooling in 2-D is driven with the same value of magnetic field. The 

typical parameters used for the lattice are Umax — 2,00Eji and A =  3000F. These 

values give a vibrational frequency of ujyib =  35 kHz, while the scattering rate 

results to be Tg =  200 Hz. As was mentioned in chapter 4, the heating induced by 

spontaneous scattering becomes significant for long times, so there is a constraint 

on the duration of the Raman cooling period. In the Lamb-Dicke regime the atoms 

mostly spontaneously scatter photons elastically. The probability per photon for 

there to be a net increase of one vibrational quantum is reduced, but it was shown 

in [54] that the average increase in energy per spontaneous scattering cycle (a 

two-photon process) is 2Eji, the same as for a free atom. The heating produced 

by spontaneous photon scattering during an experiment time tcool can be therefore 

calculated as tcooi^sEp, huyu,] this condition is guaranteed for tcooi 80 ms. 

The cooling time is in general set to 10 ms, which insures that the spontaneous 

scattering induced heating is not significant.

7.2 Resolved-Sideband Ram an cooling

The experiments start with the atoms being prepared in a 3-D magneto-optical 

trap and then transferred to an optical molasses, where they are cooled to the sub- 

Doppler regime. The cooled sample is then loaded into a 2-D near-detuned optical 

lattice for typically 5 ms, where the atoms reach a temperature of ~  3/uK. During 

this phase a static magnetic field is introduced in the direction perpendicular to 

the lattice itself, in order to spin-polarize the sample and increase the population 

of atoms in the \F =  4, TUf =  -4 )  state. As discussed in chapter 6, this process
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can be quite efficient, thus increasing the number of atoms in the stretched m p  

state. As mentioned in section 2.5, the initial distribution of atoms over different 

vibrational and Zeeman levels is important for the efficiency of this method of 

cooling.

Once the atoms are cooled and localized in the Lamb-Dicke regime, with an 

increased population in the m p — potential well, they are transferred to the 

far-detuned lattice. The far-detuned beams are superimposed on the near-detuned 

ones (see chapter 4). Transfer from the NDL to the FDL is obtained by simul­

taneously ramping the intensities of the far-detuned and near-detuned beams, as 

explained in the far-detuned lattice section. The transfer usually last 400/xs. As 

shown in chapter 4, a transfer efficiency of ~  90% was typically achieved. By care­

fully matching the lattice beams paths and choosing the right potential depth, it 

was possible to load the far-detuned lattice with minimal increase in temperature 

over that of the near detuned one. Typical temperatures achieved were in the 

range of (2.5 -  3.5)//K, for Umax = 200Ep and Uyih = 35 kHz.

When the longitudinal magnetic field is set to the appropriate value and the 

Raman coupling is introduced, a coherence between states \mp = —4,n) and 

\mp — —3 ,n  — 1) is established. Two isoenergetic photons, one a  and one tt  

polarized are required to induce the transition. The atoms which are then trans­

ferred in the m p = —3 well will scatter photons of the pumping <j“ polarized laser 

and will be preferentially pumped back to the m p — —4: well. Due to the tight 

confinement of the atoms in the Lamb-Dicke regime, the spontaneous emission of 

a photon from the excited atom is most likely to return it to a state with the 

same vibrational quantum number it has just left. Atoms decaying to =  3) 

may be re-excited by the pumping laser, and atoms decaying to \mp = 4, n ^  0) 

are coherently transferred again to \mp =  —3,n — 1), where the cooling cycle is 

repeated. After several cycles, the atoms end up in the \mp = —4, n =  0) state.
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This is a ‘dark state’, as there is no state in \mp =  —3) to establish a coherence 

with and there is a natural termination to the cooling cycle.

7 .2 .1  R eso lv ed -sid eb a n d  lim it and cau ses o f  b road en in g

In the resolved-sideband limit it is required that the width of the resonances is 

much smaller that the separation between two vibrational levels. This in turn 

means that the coherent population transfer rate has to be much smaller than the 

vibrational frequency characteristic of the lattice:

» « 1 .  (7.1)
^vib

where U[i is the Raman coupling, defined in section 2.4. Inserting the definition 

for Ufi, equation 7.1 becomes:

\UR\/h f U i / h \
^ v i b  V ^ v i b  J

1 E,  ( 2 E n y
(7.2)

The first bracket on the right hand side of equation 7.2 is approximately the 

number of bands in the well and the second bracket may be evaluated by using 

typical parameters used in the experiment: Ey^/Ei =  0.1, Ui / E r  — 44 and F  =  4 

for the transition that was used. Using these values we have -̂EeÏIE ~  0.04 <K 1,® ^vib ’
so the sidebands should be expected to be well resolved. This condition is fulfilled 

over a large range of values which would include the most reasonable experimental 

parameters.

There are other mechanisms, though, that could lead to a broadening of the 

Raman resonances. As shown in chapters 2 and 5, the spacing between vibrational 

bands is not unique, but varies with the band index, due to the anharmonicity of 

the light-shift potential. In figure 2.10 the values of magnetic field necessary to 

bring in resonance different \mR =  4, n j  with \Mp =  3,u^ — 1) states for Ui =  

{1,2,3,4,5} are plotted versus the potential depth. Except in the case of a very 

shallow potential, it is possible to see that the magnetic field necessary to bring
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sub-levels, whose energy differs by 1 quantum, into degeneracy is not unique, but 

depends on the band index n. For the Raman cooling to be efficient, it is therefore 

necessary to vary the strength of the magnetic field over the range which allows 

also the atoms in the higher-lying bands to be brought to a lower n  level. This 

turned out to be particularly important if the population distribution is spread 

over many vibrational levels, i.e. when the starting vibrational temperature of the 

sample is high. Nevertheless, if the initial temperature is low enough for most of 

the atoms to be in the lower vibrational states, where the degree of anharmonicity 

is much reduced, then an efficient cooling can be obtained without scanning the 

magnetic field, as all the populated levels n are brought into degeneracy with 

levels n — I simultaneously. The initial temperature is therefore a fundamental 

parameter that affects the efficiency of cooling. Other causes of reduced sideband 

resolution include inhomogeneity of the potential depth along the trapping region. 

As it will be shown later, this was actually found to be a major cause of broadening 

of the sidebands.

7 .2 .2  E x p er im en ta l resu lts

Typically a Raman cooling sequence was started immediately after the loading 

of the far-detuned lattice. Following the 4 0 0 / i S  transfer time, the pumper and 

repumper beams were switched on and the z —axis magnetic field tuned. The 

time during which Raman coupling was effective was varied in order to optimise 

cooling, like discussed in section 7.1. The duration of Raman cooling cannot be 

increased indefinitely as, after a certain time, heating and loss of atoms become 

significant. The pumper beam intensity was set to Ip = 0 . 0 6  mW/cm^.

A first set of Raman-sideband cooling sequences were run starting from a 

sample at a temperature of (9.0 ±  0.2)/iK, prepared in a lattice tuned 3000F 

to the red of the resonance with a maximum light shift Umax = 200E r . The
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Figure 7.2: Temperature variation versus static magnetic field along the z-axis for a side­
band Raman-cooled sample of atoms. The dotted line represents the initial temperature

of the sample Tini = (9.0 ±  0.2)yuK.

Raman pumper and repumper as well as the magnetic field where switched on 

as soon as the far-detuned lattice was loaded and were left on for 10 ms. The 

magnetic field was kept constant during the whole Raman-cooling phase. In figure 

2.12 the population distribution over the vibrational levels jn̂ ; =  0, for a 2- 

dimensional harmonic oscillator, shows that for a 9^K sample in a potential well 

with ground state kinetic energy Tq =  0.96/iK {T/Tq =  9.4 with reference to 

figure 2.12), the atoms are populating a wide set of vibrational levels. Due to 

anharmonicity the values of magnetic field necessary to induce coherences among 

different vibrational levels are several, as shown in figure 2.10. In this case we 

need to calculate the band-structure appropriate to the 2-D lattice used in the 

experiment in order to determine the range of magnetic field required to bring



1.2. Resolved-Sideband Raman cooling 163

0 . 1 3

0 . 1 2 - -

0.11  - -

0 . 1 0 - -

c  0 . 0 9  —

0 . 0 8  —

O. 0 .0 7 -  
CL 0 . 0 6  —

Î Ï
0 . 0 5 - -

w  0 . 0 4 - -  -a
5  0 . 0 3 - -

0 .0 2 - -
O)

0.01 - -

0.00

6 0  8 0  1 0 0  1 2 0  1 4 0  1 6 0  1 8 0  2 0 0  2 2 0  2 4 0  2 6 0  2 8 0  3 0 0  3 2 0

M agnetic field (mG)

Figure 7.3: c Population of the 2-D ground state with = 0,Uy = 0 versus statie magnetic 
field along the z-axis for a sideband Raman-cooled sample of atoms. The dotted line 
represent the ground state population for the uneooled sample at a temperature of 9//K.

successively lower transitions to resonance. From these calculations, shown in 

section 2.4, it follows that to bring most of the atoms into the ground vibrational 

state the magnetic field should be varied over a 20 mG interval. However, by 

ramping the magnetic field over a range of values, the time for which a given 

pair of levels {\mp =  -4 , n), \mp = - 3 ,n  — 1)) coherently interacts is reduced, 

thus limiting the cooling efficiency. If the magnetic field was to be scanned, then 

the Raman cooling phase duration would have to be increased adequately. But 

the heating rate due to photon scattering becomes relevant at long times, thus 

competing with the cooling processes. The net balance does not lead to improved 

cooling efficiency.

In figure 7.2 the temperature of the Raman-cooled sample of atoms is plotted
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against the magnetic field flux density. The plot shows that there is a broad region 

over which the cooling is efficient and a drastic redaction of temperature was 

recorded, of up to AT = 5/iK. Two resonances would be expected by scanning the 

magnetic field, one corresponding to tuning to the first red sideband, i.e bringing 

into degeneracy the \mp =  —4,n) with the Imp =  —3,n  — 1) level, and another 

one, leading to a less efficient cooling, corresponding to tuning into degeneracy

[iTiF = —4,n) \m,F = —3,n -  2) level (second red sideband). These should be

separated by a A B  given by:

j Mb |AB| =  R|Aw|, (7.3)

where Aw is the separation between the n and n — 1 vibrational levels in the 

ruF — potential well. Thus for an expected vibrational frequency of ~  35 kHz 

it should be possible to distinguish two resonances separated by ~  100 mG, if 

these resonances had a width much smaller than the separation, from equation

7.2. In figure 7.2 two resonances are not resolved but this can be explained by 

observing that the spread of population over the vibrational levels due to the high 

initial temperature leads to a spread in the value of the magnetic field required 

to bring in resonance different vibrational levels, as discussed above (see figure 

2.10, with T / T q =  0.94). This suggests that to have efficient cooling and to be 

able to transfer a large fraction of atoms into the vibrational ground state, it is 

necessary to start with a sample at low temperature such that a large fraction of 

atoms is already in the lower lying vibrational states;in this way the anharmonicity 

is negligible and all the {mp = —4, n j  levels can be brought into degeneracy 

with the \mp =  —3, — 1) levels with the same value of Raman magnetic field.

Nevertheless it has to be noted that the estimated 20 mG spread in resonant B  

fields due to anharmonicity of the potential well, does not completely account for 

the broadening in figures 7.2 and 7.3. As it will be shown later in this section, 

part of the broadening of the sideband resonances plotted in figure 7.2 can be
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attributed to inhomogeneities of the optical potential, due to the spatial variation 

of the laser intensity over the lattice region.

The temperature was measured along the x-direction of the lattice plane, with 

reference to figure 2.7. Considering a 1-D harmonic oscillator, the population 

of the ground vibrational state with Ux — 0 has therefore been increased from 

14% to 35%. In section 2.4 it was shown that this scheme for sideband Raman 

cooling allows the simultaneous cooling in 2-D, with an efficiency along the y- 

direction which is three times bigger than along the x-direction. Also, for low lying 

states, the 1-D potential wells along the two directions are practically identical. 

It is therefore reasonable to assume that the same temperature measured along 

the a;-axis is also obtained along the y-axis, so that the ground state population 

can be calculated for a 2-D harmonic oscillator. In figure 7.3 the population of 

the 2-D ground state =  0,ny =  0 is plotted versus the magnetic field. This 

has been calculated according to equations 2.16 and 2.22 for a two-dimensional 

harmonic oscillator, with the measured kinetic temperature. The ground state 

momentum distribution is equivalent to a temperature To given by;

and is found to be Tq =  0.96 iiK. In this calculation I assumed that the temperature 

of the sample is the same along the two lattice dimensions. Therefore the measured 

temperature along the vertical direction was assumed to apply for both directions. 

At maximum cooling the population of the ground state is increased by a factor of 

5 — 6, but still only 10% of the atoms are in the ground vibrational level. Increasing 

the pumper beam intensity or the tt component did not increase the number of 

atoms in the ground state on this occasion.

In order to eliminate the broadening due to anharmonicity of the potential, 

further measurements were taken for lower starting temperatures for a sample of 

atoms which are mostly populating the lower lying vibrational levels. In figure 7.4
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Figure 7.4: TOP signal of a far-dctiincd lattice with a kinetic temperature T x  =  (2.5 ±
0.2)^K.

a far-detuned lattice time-of-flight signal is shown for a sample at a temperature of 

(2.5 ±  0.2) fiK. It was found that very careful compensation of the static magnetic 

field was crucial in order to achieve very low temperatures. The far-detuned lattice 

parameters were the same as for the previous experiment and the sequence of the 

cooling was repeated.

In figure 7.5 the measured temperature of the atoms is again plotted versus 

the magnetic field. This time it is possible to distinguish the first of the two 

resonances, while the second one appears to be very broadened and the features 

do not have the expected Lorentzian shape observed in [20].

The spatial profile of the far-detuned lattice beam was studied in chapter 4 and



1.2. Resolved-Sideband Raman cooling 1 6 7

I
&
E
CD

' I ' I ' I ' I ' I ' I ' I ' T ' I t - - r " v - |- i  I I I I I I I

•  •  • Iuncertainty on 
the temperature

•  e

•  •

3.6
3.4
3.2
3.0
2.8
2.6 +
2.4
2.2
2.0
1.8

1.6

1.4
1.2

1.0 - ground jta t̂ejejriperatur^

0 . 8  \ > ■ ■ ■ ( - » - {  - f - i - t - t  |  I - » - 1
-400 -350 -300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300 350 400

Magnetic field (mG)
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was found to lead to a inhomogeneous potential, which in turn means that wells 

at different spatial locations bind atoms with different characteristic vibrational 

frequencies. An estimated (10 — 20)% variation of the optical potential in the trap 

region would correspond to (5 — 10)% variation in the vibrational frequency, in the 

harmonic approximation. This would lead to less efficient cooling as not all of the 

atoms are cooled simultaneously and also to a broadening of the resonances, as 

for a wider range of magnetic field values there are still some levels brought into 

degeneracy. This problem could be avoided had it been possible to expand the 

lattice beam and select a spatially homogeneous region, such that the full-width 

at half-maximum of the laser profile is much bigger than the full-width at half-
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iiiiriximum of the extension of the sample of atoms. Power limitations, however, 

(lid not allow ns to expand the beam further. A compression of the MOT was also 

attempted, but the experiment showed only a modest improvement.

Returning to figure 7.5, we observe that for negative values of the magnetic field 

there is a sharp increase in temperature, corresponding to the levels jm/r =  —4, ui) 

being brought into degeneracy with higher lying states. This can be explained by 

observing that for negative values of the magnetic field the Zeeman shift is in the 

opposite direction, therefore levels [rii.p = —4, n) can be brought into degeneracy 

with \rup — —3, n — 1), thus heating the sample. At higher values of the magnetic 

field the induced coherences with higher lying vibrational states become negligible 

and the temperature drops again. In figure 7.5 the presence of a magnetic field 

offset can be observed, which is due to non compensated stray fields.
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The ground state population for a 1-D harmonic oscillator was found to in­

crease up to 85%. Again the population of the ground state was calculated from 

the measured kinetic energy for a 2-D harmonic oscillator, assuming that the tem­

perature is the same for x  and y dimensions. Figure 7.6 shows the population of 

the ground state plotted against the applied magnetic field; the number of atoms 

in the ground state is increased from 30% to 70%, showing an improved efficiency 

of the Raman cooling.

The error on the ground state population measurement is mainly due to sys­

tematic errors in the temperature estimate (see section 3.8). An improvement of 

the accuracy of temperature measurements should be pursued in the future. In 

fact for very low temperatures the small uncertainty leads to a large error in the 

determination of the population of the ground state.

In conclusion the sideband-Raman cooling scheme was proved to be efficient 

and to work as expected. Nevertheless the experimental setup needs to be further 

improved in order to achieve higher accumulation of atoms in the ground vibra­

tional state. It was found that the inhomogeneities in the far-detuned potential 

depth along the trapping region lead to a broadening of the Raman resonances 

and to a reduced efficiency. This can be avoided by using a more powerful laser 

source and expanding the beam, thus selecting a uniform region of laser intensity 

and therefore creating a uniform potential depth for all the atoms in the lattice. 

For this purpose a Ti:Sapphire laser, capable of producing IW  optical power, has 

already been purchased and installed.

7.3 Conclusions

In this chapter I have described the implementation of a resolved-sideband Raman 

cooling scheme first suggested in [18], which was used to prepare a large fraction 

of atoms in the ground vibrational state of the 2-D optical potential associated
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with the \mF — —4) state. When prepared in this fashion, atoms in the lattice are 

in identical, pure quantum states both with respect to their motional and internal 

degree of freedom. Sideband cooling occurs between vibrational levels in Zeeman 

substates and Raman coupling is provided by the lattice beams themselves. A 

longitudinal magnetic field tunes the lattice to the first red sideband to initiate 

cooling. This method was found to be very sensitive to the initial temperature 

of the sample, reflecting the high degree of anharmonicity of the lattice. Fur­

thermore, the results were compromised by the non-uniform potential depth at 

different lattice sites, due to limitations in the available laser source power. Nev­

ertheless, the method was very efficient and permitted us to prepare 85% of the 

total population in the one-dimensional ground vibrational state. The efficiency 

of cooling in two dimensions allowed us to increase the population of the 2-D 

vibrational ground state from 30% to 70% in the cooled sample. By improving 

the experimental apparatus and using a more powerful laser source, it should be 

possible to improve the efficiency of our method.

These results open up the possibility of performing a wide range of experiments 

involving the coherent manipulation of a quantum state using adiabatic rapid 

passage, which closely relates to this method for sideband-Raman cooling as it 

employs the same coherent coupling. Ultimately, exploiting the techniques for 

band population measurements (chapter 4) and Zeeman state analysis (chapter 6) 

it will be possible to implement methods for quantum state measurements [19].
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Conclusions

Optical lattices present us with a rich and flexible system for the preparation 

and manipulation of quantum states of neutral atoms. The light-shift potential 

can be varied in depth, shape and periodicity by simply changing the laser beam 

geometry, intensity and polarization as well as via the introduction of external 

fields. Coherent couplings between atomic states can be engineered in a way that 

makes it possible to manipulate the quantum state of atoms in the far-detuned 

lattice and prepare atoms in a chosen quantum state.

In the far-detuned regime, optical lattices for neutral atoms offer many ad­

vantages for quantum state preparation and control, as the decoherence caused 

by spontaneous emission is almost suppressed, and due to the weak coupling to 

the environment. Furthermore, the low filling factor typical of optical lattices al­

lows atoms to be isolated from each other. Far-detuned optical lattices therefore 

constitute a suitable environment for studies of quantum transport and quantum 

chaos which can be performed with atoms prepared in such a manner; Fock states 

and Schrodinger cat states can be generated, while tunneling between double well 

potentials in a lattice can also be investigated [21]. Neutral atoms in far-detuned 

optical lattices may also be suitable candidates for quantum computation. At the
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heart of quantum computation concepts lies the entanglement of many two-state 

systems (qubits), which form the register of the quantum computer. Recently, a 

new system for implementing quantum logic gates has been suggested [55], which 

exploits trapped neutral atoms stored at different locations in a far-detuned opti­

cal lattice that can be made to interact via laser-induced coherent electric dipole- 

dipole interaction. The difficulty in this method lies in addressing and reading out 

the state of individual qubits, which are generally spaced closer than the optical 

wavelength. Lattices can be however designed with more widely separated wells, 

for example by using a very long wavelength laser (such as an intense CO 2  laser 

[38]). Ultimately, quantum computing may require trap arrays which would allow 

atoms to be separately manipulated and read out, [56], [57].

In this thesis I investigated a 2-dimensional configuration for a far-detuned 

optical lattice, which has been proved to be ideal for exploiting a simple scheme of 

sideband-Raman cooling as the first step for quantum state preparation, [20]. This 

work was aimed at the preparation of a large fraction of atoms in the vibrational 

ground state of a 2-D far-detuned optical potential. The implementation of the 

experimental setup and the optimization of the loading of atoms in the FDL were 

the first objectives of this thesis. A scheme for sideband-Raman cooling was then 

successfully implemented, which led to the preparation of a large fraction of atoms 

in the ground vibrational state of the 2-D optical potential associated with the 

\m,F =  —4) state. With the purpose of promoting and examining the efficiency 

of loading and optimizing the effectiveness of sideband-cooling, several diagnostic 

methods were implemented. Experiments were performed aimed at quantifying 

the populations of different vibrational levels and at the Zeeman state analysis of 

the atoms in the sample. These techniques were demonstrated to be effective with 

a variety of experiments.

I will now give a brief summary of the thesis with reference to the work pre­
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sented in each chapter. Chapter 1 gave an overview on the theoretical background 

in laser cooling and optical lattices in one, two and three dimensions. In chapter 

2, the results of band structure calculations for a 2-D far-detuned configuration 

were presented along with a a theoretical study of the sideband-Raman cooling 

technique proposed in [16] and a calculation of various parameters. Chapter 3 

was dedicated to the description of the experimental apparatus. In chapter 4 

the loading technique for the far-detuned lattice was illustrated in detail. In the 

same chapter the optimization of the loading efficiency and storage properties of 

the lattice were studied. Band population measurements were also performed, 

which lead to the confirmation of the existence of band-dependent loss mecha­

nisms in the far-detuned lattice. It became evident from these experiments and 

from imaging the lattice beams intensity profile, that the non-homogeneity of the 

latter constitutes a major limitation of the experiment. In chapter 5 the optical 

potential was further investigated through parametric excitation experiments and 

modelling. These measurements yielded insight into the anharmonicity of the op­

tical potential and the effects of non-uniform intensity profiles. It was found that 

these cause a significant spread in the vibrational frequencies of the atoms. The 

model was also used to simulate the heating induced by laser intensity fluctua­

tions; this was shown to be partly responsible for the band-dependent losses of 

atoms in the far-detuned lattice, but also to be reasonably low so as not to affect 

the sideband cooling.

A Zeeman-state analysis of the sample via Stern-Gerlach experiments, allowed 

the measurement of the magnetization of our sample of atoms as well as the res­

olution of single mp  states. The evolution of the population of such states was 

also reconstructed by varying an external static magnetic field along the quanti­

zation axis. Spin-polarization was proved to be efficient and a phenomenological 

spin-temperature could be evaluated, in agreement with [48]. Furthermore, the
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possibility of measuring the population of single Zeeman states yielded more con­

vincing proof for the existence of a spin temperature than the results presented 

in [48], where only the total population of a cr^-well could be measured. Zeeman 

state analysis also enabled us to verify that the net magnetization of the sample in 

the near-resonant lattice is preserved after its transfer to the far-detuned lattice. 

In particular it allowed the preparation and measurement of a large fraction of 

atoms in the jm/r =  ±4) state, which could further improve the efficiency of the 

sideband-Raman cooling scheme used for quantum state preparation.

In the last chapter a resolved-sideband Raman cooling setup was implemented. 

Sideband cooling occurs between vibrational levels in Zeeman substates and Ra­

man coupling is provided by the lattice beams themselves. A longitudinal magnetic 

held tunes the energy difference between vibrational states of distinct Zeeman sub- 

levels. This method was found to be very sensitive to the initial temperature of 

the sample, rehecting a high degree of anharmonicity of the lattice. Furthermore, 

the results were compromised by the non-uniform potential depth at different lat­

tice sites, due to limitations in the laser source available power. Nevertheless, the 

method was very efficient and permitted us to prepare 85% of the total population 

in the one-dimensional ground vibrational state. The efficiency of cooling in two 

dimensions led to an increase of the population of the 2-D vibrational ground state 

from 30% to 70% in the cooled sample. By improving the experimental apparatus 

and using a more powerful laser source so that inhomogeneous variation in the 

vibrational frequency over the lattice size is eliminated (i.e when the potential 

depth is uniform over the total spatial extent of the trap), it should be possible 

to further enhance the efficiency of this method.

In conclusion this thesis presents an extensive study of neutral atoms in far- 

detuned optical lattices. Experiments were implemented aimed at diagnosing the 

potential properties, such as characteristic frequencies, anharmonicity effects and
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inhomogeneities of the potential depth. Measurements were performed to resolve 

the populations of the single vibrational bands and single Zeeman states, which 

could also allow the measurement of the quantum state of the sample. Raman- 

sideband cooling led to prepare in excess of 70% of the atoms in the 2-D =

—4, = 0,Uy = 0) state. The limitations of the current experiment have to be

mostly attributed to the low laser power available and the non-uniform spatial 

profile of the beams. The laser source used throughout this work has been now 

replaced by a Ti:Sapphire laser capable of up to IW output power; this should 

allow the creation of a uniform intensity profile for the optical lattice, which will 

definitely improve the experiments and the Raman cooling efficiency.

The outcome of this work opens up the possibility of performing a wide range 

of experiments involving the coherent manipulation of single quantum states using 

adiabatic rapid passage, which is closely related to the method for sideband-Raman 

cooling as it uses the same coherent coupling. Ultimately, exploiting the techniques 

for band population measurements (chapter 4) and Zeeman state analysis (chapter 

6) it will be possible to implement methods for quantum state measurements [19]. 

Eventually this will open up the way to the controlled engineering of the individual 

quantum states of trapped atoms, as a precursor to the encoding and processing 

of information at the quantum level.
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