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ABSTRACT

Imaging Photon Detectors are extremely sensitive imaging devices
capable of detecting single photons of light. The Fabry-Perot etalon,
a nmultiple beam interference device, is capable o©of detecting very
small changes in the wavelength of light and is thus well suited to

the determination of Doppler shifts.

The combination cf these two devices has enabled the realisation of a
series of operational interferometers for the measurement of wind
velocities in the upper atmosphere. This 1is achieved by measuring
Doppler shifts in optical phenomena occurring at high altitudes. The
instruments have been successfully deployed in Northern Scandinavia,

North America and other locations world-wide.

A full description of the component parts of the IPD and its
associated electronics is presented. The theory and practical
limitations o©f the device are discussed, together with a critical
performance analysis of the complete imaging system. In addition to
the IPDs for the Fabry-Perot interferometers, special types have been
built for high time-resolution atmospheric lidar and a rocket-borne

auroral imager.

The Fabry-Perot etalon iz described and the practical aspects of
incorporating it inte an interferometer are considered. The
ingtruments are required to run unattended for extended periods, so
particular care has been paid to long term aspects of stability,

reliability and safe operation.

Etalons can be tuned using piezo-electric transducers teo vary the
cavity length, in conjunction with capacitance sensors which determine
the precise amount of movement. Such devices are termed capacitance
stabilised etalons. These etalons can be combined in multiple etalon
systems which provide greatly improved optical filtering. This allows
measurements to be made against the higher background illumination
encountered during daylight hours. Triple etalon interferometers have
been built which have been flown on balloons in Texas and operated

from the ground in Northern Sweden.
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The Atmospheric Physics Laboratory, University Cellege London
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Capacitance Stabilised Etalon

Digital to Analogue Converter

Double Differentiation Double Integration pulse shaping
Doppler Imaging System

Dual Port Memory

Detected Quantum Efficiency - of a photon counting system
Extra High Tension {high voltage)

Electron volts -~ a unit of energy

First In First Out memory

Fabry-Perot Interferometer

Free Spectral Range

Full Width at Half Maximum - a measurement of resolution
Gallium arsenide
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High Output Technolegy microchannel plates
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Imaging Photon Detector

Infra-red

Institutet f&r Rymdfysik - Swedish Institute for Space Physics
Instrument Technology Ltd., U.K.

International Telephone and Telegraph Company Inc., U.S.A.
Kiruna Geophysical Observatory, Sweden, now known as IRF
Inductor-capacitor (time constant)

Low Resclution Etalon

Microchannel Plate

Multiplying Digital to Analogue Converter
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University College London
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CHAPTER 1 - INTRODUCTION

1.1 Overview

This thesis charts the development of two devices: the Imaging Photon
Detector and the Fabry-Perot etalon. Their realisation and subsequent
incorporation into a wvariety of instruments, followed up by ensuring
their optimum operational performance in the field has constituted the
major part of the author’s work at the Atmospheric Physics Laboratory,

University College London.

Imaging Photon Detectors (IPDs) are extremely sensitive imaging

devices capable of detecting single photons of light.

The Fabry-Perot etalon is a multiple beam interference device which
can detect very small changes in the wavelength of light, and is thus

well suited to the determination of Doppler shifts.

The marriage of the IPD and the Fabry-Perot etalon has produced a
series of operational interferometers for atmospheric wind velocity
measurement by remote sensing of Doppler shifts in coptical phenomena
occurring at high altitudes. These instruments have been successfully
deployed in Northern Scandinavia, North America and various other
locations world-wide. Two triple etalon interferometers have been
flown on ballcoons from Palestine, Texas, and a design study has been
undertaken to incorporate a similar instrument in a polar-orbiting
satellite. These Fabry-Perot interferometers are described in detail,
together with their control systems and data handling. The instruments
run unattended for extended periods, so particular care has been paid

to long term aspects of stability, reliability and safe operation.

1.2 The aim of this thesis

The instrumentation described in this thesis has been used by many
researchers and it has constituted the enabling technology for the
work on which numercus research papers and several Ph.D. theses have
been based. These are listed at the end of this volume. In the course
of many discussions with those who have used the instruments it became
c¢lear that they frequently adopted a "black box" appreach and were

unacquainted with the physics of the tools that were being used to
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gather their data. It also emerged that there was no single source to
which researchers could be directed in order to clarify their queries.
The information that they required was often unpublished, or thinly

dispersed throughout a multitude of papers and references.

This thesis, therefore, has been develcoped not only as a record of my
own design, development and use of the instruments, but also as an
account of the diverse technologies involved. It is presented in a
form which, it is hoped, will be of help and interest to those using
the instrumentation, so that a better understanding may enabkle them to

further their scientific goals.

1.3 The primary scientific objectives

Winds in the upper atmosphere must be measured by remote sensing. The
region is too high for direct balloon measurement and too low for a
stable satellite orbit. Early forms of remote sensing used chemical
trails which were released from rockets and photographed from the
ground. Some information was also obtained by studying the decay of

satellite orbits, and by cbserving meteor trails.

The prime objective of the instrumentation developed at the UCL
Atmospheric Physics Laboratory has been the measurement of upper
atmosphere winds by determining the Doppler shift of airglow and
auroral emission lines. These lines are extremely faint. Even a strong
emission may have an intensity of only a few tens of kilorayleighs
(Aruliah 1992). The Rayleigh is a unit used to quantify the intensity
of radiating layers in the atmosphere and is defined as an apparent

emission rate of 10° photons/second/cm2 colunmn.

The principal lines of interest are the 630nm and 557.7nm OI
emissions. The 630nm line is used for measurements of the upper and
middle thermosphere (150 to 250 km). The 557.7nm line will allow
measurements of the lower thermosphere (100 km) to be made when
conditions are favourable. However, any auroral activity results in
557.7nm emissions over a wvery wide height range, which limits the
usefulness of the observations. The development of detectors with

gallium arsenide photocathodes, which are sengitive to the near infra-
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red, has enabled the observation of the OH emission at 843nm toc be
measured, thus providing data for the upper mesosphere (around 85 km).

In addition, balloon-borne instruments built at UCL have successfully
observed Doppler shifts in absorption lines {Rees et al, 1982a). These
are too broad to be measured when observed at ground level, but can be

measured from satellites (Hays et al, 1992 & 71993}.

1.4 The reguirements for the instrumentation

The light gathering power of an optical instrument is defined by =a
guantity termed the etendue, U. This is the product of two parameters,
the light collecting area of the instrument, A, and the solid angle of
the field of view, . For any instrument the product A & is constant
throughout. It is inherent in the design of the instrument and cannot
be increased by any change in the subsequent optical configuration.
For example, an increase in image magnification is met by a

corresponding decrease in the angle cf the light cone at that point.

The ¥abry-Perot etalon has & high etendue for its size and cost. In
practice, A is defined by the diameter of the etalon and @ by the
required resoluticn of the instrument. The interference fringes
created by the etalon consist of concentric circles of increasing
angular diameter. The angular diameter of the fringe pattern varies
inversely with the resolution of the etalon. Also, the more fringes
observed, the greater the value of £, but the less the resoclution with

which they will be measured.
If I is the intensity in Rayleighs, the cbserved intensity is:

I,.10°
I = e photons“‘.cm"z.s”.sterad'1 [1.11
4

and the number of photons per second, n, incident on the detector of

an instrument can be quantified as:

n = T.I.A.Q photons.s”’ [1.21

R is equal to 2Zn{l-cos a), where ¢ is the half angle of the field of
view of the instrument. T is the transmission of the optical system.

This includes losses at the lens and window surfaces and also the
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attenuation, +typically 50%, through the band-pass £filter used to
exclude continuum which would otherwise mask the =zignal. For an imaging
Fabry-Perot interferometer it also includes the transmission profile
of the etalon in image space. The resulting signal from a typical

emission line may only amount to a few thousand photons per second.

1.4.17 Detector development

Until recent years it has been difficult to take advantage of the full
light-gathering potential of the Fabry-Perot etalon. The extremely low
light levels involved require the use of a detector which is sensitive

to individual photons.

Measurement of atmospheric Doppler shifts was originally accomplished
some vyears ago {e.g. Armstrong, 1956), but these measurements have
been restricted by the use of a conventiocnal photeomultiplier tube for
the detector. Such devices are not capable of imaging, and can only
measure the intensity of one part of the fringe pattern at a time.
They are usually placed on the optical axis of the instrument and a
sequence of measurements is made whilst the fringe pattern is scanned
through the collecting area. Because such detectors have no spatial
resolution, any increase in the size of the collecting area results in
a blurring of the measured profile, and the aperture is, therefore,

commonly restricted to a pinhole.

In the 1970s the Atmospheric Physics Laboratory at UCL embarked upon a
programme of development of a new type of detector, Lknown as the
Imaging Photon Detector, or IPD. This device is similar in concept to
a photomultiplier tube in that it is sensitive to individual photons
of light. The incident photons generate individual electrons within
the device by photo~emission. These photoelectrons are then used to
initiate a cascade of many electrons, which is sufficiently large to
be measured electronically. The IPD uses a special type of electron
multiplier called a microchannel plate. This enables each electron
cascade to be restrained laterally, thereby preserving the positional
information of the incident photon. The resulting cloud of electrons
is collected by an anode, which is an electrode held at a more

positive potential. The anode can be designed to be position
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sensitive, that is to say, the electronic signals measured at the
edges of the anode can be ugsed to determine the exact position of the
incident charge cloud. One way of achieving this is to make the anocde

from a sheet of electrically resistive material.

Research on this class of detector has been proceeding at a small
number of other institutions, principally at the Space Sciences
Laboratory at the University of California, Berkeley (Lampton and
Paresce, 1974} and a degree of collaboration was achieved during the
early stages of the work. However, the specific requirements of the
UCL instruments necessitated that the development be pursued on
largely independent lines. The systems needed to be small, rugged,
portable and capable of operating outside a laboratory environment.
Also, financial constraints meant that in house development of the
electronic systems, tailored to the precise requirements of the
instruments, would be far more cost effective for a programme which,
ultimately, would result in a proliferation of instrumentation world-
wide. A collaborative development programme was instigated with
Instrument Technology Ltd., 8%t. Leonards-on-Sea, Sussex, a company

specialising in vacuum technology

1.4.2 Etalon development

In order to realise the full potential of the Imaging Photon Detectors
a programme of development was initiated to produce high guality large
aperture etalons. The challenges invelved in making high gquality
etalons of up to 150mm diameter are considerable, and the work of a
small South London company, I.C. Optical Systems, in manufacturing
these devices has been instrumental to the success of the UCL
interferometers. Major improvements in the production of dielectric
coatings have also contributed greatly to the performance of the

etalons.

The involvement of UCL with these etalons began in the 1970s with the
development of stable and rugged etalons for rocket flights and for
the interferometer flown on the Dynamics Explorer satellite (Rees et

al, 1982c; Killeen et al, 18982).
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The requirement for multi-etalon systems required a mechanism for
accurate tuning of the etalon cavities. This led to the development of
the capacitance stabilised etalon. A similar developmental programme
was undertaken by Queensgate Instruments Ltd. (Hicks et al, 1974 &
1976) but, for the reasons outlined in the previous paragraph, an in
house programme tailored to the precise needs of the UCL instruments
was deemed preferable to the purchase of comparatively expensive

commercial systems.

1.5 The subjects discussed in this thesis

This thesis presents the underlying technology of the detectors and
etalon systems used at UCL and chronicles the author’s design and
development of the instrumentation. It also provides a c¢ritical
assessment of the instrument performance, without which the integrity

of the scientific data cannot be assured.

A list of the UCL instruments currently operating world-wide is given
in chapter ten, which describes the UCL interferometers. A detailed
desceription of each station may be found in Rees, McWhirter, Aruliah
and Batten (7992) which is the UCL entry in the SCOSTEF World
Ionosphere / Thermosphere Study (WITS) handbook.

A comprehensive 1list of publications resulting from the scientific
data obtained from the instruments in which the author was involved is

to be found at the end of this thesis.

1.5.1 The Imaging Photon Detector

A description of the component parts of the IPD and its associated
electronic signal processing is presented. Chapters on the
microchannel plate electron multiplier, photocathode technology and
the position sensitive anode are followed by an account of the design
and development of the complete detector and the evolution of the
Signal Processing Unit (SPU}) and its associated electronics. The 8PU
is the electronic system which analyses the positional information
contained in the low level signals produced by the detector and which,

photon by photon, assembles a two dimensional computerised image.
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The +theory and practical limitations of the imaging system are

discussed, together with a critical performance analysis.

There follows a discussion of special types of IPD which have been
built wusing anodes with discrete elements. These c¢an accommodate
higher illumination levels than the resistive anode. and some are also
capable of wvery high time resolution. Such detectors have been used in
conjunction with powerful pulsed lasers for the evaluation of
technigues for atmospheric lidar, and are currently being refined for
use in an Arctic lidar facility: an Arctic Lidar Observatory for

Middle Atmosphere Research (ALOMAR]).

1.5.2 The Fabry-Perot Interferometer

The theory of the Fabry-Perot etalon is presented, together with the
important equations which describe 1its operation, with special
reference to its use in the UCL interferometers. This is followed by a
discourse on the design, construction and operation of the UCL

instruments.

1.5.3 Capacitance Stabilised Etalons

A chapter on capacitance stabilised etalons describes the development
of the sensitive electronics built to contrel the cavity length and
parallelism of a Fabry-Perot etalon to an accuracy and stability of
better then one thousandth of a wavelength of ilight. This technology
is an essential part of the realisation of multiple etalon

interferometers.

1.5.4 The Triple Etalon Interferometer

This may be seen as the ultimate Fabry-Perot interferometer. The
improved optical filtering obtained by three etalons in series allows
measurements to be made against the higher background illumination
encountered during daylight hours. This section describes the design
and construction of two balloon-borne instruments for observation of
absorption spectra and the evolution of a ground based interferometer

for daytime measurements of emission lines. The extremely demanding

performance criteria are analysed.
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1.5.5 Future developments

The thesis concludes with an acecocunt of Ffuture work. This covers the
continual refinement and expansion of the ground-based network of
chserving stations, the construction of instruments for the ALOMAR
atmospheric lidar project, and involvement in the TIDI (TIMED Doppler

Interferometer) to be flown on the NASA TIMED spacecraft.

1.6 Division of responsibilities

The author’s principle area of responsibility has been the design and
development of the electronics systems described in this thesis,
including the testing and bringing to operational status of all the
IPD and capacitance stabilised etalon systems. The author has also
been involved in a consultative rocle in many aspects of the mechanical
engineering, optical design and instrument software. He has taken a
major part in the instrument assembly and optical and electromnic
alignment, both in the laboratory and in the field, performing on-site

modifications to hardware and software as required.

The electronic units described were all designed by the author, with
the exception of the dual port memory, which was designed by
Gavintech Ltd, who alsc assisted with electronie assembly. Paul
Hammond joined the group in 1985 and took over the design of the
printed circuit boards and much of the electronic assembly. Keith
Smith and Jim Percival were responsible for the mechanical design and
construction of the instruments. Kevin Page contributed to the
manufacture and assembly of the more recent interferometers. Software
development has passed though a number of hands. Peter Rounce designed
and programmed the on-board computer for the balloon instruments and
Dan Wade wrote and continually maintains the multi-function Halo
programme for the PC computer controlled instruments. David Rees took
responsibility for the overall concept of the instruments and the

optical design, and also obtained the funding to make it all possible.
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CHAPTER 2 - THE MICROCHANNEL PLATE

2.1 Introduction

The microchannel plate, or MCP, is the heart of the Imaging Photon
Detector. It is the device which provides the amplification necessary
to enable the positions of individual photons of 1light to be
determined. It consists of a parallel array of electron multipliers in
the form of a disc. A particle such as an electron or high energy
(ultra-violet) photon incident on the input face gives rise to a pulse
of many electrons from the output face at the same lateral position.
The device can, therefore, be wused for two dimensional image
intensification. If the incident electrons are generated by a
photocathode, it can be used to image 1low energy photons in the
visible and near infra-red region. The electron pulse can be fed
directly to a phosphor screen to give a visible image, or to a
position sensitive anode from which the co-ordinates of each pulse can
be determined. Microchannel plates are particularly well suited to
Imaging Photon Detectors. They exhibit low noise and have low power
requirements for operation. They are small in size, light in weight,

and relatively immune to magnetic fields.

This chapter gives a brief description of their fabrication and the
theory of their operation. A more detailed account can be found in the
literature, for example Wiza (7979) and Hamamatsu (7982). Different
methods of combining microchannel plates for increased gain are

discussed and the practical limitations of MCPs are considered.

There are two major problem areas when using MCPs. Firstly, ion
feedback (Adams and Manley, 1966), which results in instability and
can cause photocathode degeneration, and secondly, channel recovery
time (Eberhardt, 1981), which 1limits photon count rates for point

sources on the image.

25






































































































69



60



ST

S20

S25

GaAs



62









































































































L6

delay

delay



86






00l






col

EHT
latch

charge
sum



€0L






105





















































































































8.00

6.25

5.00

4.00

1.56

2.00

2.50

3.125

144



e
s
P - ]
»

145



9% L



147



148



PR



0§l



LS1L


























































































181



81l



183



81




































961

filter
wheel

J. Percival









661






Loz



(40}4

314

ount

287

128

236



€0¢



¥0c

4452

2226

.10






















































































































































I/AT4



g6z



96¢



LST



8G¢









Lo

J. Percival



29t



263



y9¢



goc



0.9

0.8

0.7

0.3

0.2

0.1

266



267



268



69¢



oLe

eco

Ma



10

1993)

271








































































